ExploitingSoftware

Issue 10/2012(14) ISSN: 1733-7186

e
JQ‘ e
‘Q:\ :

& ﬁmu.l .Ij.ss '

\

PPLICA 0

*RHOWSIC TIFYAND BYPASS
ANTI- ERSING TECANIQUES:
SOCAIANDIWIRESHARK FOR PRACTICRINSST

PROTOCOIMREVERSE.ENGINEERING

MODERN WEBSITES, WHICH USE WEB 2.0 AND AJAX,
OFTEN GENERATE HTML AND JAVASCRIPT CODE ON THE FLY

|W| http://www.sysmoth.com
le| info@sysmoth.com
Ip| +923332319192

!u(l@

sysmoth

> Cloud & Virtualization u Server Administration Q Security & Compliance

Cloud & Virtualization Server Administration Security & Compliance

® Cloud & Virtualization m Server Setups m Server & Network Security
Consultancy ® Control Panels Setups Setups

® Building Virtualized ® Server/Network Monitoring ® Security Testing, Audit and
Infrastructure Setups Compliance

® |nfrastructure on Public Cloud ® Site Migration = [ncident Response

® Building Private Cloud ® Server Optimization ® Managed Security Service

® Cloud Management Setups ® Email Setups

® Big Data Setups ® Version Control Setups

® |nfrastructure Management ® Server Automation
and Support m Server Management & Support

® | oad Balancing, FailOver and

® Geo Distribution Solutions

® Storage Solutions

® Special Purpose Appliance
Building

http://www.sysmoth.com/

Atola Insight

That’s all you need for data recovery.

Atola Technology offers Atola Insight — the only data recovery device that covers
the entire data recovery process: in-depth HDD diagnostics, firmware recovery,
HDD duplication, and file recovery. It is like a whole data recovery Lab in one Tool.

This product is the best choice for seasoned professionals as well as start-up data
recovery companies.

Emphasized features at a glance:

» Automatic in-depth diagnostic of « (ase management
all hard drive components « Real time current monitor
» Automatic firmware recovery and - Firmware area backup system

ATA password removal _ .
« Serial port and power control

» Very fast imaging of damaged drives

_ « Write protection switch
« Imaging by heads

CAtoIa Visit atola.com for details

TECHNOLOGY

e - . 4 .
@RI O '{ 1

Source HDD

- W

http://www.atola.com

HaRINS

Exploiting Software

Exploiting Software

team

Editor in Chief: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Editorial Advisory Board: John Webb, Marco Hermans,
Visvaprakash, Guillermo Lozano, Elia Pinto, JI PB

Proofreaders: Jeff Smith, Nick Baronian

Special thanks to our Beta testers and Proofreaders who helped
us with this issue. Our magazine would not exist without your
assistance and expertise.

Publisher: Pawet Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Art. Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

DTP: Ireneusz Pogroszewski

Marketing Director: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Publisher: Software Press sp. z 0.0. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the highest quality
of the magazine, the editors make no warranty, expressed

or implied, concerning the results of the content’s usage.

All trademarks presented in the magazine were used for
informative purposes only.

DISCLAIMER!

The techniques described in our magazine may
be used in private, local networks only. The
editors hold no responsibility for the misuse of the
techniques presented or any data loss.

+ Exploiting Software

10/2012 (14)

Dear Readers,

Reverse Engineering is a process of the exploration of a
product (computer program, device) which is conducted
to find out how this product really works and how it was
made. The process is usually applied in order to create
an equivalent of the already existing product or to en-
sure interoperability with other products.

The issue you are reading touches upon the topic of Re-
verse Engineering. We decided to supply you with this
publication in response to your request for the subject to
be covered in this month’s issue of Exploiting Software.

We grouped the articles published in the issue into the-
matic sections. These are called: Tools (the articles by
Jaromir Horejsi, Jacek Adam Piasecki and Shane R.
Spencer), Reaching The Code (Adam Kujawa and Eoin
Ward’s publications) and Reverse It Yourself (in the pa-
pers of Lorenzo Xie and Raheel Ahmad). The latter clos-
es the issue with his review of JScrambler product in the
Hakin9 Extra section.

Seizing the opportunity of publishing this December’s is-
sue of Exploiting Software, we wanted to wish a Merry
Christmas and a Happy New Year to all our readers and
followers. May this special time of the year be peaceful
and cheerful for You and Your Families.

MERRY CHRISTMAS!

Regards,

Krzysztof Samborski
and Hakin9 Team

10/2012

mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:andrzej.kuca%40hakin9.org?subject=
mailto:mailto:ireneusz.pogroszewski%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
http://www.hakin9.org/en

THE TOOLS

How to Analyze Applications With Olly 06
Debugger?

BY JAROMIR HOREJSI

When you write your own programs and you would like
to change or modify some of their functions, you simply
open the source code you have, make desired chang-
es, recompile and your work is done. However, you don’t
need to have source code to modify function of a program
— using specialized tools, you can understand a lot from
program binary file, you can add your new functions and
features and you can also modify and alter its behavior.

How to Disassemble and Debug 18
Executable Programs on Linux,

Windows and Mac OS X?

BY JACEK ADAM PIASECKI

The Interactive Disassembler Professional (IDA Pro) is
an extremely powerful disassembler distributed by Hex-
Rays. Although IDA Pro is not the only disassembler, it
is the disassembler of choice for many malware ana-
lysts, reverse engineers, and vulnerability analysts.

How to use Socat and Wireshark 30
for Practical SSL Protocol Reverse
Engineering?

BY SHANE R. SPENCER

Secure Socket Layer (SSL) Man-In-the-Middle (MITM)
proxies have two very specific purposes. The first is to
allow a client with one set of keys to communicate with
a service that has a different set of keys without either
side knowing about it. This is typically seen as a MITM
attack but can be used for productive ends as well.

REACHING THE CODE

How to Defeat Code Obfuscation 36
While Reverse Engineering?

BY ADAM KUJAWA

Have you ever decompiled malware or another appli-
cation and found nothing but a small amount of code
and lots of junk? Have you ever been reading decom-
piled code only to watch it jump into a section that does
not exist? If you have been in either of these situations,
chances are you were dealing with obfuscated code or a
packed binary. Not all is lost however, as getting around
these methods of code protection is not impossible.

How to Identify and Bypass 46
Anti-reversing Techniques?

BY EOIN WARD

Learn the anti-reversing techniques used by malware
authors to thwart the detection and analysis of their pre-
cious malware. Find out about the premier shareware
debugging tool Ollydbg and how it can help you bypass
these anti-reversing techniques.This article aims to look
at anti-reversing techniques used in the wild. These are
tricks used by malware authors to stop or impede re-
verse engineers from analysing there files.

REVERSE IT YOURSELF

How to Reverse Engineer? 54
BY LORENZO XIE

If you are a programmer, software developer, or just
tech savvy, then you should have heard about reverse
engineering and know both its good and evil side. Just
in case, here is a brief introduction for those who don’t
know what it is. In this article, we are going to talk about
RCE, also known as reverse code engineering. Re-
verse code engineering is the process where the code
and function of a program is modified, or may you pre-
fer: reengineered without the original source code.

How to Reverse the Code? 60
BY RAHEEL AHMAD

Although revealing the secret is always an appealing
topic for any audience, Reverse Engineering is a criti-
cal skill for programmers. Very few information security
professionals, incident response analysts and vulnera-
bility researchers have the ability to reverse binaries ef-
ficiently. You will undoubtedly be at the top of your pro-
fessional field (Infosec Institute).

HAKIN9 EXTRA

JScrambler 66

Protect Your Code (Review)

BY RAHEEL AHMAD

Modern websites, which use Web 2.0 and AJAX, often
generate HTML and JavaScript code on the fly. This
means that standard static code analysers cannot fully
scan the source code and locate client-side JavaScript
issues, since the source code itself does not yet include
the entire HTML and JavaScript code.

DHwE @

%T’?ﬁ'—’ -

LA A T

=

THE TOOLS

How to Analyze Applications With

Olly Debugger?

When you write your own programs and you would like to change
or modify some of their functions, you simply open the source code
you have, make desired changes, recompile and your work is done.
However, you don’t need to have source code to modify function of
a program — using specialized tools, you can understand a lot from
program binary file, you can add your new functions and features
and you can also modify and alter its behavior.

structure, functions and operations without
having a source code available is called re-
verse engineering.

In this article | would like to introduce you to
the one of the most important tools for reverse
engineers — Olly debugger. While reading this ar-
ticle, | will introduce Olly debugger, explain the
basic features and functions and ways of using
them, and later we will analyze two programs
(crackmes). “Crackme” is a program that is used
for practicing your reverse engineering skills. As
reverse engineering of commercial applications
may violate some laws, we will stay with crack-
mes during this article. In the first program, we
will use program patching to change its function-
ality, in the second program we will try to reverse
the algorithm behind its password checking
routine.

After reading the article, you should be able to
open a program in Olly debugger and start ana-
lyzing it. If necessary, you should be able to make
your own patch or reverse simple algorithms.

P rocess of analyzing computer program’s

Prerequisites

Before you continue reading this article, make sure
you have Olly debugger downloaded and installed.
When you search (on the Internet) ollydbg, you
quickly discover the project's main webpage ol-
lydbg.de. From this page, download version 2 of
the debugger, unpack archive and execute ollyd-

« Exploiting Software

bg.exe. You also need two target programs (crack-
mes) — crackme1.zip and crackme2.zip. See at-
tachment for more information. Now you are ready
to follow the rest of this tutorial.

What is Olly Debugger?

Olly Debugger (we will call it OllyDbg) is a 32-bit
debugger for analyzing portable executable (PE)
files for Microsoft Windows. (There are many dif-
ferent types of computer files. PE files are stan-
dard executable .EXE files, DLL libraries, SCR
screensavers, etc... When you open the file in any
editor, you notice two signatures — MZ in the begin-
ning and PE a bit further. At address ox3c you will
see the offset of PE signature. In our example val-
ue on address 0x3c is 0xB0, therefore on address
0xB0 you will see PE signature). See Figure 1 for
screenshot.

: [40 _5A 90 00 03 00 OO0 00 | 04 00 OO0 00 EF FF OO0 0O | MZ. .
H B8 00 00 00 OO OO OO0 00 | 40 00 0O 0O OO0 0O OO 00 s
20: 00 00 00 00 OO0 OO OO OO0 | OO0 QO OO 00 QO 00 Q0 Q0|
00C 30: 00 00 00 00 OO 0O OO0 0O) s
nonnondo:

00000050

OF 1F BA OE 0D B4 0% €D

s (] (L) 1E 76 E& & 3 18 76 88 | .vs

000000R0: [52 69 63 68 19 76] 00 00 00 00 00 00 OO0 00 | B

S0 45 00 00 4C 01 03 €8 D1 75 39 00 00 00 | PE

00 00 00 00 EO OO0 OF 01 '} (¢
00 04 00 00 OO 0O OO0 0O 1]

00 20 00 00 00D 0D 40 00 | OO 1C

) 00 10 00 00 | .

Do) 00 D2 00 00| .

000000FD:
00000100:

04 00 00 0O OO OO OO0 0O | O4 00 OO0 OO OO0 00 00 00 | .
00 40 00 OO OO 04 OO 0O | OO OO OO OO 02 0O OO0 0O | .
0o 00 10 0D OO 1O 0D OO0) JC 00 10 00 00 | .
00 00 0D OO 10 0D 00 00 | OO0 OC 0 00 00 OO 0O
10 20 00 00 00 00 00 | 0O OC)
00 00 00 00 Q0 00 Q0 00
00 00 00 00 00 00 00 00

00 00 0Q 00 r.JO 00 00 00 i
00 00 00 0O 00 00 0D 0D

0':'”0'."]']'.":
00000150+

Figure 1. PE file format

10/2012

Debugger overview

When you execute ollydbg.exe and drag and drop
any executable file on it (in my case | used crack-
me_01.exe), you will notice four sub-windows —
disassembly (upper left), registers (upper right),
dump (bottom left) and stack (bottom right) (see
Figure 2). We will say a little bit about each of
these sub-windows.

Debugger sub-windows

The Disassembly sub-window shows the disas-
sembly of the program. Each line contains sever-
al columns — memory address, opcodes, opcodes
translated into assembly language, additional in-
formation added by debugger (in case of API calls
you can see parameter values and their types). If
you look at the first line of Figure 2, you will see
00401000 (memory address), 6A 00 (opcode),
PUSH 0 (disassembly of opcode 6A 00, i.e. instruc-
tion which stores number 0 on the stack), Type =
MB_OK|MB_DEFBUTTON1|MB_APPLMODAL
(additional information added by debugger — it
says that this value in Type parameter of Mes-
sageBox Windows function). If you want to know

more about MessgeBox or any other API function,
search in internet for “msdn messagebox.” MSDN
means Microsoft Developer Network.

The Register sub-window contains processor
registers. When a register changes, its color be-
comes red. Below registers (in middle part of sub-
window), you can see processor flags — 1 bit val-
ues which signalize results of previously performed
operations (results of comparison of two numbers,
etc...). In bottom part of sub-window, you can see
Floating Point Unit registers, which are used for
arithmetic operations involving decimal point num-
bers. If you want to know more about registers,
processor instructions, etc., search in internet for
“IA-32 architecture.”

The dump sub-window shows you raw binary
data from addresses you specify. When you right
click into dump sub-window, select Go To -> Ex-
pression (Ctrl+G), you can choose the address
which you want to display binary data from. You
can choose from various forms of data representa-
tion — just right click on dump window and select
one of the options (Hex, Text, Integer, Float or Dis-
assemble).

0llyDhbyg - Crackme_01.exe - [CPU - main thraad mndulel:ra(l:me _01] =181 =)
[E] e vow Debug Irsce oo LTS
=R ES R ESIT| ﬂJ}JH JJ A rIHIWI tlc|®lwd Blm|u| =
m T T LTI PR TOE T |
- [e — [T L Cosl_| 7" 87
OFFSET 2403010 Tant m Crockre 1™
@
<P, SUSERSZ. Huan epwBonfl
@ u.luuunmnu AT
OFFSET 22403023 go-! T00 Il| L ‘!‘IIndl :
OFFAFT BOAIOET nd the reit...m
2
P, RLETRE Mo s apeliosdl
2 m MFBH"M] HE_AFFLHOOAL
OFFSFT RARSAT 1
DS WL
£ LUSERSZ Nessapetisnity ¥
S0 DELITILLE e i rocess? t LFFLLUE L L tProcess
DWOFRD FTR DS: [CAUSER3Z. Hes
P EWORD PTIR 0% [ERKERHEL - [| EPracen
Srack [OOLLFFLOI-DOIZFFFE -
Thwzht
atEss Bt T | .WWK.an!E.?ES]SD‘F =
RETURN from S84E2R19 to SOS4EQ3S
e

[Eniy ot of main bl

Figure 2. OllyDbg main window

www.hakin9.org/en

[Paused

Exploiting Software |-

THE TOOLS

The stack sub-window shows a block of memory
generally used for storing parameters of functions,
return addresses of function calls, local variables
within functions. Stack is a data structure based
on “Last In First Out” principle. When you push a
value (instruction PUSH) onto the stack, it appears
on the top, when you pop value (instruction POP)
from the stack, the value from the top of the stack is
removed. In Figure 2, first line in stack sub-window
is 0012FFC4 (address), 7C816D4F (value stored
on address), RETURN to kernel32.7C816D4F (ad-
ditional information added by debugger).

That'’s all for the description of the four basic sub-
windows. However, if you need to display more in-
formation, you can click on View menu and select
any of those options to display optional sub-win-
dows — see Figure 3.

Executable modules shows list of all modules
loaded in the memory space of the analyzed pro-
gram. It gives basic information as 00400000
(base address), 0004000 (size of image in mem-
ory), 00401000 (address of entry point, where ex-
ecution of module starts), Crackme_01 (name), file

version and path to file. The Threads window enu-
merates all thread in active program. It shows ba-
sic information like identifier, windows title, last er-
ror, entry point, status, priority, etc.

Edit memory breakpoint at Crackme D1:text:0040102D..00401031 B l‘

Break on;

™ MNead access
™ Wiite access
¥ Execution

I” Disabled

Figure 4. Setting up memory breakpoint

Hardware breakpoint at Crackme_01.00401046 E _5[
Break on: [ata size: Hardware shat:
" Execution 1+ Bute &1 [witer1 |Crackme_01.00401046
€ Access (Riw) © wlord c2 [Emey |
& i e ow || O3 By |
4 [Emoty |
I Disabied ITI o I

Figure 5. Setting up hardware breakpoint

UllyDbqg - Lrackme_UlL.exe

Flr Wiew Delagy Trace Elocis Oplioes Windowes Help

= R I T I A R T I o P T T =

—ark Lelenanl ra-ah

=]
T

[113 breakpoints
Nddrezs |Hodule | Ststus

GO+01001 | Crackme_{ Act ive CALL CuHP, BUSCRIZ, e s saseDonfd

M Memory breakpoints 5

Nddress [Size | Module |Type|Status Ic
BOAB10 n BO0A0005| Crackne{ T |Rative

[l Hardware breakpainks et

Slot|Tepe | > le |Seatus |Dizassentl | Conment
1 Mritesl |[00401040] Crackmne_t RAct ive

HULL, Text = ™ilelliorge, tCA, FHCT,

Figure 3. Optional sub-windows

+ Exploiting Software

Secrlon |Contalns Inizial
Fnulronment Fili
|Pruess Favaneiers i Rid
| wl Fild
|Stack of main theead | Frao WW ¥
| 3
i 7
Rb
I
[
i3
]
B
RE
RC
i | ¥
18AR Crackne_A1 |FF header g RiiF
Glﬂ.knr 01 w b | Cunler Iy E RME
sedata | Irgorts Ina RUE
Crackne ot _data |Uata Img B Lopd KUk
|G0I handles ao R
Map C BEC
Hap 3
Friu El HIi
| Priv B il
Pxiv| W Rl
LB |PE header Img R RUE Cogp-
LFE _tewr |Cncis, inpnres, puparTs ing & F FliF Copa
LPE adata |Dat s | Bl RME Cues
Pt s | Resauro na RWE Cope
LR relos | Helocatices ng HE Uog-
IR FF header] FiiF Frira
usria tent P inporte, exports ma R C FHC Cope
UEP1D data | Data ng (FW Copd RUE Cop-
sy a | ng ik Loge
usei1e e ruE " RWE Cuws
usrig reloc |Relocaticns rg RUC Cog-
iz 1=+ head na RWE Cop-
THER Teut Coe, IRNOCES, AURATTS g R F EiF e
IITEE data Dat s Imd | F RUE Cuum
3 IMHIZ TIIC ce Ima R RMC Cog-
1P relos | Helocatices img (B Bk Log-
mEueTT |FF nean Mg R FiliF Fnge
Gy alEnt | Cundery impurt s, enports vy E RWE Cugs
HEVOrE sdata it 3 ng |BW Copi RUE Cog-
mEert Crerc |Resources ng HE Log-
MEVEIT -reloc | Relocations nd FIE Come
USCRIE |FL header na FC Cope
08 USER22 tont | Code, inports, cnports na E RYE Cop-
IEEHE _Aata |lata mg | EW HliE infa
USER3E raic | Resuurves) RWE Cues
LECRIE «relec |DBelocations rig MIC Cog-
aolaPTz2 |PE header mg RUWE Cop-
EOUAPTER _tewr |Cone, inpnres, suparts g R F FiF Frpe
RDVAP ISE slata |Dat s Imd | FM Cuwt RWE Cuew
nonPIz2 - PIre |Resauroes Ima R RUE Cop-
[rn e relor | Helocaticns img (B Bk Log-
RTd |FF hearer Tmg R FiliF frpe
FTCAT4 =tent, 00| Code, inports, enports Ing C MUC Cog
FRPCRTA wdata l a3 Ing |Fa FUE Cope
HETHI 4 Crerc |Resources img HlE Loge
FFCATY ereloe | Relocatios I RME Cumm
208 COIJ2 |PC header Ima FWC Cop=
0132 tent | Code, inports, cuports Ing E RUE Cop-
AOTAZ fata AT A g | El FliF fnpa
anIsz eI | Rersouar I RWE Cues
CoI32 relec |De lo:a! lons Ing MC Cog-
karnel32 |PE haader Img RUWE Cop-
kernelEF _teur |Cons, innnres, suparTs Tmg R F FliF Frpe
llﬂ'llelﬁi sllata | Dat s Imd | FM RME Cuum
- PErO | Resauroes Ing RWE Cog-
Yootz _reloe |Helocaticas img ik Logs
nEdll |FF hearer g FliF Copa
nedll tent |Code, enports Ing E RUC Cop-
wdll data |Data Ing FW CopiRWE Cog-
nEdLl Jrerc | Resources ima HIE Uog-
ntdil «reloe | Relocatios Iy RWE Cums
Hap C RELC
Dode pas Hap 3
Froceas FRuinonment Rio|Fri & Fili
Duta Lluock uf num thie{ Priv) fd il
L] Uur Shared Dat. Priv R’
U | JHE U |Eernal wemary Karn

10/2012

To explain the purpose of following optional win-
dows, we should understand what a breakpoint is.
A Breakpoint is a condition set in debugger. When
this condition is met, program stops running and
waits for user action. Three main types of break-
point are: software breakpoint, memory break-
point and hardware breakpoint. In order to have
the same output as in this tutorial, do the following:
Set software breakpoint at address 401021 (click
on line with address 401021 and press F2), set
memory breakpoint at address 40102D (right click
on line 40102D, select Breakpoint-> Memory and
press OK — see Figure 4), and finally set hardware
breakpoint at address 401046 (right click on line
401046, select Breakpoint->Hardware and press
OK - see Figure 5).

After all theses steps, the disassembly window
will look like Figure 6 — lines on which breakpoints
are set, become red.

INT3 breakpoints window shows all addresses
where software breakpoints were set. In our ex-
ample, it shows 00401021 (address), Crackme_01
(module name), Active(status, not disabled now),
disassembly of address the breakpoint was set on,
comment added by debugger.

The Memory breakpoints window enumerates
all memory breakpoints. In our example, it shows
0040102D (address), 0000005 (size of region in
bytes), Crackme_01 (module name), E (type Ex-
ecution), Active (Status, it is not disabled now).

The Hardware breakpoints window enumerates
all hardware breakpoints. In our example, 1 (one
of four slots), Write:1 (type of hardware breakpoint
and number of bytes it is applied for), 00401046
(address where breakpoint was set), Crackme_01
(module name), Active (status, not disabled now).

The Memory map shows all memory regions
loaded to user mode. It displays address, size of
region, owning process, section name, description
of contents, memory type and access rights. In the

case for our Crackme_01 program, it gives us fol-
lowing information: It has 4 memory blocks.

00400000,
(as shown
00401000,
00402000,
00403000,

which is PE header of Crackme (Ol.exe

in Figure 1)

which is .text section of Crackme 0Ol.exe
which is .rdata section of Crackme 0l.exe
which is .data section of Crackme 0Ol.exe

The first example

If you followed tutorial in the previous sections, you
have Crackme_01.exe loaded in your OllyDbg,
you set three different breakpoints and now you
are ready for your first analysis.

When you press key F9 or Run icon from tool-
bar ¥ application Crackme_01.exe starts running.
It continues running until breakpoint is hit or until
user action is expected. In this case, message box
is display and application waits for user to click on
OK button (Figure 7).

After clicking OK, no more messages are be-
ing displayed, however, the debugger stops at ad-

Acid_Cool_17 |

Win3zasm Crackme 1

Figure 8. The second message box in crackme_01.exe

r &H BAA FUSH @& rTupe= = MB_OKIME_DEFBUTTOM1 | ME_RFFLHOOAL
= &2 88384000 |PUSH OFFSET B8483888 Caption = ™Acid Cool_178"s"
EE4E1EAET | - &8 183684888 | PUSH OFFSET oo4B83818 Text = "Win32Asm Crackme 17
aARdEiaacl - &R B8 FUSH & hdwner = HULL
AE4E16EE|| - EES 200888888 | CALL <{JMP.&USER3Z.MessageBoxAx LLISERS2. MessageBoxA
HR4E1A1S| - &8 @8 FUSH @& FTups = MB_OKIME_DEFBUTTOM1 | ME_APFLMODAL
EE4E1E1s() - &8 23304008 | PUSH OFFSET @84830z23 Caption = "Ereetings goes too all my friends..™
HE4E1E1A| - &8 473684888 | PUSH OFFSET oDo4B83847F Text = "Hellforge, tCA, FHCF, DR@F and the rest...™
AR4E1ALF - &A B8 FUSH & hlwner = HULL
= ES 1A@oBo@E | CALL <JMP.&USER3Z.MessageBoxA LUSERSZ. Messag9=BouA
ERdE1E2E L - &R BE FUSH & FTups = MB_OKIME_DEFBUTTOM1 | ME_APFLMODAL
AE4E1E28 | - &8 Fl3@4888 | PUSH OFFSET Db4B3871 Caption = "Remove HMet™
aada1e20|| - PSSR | FUSH OFFSET God48S87C Teut = "MAG MAG™
HER4E1832 &H BE FUSH & hiwner = MHULL
Ho4H1834 ES BF@@a8a8 | CALL <JMP.&USER3Z2.MessageBoxAx LLISER32. Mes=sageBouA
HE4E1839 &H BE PUSH & ExitCode = @
HE4E183E|L ES B&@68888 | CALL <JMP.&KERMEL3Z.Ex itProcess?k KERHELZZ.Ex itProcess
AE4E1E4E) £— FFZE @8328488) JMP OWORD PTR O%: [<&USER3Z.HMessageBonA
BR4810846, $- EEZS 98204880 JMP DWORD PTR DS:[<&KERMELZZ.ExitProces
HEdig184cC [S[] OE &8
HEa461840 als] DB @&
HE4E6184E 55| OE @&
HE4E184F 55| OE @@
HE4E 1 BEA als] Oe ad
HE4E1851 55| OE @&
ARAGRT AED [ele] [gl=RNrie]

Figure 6. Software, memory and hardware breakpoints

www.hakin9.org/en

Exploiting Software |-

THE TOOLS

dress 401021, where we set software breakpoint.
It is just before the second message box will be
displayed. Now, we will press F8 Step Over, tool-
bar icon 2| and another message is displayed
(Figure 8).

After pressing OK, we stop at 401026. If we
press F9 (Run) again, we stop at 40102D, be-
cause we set Memory Breakpoint on Execute at
this address. We can continue either by pressing

Remove el Y

MAG MAG

Figure 9. The third message box in crackme_01.exe

CEUTSE x|
00401026 |nard =l
¥ Keep size

Azzemble I

Figure 10. Dialog for replacing instructions

[Fil st with NOPs Cose |

F9 once or by pressing F8 for each line of code
until we reach another message box at 401034.
This message box says “NAG NAG Remove Me!”
(Figure 9). As strings displayed in message box
show, our goal is to remove this message box so
that when we run the crackme again, it is not dis-
played anymore.

After pressing OK and F9 (Run) again, the de-
bugger does not stop at 401046, because we set
hardware breakpoint on write, not hardware break-
point on execute. Meanwhile, the application called
ExitProcess and exited (you can see red text “Ter-
minated” in right bottom corner).

Now restart the application by pressing
CTRL+F2 ¥ delete all breakpoints because we
do not need them anymore (go to all windows
with breakpoints, select breakpoint, right click and
Remove) and continue stepping through the ap-
plication using F8 (Step Over). When you reach
line 401026, you are at the place where the first
parameter of the message box is pushed on the
stack. As long as we want to remove the message
box, we should remove not only “call Message-
BoxA” instruction, but also all its parameter. Re-
moval will be done by replacing the instructions

=] 4 x| JJJ S|+ & 4 U] L] E M| w] T el x|
Sgigiggg . 68 aaaa4aaa EHEE OFFSET BO4@3008

aadaiee? || - &2 1ASE4000 | PUSH OFFSET BR4AZ818 ooaot o2y |l _:J
aadainac|| - en Ba FUSH &

aEdainaE || « ES 2DB@BEE | CALL <JMP.&USERSZ. MeszageBouAY v :

aadalaiz|| - A @@ PUSH @ v Feep size

oE4elais]) - &8 23304008 |PUSH OFFSET 08483023

aeamiein|] - &2 4vSE4eEE | PUSH OFFSET BO483847 i i Aszemble Cloze |
Dedgleinll - 6847 FusH. 0 v Fill rest with MOPs

354919”1 . gg 1ABEEAGE ESEL £JMP. BUSERSZ. MessageBonAl

BE4a10ET 38 HOP

AE4E1EzE|| « 68 71304800 |FUSH OFFSET BE4@3671 Caption = "Remove Met™

aEdainz0|| - 68 TC3A4E06 |FUSH OFFSET BB4@387C Tent = "NHAG HAG™

aadalazz|| . eA BE FUSH hiowner = HUOLL

@E4Eiozd|) - ES Aroenans
@E4Eieas - &R aa

agd4a1e3e| L.
godaiode 5
BEd4E1BdEe] -

5]
CHLh éJHP.&USER32.HESSEQEBDHH>
MP. &KERMELZZ.Ex itProcess>

ES Beoe@pas | CHLL <JMP.
FF25 @ozpdam JMP DWORD PTR DS: [<&USERZZ2.MessagsBonAl
FFZE Gezedam JHP DWORD PTR DS: [<&%KERMELZZ.ExitFProces

Figure 11. Replacing with NOP instructions

Jump to USER32.MessaaeBoxA
ExitCode = B
KERMELZ2.Ex itProcess

bEdElEEn P &6H 0@ PUSH &

gEd4Eiaez| | - &8 88384080 | PUSH OFFSET 88482888
pEdEiEEs |) 68 18384800 [PUSH OFFSET c@4a38in
pR4@aiEac)) - &H 0@ PUSH &

GEd4EiEEE| | - ES 2DE880s8d | CALL <JMP.&USER3Z2.MessageBoxAl
bE4EiEis|). &6H B8 PUSH &

podEiElis|) - 68 23384800 | PUSH OFFSET bD@4@38z23
GEdEiain)] - &8 472840680 | PUSH OFFSET 88482847
bE4EiEiF| - &H B8 PUSH &

CEdEiE211] - ES 1ABEEEEE | CALL <JMP.&USER3Z2.MessageBoxAx
EEAE] E2E 26 HOF

[EEET I L] MOP

BE4E18:28 L) HOF

BE4E] B2 26 HOF

BEdE1E2H L] MOP

BE48182E8 28 NOF

BE4E 20 S| HOF

BE4E1E20 L] MOP

BE4E182E L5 HOF

BE4E1B2F Qi HOF

BE4E 1830 L] MOP

BE4E18:3]1 1) HOF

BE4E] A2 SE HOF

BE4E1a33 L] MOP

BE4E 1834 L) HOF

BE4E] EIE S0 HOF

BER4E 1835 L] MOP

BE4E1ES7 L] HOF

HiEdE] B3 26 HOP

BE4E1E39 l- &H B8 PUSH &

GE4E1EsE| ke ES 88888060 | CALL <JMFP.&KERHEL3Z.Ex itProcess’

BE401846(5- FF2E 82320480
BE4ala4a| $- FF2E 8820480

Figure 12. Replaced PUSHes and CALL

| Exploiting Software

JHP DWORD PTR DS: [<&USER3Z2. MessageBoxA
JHP DWORD PTR DS: [<&KERMEL3Z.Ex itProces

Caption = "Acid Cool_173"s™

Tent = "NinSEHEm Crackme 1™

hiwner = HULL

USER3Z. NEEEEQEBDH

[THDE = ME_OK ME_DEFEUTTOM1 | ME_APFLMODAL

[THDE = ME_DOK {ME_DEFEUTTOM1 | ME_AFFLMODAL

Caption = ™3reetings goes too all my friends.."™
Tenut = "Hellforge, tCA, FHCF,
hiwner = HULL

USERZZ. MessageBonA

ORF and the rest...™

ExitCode = @
Jump to kernel32.Ex itProcess

10/2012

EE4ai006E(F- &R BE FUSH & Tups = ME_OEIMEB_OEFEBUTTONL | ME_APFLMOD
AEd@laEz|l « 68 BEZE4808 | PUSH OFFSET o@403808 Caption = "Acid _Cool_17a"s"
ggjgisgé . EE éSSB4EBB EHEE SFFSET BE4E3R1A Igut = "NﬁaEEHsm Crackme 1™
e 1 . 1dwner =
ggjg}SBE . EE SSBBBEBB Eﬂéh édﬂp.&USER32.HEESEQEBDHH> HSERSE.HEEEEQEEDEEFBUTTDHI P
4 12{] - Tupes = DK THME_ TME_|
AE4Eials) - 68 23204808 | PUSH OFFSET 08403623 Caption = "Greetings goes too all my
Sgggiﬂ%ﬂ . EE 35384888 EHEE SFFSET BE4E304 7 Ignt = "Hﬁbtinrge. +CH, FHCF, DGF and
5} air|| - hlwner =
HEdElozl] - ES 1ABEEERE | CALL <JMP.%USER32.MessageBonA> USERZ2. MessageBoxA
EE4E] A2 28 HOF
BE4E]R27 28 HOP
BE4E]1 825 28 HOP
BE4E] A2 28 HOR
BE4E182A 2@ HOP
BE4E162E 2 HOR
BE4E1 820 28 HOF
Bad4a1nz2n 2@ HOP
BE4E102E 2@ HOF
BE4E162F 28 HOP
BE4E]1R3A 28 HOP
BE4E1 A3 Q8 HOR
BE4E1 R332 28 HOP
shi o o sacos |
Aa4E1A35 2@ HOF ; i
SS:S%SE? gs HBE Edit r Undo selection Alk+EBk3pc
e . k. s | Covmube aii
st = R Gl ee ol G e
A48 1 = add comment. ., Semicalon
32381245 i= EEEE BEZE4EE8 HEPASNDRD FTF 5 kp : L} .
B4E164 L reakpoin i
ggjg}gig SS EE Sg Binary copy CErl+-Insert
Tl L
BE401E4F G OB B& Follows in Dump L Binary edi. .. CErl+E
BE4E 1 BEA 5]5] DE @@
BE4E 1 A5]] OE G a0 b k =
ggggigge SS DE gg Fill with zeros
5} HES] g
%33%%352 SS Ea ED Search For F Fill with NOPs
E EE B BE
BR4E1 ASE BE OB G&E Find references ko k
et m DE 00 Highlight register b el
maiee o il
E :
coiciad o Eo . ’
B4616 i
BE4E1EEC B DE &6 Gampents .
fhdoipce| oo BE o5 |
HE 1 ASE 0 Analysis r
fhanicen| b BE a5 :
a1 BEE E B
BE4E1EE] OB Qi Help on command Shift+F1
BE4E1n62 5]5] DE @&
AEdE]nes 5]5] [DE &6
Anmearancres 1 3

Figure 13. Copying modifications into new executable

Address |C0mments

BEEEAAEE | ER

dump
JENETETE e e

[EE[E[EEEETE]
H &

BEEEE413) SA BE FUS

HEEEA4 15| &2 Z233E4860 PUSH 4832823 HSCII "Grestings goes too all my friends..™
BEEEE41A| &2 473R4660 FUSH 4836847 ASCII "Hellforge, tCA, FHCF, DEF and the rest
BEEEE41F| SR B@ FUS

H &
BEEEE44E

QEEEE4Z]1| ES 1ABEEEEE CALL
ARARARAZE | DG HOP
QARAAZT| D6 HOF
QRARRAZE| 25 HOP
AEAEE429 | 96 HOP Backup »
QRAAAAZA| 6 HOP
BbobBest| o0 Hop et :
BOBGR4ZD, S8 HOE Assemble. .. Space
QRRRAAAZE! 26 HOP 7 c
g o ===] e
sembly Comment :_| 0| BEEEEEEE
il » Q| AHEECEEE
Q| GEEE1EEE
hf | 6507098
Search For]
iy ; Q| BAEEZE6E
Highlight regisker r 0| BEEE 1868 | LPK
] Q| BHEECEEE | LPK
et ' o acaiass o
7 Q| BE66186E| LPE
Help on command Shift+F1 S SSSE%SSS HEEE
0| BEEE2EEE | MSCTE
= : = |15 agasang| HeETE
=
Texk r 6| BEEE1EEE | Mactf ime_ ime
R " TE1A1EEE | BEEZTEEE | msotf ime_ ime
dJ TEICOEEE | BREE1EEE| msotf ime_ ime
Flaak . rS1C2808| BABEZE0E| meotf ine_ ime
— ol s e
v Disassemble PEEE Gioe | GoE44508| USP1G
7E2AEnon| Dbe2bon| USP 10
»
SRR TESATAEE | BE8126668| USP18

Figure 14. Saving modified executable into new file

www.hakin9.org/en

Exploiting Software |

THE TOOLS

Figure 15. The second crackme

by other instructions which do nothing. For such
a purpose, No OPeration instruction (NOP) with
opcode 0x90 is the best candidate. It has only one
byte, therefore it allows us to replace any other
instruction with it, removing the effect of original
function and doing nothing instead.

OllyDbg allows to edit instructions in disassem-
bly by pressing Space key. Dialog as in Figure 10
displays. You only need to overwrite original in-
struction address with “nop” and press “Assemble”
button. After pressing “Assemble” button, original
instruction with size 2 bytes is replaced with two
NOP instructions (red colored lines in Figure 11).

Repeating the same for all PUSH instructions
(belonging to call) and the call instruction itself will
result in following code (Figure 12).

Now, we should save all modifications into a
new file and we are done with this task. Therefore,
select all modified lines with mouse, right click,

select Edit->Copy to Executable. A New window
with the modified exe file will open (Figure 13).
Right click into this newly created window, right
click and select Save File... Enter new file name
(something like crackme_01_patched.exe), click
on Save and patched file is saved. Later, when
you try to run the patched file, only two message
boxes are displayed and instead of the third mes-
sage box, several nop instructions are executed,
therefore nothing happens and no message box
is displayed.

The second example

Our second example will be a slightly more com-
plicated crackme — sf_cme04.exe. First of all, we
run the crackme to see how the application looks
like. Figure 15 shows that we have two text fields,
About link, Exit link. When we try to insert random
text into both fields, nothing happens.

Let’'s open the application with OllyDbg and try
to find some information to help us start reversing.
The first step will be to look at string references.
Right click on disassembly window, select “Search
for” -> “All referenced text strings” (Figure 16).

We scroll down the list of text strings and try
to find anything interesting or suspicious. We are
quite lucky, because we can see a lot of strings in
this crackme. The strings are not encrypted or ob-
fuscated so we can see them in their plain forms.
After lengthy scrolling down we notice the fol-
lowing interesting message: “You were success-
full Now send me your serial or write a tutorial”
(Figure 17).

+ IR) U w0 1w :‘ i] ééEi
88774408 DD G8447788 J =2
58774400 00 B6447758 & 2501
39899508 00 BEEREEES 3
83774480 DD @0447785 L =

PUSH_EBP : e

- [agec MOU EEP, ESP 00 st EreaEpgg

e R L A o
5 Backup » e

E2 G4DAFBFF |CALL O

Al C32E4400 | HO0U EAX,DRORD PTR DS:[448ECE] Edit »

- |2geg MOU EAX,DWORD PTR D3: [EAR]

- |E2 2220FEFF |CALL GB42B35C Add label... Colon 23

. | @i C&B8E4480 |HOU EAR,DMORD PTR DS:[448BCE1

« | 8RAA ML PR, NWNRMN PTR NS=TFAX] Assemble... Space

- | Ba 83794400 |MOU EDX;BB447938 ASCII "CrackMe Mo. 4~ 5
E8 2F37FEFF | CALL @@428884 Add comment.,. Semicolon (;)

8880 £0SC440l [0 ECX, DWORD PTR DS:[448C601 : s
Al C32E4408 | MOY EAX,DWORD PTR DS:[448BCE] Ereakpoint
8272 sa7a44a(AU Eoi DoRD PTR Da: Fadoase]
ES 173AFEFF | CALL An42E334 ; Folow in Dump >
Al C33B448@ |MOU EAX,DWORD PTR DS:[448BC81 Goto »
3809 MOU EAX,DWORD PTR D3: [EAX]
£5 ZZBRFEFF |EALL Podacass
Search For »
aood 805 BVTE PTR DS:[EAX1,AL L3R
nces ko »
80899508 00 BEEReRsD : Cammand. .. CHIF
43 72 61 63 {ASCII "Crackile Mo. 4" ASCII "CrackMe Mo. 4~ Highlight reqister L : e
OB B& = EqUEnCe OF Comin. ann
=2 M e
aa onsLant...
OB G Comments » :
OE @@ Binary string... Chrl+B
) z i
BE E,Ed Analysis 3 Modification
DE 68
f
BE SE,, Help on command Shift+F1 Allintermodular calls
Do oo , Allcommands...
preaam:e:
EE a%‘. All command sequences. ..

Stack [BEL2FFCBI=G
EBF=GG12FFFS
Jumps from 460108, 47401C

All constants...
&ll modifications

all referenced strings

Address |He:x du

#ll referenced GUIDSs

88 98| 88 B8 @7

8@ A% 81 aa
@@ C3 a4 ae
98| ES 87 a8
8a| 30 SE BE

| Exploiting Software

&ll user comments
All Found switches
Al floating constants

Ba12FFE@]

10/2012

1 Search - Text strings referenced in sF_cmedd : -|of x|
Stings :F_cme04 |

Address | Command |E,omnen1:s ﬁ
¢ "Nn Tt FaFEnund™ [RSCTT "NnTtenEnund™

"StringFormat" |ASCII "StringFormat™

PTran cparent™ | nec PTrancparcnt™

"Ualye™ |ASCIT "Walue™

s s ey | ASCIT "LhoeHistury™

UU‘}‘}(Ud“ H5L i il |
L L L | ar e Ziape
"Imagel™ |ASCII "Imagel™

"AHHIEButtonl™ | nec "OHMIEEW t5onl™
"AHHIEButton2™ | |sC "AHHIEBY tton2"
“AHHA L0 g1 | ASC “AHHALH = a1
"FusedEdit 1™ | ASCII "FusedEdit 1™
'Iiuseutd I EEE rRusedbd e
"AHNIEButton2Clic™ | ASC

"OHHIEButroniClic™ | |sC

"FusedEdis2Click™ | RSC

"TusedCdit2Change™ | RSC "CusedCdit2Change™
m‘mi" | ASC "TForml"™

|ASCIT "TFormlppd™
|BSCII "4th CrackMe from stealthEIGHTER. Hore
ASCII "4th CrackMe from stealthFIGHTER, More

VASCIT "You were successfult Mow send me wour seriall@or write a tutorialt™
NSCII "lou were cuoocscful? MHow send me pour seriallfor write o tusorial ™
| "Tups your name, pleaset”

| ASC “TUpE YOUr name, pleaset™

|BSEIT ™1 I:. LrZiager

|REETT »3[r oo leage

&I Mhracke Mo, 47

|ASCIT "CrackMe Ho. 47

"Erackhe Ho. 47

"Bunt inc_crror " |NSCII ™Auntinc crror at QEEODEOE"
ror”, B |ASCII MError™
| REC “1EZ3456T FABCOEF = e |
|RSCIT ™ ficyd
| H5L b, "bdlerol lvLde™
|ASCII "TThreadlindow™
ASC "HS Sans Serif™
| AEC Mo B lack™
|ASCII "clHaroon™
|ASCII “clGreen™
Olive™
Iy
Purole™
Teal™
Gray™
Silver™
an
Lime™
Vel low”
Blug"
Fuchsia™
ua"
White™
Sorol IBar™
Background”

: LAGL Doyt iun”
Inact iveCaption™

A4 41 Tl NN ARd 1 1FFR Li
|F0um:| 3254 shings and references 4
Figure 17. Interesting string

44 75 S 55} OB @
s &5 FUSH _EEF
Ea447E41 ||« SBEC Haw EBF,ESF
Ba447E45|| = 3309 WOR ECK,ECH
BE447545] - 51 FUSH ECH
BA447E46(] - 51 FUSH ECH
Ba447547 (]« 51 PUSH ECH
BR447543(] - 51 PUSH ECH
aad4vs4a(l - Bl PUSH ECK
ea44vE4A(l - 52 FUSH EEX
aa447E4E(l - S6 FUSH ESI
@E447C4c| | - SBFE MO EST,ERX
EE447E4E (] - 3308 ®OR ERX, ERX
ea44vecall - 55 FUSH EEP
EE447EE1 (] -+ &2 GEFE44BE | PUSH 8B8447eSE
EE447EEG] - E4:FF2E FUSH DWORD PTR FS: [EAX]
EE44FEED] . 5422926 MOW DWORD PTR FS:[EAX],ESP Installs SE handler 447EEE
EE44FEEC] - SBCE MOU ERX,EST
HE447EEE(] « ES SEFEFFFF | CALL BBE4473BS
HE447EEZ] -« B MO ERX,ESI
BE447EES (]« ES BEFFFFFF | CALL BB44747H CsF_cmefd, 88447478
HE447EER|] « BOSE FC LER EDOX,LCEBF-41
EE447EED|| « SB86 AEEZEHEN MO EAX,.DWORD PTR DS:[ESI+2@AE]1
BE447ETE|] « ES GBF4FEFF | CALL AB466305 CsF_cmedd. 88486308
@ad47EFE « S0EE EC LEA EOi,CEEF-141
EE447EVE(] « SBS86 FE@l@sé HoU ERX,.DWORD FTR OS:[ESI+1FAl
@E447E51 || - ES 1242FDFF | CALL 868418735
@E447586 (] - SB4E EC Mo EAM,.DWORD PTR S55:[EBP-141
@E447559 1] « S0E5_F8 LEA EDX,[EEFP-31
aada7Serc|| « E3 47F4FBFF | CALL GR4GES0S C=F_crmefd. 08485305
@E447E21 (1 - SB4E FC MO ERX,DWORD PTR SS: [EEP-41
@R44vEa4) . SBEE FO Mo EDX, DWORD PTR SS: [EEP-21
@E447Ee7 | - ES B4CEFEFF | CALL 8B463EFE
EE447E00 | - BE94CE SETE BL
EE447E0F | - 204D F4 LER ECX,[EEP-BC]
GE447CHZ|] - EA 81880088 | MO EDX, 1
EE44FEHT (]« B2 4BEZE188 | MOU EAH, 1E248
EE447CHC]« B2 P3FEFEFF | CHLL BB405B24 CsF_cmefd. BB4B5E24
@E447EEL (]« 204D FE LERA ECx,[EEF-18]
EE447EES4] - EA 81880085 | MOV EDX, 1
EE44 7R - B FIFEA9EE | MOU ERX,.3FBF1
HE447ERE|] » ES 61FEFEFF | CHLL BB4E&EZ24 CsF_cmedd. BA4EEB24
HE447ECE (] - BB4E Fd MOW ERX,DWORD PTR S5: [EBF-AC]
HE447ECE|] « BBES FAE HMOw EDX,OWORD PTR 55: [EBP-1@1
HE447ECE ||« ES 22CEFEFF | CHLL BB4E3EFH
EE447ECE (]« BF34CE SETE AL
@E447E01 (] » S4DB TEST BEL,BL
BE447E03(] -~ 74 15 J7_SHORT @md47sER
EE447E0S(] - &R 8@ FUSH & Fral = 8
EA447E07 || - 66:8BA0 &CYE MOU CH,WORD PTR DS5: [44786C]
ER44FE0E(] -« B2 82 Mou OL, 2 ;
Ba4475ER | « B2 73764486 | MOU EQX, 68447673 ASCITI "You were successfult Mow send me your serialiEor write a tutorialt™
@44 7EES] - E2 BEALFEFF | CALL 8B421770 sF_cmeBd. BE4217FE
@E447EEA|] > S4DB TEST BEL,BL
EE44FEEC|] - T4 4D JZ SHORT @B447636
ardd7orEll o 2an2 WOR EMY EM

Figure 18. Breakpoint set on function which we expect to display success message

www.hakin9.org/en EXPIOitinQ SOftware ‘ 13

THE TOOLS

Double click on this line and we will land at ad-
dress 4475E0 in the disassembly window. Scroll
slightly above, procedure which has something to
do with our suspicious string starts at 00447540
with PUSH EBP instruction. Remember this ad-
dress — later we will set a breakpoint here. Run
crackme by pressing F9, enter arbitrary strings

=10l x|

CrackMe No.4 =

Figure 19. Crackme window with both textboxes filled up

in both text fields (in our case we enter “crack-
me” and “123456” — Figure 19), set breakpoint at
4475E0 (Figure 18). Now we can try to click on
various places of crackme’s window, but nothing
happens. Only when we try to modify the text in
the second text field (for example from “123456” to
“1234567"), debugger breaks at 4475EO0.

Then we keep pressing F8 (Step Over) and ob-
serve stack window, register window if we notice
any changes, which are interesting for us. Typi-
cally we are looking for situations where we can
see the data which we inserted into program’s
text boxes. When we reach address 447563
(the address right after call XXXX), we can see
that register EDX contains address of the string
“‘emkcarc”, which is reverse string of “crack-
me” — contents of the first text field we entered
(Figure 20).

Stepping out further, another interesting address
is 447573. In register EAX, we can see reference

OllyDbqg - sF_cme04.exe - [CPU - main thread, module sF_cme04]

@File Wigre Debug Trace [lugins Qptions Windows Help

IEIRTEY HJJ Si+ i 4 U] L|E|M/W|T|c|R[..| B|M|H| |

HEd4FESE OB BE i
HEdd FESF EB OB B8 = EE&LSETEE?::;PU]
3447541 : EEEC HUEHEEE ESP EE§ Sggggggé ASCIT “emkoarc'™
BE447543 - 3309 HOR ECH,ECH EE: @@0a1594
Bo447545 ||« B1 PUSH ECRH ESF B@izFrFC
EEEERCEEN] -t PUSH ECH EEF @@1zFaz2d
seaarell &
Bpd47c4s|| « BL FUSH ECH EOT 88061554
Ba44754A|] = 53 FUSH EBEX EIF BE447565 <F_cmeBd. BE447EES
Bod47c4ag|| -« B& PUSH ES .
C B ES B923 SZbitr ©iFFFFFFFF)
il = misbe c2 08 I B
AddTEnm cE FUSH EEH:-" A B =5 BE23 32bit BIFFFFFFFF)
£ B DS BE2S 32bit HIFFFFFFFF]
Ea447EE1() - 62 GEVEd4B8 | PUSH ©@447EG5E S @ FS GA3E 32bit FFFOFGGEELFFF)
Bo447EEe ||« E4:FF2@ FUSH DWORD PTR FS:[EAXI T 6 Gt pooo HOLL
gpaaries|| - edigoze MO DUORD_PTR FS: [ERKT, ESP Installs SE handler 44765E LA
poddrseel| L R reee | DO ERRESL 08 LastErr BOEEEEEE ERROR_SUCCESS
i PE BEFFFFFF | LALL Baddoa7e o e Gaa474 7D £ HRREEEE (DT NE R P)
. EF_ZME| . -
cosarcen|| - 8DES FC |LER EOX, [EBP-4] ST1 oty —bb FFFF 0DBABOAR GOCZSDOF
Bo4475E0|| -+ SESE pEG2EEE MO EAY,DWORD PTR DS:[ESI+208] 5T2 empty —77F FFFF GRCZE0ZF GECZSDIF
Bo447572|| » ES GBF4FEFF | CALL aa4asgns CF_cnedd, BEEEI0E 315 empfy —7> FFFF QOBADODE DECSSO3F
GE447575| |« S0BS EC LER EDX, [E ET4 cupty 6.8
BA447E7E SESE Famia@al HOU A, BUORD PTR DS:(EST+1FE] STE empty B.0
Ba4475E1 ES 1242FOFF | CALL BB4IB?9B STE .:.Mm-.b: 7O OoEnSd A1 CESCRARR
Figure 20. Text box contents found in register
BEG47EIZ [2]e] OE & aflRegisters (FPUI
B4 FEIS 48 DE Qa8 ERY BEDBEEER ASC11 "rod-ma
BE447534 FFFFFFFF OO FFFFFFFF EC: MRS EmEE
BEd47EIE) « B1lEBEEEE 00 GEEEaEE L B BA1ZFEoR
Ga447E3C) - 2D ASCIL - EBX BEDA1594
BE44 7530 (5] OE 88 ESP BE12FFFC
HE447ESE [5]5] OB B8 EBP GBE1ZFE24
8a44 7,538 i EE EESEBEBP ESI BE0E49E4 ASCIT "pol’
ARG 7R 1 ZEEC MOU EEF, ESP CHRHb
emd4rs4z|| - 339 HOR ECH, ECH EIF BB447ETS sF_cmeld, BE447ETS
Badd47EqE|| « L FLSH ECH i
C B ES @823 32bit BIFFFFFFFF)
3333;§3$: E{ EHEE EE§ F 1 (£ @81E 35hit @iFFFFFFFF)
posireid] o =l ElSAELK A @ S5 @823 32hit BIFFFEFFEF)
A l| Y RHSECS £ 1 DS @823 3Zbit GIFFFFFEFE)
&8 FS 0ESE 3Ebic TFFOFG@ECFFF)
eaddrEanl] « B2 FLEH EEX T8 BS @E60 HULL
Bhd4redr|| - BeFe B0 EET . ER g
pUaaredr =k e EalrERS 08 LastErr 998BE005 ERROR_SUCT
844 PESE EE FLIEH EEF EFL @PBa@z4é | HO,MHE,E,EE.HS,FE, G
Badd7EEL (|« £2 SE7EddEn | FUSH B8447EEE 5 ;
saq47see|| - B4iFFa@ PUSH DWORD PTR FS: [EAX] e e o oo
aad4rssall « B4:a92A@ MOU OWORD FTR FS:[EAX1,ESP Installs SE handler 44765E ST empty —72 FFFF @BCZSO3F BOC
BR447EE0 gBCE mMay ER, ES1 STZ empry -7 FFFF OROBOARG GOC
33133355 ES SEFEFFFF CﬂhL B4 TSRS STA ompty B.8
apd47Ees|| - ES BEFFFFFF |CALL mmdardra CsF_cmeld. AR447470 =L Loty e s (e
84475601 -+ 8DSS5 FC LER EDX, [EBP-4] ST7 empty 1Z234CE7.OOGEBRABDE0EE
paddren|| « SBSE BEBZEEE HOU ERRX, DWORD FTR DS: [ESI+206] A E 5
ES SEF4FEFF | CALL B@dtessDs £2F omeld ., BE4EES0E FoT @RER Cond 6 6 @ B Ecr 8 A
BE447TEFE S0EE EC LER EDx, [EEF-14] FCWl 1272 Prec MEAR, 64 Mask i
4475 7R SES6 Fo@i@ae MOU ERX, DUORD FTR OS: [EST+1F@I Litt cmod GOLE: DO4BHEEE oF cmald
BE447ES1 ES 1242F0FF | CALL ©841E79S i ? =

Figure 21. Mag/c string

10/2012

| Exploiting Software

to string “754-09.” We don’t know what these num-
bers means, but we can guess that they come out
from procedure 447565 (Figure 21).

A few lines below — at address 447597, register
EAX contains our magic value “754-09”, register
EDX contains string “1234567” (which we entered
to the second text box). Then at 00447597 a pro-
cedure is called and if a zero flag is set during the
call of the procedure, then SETZ BL sets BL reg-
ister to 1 (Figure 22). However, in our case, zero
flag is not set during calling procedure 00447597,
therefore SETZ BL sets register BL to 0.

Further in the code, at address 4475D1, you
can see instruction TEST BL, BL followed by JZ
4475EA (you can see it in Figure 22 too). If BL
equals 0, TEST BL, BL (which corresponds to logi-
cal function BL & BL) sets zeroflagto 1 (0 & 0 =
0, result is zero, therefore zero flag = TRUE = 1)
and JZ jumps to 4475EA, therefore no message is
displayed.

The opposite situation occurs when a ze-
ro flag is not set during function call at 447597.
In such case, SETZ BL sets BL register to 1.
Later in the code, TEST BL, BL results in zero
flag = 0, JZ does not jump and message box is
displayed.

From the aforementioned description, we can
expect that instruction CALL at address 447597
is comparison of two strings, which pointers are

aE447538 818886860 0D BEEEEEE 1
z0 ASCIT ="

passed in registers EAX and EDX. You can sim-
ply verify it by keeping the first text box with text
“‘crackme” and modifying the second text box to
value “754-09”. When you do this, you can expect
to see something like in Figure 23.

Now our work is over. We found the correct
name/serial combination, but unfortunately we
do not yet know what the exact relation between
name and serial number. Is the serial number

oo

i You were successfull Mow send me wour serial
ot write a bukorial!

Figure 23. Correct name/serial combination found

& §Registers [FPLU)

BE447EIC| - 1 TR
BE44 7530 2L OB @E R
8844 755E <L) DB 88 D AEO0REVES ASCIT 1234567
(i 7ESF =] E 55 EEX Q@091534
eyl Fi B S Eob Halernth
il - . EEF AG1ZFE2d
goddrees|| - gacs HOR ECH, ECH ESI AA0R49E4 ASCIT “pp0
gad4754a(] - 51 PUSH ECH EUL Rl
ggiiggzg & E% EHEH EE§ EIF 8447597 =F_cme=B4. 80447597
- C 8 ES @623 S2hit BIFFFEFFEE)
eoseall s e FheH By F 1 C5 901E 22bit BIFFFFFFFF)
BB S5 BE23 33biv BUFFFFFFFF)
Aad47E4E|| - Ge PUSH EST
BE44754C 2BFE oU ESI,EA Eip i eiaes Sonl G UL
. & P2 bosb iabir SFFLFODOCFFF)
B4 TESE 2308 %OR ERR, EAX T8 G5 a@Ee HOLL
Bod4reer £5 SEreddnn |PUSH Bode7esE 0
aa447EEe |« BdiFE3@ FUSH DWORD FTR_FS: [EAR] 0.4 LastEre boaaasen ERRORSUCERSS
Dod4rEss | - edigsa ol EHERESPTR F5: [EAX],ESF Installs SE handler 44765E EFL 80@8824& (MO,ME,E,EBE, NS, PE,GE, LE)
-7TT
oo447ce || - ES SSFEFFFF | CALL DBa4raes 17 Snovy T330 FEFF bosoobop AACoSOoF
aE447EEzs|| » SECE MO EAX,ESI STZ empty —777F FFFF BACZS0SF BRC2ZSO3IF
aa4475es|| - E2 BeFFFFFF |CALL mmtarara C2F_cmeBd. BR44747E STE Emoth —%o% FFFF DRGOREGE HOCEEOSE
ea4a7sea|| - soss Fo LER EDH, [EBP-41 3T4 orpty @, a
ga4475e0|| - SE2E pomzoee MOU ERN.CWORD FTR DS:[(ESI+2081 Sy
BE447573 ES EBF4FEFF |CALL AA496208 C2F_cmeBd., BR4GEI0S T
BE447E7E SDSE EC LER EDX, [EBF-141 ET7 emptu 1234567, RAGARGGRREGEEA
L e e o e
BE447556 2B45 EC MOU ER:, OWORD PTR S5: [EBP-141 FEl 729 fond Bogee® prepeevRegisn
BE447ESD EA EDXaéEBP 1 .

S0EE F2 L
E2 47F4FEFF)

SB45 FC MOU ERX, OWORD PTR S55: [EBP-4]
SBEE F2 MOU EQ, OWORD FTR S2: [EEP-21]
ES S4C&FEFF |CALL BB4BSBFB

CsF_cme@4. BA4B5302

A 4 Mask
_J Lazt crnd GB1B:BE489635 sF_ocmeB4. BE4E965!

WHME 447DESFT 44SASE4E 4495EBSD 44RS424F
AL 44116166 441CA0C4 443745E3 445BC22C
HMMEZ COSAREEE CZFSEE0E CZ2ZREEEE 41200080

Gadd o+ BFI4CS SETZ pile
ae44755F || - 2040 F4 DER ECE, [EBP-GC] LS
Cosicei|| D G doezaibn | Mo Ent,iezde e
Wie 61308130 B1300130 B1300130 01500136
bt EEporchERR EEELEEE4?EEE4191 CiERLCrsh BEARERES k7 BSBESAIC 3312CCF7 BBFEASS2 3BEGRFCD
op4475Ed ||« BA BiBemEEe |HOU EDX, {
go44rees| | - BS FLFE@S8@ | MOU EA, FEFL HECERTERALECER: RSP Do B Eon Domp s
fid47EEE|| - ES S1FEFEFF |CALL mo4BeEzd €=F_crefd. BA40EE24
op447scs|| - SB45 Fa HOU EAX, DWORD PTR 55: [EBP-BC]
gaddrsce|| - BESE Fa HOU ED¥,DWORD PTR 55: [EBP-16]
Ga447ECS|| - ES Z2CEFEFF |CALL BO4B3EFS
an447ECE|| - BFo4CE SETZ AL
aE447E0i ||« B4DB TEST
AG447E0E || - 74 15 " THERT Gaddrsen
on447sns|| - ea @@ Aral = @
08447507 ||+ £6:3B80 6CPE{MOU Cit, WORD PTR DS: [44766C]
ae447ECE|| - B ;
aa447EEG|| - B 7OPed4pe |HOU EAR, BB4477E RSCII "You were successfult
poadrerc|| . ES BERIFEFF |CALL mo33177 E crefd, pa431 77

Dest=sF_cmeB4d. 0B4E3EFE

Figure 22. Comparison procedure

www.hakin9.org/en

-

Exploiting Software -

THE TOOLS

MOUZ s EAX,BYTE PTR DOS: CESI+EMX-11
MOUZ: EDW,BYTE PTR DS: CESI+EDH-11
ADD DWORD PTR DS: CEEX+1F21, EAX

AEddraHS] > 8055 FC "LEA ED<, [EEF—4]
« SBR3 ECAl@nE | Mol ERE, DWORD FTR OS: CEER+1EC]
844 7461 ES EZ242FOFF CALL aa41E73%5
FE4d 7 4B 2B45 FC Mou EA:, OWORD PTR S5: CEBP-41]
BE44 7462 BFEE4438 FF
BE44 7 4BE SB92 FCAl1@8al] Moy EDy, DWoORD PTR OS5: CEEX+1FC]
AE4474C4] -« BFBSE43Z2 FF
BEd44 7403« FPER THMUL EDi
AEd4474CE | - 81832 F20l86n
BE4a 740111 = 46 INC ESI
EEdd7402)] - 4F DEC EDI
BE447403] =~ ¥5 03 =M SHORT BE4474R5

Figure 24. Serial computing loop

computed from the name? Is the serial number
computed from something else? Is the serial
number constant and hardcoded somewhere in
program? In the text above, we mentioned that
“magic text” “754-09” appeared in the program
soon after calling procedure at address 447565.
Let’'s examine this procedure a little bit. First of
all, we need to press F9 to continue running the
application (leave from debugger), we edit text
in the second text box, and we hit breakpoint
at 447540 again. We keep pressing F8 to Step
over until we reach 447565, where we press F7
to Step into ® the procedure. Now we land at
447470.

Keep pressing F8 Step over again and observe
what happens. In the middle of the procedure, you
will find a loop (Figure 24), which

* measures length of text of the first text box
(004474B1: CALL 0041B798)

» gets pointer to the text of the first text box
(004474B6: MOV EAX,DWORD PTR SS:[EBP-4])

* reads (ESI-1)-th character from the beginning
of the string to EAX (004474B9: MOVZX EAX,BYTE
PTR DS:[ESI+EAX-1])

* reads (ESI-1)-th character from the end of the
string to EDX (004474c4: MOvzx EDX,BYTE PTR
DS:[EST+EDX-1])

* multiplies EAX by EDX (004474Cc9: IMUL EDX)

* adds result to temporary variable (004474cB:
ADD DWORD PTR DS:[EBX+1F8],EAX)

* repeats length-1 times

In our example, the following is being computed
for string “crackme”. ASCII code for character ‘c’
is 0x63, for character ‘e’ is 0x65, etc...

c*e)+ (r*m) +

((a*k)+ (c*c) +
(k*a) +

(m*r)+ (e *c) =
= (0x63 * 0x65) + (0x72 * 0x6D) + (Ox6l *
0x6B) + (0x63 * 0x63) + (Ox6B * 0x61) +

(0x6D * 0x72) + (0Ox65 * 0x63) =
= 0x270F + O0x308A + 0x288B + 0x2649 + 0x288B +

0x308A + 0x270F = 0x12691 = 75409 (in decimal)

| Exploiting Software

This is the method of computing serial number
from string supplied by user.

Conclusion

In this article, we learned fundamentals of using
OllyDbg. We took the first simple example and
made our first patch, which prevented application
from showing a message box we did not want to
display. In the second example, we learned how
to locate interesting procedure in the lengthy list-
ing of assembly code and analyzed it in detail. We
found the correct name/serial combination and un-
derstood the way of computing serial number from
user supplied name.

JAROMIR HOREJSI

Jaromir is a computer virus re-
searcher and analyst. He specializ-
es in reverse engineering and an-
alyzing malicious PE files under
Windows platform. He is interest-
ed in malware internals - how it is
packed/crypted, how it is installed
into computer, how it protects itself
from being analyzed, etc. He also likes solving interest-
ing crackmes. Except for reverse engineering, his hob-
bies include traveling, exploring new places, flying re-
mote control models and playing board games.

10/2012

Two Factor
Authentication

Email and Web
Security

Endpoint Security

Mobile Device
Management

Wireless Security
Data Governance

Secure Remote
Access

Perimeter Security

Intrusion Detection
& Prevention

Secure Infrastructure

Infosec

Infosec Technologies

Reducing risk through technical excellence

Technology alone cannot solve today’s security challenges, but by

applying the right mix of technology and services to solve even the
most complex security challenges, we are able to reduce both cost
and business risk.

Infosec Technologies provides impartial advice and expert
technical support that can help you secure your IT infrastructure
and achieve your business goals.

About Infosec Technologies:

Infosec Technologies is a UK based, award winning supplier of information
security solutions. We have delivered over five hundred projects in the last
seven years and have partnerships with both established and new security
vendors.

We are dedicated to researching and testing new and innovative technologies
to provide our clients with ever stronger, more resilient and agile security
products and services.

Our clients span every business sector; from government to pharmaceuticals,
financial to ISP, retail and charity. Extensive experience in the design,
implementation and support of security and infrastructure solutions allows us
to meet specific requirements whilst still maintaining the highest levels of
customer service and technical support.

Our technical excellence, focus on customer service and flexible approach
ensures we are ready to be your trusted security advisors.

Phone: +44 (0)1256 397790
Email: sales@infosectechnologies.com
Website: www.infosectechnologies.com

Contact us today for expert
advice and support:

e Vs A |

s : -
& egress meraki Mimecast @cm sy L Check Point KASPERJKYS A sea s

Cisco Srarims

m“‘f @riﬁccl "_".'.?M L—s‘MAN@ -

SOURCE| i7" moildistier

http://www.infosectechnologies.com

THE TOOLS

IDA Pro

How to Disassemble and Debug Executable Programs on
Linux, Windows and Mac OS X?

The Interactive Disassembler Professional (IDA Pro) is an extremely
powerful disassembler distributed by Hex-Rays. Although IDA Pro is
not the only disassembler, it is the disassembler of choice for many
malware analysts, reverse engineers, and vulnerability analysts.

www.hex-rays.com), which provides a free

version for non-commercial uses that is one
version less than the current paid version. It is now
version 5.0.

IDA Pro will disassemble an entire program and
perform tasks such as function discovery, stack
analysis, local variable identification, and much
more. IDA Pro includes extensive code signatures
within its Fast Library Identification and Recogni-
tion Technology (FLIRT), which allows it to recog-
nize and label a disassembled function, especially
library code added by a compiler.

IDA Pro is meant to be interactive, and all as-
pects of its disassembly process can be modified,
manipulated, rearranged, or redefined. One of the
best aspects of IDA Pro is its ability to save your
analysis progress: You can add comments, label
data, and name functions, and then save your
work in an IDA Pro database (known as an idb) to
return to later. IDA Pro also has robust support for
plug-ins, so you can write your own extensions or
leverage the work of others.

T he program is published by Hex-Rays (http:/

Loading an Executable

When you load an executable, IDA Pro will try to
recognize the file’s format and processor architec-
ture. Figure 1 displays the first step in loading an
executable into IDA Pro. When loading a file into
IDA Pro (such as a PE file with Intel x86 architec-
ture), the program maps the file into memory as if

| Exploiting Software

it had been loaded by the operating system loader.
To have IDA Pro disassemble the file as a raw bi-
nary, choose the Binary File option in the top box.
This option can prove useful because malware
sometimes appends shellcode, additional data,
encryption parameters, and even additional exe-

P

Load a new file

Load file Z:h\basic_example.exe az

Portable executable for 80336 [PE] [pe.ldw
MS-D0S executable [EXE] [dos. Idw]
Binany file

Processor type

,14

[Intel B0x86 procesons mekapc

Analpgis
Enablad
Indicator enabled

(00000000
(O=00000000

Loading segment

Loading offzet

Optionz

Create segments [
[7] Load resources
Rename DLL entries
[] Manual load [
Fill zegrent gaps
take imports seqment [
|| Create FLAT group

F.emel options1 l

F.ermel options2 l

Proceszar options l

Sestern DLL directory Cowindows

[(1] l [Cancel] ’ Help

Figure 1. Loading a file in IDA Pro

10/2012

http://www.hex-rays.com
http://www.hex-rays.com

cutables to legitimate PE files, and this extra data
won’t be loaded into memory when the malware is
run by Windows or loaded into IDA Pro. In addition,
when you are loading a raw binary file containing
shellcode, you should choose to load the file as a
binary file and disassemble it.

PE files are compiled to load at a preferred base
address in memory, and if the Windows loader
can’t load it at its preferred address (because
the address is already taken), the loader will per-
form an operation known as rebasing. This most
often happens with DLLs, since they are often
loaded at locations that differ from their preferred
address. You should know that if you encounter
a DLL loaded into a process different from what
you see in IDA Pro, it could be the result of the
file being rebased. When this occurs, check the
Manual Load checkbox shown in Figure 1, and
you'll see an input box where you can specify
the new virtual base address in which to load
the file.

By default, IDA Pro does not include the PE
header or the resource sections in its disassem-
bly (places where malware often hides malicious
code). If you specify a manual load, IDA Pro will
ask if you want to load each section, one by one,
including the PE file header, so that these sections
won’t escape analysis.

BN

The IDA Pro Interface

After you load a program into IDA Pro, you will see
the disassembly window, as shown in Figure 2.
This will be your primary space for manipulating
and analyzing binaries, and it's where the assem-
bly code resides.

Disassembly Window Modes

You can display the disassembly window in one
of two modes: graph (the default, shown in Figure
2) and text. To switch between modes, press the
spacebar.

Graph Mode
In graph mode, IDA Pro excludes certain informa-
tion that we recommend you display, such as line
numbers and operation codes. To change these
options, select Options— General, and then select
Line prefixes and set the Number of Opcode Bytes
to 6. Because most instructions contain 6 or fewer
bytes, this setting will allow you to see the memory
locations and opcode values for each instruction in
the code listing (If these settings make everything
scroll off the screen to the right, try setting the In-
struction Indentation to 8).

In graph mode, the color and direction of the ar-
rows help show the program’s flow during analy-
sis. The arrow’s color tells you whether the path is

; Attributes: bp-based frame
sub_48188D proc near

var_f8= dword ptr -8B
var_4= dword ptr -4
arg_#= dword ptr &

ebp

ebp, esp

esp, B
[ebp+arg_A], @
short loc_ 4818AE

; CODE XREF: sub_A@1B8F4+4C)p sub_481BF4+E7p

eax, [ebp+arg_#a]
[esp+B+var_ 4], eax
[esp+B+uar_8], offset aSuccessD
printf
short locret_4018BA

=

(mou
call

imp

; "Success wdywn'

; CODE XREF: sub_4oiasD+atj
[esp+8+var_ 8], offset aFailure ; “Failurein™
printf

¥

EANLL

locret_4818BA:
leave

retn

sub_4B188D endp

; CODE XREF: sub_48188D+1FTj

Figure 2. Graph mode of the IDA Pro disassembly window

www.hakin9.org/en

Exploiting Software |+

THE TOOLS

based on a particular decision having been made:
red if a conditional jump is not taken, green if the
jump is taken, and blue for an unconditional jump.
The arrow direction shows the program’s flow;
upward arrows typically denote a loop situation.
Highlighting text in graph mode highlights every in-
stance of that text in the disassembly window.

Text Mode

The text mode of the disassembly window is a
more traditional view, and you must use it to view
data regions of a binary. Figure 3 displays the text
mode view of a disassembled function. It displays
the memory address (0040105B) and section
name (.text) in which the opcodes (83EC18) will
reside in memory.

The left portion of the text-mode display is known
as the arrows window and shows the program’s
nonlinear flow. Solid lines mark unconditional
jumps, and dashed lines mark conditional jumps.
Arrows facing up indicate a loop. The example in-

cludes the stack layout for the function and a com-
ment (beginning with a semicolon) that was auto-
matically added by IDA Pro.

Useful Windows for Analysis

Several other IDA Pro windows highlight particular
items in an executable. The following are the most
significant for our purposes.

Functions window Lists all functions in the exe-
cutable and shows the length of each. You can sort
by function length and filter for large, complicated
functions that are likely to be interesting, while ex-
cluding tiny functions in the process. This window
also associates flags with each function (F, L, S,
and so on), the most useful of which, L, indicates
library functions. The L flag can save you time dur-
ing analysis, because you can identify and skip
these compiler-generated functions.

Names window Lists every address with a name,
including functions, named code, named data, and
strings.

.text 00401040

.text: 00401040 sub_461648 proc near ; CODE XREF: sub_4B18A8+2alp

.text:00401040

.text:oo461040 var_18 = dword ptr -18h

.text:Bo4aiB40 var_14 = dword ptr -1kh

.text:Bo461640 var_18 = dword ptr -16h

.text:Bo4E1640 var_C = dword ptr -6Ch

.text 00401048 var_8 = dword ptr -8

Jtext:00401040 var_4 = dword ptr -4

Jtext 00401040

.text: 00401040 55 push ebp

.text:00401841 89 ES mov ebp, esp

.text:00401843 83 EC 18 sub esp, 18h

.text:0o4B1846 C7 45 F4 0O 80 B0+ moy [ebp+var C], @

Ltext:8040104D C7 45 FO 88 80 06+ mov [ebp+var_18], 8

.text:BB481054 C7 45 FC 64 BB 06+ mov [ebp+uar_4], 64h

.text:8048105B

.text 06401058 loc_4@1@5B: ; CODE XREF: sub_4B81848+5C]j
—' _text:004681058 83 7D FC 61 cmp [ebp+var_4], 1

.text:@048185F 7E 3D jle short locret_46189E

.text: 00401861 C7 45 FO B0 80 GO+ mov [ebp+var_18], @

.text 00401868 8B 45 F8 mov eax, [ebp+var_8]

.text:0040186B 03 45 FC add eax, [ebp+var_4]

.text:0040186E 89 45 F4 mov [ebp+var C], eax

.text:@o461871 83 7D F4 1E cmp [ebp+var_C], 1Eh

.text:@0401875 75 o7 jnz short loc 48167E

Ltext 80481077 C7 45 FA@ 81 B8 06+ mov [ebp+var_18], 1

.text: 8848107

.text: 060408107 loc_4B187E: ; CODE ¥REF: sub_u01048+351j

.text:0040107E 83 7D F4 B8 cmp [ebp+var_C], B

.text:00401882 75 13 jnz short loc_u81897

.text: 00401884 8B 45 FC mov eax, [ebp+uar_i]

.text:004016887 89 44 24 B4 moy [esp+18h+var_14], eax

.text:0040188B C7 04 24 20 20 40+ mov [esp+18h+var_18], offset aPrintHumberD ; “Print Humber= %din“

.text 004081092 E8 B1 00 688 88 call printf

.text: 00401097

.text: 804081097 loc_481897: ; CODE XREF: sub_4@18u48+421j

.text:Bo4@1897 8D A5 FC lea eax, [ebptvar_ 4]

.text:B048189A FF B8 dec dword ptr [eax]
e . tEt:004B189C EB BD jmp short loc_uB8185B

.text:0640810%E Dk

.text:0040109E

.text:0040109E locret_LB189E: ; CODE ¥REF: sub_4681040+1FTj

.text:0040109E C? leave

.text:0040109F C3 retn

.text:0046189F sub_461648 endp

Figure 3. Text mode of IDA Pro’s disassembly window

. Exploiting Software

10/2012

Strings window Shows all strings. By default, this
list shows only ASCII strings longer than five char-
acters. You can change this by right-clicking in the
Strings window and selecting Setup.

Imports window Lists all imports for a file.

Exports window Lists all the exported functions
for a file. This window is useful when you’re ana-

Returning to the Default View

The IDA Pro interface is so rich that, after press-
ing a few keys or clicking something, you may find
it impossible to navigate. To return to the default
view, choose Windows—Reset Desktop. Choos-
ing this option won’t undo any labeling or disas-
sembly you’ve done; it will simply restore any win-

lyzing DLLs. dows and GUI elements to their defaults.

Structures window Lists the layout of all active

data structures. The window also provides you the Listing 1. Navigational links within the disassembly
ability to create your own data structures for use as window
memory layout templates.
These windows also offer a cross-reference fea- jnz short loc 40107F
ture that is particularly useful in locating interesting mov [ebptvar 10],
code. For example, to find all code locations that loc 40107E: ; CODE XREF:
call an imported function, you could use the import sub_401040+35]
window, doubleclick the imported function of inter- cmp [ebptvar C],
est, and then use the cross-reference feature to jnz short loc 401097
locate the import call in the code listing. mov eax, [ebptvar 4]
mov [esp+ +var 14], eax
&P IDA - Pi\basic_example.exe L7 ([CEisenaiEne LB, Ot
aPrintNumberD ; “Print
File Edit Jump Search View Number= $d\n”
call printf
> | = = ﬁl ﬂ call sub_4010A0
Figure 4. Navigational buttons
a d v e r t i s e m e n t

Workbooks.com

Web Based CRM & Business Applications for
small and medium sized businesses

Find out how Workbooks CRM
can help you

- Increase Sales

- Generate more Leads

- Increase Conversion Rates

- Maximise your Marketing ROI
- Improve Customer Retention

ContactUs to Find Out More

+44(0) 118 3030 100
infoldworkbooks.com

http://workbooks.com

THE TOOLS

By the same token, if you've modified the win-
dow and you like what you see, you can save the
new view by selecting Windows— Save desktop.

Navigating IDA Pro

As we just noted, IDA Pro can be tricky to navigate.
Many windows are linked to the disassembly win-
dow. For example, double-clicking an entry within
the Imports window or Strings window will take you
directly to that entry.

Using Links and Cross-References

Another way to navigate IDA Pro is to use the links
within the disassembly window, such as the links
shown in Listing 1. Double-clicking any of these
links will display the target location in the disas-
sembly window. The following are the most com-
mon types of links:

* Sub links are links to the start of functions such
as printf and sub_4010A0.

* Loc links are links to jump destinations such as
loc_40107E and loc_401097.

» Offset links are links to an offset in memory.

Cross-references are useful for jumping the dis-
play to the referencing location: 0x401075 in this
example. Because strings are typically referenc-

Listing 2. The disassembly listing

offset aMab ; “Smab”
ecx, [ebptvar 1C]

push
lea
push
call
add
test
jnz short loc 401104
push

ecx
strcmp

esp,
eax, eax
offset aKeyAccepted ; “Key
Accepted!\n”
call printf
add esp,
jmp short loc 401118
loc_401104 ; CODE XREF: _
main+537j
push offset aBadKey ; “Bad key\n”
call printf

P Occurrences of: Bad key
[Edit Search
+ Address Instsuction

data DO4DENSE Badey db Bad hey MR DATA XREF. _maroc_40110410
et 00401104 _main puth ofivel aBadiey | "Bad keyhn'

Function

Line 1 af 2

Figure 5. Searching example

- Exploiting Software

es, they are also navigational links. For example,
aPrintNumberD Ccan be used to jump the display to
where that string is defined in memory.

Exploring Your History

IDA Pro’s forward and back buttons, shown in Fig-
ure 4, make it easy to move through your history,
just as you would move through a history of web
pages in a browser. Each time you navigate to a
new location within the disassembly window, that
location is added to your history.

Navigation Band

The horizontal color band at the base of the tool-
bar is the navigation band, which presents a color-
coded linear view of the loaded binary’s address
space. The colors offer insight into the file contents
at that location in the file as follows:

* Light blue is library code as recognized by
FLIRT.

* Red is compiler-generated code.

» Dark blue is user-written code.

You should perform malware analysis in the dark-
blue region. If you start getting lost in messy
code, the navigational band can help you get
back on track. IDA Pro’s default colors for da-
ta are pink for imports, gray for defined data, and
brown for undefined data.

Jump to Location

To jump to any virtual memory address, simply
press the G key on your keyboard while in the dis-
assembly window. A dialog box appears, asking for
a virtual memory address or named location, such
as sub_401730 or printf.

To jump to a raw file offset, choose Jump—Jump
fo File Offset. For example, if you're viewing a PE
file in a hex editor and you see something inter-
esting, such as a string or shellcode, you can use
this feature to get to that raw offset, because when
the file is loaded into IDA Pro, it will be mapped as
though it had been loaded by the OS loader.

Searching

Selecting Search from the top menu will display
many options for moving the cursor in the disas-
sembly window:

* Choose Search—Next Code to move the cur-
sor to the next location containing an instruc-
tion you specify.

* Choose Search—Text to search the entire dis-
assembly window for a specific string.

10/2012

* Choose Search—Sequence of Bytes to per-
form a binary search in the hex view window
for a certain byte order. This option can be
useful when you’re searching for specific data
or opcode combinations.

jump to that location in the disassembly window by
double-clicking the entry in the search window.

The disassembly listing around the location of
0x401104 is shown next. Looking through the list-
ing, before "Bad key\n", we see a comparison at

The following example displays the command-line | L xrefs to sub 40898
analysis of the password.exe binary. This mal- Direction T Address Tex &
ware requires a password to continue running, sub_408B1C+25 call sub_408980
and you can see that it prints the string Bad key tttgm”” P sub 4024025 cal - sub_40ESE0
own p o sub 409540425 call sub_408380
after we enter an invalid password (test). WDown p sub 4N3CEC25 call - sub_408380
WDown p sub_409FE8+25 call sub_408380
| Down p sub 40AB9C+32 cal sub_408980
C:\>password.exe lDown p sub_40489C+4C call sub_408980
Enter password for this Malware: test lDown p sub 40ABIC+EE call - sub_408330
ldDown p sub_40A89C+80 cal sub_408980
Bad key LWDown p sub_40439C+G4 call sub_408980
IJDown o sub 40489C+B4 call _sub 408380 &
We then pull this binary into IDA Pro and see how il = l -
we can use the search feature and links to unlock [ok [canca || Hep [semen |
the program. We begin by searching for all occur- :
rences of the Bad key string, as shown in Figure 5. (2222 J
We notice that Bad key is used at 0x401104, SO we Figure 6. Xrefs window
Listing 3. Code cross-references
0401000 sub 401000 proc near ; CODE XREF: 20 var C = dword ptr -0Ch
main+3p 20 var 8 = dword ptr -9
push ebp 0 var 4 = dword ptr -4
0 mov ebp, esp 0 arg 0 = dword ptr &
3 loc_401003: ; CODE XREF: 20 arg 4 = dword ptr 0OCI
sub_401000+193
mov eax, | push ebp
test eax, eax mov ebp, esp
jz short loc 40101B sub esp, 0Ch
push offset alLoop ; “Loop\n” mov [ebptvar 8],
call printf mov [ebpt+var C], 3
add esp, 4 mov eax, [ebptvar 8]
jmp short loc 401003 add eax, 22h
mov [ebpt+arg 0], eax
Listing 4. Data cross-references cmp [ebptarg 01, 64h
01041 jnz short loc 40104B
0040C000 dword 40C000 dd 7r000001h 2 00401043 mov ecx, [ebptarg 4]
DATA XREF: sub 401020+14r 00401046 mov [ebptvar 4], ecx
0040C004 aHostnamePort db ‘<Hostname> 00401049 jmp short loc 401050
<Port>’,0Ah,0 ; DATA XREF: 0040104B loc 40104B: ; CODE XREF:
sub_401000+30 function+21j
0040104B call sub 401000
Listing 5. Function and stack example 00401050 loc 401050: : CODE XREF:
function+297j
0 ; ===== S UBROUTTINE ===== 00401050 mov eax, [ebptarg 4]
0401020 0401053 mov esp, ebp
0 ; Attributes: ebp-based frame)0401055 Pop ebp
0 00401056 retn
0401020 function proc near ; CODE XREF: 00401056 function endp
_main+l1Cp

www.hakin9.org/en

Exploiting Software -

THE TOOLS

0x4010F1, which tests the result of a strcmp. One of
the parameters to the strcmp is the string, and likely
password, smab (Listing 2). The next example shows
the result of entering the password we discovered,
smab, and the program prints a different result.

C:\>password.exe
Enter password for this Malware: S$mab
Key Accepted!

The malware has been unlocked

This example demonstrates how quickly you can
use the search feature and links to get information
about a binary.

Using Cross-References

A cross-reference, known as an xref in IDA Pro,
can tell you where a function is called or where
a string is used. If you identify a useful function
and want to know the parameters with which it is
called, you can use a cross-reference to navigate
quickly to the location where the parameters are
placed on the stack. Interesting graphs can also be
generated based on cross-references, which are
helpful to performing analysis.

Code Cross-References
Listing 3 shows a code cross-reference that tells us
that this function (sub_401000) is called from inside

i AR R A

Figure 7. Graphing button toolbar

Table 1. Graphing Options

Button | Function

| Description

the main function at offset 0x3 into the main func-
tion. The code cross-reference for the jump tells us
which jump takes us to this location, which in this
example corresponds to the location marked at
the end. We know this because at offset o0x19 into
sub_ 401000 is the ymp at memory address 0x401019.
By default, IDA Pro shows only a couple of cross-
references for any given function, even though ma-
ny may occur when a function is called. To view all
the cross-references for a function, click the func-
tion name and press X on your keyboard. The win-
dow that pops up should list all locations where
this function is called. At the bottom of the Xrefs
window in Figure 6, which shows a list of cross-
references for sub 408980, you can see that this
function is called 64 times (“Line 1 of 64”). Double-
click any entry in the Xrefs window to go to the cor-
responding reference in the disassembly window.

Data Cross-References
Data cross-references are used to track the way
data is accessed within a binary. Data referenc-
es can be associated with any byte of data that
is referenced in code via a memory reference, as
shown in Listing 4. For example, you can see the
data cross-reference to the pworp 0x7r000001. The
corresponding cross-reference tells us that this da-
ta is used in the function located at 0x401020. The
following line shows a data cross-reference for the
string <Hostname> <Port>.

The static analysis of strings can often be used
as a starting point for your analysis. If you see an

Graphs function calls for the enti-
re program

Use this to gain a quick understanding of the hierarchy of function calls
made within a program, as shown in Figure 8. To dig deeper, use WinGra-

ph32’s zoom feature. You will find that graphs of large statically linked
executables can become so cluttered that the graph is unusable.

= Graphs the crossreferences from the
currently selected symbol

This is a useful way to see a series of function calls. For example, Figure 9
displays this type of graph for a single function. Notice how sub_4011f0

calls sub_401110, which then calls gethostbyname. This view can quic-
kly tell you what a function does and what the functions do underne-
ath it. This is the easiest way to get a quick overview of the function.

.+ Exploiting Software

10/2012

interesting string, use IDA Pro’s cross-reference
feature to see exactly where and how that string is
used within the code.

Analyzing Functions

One of the most powerful aspects of IDA Pro is its
ability to recognize functions, label them, and break
down the local variables and parameters. Listing 5
shows an example of a function that has been rec-
ognized by IDA Pro. Notice how IDA Pro tells us
that this is an EBP-based stack frame used in the
function, which means the local variables and pa-
rameters will be referenced via the EBP register
throughout the function. IDA Pro has successfully
discovered all local variables and parameters in this
function. It has labeled the local variables with the
prefix var_ and parameters with the prefix arg_, and
named the local variables and parameters with a
suffix corresponding to their offset relative to EBP.
IDA Pro will label only the local variables and pa-
rameters that are used in the code, and there is no
way for you to know automatically if it has found ev-
erything from the original source code. Local vari-
ables will be at a negative offset relative to EBP and
arguments will be at a positive offset. You can see

| @.IH.I:»:I“HI |—@|®|5ej_| B [

=
] J 2

=% (oo 49 nodes, b5 edge segments, 20 crossings

Figure 8. Cross-reference graph of a program

Table 2. Function Operand Manipulation

Without renamed arguments

that IDA Pro has supplied the start of the summary
of the stack view. The first line of this summary tells
us that var c corresponds to the value -o0xcn. This
is IDA Pro’s way of telling us that it has substituted
var_c for -oxc; it has abstracted an instruction. For
example, instead of needing to read the instruction
asmov [ebp-0Ch], 3, we can simply read itas “var c
is now set to 3” and continue with our analysis. This
abstraction makes reading the disassembly more
efficient.

Sometimes IDA Pro will fail to identify a function.
If this happens, you can create a function by press-
ing P. It may also fail to identify EBP-based stack
frames, and the instructions mov [ebp-0Ch], eax
and push dword ptr [ebp-010h] might appear in-
stead of the convenient labeling. In most cases, you
can fix this by pressing ALT-P, selecting BP Based
Frame, and specifying 4 bytes for Saved Registers.

Using Graphing Options
IDA Pro supports five graphing options, accessible
from the buttons on the toolbar shown in Figure 7.

A Winseaph32 - Xrets from sub_S011F0 =i
Hr Niew Zoom Move Heip

_| ala e+ [F ole== [

E%.?T?S (-9,-d) 13 nedes, 16 g: Sements [(mssigs i

Figure 9. Cross-reference graph of a single function
(sub_4011F0)

With renamed arguments

004013C8 mov eax, [ebptarg 4]
004013CB push eax

004013CcC call atoi

004013D1 add esp, 4

004013D4 mov [ebpt+var 598], ax
004013DB movzx ecx, [ebptvar 598]
004013E2 test ecx, ecx

004013E4 jnz short loc 4013F8
004013E6 push offset aError
004013EB call printf

004013F0 add esp, 4

004013F3 Jjmp loc 4016FB
004013F8 ; ——=————————————————————
004013F8

004013F8 loc 4013F8:

004013r8 movzx edx, [ebptvar 598]
004013FF push edx

00401400 call ds:htons

004013C8 mov eax, [ebp+port str]
004013CB push eax

004013CcC call atoi

004013D1 add esp, 4

00401304 mov [ebp+port], ax
004013DB movzx ecx, [ebptport]
004013E2 test ecx, ecx

004013E4 jnz short loc 4013F8
004013E6 push offset aError
004013EB call printf

004013F0 add esp, 4

004013F3 Jjmp loc 4016FB
004013F8 ; ————————————————————
004013F8

004013F8 loc 4013F8:

004013F8 movzx edx, [ebp+port]
004013FF push edx

00401400 call ds:htons

www.hakin9.org/en

Exploiting Software -

THE TOOLS

Four of these graphing options utilize cross-refer-
ences. When you click one of these buttons on the
toolbar, you will be presented with a graph via an
application called WinGraph32. Unlike the graph
view of the disassembly window, these graphs
cannot be manipulated with IDA. (They are often
referred to as legacy graphs.) The options on the
graphing button toolbar are described in Table 1.

Enhancing Disassembly

One of IDA Pro’s best features is that it allows you
to modify its disassembly to suit your goals. The
changes that you make can greatly increase the
speed with which you can analyze a binary.

Renaming Locations

IDA Pro does a good job of automatically naming
virtual address and stack variables, but you can al-
so modify these names to make them more mean-
ingful. Auto-generated names (also known as
dummy names) such as sub 401000 don'’t tell you
much; a function named ReverseBackdoorThread
would be a lot more useful. You should rename
these dummy names to something more meaning-
ful. This will also help ensure that you reverse-en-
gineer a function only once. When renaming dum-
my names, you need to do so in only one place.
IDA Pro will propagate the new name wherever
that item is referenced.

After you've renamed a dummy name to some-
thing more meaningful, cross-references will be-
come much easier to parse. For example, if a func-
tion sub_ 401200 is called many times throughout a

cmp [ebp+var_4], 61h
jz short loc_ 48181E
cm ebp+var_4 62
jZIJ Ehugt loc illl’ﬁ a2 Eg] Use standard symbolic constant
cmp [ebp+var_4], 63
jz short loc h6163(o] 98 H
jmp short loc_48184 1420
_______________________ Fa 11000106

E b

program and you rename it to DNSrequest, it will
be renamed DNSrequest throughout the program.
Imagine how much time this will save you during
analysis, when you can read the meaningful name
instead of needing to reverse the function again or
to remember what sup_ 401200 does.

Table 2 shows an example of how we might re-
name local variables and arguments. The left col-
umn contains an assembly listing with no argu-
ments renamed, and the right column shows the
listing with the arguments renamed. We can actu-
ally glean some information from the column on
the right. Here, we have renamed arg 4 to port_
str and var 598 to port. You can see that these re-
named elements are much more meaningful than
their dummy names.

Comments
IDA Pro lets you embed comments throughout
your disassembly and adds many comments au-
tomatically.

To add your own comments, place the cursor
on a line of disassembly and press the colon (:)
key on your keyboard to bring up a comment win-
dow. To insert a repeatable comment to be echoed

m@g

Fs

-
#; Please choose a symbol

Declara...

20000000
20000000
B0000000
20000000
20000000
B0000000

Type hame

£ ES_COMTINUOUS

A EVENT_TRACE_FLAG_EXTENSION
A4 FILE_FLAG_WRITE_THROUGH

£i FINDFRAME_INTERMAL

Fi FINDTEXT_MATCHALEFHAMZA,
£

£

Type library

M5 SDK, [windows 5P|

M5 SDK [windows %P

M5 SDK. [windows %P] E
M5 SDK [windows 5P|
M5 SDK [windows %P
M5 SDK. [windows %P]
M5 SDK [windows 5P|
M5 SDK. [windows %P
M3 SDK [windows XF)
M5 SDK, [windows %P)
M5 SDK [windows %P

M3 SDK [windows <P)
G GMK Padindeus 5P

FR_MATCHALEFHAMZA
FS_SYMEOL 20000000
ft_ PofF_ALLOWRTLREADING 20000000
FA GENERIC_READ 80000000
Fi HEEY_CLASSES_ROOT 20000000
ft_ HLMF_MEWAIND DWW SMANAGED 20000000

£ Heaphetadata 0000000
£ INE_NEMMISK ANNNOnNnn

[DK’ Cance’ Help’ Search]

" 4

Figure 10. Function operand manipulation

Table 3. Code Before and After Standard Symbolic Constants

Figure 11. Standard symbolic constant window

Before symbolic constants After symbolic constants

mov esi, [esp+lCh+argv] mov esi, [esptlCh+argv]

mov edx, [esi+4] mov edx, [esit+4]

mov edi, ds:CreateFileA mov edi, ds:CreateFileA

push 0 ; hTemplateFile push NULL ; hTemplateFile

push 80h ; dwFlagsAndAttributes push FILE ATTRIBUTE NORMAL ; dwFlagsAndAttributes
push 3 ; dwCreationDisposition push OPEN EXISTING ; dwCreationDisposition
push 0 ; lpSecurityAttributes push NULL ; lpSecurityAttributes
push 1 ; dwShareMode push FILE SHARE READ ; dwShareMode

push 80000000h ; dwDesiredAccess push GENERIC READ ; dwDesiredAccess

push edx ; lpFileName push edx ; lpFileName

call edi ; CreateFileA call edi ; CreateFileA

.« Exploiting Software

10/2012

across the disassembly window whenever there is
a cross-reference to the address in which you add-
ed the comment, press the semicolon (;) key.

Formatting Operands

When disassembling, IDA Pro makes decisions re-
garding how to format operands for each instruc-
tion that it disassembles. Unless there is context,
the data displayed is typically formatted as hex
values. IDA Pro allows you to change this data if
needed to make it more understandable.

Figure 10 shows an example of modifying op-
erands in an instruction, where 62h is compared
to the local variable var 4. If you were to right-
click 62h, you would be presented with options to
change the 62h into 98 in decimal, 1420 in octal,
1100010b in binary, or the character » in ASCII —
whatever suits your needs and your situation.

To change whether an operand references mem-
ory or stays as data, press the O key on your key-

board. For example, suppose when you're ana-
lyzing disassembly with a link to 10c 410000, you
trace the link back and see the following instruc-
tions:

mov
add
mul ebx

eax, loc 410000

ebx, eax

At the assembly level, everything is a number,
but IDA Pro has mislabeled the number 4259840
(0x410000 in hex) as a reference to the address
410000. To correct this mistake, press the O key
to change this address to the number 4710000h
and remove the offending cross-reference from
the disassembly window.

Using Named Constants
Malware authors (and programmers in general)
often use named constants such as GENERIC _

Table 4. Manually Disassembling Shellcode in the paycuts.pdf Document

File before pressing C File after pressing C

00008384 db 28h ; (00008384 db 28h ;

00008385 db OFCh ; n 00008385 db 0FCh ;

00008386 db 10h 00008386 db 10h

00008387 db 90h ; E 00008387 nop

00008388 db 90h ; E 00008388 nop

00008389 db 8Bh ; i 00008389 mov ebx, eax

00008382 db 0D8h ; + 0000838B add ebx, 28h ; ('
0000838B db 83h ; a 0000838E add dword ptr [ebx], 1Bh
0000838C db 0C3h ; + 00008391 mov ebx, [ebx]

0000838D db 28h ; (00008393 xor ecx, ecx

0000838E db 83h ; a 00008395

0000838F db 3 00008395 loc 8395: ; CODE XREF: seg000:000083A07
00008390 db 1Bh 00008395 xor byte ptr [ebx], 97h
00008391 db 8Bh ; i 00008398 inc ebx

00008392 db 1Bh 00008399 inc ecx

00008393 db 33h ; 3 00008392 cmp ecx, 700h

00008394 db 0C9% ; + 000083A0 jnz short loc 8395
00008395 db 80h ; C 000083A2 retn 7B1Ch

00008396 db 33h ; 3 000083A2 ; ———————— 000083A5 db 16h
00008397 db 97h ; u 000083A6 db 7Bh ; {

00008398 db 43h ; C 000083A7 db 8Fh ; A

00008399 db 41h ; A

0000839A db 81lh ; 1

0000839B db 0F%9h ; -

0000839C db 0

0000839D db 7

0000839E db 0

0000839F db 0

000083A0 db 75h ; u

000083Aa1 db OF3h ; =

00008322 db 0C2h ; -

000083A3 db 1Ch

00008324 db 7Bh ; {

000083A5 db 16h

000083a6 db 7Bh ; {

00008327 db 8Fh ; A

www.hakin9.org/en

Exploiting Software |-

THE TOOLS

READ in their source code. Named constants pro-
vide an easily remembered name for the program-
mer, but they are implemented as an integer in the
binary. Unfortunately, once the compiler is done
with the source code, it is no longer possible to de-
termine whether the source used a symbolic con-
stant or a literal.

Fortunately, IDA Pro provides a large catalog of
named constants for the Windows API and the C
standard library, and you can use the Use Stan-
dard Symbolic Constant option (shown in Figure
10) on an operand in your disassembly. Figure 11
shows the window that appears when you select
Use Standard Symbolic Constant on the value
0x800000000.

The code snippets in Table 3 show the effect of
applying the standard symbolic constants for a
Windows API call to CreateFileA. Note how much
more meaningful the code is on the right.

Sometimes a particular standard symbolic con-
stant that you want will not appear, and you will
need to load the relevant type library manually. To
do so, select View—Open Subviews— Type Librar-
ies to view the currently loaded libraries. Normal-
ly, mssdk and vcbwin will automatically be loaded,
but if not, you can load them manually (as is often
necessary with malware that uses the Native API,
the Windows NT family API). To get the symbolic
constants for the Native API, load ntapi (the Mi-
crosoft Windows NT 4.0 Native API). In the same
vein, when analyzing a Linux binary, you may need
to manually load the gnuunx (GNU C++ UNIX) li-
braries.

Redefining Code and Data

When IDA Pro performs its initial disassembly of a
program, bytes are occasionally categorized incor-
rectly; code may be defined as data, data defined
as code, and so on. The most common way to re-
define code in the disassembly window is to press
the U key to undefine functions, code, or data.

ER I

| Exploiting Software

On the Web

http://www.hex-rays.com/idapro/idadownfreeware.htm
— free version of IDA Pro.

S
=

When you undefine code, the underlying bytes will
be reformatted as a list of raw bytes.

To define the raw bytes as code, press C. For ex-
ample, Table 4 shows a malicious PDF document
named paycuts.pdf. At offset 0x8387 into the file,
we discover shellcode (defined as raw bytes), so
we press C at that location. This disassembles the
shellcode and allows us to discover that it contains
an XOR decoding loop with 0x97.

Depending on your goals, you can similarly de-
fine raw bytes as data or ASCII strings by pressing
D or A, respectively.

Conclusion

As you've seen, IDA Pro’s ability to view disas-
sembly is only one small aspect of its power. IDA
Pro’s true power comes from its interactive abil-
ity, and we’ve discussed ways to use it to mark up
disassembly to help perform analysis. We’ve also
discussed ways to use IDA Pro to browse the as-
sembly code, including navigational browsing, uti-
lizing the power of cross-references, and viewing
graphs, which all speed up the analysis process.

JACEK A. PIASECKI

Author is currently a Junior Software Devel-
oper in Ericpol, where he is UMTS systems
software testing, and as a freelancer creat-
ing desktop applications for Windows and
web applications, including the MySQL and
MSSQL database.

Contact the author: japiasecki@autograf.pl

_POL

-EVOLUTI

10/2012

mailto:mailto:japiasecki%40autograf.pl?subject=
http://www.ericpol.pl/
http://www.hex-rays.com/idapro/idadownfreeware.htm

MOVE TOMORROW’S BUSINESS
TO THE CLOUD TODAY

”

YOUR TRUSTED ADVISOR
ON CLOUD COMPUTING

-

MULTI-VENDOR
ANY DEVICE
HYBRID CLOUD

(CLOUD!ITERATION)

http://www.clouditeration.com

THE TOOLS

How to use

Socat and Wireshark

for Practical SSL Protocol Reverse Engineering?

Secure Socket Layer (SSL) Man-In-the-Middle (MITM) proxies have
two very specific purposes. The first is to allow a client with one set
of keys to communicate with a service that has a different set of keys
without either side knowing about it. This is typically seen as a MITM
attack but can be used for productive ends as well. The second is

to view the unencrypted data for security, educational, an reverse

engineering purposes.

set up a proxy to allow SSL clients that don’t

support more modern SSL methods or even
SSL at all to get access to services securely. Typi-
cally, this involves having the proxy set up behind
your firewall so that unencrypted content stays
within the confines of your local area.

Being able to analyze the unencrypted data is
very important to security auditors as well. A very
large percentage of developers feel their services
are adequately protected since SSL is being used
between the client and the server. This includes
the idea that if the SSL client is custom closed
source software that the protocol will be unbreak-
able and therefore immune to tampering. If you're
investing your companies funds using a service
that could easily be subject to tampering then you
may end up with a nasty surprise. Lost funds per-
haps or possibly having your account information
publicly available. This article focuses on using an
SSL MITM proxy to reverse engineer a simple web
service. The purpose of doing so will be to create
your own client that can interact with a database
behind an unpublished API. The software used will
be based on the popular open source software So-
cat as well as the widely recognized Wireshark.
Both are available on most operating systems.

F or instance, a system administrator could

Lets get started!
We will be reverse engineering a LiveJournal client
called LogJam which supports SSL connections

. Exploiting Software

to the Livedournal API servers. Since this article
is purely educational we don’t mind getting some
experience using the LiveJournal APl which al-
ready public and LogJam which is a free and open
source project.

Prerequisites

* Install Socat — Multipurpose relay for bidirec-
tional data transfer: http.//www.dest-unreach.
org/socat/

* Install Wireshark — Network traffic analyzer:
http://www.wireshark.org/

* Install OpenSSL — Secure Socket Layer (SSL)
binary and related cryptographic tools: http:/
www.openssl.org/

* Install TinyCA — Simple graphical program for
certification authority management: http.//ti-
nyca.sm-zone.net/

* Install Logdam — Client for LiveJournal-based
sites: http://andy-shev.github.com/LogJam/

Generating a false SSL certificate
authority (CA) and server certificate
The API domain name for Livedournal is simply
www.livejournal.com and any SSL compliant client
software will require the server certificate to match
the domain when it initially connects to the SSL
port of the server.

An SSL CA signs SSL certificates and is noth-
ing more than a set of certificates files that can be
used by tools like OpenSSL to sign newly gener-

10/2012

http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/
http://www.wireshark.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://andy-shev.github.com/LogJam/

ated certificates via a certificate signature request
(CSR) key that is generated while creating new
server certificates. The client simply needs to trust
the certificate authority public key and subsequent-
ly the client will trust all server certificates signed
by the certificate authority private key.

Generating a certificate authority

Run tinyca2 for the first time and a certificate au-
thority generation screen will appear to get you
started (Figure 1).

It doesn’t matter what you put here if you don'’t
plan on keeping this certificate authority information
for very long. The target server at LiveJournal.com
will never see the keys you are generating and they
will stay completely isolated to your testing environ-
ment. Be sure to remember the password since it
will be required for signing keys later on.

Select Export CA from the CA tab and save a
PEM version of the public CA certificate to a new
file of your choosing.

Generating a server certificate

Click on the Requests tab in TinyCA and then the

New button that will help us create a new certificate

signing request and private server key (Figure 2).
The common name must be www.livejournal.

com. The password can be anything and we will

be removing it when we export the key for use.

Creale a new CA

,Hb_yndynp

Name (for local storage):

Data for CA Certificate

Commen Name (for the CA) Veyodyne Propulsion Systems

Country Name (2 |etter code): us

Password (needed for signing): ssse

Password (confirmation); seee

State ar Province Name: Califarnia

Locality Mame (eg. city): San Marciso

Organization Name (eg. company): Voyadyne

Organizational Unit Name (eg. section): [nfarmatian Technalogy

eMail Address: info@yoyodyne

Wald for (Days): 3650

Keylength: O 1024 O 2048 @ 4096

Digest: ® sHA-1 O MD2 O MDC2 O MD4 O MOS O RIPEMD- 160
c_qu %garlwl

Figure 1. TinyCA new certificate authority window

Create a new Certificale Request
Comman Name (eq, your Name, Iwﬁ_ﬁ\ﬂm,mm_mm

your eMail Address
or the Servers Name)
email Address:

Password (protect your private Kay):

Password (confirmation):

[eene

Country Mame (2 letter code): [us
State or Province MName: Califarnia
Lacality Name (eg. city): San MNareise
Organization Mame (eg. company): Yoyodyne
Orgamizational Unit Name (eq. section): [|nfarmation Technalogy
Keylength: (® 4096 O 1024 O 2048
Digest: @ SHA-1 O MD2 O MDC2 O MD4 (O MDS O RIPEMD- 160
Algarnthm: (®) RSA O DsA

fCBQK %Qamel |

Figure 2. TinyCA new certificate request window

www.hakin9.org/en

Under the Requests tab there is now a certifi-
cate named www.livejournal.com that needs to be
signed. Right click and select Sign Request and
then Sign Request Server. Use the default values
to sign the request.

Now there will be a new key under the Key tab
now. Right click on it and select Export Key and
you'll be presented a new dialog (Figure 3).

As seen in the figure you want to select PEM
(Key) as well as Without Passphase (PEM/
PKCS#12) and Include Certificate (PEM). Doing
so will export a PEM certificate file that contains
a section for the certificate key as well as the cer-
tificate itself. The PEM stanard allows us to store
multiple keys in a single file.

Congratulations, you now have a perfectly val-
id key for https://www.livejournal.com as long as
the web server running the site is under your own
control and uses the server key you’ve generated.
Trusting the key is the tricky part.

Allow logjam to trust the certificate authority

So we have to dig in a bit to understand what SSL
Certificate trust database LogJam will be using.
Most Linux based GTK and console programs rely
on OpenSSL which has it's own certificate author-
ity database that is very easy to add a new certifi-
cate to.

In Debian/GNU Linux the following will install
your new Yoyodyne CA certificate system wide:
Listing 1.

Now LogJam as well as programs such as wget,
w3m, and most scripting languages will trust all
keys signed by your new CA.

Using Socat to proxy the stream and
hijacking your own DNS

Socat is basically a swiss army knife for commu-
nication streams. With it you can proxy between
protocols. This includes becoming an SSL aware
server and proxying streams as an SSL aware cli-
ent to another SSL aware server

Export Key to File

Journal s Browse...
Export Format:

(® PEM (Key)

(O DER (Key without Pasephrase)

(O PKCS#12 (Certificate & Key)

Certificate & Key)

File: |

Q Zip
O Tar (Certificate & Key)
Without Passphrase (PEM/PKCS#12)

(®) Yes) Mo

Include Certificate (PEM)

(®) Yes O No
Egave %Qancel

Figure 3. TinyCA private key export window

Exploiting Software -

http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com
https://www.livejournal.com

THE TOOLS

Set up your system and start up socat
Since we should aim for transparency we will need
to intercept DNS requests for www.livejournal.com
as well so that our locally operated proxy running
onport 443 0n 1P 127.0.2.1 is in the loop.

First, we will need to know the original IP of www.
livejournal.com:

,,,,,, $ nslookup www.livejournal.com
8.8.8.8

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

Name: www.livejournal.com

Address: 208.93.0.128

Bingo! Now add the following line to /etc/nhosts
near the other IPv4 records:

127.0.2.1 www.livejournal.com

Now lets do a test run by listening on port 443
(HTTPS) and forwarding to port 443 (HTTPS) of
the real www.livejournal.com:

pencersr@bigboote:~$ sudo socat -vvv \ OPENSSL-
LISTEN:443,verify=0, fork, key=www.livejournal.com-
keyem, certificate=www.livejournal.com-key.pem,
cafile=Yoyodyne-cacert.pem \
OPENSSL:208.93.0.128:443,verify=0, fork

Simple enough. Browsing to https:./www.livejour-
nal.com with w3m and wget should work sucess-
fully now and a stream of random encrypted infor-
mation will be printed by socat.

Listing 1. Install Yoyodyne CA certificate

cacert.crt

spencersr@bigboote:~S$ sudo chmod at+rw \

configuration

cacert.org/cacert.org.crt
custom/Yoyodyne-cacert.crt
debconf.org/ca.crt

mozilla/XRamp Global CA Root.crt

spi-inc.org/spi-ca-
spi-inc.org/spi-cacert-

Certificates to activate:
Updating certificates in [etc/ssl/certs...

Adding debian:Yoyodyne-cacert.pem
done.

spencersr@bigboote:~$ sudo mkdir [usr/share/ca-certificates/custom
spencersr@bigboote:~$ sudo cp Yoyodyne-cacert.pem \ [usr/share/ca-certificates/custom/Yoyodyne-

/usr/share/ca-certificates/custom/Yoyodyne-cacert.crt
spencersr@bigboote:~S sudo dpkg-reconfigure -plow ca-certificates -f readline \ ca-certificates

Trust new certificates from certificate authorities?
This package installs common CA (Certificate Authority) certificates in [usr/share/ca-certificates.

Please select the certificate authorities you trust so that their certificates are installed into

/etc/ssl/certs. They will be compiled into a single [etc/ssl/certs/ca-certificates.crt file.

(Enter the items you want to select, separated by spaces.)

added,

Running hooks in [etc/ca-certificates/update.d....

removed; done.

| Exploiting Software

10/2012

http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://ww.livejournal.com
https://www.livejournal.com
https://www.livejournal.com

Chaining two socat instances together with
an unencrypted session in the middle.

So far so good! Now we need to have socat con-
necting to another socat using standard TCP4 pro-
tocol in order to view the unencrypted data. This
works by having one socat instance listening on port
443 (HTTPS) and then forwarding to another socat
on port 8080 (HTTP) which then forwards on to port
443 (HTTPS) of the real www.livejournal.com.

Listing 2. Socat terminal

Iength=209
from=0 to=208

POST [interface/flat HTTP/1.1\r

Host: www.livejournal.com\r

Content-Type: application/x-www-form-
urlencoded\r

User-Agent: http://logjam.danga.com; martine(@
danga.com\r

Connection: Keep-Alive\r

Content-Length: 23\r

\r

HTTP/1.1 200 OK\r
Server: GoatProxy 1
Date: Wed, 29 Aug 2 08:10:56 GMT\r
Content-Type: text/plain; charset=UTF-S\r

Connection: keep-alive\r
X-AWS-Id: ws25\r

Content-Length: 157\r
Accept-Ranges: bytes\r
X-Varnish: 904353035\r
Age: O\r

X-VWS-Id: bill-varn2l\r
X-Gateway: bill-swlbl0\r
\r

auth scheme

c0

challenge

c0:1346227200: 6561 60

(O
(€]
[

TXXXXXX I XXXXXXXXXXXXX

expire time
1346227916

server time

1346227856
success
OK

www.hakin9.org/en

»

The Most Comprehensive Exnibition
of the Fastest Growing Sectors of recent years

in the Center of Eurasia

INFORMATION, DATA AND NETWORK SECURITY EXHIBITION

(OCCUPATIONAL SAFETY AND HEALTH EXHIBITION

SMART HOUSES

SMART HOUSES AND BUILDING AUTOMATION EXHIBITION

SECURITY

16™ INTERNATIONAL SECURITY AND RFID EXHIBITION
16" INTERNATIONAL FIRE,
EMERGENCY RESCUE EXHIBITION

(

www.isaffuari.com

SEPTEMBER 20th - 2311, 2012
IFM ISTANBUL EXPO CENTER (IDTM)

T. +90 212 503 32 32 | marmara@marmarafuar.com.tr

www.marmarafuar.com.tr

THIS EXHIBITION IS ORGANIZED WITH THE PERMISSIONS OF T.0.B.B.
IN ACCORDANCE WITH THE LAW NUMBER 5174.

http://www.livejournal.com
http://www.isaffuari.com/

THE TOOLS

Socat instance one:

ote:~$ sudo socat -vvv \
OPENSSL-LISTEN:443,verify=0, fork,
key=www.livejournal.com-key.pem,certificate=

ncersr@bigb

www.livejournal.com-key.pem,cafile=Yoyodyne-
cacert.pem \
TCP4:10.1.0.1:8080, fork

Socat instance two:

spencersr@bigboote:~$ sudo socat -vvv \

TCP-LISTEN:8080, fork \
OPENSSL:208.93.0.128:443,verify=0, fork

Load up LogJam and the socat instances will start
printing out the stream to the terminal (Listing 2).
Hurray! You should be dancing at this point.
But wait, | mentioned using Wireshark before
didn’t 1?

Using Wireshark to capture and view the
unencrypted stream.

Now it’'s time for the easy part. I'm going to as-
sume that you are comfortable capturing packets
in Wireshark and focus mainly on the filtering of

Capture

Interface:
IP address:

lo {loopback)

127.0.0.1

Buffer size: |1 [:] megabytels]

Mireless Settings |

Link-layer header, type:

Capture packets in prcmiscuous mode
[J Capture pac
[Limit each packet to 55505

fafl Copture Filter: | |porl 8080 and host 127.0.2.1
=
J4 Hel I

Figure 4. Wireshark lo (loopback) interface capture window
with capture filter

kets in monitar mode

j Compile EH‘Fl

&Qﬂnccl -(‘,BQK |

Be [3t Yiew Go Coptire Srahze Setistics Telephory ook ptemals el

Sadoe X2 v« T2 BEE Al @B -
Fier: [;IL-‘plenlnn...
no, | Time | source | Dessination | Pratacal| Length | info j
1 0. 000000000 137.0,0.1 127.0.2.1 T 74 w0 > NEep- Al S4qR0 Wine:
2 0.000029000 137.0.2.1 127.0.0.1 TR 40853 [SYN, ACK] Seqed

3 0.000007000 127,0.0,1

127.0.2.1 TR
127, 0.2, TR
TP &6 http- alt = &
= e L

127.0.0.1 T

a resssenbled POU]
[ACK] Seqel Ack=:

6 http-alt » 49653 [ACK] Seqsl Ack=:

1270.E TR 74 ap05s = http-alt [SYN] Seqd wined
127,0.0:1 T 7ahttp-alt = 49655 [S7N, ACK] Seq=0
127.0.2.1 T 64 40655 > htep.alt [ACK] Seq=1 Ack=]
137.0.0.0 HITR S04 HTTR/ 1.1 200 oK (zext/plain)
127.0.2.1 T3 65 40653 > http-alt [ACK] Sequl33 Ack
12703 TR &6 4oy = http-alt [FIN, &) Seqed .
| o

a-www- ot urlencoded \rin
jam, dangs.con: martinedangs. comirin

b Line-based text data: application/s-wew- form-urlencoded

l: heto: o Livsiournal comrintardyes iflar] J
=l

- {Profde Oeteck
Figure 5. W/reshark WIth captured unencrypted packets

0 Droppe:

| Exploiting Software

the capture stream.

Since by default Wireshark captures all traffic we
should set up a capture filter that only listens for
packets on port 8080 of host 127.0.2.1 (Figure 4).

Once LogJdam is run packet will start streaming in
while Wireshark is recording (Figure 5).

What now?

This articles is about viewing unencrypted data in
an SSL session. Whatever your reverse engineer-
ing goal is SSL is less of an obstacle now.

How can SSL be secure then if this method
is so simple?

SSL and all of the variations of digests and ciphers
contained within it are pretty reliably secure. Some
of the major areas this article focused on was the
ability to fool a client by having the ability to trust a
new certificate.

If you are interested in securing your site or cli-
ent software against this sort of spying | recom-
mend not using an SSL certificate authority key-
ring or trust database that is easily modified by the
user. Including an SSL server certificate in client
software ,encrypted and protected by a hard cod-
ed key somewhere in the binary, and requiring it for
use on SSL connections using a hardened socket
library will dramatically cut down on the looky-loo
factor.

Conclusion
Thanks to how simple it is to add certificate au-
thorities to most browsers, mobile devices, and
custom client software it's a trivial matter to pull
back the curtain on SSL encrypted streams with
the right tools.

Remember to thank your open source hacker
friends.

SHANE R. SPENCER

Shane R. Spencer is based out of
Anchorage Alaska and has over
10 years of system administra-
tion and programming experi-
ence. Many of his projects are Py-
thon based and interface with ex-
ternal services that provide no us-
able APl and communicate over HTTPS only.

10/2012

STAFFCOP

PC monitoring, Corporate Security
and Data Loss Prevention Software

StaffCop Standard allows you to monitor all activities
on company computers and prevent the unauthorized
distribution of sensitive corporate information.

Main Features of StaffCop:

Screenshot recording
Application monitoring
E-mail monitoring

Web site monitoring
Chats/IM activity recording
USB device monitoring
Clipboard monitoring
Social Networks Monitoring
Search Term Tracking

File and Folder tracking
Keystroke recording
System Event Monitoring
Whitelists and Blacklists

PC activities reporting

Stealth installation/monitoring

Strong security
Alert notifications
Remote Install / Ur

StaffCop will help you:
To locate possible data loss channels and prevent loss

To gain insight into how your employees spend their work time
To increase company and departmentals efficiency

You need StaffCop to:

Gather work time efficiency statistics
Easily control your employees in real-time mode
Improve discipline and motivation of your employee

Who needs StaffCop:

CEO/CTO
Corporate Security Manag
HR Manager

System Admini

Microsoft

CERTIFIED

Partner

http://www.staffcop.com

REACHING THE CODE

How to

Defeat Code Obfuscation

While Reverse Engineering?

Have you ever decompiled malware or another application and
found nothing but a small amount of code and lots of junk? Have
you ever been reading decompiled code only to watch it jump into a

section that does not exist?

chances are you were dealing with obfuscated

code or a packed binary. Not all is lost howev-
er, as getting around these methods of code pro-
tection is not impossible. However, all obfuscat-
ed code must be de-obfuscated before it can run.
Keeping this in mind, it is possible to decrypt, de-
obfuscate and unpack every line of code in every
kind of program, the trick is simply knowing how.

I f you have been in either of these situations,

Introduction

Obfuscation, or code distortion, is found in binaries
where the programmer wanted to hide the original
code. The programmer might be working for a ma-
jor company that does not want their source code
stolen. The programmer might also be a malware
author who is attempting to make the malware bi-
nary appear legitimate. Either way, it is common
practice in the malware and legitimate software
industries to employ obfuscation techniques. In
this article, you will learn about various methods
involved in breaking open the code and revealing
the chewy center where the legitimate code re-
sides. It will discuss how to deal with packed bi-
naries and how to extract obfuscated data directly
from memory.

Unpacking

Packer algorithms are employed in order to distort
the code of a compiled binary. A packing applica-
tion takes the algorithm, runs the data of the bina-

.« Exploiting Software

ry through it, and attaches a decryption routine to
the binary. The resulting file is a distorted version
of the original and, if fed into a disassembler like
IDA Pro, would reveal not much more than the de-
cryption routine. This is useful to prevent novice
reverse engineering of a binary or to hide the mali-
cious functionality from AV software.

Packer Identification

The first step in dealing with a packed binary is to
try to find out what kind of packer you are dealing
with. There are numerous ways at doing this; how-
ever, | find that the easiest way is to use a packer
identifier like PEID.

PEID
A great resource for the malware analyst or re-
verse engineer, PEID references an internal data-

IE PEID v0.94

File: |C:'|,Dcu:uments and Settings\AdminiskratoriDeskiopl 7Something) 7 San IE

Entrypoint: | 0004FS00
File Offset: | 00013C00
Linker Info: |9.0

EP Section: | LP¥1
First Bykes: M
Subsysterm: | wWin32 GUI

|UP% [com] [Overlay] *

| Tulki Scan I | Iask\l'iewerl | Options I | About Il

v Stay on top

Figure 1. PEID Interface

10/2012

base full of different packer signatures in order to
identify what packing algorithm is in use.

To use PEID, simply drag the binary onto the
PEID interface and it will automatically ana-
lyze the file. The depressed section of the inter-
face displays the packing algorithms detected. In
the case of figure 1, the file in question has been
packed with the UPX packer algorithm.

Manual Identification

If you do not have access to PEID or it does not
recognize the packer employed, you might have
some luck by examining certain features of the
binary, looking for anything that might reveal the
packer. In some cases that is incredibly easy, for
example figure 2 shows the file strings associated
with a UPX packed file.

However, in most cases, it would be more diffi-
cult to determine the type of packer based on just
strings. Additional information may be required for
example, certain bytes of data located in specific
file sections or even entire decryption routines may
be required to identify the packer. In many cases
it might be more trouble than it's worth and unless
your job is to determine what type of packer is be-
ing used and it is not detected with PEID, then it is

- [a]
Find Find | Savers |
Fibe. 7Sumelhmng exe d

MDS d51tedalle?eallal eaS0ciO0l 01560
Size: 198032

B Shings:

IThes pruwram cannut be wrnin D05 mode.
Mich+7

Figure 2. UPX File Strings

QuickUrpack v2.1 - 7something exe

Fie log [Olphons Plages Aot

[laick. Ungack 2.1 for Windows 2000/ F2003Anta =] [st cipen fle
\c....hl?.ﬁfﬁb‘n,\“’:rn i T o[ﬂ Lot Afich b greciss 1
e} v by ks
I e Force unpacking —
06:11-40- Dptnad Tacenafing ens o | =
uack, ool askern P 1 22200 et
P Sttt £ Scm Wriknowen Lt |
PLD scannng. P -3 wwew. upa sourcelosge. net [Oveday] © Enport racowery 1ol gt
£ Baaet mothod Tes wpted |
Fieed bargst
Do et angerere T
e unpacked
© Lo Rorares orty
e k) I

nd of modul For gt [00000000 = |
RDTSE dalta: [oo0000a

It bast sextioms B retusd resources

I Bnckads suspect Functions ks impart

T Progess col xexfimg e

™ Exscute functions whils tristieg mpdrt

™ ppend everlay

F Protect DR

L of
Figure 3. QUnpack Interface

www.hakin9.org/en

best left unknown and you might not be able to un-
pack it in any easy way.

Custom Packer

While there are plenty of publicly known packers
out there and many of them are used by both legiti-
mate software and malware organizations, it does
not mean they are the only ones used. Cyber-
crime organizations will create their own “custom
packer algorithm” which they can quickly modify in
order to avoid AV detection. They could also imple-
ment anti-reversing and anti-unpacking measures
and stay under the radar for longer periods.

Automated Unpacking

Now that we have identified the packer employed,
we can try to unpack the binary. As is the key to re-
verse engineering anything efficiently, we want to
see if we can skip some of the manual work and
use automated methods. Depending on the pack-
er, there is usually an unpacker application some-
where on the web you can download. There are
also applications that can unpack multiple packing
algorithms; an example of such is QUnpack.

QUnpack

When you want a tool that can unpack multiple
packer types, QUnpack should be in your toolbox.
It can detect packers like PEID can and unpack
using multiple methods. In addition it can restore
import tables, allow custom LUA scripting and an
array of other useful functions. For the purposes of
this article, | will just go into the unpacking feature.
After opening QUnpack, you can just drag and
drop the packed binary onto the interface. Once
QUnpack identifies the binary and the packer, your
first step is to tell QUnpack what is the Original En-

[OEP Finders] ﬂ

Generic OEP Finder by deroko & Archer
FarceQEP by Feuerrader & Archer
Generic OEP Finder by Human & Archer
Generic DEF Finder by Usir & Archer

Figure 4. OEP Finders Listing

Exploiting Software |+

REACHING THE CODE

try Point (OEP) of the binary. If you do not know it,
you can let QUnpack find it for you by clicking the
“>” putton next to the OEP input box.

A listing of all available OEP Finder tools will pop
up and all you need to do is select one, see figure
4. In this example, we selected the top one “Gener-
ic OEP Finder by Deroko & Archer.” Which one you
decide to use is up to you. Generally, you want to
use something other than ForceOEP if you can, on-
ly because the output for that finder has a lower ac-
curacy. Each OEP finder might find either the same
OEP as the others or a different one; feel free to ex-
periment with different ones to find the best output for
your needs. The OEP Finder interface has a listing of
all the packed sections located within the file. We se-
lected the OEP button to tell the finder to analyze the
binary and detect the OEP automatically (Figure 5).

Figure 6 shows the OEP Finder asking wheth-
er the section of code it determines might be the
OEP is in fact the OEP. Your knowledge of function
headers in x86 assembly code can help you here
and based upon the address scheme and use of
the “__cdecl” function header, we decide that this
is most likely the correct OEP. If the OEP Finder
provided a possible OEP that we believe is false,
we could select “No” and it would continue to sug-
gest possible OEP locations.

Il Oep Finder by deroko & Archer - |EI|£|
File: |c:'\documents and settingshadministratorsdesktoph fsome
Command: I Dep

LIF0

UF=1 - 00436000 - 0O0B 000 - R Detach |
UF=2 - 00451000 - 00007000 - B
ggre - Q0452000 - 00012993 - R Eanth |
Dump |
I~ Use Custom Bange I Size: I I ao E xit |
Memony Start: I End: I

- 00407000 - 00035000 - B

Figure 5. OEP Finder Interface

itz 0e02

00420084 BBFF moy ed, edi
0042008C: 55 puzh ebp
00420080 SEEC mov ebp, ezp

O042008F: 83ECT10
00420092 4100634400
00420097; 8365F200
00420098 B3R5FCO0
0042009F: 53 puzh ebx

00420080: 57 puzh edi

00420047: BFAEEE40BE mov edi, BE4OEGAER
00420046: BEOOOOFFFF may ebe, FFFFOOO0R
0042004E: 3BCT cmp eax, edi

00420040: 7400 iz $+0Fh

zub ezp, 0000001 Ok
mory eax, [446300k]
and [ebp-02h], 00000000k
and [ebp-04h], 00000000

Figure 6. OEP Finder “Is This OEP” popup

.+ Exploiting Software

With the OEP located, our next step is to click
on the “Full Unpack” button on the right side of
the QUnpack interface. The unpacker will analyze
the binary and attempt to retrieve the import table.
Keep in mind that this might not happen with other
packers or a binary using a custom packer; lucky
for us though, QUnpack gives us a listing of all the
API functions is was able to retrieve and asks us if
it is correct (Figure 7).

After selecting the “Save” button on the import
interface, QUnpack finishes unpacking the bina-
ry and saves it in the same directory and with the
same file name with the exception of a double un-
derscore appended to the end (Figure 8).

At this point, we have successfully unpacked our
binary using QUnpack and can now test in IDA Pro
whether or not the output binary is the complete
original code or if we need to go back and try to
unpack it with a different combination of options.
Keep in mind that unpacking a binary is most use-
ful when you want to observe the file statically us-
ing something like IDA Pro and | do not recom-
mend running the unpacked binary in OllyDbg.
Rather, navigating to the point in memory where
the unpacked code resides and setting a break-
point will ensure that the binary executes correctly.

Manual Unpacking
Automated unpacking is the most efficient way of
revealing the true code of a packed binary. How-

lImpork | able]. contams invabd/suspect lunchons

Tikeary TFuremn
advapi32. Al CperProcess Token

K]
[ot [ovd [nummm|

achegur. Al [

E
k

e
Reglisetiey

s [
00030010
(RO
000030018
C0D001C
e
0030024
UG
[
[e]
0=0003003C
oD 30040
[
0030048
[
DaOON00S0

Al stk)
et e
ReguenyValielin
Yok Coamemricndroks

R R
g
&
I3
B

ek
i 2
&
a
-

()
ey Trace vaths gl I
0C

[Load Morary I
Save]
L2 Trport BYA:

o = oo

£3

EigigdEEEBigREigRERER
g
Ww
=
\%Es

E=

Tk tpenile
oo [— > | o | Atoch by procnss
I Liss Fiorce unpacking. [Cra T
Farameters: [e
unport racoviny At |
0 - " Smark mthed
77 OO0 - ek el ol umbonchend Fafs Tast ungached
007 TFE QO - o seou 32 Ol unhookued St ivsthodetrader —[M
540000 - mocke comed 2 ol unhocked Pl twor |
007 TF 1C000] - ke 30 ol uorbuenakomnd Lol ___m
(b TE A0 O] © el et 2 ol b ™ Loed Rearies orly e urgadied

Clm kg I
nd of module For impart; | 00000000 o I
RDTSC dalta: DHOKO0G00
I Cut last sections b retesd rosources
I trchude suspedt Functions inte mpart
ol 12 il ad
(o OFTII00 - vk et fl urcmshoc] I Process col o oxx
wrbwechad T Eaiscute o whie trisieg inport
™ Append overlay
I Protest 0Rx

Figure 8. QUnpack unpacked operations output

10/2012

ever, there may be some instances when using an
unpacker might not work, in which case you will
need to unpack the binary manually. You might find
yourself in this situation if you are working on a bi-
nary that is packed with a custom algorithm or if
dealing with a modified known packer, resulting in
automated unpacking being ineffective.

In some cases, doing a simple search online
might reveal instructions on how to unpack a cer-
tain type of packer algorithm manually or it might
reveal nothing at all, be sure to check anyway in
case it can save you some time. While the thought
of manual unpacking might seem daunting, keep
in mind that a binary must always unpack its own
code before it can execute its functionality, there-
fore all we need to do is let the binary do the work
for us.

IDA Pro Roadmap
Ouir first step in manually unpacking a binary is to
determine where the unpacking algorithm ends
and where the legitimate code begins. To do this,
we open the packed binary in IDA Pro, it might not
be obvious at first but the entry point function of the
binary should lead you to the unpacking algorithm
(Figure 9).

Once you find that algorithm, all you need to do
is follow the code until you find a JMP or a CALL to

'\ 10A - C\Documets nd Seting\Adiitar\Desklop Wl \Walmae s M. i
P Help.

PR e LD ol A *# - # X[F 0 OFm- |15
] | —

| Flewes |

| 7 omeems

15175 pop

15110727 1ea pax, [espeiCheuar AC]

esp, OFFFFFFROD ; Inteqer Subtraction
near ptr Unpackeditart ; Junp
IF FUNCTION CHUNK FOR start

eax,
edx,
[edi]
edi,
vex,

151106469 ja short

vy

0

I FTR
OWoRD PTR E

a function or a location that either does not exist or
is nothing but random junk data. This is a good in-
dicator that the location referenced is where the le-
gitimate code will start. Figure 9 shows the instruc-
tion POPA, which POPs all top values off the stack
and stores them in the registers. This instruction is
a sign that the UPX unpacking algorithm is nearly
completed (1) and then the actual JMP call to the
unpacked code (2).

OllyDump

The next step is to open the binary in a debug-
ger like OllyDbg and manually navigating to the
address of the JMP or CALL instruction. Once
there, set a breakpoint and execute the binary, the
debugger should stop on the instruction and you
can follow the instruction to the legitimate code,
Figure 10 shows the unpacked legitimate code
in OllyDbg.

There are usually two types of code you will find
at this point, either the completely unpacked code
or more unpacking algorithms; we will deal with
the additional unpacker code shortly. If you have
found the original code, we now need to be able to
output the newly modified binary code so that we
can view it statically using IDA Pro. To do this we
use a plug-in included with OllyDbg known as “Ol-
lyDump” and it will allow us to dump the entire bi-
nary, unpacked code and all, into a new file.

To use OllyDump, simply find it in the “Plugins”
dropdown menu at the top of the OllyDbg inter-
face. In the OllyDump sub-menu, select “Dump
Debugged Process” (Figure 11).

1, 01hDbg - Mabware sve - [CPU - man thisod, modie amarsl

[Fie View Dabug | Pugns Opfons Windw Hel
CHEET 1 Uy ficdvarced

4 DebughchiveFocessSlop
5 Hacke Debugges
£ Hirke)D)
o 7 liDebugPresert
B MapCony

*
"
v B
"
C
"

Clllnlrlilllli z

Figure 11. OllyDump menu navigation

Figure 10. Unpacked legitimate code

www.hakin9.org/en

Exploiting Software |5

REACHING THE CODE

The OllyDump interface will pop up and have an
array of different values and options, at this point it
is a good idea to write down the Entry Point (EP),
Modify and Size values because you will most
likely need them later. In addition to taking down
notes, make sure to de-select the “Rebuild Import”
checkbox because we will be using a different tool
to repair the import table for the dumped file (Fig-
ure 12).

Click on “Dump” and OllyDump will ask you
where you want to save the dump file and under
what name, | would keep this somewhere easy to
get to and with a name like “Malware_dumped.
exe.” At this point, we are done with OllyDump and
have an unpacked binary that we can analyze stat-
ically in IDA Pro. However, the import table of the
binary is not present and therefore even though
the code is unpacked, none of the function calls
will be apparent to us. Do not close OllyDbg be-
cause we will still need it.

OllyDump - Malware.exe il
Start fddress: 15110000 Size: D000

Cancel |

Entry Paint: |55‘3\IJ -» Modify: |352EI GetEIP as DEP |
Base of Code: ISIJDD Baze of Data: IEDIJEI

¥ Eix Raw Size & Offset of Dump Image
Section | Wirtual Size | “irtual Offset | Fiaw Size

| Fiaw Offzet | Chalactalisticsl

LF=0 00aozs0an 00001000 0002000 00001000 E 0000020
LF=1 00003000 00003000 00003000 00003000 EOO00040
LP=2 00a01oan 0000Ca00 00007000 0000Cano CO000040

1 : n:aarch JMPARI] | CALL[API] in memory image
" Method2 ; Search DLL & AP name string in dumped file

Figure 12. OllyDump interface

-4 Import NLConstructor ¥1.7e FINAL (C] 2001-2010 MackT/uCF 1 =] S
- Attach to an ductive Process
rec. ene (UL _ "
bah.
1= i] sellingsa e st atons ek bopSingees: 1 Pefampunbes: exe (NN0N334)) LR |
cumindowshayprsiem3Zinotepad exe (00000448)
chmdowshspclamddinotepad exe [LULLLILLEL) Showr Suse |
ehprogeam Rles\wieshark\dumpeap. exe (000000CE)
cwprogram fleswresharkwireshark.exe [0000071C]
s vt 32 wuoudL e (0000053C)
iz aystem I rnn pee [MONNNTAC) . E
Lng :
[ear Log
- IAT Infos needed Hew Import Infos (1D +ASCIl LOADER) Options
oee [0 et seiech | | o [BO000005 siee 60000000
I Sbout |
ﬂ\f’AI Giu:IZZ"-.] IF &dd
Eut
|| e e e | _—|

Figure 13. ImpREC interface

« Exploiting Software

ImpREC

To fix the import table issue, we will be using a
tool called “ImpREC” or Import REconstructor. Im-
pREC analyzes a currently running program and
extracts the loaded import table, which we will then
be able to attach to our dumped binary.

To begin, we use the pull down menu at the top
of the ImMpREC screen to find the process match-
ing our dumped file. Since OllyDbg keeps all bina-
ries it is currently analyzing loaded in a suspended
state, we can access the process for the binary we
are currently analyzing; Figure 13 shows the pro-
cess listing drop-down.

Once our process is loaded, we can try to let Im-
pREC find the Import Address Table (IAT) on its
own by selecting the “IAT AutoSearch” button on
the bottom left of the screen. This might not work
and if that is the case, we need to pull out our notes
on the EP, Modify and Size values provided by OlI-
lyDump. In Figure 14, we plugged in the modify
value into the Original Entry Point (OEP) box and
used the IAT AutoSearch to find an import table.
By clicking the “Get Imports” button, all available
import functions located in the IAT show up in the
center of the screen.

Now that we have found an import table, all that
remains is to fix the binary dump we made earlier.
We do this by selecting the “Fix Dump” button on
the bottom of the screen and point to the dumped
binary from earlier (“malware_dumped.exe”). Im-
pREC will output in the “Log” box whether the op-
eration was successful and if so, we now have a
fully unpacked and import loaded version of our
original binary. From here, you could use the un-
packed binary to statically parse through the code
and determine any obstacles you might come
across (Figure 15).

“# Import NCConstructor ¥1.7¢ FINAL (C) 2001-2010 MackT /uCh =100 x
Attach bo an Active Procest
Ic:\do-cn.mcnhs and scitingsadministratordesktophpacked testbot\makvare: cue [UUUUUDDEﬂ Fick DLL I
Imported Functions Found

+ - advapiJ2 dll FThurk: 00001000 NbMunc:0 [decimnal:0] vahidvTS L e e

¥ dnzapi.dll FThund:00001024 MbFunc:2 [decimal: 2] valid YES

&1 kernel32.dl FThunk: 00000030 MbFune: 2E [decimal 48] walid VES Shuw Suspec]
¥ 1zer37 dll FThurk-NNONTOF T NEFuee: 1 (decimat 1) vAld“F S —I
wininet.dll [T hunk: 00001074 NETunc: 7 [decimal 71 vald YLS

) wa2_32.dll FThunk:00001114 MbFunc:D [decimat13) vabd YES At Trace

+- ibdlLdll FThunk:00001 14C MbFunc:1 [decimal: |] walid VES

Clear Impaorts:
Luy
IAT read surresshily Al
0200001030 forwarded from mod ntdldil ord 0040 name:RilGetl asfwin32Emor]
i
Curient imports:
7 [ikaamal k]) [kl +7 [ilecinal +
LAT Infos needed Hewe Impoit Infos IID+ASCI-LOADER) Onthons
nEF [Annmeez 14T fuie ﬁ.-.md.l fva [I000U000~ Size [ODODUSFD
Abouk
R/ | 00001 D00 Size IU:[ID‘IN ¥ Add now section Q
Fxik

Load Tree Sawme| | FusDump_

Figure 14. ImpREC Imports Found for Malware.exe

10/2012

Where this might not work

Let us be honest, if every malware used easy
to get around packing and unpacking tech-
niques, we would have no trouble catching them
and analyzing them. Unfortunately, a lot of the
more complex malware out there employs their
own custom packers and even layers upon lay-
ers of packers. Therefore, even after performing
the manual unpacking technique in this article
you may still end up with packed code, in which
case you may need to run through the entire
technique again.

There is no end-all-be-all answer to unpacking
malware or other binaries but that is where the
detective aspect of a reverse engineer comes in.
If you find yourself unable to reach the legitimate
code for whatever reason, attack the problem
from multiple angles, go online and ask for help
or perform the code extraction techniques | will
discuss next.

Obfuscated Code

Packers aside, even after unpacking a binary
there still might be some obfuscated code hid-
den within that is yet to be decrypted or even cre-
ated yet. A lot of malware will split up code sec-
tions when compiling and put them back together,
decrypted, in new memory space to either run as
a new thread, copied to a separate file or inject-
ed into a legitimate process. The techniques re-
quires to extract this code for static code analysis
will not leave you with a neatly organized dumped
binary, instead you will have non-executable files
full of unattributed code that you have to do your
best to decipher out of context or without the abil-
ity to step through the code dynamically using
a debugger.

i, 104 - C:\Documents and Sellings Wb dminiiator\ sk op\mabware,_dump._ene o
Fie fdi bop Sewch Yo Debyggw [Jpser: idow Hep
AH e B8 DO e et ed X p DD Peabae [T
s | ! =
' '

() o e 3

| Tl Hoxviowa |] stntures

s

Finding the code

The first step in obtaining dynamically created,
obfuscated code is to find it. You can accom-
plish this in one of two ways, depending on how
you prefer to do your reversing. The first way in-
volves statically parsing through the code using
IDA Pro; this is an effective method of reversing
unless you come across a call to “WriteProcess-
Memory” that loads dynamically created code into
virtual space. The other method, which is what |
personally prefer, involves stepping through the
code using a debugger, taking multiple snapshots
at every “fork in the road” and using IDA Pro as
a roadmap that we can comment, customize and
use to make sure we are on the right path to find
that hidden code.

IDA Pro Roadmap

The IDA Pro roadmap approach works best if you
have two separate virtual machines, one for dy-
namically parsing through the code using a debug-
ger like OllyDbg and the other for keeping your
map up to date using IDA Pro. The purpose of
keeping the two separate is because of the pos-
sibility that your IDA Pro save file might become
corrupted, deleted or otherwise made useless and
therefore forcing you to return to the start.

My personal technique involves creating as
much of a picture as | can before ever executing
the code by renaming functions, commenting in-
teresting chunks of code and creating a predicted
path that | need the binary to follow in order to get
to the more juicy functions.

The benefit of this technique is that you always
know where you are going before you get there

i [=1E)

fie Edt Juwp Seuch Yiew Drbugger [psons windows Hep
R (B85 e A dSFF-FaX DO » T
|

4
;I_ I

| Elests

| [Femes 7 | 75 et |

WPro,

FRytestritten) ; Load EF
IpHumber0FByLesiritien

WAL fnF

AE11251E jmp

e 15912627 © Ju short loc 15112637 . Jum)

ErrTE sl ren Type

" -
67,313 [(411, 2533
. idle Bown

Bisk: 3ICE

Figure 15. Unpacked binary loaded in IDA Pro

www.hakin9.org/en

Figure 16. Call to WriteProcessMemory found using IDA Pro

Exploiting Software |

REACHING THE CODE

and the possibility of getting lost in the code by
parsing through with only a debugger is slim to
none. In addition, you can be prepared for the cre-
ation of dynamic memory and keep track of what
variables are being referenced or what data is be-
ing copied. | find that when attempting to extract
previously obfuscated code, this is the best meth-
od to find out where the code resides.

Figure 16 shows this technique in action by dis-
playing a call to WriteProcessMemory found by
referencing the import table for the binary. From
here, the next step would be to rename the function
that calls this APl something unique like “CallToW-
riteProcMem.” Then by following cross references,
make our way back to the start of the binary, leav-
ing breadcrumbs along the way in the form of dif-
ferent colored function graphs and comments. In

PTR DS:
+e EAX

RO FTR O
DWORD FTR
EEF

addition, we also have access to the variable used
as the buffer for the function, which we can trace
back to find out exactly where the obfuscated code
will be loaded locally.

Now that the path is clear, we can navigate our
way to the function call dynamically by using Olly-
Dbg and using our roadmap. Figure 17 shows the
function ready to execute as well as the variables
passed to the function and the location of the buf-
fer code. Our next step is to extract the buffer code
to get a better look at it.

Extracting the Code

Finding the location of the obfuscated code is a
big part of this entire process, however we are not
out of the woods just yet. Now we need to extract
that code so that we can analyze it statically using

Figure 17. APl Call found in OllyDbg

4, OllyDbg - Malware.exe - [CPU - main thread. module Malware] I

@Eile YWiew Debug Plugine Optionz Window Help

Comma nc| j
[Breakpaint at Malware. 15112614

are. 151166886

[Paused

Figure 18. OllyDbg interface displaying current execution environment

= Exploiting Software

10/2012

IDA Pro and figure out exactly what it does. In mal-
ware, code which is hidden in the memory of other
processes, decrypted from a hidden section of the
file or created dynamically after the binary is ex-
ecuted usually holds the most important, powerful
and dangerous functionality. Before we go any fur-
ther in attempting to extract it, we need to answer a
few questions and list out what we know. Figure 18
shows the current execution environment in Olly-
Dbg before WriteProcessMemory executes, each
number corresponds to what kind of data we know
before execution.

* Based on the assembly code we know that the
function is only called once, therefore the data
located in the buffer is the entirety of the obfus-
cated code.

* Based on the current variables pushed onto
the stack, we know the handle of the receiv-
ing process and the address of the buffer that
holds the current data. We also know the size
of the data, information that will be very useful
if we need to extract the data manually.

» Based on the buffer data located at the refer-
enced address, the data might be an execut-
able binary since it has an MZ header.

Using the above information, we can successful-
ly extract the obfuscated code in one of two ways,
using an application to extract the data and ex-
tracting it manually.

441 Lordi'L Howal |5 | by yoda i =10l
Fath FID X FE Editor
B windve syt Dhrotenad sxe annngd Brosk LENS!
h £l
i O Fieduskl PF
0000053, Unepii

A E Lumpes Uervcrl

eth Imagedlaze
e documents sl selligh sdrinmdotdey.. 15110000
&) e \windeweshaybaen Dkl Al AN
4] o wandowshaystemZkemal s di Lo
4] o windowshspatem32hadvapiz2.di 77000000
4] ¢ windows\spetemZ2uperid.di FFETOO00

Imagetie
00000000
Annn2nna
UDUHELUD
00038000
00092000 = Bl

Figure 19. LordPE Interface

[Dusmp Region |) x|
Address Size Protect State | Type =
00JCo000 O000C 00 M COMMIT tHACTCD
003CENOD 00002000 NOACCESS FREE
003D0000 00001000 R/ COMMIT PRIVATE
00301000 0000F000 WOACCESS FREE

Q0EE 0000
D03EDO00
00400000
00401000
00408000
(00407000
00403000
00410000
00414000 000ECO00

00400000 00002000 *R

Dump [nfarmation
Addiess: | 003E0000

00000000
00013000
00001000
00005000 “R

00007000 Rw
00002000
00007000
00004000

MDACCESS FREE

R COMBIT
COMMIT
COMMIT
R COMMIT
NDACCESS FREE

R COMMIT
RESERVE
COMMIT

IMAGE
IMAGE
IMAGE
IMAGE

MAPPED

MAPPED
MAPPED -

Dump |

Figure 20. Dump region interface, obfuscated code location
highlighted

Size: | DODODOOD

www.hakin9.org/en

LordPE

Our first method involves the use of a tool known
as LordPE, a very powerful and useful PE editor.
Using it, we can open the current process memory
of our malware and extract the region of memory
that includes the obfuscated code. To begin with,
after opening LordPE we have to scan through the
process listing and find our target “Malware.exe”;
Figure 19 illustrates this.

When we find our process, we right click it and
select the “Dump Region” option. Using the dump
region interface, we scroll through all of the mem-
ory regions belonging to the file and find the one
that correlates to the buffer memory address we
observed previously.

In Figure 20, notice how the memory location
0x3E0000 has the size 0xD000, the same size as
the data passed to WriteProcessMemory. Our next
step is to simply dump the region and load it into
IDA Pro either by itself or as an additional file to our
currently loaded instance of IDA.

Manual Extraction

While rare, there might be an occasion when
you cannot use LordPE to extract code from
memory. This might be due to memory locked
by the binary using it. In any case, there is a
way around this problem and it is as simple as
‘cut and paste’.

Using the previous example, we are going to ex-
tract the same code as we did with LordPE but by
only using OllyDbg. The first step is to locate the
memory location in the OllyDbg dump window to

F
5
5
2
2
2
5
5
5
5
5
-]
2
2
2
5
L]

Figure 21. OllyDbg dump window using address offsets

Exploiting Software '

REACHING THE CODE

Figure 22. Performing a Binary Copy on the selected data

the lower left of the screen; the number 3 in figure
18 represents this window.

The next step is to double click on the memory
address referenced by the code loading the obfus-
cated data, you should see a “==>" appear where
the memory address was and notice that all other
memory addresses in the dump are an offset from
the original (Figure 21).

By scrolling down, navigate to the offset address
that matches the size of the obfuscated data, in
this case it would be 0xD00O0. Then Shift + R-Click
the memory location and you should be selecting
all the data between the origin address and the
current address. Next, right click on the selection
and navigate to the ‘Binary’ sub-menu and click
“Binary Copy” (Figure 22).

Finally, open your favorite Hex editor to a new file
and paste the external text as hex numbers, the
data should appear inside of your text editor exact-
ly as how they appeared in the OllyDbg dump win-
dow. Save the file as whatever you wish and load
the file into IDA Pro to get a closer look.

Conclusion

One of the first steps in reverse engineering le-
gitimate applications or malware is always break-
ing through any anti-reversing protection by using
unpacking applications or just letting the code de-
crypt itself and ripping out the data from memo-
ry. You should now be able to de-obfuscate a bi-
nary protected by a known packer, custom packer
or custom obfuscation methods by using the tech-
niques included in this article. However, always

« Exploiting Software

Backup
Capy

Edit
Fill with 00's
Fill with FF's

Birary Ctr+E
F adify

Breakpoint
Search for

Goto

Hex
Text
Short

v Lohg

Float
Dizaszemble
Special

keep in mind that new anti-reversing techniques
are being developed all the time and with that, your
own ability to defeat them will need to constant-
ly be honed and practiced. Remember, no matter
how encrypted, obfuscated or packed a binary is,
the code must always be clean when it is executed
and that is a vulnerability you can always exploit.

ADAM KUJAWA

Adam Kujawa is a computer sci-
entist with over eight years’ expe-
rience in reverse engineering and
malware analysis. He has worked at
a number of United States federal
and defense agencies, helping these
organizations reverse engineer mal-
ware and develop defense and mit-
igation techniques. Adam has al-
so previously taught malware analysis and reverse en-
gineering to personnel in both the government and pri-
vate sectors. He is currently the Malware Intelligence
Lead for the Malwarebytes Corporation.

10/2012

Protected Only by Antivirus?

Complete your PC’s security by running Malwarebytes
Anti-Malware alongside your Anti-Virus to become fully

protected from the latest threats.

Protect Your Business Now!
VlS|tMaI\}varebytes org

i

0 /é/ I H‘ \\\

: f7’“‘""3For'more |n ormat
7007/ 7T |
s at orporate-SaIes@Ma war

)
'%.\\ e
: N "\.
SN
IS S f// ”_-' / I
7y vy
D/7/ /Y / e/ A\
Vi d s / ! | I} WA N
g H A NN
i \)
i
/ i
¥ Z-'

M MaIWarebytes

http://www.malwarebytes.org/

REACHING THE CODE

How to

Identify and Bypass

Anti-reversing Techniques?

Learn the anti-reversing techniques used by malware authors to
thwart the detection and analysis of their precious malware. Find
out about the premier shareware debugging tool Ollydbg and how
it can help you bypass these anti-reversing techniques.

his article aims to look at anti-reversing
techniques used in the wild. These are tricks
used by malware authors to stop or impede

reverse engineers from analysing there files. As an
entry level article we will look at:

+ Setting up a safe analysis environment
* Ollydbg an X86 debugger
» Basic techniques like;

» Verification of dropped location

* Anti-debugger

+ Obfuscation of strings

* Hiding APIs

* Anti-Virtualisation

We will look at the code as written by the malware
authors in C++. We will compare this code to the
debugger code in Ollydbg. Ollydbg is the x86 de-
bugger of choice for reverse engineers. We will
look at the different techniques and possible im-
provements. We will also find out how to bypass
each technique using Ollydbg. Finally, | have writ-
ten a small ‘Reverse_Me.exe’ that contains all of
these techniques so you can practice your newly
gained malware smashing expertise.

Analysis Environment

First off we need an analysis environment. The ‘Re-
verse_Me.exe’ | have provided is not malicious. It
is, however, good practice to only analyse files in
a safe environment. Ideally, all your analysis would

«« Exploiting Software

occur on a second computer which is not connect-
ed to any network. Typically, this analysis computer
would run an operating system other than Windows.
This machine hosts multiple virtual machines (Win
XP, Win7, Server 2008) and samples are trans-
ferred by ‘snicker-net.’ Typically, the samples would
be password protected in zip files. Having differ-
ent host and guest operating systems reduces the
chances of propagation of malware. A quicker way
to get you started is to use a Virtual Machine and
ensure that all shares are read-only. Disable all net-
work connections before performing any analysis.
It's not perfect but if you are mindful it should be
adequate to get you started. Start by downloading
your virtualisation environment of choice; VMware,
Virtualbox, Windows Hypervisor, etc. (I have used
a VMWare detection in the anti-virtualisation layer
of the Reverse-Me sample). It is common for anti-
malware engineers to use Windows XP SP2 as an
analysis machine, the idea being that this version
of Windows has weaker security so it has a better
chance of running. That said Windows 7 is perfectly
adequate, | have done testing on both. After install-
ing any required tools, take a snapshot so you can
jump back to this point, this will save you having to
remove the malware from your machine. Your envi-
ronment is now setup so let us look at the tools.

Tools

For tools | am going to try and limit it to just one;
‘Ollydbg.’ Ollydbg is a debugger just like the debug-

10/2012

ger in your compiler but it can run without source
code. It does this by converting the machine code
into assembler so that it is human readable. It also
gives us the ability to view and edit the assembler
code as well as the values in the registers and on
the stack and heap. Ollydbg has some very pow-
erful plugins that can help you bypass many of the
techniques | will mention. These Plugins are out-
side the scope of this article but please feel free
to investigate yourself. Ollydbg is shareware but
the author, Oleh Yuschuk, does ask you to regis-
ter with him if you use it frequently or commercially
http.//www.ollydbg.de/register.txt. Version 2 of Ol-
lybdg is available but it is still in beta so we are go-
ing to use V1.1 for this article. Please download it
from http.//www.ollydbg.de/.

| am also going to use a hex editor written by
Eugene Suslikov, mainly to show parts of the PE
file system. You don’t need it to get through this
article but a demo version of Hiew is available on
his website http://www.hiew.ru/. If you get serious
about reversing, Hiew is a must have tool.

Microsoft Visual Studio 2010

| used Visual Studio 2010 to compile the “reverse
me” sample, if you do not have it installed on your
analysis machine you will require the following
DLLs to run the binary: http.//www.microsoft.com/
en-us/download/details.aspx?id=5555.

Getting started with Ollydbg
Download Ollydbg and unzip it into its own direc-
tory. It does not need to be installed. When you
open Ollydbg for the first time you will more than
likely be met by the warning in Figure 1. Using the
menus at the top of the window navigate to Op-
tions->Appearance->Directories and point it to the
directory that you just dropped Ollydbg into.

When you open a file in Ollydbg you will see four
panes in the window.

» Top-Left

+ Top-Right

+ Bottom-Left

* Bottom-Right

Disassembler Pane
Registers and Flags Pane
Hex Dump Pane

Stack Pane

r |
UDD Directory absent 25

i '._-'-I UDD directory " docsn't cast, Please specify valid path in
'S Opticns|Appearance|Directories, otherwise breakpoints, comments and
"~ analysis data will be lost atter debugged program terminates.

=

Figure 1. Setting up the UDD directory

www.hakin9.org/en

We are mainly going to use the disassembler pane.
The registers and flags panes we will use to manip-
ulate jumps and see the values in the register. We
will not use the dump and stack pane at this stage.
We are going to use short-cut keys for speed; the
following shortcuts are all you should need;

* F2Toggle breakpoint
 F7Stepinto

» F8Step over

* F9Run continually

+ Ctrl-G Go-to a Virtual address

We are mainly going to use strings to navigate for
simplicity. If you right click on the disassembler
pane and select ‘Search For-> ‘All referenced Text
Strings’ (Figure 2). You will see the strings of each
layer; just double click on that required layer to get
to its location in code. On the top left hand corner of
the main window you will see something like “CPU —
main thread, module <module _name>", this will tell
you the module you are currently running in. When
you open the ‘Reverse_Me’ in Ollydbg it may start
in the ntdll module, just press F9 and it will go to the
entry point of the ‘Reverse_Me'. The first instruction
in the ‘Reverse_Me’ sample is a call.

The Binary

The binary is available here http://download.ha-
kin9.org/en/Reverse_Me.zip you can work along
with the article. If you are more adventurous, read
the article and then see if you can get through all
the layers on your own. As a disclaimer | am not
a Software Developer by trade. | do write python,
C and C# on a daily basis but it is typically to get
something done ‘quick and dirty’ or for in house
tools. | apologise in advance for any errors in my
code, the lack of style and the non-existent error
checking. In my defense, most malware code is
of a similarly poor structure, so this should make it
more realistic &.

Figure 2. Find referenced strings

Exploiting Software |

http://www.ollydbg.de/register.txt
http://www.ollydbg.de/
http://www.hiew.ru/
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://download.hakin9.org/en/Reverse_Me.zip
http://download.hakin9.org/en/Reverse_Me.zip

REACHING THE CODE

Just a short preamble, malware usually consists

of layers. Typically, the most external is a packer

of some sort (UPX, Aspack, etc.). | have not add-

ed a packer to this Reverse_Me.exe, although most
are not hard to bypass and easy to add. | think they
would overly complicate the binary for such a short
article. | have tried to make all the layers very easy

to identify by putting in lots of strings that you can
search for. | have not encrypted each layer as would
be typical of a “Reverse_Me” puzzle. This is to help
in your navigation through the binary. It does leave

you open to jump to the final layer and skip the rest
&. The virtual addresses in the article may not cor-

respond to the ones on your machine so please use

the strings. | have displayed some of the strings

in Figure 3. You will have to press <Enter> before
each layer initiates. This may be a pain but it will
help you to be systematic in your steps.

Layer 1: Verification of dropped location

A lot of malware will drop executables onto your

system. | frequently see ‘dIl’ files dropped into the
‘C:\Windows\system32’ directory. Some malware

will confirm its location before it will run. The anti-

malware engineer is probably going to analyse the
file in a directory like C:\Infected\<current_date>.

Listing 1. Verification of dropped location

void First challenge()
{
char buf[255];
char buf temp[] = {'T’,’e’,’m’,’p’};
// getcwd gets the current worklng
directory
_getcwd(buf,255) ;
bool Program Running In Temp Folder = true;
// we are starting at 3 to avoid the drive
letter
for (int temp = 3; ; temp++)
{
if (bufl[temp] '= buf temp[temp-3])
Program Running In Temp Folder =

temp <

false;

}

if (Program Running In Temp Folder)

printf (“Well done first layer passed”);
else
printf (“Sorry not this time, you are
in the wrong directory”);
exit(0);

«» Exploiting Software

So, this basic trick can be effective against simple
dynamic analysis. We will see later how to obfus-
cate strings which would make this technique even
harder to detect by hiding the word “Temp.”

Layer 1: The C++ code
In Code Segment 1 there is a short function that
checks that afile is in a directory called Temp.

The corresponding assembler code as produced
by Ollydbg is in Figure 4. As this may be your first
time seeing assembler we will try and walk you
through the code. The first point to identify is the call
to getcwd, this will get the current working directory.
The next few lines compare the values in the path to
the hex digits 0x54, 0x65, 0x6D, 0x70. If you pull up
an ASSCI table from the web you will find that these
hex bytes correspond to the string “Temp.’ The final
two jumps in the image below can redirect you away
form "Well done first layer passed." This will happen
if any of the hex bytes that represent “Temp’ do not
match the path supplied by getcwd.

Locate and set a breakpoint (F2) on the line with
JNZ (jump not equal to zero). If you click F9 it will
run to that breakpoint. Now look at the top right of
your screen and you should see a set of flags like
the Figure 5, the registers and flag Pane. Locate
the flag Z and click it. This will toggle the jump.
Click it again. You should be able to see a small
arrow showing you where the jump will terminate.
By toggling the jump you can insure that it will not
jump but fall through to ‘Test AL AL’. Repeat the
flag manipulation on the next jump at JE (jump

o ==
B Hiew: Mag ViMware.exe 4 -
ar_UHware .wxe IFR0 ————————
0 7

tThis program cannot he run in D0

Elis OFFZE 7,08 GE0RucE[CENR TN [7Edone)

b, Lager passed”
JH0RD TR G50 L EUERToe Br R

[h3 = TEMeLL done fursr
ne

Flgure 4. Layer 1 Directory Detection, Assemble view

10/2012

equal too) to insure you are directed to the “Well
done first layer passed”. This technique of manipu-
lating the jump can be used throughout the binary
to jump to your chosen branch.

Layer 2: Anti-debugger

Anti-debugging techniques are used by programs to
detect if it runs under control of a debugger. The aimis
to impede the process of reverse-engineering. There
are a lot of anti-debugger tricks, we will just show you
the most basic. It is based around the following win-
dows function (Listing 2). It is simply an ‘if statement’
as you can see in Code Segment 2 (Listing 3).

The assembler code is available in Figure 6. It
calls the IsDebuggerPresent APl and based
on its response jumps to the “Not running in a de-
bugger” printf or continues on to the printf which

Registers (FPUI 4 < i 4 4 <
ERX S9ECHEFE OFFSET MSUCP18E. PcinEstdEEIUPShasic_istreanmBOU?Schar_trai
ECx &03Z1@14
ED: 696871440 MSUCF1B6. 69871440
EE: AOHA6EEHE
ESF BRALGFTI8
EEF @61&FaCd
ESI BOE@EEE1
EDI AECEESCC OFFSET Mag MHwa. _native_startup_lock
EIF BBCEI9E1 HMag UHwa.BBCEL19EL
C B ES BE2E 22bit BIFFFFFFFF)
C3 B@Z3 32bit @I(FFFFFFEF)
H B S5 B82B Z2Zbit BIFFFFFFEF)
£ 1 D05 6828 32bit AILFFFFFFFF)
S B FS EBS52 Z2bit YEFDDEQELFFF)
E 8 G5 BAZE 3Zbit BIFFFFFFFF)
0@

LastErr ERROR_SUCCESS (AEEAGEHE1
EFL B@@@dz4s (H0,ME,E,.BE,HS,PE,GE,LE]

STE empty ©.8
5Tl erptw B.8
ST2 empty ©.8
ST3 empty B.8
ST4 empty ©.8
STS empty B.8
STE empty B.8
STF empty Q.8
b T EZSPUDEZDI
FST AGEA Cond B @ @B Err A8 B 6 A A B O (5T
FCW B27F Prec MHEAR.E2 Mask B Vo [§

Figure 5. Ollydbg flags for manipulating jumps

BEZE1L06| s B5 FUSH EEP

@@aze1i01|] .« SBEC Moy EBP,ESF

Ba2ELLD2) . &R FF FUSH -1

EESELIOS|) . 68 C2223BRE | PUSH Mag UMwa. BESB2SCE
BESELLIDA|L . 64:H1 BEGEEEEIM0Y ERX,. DWORD FTR FS:[@]
HEsELLES) . BB FUSH ERX

aase1l1lEL(] . B83EC 28 SUB ESP. 26

BESELLE4] . MOu EHH DWORD PTR DS:[__security_cookiel
GEZElIED|] .« 23CE XDR EEF

EASELLEE|] . 8945 F@ Dﬂﬂﬁﬁ FTR £5:[EEF-161, EAX
HESBL1EE(] . E& PUSH ES

BEAZB1LEF(] .« EB PUSH ERX

Ga2ELLF@|l . 8045 F4
BEASBLILIFS
HAIELIFS

LER EF:, OWORDT FTR =%: [EEF-C1
. B4:R3 EEEEEEE MOL DNDRD PTR FS:[E8],EHRR
FFLS BB3A2BAR
TEST ERx, EA=

. BE5CE

w7d B JE SHORT Mag UHwa.@B3E1255

. CP45 ES BFEEEr MO BNQRB PTR 55: [EEP- 13! BF
. CP45 E4 o@@oo MOV DWORD PTR SS: CEEF-1C
@Ese1z11|] . CE4E D4 BE ML ﬁ,‘z'[__ms_&._{mm B

EEZELZ45() . 8040 D4 LEA ECH,

BEA3E1ZvF |k, C3
BAsE1Z20|rs BE

Figure 6. IsDebuggerPresent ‘if’ statement as see from Ollydbg

BETH
PUSH EBF

www.hakin9.org/en

| DWORD PTR DO5: [{&KERNEL32. I1sDebuggerPresent 31

DWORD FTR S5:[CEEF-ZC1
EALE Man_UMwa.std::9etline<char, std:zchar_traitsichar

is passed ‘Running in a Debugger” and then the
program exits. After a debug trick you will normally
see a crash or exit. The Idea being that the analyst
will think the file is benign or corrupt. To bypass
this trick we are again going to use the zero flag
as shown in the previous example. If we set the
zero flag to 1 we will jump to the "Not running in a
debugger” branch and continue to the next layer.

Layer 3 Obfuscation of strings and hiding APIs
| am going to take these two topics together as they
are intrinsically linked. Windows executable files

Listing 2. /sDebuggerPresent API
BOOL WINAPI IsDebuggerPresent(void) ;
Listing 3. [sDebuggerPresent ‘if statement’
void Second challenge()
{
if(IsDebuggerPresent())
{
printf(“Running in a debugger”);
exit (0);
}
else
{
printf(“Not running in a debugger”) ;
}
}

ClzDebuggerPresent

I'm going to emit (™

HMSUCPL1BE. Pwiden@?5basic_los@DUPSchar_traitsEDE:stdEEEstJEEIBEDDEE

BESE1Z15|] . 68 F4323B08 PUSH OFFSET Mag_ UMwa. Y _CE_BCHEPJOJFJOME?SRUnn ing?Sin| rfocmat = "ERunning in a debugoer,
sazEiziAll . CP4E FC_memae MOU DMORD PTR SS5:C] [
BBZE1ZZ1 FFLE E2202E88 CALLC DWORD PTR DS: E<&HSUCRIBB printf] printf
BEIB1ZZY 1 MOU EAX,OWORD PTR DO5: [<&MSUCP18E. Pcin@stdEE3UTShas ic_
BA3B1Z2C SEE2 MOY ECH,OWORD PTR DS: [EAX]

BEZELZZE SE49 04 MOV ECH,DOWORD FTR DS: [ECK+4]

Ba3E1231 S3C4 B4 ADD ESP, 4

BEIB1Z234 H BA USH &R

Ba2E122E @ace ADD ECH.ERX

AazE1228|) . 8BFE HMOU ESI,ERX

HESE123A (] . FELS S43@83868| CALD DWORD PTR DS: [<&MSUCP16E, Pwiden®@rfbasic_iosEOUYS
AazE1z4E) | . BEBEDE MOUER EDM, AL

BazBlz42(] . G2 FUSH EDX

BE3B1244|1 . 56 PUSH ESI

oEzElz42|| . EE 420E00BH

BAZE1240 Z3C4 a3 ADD ESF, S

BEZE1Z5E|] . 6A B8 SH @ status = @
pozelzcz|| . FFLS EB2@2E88| CHLL DWORD PTR DS:[<&MSUCR1EE, exit>] eHit
BazEizEE(] » 68 2423SBA0 FUSH OFFSET Mag_UMwa.?? _C@_GELEKJEBFLLEP@YEHOL *Erunning rformat = "EMot running in a debugger™
GazE1250(| . FFLE ESSA3EAA | EHCL DWORD PTR DS: [<&HSUCRIBB printf] printf
BA3E1Z63|| « 83C4 B4 ADO ESP, 4

BE2EL1ZEE|| « SB4D F4 HMOU ECH, :

EE3E1ZE3 | . 64:9980 @RAEE MOU OWORD PTR FS:[B],ECX

BAEZEL1ZFA|| .« 52 POP ECH

BEZELZFL|| « EE FOF EZI

BRZE1Z7E|] . SB4D F@ MOV ECH, DWORDTFTR S5 CEEF=1&1

BR3E1Z2¥E|| « 23CO A“OR ECH, EBF

QEzelavy (] ES SVeCosag Mag_UHwa. security_check _cookis

BAZELZFC|| . SBES HOU ESF,EEF

BA3E1ZVE|| . 50 FOF EBP

Exploiting Software |

REACHING THE CODE

follow a structure called the PE file structure. This
structure tells Windows how to load the executable
into memory and what bit of code to run first, among
other things. Without going into too much detail the
PE structure has many tables and one that holds
imports. This table is called the imports table and
contains all the APIs that are called by the execut-
able. As a Reverse engineer this is a very good
place to start. It will give you a good Idea of what the
program is going to do. If you see loads of network-
ing APlIs in a program that claims to be a calculator
it would raise your suspicions. Figure 7 shows part
of the Import table displayed by the excellent tool
Hiew. In the table you can see APIs that we have
used already e.g. IsDebuggerPresent. You will not
see CreateFileA. Please notice two important API’'s
LoadLibrary and GetProcAdress as these two API’s
give us the ability to load any API.

Layer 3:GetProcAdress

‘GetProcAddress’ is essentially a wild card. You
can use ‘GetProcAddress’ to get the address
needed to call any other API. There is a catch,
you must pass the name on the API you require to
‘GetProcAddress’. That would mean that although
the API is not visible in the Imports table it will be
glaring obvious in a string dump of the file. So, a
malware author will typically obfuscate the strings

| KERNEL3Z2 .d11

Figure 7. Import Table

BEIB1GFE| & BB FUSH _EEFP
BazE16F1| . 8BEC MOl EEF, ESF
BazBl1cF2l . &R FF PUSH -

i
. BB S82Z53EHA FUSH Mag_UMwa.BEIBZS9E
. G4:A1 D@ooooo MOU ERX, DWORD PTR FS:Cal
. BB FUSH ERX
. S3EC 5@ SUE ESF,S6

Al 18EH3EEAR MO ERX, OWORD PTR D5:C
XDR ER=, EBF

| DWORD: PTR-SSE0EEF=181, EAX

PUSH EBE=
FUSH ESI
FUSH EDI
FUSH ER#

BEZE1GFS
aaze1cFA
BEZE]7EE
Gazeival
BEZE17ES | .
BEZE17ED| . 33CE
Gaselivae| .
BEZE1VEE(. 58
gaseivar| . 56
BEzE17iEl . B7
Gaseivil| . 58

__security_cookie]

BEIB171IZl . 8045 F4 LEA ERX, DNOROTETR SS5:[EEF=C1
AEZEITIE| . 64:03 0OEBEEEE A0 DWORD PTR FS: (@1, EAX
Gaze1viE| . 2045 E4 H ERH, SEcLEBF=IER

AAZE1F1E| . B3 65 HOL BL, 55
. L7455 E4 4BeST DU

AEZE1727| . Cr45 E8 656C31H PTR_SS:

@a3el72E| . Ce45 EC @@ HDU BYTE FTR S5:[EEP-141,

@e3el73zl . 8078 @1 LEH ESI,DWORD PTR DS EEHH+1]

GEZE17IE| > 8ABS HOU CL,EYTE PTR DS:

GE3E17IT . 4@ IHC ER%

GEZIE172E| . 84C9 TEST CL,CL

QE3E1 73R JNZ SHDRTSTEQ_UHwa BA3E1735

BESE1F3C| . 2BCE
BESE]FIE LER EC1.DUORD PTR DSt CEAX+11
@asEl7al| . 33C9 HOR ECH,ECH

MY ERK, EST

pp3Eizaz| | 8BCE

Zl_
m

LEEF=1ICT, cE72654E
fEBP-IQJ 2232606

Figure 8. Building Kernel32 as a Character Array

| Exploiting Software

in the binary and then pass them to a deobfusca-
tion routine. The deobfuscation routine will pass
the cleartext APl names to ‘GetProcAddress’ to get
the location of the API. So, between the obfusca-
tion of the strings and the use of ‘GetProcAddress’
they can hide the APIs they are calling.

Layer 3: String Obfuscation

If you run a strings dump on the binary you will see
something like Figure 3. If you scroll down through
the strings in Hiew or another tool you will not see
the following strings although they are used in the
next function

* ‘Kernel32’
* ‘CreateFileA’
» <A secret code to pass layer 3>

| have used three types of obfuscation to hide the
above strings. The first two are very similar and
are really just to subvert a string search of the bina-
ry. When you see the C++ code they will look very
easy to see through. When you view the assembler

Listing 4. Character Buffer to String Obfuscation,
pushed in order

LPCWSTR get Kernel32 string()

{
char buffer Kernel32[9];

buffer Kernel32[0] = 'K’;
buffer Kernel32[1] = ‘'e’;
buffer Kernel32[2] = 'r’;
buffer Kernel32[3] = 'n’;
buffer Kernel32[4] = ‘e’;
buffer Kernel32[5] = 'l’;
buffer Kernel32[6] = '3/;
buffer Kernel32[7] = '2/;

buffer Kernel32[8] =

|
—
S

//The following is code to convert the char
buffer into a LPCWSTR
size t newsize = strlen(buffer Kernel32)
+ I;
wchar t * wcstring = new wchar t[newsize];
size t convertedChars = 0;
mbstowcs_s(&convertedChars, wcstring,
newsize, buffer Kernel3Z2,
_ TRUNCATE) ;

return wcstring;

10/2012

code it will be slightly more difficult. First is a meth-
od where you push values into an array and then
convert the array to a string, see Listing 4.

Let’s look at the same code in assembler it’s a lot
more difficult to find. Pull out your ASCII table again.
If you look at the cluster of four mov instructions
highlighted below, you will see the two DWORDs
are moved onto the stack. If you translate these hex
bytes into ASCII and change the byte order you will
see ‘Kernel32.” So, this simple method is very effec-
tive at obfuscating strings (Figure 8).

The second type of obfuscation is very similar. It
uses the same technique but goes a step further.
It does not add the characters to the array in order.
For longer strings this can make the reverse engi-
neer’s job very tough. Let’s have a look at the C++
code in Listing 5.

As you can see, the values are not pushed in
order. If you look at the code you can see ‘real-

Listing 5. Character Buffer to String Obfuscation,
unordered

LPCSTR get CreateFileA string()
{

char * buffer CreateFileA = new char[1”7];

buffer CreateFileA[l] = 'r’; //0x72
buffer CreateFileA[2] = ‘e’; //0x65
buffer CreateFileA[3] = ‘a’; //0x61
buffer CreateFileA[8] = '1’; //0Oxéc
buffer CreateFileA[6] = 'F’; //0x46
buffer CreateFileA[7] = ‘i’; //0x69
buffer CreateFileA[4] = 't’; //0x74
buffer CreateFileA[0] = 'C’; //0x43
buffer CreateFileA[9] = ‘e’; //0x65

buffer CreateFileA[5] = ‘e’; //0x65
buffer CreateFileA[10] = ‘A’;//0x41
buffer CreateFileA[11] = '\0’

\Uoy

return (LPCSTR)buffer CreateFileA;

Figure 9. Building CreateFileA as a Character Array

www.hakin9.org/en

FitCeeA'l It is not a huge leap to get ‘CreateFileA’
from this. But this method is surprisingly effective.
How does it look in Assembler, Figure 9:

The block of ‘mov’ instructions builds the string.
As you can see, it is much harder to pull out Cre-
ateFileA from this code. It is a very simple and ef-
fective obfuscation technique. The API name is
built on the ESI register and then passed to Get-
ProcAddress. So, a good option is to put a break-
point on all GetProcAdresses calls. By looking at
the stack you can see what is being passed into
the function. This will give you a more complete
picture of the APlIs that are being called.

The final type of obfuscation we are going to look
at is called Exclusive OR (Xor for short). Xor is very
popular with malware authors. It is a very basic type
of ‘encryption’. | don’t even want to use the word en-
cryption as the technique is more like polarization.
One pass, encrypts the string and a second pass
with the same key decrypts the string. It is very light
weight and fast. It is also very easy to break.

The string | wanted to hide was copied it into a
buffer. | ran the code once and it created the ci-
phertext. | placed this ciphertext into the original
buffer so the next time | ran it would create the
plaintext. | have only used a byte wise encryption,
malware may use longer keys. The C++ code to
build the buffer containing the chipertext is below
followed by the decryption loop: Listing 6.

Let's have a look at the assembler code (Fig-
ure10). We can see the buffer being loaded with the
Hex characters as before. Marked below is where
each byte of the ciphertext is xored with OxFA. Af-
ter the Xor you can see INC EAX and CMP EAX,
18 followed by a jump.

This is the ‘for loop’ that will iterate 0x18 (the length
of the secret message) before it continues. JB stands
for ‘jump below,” so, the jump will happen for the full
length of the string decrypting each byte of the ci-
phertext. This is later compared against the value
the contain in the text file. If they match the layer is
passed, or you could manipulate a jump or two.

BEZE1774| . &R BC FPUSH &C

BEZBIFFPE| o ES FDAFEEEE CALE Mag_YMwa.operator newll

BEZE17FE| . SEFE@ HOW ESI, ERR

BEZE1FFD(. 83C4 1C ROD ESF, 1C

BEZE17EE| . 57 FUSH EOI FileHame

BEZE1VE1| . 885E @2 MOV BEYTE FTR D5:L[ESI+2],EBL

BEZBE1FE4) o CEd4d B3 &C HMOW BYTE PTR D5:[ESI+2],60

BEZEIVEE| o 661CV4e @6 461 MOV WORD PTR D5:[ESI+E], 5945

BEZEI17TEE| . 66:C7P46 B3 61) MOV WORD PTRE DS5:L[ESI+31,7451

BEZE174| . 66:CV@6 4372 |MOU WORD PTR DS:LESI, 7242

GEZE1729| . S8EE @9 MOW EYTE PTR DS:[ESI+9],EL

BEZE179C| . S89EE B85 HMOW EYTE PTR DS:[ESI+S],EBEL

BEZEITIF| . 6G6:1C7P46 BA 411 MOV WORD PTR D5: [ESI+A], <41

BEZE1FAS| . FF1E | CALE DWORD PTR DS: [<&%KERMELSZ.LoadL ibrarcyll»] LoadL ibracyll
BEZE1FAE| . SELD B2383EB6@A| MOV EBX, OWORD PTR DS:[<&KERMELZZ.GetFProcAddress] kerne l32. GetFrocAddress
BEZE1TEL| . BEBEF& MOW EDI, ERK

BE3IB1VEZ] . 56 FUSH ESI FrocHameleOrdinal
BEZE17VE4| . 57 FUSH EOI [hr’lndu le

BE2E17ES| . FFD3 CACL EB% GetProcAddress
HESBIFEF| . 56 FUSH ESI FrocHamelrOrdinal
BEZE17ES| . 57 FPUSH EOI [hr’lodu le

BEZE1FE?| . FFD3 ALL EEX GetProcAddress
9o3B17EE| . 2308 HOR, EBY, EBX

Exploiting Software |-

REACHING THE CODE

hDLL =

14

4

for (int 1 =

Listing 6. Secret Code Buffer, (ciphertext) Xored with OxFA to produce plaintext

unsigned char buffer SecretCode[24] = { 7 ’ ’ ’ ’ ’

’ 14 ’ 14 ’ 14 ’ 14 ’ 14 ’

’ 4 ’ };

; 1 < sizeof (buffer SecretCode); i++)

buffer SecretCode[i] *= 5

HANDLE hFile;

HANDLE hAppend;
DWORD dwBytesRead, dwBytesWritten, dwPos;
LPCSTR fname =
char buff[25];
//Get deobfuscated Kernel32 and CreateFileA strings
LPCWSTR DLL

FARPROC Proc;
HINSTANCE hDLL;
//Get Kernel32 handle
LoadLibrary(DLL) ;

//Get CreateFileA export address
Proc = GetProcAddress(hDLL, PROC) ;

printf(“Coul

Listing 7. Calling CreateFileA dynamically using getProcAddress and LoadLibrary

n L

c:\\temp\\mytestfile.txt”;

get Kernel32 string();
LPCSTR PROC = get CreateFileA string();

//Creating Dummy function header
typedef HANDLE (_
GETADAPTORSFUNC fpGetProcAddress;

stdcall *GETADAPTORSFUNC) (LPCSTR, DWORD, DWORD, LPSECURITY ATTRIBUTES,DWORD, DWORD, HANDLE) ;

fpGetProcAddress = (GETADAPTORSFUNC) GetProcAddress(hDLL, PROC) ;
//Dynamically call CreateFileA
hFile = fpGetProcAddress(fname, GENERIC READ, (0, NULL, OPEN EXISTING, FILE ATTRIBUTE NORMAL, NULL) ;

if (hFile == INVALID HANDLE VALUE)

d not open $S\n”, fname);

else
printf(“Opened %S \n”, fname) ;

GasB183A| . E3 FUSH EEHX status
BEZE122E| . FF1E EBZAZBAR CHLL OWORD PTR DS: E<&HSUCR188 eHLt>] exit
HEZE1E41| > SBS0 ESIEIEGHH| M EDI,DWORD FTR O5: C<L&MSUCR1GBE. pr MSUCR188. printf
GazE1247 EC242B08 PUSH OFFSET Hag_UMwa. 77 _CE_ BBH@NDFDFIPH@C7372temp72my {2 = Moistemphmytestfile.trt’
BEZE]S4C 68 BCICIEAA | PUSH OFFSET Mag_UMwa. ?? CE_BEJEPIGOKJMEEORened?SPSCFE [Fornat = "Opened Hs successful lu.@™
BESE1S51 FO7 CALE E printf
HEZE1253 g3C4 838 HOD ESF'..EI
BAZE1 556 3 FUUSH El pOver lapped
GEZE185TF 2040 AZ LEA ECX ENINETFWR_EE [EEF-521
BEZE12EA 51 PLUSH ECX pBytesRead
HEASE1 258 EH 19 FLSH ButesToRead = 19 (25.]
Ba3E1850 8055 C8 LEA EDX Dwﬂﬁﬂ PTR S5:[EEF-321
GazE125a g2 FUSH El Buffer
BEIE1261 =13 PLISH ESI hFile
GR3E1862| . FF1E GC3AZE0H|EEEE D FTR DOS5: [{&KERMHELZ3Z.ReadFileXx] FeadF i le
GAZE1E6E| . CP45 BB AESZ29] MO UMDRD ETRVSSSCEEF=581, 525392RE
BEZE1ZEF| . Cr4E B4 DAS33{ MOV DWORD PTE 55:CEBF-4C1.0025330A
BEZELS7E| o CP4% BS SES29| MOV DWORD FTR 5%:LCEBF-481,0A5F725E
HEZE1E70| . Crd4s BC AFIF2| MOU DWORD PTE SS LEEF-441, 25999FA%
AEsE1854| o CP45 C8 SFSED| MOV DWORD PTR S5:[EEF-481,ES0ASESF
GE3E122E| . CP4S C4 959ES| MOU DWORD FTR BS [EEP S, SF9E9S
BEZE1292| . 23C8 HOR EHX EA:
GE3E1294| > SA74ES BA FA | XOR B t F1F S5: [EBF*ERZ=EH1, oFn
GA3E1899| . 48 IHC EHX
GazE129A g3Fg 18 CHP EA, 18
BazE13%0| ~72 F5 JE SHORT Mag UMwa, BRZE1594
HEASE1259F 58 FCI423BEE FUSH OFFSET Mag UMwa. 77_CE_BEHEHOFOF IPHEC *SY2tempT2my SCII "ocriwtempmutestf ile.tyt™
Sggg%ggg EED;ESESEEE E%Ef EEESET Maa_UMwa. ?7_CE_G0ARJEDT JJLFEThe?Sfol lowin HSCII "The following pass code was extracted from Hs:@™

Figure 10. Xor Encryption in Assembler

| Exploiting Software 1072012

Layer 3: LoadLibrary and GetProcAddress
To bypass this layer you are going to need to cre-
ate a file in "c:\temp\mytestfile.txt” this file will need
to contain the ‘Secret code’ that is Xored in the Fig-
ure 10. The C++ code below will open and read this
file. It will then compare the contents to the secret
code. We are not calling CreateFileA as we normally
would. We are using GetProcAdress to locate it with-
in the Kernel32 DLL. Next, we dynamically call the
CreatFileA export with the correct parameters. We
are doing all this so as to hide CreatefFileA from both
the import table and a string dump. Listing 7 shows
the code used, with comments for clarification.

Listing 8. VMWare detection function

bool IsInsideVMWare ()
{

bool rc = true;

=AY o

_ try
{
__asm
{
push edx
push ecx
push ebx
mov eax, 'VMXh’ // The Magic Number
mov ebx,
mov ecx,
mov edx, 'VX’ // The port
in eax, dx // The IN Instruction
cmp ebx, 'VMXh’ // Check if ebx

contains the magic number

setz [rc] // set return value
pop ebx
pop ecx
pop edx

}

}
__except (EXCEPTION EXECUTE HANDLER)

{

rc = false;

}

return rc;

}

www.hakin9.org/en

Layer 4: Anti-Virtualisation

The final layer uses anti-virtualisation. We will
look at detecting VMWare. Intel x86 provides two
instructions to allow you to carry I/O operations,
these instructions are the "IN" and "OUT" instruc-
tions. Vmware uses the “IN” instruction to read
from a port that does not really exist. If you access
that port in a VMWare you will not get an excep-
tion. If you access it in a normal machine it will
cause an exception. The detection is based on
this anomaly. To perform the test you load o0xo0a in
the ECX register and you put the magic value of
0x564D5868 (‘VMXh)' in the EAX register. Then
you read a DWORD from port 0x5658 (VX). If an
exception is caused you are not in VMware.

A good way to look for this trick is to search for
the magic number 0x564p5868. In my code you can
search for the string; "Just going to test if you are
running in VMWARE:\n". | have not displayed the
assembler code as seen in Ollydbg as it is identical
to the inline assembly in Listing 8. Just after this
code there is a jump instruction you can manipu-
late to bypass this detection. Last little bit of ad-
vice you may see ‘Privileged instruction — use Shift
+F7/F8/F9 to pass exception to program’, If you
press Shift + F9 it will continue past the exception.

Conclusion

We have looked at setting up a safe analysis envi-
ronment and also at some of the basics of Ollydbg.
We then focused our attention at some anti-mal-
ware techniques namely; verification of dropped
location, anti-debugger techniques, obfuscation
of strings, hiding APIs and anti-virtualisation. All of
these methods are used in the wild. These meth-
ods can really impede the process of reverse en-
gineering. By manipulation of jumps and reading
buffers after the deobfuscation of strings we can
bypass most of these techniques. | hope you get
the chance to familiarise yourself with the anti-
debugging techniques and the methods used to
detect and bypass them. If you work your way
through the “Reverse_Me.exe” sample, send me a
tweet so | know someone made it!!

EOIN WARD
| Eoin Ward holds a Bachelor of Computer
Engineering, a Masters in Computer Secu-
rity and Forensic and passed the CISSP ex-

-
l,g am last year. He worked with the Syman-

\1 tec Security Response team primary as an
Anti-Malware Engineer for four years and
is currently working as an Anti- Malware

Analyst with Microsoft Corporation.

Exploiting Software -

REVERSE IT YOURSELF

How to Reverse

Engineer?

If you are a programmer, software developer, or just tech savvy, then
you should have heard about reverse engineering and know both its
good and evil side. Just in case, here is a brief introduction for those

who don’t know what it is.

also known as reverse code engineering. Re-

verse code engineering is the process where
the code and function of a program is modified, or
may you prefer: reengineered without the original
source code. For example, if a software program-
mer has created a program with a bug, does not
release a fix, then an experienced end user can
reverse engineer the application and fix the bug
for everyone using the program. Sounds helpful
doesn’t it?

That’s because we only touched the tip of the ice-
berg; the road of reverse engineering is a long one
and the end leads to somewhere dark and illegal.
Why you wonder? Because, by that logic, computer
users can modify the code of any program, alter li-
censing features of a commercial product and re-
move critical features to their own liking. For exam-
ple, a software such as Photoshop that requires you
to buy a serial key to register and use it, can be re-
verse engineered to either extract a valid key or just
to remove the whole serial system altogether. This
is illegal and these people who reverse engineer
applications illegally, known as crackers or hack-
ers, have encountered legal issues since the first
software was released. Teams also dedicate them-
selves to this activity, but to this present day, most
have been arrested or have ‘voluntarily shutdown’.

So how exactly does one reverse engineer?
What tool do you need to do so? Read on because
we are getting there!

I n this article, we are going to talk about RCE,

s+ Exploiting Software

Reverse Engineering

Reverse engineering has drawn a lot of attention
to itself in the past few years, especially when
hacked programs are released to the general
public, and spread across websites that dedicate
themselves to distributing them. Though it is main-
ly used for sinister purposes, reverse engineering
can also be used for good, such as removing bugs,
fixing crashes and so on. The next paragraph will
give you the brief on how programs (EXE files)
are created.

The process of making a program is quite
straight forward. First you need a programming
language with a compiler. Many that are available
include C, C++, Python, Delphi, etc. The program-
mer uses this programming language to make
a source file containing all the editable code for
his/her program. When the programmer has fin-
ished coding his application and plans to distrib-
ute it, he/she will have to compile the code to an
EXE file.

The source code, the human readable and un-
derstandable file that is created by the program-
mer himself is firstly compiled in to an object file
with readable symbols, meaning that it is still un-
derstandable by a normal human.

The compiler then transforms the object file
in to an executable, the format which all of
your windows programs is compiled in, render-
ing the binary code symbol-less, in other words:
unreadable.

10/2012

The source code of a simple ‘Hello World’
application
For example, if you make a simple application in
C++, you need to write a source file first, some-
thing like ‘MyApp.c’. When you are done, you
want to make an executable file out of your code,
so you compile it. During the compilation, the file
‘MyApp.c’ is translated into object and then bina-
ry code, making it extremely hard to humanly in-
terpret and almost impossible to uncompile or de-
compile back to the original file; ‘MyApp.c.’
Programmers rely on this idea for security of their

application. The harder it is to decompile theirap-
plication and reverse the actions of a compiler, the "
more secure their code. However, when there’s a .

way in, you can be sure that there is one out.

Editing Code AKA Debugging

Although the compiled code is unreadable, there Security develo
are, however, programs that can translate it into
a semi-readable state. These programs are called
debuggers. Debuggers are programs that read
those binary codes that the program has been
compiled to and convert them into easier to under-
stand terms. Those terms make up an extremely
low level programming language known as Assem-
bly. If you thought learning C++ was a headache
then wait till you try out assembly. Though complex

as it may be, assembly code is what all applica-
tions are written in when compiled. It is extremely
low level meaning. It takes approximately 10 lines

of assembly to compensate for one line of C++.
For that reason, assembly code is not a preferred

language among software developers. Join our
Now knowing the connection between your pro- -
gram, assembly and the debugger, we can move Exclusive and Pro club
on to the next topic: the debugging. and get:
Debugging is the process of removing bugs ~=rHakin9 one year SUbscription
or errors fro_m a program _ wenns Eyll page advertisement in
A debugger, is a program that does what its name . I
implies, it removes bugs. To do that, it allows us- Hakin9 every month!

ers to edit the assembly of a program, changing rexrs|nformation about your company
its structure and function. For example, if | had an
annoying bug where a program always counts 0s send to over 100,000

as 1s, | can create a fix myself with a debugger by Hakin9 readers!
simply loading my program and then editing the

section of assembly where the program confuses
Os with 1s. Then | can release the fix online for all
the users of that program.

Assembly Code

Before you can debug anything, you need a fair bit M inf .
of knowledge on assembly, not enough to code pro- ore information at

grams, but enough to understand how programs -
en@hakin9.org

www.hakin9.org/en

REVERSE IT YOURSELF

are coded in assembly. You can access this great
tutorial here: http://www.cs.virginia.edu/~evans/
cs216/quides/x86.html.

Tools of the Trade

OK, so you know a bit of assembly and you have a

program to reverse engineer, let's get a debugger.

Nowadays, there are a lot of debuggers available

so choosing the right one can be confusing.
Below is the list of debuggers that work for any

Windows application. Those include:

» OllyDbg

» Softlce

» Microsoft Visual Studio Debugger
+ AQTime

+ GDB

« AQT

In addition, there is over a hundred different de-
buggers, all made for different platforms and lan-
guages. But since we are debugging under win-
dows, this is not relevant. You can though, simply
Wikipedia the word ‘Debugger’ to find a long list
of debuggers.

Reverse Engineering Example

In this demonstration we will use a free and widely
used debugger: OllyDbg. You can get it from their
official website: http://www.ollydbg.de/.

After downloading the debugger, unzip and open
it. Load your application that you want to debug by
clicking ‘Open’ on the main toolbar.

In this demonstration, we will debug a superfi-
cial program that simulates the licensing features
in a real program. Let’s call it HackMe.EXE. Ba-
sically HackME.EXE asks for a serial key and
name and returns the message ‘Valid Key’ if the
key and name match, and ‘Invalid Key’ if they do
not. Your purpose is to either find a valid serial key
or a way to bypass this process and skip to the
point where you can enter any key, and get a ‘Valid
Key’ message.

This is a classic example of RCE and to at-
tack such a problem is fairly easy if you have
the right tools. OllyDbg is an excellent choice as
it works for all windows compiled executables,
has a lot of use functions such as setting break-
points, finding string references, etc. Because of
that we will use OllyDbg as our debugger in our
demonstration.

Step 1

Open the program ‘HackME.EXE’ in OllyDbg by
clicking ‘Open’ and choosing the file.

s Exploiting Software

Step 2

Right click on the window where you see a lot of
assembly code, and then select ‘Find All Refer-
enced Strings.”

Step 3

You should be taken to a window where all the
strings in the HackMe.EXE is listed. We want to
see all its strings because we know for a fact that
the messages ‘Valid Key’ and ‘Invalid Key’ is em-
bedded somewhere in the application. If we can
find its location, the corresponding code that gen-
erates these messages will also be there.

Step 4

Search. Search through all the strings listed until
you find the text ‘Invalid Key’. You should find it, if
not, then you will have to read the section defen-
sive mechanismes.

Step 5
Double click on the text ‘Invalid Key.’ It should take
you to the disassembly where the actual text is lo-
cated.

Step 6

Now here’s the tricky part. Look at the assembly
above where the text is located. If you have done
your homework and researched a bit on assembly
you will know what to look for. If you don’t, then |
will briefly fill you in. In order to determine if the
key is valid or not the program needs to actual-
ly compare the key and name. This is where we,
as REers, do our thing. In windows assembly, the
commands JZ, JNZ stand for operators that com-
pare values and if they are true then they will jump
to a section of the code.

Because the program we are debugging is com-
paring your name and serial key, we needed to find
the section of the assembly that shows the ‘Invalid
Key’ message, as done so in steps 1 to 5. Now
that we have located this section, we are going to
search for the JNZ or JZ operator replace it with
themselves. For example if the program uses JZ
to evaluate whether the key is valid or not, we re-
place it with JNZ and vice versa.

With that being said, look up from the point where
you found the text ‘Invalid Key’ search for the com-
mands JZ and JNZ; you only need to find one of
them as there is only one anyway.

When you find the command, double click on it
on the debugger to edit and do the following:

» If the command is JZ then change it to JNZ
» If the command is JNZ change it to JZ

10/2012

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.ollydbg.de/

Now run the program again by clicking ‘Run’ on
the toolbar.

Step 7
Enter any serial number and name and you should
get the message ‘Valid Key.’

Congrats! You have just reverse engineered an
application. Seems easy huh? Are application re-
ally that easy to modify?

Defensive Mechanisms

Reverse engineering a small and unprotected ap-
plication is extremely easy, but applications today
are complex and protected as software piracy is
extremely popular.

Since the uprise of reverse engineering, soft-
ware companies have used packers to encrypt or
scramble their code, giving crackers a hard time
when they attempt to debug it.

For example, a program that is encrypted and
scrambled would be impossible to debug unless
the hacker can retrieve the original executable.
This process seems secure right? Wrong. For ev-
ery executable packer out there, there is always
an unpacker. A hacker can simply search up the
packer and then download the unpacker from il-
legal software piracy websites. The scrambled ex-
ecutable can then be unscrambled and debugged.
If you are a software developer, your best bet is
to find an uncommon executable packer to secure
your files.

The windows executable format is more
vulnerable to debugging and modification
than Mac or Linux binaries

Just packers and encrypts are not enough and all
software companies know that. That's why they
employ more advanced and complex defensive
techniques against cracking with some of them
making you think ‘Who will go to such lengths just
fo protect a file?’

Advanced Defensive Mechanisms
Long Serial Key: Many companies use a serial
which is several KB long of arithmetical transforms,
to drive anyone trying to crack it insane. This makes
a keygenerator almost impossible — Also, brute
force attacks are blocked very efficiently.

Encryption is used in most commercial
applications

Encrypted Data: A program using text which is en-
crypted until runtime has a pretty good chance of
throwing amateur hackers off. Developers often
use their own encryption algorithms to encrypt

www.hakin9.org/en

their strings internally. When the program is run,
then string is then decrypted, confusing the hacker.

Example: Imagine a hacker tries to use the func-
tion ‘Find All Referenced Text Strings’ as men-
tioned in our tutorial above. If the strings for the ap-
plication are encrypted internally then the hacker
will only find a few lines of messed up, non-sense
characters.

Traps. A method I’'m not sure about, but | have
heard some apps are using it to trap crackers and
hackers:

Do a CRC check on your EXE. If it is modified
then don’t show the typical error message, but wait
a day and then notify the user using some cryptic
error code. When they contact you with the error
code, you know that it is due to the crack.

Frequent updates: Developers often release fre-
quent updates that make the current version of
the app stop working until the user installs the up-
date for it. This lets the developers modify their
“anti-cracking” routines frequently and renders the
cracks released for the previous versions com-
pletely useless.

“Destructive” code: A bit farfetched, but some-
times developers put destructive routines in their
programs in case their internal checking routines
detect that the app was cracked. They delete sys-
tem files on the user’s system or mess up the
Windows Registry, let the program create bug-
gy results (obviously buggy or just noticeable af-
ter careful checks) or simply pop up warnings that
“a certain patch” leads to “damage to the system
files” or “contains a virus.” While this might be a
good way to “shock” sensible novice crackers, |
truly don’t believe this is a good (or even effective)
method to protect your work as it may violate the
laws of certain countries and create a bad reputa-
tion for the application.

Decompilation

Besides disassembling a program, reverse engi-
neering can be accomplished by decompilation,
a process aimed to retrieve the source code of a
compiled file. A decompiler is the name given to
a computer program that performs, as far as pos-
sible, the reverse operation to that of a compiler.
That is, it translates a file containing information
at a relatively low level of abstraction (usually de-
signed to be computer readable rather than hu-
man readable) into a form having a higher lev-
el of abstraction (usually designed to be human
readable). The decompiler does not reconstruct
the original source code, and its output is far less
intelligible to a human than original source code.
Most programs designed in high level program-

Exploiting Software |-

REVERSE IT YOURSELF

ming languages or are based on an interpreter
can be decompiled. Such languages include Del-
phi, Visual Basic, Java and so on.

VB Decompiler, one of the most popular
decompilers out there today

To further clarify the meaning of decompilation,
consider a program you wrote in Visual Basic or
as many prefer, VB. You compile it and transform
your source files in to a windows executable.
However as VB compiles to a high level, inter-
preted code, as opposed to C++’s native code,
it can be easily dissembled. A hacker can simply
use a program such as VB Decompiler or VB Re-
former and obtain almost every single source file
you wrote.

Though it seems that any windows program is
vulnerable to modification and tampering, as long
as you compile that program with a native lan-
guage such as C++ or C, your app should be rela-
tively safe from decompilation.

Reverse Engineering Online

Today, there are teams dedicated to REing soft-
ware, forums dedicated to teaching users the pro-
cess and websites dedicated to spreading the re-
verse engineered app. A simple search on Google
on something like ‘How to crack’ or ‘How to hack’
will lead you to over a million tutorials on the
subject. There are teams, such as CORE which
stands for “Challenge Of Reverse Engineering”,
there are unnamed websites that allow hackers to
upload their work, but why. Why does one reverse
engineer?

The answer is simple. It is because software isn’t
free. In the world of commercial software, you have
to buy a license to use it. You have to subscribe by
paying a certain amount every month to use it. You
have to register your software to use it.

It would be fine if software were like cars. They
can’t be copied or pasted. They can’t be upload-
ed on to software piracy dedicated websites. That
can’t be loaded into debuggers. There is only one
car for every person.

However, that's software’s weak point. Software
can be modified, debugged, copied and distribut-
ed. Software isn’t real, it’s virtual, and hackers rec-
ognized this as early as when the first version of
Windows was released.

Reverse engineering software eliminates the re-
quirement of users purchasing a valid license, and
in return saves them time and money. Though il-
legal as it may be, it is human nature to find the
cheapest and easiest way to obtain something
they want.

| Exploiting Software

Reverse Engineering in History

A famous example of reverse-engineering involves
San Jose-based Phoenix Technologies Ltd., which
in the mid-1980s wanted to produce a BIOS for
PCs that would be compatible with the IBM PC’s
proprietary BIOS. (A BIOS is a program stored in
firmware that’s run when a PC starts up).

To protect against charges of having simply (and
illegally) copied IBM’s BIOS, Phoenix reverse-en-
gineered it in a way that was smart but indirect.
First, a team of engineers studied the IBM BIOS
— about 8KB of code — and described everything it
did as completely as possible without using or ref-
erencing any actual code. Then Phoenix brought
in a second team of programmers who had no pri-
or knowledge of the IBM BIOS and had never seen
its code. Working only from the first team’s func-
tional specifications, the second team wrote a new
BIOS that operated as specified.

The resulting Phoenix BIOS was different from
the IBM code, but for all intents and purposes, it
operated identically. Using the clean-room ap-
proach, even if some sections of code did happen
to be identical, there was no copyright infringe-
ment. Phoenix began selling its BIOS to compa-
nies that then used it to create the first IBM-com-
patible PCs.

Conclusion

In conclusion, reading this article should have
granted you with some more insight in the topic of
reverse engineering. You should have learnt how
reverse engineering works, how reverse engineer-
ing is accomplished and, most importantly, how re-
verse engineering is used. If you want more infor-
mation on RE or RCE, you can visit the webpages
listed below:

* www.en.wikipedia.org/wiki/Reverse_engineering

* www.searchcio-midmarket.techtarget.com/defi-
nition/reverse-engineering

* www.youtube.com/watch?v=vGBFEDsIWhQ

* www.securitytube.net/video/1363

LORENZO XIE

Lorenzo Xie is the owner of XetoWare.com and Ace
VideoConverter.com. He also works with several oth-
er software companies and specialises in windows soft-
ware development. You can contact him directly at
Lorenzo@xetoware.com.

10/2012

http://www.en.wikipedia.org/wiki/Reverse_engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.youtube.com/watch?v=vGBFEDslWhQ
http://www.securitytube.net/video/1363
http://XetoWare.com
http://Ace
VideoConverter.com
http://Ace
VideoConverter.com
mailto:Lorenzo@xetoware.com

MONIT®R STRONY

Innovative e-services for websites monitoring

SEO website monitor

website loading speed monitor

:CbT_E NTmonitor

www.monitorstrony.pl

FUNDS FOR INNOVATIONS

EUROPEAN UNION
INNOVATIVE EUROPEAN REGIONAL
ECONOMY DEVELOPMENT FUND

NNNNNNNNNNNNNNNNNNNNNNNN

PROJECT CO-FINANCED BY THE EUROPEAN REGIONAL DEVELOPMENT FUND UNDER THE OPERATIONAL PROGRAMME INNOVATIVE ECONOMY

http://www.sptechon.com

REVERSE IT YOURSELF

How to Reverse

the Code?

Although revealing the secret is always an appealing topic for any
audience, Reverse Engineering is a critical skill for programmers.
Very few information security professionals, incident response
analysts and vulnerability researchers have the ability to reverse
binaries efficiently. You will undoubtedly be at the top of your

professional field (Infosec Institute).

eryone can be good at decompiling or reversing

the code. | can show a roadmap to successfully
reverse the code with tools but reverse engineer-
ing requires more skills and techniques.

Software reverse engineering means differ-
ent things to different people. Reversing the soft-
ware actually depends on the software itself. It
can be defined as unpacking the packed, disas-
sembling the assembled or decompiling the com-
plied piece of code termed as software. Some
people have also named it as Auditing the Bi-
nary or Malware Analysis. This depends on the
motive.

Before we jump into more details, let's high-
light some pre-requisites of software reverse
engineering.

I t is like finding a needle in a dark night. Not ev-

Pre-requisite in Software Reverse
Engineering

Most importantly, you should be a programmer
who understands the basic concepts of how the
software world works. It is like driving your car

',J 001 - C4++ Fundamentals

| |
/j 005 - Crash Analysis
|

Figure 1. Fundamental Requirements

] 002 - Assembly language
fundamentals

] 006 - File Structure
| Understanding

« Exploiting Software

in reverse gear and reaching home without acci-
dents! So yes, it's not an easy job and it requires
practice.

Understanding following requirements is funda-
mental in reversing any piece of code.

001 — You should be good in at least one pro-
gramming language so it could be C++.

002 — Understanding assembly language is the
key to success in reversing the code and
reaching the target. Understanding of stack
and memory works, types of registers and
pointers are the important factors.

003 — Which DLL is mapped to which statement
is very important.

004 — Try identifying the algorithms used and
drawing the map of them.

005 — Performing crash analysis to identify bugs,
understanding the functionally of the soft-
ware code by applying the hit and miss rule.

006 — Identifying files used.

007 — Identify variables used in the code, this is
very important.

'-’J 003 - DIl Mapping

|

/j 007 - Variables Analysis
|

"J 004 - Algorithm Analysis

|

’J 008 - Yulnerability Analysis
|

10/2012

ITIE

HAEB 1= w 34|

1 D N M| g 2] i T | 0 | 2 S| B Gt % s | 4, e et s | 5] s |

Goh-eSNEH-g||: s 27280 PE|mEe] 4k EE X RE g LT|EEYAR S ik BT A0 8% | IE
O .

strlen

Figure &
104 inFlow

wan, [ospinemmberdfiyteritin]
+ 1pdwer]
affaet ﬂl‘lﬁ"lh‘l

1 s gte s e e

s, W" % P e mtcadoher e ke s peed

; dofLagseittribates

2 IpFibekame
WTomphateile

+ Wredtivatispesition

205

. :
5 IO JHEF © %8 SRINEICEIT] w!“
F oMl
i F s
lw:nﬂmnwmn
vk b e——— |]
1 F

l=|

o)

M 2l

e

S L =
! "
T o aremn
i wer F
_? s st WPriceis -
e . Wiead -t
sn, i et | = o ddrocessld b ?
ireatle LA

Strathue Benbtr
. CLLWFEN STENT VST
 CRLLAPIDN STRWCT _BEVD

] Hmotes, Yace sgnerts, | sy PRAFEL TR 118 e
Alng

WP T S-S0 6E 06§13 3 ER 59 T HGISALTY o

S4B W07 37 B P 34 20 FF 15 R PRNECTT]

7 FF 74 2% 1007 15 80 50 37 37 W 4 w7 LR 5T

1 59 8 12 73k 89 50 5 Wheen il

1557 IF 156 BT -rruqusm
1A A -l'l[M;pll'

#5056 5T FF 15 s e 3T 07 7
73 W B S saslma‘ugmju_][

Ve
S+ THEVSETTMLY Tor 1Ay FU0 NINCRL .

TR 3 Ipisceritpittribates 0T wen
Tt ;i - LB 08 ST A B S
s HL Ly ﬂ "”‘HFC ErR R BRI B 1)
M 1 IpFibekane
I 1}
Tiste : I -
it e, EREE lusls«!nunluu.wmnlw:ill‘ﬁﬂm‘:
e Ju o ctert la N 57184 a0 EE 35 18w 30 30 BF 15 W - b g2
Tesae b~y 3 IpFibeRne]
s Bl b .
o pov-t] 08 TG A 4191 59
TRA Tae_ITIENND: T CE L R Rt
o E A] W TR o F TH 2018 FF 15 B-00 3T 37 §5 OO 75 A 56 Pt joTis
t 9 st Lee T] SUIT 36 W 6 37 37 TF-15 B OC 07 20 00 T8 24 P et B30
TR ; s unuuuuwumuunwuna1mmvu
) | e TIRNE ol —
el D inFow sl einsae o 4
RN b ETRCHL 4
A for kirary 55710 e ﬂ

ok Do DkHB DNSX TR ab FRMOLT

Figure 2. /DA in Flow

OllyDbg - ollydbg.exe
Eile

View Debug Options

Windows

Help

=10l]

Bex] >0

E] Memory map

Address

&1 4| L|E[M|T]c|B]

thread, module ollydbg

Comment s

EE4Z0A24
ol
5=
BiEd

BELHAEEE

EOBRBOEE
EE4zBE080
FEEDEEEG
T1eFEEaE
T2AREEEG
TEopE0an
TFEEEAERG | G
TEE2BEAG
Trozenan
Fro2BEE0

[]

BiEd
e
ol
5=
BiEd
A4 =0HER

BE4Z0AET
Ba420A5A
BE4Z0AEF
EA4Z0A7 2

BE420A7H
BE420A7C
Ba420R51
BR420A24
Ba420R8E
BE4Z0OASE
BE420A98
Ba420A9 1
BE420A9E
BE420A%S
BE4ZOASC
Ba420AA1
Ba420AR3
BE420AR2
Ba420AR0
BB42DHBB

?8888888
TE2FBEEG e
TL2OEEEE | BEH:
FLAERERG | BEAGEE
TCE26680 | BBGEE

INT3 breald

Address | Modu
BEdZ0REZ [ol Ly
BE420A75 | ol Ly

2107 4EHSHEE
SESS R4EF 406

7C E4
ES APEEGC48E
2943 @4

A 81
ES_R1BCA4E88
2ace

A B

ES 29GAFEFF
5304 14

£8 B10BE126
FF73
FF72 1C

ES e4BRE4EE
E9 12128666
£833B 80

55 81244965
E2 ECZEFDFF

59
&5_B180a158
FF72

FF73_1C

EZ2 _SDERB4EE
308

E9 Fllzaona
E2 9717EBEE

ADD EDT, &48
CHMP _ESI, [408FA4]

JL SHORT GE420H16

CALL <JHMP.%KERMELZ2. GetTickC
MOL [EEX+41,EAX

CHLL <JMP . BKERMELSZ. Sleep
H0OR EHX.ER

JHP - BE4ZEDS
MOU ED, [EBX+IC]
CHP ED:, [408CA8]

E SHORT @Ba42DRG1
PUSH [OWORD EEM+1C]
PUSH [DWORD EBR+151
PUSH OFFSET olludbg. 83452432
PUSH @

FUSH @

CALL BE4BE49E

ADD ESF, 14

PUSH 2686166061

PUSH [OWORD EBX+28]
FUSH [DWORD El

CALL <JHP. &KERHELSE Cont inusl
KOR ERX, ERH

JHP BE45EDS9

CHF [OWORD EBXI,

JHE SHORT BB42DRR8

PUSH DFFSET ollydbg BE492461
CHLL 334

PUSH SBBIBBBI

PUSH [DWORD EER+201

PUSH [DWORD EBER+1C]

CALL <.JMF.&KERMELZZ.Cont inuel
HOR ERH, EHH

JHF BE4EED

CALL BB42F244

MOU EDW, [EBR+15]

CHP E?X 9

13

=8

268

CKERMELZ2. GetTickCount

[Time =1 ms
KERMELZZ. 5 leep

EIF 88420AR42 olludbg. BE420A432
C @ ES 9822 2Zbiv B(FFFFFFFF)
F 1 C5 @ElE 3Z2bit @(FFFFFFFF)
LHESLEY =3 [4DBCD4]] A B 25 BE22 22bit B(FFFFFFFF)
LHESLHF = =8 2 1 DS @E23 32bit AIFFFFFFFE)
Format Euent ZBS[X from different D{_J S @ FS BE32 22bit FFFOEEBAIFFF)
Ara2 = @ T @ G5 9808 HULL
Acrgl = @ [A)
ol lydbg. BE4EE49E 0 8 LastErr B08EEEE& ERROR_IMUALID_HAMD
ContinueStatus = DBE_EXCEPTION_MOT_HAWp |EFL @9208246 (MOL.ME, E,BE, NS, PE, GE, LEI
Threadld = [4DBCOS] = ST empty —UMORM 2191 AAESFEEC BEEEREEE
FrocessId => [40BC041 = @ ST1 empty +UMORM ZEZ1 BEFIEE FEFFFF
KERMELZZ. Cont inuelebugEvent 572 empty —UMORM DF24 BEATIZFE GO0A0080
STS empty +UMORM _BEE1 FPO3COEF BEEFSZF
ST4 empty 2. 14?4364331481499?4Be 4932
STS empty 536,
STE empty E11.
Format = "0l lwDbg received debua event, STV empty 54,
olludba. BE4E1ETC FUDE
FST BBEE Cond Err ===
ContinueStatus = DBG_EXCEPTIDN_NDT HAMC FCW 1372 Prec HERAR, 64 HMask 1188a
Threadld = [4DBCDE] = Last cmnd BEEE: BEEEEREE

[

Frocessld => [
KERMELZZ. Cont inueDebugEuen t

4080041 = 8

Colludbg. BE42F244

Switch

loases 1..9, 18, enits)

Reaisters (FPUY
LT
BEEAEECE

F
Ollydbg BB4DBCB8

@ ASCII
BE1ZFFFC
81 2ECEEC
BE4A42EC

ASCII "Black on white"

Dest 6642ED9

Address
694?9883

Hex dump

BA47RASE

BE47ARSE
EE4TRESE

Lasuzasssd

EI0HEEEE
Fro2EEEE
T ERBEEAE
EE42B6EE0
TEESEBEE
BE420R4 1
HE420A41

A

Modu le
Modu Le
Modu Le
Madu Le
Modu Le
User code
User code

ntry polnt o

DSBS 46 GE6| 6
MBB@tEB FF4SBBBBBHCB 54?BBBBBHF
EC o[47 2080 oA F4 20 47 08 o B 5B, .. G

main Mo
NINNT\systEMSE\PSHPI OLL
WINHT sy stem32~ MAGEHLP. DLL
0]eg~0dbg2~DEGHELF. DLL
WIMAT sy stem32~IMOICOLL. A1 L
WINHT~system32~IMM32. dL1
reached

reached

hE]E:
L+F

L 450, eET
LHGE.

=N

F.

Figure3 - OllyDbg in
Floray

G651 20948
Ba120944
BE120942
BE120940
BE120956
BE120954
BE120962

Qa4[4 250
falslalsfslalls]
@1 2ECEEC
BalsniEs
BRABARZE| &
BE40C3eE
[uisalalslolEc)

ASCIT "Elack on whit @

Figure 3. OllyDbg

www.hakin9.org/en

Exploiting Software |«

REVERSE IT YOURSELF

008 — Most importantly is Vulnerability Analysis,
this is applicable when you are trying to mod-
ify the normal behaviour of the code.

Approach: Different Reversing Approaches.

There are many different approaches for revers-
ing, and choosing the right one depends on the
target program, the platform on which it runs and
on which it was developed, and what kind of infor-
mation you’re looking to extract. Generally speak-
ing, there are two fundamental reversing method-
ologies: offline analysis and live analysis.

Offline Code Analysis (Dead-Listing)

Offline analysis of code means that you take a bi-
nary executable and use a disassembler or a de-
compiler to convert it into a human-readable form.

Reversing is then performed by manually read-
ing and analysing parts of that output.

Offline code analysis is a powerful approach be-
cause it provides a good outline of the program
and makes it easy to search for specific functions
that are of interest.

The downside of offline code analysis is usually
that a better understanding of the code is required
(compared to live analysis) because you can’t see
the data that the program deals with and how it
flows. You must guess what type of data the code
deals with and how it flows based on the code.
Offline analysis is typically a more advanced ap-
proach to reversing.

There are some cases (particularly cracking-
related) where offline code analysis is not pos-
sible. This typically happens when programs are
“packed”, so that the code is encrypted or com-
pressed and is only unpacked in runtime. In such
cases only live code analysis is possible.

Live Code Analysis
Live Analysis involves the same conversion of
code into a human-readable form, but here you
don't just statically read the converted code but in-
stead run it in a debugger and observe its behav-
iour on a live system.

This provides far more information because you
can observe the program’s internal data and how it
affects the flow of the code. You can see what in-
dividual variables contain and what happens when
the program reads or modifies that data.

Generally, it is said that live analysis is the bet-
ter approach for beginners because it provides a
lot more data to work with. The section on “Need
for Tools” discusses tools that can be used for live
code analysis.

- ExploitingSoftware

Need for Tools: which tool to select is based on
the piece of software code you’re trying to reverse.
There are many tools available on internet but key
tools are IDA Pro & OllyDbg. IDA Pro is a wonder-
ful tool with a number of functionalities; it can be
used as debugger as well as disassembiler.

On the other side OllyDbg is an assembler lev-
el analysing debugger for Microsoft® Windows ®.
Emphasis on binary code analysis makes it partic-
ularly useful in cases where source is unavailable.

Highlights of IDA Pro Functionalities

In my opinion IDA Pro is most powerfull tool and
is mostly used in reverse engineering, its function-
alities are vast in number, however, | should high-
light the key one:

Adding Dynamic Analysis to IDA

In addition to being a disassembler, IDA is also a

powerful and versatile debugger. It supports mul-

tiple debugging targets and can handle remote ap-

plications, via a "remote debugging server".
Power Cross-platform Debugging:

+ Instant debugging, no need to wait for the anal-
ysis to be complete to start a debug session.

» Easy connection to both local and remote pro-
cesses.

» Support for 64 bits systems and new connec-
tion possibilities.

Highlights of OllyDbg Functionalities

» It debugs multithread applications.

» Attaches to running programs

» Configurable disassembler
MASM and IDEAL formats

« MMX, 3DNow! And SSE data types and in-
structions, including Athlon extensions.

* It recognizes complex code constructs, like call
to jump to procedure.

» Decodes calls to more than 1900 standard API
and 400 C functions.

supports both

High Level Reverse Engineering
Methodology
As per Information Risk Management PLC, high
level Reverse Engineering can be divided into
three quick steps. This methodology is the culmi-
nation of exiting tools and techniques within the IT
Security research community, presenting the ways
to identify process operation at a higher-level of
abstraction than traditional binary reversing.

In this methodological approach attention is on
application DLLs and functions implemented. Fol-

10/2012

lowing this approach the researcher is free to ex-
plore and take any further steps as desired.

When analysing this way the researcher can fo-
cus attention on functions that appear more “inter-
esting” from information security point of view.

A Practical Example
A practical example while working on this method-
ology as explained below.

* Functionality Explored: Microsoft Fingerprint
Reader (manufactured by Digital Persona)

* Tools Required: Universal Hooker (uhooker by
Core Security Technologies), Interactive Disas-
sembler (IDA) and the OllyDbg debugger.

It is assumed that the reader is familiar with these
tools; further information on how to use these
tools can be obtained on the vendor website. |
have already explained a bit about IDA and OllyD-
bg, Uhooker is a tool to intercept execution of pro-
grams. It enables the user to intercept calls to API

Functions inside the DLL and also arbitrary ad-
dresses within the executable file in the Memory.
Uhooker builds on the idea that the function han-
dling the hook is the one with knowledge about
parameter types of the function it is handling.
Uhooker is implemented as an OllyDbg plug-in,
which takes care of function hooking using soft-
ware breakpoints.

Phase 1: Identify Relevant Components
This first phase demands the investigation of the
core component of the target; in this case it is Mi-
crosoft Fingerprint Reader. A number of methods
can be applied for identifying core components of
Microsoft Fingerprint Reader at this level. The no-
ticeable start point for us would be to include the
device drivers that are used, in Windows case the
operating system itself provides much information
on the device drivers and their system location, it's
only the matter of knowing it as shown in Figure 5.
Here we can identify different DLLs and device
drivers that are used to control the device, this will

Table 1. Identifying possible system functions from filenames alone

System Component / Filename Likely Functionality

DPHost.exe

Digital Persona Host — Main host application

Crypt32.dll and DPSecret.dll

Encryption / Decryption Functionality (Fingerprint images are purportedly en-
crypted between device and host)

matching algorithm

Dpdevctl.dll Digital Persona Device Control — Control commands for the fingerprint device

Dpdevdat.dll Digital Persona Device Data - Functions for handling data received from the
device

DPCFtrex.dll Digital Persona Feature Extraction - functions for extracting biometric features
from fingerprintimages

DpCmpMgt.dll Digital Persona Comparison/Component Management

DPCRecEn.dll Digital Persona Recognition Engine — functionality relating to the biometric

Phase1: Identifying
Relevant Components

Phase2: Identifying Relevant
Component Functions

Phase3: Functional Analysis

Figure 4. High Level Reversing Methodology

www.hakin9.org/en

Sy=tem Properties

Pl AN vew Mo

FroBFS P A=A

= o Bomolric -
W VPO Frgepent i2eades

§ Conpnier —
i s Microzaft Fingarprint Reader Properties
i Ciupray wlaplen s
L DDICD-RE dr | Genensl| Drves | Distads
iy Gk, tontTokrs:
+ AL Flooony disk drives @ Mt Frgesperk Headen
(2 I aTafata medled
o Keybouds "
") v and othes prang 4 PN SN Driver File Delails
:Nelwla!dm S i
i Parts [T0M LPTY W Mecrosall Fngerpeed e
T [ewss Vewir
e Dighd Signes | Dves e
@ st S CAWIHDOWS e 32t 08101
B, Crootve AudofCl (H Deries D st OIS pstom I dpderc]
B CavaPortlar Craatl) S CAWRIDDWS pten P ipdevdal i
- D, Lsyauy by Dty B GOm0 0 S ayston\dp 0801 1
Updats Dmed.. SO OWINDOW S st 32 e Wdpk 0801 sy
S COWIDOWS pstem 2 drivers wusbeplp 1ys

Figure 5. /dentification of core driver module of fingerprint
reader from System Manager

Exploiting Software '«

REVERSE IT YOURSELF

serve as a good starting point to our High Level
understanding of device and the system operation.

Typically, the next step includes examination of
system interaction with the underlying operating
system. Again, a number of tools exists for this
purpose — well known tools such as Sysinternal
tools, regmon, filemon and process explorer, pro-
vide great deal of possibility for exploring process
interaction with registry, file system and the oth-
er processes respectively. Here, knowledge about
DLL Mapping is the essential, which | highlighted
in the beginning refer 003 — DLL Mapping.

Note

Findings from this step should be documented by
the researcher as they will form the basis of later
phases. In the above example the following table
presents some of the findings (Table 1).

The minor information leakages in the filenames
can be very useful for identifying the functionality
of the system, and in this case DPHost.exe looks
like the core process. We will further proceed by
attaching the debugger to the interesting process.
OllyDbg’s Executable Modules Window will list all
executable modules currently loaded by the de-
bugged process. Figure 6 is an example for this.

Phase 2: Identifying Relevant Component
Functions

This is the analysis of components identified in the
previous phase to dig out function level informa-

tion from the components. We will again need help
of various tools for this. Here, we are interested in
identifying named and exported functions and the
virtual memory addresses for specified DLL files.
DLL Export View can be used as presented in Fig-
ure 7.

IDA Pro can also be used to dig out this level
of information. As you can see, the names of the
functions, their addresses in memory and the files
they are coded in. We can further reverse the func-
tion to get the actual code, but | am limiting this
Phase to this level. You should try your luck after it
is getting this far.

Note
Keep documenting what you have so far obtained.

Phase 3: High Level Functional Analysis
This is nothing but the high level analysis of the
function code that you should be able to obtain in

E DLL Export Viewer
Fie Edt View Options Help

B L9 WA
Function MName Addrass Relstive Address | Ordinal Flenams
FO_CloseDevice 10009570 Ox00009570 3 (0=3) dpdevctdl
@ FO_CloseleviceManager 10009020 00009020 4 () dodevctl.dl
FO_CiGet¥ersion 0x100014b0 Ox000014b0 1{0x1) dpdevctl.dl
FO_Entry Ox10009510 Ox00005810 5(0x5) dodevctl.dl
FD_Enumer atelenvice 100091 a0 000091 a0 6 (0xd) dpdevctl.dl
O FD_GetDiatsFormat O 10009380 00009380 7 {0xT) dpdevctl.dl
FD_GetDeviceInfo e 1000520 Ox000052b0 8 (0B} dpdevctl.dl
FD_GetParameter 1 D00SEFO OxDO009SH 5 {8 dpdevctl.dl
FD_CpenDevice 010005450 Ox000059450 10 {Ooxa) dpdevctl.dll
@ FD_OpenDeviceManager e 10008060 0000SdE0 11 (0b) dpdevctl.dl
2 FD_SetParameter 010009770 0x00009770 12 (Owe) dpdevctl.dl
3 FD_TastDevice 0o 1000560 O 0000SEF0 2(0x2) dpdevetl,dl

Figure 7. DLL Export Viewer to Identify Functions

OllyDbg - DpHost.exe - [Executable modules]
E Fie “ew Debug Pugine Opbons Window Help

B x| w1 %4 b1 o =i L|E[M[T|W[H|c|/|EK[B|R].]8] Z[E=[?

Base Slze Entry Hane Isystem) [Flle wersion |Fath

alTlopad | eaes508a | §17ZASSS DFCFLrEA.<Hodu [eEntryPoint: | OFCF1rER J.8.8. L5435 Ci~Frogram FilessDigitalFersonatEin~DFCFTrEs. d Ll
BIEAGE3 | G381F308 | 018AB220 DepCweflst.iModu l=ErceyPointl | DpCrpkat da@.0. 1042 Ci~Progcem Filez DigitalPerzenaBin-Delnpflet.dLL
A 34AARS | BAEISEER | 61368828 DPCOCsr. <Modu leEntruPaint > | DPCOmET 3.08.8. 1843 C:wProarzm FilesiDiaitalPersona B in0PCOneT. dl |
al10eass | BaESEaEe | 811Fe44C DPCRecEn . <Hodu IeEntryPotnt} CPCRecEn J.8.08, 18432 Ci~Progeem FilesiDigitalPersonaBin~DPCRecEn.dLL
Bl750003 | PAR4ERED | Bl137e0AC DFOE.<Mocdu leEntruFoint LFOE d.8.08. 1242 Ci~Frogram FllestOialtalFersonatEin~0OFDE.dLL
BCEBREEA | BIE2EEEA | BSE1ESLY DPD=wAst . LHodu IeEncﬂlPo int» | CPO=vAgt JdaB.8. 1042 Ci~Program FilezwDigitalPersoratBin~OPDevAst.dlL
@LABEAEE | BAE 1EEE | B1RE0B2S DPD:Cbis.<Hodu IsEntryPoint> | OPOt0b = J.0.0. 1842 C:~Progesm FilestDigitalPersonatBintOPDEOb = dlL
BR4BEAEE | BIESEEEE | EB41CC42 DpHost.<Modu leEntroPoint %Host f.g.00 184 Ci~Progrem EilestDigitalPersonatBin DoHosk .ene
BRCRAREA | MAFEEAER | BACA4BE2 DPILPers.<Hodu [eEntruPoint’ ILFers 4.8.0. 343 Ci~Progeam FilestDigitalPersonaBintOFILPers.dll
10230283 | B2 IAEA | 1AE16S03 OPPS.4Mod LEERtraFD Lt > LFFa daB.8. 1543 CisProgeam FllessDialtalFersonatBIns0OFF5.dLL
BLEDEEES | BIE27EEA | B1EDFARY DPSsccet.iModu leEntryPoint> | IPSeoret d.8.08. 1842 Ci =Progeam Flleg\DlgltalPersona\B|n\DPQecmet.dll
FLOAEAGE | GAG]CEEA | 710412B0 actupresy . <Hodu leEnceyPaoint? | actupryy (euctem) | 6 06,2966, 2126 (wpep_sp?_rtw. @4 C il TNDOLE cyusten22 act ipriy . d

7 TO0EAGEA FIBERER | 7FO07TEDS F!DUFIP132 <Modu leEntryPoint> | FOUARIZ2 (system) | 5. 1. 2608, 2193 (Hpsp_spa_rm B4 |Gt \HIHDJLLB\systenBQ\FIDJFPISE dl I

TEFORREA | BAETFEEA | PEF03115 CLECATE. <Modu leEntryPaoint > BCATR (=ystem] | 28@1.12.44 C:~MINDOWS sy2ten32~LLE

ShE70083 | BIE3RBEa | SOE3346R CDmI::':L l.<Modu leEntowPolnts |conctl_1 (swsten) | 5.82 HDSD EEBSZS Be4a] [+ \I.IIHDCILLE\Systen3Z\cmct L32 dll

TTRCOMES | BIECEOE0 | FPOCIQEE COMRez.<Modu l=EntryPoint> CONRe = Czyzezp) | 2001.12. 4414, 35 Ci-MIMDIWS 2y 2t en22~00MRz2. 4 1

FTHEAAEA | BAE94ERA | 7R 1642 CRYPTIZ. {Madu leEntruPoint CRYPTS2 (sustsm] |5_131_2660.21893 [Hn:n_ﬂnz_r‘tm. a cC: \.I]IND]UE\‘EUE!EHBE\EWPTSQ |:II L

CeEZEBES | BAEZTHER | FOFZA0LE DHSARL.<Modu leEntryPoint > SAPL [swsterm) | 5. 1.2688, 2933 (#osp_so2 odr.@od CMINDOWShsystengdZ~ONZAPL. g1 L

BlE2EEEE | BIERFEEE | B1E20AL2 dolenCtl.{Modu |eEntryPoint? |oplevCtl (swstem) |3.0.0. 187 ol IMDObE s wstenz2 dplewit L. dl |

alareand | BAEZEDED | B1ETSELA JoDewDst <Hody [eEnteyFOint? | dplevDat (swster) | 3.8.8. 18T CisMINDQWE s ystenSEndpDesDat. d L |

FTELEEER | BIE47EEE | TPFL16E97Y GDI2Z. “ModuleEntrwPoint > DIz [=wztor) | Ba1.26008, 2153 (hpsp_=pl_adr. 878 Ci~WIMDOWS S 2y=tend2~E0I22.d1L

FECOEAED | BAEAEEE | FEC912E0 [HASEHLF . <Hodu leEntrpPoint® | IMOGEHLP [cycterm] |G 1 2600 21208 (wpep_spZ_vim. B4E Co~lIMDOLE cpsten22 TMAGEHLF _dl |

TESSAREE (EAEI0AGA | FAID12CA THMZZ. <ModuleEntruFoint IMHE2 (swsten) | H.1.2600, 2188 (spsp_spZ_rim. @48 CodINDOWSsysten32-IMM32. OLL

VLSRR | BAEFSEER | CHBESHE kernelZZ2.<Modu leEntryPaint? | kernel3d2 (swster) | 5. 1.2688, 3119 (spsp_spc_ade.B78 L) \IJINEOLLS\systenSE\kernelSE cll |

VTEZRAEA | BAR] ZAEA | FFHZ3399 FMSHSML.<Modu [EERTTyPolnt > I=RSML LEYster] | 5. 1.2608, 2183 (Hpsp_sp_TTh. B48 C-MINMDOUSs sy sten32~NsAsH 1.

TTCLooeD | 90e5a080 | TTCIFZAl mzwvork.<Modu leEntoyPoints FENCTE Czwatem) | T.0.2000, 2100 (spup_=pE rtm. 040 O ~MIMDOUS =y=tendinzvor b dl l

=1 el EE4300 | CEd, 92 METAPIZZ.<Hodu l2EntxyPoint |FETAPIIZ (=wztzr) | B. 1.26008, 2075 (npap_spd_ade.B50 Ci-MIMNDIWS 2yzten22~HETAPI22. 41

FCOBRAEA | BAGBEERE | 7913156 nedl L. {MeduleEntruPaint rtdll (eyzstsrm) |G.1_2600. 21838 (wpsp_sp2_rtm. B4@ CoslIMDOUWS susten32sntdll Al1L

Cr4canEs (Ba130868 | 7PEFDER] ole3E, <ModuleEntruPoint > olell [swstem] | 5.1.2088, 2725 (spsp_spZ ade. @08 G SHINMDOWShsystend2aole3z.dlil

FriZEnEa | EaEREnEE | S7121802 OLEAUTEZ . <Hodu leEnteyPoint) | CLEAUTSZ [swstem) | B 1.2688, 2123 ol IMDObE s wsten22~OLEAJTSE. 4 |

TEFLOADD | BAEAE0EA | TEFCI4EF rasadh lp.<Hodu IeEnceyFOING> | fasadh ip (s¥ster) | 5. 142608, 2335 (HpspospZ_ade. 858 i sMINDoWS s ystendEnrasadhlp.dl |

FTEFERED | BAEI1EEE | PPEFE284 RPCRTA < PModu lsEntryPoint> FPCRT4 [eystsm] |G 1_2600. 2188 (wpsp_sp2_rim.B46 C:~lIMDOLS susten325RPCRTS. d1 1

GFFDE6EE | BREREEEE | BFFE24E]l rsasnh.<Modu leEntoyPoint> reaenh (system) | Bl 1.2688, 2161 (npsp.BdETEE-1E29 CiWIMDOWSsystenZi~rsaenh. dl |

VTFEDAEA | B8] IAEA | FYFEZLS] SECHPSZ “radu LeEntoyFoLnG # EECUrSZ [SNETem) | 5. 1.2608, 2153 [HDSD SpE_TiM. 848 L sMINDOUS Sy STeEnSEsaecurssd 1L

FTI2EREA EFIEEE | 7792159 SETUPAFT _<HModu leEntryPoint> | SETUPAPT [sustsm) |5.1.2508. 2188 sp_spe_rim. B48 | C:sMIMDOWS S systen22~SETUPERT A1 |

FLOCEAEA | EASIEAGE | FCIETIEE SHELLZE. <Modu leEptruPointy | SHELL2Z (swsteom] |6, BE, 2960, 3251 [Husu_snLudr Ee G MIMDOLE s ysten2EnEHELL 22 d ||

7 TFaAREA EPeERn | PFESIFE SHLWART. <Modu leEntouPoint > [SHLWART (swstem) | 6. 082900, 3121 (Hpsp_s 2_31‘9 A7 MDD sy stenS2~EH_WART .d | |

VE410883 | BAEEEER | FE4ZE966 USERZZ.UzerClientDlLinitial if LSERS; [=yster) | 5. 1.2608, 3 (Hpsp_spg_ i B?B ColIMD0WS s yst enz2~UScRaz, ALl

SHO" 0883 | BIECEAER | SHOV 16Z6 uRtheme. <Madu LeEntryFolnt WHTheme [EWETEM) | B.BE. 2998, ElEIB Hp L SuIMDOUES Yt en32 s there.d L L

TTCO000D | 99gadodn | TrCailds VERSIOM. <Hodu LeEntryPoint LERSION (=wsterm) |S.1.2008, 2109 EHD!D !DE_rtr'l '346 Ci M IHDOWS =y =t enJ2~WERSICHLd L L

FeE10RG3 | GACZIGEG | 7eBA2Bed WINHM. <ModuleEntruRoint > WIKMH Ceyctom) | B.1.2808, 2193 (upcp_cpZ_vtm.@4@ ColINDIDE cycton22 M INMM. 1L

TECIEEEA | BAEREAGE | FEC2IERT WINTRIST.<Hody leEnteyPoint |WINTRUST (swstem) |E. 181, 2600, 2129 (wpsp_spZ_etm. @ C-MIMDOWSScystenZ2-MIMTRLET. 4L

TIAAEREA | BAFEEAEA | F1AR1EdZ WSZHELF. <Modu leEntryPoint: |WSZHELF (swstem] |Gl 102608, 2183 (spspospZ_rim @48 C-MIMDOWS systen32-SZHELP .11

TLACOOED | D981 TOEA | TIRBIETI W=2_3Z2.<Modu leEntryPointi hW=Z_32 [=wst=r) | D.1.2608, 2108 (spap_=pZ_rim 6480 C HHIHDDb.BH:y:tenEIE\MaE_EIE dll

ZARARAES | BACZCERER k wpspres [susteml |5, 12608, 2183 (wpspocp? rim. B4E | CsMINMDOWS custen22-ups s. gLl

FTa0anEa [Ea16306a | FYA0424E comot l32.<Hodu |[eEnsryPoint? | comct L32 6.8 [Hpsp. AEASZE-RA4RA) Ct \HIHDJLLE\IJ.IlnSHS\HSBJﬂlcmsoFt Windows. Carmon-Co

Figure 6. The OllyDbg Executable Modules window identifies modules loaded by our debugged process

« Exploiting Software

10/2012

%
|

x| 1] v

1

5] 12| |

= u|E|m|T|w|H|c|s|E|B|R
1

== FUSH EEF
HRET RNl FRE_FSP

A called
called
called

A called
colled
called

:iRegCreatele yExA called
|l GetD | called

Oddress

Fingerprint Regisiration Wizard
R.egister a Fingerprint

o mustk suceessiullp scan your fngerprrt four ez in order to register nght ring fiagen.

Begizters (FPLD
ES L'ISSF]EEF

i o e 40 54| =4 13 o
LA G g2 Wl A B el ©

1415k Lk
Thieae Q00002AL termmaled, aut code 0

Thie 52an wes successtul, Placs yoor Finger on the -
‘ Fingetprint reader again.
| <Back Met -] | Carcel
) D LS B
AEDO0NGA [rovel Ly PESBDAGA ~
| Rurring

Figure 8. Example of uhooker examining function calls with the Microsoft Fingerprint Reader

the form of assembly language. For this OllyDbg
is the best tool. By using such tools it’s all GUI. A
simple click can quickly put machine language in
front of you. However, you must be experienced
with assembly language to make it useful.

A quick snapshot of Functional Analysis | have
taken for from OllyDbg tool is presented in Figure
8.

Next Steps

You can further extend your study to parameter
analysis of functions, variable analysis and then
input validation and boundary checks. However,
you should be good enough in performing 005 —
Crash Analysis. This analysis forms the basis for
vulnerability analysis resulting in identification of
loop holes in the software code.

Reverse engineering is a critical skill, and this ar-
ticle just highlights the steps, approach and a high-
level methodology of how to kick off reverse engi-
neering of the software code. Remember that all
code was created by a brain, and only a brain can

www.hakin9.org/en

decode it; tools are the hands on the typewriter.

Infosec Institute, Information Risk Management PLC ap-
proach towards high level reverse engineering. OllyDbg,
IDA Pro, Core Securities Uhooker Docs.

RAHEEL AHMAD

7 Raheel Ahmad, CISSP, is an Information
Security Consultant with around 10 years
of experience in security and forensic in-
vestigations while working for Big4 Au-
dit Firms and Consulting companies.
. He holds several security certifications as
CISSP, CEH, CEIl, MCP, MCT, CRISC, and Co-
bIT Foundation. Raheel is a certified in-
structor for ethical hacking boot camps.

Exploiting Software |«

HAKIN9 EXTRA

protect your code

Modern websites, which use Web 2.0 and AJAX, often generate
HTML and JavaScript code on the fly. This means that standard

static code analyzers cannot fully scan the source code and locate
client-side JavaScript issues, since the source code itself does not yet
include the entire HTML and JavaScript code.

e used a sample group of 675 websites,
Wincluding all 500 of the Fortune 500 com-

panies, plus 175 handpicked websites in-
cluding IT security companies, web application se-
curity companies, social networking sites and other
popular websites. “Each application was tested
for two main client-side JavaScript issues: DOM-
based Cross-site scripting, and open redirects, a
vulnerability which allows a malicious attacker to
force the victim’s browser to automatically redirect
to a site he/she owns, and which can be used for
Phishing purposes. Our research found that of the
675 websites analyzed, 98 (14.5 percent) were in-
fested with DOM-based Cross site scripting and
open redirects (Figure 1).

1 ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw 14252usen/
RAW14252USEN.PDF

85.5%

14.5%

M Vulnerable sites

M Not vulnerable sites

Figure 1. Percentage of sites vulnerable to client-side
JavaScring issues

« Exploiting Software

Here, the question how | can protect JavaScript
code arises. Web Application has to live with Ja-
vaScript and it will never be 100% secure. Howev-
er, there is a known method to protect your JavaS-
cript: source code obfuscation. There are some
tools available on market which provide a degree
of obfuscation which gives you a bit comfort that
your intellectual property (source code) is protect-
ed and that it will not be stolen or reused by any-
one else in the market.

JScrambler is a JavaScript obfuscator that per-
forms all sorts of complex stuff for your code; it
transforms your code into a human-incomprehen-

Application Modes
Select one of the available application modes:

“, Starter Mode (2
iw' Mobile Compatibility Mode (2
& HTML5 Compatibility Mode (7

Figure 2. Shows the application mode of JScrambler

Oplimization Protection Other options

Rename local | 7 Memiber enurmesaion Mame prefix |7

Rename all | 2 Literal hooking | *

Deadcode injection | 2

Exceptions list | 2
Whitespace removal | ?
Literal Duphicates Strng sphtting |7
Diiconary compression |7 Function reordering *
Function outlining

Dot nateban

Domain lock

Expiration date ?

Figure 3. Shows functionality you can use to achive
transformation from protection point of view

10/2012

ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14252usen/RAW14252USEN.PDF
ftp://public.dhe.ibm.com/common/ssi/ecm/en/raw14252usen/RAW14252USEN.PDF

sible form, installs all sorts of protection mecha-
nisms and optimizes the code. Huh — how about
the functionality of your code? Yeah - it trans-
forms and protects while maintaining your
code functionality.

How JScrambler Protects your Code?

| would say if you are looking for a solution to op-
timize and, at the same time, protect your HTMLS5,
Mobile, Web Game or a standard JavaScript ap-
plication; then JScrambler is the product you are
looking for.

Figure 2 shows the application modes available
in JScrambler.

JScrambiler is a customizable tool which provides
a number of techniques / parameters which you
can use in your projects to secure your code. What
stands out in JScrambler is its flexibility and its fo-

Domain lock
Description

Lock down a Javascript so it enly works for a list of
domains you specify. Good for demos and to enforce
license agreements.

Input example

only mywebsite.com is allowed
mywebsite.com

only mywebsite.com and wwaw. mywebsite com
are allowed)
mywebsite com;wwa. mywebsite com;

mywebsite.com and all its sub-domains are
dllowed
* mywebsite.com

Figure 4. Domain Lock Example

cus on code protection. That being said, it manag-
es also to be one of the best tools for compressing
your code. It provides a wide set of customizable
options to achieve different degrees of protection,
as you can see in Figure 3.

With JScrambler’s source code obfuscation fea-
tures you can achieve a certain degree of intellec-
tual property protection by hooking literals, split-
ting strings into smaller pieces and mixing them
throughout the code, reordering function calls, or
by injecting dead code to misguide static code re-
views. It also provides features to enforce your li-
cence agreement by allowing you to lock the code
to a domain list, and/or to make the code expire
on certain date after which your customer will not
be able to execute it. Figure 4 — Domain Lock
Example.

On top of protection, it has as unique feature a
proper validation of the code prior to the applica-
tion of the source code transformations, by detect-
ing parsing errors just like a normal compiler does.
It fully supports the latest JavaScript standard Ec-
maScript-262 v5.1. Figure 5 shows an overview
of your projects and if parsing errors were detect-
ed. This can be helpful to the user as it provides
some guarantees that the script is functional be-
fore transformation.

The HTMLS obfuscation feature of JScrambler is
right now the only one available on the market.
You can use JScrambler to hide known calls to the
browser DOM objects, or HTML5-specific elements
like Canvas. Figures 6 and 7 show an obfuscat-
ed HTML5 Canvas example. You can find the code
available at http://webfensive.com/canvas/.

Filter: i

From =

(download) UI

Finished (download) UT

nished (download) UT

R
W

Next Last

Display & *|projects
Project ID ¥ 15 ¢ HTML % Upload at ¥ Ready at Statu
LEI00015 : 5 2012-11-28 2012-11-28
Ty . 09:33:48 D9:33:51
E |
Al = 2012 28 2-11-28
r 08:42:07 42:09
E|
ERINOIEE 2012-11-27 2012-11-27
= 06:47:36 05:47:38
i 2012-11-27 2-11-27 ailed
06:45:31 06:45:32 Parsing error [?
ERI10000 2012-11-25 2012-11-25
07:34:22 07:34:26
Displaying 1 to 5 of 12 projects

Figure 5. Shows a quick view of parsing errors

www.hakin9.org/en

Exploiting Software |

http://webfensive.com/canvas/

HAKIN9 EXTRA

A canvas moveto €Xxample

funetion drawShape(){
/f get the canvas element using the DOM

if (canvas.getContext) {

var ctx = canvag.getContext('2d'):;

i

i

i

/{ Draw shapes
i ctx.beginPath();

i ctx _moveTo (110, 75) =
; ctx.moveTo (65,65) ;

i ctx.moveTo (95, 65) -

ctx.stroke ()} ;

else {

/f usc getContext to usc the canvas for drawing

ctx.arc(75,75,50,0,Math.PI*2,crue); // Quter circle
ctx.arc(75,75,35,0,Mach.PI, false); // Mouth
ctx.arc(60,65,5,0, Math . PI*2 true): // Left eye

ctx.arc(90,65,5,0,Macth.PI*2,true); // Right eye

alerc ("You need Safarl or Firefox 1.5+ To see this demo.");

var canvas = document.getElementByld('tutorial'}:;
// Make sure we don't execute when canvas isn't supported

R6) {fox (var R in ¥6) (if(RE.
140.9E1,5.67E2) 7 (0K2B, 131.) 195

i3 .¢JEZI>‘| i

2) €0
sqn?))s::«;
[Ox 39,136.)))
-15(4.72E2,49) 7 (0XCD, 1.283E3) ¢ szqﬁwes 80E1, :unZ;’
‘JxDJ]]Pb'tnK for (v X6 in YS[AG
) EEXE . ChATrCodeAt ({ (0X1B4,8.) > 1
: 59.:08.<=(55,0x15C) 7 (72.,120) : {0xA0, 5 21'2|]u.xs
{ (07, 0x158) >0xE27? (0%1BD,100) ; (2.1E1, 0xB1) > (65, 79.10E1) 20xEs
(14.61E2,0x143 -TE1)) , K€=((0%C4,28.) >= (0

[33(2-!" “03)"!3):‘
(1,0%208)>=(.
(4.4E1,

{33. S5E3}), 16) V6, NE, CE=TE
((0x1B8, 0x178) 1487 (85, 0) - (6, 48.40

t[[J1 OXE4) €= (14
1e (h& (32, 144.
(14, 0x2B) 7 {OxiF2
1.01E3)1-261T6)), G

<(0x250, 0x72) 2 (L
}) BEWES= | [Dx’

(0xD1,32) - (0x107, 87} <=507
(42 (0XFB, 6.51E2) 2(14.06E2," ") 1 (19,15) >=(€9,9E1
1E1,32.)))
s (OXF2,0%27)
,5.09E2) =3, §3E27 (1.

6 (UE))

[(B4.,14

se{HE+=(0:
E2) ?r1E0 11

FB<= (0x24A, 3.41E3) 7 (12.44E2, Oxd
2€(106.,12.42E2) 7 (0%161,

eAr { (1.1420E3<m= (69, 43) 7 (87.10E1, "O") :0x111>=(1.001E3,18.)2(6,7): (8
3.62E2) 7 (0x6B, 116

04>=(0x12D, 3.9
0):(22.6E1,0xFC)

(98.5E1,13.)))breaklvazr £6=
false) :2.530E2<(94,11

E1,60) : 65 (0xE4, 0x24D) 2 (30.
: (0x5E, 0x22D))) 7 (ME+=ME+VE) :

)f(Cx"EB snpv-r-:' 452295 (22.30EL,46)7 (34. ,-_:559|

}) . 1 :
.>=(50,30E1, 87, 8E1) ? (10.3E2, 0x4DF) : (0x1iD, 28.)<4.2(141., 2"} s (91.,88.80EL)) -
£2,50) >=(130.,0%77) 20x61

02228)) =26 (UE}) Jh) =

rerurn HE]) (Mvar qh-(t'mﬂt\nr_ [) lvar BE=Ow1EIDB363700,8° B(86, 26"

.S8E2,3.050E2)))==(4.61E2<=
®1IC) »=47 (0x121,5) ¢

B1,0x1C3)) sahé.charCodent (((Ox3B,

—.'?.-:deh‘-(([Q-r >0x1 |')x77 0x170)<=1.408E37
:(74,6. gsrzngsu 6.9E1)>=(85., E)2'R":
1.352E3,0%1C) 7 (67.8E1, 96) :

.380E2,0):
L9E1) 7

EZ,4.9E2) <=
)= (75.60E1, 1534) 2false:
52E2) 7(115.9E1,10569) : 0x55< (1.295E3, 30) 20x9D:

OxBC<w={123.30E1,31.0E1) 7 {145.,10570) = {126,115.)) -6 (U} } '=
(B4 (((125.,13. 4E1) >m0xd? (125 +10889) : (11.78082, 85. €£1) <Ox4A27S:

10568 3 (GXEE, 0x0) >=0xA1? (1 L Ox281)
6=16.cHAZCOAEAE (GE) £ 18 (WE>=((
: (0xDS, 1.435E3) < (0x172, 41.2F1) 7102. : {Ox

23)
5("?? 0x13) 7

. BT} =£6 (UE}}) 1=

3) 1 (101, 106.5E1)

81E2) ?

tt.ﬂﬂ (56,2} ¢ (115.,

08>(110,88.) 2 (18," ™) : (OX1BE, Hem(12.450E3>=

Figure 7. After Obfuscation

There’s also the possibility of adding an exclu-
sion attribute to script tags to make JScrambler ig-
nore code which you don’t want it to touch.

Example: <script src="foo.js”
jscrambler="ignore”></script>

By applying the aforementioned techniques, you
can randomly change the control flow and struc-
ture of your JavaScript source code and, at the
same time, maintain its functionality.

Itis impressively easy and painless to use JScram-
bler to protect your JavaScript code. JavaScript

+ Exploiting Software

has been gaining a lot of attention as it is used
in different types of applications such as Mobile,
HTML5 Canvas and Web Gaming. JScrambler al-
ready presents packages tailored to protect those
types of applications and it does a good job.

“ protect your code

RAHEEL AHMAD

) Raheel Ahmad, CISSP, is an Information Secu-
rity Consultant with around 10 years of experi-
ence in Information security and forensics.

10/2012

https://jscrambler.com/

@

IMF

INTERNATIONAL MANAGEMENT FORUM

IT Security Courses and Trainings

IMF Academy is specialised in providing business information by means of distance
learning courses and trainings. Below you find an overview of our IT security
courses and trainings.

Certified ISO27005 Risk Manager
Learn the Best Practices in Information
Security Risk Management with ISO
27005 and become Certified ISO 27005
Risk Manager with this 3-day training!

CompTIA Cloud Essentials
Professional

This 2-day Cloud Computing in-company
training will qualify you for the vendor-
neutral international CompTIA Cloud
Essentials Professional (CEP) certificate.

Cloud Security (CCSK)

2-day training preparing you for the
Certificate of Cloud Security Knowledge
(CCSK), the industry’s first vendor-inde-
pendent cloud security certification from
the Cloud Security Alliance (CSA).

e-Security
Learn in 9 lessons how to create and
implement a best-practice e-security

policy!
TOGAF ﬁ
A

LM LN

For more information or to request the brochure

please visit our website:

http://www.imfacademy.com/partner/hakin9

Information Security Management
Improve every aspect of your information
security!

SABSA Foundation

The 5-day SABSA Foundation training
provides a thorough coverage of the
knowlegde required for the SABSA
Foundation level certificate.

SABSA Advanced

The SABSA Advanced trainings will
qualify you for the SABSA Practitioner
certificate in Risk Assurance & Govern-
ance, Service Excellence and/or Architec-
tural Design. You will be awarded with
the title SABSA Chartered Practitioner
(SCP).

TOGAF 9 and ArchiMate Foundation
After completing this absolutely unique
distance learning course and passing
the necessary exams, you will receive
the TOGAF 9 Foundation (Level 1) and
ArchiMate Foundation certificate.

ArchiMate® ry

IMF Academy
info@imfacademy.com
Tel: +31 (0)40 246 02 20
Fax: +31 (0)40 246 00 17

WEBNETSOFT

www.webnetsoft.gr

v’ Information Security
v’ Network Security

v’ Physical Security

v’ Software Development
v IT Services

v’ Telecommunications
v’ Consulting Services

v Outsourcing Services

Greece - Attica Glyfada T. +30 213 0024 233 F. +30 211 7807 999
info@webnetsoft.gr

http://www.webnetsoft.gr

| IT'SIN YOUR PULSE. |

LEARN:

Advancing Computer Science
Artificial Life Programming
Digital Media

Digital Video

Enterprise Software Development
Game Art and Animation
Game Design

Game Programming
Human-Computer Interaction
Network Engineering

www.uat.edu > 877.UAT.GEEK

| GEEKED AT BIRTH. |

Network Security

Open Source Technologies
Robotics and Embedded Systems
Serious Game and Simulation
Strategic Technology Development
Technology Forensics

Technology Product Design

Technology Studies You can talk the talk
Virtual Modeling and Design '
Web and Social Media Technologies Can you walk the walk?

PLEASE SEE WWW.UAT.EDU/FASTFACTS FOR THE LATEST INFORMATION ABOUT DEGREE PROGRAM PERFORMANCE, PLACEMENT AND COSTS.

http://www.uathackad.com/Nov12

	Cover
	Dear Readers
	contents
	How to Analyze Applications With Olly Debugger?
	IDA Pro How to Disassemble and Debug Executable Programs on Linux, Windows and Mac OS X?
	How to use Socat and Wireshark for Practical SSL Protocol Reverse Engineering?
	How to Defeat Code Obfuscation While Reverse Engineering?
	How to Identify and Bypass Anti-reversing Techniques?
	How to Reverse Engineer?
	How to Reverse the Code?
	JScrambler

