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Dear Readers,

this month’s hakin9 extra issue is totally devoted 
to Quantum Computing. The landscape in the area 
of personal computers is changing rapidly accor-
ding to Moore’s law. Quantum Computing offers 
the possibilities that regular PCs can only dream 
about and as this month’s contributor – Ayo Tayo 
Balogun has written - ”Quantum Computing is like 
classical computing on steroids”. Quantum com-
puter can work like millions of regular compu-
ters at once – just to paraphrase David Deutsch. 
We try to keep up to date with recent trends and 
”hot topics”, hence the issue on Quantum Compu-
ting. We sincerely believe that the aforementio-
ned technology will change the traditional way 
of computing forever. In this issue Ayo Tayo Balo-
gun has prepared a detailed introduction to the 
topic of Quantum Computing. Alastair Kay is go-
ing to present you an article on Quantum Compu-
ters and RSA Encryption. Faisal Shah Khan will 
introduce you to Quantum Gaming. According to 
Henning Dekant, some people are affraid of big, 
bad Quantum Computer, and he is going to show 
you why. Joe Fitzimos in his article expatiated on 
Quantum Changes in the Cryptographic landsca-
pe. Next, Ian T. Durham has written on Shor’s Al-
gorithm and the Future of RSA. Jeffrey Zhi J. 
Zheng, Jie-Ao Zhu & Jie Wan are going to present 
you Variant, Double-Path Simulation and are go-
ing to resolve mysteries and Wave-Particle para-
doxes in Quantum Interactions. 

I hope that you will enjoy the reading. 

P.S. If you want to learn ethical hacking and be-
come a PenTester, together with Cyber 51 we 
have prepared a promo course only for hakin9 re-
aders. Do not hesitate and check the link below:

http://www.cyber51.com/affiliates/idevaffiliate.
php?id=109 

Michał Wisniewski, hakin9 Extra 
m.wisniewski@software.com.pl

http://www.cyber51.com/affiliates/idevaffiliate.php?id=109
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8.  Quantum Computing: Why Would You Care?
 By Ayo Tayo Balogun
 Quantum computers will be valuable in factoring large numbers, and therefore extremely useful for wor-

king on extremely complex encryption algorithms. Our current methods of encryption are simple compa-
red to the complicated methods possible in quantum computers. Quantum computers could also be used 
to search large databases in a fraction of the time that it would take a conventional computer

22.  Who’s Afraid of the Big Bad Quantum Computer?
 By Henning Dekant
 So you may wonder, what good is this vanguard of the coming quantum revolution if it can’t even handle 

the most famous quantum algorithm? To answer this let’s step back and look at what motivated the research 
into quantum computing to begin with. It wasn’t the hunt for new, more powerful algorithms but rather the 
insight, first formulated by Richard Feynman, that quantum mechanical systems cannot be efficiently simu-
lated on classical hardware.  This is, of course, a serious impediment as our entire science driven civilization 
depends on exploiting quantum mechanical effects.  I am not even referring to the obvious culprits such as 
semiconductor based electronics, laser technology etc. but the more mundane chemical industry. 

18.  Quantum Gaming – A Very Naïve Introduction
 By Faisal Shah Khan
 Information theory enters the quantum physical realm when the notion of probability of occurrence of an 

event is appropriately generalized. To see how this works, consider first the following more formal approach 
to probability. We begin by noting that the probability of an event is always positive because an event can 
never occur a negative number of times out of a positive number of trials of some experiment, and vice 
versa. Next, note that as soon as an event E occurs, the complimentary event “not E”, henceforth denoted 
as –E, does not. In this case, associate with E the maximum possible probability of 1 or absolute certainty of 
occurrence, and associate with –E the least possible probability of 0 or absolute certainty of non-occurrence. 
This suggests that the relationship between the probability of an event and its complement should satisfy 

12.  RSA Encryption and Quantum Computers
 By Alastair Kay
 Any quantum computation can similarly be written as a circuit composed of two different types of gate 

– the Toffoli and the “square root of not”. The reason why the classical theory of computation seems self-
evident, self contained and did not immediately lead to the insights of quantum computation is that one 
can argue this square root of not gate is impossible! To see this, a brief diversion is required. Consider a 
single bit, which takes values either 0 or 1. A simple operation on this bit is to flip its value, so if it’s initially 0, 
it ends up as 1



26.  Quantum Changes in the Cryptographic Landscape
 By Joseph Fitzsimons
 While the above discussion may paint a bleak picture for cryptography in a world where large scale 

quantum computers are available, all is not lost. As we have seen, certain areas of cryptography, such 
as symmetric-key ciphers and hashes are not particularly inherently vulnerable to quantum attacks. 
Indeed, in these areas there do exist information theoretically secure protocols, which are of course 
invulnerable to quantum attacks. However, quantum attacks cause problems for areas of cryptography 
where such information theoretically secure classical schemes do not and cannot exist, such as public 
key ciphers, digital signatures and key exchange protocols. 

32.  Quantum Computers and Information Security: Shor’s Algorithm 
and the Future of RSA

 By Ian T. Durham
 All implementations of quantum computing fall into one of four models of quantum computation. 

The quantum gate array implementation most resembles a classical computer in that it uses quantum 
logic gates that are somewhat analogous to the similar classical gates seen in classical computation. 
A one-way or cluster-state quantum computer decomposes the computation into a series of single-
qubit measurements made on a highly entangled initial state, i.e. a cluster state. Adiabatic quantum 
computation, as implemented in D-Wave’s system, decomposes the computation into a slow, conti-
nuous transformation of an operator called a Hamiltonian from an initial state to a final state whose 
ground state includes the solution. Topological quantum computing decomposes the computation 
into the braiding of particles called anyons that are two-dimensional generalizations of fermions and 
bosons.and ciphertexts [13].

36.  Variant Double-Path Simulation – Resolving Mysteries  
and Wave-Particle Paradoxes in Quantum Interactions

 By Jeffrey Zhi J. Zheng, Jie-Ao Zhu & Jie Wan
 Wave-particle paradoxes forced this type of formal discussions and historical Bohr-Einstein debates wit-

hout a common solution from 1900s and still an open question in modern quantum foundation. Using 
advanced variant logic and measurement construction, it is feasible to identify complex quantum inte-
ractions under multiple/conditional probability into a series of symmetry/anti-symmetry and synchro-
nous/asynchronous conditions.

Hakin9 EXTRA
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In quantum computers, quantum effects [1] are exploited to 
compute in ways that are faster or more efficient than, or 
even impossible, on conventional computers. Quantum com-

puters use a specific physical implementation to gain a compu-
tational advantage over conventional (classical) computers. Our 
computing needs increase at a very rapid rate, and we require 
more powerful computers that are not only leaner, but that can 
do more at a faster pace. To meet this demand, scientists pro-
posed quantum computing. Instead of processing data using 
bits and bytes in silicon chips, the quantum computing approach 
uses laser pulses to excite atoms, a process that allows scien-
tists to harness the power of atoms and meet the demand for 
more complex mathematical computations.

WHAT IS QUANTUM COMPUTING?
If someone says that he can think or talk about quantum phys-
ics without becoming dizzy, that shows only that he has not 
understood anything what(so)ever about it.

 – Niels Bohr

Quantum Computing is like Classical Computing on steroids. 
Quantum computing is a computer design which uses the prin-
ciples of quantum physics to increase computational power 
beyond what is attainable by a conventional computer. The 
term quantum computing is attributed to Richard Feynman 
(1981) who posited that simulations that inherently include 
quantum physics from the outset have the potential to tackle 
those otherwise impossible problems. Like Alan Turing turing 
machine, computers today work by manipulating bits and ex-
ist in one of two distinct states (either 0 or 1 as in a switch 
off or on). With Quantum computers, the rules have changed. 
Quantum computers are not limited to two distinct states; they 
encode information as a series of quantum bits (called qubits) 
which can exist in superposition – that is - a quantum bit can 
be in any state within an infinite set of states. Given the fact 
that quantum computers can perform classical computation 
simultaneously, which binary systems cannot do, it has the 
potential to be millions of times more powerful than what we 
call supercomputers today.

QUANTUM  
COMPUTING:  
WHY WOULD YOU CARE?
The advancements in Information Technology have no doubt made 
our lives very interesting, and undoubtedly, computers are at the core 
of information technology advancements. Interestingly, everyone 
(or almost everyone) now owns a PC. However, your present day 
PC is not so different from the machine created by Konrad Zuse in 
1941 except for the considerable variation in size and the speed at 
which computations are performed – computers are much smaller 
now and they process data at much faster rate. At least, this is true 
for classical computers whose fundamental unit of information is 
binary in nature. They function by manipulating and interpreting an 
encoding of binary bits into a useful computational result.  A bit, by 
the way, is a fundamental unit of information, classically represented 
as a 0 or 1 in your digital (classical) computer. 

AYO-TAYO BALOGUN
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It is obvious therefore, that the properties of quantum com-
puting are very different from classical computing – they have 
more enormous computational power in comparison to their 
classical counterparts. What are the elements that differenti-
ate them?

FEATURES OF QUANTUM COMPUTERS
One key element of Quantum Computers is Superpositions  
– the quality that enables quantum bits to be in any state at the 
same time unlike the binary states (0 or 1) as we are used to 
in conventional computers. This superposition attribute gives 
quantum computers their inherent parallelism. Parallelism, ac-
cording to physicist David Deutsch, “allows a quantum com-
puter to work on a million computations at once, while your 
classical PC works on one.” A quantum register of n quantum 
bits can be at the same time, in any infinitely many superposi-
tions of basis states. 

The essential idea of parallelism is that if an atom can travel 
through many different routes simultaneously, a computer 
should be able to use atoms to perform calculations through 
many different routes simultaneously as well. In other words, 
quantum computers offer the possibility that multiple calcula-
tions can be performed simultaneously. 

Thus the parallelism that can be exhibited is striking. Citing 
an example in an article by Bonsor and Strickland “a 30-qu-
bit quantum computer would equal the processing power of  
a conventional computer that could run at 10 teraflops (tril-
lions of floating-point operations per second). Today’s typical 
desktop computers run at speeds measured in gigaflops (bil-
lions of floating-point operations per second).”

Another key element is entanglement. Entangled states are 
a hallmark of quantum mechanics and it is an important re-
source of quantum information processing as it allows scientists 
to know the value of the qubits without actually looking at them.

According to Michael Nielson (a quantum computer scien-
tist) quantum computers can solve problems that are intracta-
ble for conventional computers. That is, it’s not just that quan-
tum computers are like regular computers, but smaller and 
faster, rather, quantum computers work according to princi-
ples entirely different than conventional computers, and using 
those principles can solve problems whose solution will nev-
er be feasible on a conventional computer. 

It has been shown in theory that a quantum computer will be 
able to perform any task that a classical computer can, but at a 
faster pace. For example, atoms (that quantum computer use) 
change energy states very quickly, much more quickly than 
even the fastest computer processors. Each qubit can take the 
place of an entire processor.

Quantum computers will be valuable in factoring large num-
bers, and therefore extremely useful for working on extremely 
complex encryption algorithms. Our current methods of en-
cryption are simple compared to the complicated methods 
possible in quantum computers. Quantum computers could 
also be used to search large databases in a fraction of the 
time that it would take a conventional computer. 

Quantum computers may also harness the power of atoms 
and molecules to perform memory and processing tasks at  
a significantly faster pace than silicon-based binary computer.

IMPLICATION OF QUANTUM COMPUTING
From what we already know, a quantum computer is able to 
perform the kind of tasks that classical computers can. If how-
ever, we run classical algorithms on a quantum computer, the 

calculation will be performed on the quantum computer as it 
would have been performed on a classical computer. For us 
to get the best out of a quantum computer, we need to employ 
the right algorithms. The kind of algorithms that can exploit the 
phenomenon of quantum parallelism discussed previously. An 
example of one such algorithm is the quantum factorization 
algorithm created by Peter Shor (http://en.wikipedia.org/wiki/
Peter_Shor). This algorithm tackles the problem of factorizing 
large numbers into its prime factors. Using classical comput-
ing, the task is ordinarily very difficult to solve; in fact it is so 
difficult that it forms the basis of RSA encryption, (RSA algo-
rithm is arguably the most popular algorithm for encryption 
and authentication in recent times). Shor’s algorithm cleverly 
uses the effects of quantum parallelism to give the results of 
the prime factorization problem in a matter of seconds where-
as a classical computer would take about a million years to 
produce a result!

 For organizations, particularly computer manufacturers or 
power users of computing cycles, the technical aspects and 
predicted capabilities of quantum computing should be of 
more than cursory interest. For the rest of us, however, it is 
the potential of quantum computing to revolutionize how we 
use computers that should capture our attention. While the 
development of a full-fledged quantum computer is yet to take 
place, the discussion of this new technology and the advance-
ment in science and technology allows IT to reflect upon cur-
rent practices in a number of issues. Some of the questions 
that readily come to mind are the following:

• How do we currently process data? Have we fully har-
nessed the processes involved? Have we efficiently uti-
lized our current computational power? 

• In terms of security, are we aware of new and emerging 
threats such as, in time, the possibility of an attack from 
a quantum computer? According to Bruce Schneier,  
A quantum computer will reduce the complexity of an at-
tack by a factor of a square root. So it will effectively halve 
the keyspace.

• What do users want and expect in the long run? Do they 
need more computing speed and power? Do they demand 
and expect more than you are delivering? 

• What effect will quantum computers have on artificial intel-
ligence and robotics?

SECURITY IMPLICATIONS
The advancement in quantum computing presents a change 
that would revolutionize modern technology. The implications 
of such change will be far reaching, with one of its greatest 
impacts affecting information security.  More specifically, that 
of modern cryptography

Cracking the most secure codes in existence might require 
a computer farm covering much of North America to run at 
full speed for 10 years, even if it did not consume all of the 
Earth’s energy in a single day; that is, using classical comput-
ing. In contrast, a future quantum computer the size of a build-
ing might only take 16 hours and have about the same power 
requirements as today’s supercomputers. Quantum comput-
ers may not replace our computers today, but would be useful 
in cracking encoded communications by solving the complex 
encrypted codes. 

Research is currently ongoing on quantum communication 
systems which would allow a sender and receiver to agree 
on a code for protecting communication. The uncertainty prin-



10

Hakin9 EXTRA

7/2012 (14)

ciple, (heisenberg’s uncertainty principle), ensures that if an 
eavesdropper tries to monitor the signal in transit it will be dis-
turbed in such a way that the sender and receiver are alerted. 
Quantum computing holds a whole lot of promise for the world 
of cryptography. Ironically, it also poses a humongous threat 
as it presents the capacity to break the most secure of crypto-
graphic algorithms thereby rendering all communication chan-
nels exploitable.

The concept of quantum computing may also bring about the 
introduction of new application frameworks, which may intro-
duce corresponding new vulnerabilities and in turn will require 
new security architectures (hypothetically speaking). What 
would be the implication of all these security-related issues to 
the average non-technology savvy user? The quantum comput-
ing technology could make password cracking a lot faster, port-
scanning would run at a fraction of their normal time, locating 
vulnerable systems on the Internet would take much less time. 
How would these issues impact on the end users?

ARTIFICIAL INTELLIGENCE
The theories of quantum computation suggest that every 
physical object, even the universe, is in some sense a quan-
tum computer. If this is the case, then according to Turing’s 
work which says that all computers are functionally equiva-
lent, computers should be able to model every physical pro-
cess. Ultimately this suggests that computers will be capa-
ble of simulating conscious rational thought. These theories 
provoke a minefield of philosophical debate, but maybe the 
quantum computer will be the key to achieving true artificial 
intelligence.

A CHRONICLE OF SELECTED RESEARCH/EVENTS IN 
QUANTUM COMPUTING

• In March 2000, scientists at Los Alamos National Labo-
ratory announced the development of a 7-qubit quantum 
computer within a single drop of liquid. These particles 
in positions parallel or counter to the magnetic field allow 
the quantum computer to mimic the information-encoding 
of bits in digital computers.

• In 2001, Scientists from IBM and Stanford University suc-
cessfully demonstrated Shor’s Algorithm on a quantum 
computer. Shor’s Algorithm is a method for finding the 
prime factors of numbers (which plays an intrinsic role 
in cryptography). They used a 7-qubit computer to find the 
factors of 15. The computer correctly deduced that the 
prime factors were 3 and 5.

• In 2005, the Institute of Quantum Optics and Quantum In-
formation at the University of Innsbruck announced that 
scientists had created the first qubyte, or series of 8 qubits, 
using ion traps.

• In 2006, Scientists in Waterloo and Massachusetts de-
vised methods for quantum control on a 12-qubit system. 
Quantum control becomes more complex as systems em-
ploy more qubits.

• In 2007, Canadian startup company D-Wave demonstrated 
a 16-qubit quantum computer. The computer solved a Su-
doku puzzle and other pattern matching problems. 

• In 2012, IBM claimed that its researchers have achieved  
a major break-through in quantum computing that could 
help lead to the development of machines able to carry out 
processing tasks at speeds far beyond those of modern 
supercomputers. 

• In comparison the progress in quantum communications 
has been somewhat more fruitful. Companies like BT have 
actually achieved working systems that are able to use 
quantum effects to detect eavesdropping on a channel. 

• 2012: NSA Building A $2 Billion Quantum Computer Artifi-
cial Intelligence Spy Center. 

CONCLUSION    
The future of quantum computing looks really promising and 
living is likely to become more interesting. Major breakthroughs 
are expected in Medicine, Engineering and other fields. The 
desire to consume less power even as we achieve more is 
also a major driver for quantum computing. As we take the first 
few quantum computing baby steps, we will need to work on 
adopting a new paradigm so as to leverage the technology for 
optimum productivity and effectiveness. 

According to Physics Technology News, This is a field of 
research where progress is increasingly rapid and it is prob-
ably too soon to speculate on when the first full-scale quantum 
computer will be built but recent progress indicates that there 
is every reason to be optimistic. 

Advocates of quantum computing continue to argue that the 
shrinkage in microprocessor size presents an opportunity for 
IT that can be leveraged using quantum computing. This is 
truly the case as far back as the 90s when the 21st century was 
tagged the quantum age by Paul Davies.

As the concept of quantum computing begins to take shape 
therefore, we do not only have to prepare for it, we also have 
to be mindful about its implications for us. What are the up-
sides and downsides? Are we ready for the advent of quantum 
computing? Are we ready for the security implications? When 
it arrives, will it revolutionalize computing as we hope? These 
questions and many more are on the verge of being answered 
as quantum computing arrives eventually.
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Its security is based on two key ingredients; perfect imple-
mentation of the pure mathematics that specifies the algo-
rithm (such that no side information is available) and an as-

sumption about the difficulty of performing certain calculations. 
In fact, the difficulty assumption is already known to be false. 
At this moment in time, we lack the hardware, a quantum com-
puter, to exploit it, but such a realisation is inevitable. Thus, the 
security of RSA is rather based on the hope for a slow pace of 
technological development, which is hardly borne out by recent 
history. Moreover, it means that any information that is not time 
sensitive should not be encoded using RSA today.

RSA is an asymmetric system where one person, Alice, 
creates a public/private key pair, and makes the public com-
ponent freely available so that anyone wanting to send her  
a message can encode it. However, only she, making use of 
her private key, can decode the result. Mathematically, this is 
based on modular arithmetic, in which we write a (mod b)=q 
to mean that a is divisible by b with remainder q. There are  
a variety of techniques, such as the Chinese Remainder Theo-
rem and Euclid’s algorithm, that allow one to manipulate these 
expressions very efficiently. The core of RSA, however, is the 
use of Fermat’s Little Theorem, which enables the decoding 
process. It states that for a prime P, and an integer M<P, MP-1 
(mod P)=1.

Alice defines the keys by selecting two large primes, P and 
Q. Subsequently, she finds a value e which is coprime (i.e. has 
no common factors) with (P-1)(Q-1), and a value d such that 
ed (mod (P-1)(Q-1))=1. The private key consists of P, Q and 
d, while the public key is e and PQ. If Bob wants to send Alice  
a message, he expresses it as an integer M<PQ, and calcu-
lates C=Me (mod PQ). The idea is that anybody who knows C 
and the public key should not be able to extract M, whereas 
Alice, knowing her private key, can calculate Cd (mod PQ)=Med 

(mod PQ)=M, where the last step uses the fact that ed is 1+ an 
integer multiple of (P-1)(Q-1), along with Fermat’s Little Theo-
rem. How do we know that nobody else can read the mes-
sage? We assume that it is impossible to go from the value PQ 
to P and Q, thereby yielding the entirety of Alice’s private key.

Of course, finding the factors is not impossible. Quite the 
opposite: given enough time, the brute force approach of test-
ing all possible integers is guaranteed to find the solution. The 
key, however, is that for an n-bit number you would have to 
test all 2n/2 numbers of n/2 bits, which grows extremely rap-
idly with n. For instance, the largest number that has been 
factored so far was 768 bits, requiring 2 years spread across 
multiple computers, and estimated as being equivalent to 
2000 years compute time on a single 2.2GHz computer. The 
logical conclusion is that the equivalent computation on the 
same hardware for an 804 bit integer would take 15 billion 
years. In other words, the age of the universe! As for a 1024 bit 
number, “astronomical” doesn’t nearly cut it. While this naive 

RSA EncRyption 
And QuAntum 
computERS
Public key cryptography is one of the central technologies in securing 
communications across a myriad of scenarios, but especially through 
the internet. RSA, named for Rivest, Shamir and Adleman, who first 
publicly described it in 1978, is the canonical example of a public key 
crypto system, and is closely related to a number of other protocols 
such as Diffie-Helman.

AlAStAiR KAy

Glossary

Side Information: Even if the pure mathematics of an algo-
rithm can be proven to be perfectly secure, the translation 
from that ideal specification into a practical protocol can re-
veal additional, side, information to an adversary that can be 
used to break it. For example, the time it takes to perform 
a certain operation must be the same for all possible inputs 
otherwise the time required conveys something about the 
input.

Euclid’s Algorithm: When presented with two integers, Eu-
clid’s algorithm is a very quick and simple method for finding 
the largest number that divides into both integers, i.e. it finds 
the largest common factor.
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algorithm for finding factors is not the most efficient, the best 
that is known (the generalised number sieve) still has a near 
exponential dependence in the number of bits of the integer 
to factor, permitting size choices that go way beyond anything 
that can be feasibly computed, and leaving us feeling secure 
under the proviso that these algorithms are close to the best.

This is where quantum computers come in. While nobody 
has ever found a better way to factor on a regular computer, 
such a method has been found on a quantum computer. What 
makes a quantum computer different to the “classical” com-
puters of our every day experience is, in essence, the soft-
ware that they can run. Any program that can be written for 
a classical computer can be expressed in terms of a small 
number of elementary operations, or gates, with only a rela-
tively modest overhead. The typical example is that of the nand 
gate. By wiring up the inputs and outputs of a bunch of these 
gates, you can replicate any software program. The trick that 
new, quantum, hardware potentially allows is the addition of 
an extra gate to its toolkit that cannot be expressed in a nice 
way by the existing set of gates. Once the hardware that im-
plements this new instruction set is available, the extra gate 
allows some subroutines to be rewritten in completely novel 
ways to gain massive speed advantages.

Although nand gates are sufficient to replicate any classical 
algorithm, they are not reversible (meaning that you can’t, by 
looking at the output, figure out what the inputs were). This is 
fairly obvious given that there are 4 possible inputs but only 2 
outputs. Now that we’re about to delve (superficially) into the 
world of quantum mechanics, in which every operation (except 
measurement) is reversible, it’s better to think of a different set 
of gates. Any classical algorithm can be rewritten in a revers-
ible manner, and, having done that, it can be expressed as 
a circuit of only Toffoli gates1. Any quantum computation can 
similarly be written as a circuit composed of two different types 
of gate – the Toffoli and the “square root of not”. The reason 
why the classical theory of computation seems self-evident, 
self contained and did not immediately lead to the insights of 
quantum computation is that one can argue this square root 
of not gate is impossible! To see this, a brief diversion is re-
quired. Consider a single bit, which takes values either 0 or 1. 
A simple operation on this bit is to flip its value, so if it’s initially 
0, it ends up as 1.

 
This is the familiar not gate. More generally, it would seem 
reasonable to assume that any operation on this single bit can 
be described by the set of probabilities pij, which specify the 
probability of an input bit j being converted to an output bit i.

 
The question is the following: is there any such gate that cre-
ates the not gate by two consecutive applications?

 
One can calculate, for example, that the probability of convert-
ing from an input 0 to an output 1 is p10(p00+p11), which we 
would need to equal 1. There are 3 other conditions, and given 
that probabilities can’t be negative, it is impossible to simulta-
neously satisfy all four. Hence, it is impossible to build a device 
which, by acting twice,

 
Figure 1. A pair of partially silvered mirrors (the two pieces of glass bottom 
left and top right) act so that laser light (even single photons) entering at 
the bottom (1) leave at the top (0), implementing not. Photo courtesy of the 
Centre for Quantum Technologies, National University of Singapore.

gives the not gate. Since it is impossible to find a satisfying 
assignment of the probabilities, this gate is said to be logi-
cally impossible. The only problem is the inescapable fact that 
such an operation, which we call the square root of not gate, 
does exist! The resolution is that while the axioms of prob-
ability seem obvious from our daily experience, there is no 
fundamental rule that says they have to be obeyed and, in-
deed, when one enters the quantum-mechanical regime, the 
statistics obey a different set of axioms. 

How does this contribute towards a new algorithm for fac-
toring numbers? It opens up new avenues of investigation 
because this square root of not gate allows us to (crudely 
speaking) evaluate a function for many different inputs si-
multaneously. While we can’t just read out all those sets of 
values any faster, we can ask about some global properties 
of those values. The simplest example is a one bit function 
evaluation where you want to know whether f(0) and f(1) are 
the same or different. Classically, we would have to evaluate 
both f(0) and f(1) separately, and then compare the two an-
swer bits. Quantumly, however, this is not necessary. If this 
sounds strange, it’s worth realising 
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that even classical waves exhibit similar properties. Imagine 
a water wave coming in and hitting a wall, in which there are 
two holes. From the other side of the wall, this will look like 
two new waves, one emanating from each hole. The height 
of the water at any given point is just the sum of the heights 
of the two waves, so if two peaks coincide, the water is much 
higher. The maximum height that the water achieves at a 
given point depends on when the peaks of the two different 
waves arrive. However, it doesn’t depend on the two arrival 
times independently. Instead, it depends on the difference 
between their two arrival times, i.e. there is information about 
the difference in the distance of the point of observation from 
the two different holes. It’s exactly these sorts of differences 
that we can probe with quantum states (except that different, 
quantum mechanical, probability axioms apply, meaning that 
wave heights don’t simply add. Sometimes, they can sub-
tract!).

Figure 1 is a photo of an experiment that is composed of 
two partially reflecting mirrors (bottom left and top right) and 
two normal mirrors (top left and bottom right). The normal 
mirrors are just there to help with the routing of the light, and 
are otherwise irrelevant. Each of the partially reflecting mir-
rors can be thought of as a logic gate. There are two sides 
(left, bottom) which are inputs and two which are outputs. We 
can label the inputs as 0 and 1, and label the outputs such 
that if light is inputted for a given logical value, and happens 
to be transmitted, the output site corresponds to the same 
logical value. With two of these mirrors chained together, the 
overall output is the not gate, so a single mirror is this square 
root of not that is claimed to be impossible. Fire a photon in 
to 1 input and it always comes out at the 0 output. It helps 
to think of the light passing through the system as a wave. 
After passing through the first piece of glass, this wave trav-
els along both possible paths, and then recombines at the 
second piece of glass. How it recombines depends on the 
relative positions of the peaks of the two waves. The two 
paths are exactly the same length, so the only thing that can 
create a relative shift between the peaks of the two waves 
are whether those waves were transmitted or reflected on 
the partially silvered mirrors. In the case where we look at the 
opposite output to the input (e.g. input 1, output 0), the waves 
along both paths get reflected once and transmitted once. 
Thus, they have the same change in peak position, and the 
peaks arrive together. They combine together so that the 
photon appears on that output. If the photon appears there, it 
doesn’t appear in the other output. 

Without introducing a whole lot of mathematical notation, 
we’re quickly running out of suitable words to describe what’s 
going on, simply because quantum mechanics’ operating re-
gime is so far outside our day to day experience. Neverthe-
less, the idea is simple; there are operations that cannot be 
described by our usual logic, and by extending the set of 
available operations we can recode some sub-routines to 
operate more quickly, particularly if the answers we’re after 
depend on global properties of a function. It’s not a magic 
solution that means everything will run faster, but some spe-
cific instances will be able to benefit. It is worth emphasising 
that while quantum mechanics is famed for its weird proba-
bilistic actions such as a cat being both dead and alive at 
the same time, quantum computers actually operate (almost) 
deterministically. While they might go through strange inter-
mediate configurations that are the equivalent of the dead 

and alive cat (or a single photon passing through both paths 
at once, evaluating both functions), the whole game of de-
signing quantum algorithms is still to give a definite answer 
at the output.

Factoring is one instance which benefits from the extended 
set of operations because it can be cast into an equivalent 
problem known as order finding, which demands a global 
property of a function (based on the Fourier Transform). In 
order to factor the number PQ, start by picking a random num-
ber x which is less than PQ. Assuming x is does not share  
a common factor with PQ (in which case, we’d be done al-
ready), then the order, r, of x is defined to be the smallest 
integer such that xr (mod PQ)=1. A little number theory can be 
used to prove that r is almost certainly even. That means that 
it can be written as

(xr/2-1)(xr/2+1) (mod PQ)=0

In other words, (xr/2-1) (mod PQ) must be a multiple of either 
P or Q, from which the factors can be extracted2. Hence, our 
only goal is to find r. To do this, it is worth realising that for any 
integer k=ar+b,

xk (mod PQ)=(xr (mod PQ))a(xb (mod PQ))= xb (mod PQ)

So, the function f(k)=xk (mod PQ) has a repeating pattern with 
period r. It is exactly this periodicity that a quantum computer 
can take advantage of. We can write a quantum sub-routine 
that evaluates f(k) for all different k, and examines the peri-
odicity, thereby extracting r. In practice, all it extracts is the 
closest integer to the value 2Ls/r, where L is a parameter that 
we specify (it grows linearly with the number of bits of PQ),  
and s is an unknown integer. Another standard algorithm, 
known as continued fractions, comes to the rescue and 
guarantees to extract from this value the numbers s and, 
most importantly, r. So, the majority of what we do uses 
standard classical algorithms, simply substituting a new 
(quantum) subroutine for finding the order in the middle. 
This is the major step, however, and reduces the run-
ning time for factoring an n bit number down to a time that  
scales with n3.

RSA in Action

Alice releases two public components, PQ=77 and e=13. She 
keeps secret the values P=7, Q=11 and d=37. Bob wants to 
send Alice the number 42 secretly, so he calculates 4213 (mod 
77)=14, and sends that instead. When Alice receives 14, she 
calculates 1437 (mod 77)=42, correctly recovering the intend-
ed message.

In this instance, it is very obvious what the factors of 77 are. 
Instead, we proceed by selecting a value which is coprime 
with 77, such as x=5.

 
From this, we can identify that the sequence repeats with 
period r=30, which is even. Hence xr/2-1 (mod 77)=33. Via Eu-
clid’s algorithm (or inspection), the highest common divisor of 
33 and 77 is clearly 11, one of the factors. From this, the other 
factor, 7, is recovered, and a suitable d is calculated.

n 1 2 15 29 30 31 32

5n (mod77) 5 25 ... 34 ... 31 1 5 25
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It is this reduction in the scaling associated with the factor-
ing algorithm that makes RSA unreliable. It is not the same as  
a one-off speed boost arising from building a faster processor. 
Even if we suddenly made a processor 1000 times faster, RSA 
could simply compensate by using a few more bits. However, 
with this different scaling, calculating the private key from the 
public key takes a similar time to all other calculations required 
in the legitimate application of RSA. Not only is it infeasible 
to create a sufficiently large key to exclude an eavesdropper 
on the basis of insufficient computational power, but doing so 
would also exclude legitimate users from performing the mes-
sage encoding, decoding etc. because they would have insuf-
ficient computational power.

For now, we’re safe because the hardware to implement 
these quantum computations doesn’t exist yet. While the 
theory of what is required of a quantum computer is well 
developed, experiments are still in their infancy, only oper-
ating on a few qubits. Nevertheless, from the moment the 
first quantum computer is turned on, all messages previously 
encoded with RSA will be readable. Any secrets that need to 
remain so after that moment, whether it comes in 10 years 
or next week, should not trust RSA now. Security based on 
the assumption of the lack of technological progress hardly 
constitutes security.

If RSA can’t be trusted, what should we use instead? Two 
natural candidates present themselves. The first is quantum 
cryptography, which replaces the assumption of computation-
al intractability with one about the physical nature of the Uni-
verse, which seems a much more secure footing, but requires 
hardware working in the quantum mechanical regime. Still, this 
hardware is much simpler than that required for breaking RSA, 
and some systems are already available commercially. The 
second option would be to remain with a classical public key 
crypto system, but one which we don’t believe can be broken 
by a quantum computer. The logical starting point for this may 
be to base it on a so-called “NP-complete” problem; the class 
of the hardest problems for a classical computer to solve for 
which the solution can be easily verified (the verification step 
is equivalent to Alice producing the public key from her private 
key, and solving the problem is equivalent to the eavesdropper 
trying to produce the private key from the public one). It is not 
known that quantum computers can efficiently solve these, and 
it is generally believed that they can’t. If true, then this would re-
cover the exponential scaling, and hence place the possibility of 
reverse engineering the private key from the public one beyond 
even the scope of quantum computers, but still leaving the ba-
sic implementation for legitimate users on a classical computer. 
No such system exists yet. One of the sticking points seems to 
be that proving that a problem belongs to this general class is 
based on the worst case – there only needs to be one instance 
of a function evaluation that is difficult to compute, while most 
cases could be easy. In comparison, for a crypto scheme to be 
reliable, it would have to utilise a subset of instances which are 
all hard to compute. While this has not been proven for any of 
these hardest of problems, there are cryptosystems based on 
finding distances between points of a lattice, which involve func-
tions that are not known to be attackable by quantum comput-
ers. This lattice-based cryptography is a strong candidate for an 
immediate replacement to RSA.

1 The Toffoli gate is one which acts on 3 bits – two controls and one target. If both 
controls are input as 1, then the target bit is flipped on output.
2 Technically, xr/2-1 could be divisible by PQ, but then we just have to try again 
by picking a different x.
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At this scale, quantum mechanical effects will begin to 
materialize, and virtually every aspect of microprocessor 
design and engineering will be required to account for 

these effects. To this end, the theories of quantum information 
and computation study information and its processing under a 
quantum physical regime. One major goal of these theories is 
the development of quantum computers that can harness quan-
tum physical phenomenon such as superposition and entangle-
ment for superior information processing capability. 

While the study of quantum information and computation 
is trans-disciplinary in nature, having been cast into perspec-
tives originating in Physics, Chemistry, Computer Science, 
and Electrical Engineering, here, a relatively new perspective 
on the subject inspired by non-cooperative game theory will be 
the focus of discussion. In line with the title of this article, this 
discussion will be very naïve and cursory, but (hopefully) in-
formative. Starting with a very brief introduction to the notion of 
information and that of its measure, I will discuss how informa-
tion is made quantum physical and how the resulting access 
to the quantum physical feature of entanglement distinguishes 
quantum information from the original classical information. 

Further, I will discuss how entanglement has been used as 
a resource in breaking free of unfavorable Nash equilibrium 
outcomes in non-cooperative games. Finally, a more general 
non-cooperative game-theoretic perspective of quantum infor-
mation processing itself is discussed that seeks optimal pro-
cessing of quantum information under given constraints. 

Information
In a modern mathematical sense due to Claude Shannon [1], 
information is characterized by randomness. More precisely, 
it is meaningful to speak of information only after the occur-
rence of an event, with the informational content of the event 

quantified in terms of the probability with which the event oc-
curred. 

For example, consider the outcomes of a two-headed coin 
flip. Even before the coin is actually flipped, it is certain that 
the outcome of the flip will be Heads (H). A fundamental axiom 
of information theory states that no information is transmit-
ted when this two-headed coin actually lands flat showing the 
outcome Heads. Next, consider a coin that lands flat showing 
Heads one out of ten times it is flipped and lands flat show-
ing Tails (T) the other nine out of ten times. When this coin is 
flipped and lands flat showing Tails, very little information is 
transmitted since this was the expected outcome. On the other 
hand, the outcome where this coin lands flat showing Heads 
carries more information since it is not the expected one. 

In short, the probability of the occurrence of an event is in-
versely related to the amount of information that is received 
from the event. So the smaller the probability of occurrence of 
the event is, the higher the informational content of the event, 
and vice versa. Information theorists express this probabilistic 
quantification of information more precisely by the equation.

Figure 1. The probability distribution (p, 1-p). 

where I(E) denotes the informational content of an event E 
that occurs with probability p(E). Informational content of com-
plex events such as unions of events and events that are in-

 Quantum gamIng 
– a very naïve 
IntroductIon
The theories of information and computation entered the quantum 
physical realm in 1965 when Gordon E. Moore asserted that the 
number of transistors on a microprocessor doubles approximately 
every two years. This assertion, which has come to be known as 
Moore’s law, roughly predicts that somewhere between the years of 
2020 and 2030 (or possibly sooner) circuits on a microprocessor will 
measure on the atomic scale. 
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terdependent are quantified via appropriate laws of probability 
and expectation in the context of equation (1), leading to the 
notion of informational entropy which is of fundamental impor-
tance to both information theory and physics. The reader is 
referred to [2] for a detailed, yet relatively gentle, account of 
basic concepts of information theory such as entropy.

Information theory enters the quantum physical realm when 
the notion of probability of occurrence of an event is appro-
priately generalized. To see how this works, consider first the 
following more formal approach to probability. We begin by 
noting that the probability of an event is always positive be-
cause an event can never occur a negative number of times 
out of a positive number of trials of some experiment, and vice 
versa. Next, note that as soon as an event E occurs, the com-
plimentary event “not E”, henceforth denoted as –E, does not. 
In this case, associate with E the maximum possible probabil-
ity of 1 or absolute certainty of occurrence, and associate with 
–E the least possible probability of 0 or absolute certainty of 
non-occurrence. This suggests that the relationship between 
the probability of an event and its complement should satisfy 

The second equat3ion in (2) suggests that in general, the 
probability of an event E or its complement –E originates in 
the unit interval [0,1] which consists of both 0 and 1 and all 
the numbers in between. For the sake of notational simplicity, 
let p(E)=p; then it follows form the second equation in (2) that 
p(–E)=1–p. 

This more formal and geometrically intuitive approach gives 
rise to the notion of probability distribution over two events, 
that is, an ordered pair of numbers (p, 1–p) the entries of 
which split the unit interval into two pieces with the length of 
the first interval equaling p and the length of the second equal-
ing 1– p. See Figure 1. 

Quantum information 
Information is said to be quantum when randomization us-
ing probability distribution is replaced with the higher order of 
randomization via quantum superposition followed by meas-
urement. As per by the axioms of quantum physics, quantum 
superpositions describe the possible states that a quantum 
object can be in while isolated from its surrounding non-quan-
tum or classical environment. Upon interaction with its clas-
sical environment, a quantum object can be in exactly one of 

Figure 2. A quantum superposition q of basis states 0 and 1measures as the 
probability distribution (p, 1 – p) in  the unit interval.

several possible quantum superpositions called basis states. 
Basis states have a more restricted physical nature than ar-
bitrary quantum superpositions and are viewed as represent-
ing the “real” world. When a quantum object takes on a basis 

state, it is said to have been measured. The actual basis state 
the quantum object takes on after measurement is determined 
by a probability distribution which is intrinsically related to the 
quantum superposition the object was originally in. Quantum 
physical operations other than measurement create quantum 
superpositions from basis states. Hence, a quantum superpo-
sition is always expressible in terms of basis states. 

The relationship between a probability distribution and  
a quantum superposition followed by measurement is reminis-
cent of the relationship between real numbers and complex 
numbers and their multiplication. To see this, consider the real 
number 13 which is a prime number since its only real factors 
are itself and the number 1. However, if we consider 13 as  
a special complex number with imaginary part equal to 0, then 
we can factorize it as

Here, introducing the higher order of complex numbers fol-
lowed by their multiplication produces a new non-trivial fac-
torization of the number 13. This property of complex numbers 
offers mathematical insight into the notion of a number and 
can potentially offer insights in the making and breaking of 
encryption schemes based on factorization of numbers. Simi-
larly, one hopes to observe non-trivial and practically useful 
properties of higher order randomization via quantum super-
position followed by measurement. It turns out that this is in-
deed the case, as exemplified in the next few sections.

The relationship between quantum superposition and meas-
urement and probability distributions is captured in Figure 2. 
The “mystical” ball in Figure 2 depicts the more exotic math-
ematical space of quantum superpositions known as a projec-
tive complex Hilbert space. Two basis states labeled 0 and 1 
are shown together with an arbitrary quantum superposition q 
of these two basis states. Measurement of q maps it to a prob-
ability distribution in the unit interval.

Quantum coin flips
Quantum superpositions of two basis states can be viewed 
as all possible states a quantum coin can be in when flipped 
using quantum physical operations other than measurement. 
Measurement of the state of a quantum coin produces a prob-
ability distribution. A little thought will convince the reader that 
practically speaking, the flip of a single quantum coin is en-
tirely equivalent to the flip of an ordinary coin! However, when 
two or more quantum coins are flipped and a measurement is 
made, an impressive property of quantum information called 
entanglement becomes apparent. To see how entanglement 
works, consider first the flip of two classical coins with one coin 
having an associated probability distribution (p,1 –p), so that it 
lands flat showing Heads (H) with probability p and lands flat 
showing Tails (T) with probability 1– p. Let the other coin have 
an associated probability distribution (q, 1–q). The coins are 
assumed to be independent, that is, the outcome of the flip 
of one coin does not influence the outcome of the flip of the 
other. Possible outcomes from flipping two coins are HH, HT, 
TH, TT, that is both coins land flat showing Heads, or one coin 
lands flat showing Heads and other lands flat showing Tails, 
and so forth. The probability distribution associated with the 
outcomes of the flip of two independent coins is 
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or the product of the individual probability distributions associated with 
each coin. Call the probability distribution in (3) product distribution. 

It is possible to conceive of probability distributions over the four 
outcomes of the flip of two coins that cannot be expressed as a prod-
uct distribution. For example, consider the probability distribution

so that the outcomes HH and TT occur half the time while HT and TH 
never occur. The dramatic observation here is that both coins always 
land flat showing the same side! This observation becomes even 
more dramatic if the coins are assumed to be flipped in two differ-
ent geographical locations, for then it appears to be the case that the 
coins, although outwardly two different entities, are somehow intrinsi-
cally connected. Einstein famously referred to this intrinsic connection 
as spooky action at a distance.

 But the flip of two independent classical coins will never exhibit 
spooky action at distance. This assertion can be checked easily by 
setting the entries of the probability distributions in (3) and (4) equal to 
each other and attempting to solve them for p and q.Try it!

The flip of two independent quantum coins on the other hand 
can exhibit spooky action at a distance. The trick is to perform on 
the quantum coins certain physical operations, only available in the 
quantum realm, and put the coins in a quantum superposition that 
measures exactly as the probability distribution in (4). A quantum su-
perposition that results in spooky action at a distance is referred to 
as an entanglement to reflect the idea of some intrinsic connection 
between the quantum coins that is not outwardly obvious. Entangle-
ment has proven to be a resource that can offer practical advantages 
in the realm of quantum computation. Examples and more detailed 
theoretical discussions on entanglement and its practical uses can 
be found in [3,4]. In the remaining discussion, I will focus on the use 
of entanglement as a resource to break free from unfavorable equilib-
rium outcomes in non-cooperative games. 

non-cooperative games
Non-cooperative multiplayer game theory is the mathematical study 
of conflict between interacting individuals. Call the interaction a game, 
the individuals, players, and the ability of a player to interact with oth-
ers his pure strategies. Suppose as well that each player has stakes in 
the game called payoffs and that each player is rational, that is, each 
player will seek to maximize her payoff in a manner consistent with her 
preferences over all possible payoffs.

 
Figure 3. The game Prisoners’ Dilemma.

A play of the game entails a choice of a pure strategy by each player. 
A play of the game is equivalent to a collection of pure strategies, one 
per player, called a pure strategy profile that determines an outcome 
of the game. From an outcome, appropriate payoffs to each player 
are computed. The notion of a game is mathematically formalized as  
a function taking a pure strategy profile to an outcome. 

Rational players will seek out a play in which each pure strategy 
is a best reply to all others. Such a play of the game is called Nash 
equilibrium and is considered to be a fundamental solution concept in 
non-cooperative game theory. Another way to characterize Nash equi-
librium is to say that in a Nash equilibrium, no player will unilaterally 

deviate from his choice of pure strategy (since this will lead to a payoff 
to him that is less than before). 

While the discussion above captures the fundamentals of non-co-
operative game theory, it far from being complete. Indeed, profession-
al applications of game theory to real life problems involve many more 
game-theoretic concepts which are beyond the scope here. Readers 
are referred to [5] for further exploration. However, this brief discus-
sion is enough to be able to explore simple toy model games such as 
the popular game called Prisoners’ Dilemma, represented in tabular 
form for easier analysis in Figure 3. 

In Figure 3, the pure strategies of both Player A and Player B are 
Co-operate (C) and Defect (D). The pure strategies of Player A are 
laid out as rows of the table in Figure 3 while those of Player B are laid 
out as columns of the table. A play of the game results in an intersec-
tion of a row and a column of the table and the payoffs to the players 
are read off from the ordered pair of numbers in the intersection, the 
first number in the ordered pair being the payoff to Player A and the 
second being the payoff to Player B. For instance, the play (C, C) in 
Prisoners’ Dilemma gives a payoff of 3 to each player. 

Note however that the play (C, C) is not a Nash equilibrium as C is 
not a best reply to C on part of either player. Each player can in fact earn  
a payoff of 5 (better than 3) by unilaterally deviating to D. But this reason-
ing produces the play (D, D) which in fact is the Nash equilibrium in the 
game as no player can do better by unilaterally deviating to C. 

mixed game
As Prisoners’ Dilemma exhibits, Nash equilibrium is not necessarily 
the most favorable outcome of a game in terms of the players’ pay-
offs. A real life example of this situation can be found in history in the 
form of the Mutually Assured Destruction (MAD) doctrine of the cold 
war. Even though MAD constituted a Nash equilibrium in the Cold War 
game between the United States and the Soviet Union, it was

Figure 4. Extending Prisoners’ Dilemma to the corresponding mixed game. 
The tetrahedron on the right is the geometric representation of the set of all 
probability distributions over four outcomes such as the outcomes of the flip 
of two classical coins. 

hardly a favorable outcome. Situations can sometimes be even worse 
when Nash equilibria don’t even exist! In such unfavorable situations, 
game theorists call upon the players to enlarge the game so as to gain 
some “breathing room”, but insist that any such enlargement does not 
change the game. This process of enlarging a game without changing 
it is referred to as extending the game. 

Players have extended games to avoid unfavorable Nash equilib-
rium outcomes since time immemorial by randomizing their choice of 
pure strategies via probability distributions. A probability distribution 
over pure strategies is called a mixed strategy. The new extended 
game is called the mixed game and is defined as the function that 
takes a mixed strategy profile to the corresponding product distribu-
tion over the outcomes of the original game. 

It is a worthwhile exercise to check that the mixed game restricts to 
the original game. Payoff to each player in the mixed is calculated as 
expected payoff using the product distribution. Geometrically, extend-
ing to the mixed game amounts to identifying the players’ pure strate-
gies with the endpoints of unit intervals and the outcomes of the game 
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with the corners of a generalization of the unit interval know as a sim-
plex. This procedure is captured in Figure 4 for Prisoners’ Dilemma. 

The merit of extending to the mixed game is made explicit by Nash’s 
famous theorem [6] of game theory which uses Kakutani’s fixed point 
theorem to show that there exists at least one Nash equilibrium in the 
mixed game. Moreover, it is often the case that the mixed game Nash 
equilibria are more favorable to the players than those available in 
the original game. However, Nash’s theorem offers no guarantee that  
a mixed game Nash equilibrium will always be more favorable. Indeed, 
sometimes mixed game Nash equilibria coincide with those available 
in the original game, a situation that occurs in Prisoners’ Dilemma. 

Quantized games
An extension of games that reaches into the quantum physical realm is 
also possible. A game can be extended into the quantum realm by fac-
toring players’ mixed strategies (probability distributions over the pure 
strategies) as quantum superposition and measurement. The resulting 
quantum superpositions of their pure strategies are called the players’ 
pure quantum strategies and are equivalent to the players using quan-
tum coins to randomize. The new extended game is called a quantized 
game and is defined as any physical operation available within the 
quantum realm as long as it restricts to the mixed (and therefore the 
original) game. Since infinitely many physical operations are possible 
in the quantum realm, it is only possible to speak of a quantized game,  
a situation very different than that of the mixed game. 

 
 
Figure 5. A quantization of the game Prisoners’ Dilemma were players can 
form quantum superpositions of their pure strategies. The figure on the right 
hand side represents the space of quantum superpositions of four basis states. 

A quantized game takes a pure quantum strategy profile to a quantum 
superposition of the outcomes of the original game. Measurement of 
this quantum superposition can produce probability distributions over 
the outcomes of the original game that need not be product distribu-
tions. These probability distributions resulting from measurement are 
used to compute expected payoffs to the players. Figure 5 shows the 
general framework of quantizing Prisoners’ Dilemma. 

The merit of game quantization lies in its ability to allow players ac-
cess to entanglement and therefore probability distributions that are 
not product distributions. Non-product probability distributions, when 
used to compute expected payoffs, can sometimes lead to the players 
breaking free from unfavorable Nash equilibrium outcomes. This hap-
pens in a quantization of Prisoner’s Dilemma due to Eisert, Wilkens, 
and Lewenstein [7] in which access to entanglement leads to a Nash 
equilibrium outcome with a payoff of 3 to each player. 

There is no equivalent of Nash’s theorem for quantum strategies. 
Quite the opposite, a theorem due to Meyer [8] states that Nash 
equilibrium in quantum strategies need not even exist! Note that 
this theorem does not prove the non-existence of Nash equilibrium 

in quantized games, with the Eisert et al. quantization clearly being  
a counter-example. 

gaming the Quantum
While game quantization looks for enhanced game-theoretic results 
such as more favorable Nash equilibrium by applying quantum phys-
ics to game theory, a more general perspective applies game theory to 
quantum physics and is referred to as “gaming the quantum”. 

Consider two players who engage in a non-cooperative quantum 
game, that is, a function representing any physical operation acces-
sible in the quantum realm that takes a pure quantum strategy pro-
file and maps it to a quantum superposition. Unlike quantized games 
however, a quantum game is not assumed to be an extension into 
the quantum realm of some underlying game. As such, being a more 
general game-theoretic construct, it captures the philosophy of apply-
ing game theory to quantum physical systems with the goal of gaining 
insights into their equilibrium behavior more accurately than quantized 
games. 

But whereas a quantized game inherits the notion of players’ prefer-
ences over payoff from its underlying game, a quantum game enjoys 
no such privilege and notions of both players’ payoffs, and their pref-
erences over these payoffs, in terms of quantum superpositions need 
declaration. One way to declare such notions is via basis states. Con-
sider for example four possible basis states. For each player, associ-
ate numeric values, not all equal, with each of these four basis states 
so that a player prefers more the basis state with the larger numeric 
value over another of lesser numeric value. 

Next, consider the following property of a quantum superposition Q: 
the closer Q (in a particular well-defined sense beyond the scope of 
the discussion here) it is to a basis state, the higher the probability that 
it will measure as that basis state. A player will therefore prefer Q over 
another quantum superposition P if Q is closer to his most preferred 
basis state than P is (Why?). Finally, a quantum game takes a pure 
quantum strategy profile to a quantum superposition. 

Nash equilibrium in quantum games can be characterized in terms 
of the notion of closeness of quantum superpositions to basis states. 
More precisely, a pure quantum strategy profile is a Nash equilibrium 
if the quantum superposition it is mapped to by the quantum game is 
simultaneously closest to the most preferred outcomes of each player 
[9]. Gaming the quantum carries the potential for an insightful game 
theory inspired study of equilibrium behavior of quantum information 
systems such as quantum algorithms and control of quantum informa-
tional systems. 

Finally, I conclude with a following natural question: how do quan-
tized games fit into the more general setting of quantum games?
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So how realistic is this fear, and is breaking code the only 
thing a quantum computer is good for? This article is an 
attempt to separate fact from fiction.

First let’s review how key exchange protocols that under-
lie most modern public key encryption schemes accomplish 
their task. A good analogy that illustrates the key attribute that 
quantum computing jeopardizes is shown in the following dia-
gram (image courtesy of Wikipedia) (Figure 1).

Let’s assume we want to establish a common secret color 
shared by two individuals, Alice and Bob[1] – in this example 
this may not be a primary color but one that can be produced 
as a mix of three other ones. The scheme assumes that there 
exists a common first paint component that our odd couple 
already agreed on. The next component is a secret private 
color. This color is not shared with anybody. What happens 
next is the stroke of genius, the secret sauce that makes pub-
lic key exchange possible. In our toy example it corresponds 
to the mixing of the secret, private color with the public one. 
As everybody probably as early as kindergarten learned it’s 

easy to mix colors, but not so easy-try practically impossible-
to revert it. From a physics standpoint the underlying issue is 
that entropy massively increases when the colors are mixed. 
Nature drives the process towards the mixed state, but makes 
it very costly to reverse the process. Hence, in thermodynam-
ics, these processes are called “irreversible”.

This descent into the physics of our toy example may seem 
a rather pointless digression, but we will see later that in the 
context of quantum information processing, this will actually 
become very relevant. 

But first let’s get back to Alice and Bob. They can now pub-
licly exchange their mix-color, safe in the knowledge that there 
are myriads of ways to get to this particular shade of paint, and 
that nobody has much of a chance of guessing their particular 
components. Since in the world of this example nobody has 
any concept of chromatics, even if a potential eavesdropper 
were to discover the common color, they’d still be unable to 
discern the secret ones as they cannot unmix the publicly ex-
changed color shades.

 Who’s afraid of the 
big bad Quantum 
Computer?

If there is any awareness of quantum computing in the wider IT 
community then odds are it is this phobia that is driving it.  Probably 
Peter Shore didn’t realize that he was about to pigeonhole the 
entire research field when he published his work on what is now 
the best known quantum algorithm. But once the news spread 
that he uncovered a method that could potentially speed up RSA 
decryption, the fear factor made it spread far and wide. Undoubtedly, 
if it wasn’t for the press coverage that this news received, quantum 
information technology research would still be widely considered 
to be just another academic curiosity. 

henning dekant

Be afraid; be very afraid, as the next fundamental transition  
in computing technology will obliterate all your encryption protection.
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In the final step, Alice and Bob recover a common color by 
adding their private secret component. This is a secret that 
they now share to the exclusion of everybody else.

So how does this relate to the actual public key exchange 
protocol? We get there by substituting the colors with num-
bers, say x and y for the common and Alice’s secret color. 
The mixing of colors corresponds to a mathematical function 
G(x,y). Usually the private secret numbers are picked from the 
set of prime numbers and the function G is simply a multi-
plication, exploiting the fact that integer factorization of large 
numbers is a very costly process. The next diagram depicts 
the exact same process, just mapped on numbers in this way 
(Figure 2).

If this simple method is used with sufficiently large prime 
numbers then the Shared Key is indeed quite safe as there 
is no known efficient classical algorithm that allows for a rea-
sonably fast integer factorization. Of course “reasonably fast” 
is a very fuzzy term, so let’s be a bit more specific: There is 
no known classical algorithm that scales polynomially with 
the size of the integer. So for instance, an effort to crack  
a 232-digit number (RSA-768) that concluded in 2009 took the 
combined CPU power of hundreds of machines (Intel Core2 
equivalents) over two years to accomplish.

And this is where the quantum computing bogeyman comes 
into the picture, and the aforementioned Peter Shor. This af-
fable MIT researcher formulated a quantum algorithm almost 
twenty years ago that can factorize integers in polynomial time 

on the, as of yet elusive, quantum hardware. So what differ-
ence would that actually make? The following graph puts this 
into perspective (Figure 3).

Z encodes stands for the logarithmic value of the size of the 
integer. The purple curve appears as almost vertical on this 
scale because the necessary steps in this classic algorithm 
grow explosively with the size of the integer. Shor’s algorithm, 
in comparison, shows a fairly well behaved slope with increas-

Figure 1.

Figure 2.

Figure 3.



24

Hakin9 EXTRA

7/2012 (14)

ing integer sizes, making it theoretically a practical method for 
factorizing large integers.

And that is why common encryptions such as RSA could 
not protect against a deciphering attack if a suitable quantum 
computer was to be utilized. So now that commercial quantum 
computing devices such as the D-Wave One are on the mar-
ket, where does that leave our cryptographic security? 

First off: Not all quantum computers are created equal. 
There are universal gate-based ones, which are theoretically 
probably the best understood, and a textbook on the matter 
will usually start introducing the subject matter from this van-
tage point. But then there are also quantum simulators, topo-
logical design and adiabatic ones (I will forgo quantum cellular 
automatons in this article). The only commercially available 
machine, i.e. D-Wave’s One, belongs to the latter category 
but is not a universal machine, in that it cannot simulate any 
arbitrary Hamiltonian (this term describes the energy function 
that governs a quantum system). Essentially this machine is  
a super-fast and accurate solver for only one class of equations. 
This kind of equation was first written out for describing solid 
state magnets according to what it now called the Ising model.

But fear not: The D-Wave machine is not suitable for Shor’s 
algorithm. The latter requires a gate programmable device (or 
universal adiabatic machine) that provides plenty of qbits. The 
D-Wave one falls short on both ends. It has a special purpose 
adiabatic quantum chip with 128 qbits. Even if the architecture 
were compatible with Shor’s algorithm, the amount of qbits 
falls far short: If N is the number we want to factorize then we 
need a bit more than the square of that number in terms of 
qbits. Since the integers we are interested in are pretty large, 
this is far outside anything that can be realized at this point. 
For instance, for the RSA-768 challenge mentioned earlier, 
more than 232²=53824 qbits are required.

So you may wonder, what good is this vanguard of the com-
ing quantum revolution if it can’t even handle the most famous 
quantum algorithm? To answer this let’s step back and look at 
what motivated the research into quantum computing to begin 
with. It wasn’t the hunt for new, more powerful algorithms but 
rather the insight, first formulated by Richard Feynman, that 
quantum mechanical systems cannot be efficiently simulated 
on classical hardware. This is, of course, a serious impedi-
ment as our entire science driven civilization depends on ex-
ploiting quantum mechanical effects. I am not even referring 
to the obvious culprits such as semiconductor based elec-
tronics, laser technology etc. but the more mundane chemi-
cal industry. Everybody will probably recall the Styrofoam  
models of orbitals and simple molecules such as benzene 
C6H6 (Figure 4).

As the graphic illustrates, we know that sp2 orbitals facilitate 
the binding with the hydrogen, and that there is a delocalized 
π electron cloud formed from the overlapping p2 orbitals. Yet, 
these insights are inferred (and now thanks to raster electron 
microscopy also measured) but they don’t flow from an exact 
solution of the corresponding Schrödinger equations that gov-
ern the physics of these kinds of molecules. Granted, multi-
body problems don’t have an exact solution in the classical 
realm either, but the corresponding equations are well behaved 
when it comes to numerical simulations. The Schrödinger 
equation that rules quantum mechanical systems, on the other 
hand, is not. Simple scenarios are still within reach for classi-
cal computing, but not so larger molecules (i.e. the kind that 
biological processes typically employ). Things get even worse 
when one wants to go even further and model electrodynam-
ics on the quantum level. Quantum field theories require  
a summation over an infinite regime of interaction paths  
– something that will bring any classical computer to its knees 
quickly. Not a quantum computer, though. Just recently a pa-
per was published in the XXXX that showed conclusively that 
for this new breed of machine a polynomial scaling of these 
notorious calculations is indeed possible. (As for String theory 
simulations, the jury is still out on that – but it has been sug-
gested that maybe it should be considered as an indication 
of an unphysical theory if a particular flavor of a String theory 
cannot be efficiently simulated on a quantum computer).

Quantum Computing has, therefore, the potential to usher 
in a new era for chemical and nano-scale engineering, putting 
an end to the still common practice of having to blindly test 
thousands of substances for pharmaceutical purposes, and 
finally realizing the vision of designing smart drugs that spe-
cifically match targeted receptor proteins. Of course, even if 
you can model protein structures, you still need to know which 
isomer is actually the biologically relevant one. Fortunately, 
a new technology deploying electron holography is expected 
to unlock a cornucopia of protein structure data. But this data 
will remain stale if you cannot understand how these proteins 
can fold. The latter is going to be key for understanding the 
function of a protein within the living organism. Unfortunately, 
simulating protein folding has been shown to be an NP hard 
problem. Quantum computing is once again coming to the res-
cue, allowing for a polynomial speed-up of these kinds of cal-
culations. It is not an exaggeration to expect that in the not too 
distant future lifesaving drug development will be facilitated 
this way.

This is just one tiny sliver of the fields that quantum comput-
ing will impact. Just as with the unexpected applications that 
ever-increasing conventional computing power enabled, it is 

Figure 4.
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safe to say that we, in all likelihood, cannot fully anticipate 
how this technological revolution will impact our lives. But we 
can certainly identify some more areas that will immediately 
benefit from it: Artificial Intelligence, graph theory, operational 
research (and its business applications), database design etc. 
One could easily file another article on each of these topics 
while only scratching the surface, so the following observa-
tions have to be understood as extremely compressed. 

It shouldn’t come as a surprise that quantum computing will 
prove fruitful for artificial intelligence. After all, one other major 
strand that arguably ignited the entire research field was con-
templations on the nature of the human mind. The prominent 
mathematician and physicist Roger Penrose, for instance, ar-
gued vehemently that the human mind cannot be understood 
as a classical computer i.e. he is convinced (almost religious 
in his certainty) that a Turing machine in principle cannot emu-
late a human mind. Since it is not very practical to try to put  
a human brain into a state of controlled quantum superposi-
tion, the next best thing is to think this through for a comput-
er. This is exactly the kind of thought experiment that David 
Deutsch discussed in his landmark paper on the topic. (It was 
also for the first time that a quantum algorithm was introduced, 
albeit not a very useful one, demonstrating that the imagined 
machine can do some things better than a classical Turing ma-
chine). So it is only fitting that one of the first demonstrations 
of D-Wave’s technology concerned the training of an artificial 
neural net. This particular application maps nicely onto the 
structure of their system, as the training is mathematically al-
ready expressed as the search for a global minimum of an en-
ergy function that depends on several free parameters. To the 
extent that an optimization problem can be recast in this way, it 
becomes a potential candidate to benefit from D-Wave’s quan-
tum computer. There are many applicable use cases for this 
in operational research (i.e. logistics, supply chain etc.) and 
business intelligence.

While this is all very exciting, a skeptic will rightfully point out 
that just knowing a certain tool can help with a task does not 
tell us how well it will stack up to conventional methods. Given 
the price tag of $10 million, it had better be good. There are un-
fortunately not a lot of benchmarks available, but a brute force 
search method implemented to find some obscure numbers 
from graph theory (Ramsey numbers) gives an indication that 
this machine can substitute for some considerable conventional 
computing horsepower i.e. about 55 MIPS, or the equivalent of 
a cluster of more than 300 of Intel’s fastest commercially avail-
able chips. Another fascinating aspect that will factor into the 
all-important TCO (Total Cost of Ownership) considerations is 
that a quantum computer will actually require far less energy to 
achieve this kind of performance (its energy consumption will 
also only vary minimally under load). Earlier I described a par-
ticular architecture as adiabatic, and it is this term that describes 
this counterintuitive energy characteristic. It is a word that origi-
nated in thermodynamics and describes when a process pro-
gresses without heat exchange. I.e. throughout most of the QC 
processing there is no heat-producing entropy increase. At first 
glance, the huge cooling apparatus that accompanies a quan-
tum computer seems to belie this assertion, but the reason for 
this considerable cooling technology is not a required continu-
ous protection of the machines from over-heating (like in con-
ventional data centers) but because most QC implementations 
require an environment that is considerably colder than even 
the coldest temperature that can be found anywhere in space 
(the surface of Pluto would be outright balmy in comparison). 

Amazingly, these days commercially available Helium cooling 
systems can readily achieve these temperatures close to abso-
lute zero. After cooling down, the entire remaining cooling effort 
is only employed to counteract thermal flow that even the best 
high vacuum insulated environments will experience. The quan-
tum system itself will only dissipate a minimal amount of heat 
when the final result of an algorithm is read out. That is why the 
system just pulls 15 KWatt in total. This is considerably less 
than what our hypothetical 300 CPU cluster would consume 
under load i.e. >100KW per node, more than double D-Wave’s 
power consumption. And the best part: The cooling system, and 
hence power consumption, will remain the same for each new 
iteration of chips - D-Wave recently introduced their new 512 
qbits RAINER chip, and so far steadily followed their own ver-
sion of Moor’s law, doubling integration about every 18 months.

So although D-Wave’s currently available quantum comput-
ing technology cannot implement Shore’s algorithm, or the 
second most famous one, Grover’s search over an unstruc-
tured list, the capabilities it delivers are nothing to scoff at. With 
heavyweights like IBM pouring considerable R&D resources 
into this technology, fully universal quantum processors will 
hit the market much earlier than most IT analysts (such as 
Gartner) currently project. Recently IBM demoed a 4 qbit 
universal chip (interestingly using the same superconducting 
foundry approach as D-Wave). If they also were to manage 
a doubling of their integration density every 18 months then 
we’d be looking at 256 qbit chips within three years. 

While at this point current RSA implementation will not be 
in jeopardy, this key exchange protocol is slowly reaching 
its end-of-life cycle. So how best to mitigate against future 
quantum computing attacks on the key exchange? The most 
straightforward approach is simply to use a different “color-
mixing” function than integer multiplication i.e. a function that 
even a quantum computer cannot unravel within a polynomial 
time frame. This is an active field of research, but so far no 
consensus for a suitable post-quantum key exchange function 
has evolved. At least it is well established that most current 
symmetric crypto (cyphers and hash functions) can be consid-
ered secure from the looming threat.

As to key exchange, the ultimate solution can also be provid-
ed by quantum mechanics in the form of quantum cryptography 
that in principle allows to transfer a key in such a manner that 
any eavesdropping will be detectable. To prove that this tech-
nology can be scaled for global intercontinental communication, 
the current record holder for the longest distance of quantum 
teleportation, the Chinese physicist Juan Yin[2], plans to repeat 
this feat in space, opening up the prospect for ultra secure com-
munication around the world[3]. Welcome to the future. 

 
 

• [1] Don’t ask why they are called Alice and Bob – it’s just 
traditional. But if you really need to know Wikipedia has an 
entry.

• [2] http://www.technologyreview.com/view/427910/chi-
nese-physicists-smash-distance-record-for/

• [3] http://sciencegate.wordpress.com/2012/05/14/chinese-
physicists-breaks-down-teleport-records/

 
The author can be reached at his blog wavewatching.net where he 
regular writes about quantum computing.
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The histories of cryptography and its cousin steganogra-
phy stretch back thousands of years, and in that time an 
enormous variety of techniques have been proposed and 

used in an attempt to keep secret any information not meant for 
prying eyes. Some of these techniques amounted to abstract 
manipulations of information, for example substituting or trans-
posing the letters of a message, while others relied on proper-
ties of the medium carrying the message, as in the case of in-
visible ink. Most of these methods were extremely ad hoc, and 
it was not until the 19th century that a systematic approach to 
cryptography began to emerge. This approach abstracted away 
the underlying physical system and began to treat cryptography 
in a purely mathematical way. By the 20th century, mathemati-
cians had successfully formalised notions of computation and 
information, and in the process brought about a revolution in 
how we think about cryptography.

In formalising what is meant by information, and information 
processing, assumptions about physics play an important but 
understated role. If one is to define what information is in gen-
eral, then one needs a definition which can be applied equally 
to any possible representation of that information. For exam-
ple, the information content of this article should not depend 
on the medium on which you receive it: on a computer screen 
or printed on paper. Any sensible information theory must be 

agnostic to these matters. However, if we wish for a theory 
which allows us to successfully abstract information from any 
physical representation, it is necessary that the theory allows 
for the full variety of physical states and processes. Similarly, 
if we wish for a theory of efficient computation, independent 
of implementation, then we must be careful to account for all 
physical processes which can happen in a given period of 
time. Thus any such theories must make assumptions about 
the underlying physics which governs all physical systems, 
and hence all possible representations and manipulations of 
information.

The usual notions of information and efficient computa-
tion which we encounter are no exception to this. While it 
may not be obvious, they are deeply rooted in the physics 
of the 19th century. Inbuilt is an assumption that the state of  
a system must necessarily be distinguishable from any oth-
er state of the system, and that all processes should map 
a state to another state or a probabilistic distribution over such 
states. Indeed, this was an accurate description of nature 
as we knew it, right up until the early 20th century. However, 
the discovery of quantum mechanics brought about a revolu-
tion in physics, completely transforming our understanding 
of physical states and processes. The transformation in our 
physical understanding of nature has been so great that we 

Quantum 
changes in the 
cryptographic 
landscape

The discovery of quantum information processing techniques has 
enormous consequences for the field of cryptography. The advent 
of large scale quantum computers would compromise the security 
of many of todays most widely used cryptosystems, yet quantum 
techniques can also be exploited to help keep information secret. 
Here we discuss how the impending quantum revolution changes 
the balance of power between cryptographer and cryptanalyst.

Joseph Fitzsimons 
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now use the term ‘classical’ to refer to notions of physics prior 
to this quantum revolution.

The fields of quantum information theory and quantum com-
putation are based on the realisation that quantum mechanics 
allows for a wider variety of states and processes than can be 
accounted for classically. Quantum systems are not restricted 
to distinguishable states, but can also exist in superpositions 
of such states. This is a form of generalised probabilistic distri-
bution over distinguishable states, in which each such state is 
associated with a complex amplitude. These complex ampli-
tudes are similar to probabilities, in that they do determine the 
probability of finding the system in a particular state if meas-
ured, but they also contain additional information in the form 
of a phase. The phase term allows quantum systems to exhibit 
wavelike behaviour: if a final state can be reached with equal 
probability via two different computational paths, then, de-
pending on their relative phase, these can either add together 
to increase the total probability of reaching that final state, or 
can cancel to result in zero probability of reaching the state. 
As a result, both the state space and the processes available 
to a quantum computer are much richer than are available to 
a classical computer.

While the computers we use today rely on quantum me-
chanical effects within their CPU to implement logic gates, 
they represent and process information in an inherantly clas-
sical way. Such computers were never designed to protect 
the delicate phases present at a quantum mechanical level, 
and have no way to produce the superpositions necessary 
to exploit the power of quantum computation. However, it 
is possible, both in principle and increasingly in practice, to 
build devices which can maintain and manipulate quantum 
superpositions. Such quantum computers can exploit quan-
tum effects such as interference to aid in computation and 
communications tasks, and open the door to a variety of new 
algorithms and communications protocols. As we shall see, 
these have a significant impact on the cryptographic land-
scape. The existence of efficient quantum algorithms for the 
abelian hidden subgroup problem undermines the security of 
many of the most commonly used public-key cryptosystems. 
On the other hand, the impossibility of distinguishing cer-
tain quantum states allows for novel cryptographic protocols 
which are provably secure against all attacks, both classical 
and quantum.

Quantum attacKs
In cryptography, there are a number of notions of what it 
means for a cryptosystem to be secure. The ideal case, of 
course, is for a cryptosystem to reveal nothing about the en-
coded information independent of the computational resourc-
es of an adversary. This notion of security which is independ-
ent of the computational capabilities is generally referred to 
as information theoretic security, since the security of the 
system can be proved with arguments based on information 
theory alone. While there exist some classical cryptographic 
protocols which are indeed information theoretically secure, 
the use of such systems is often either impractical or impos-
sible. For example, symmetric ciphers where both the sender 
and receiver are assumed to share a pre-agreed random bit-
string, can be constructed which are information theoretically 
secure, leaking nothing other than the message length pro-
vided that the shared key is at least as long as the message 
to be sent, and is never reused. The classical one time pad 
is an example of such a cipher. In practice, however, the use 

of such ciphers is limited by the difficulty of distributing the 
necessary keys. On the other hand, public-key ciphers, in 
which a publicly announced key is used to encrypt the mes-
sage, can never be constructed without relying on computa-
tional assumptions. This is because an adversary can sim-
ply encode all possible messages using the public key and 
compare the result to the ciphertext until they have found the 
original message. The security of public key cryptography, 
therefore, relies on the assumption that there exist invertible 
mathematical functions which can be efficiently computed, 
but which are computationally intractable to invert. Proving 
that such one-way functions exist would amount to solving 
the famously open problem of P vs NP of theoretical comput-
er science. While without resolving the P vs NP problem we 
cannot know for sure whether true one-way functions exist, 
current public key cryptosystems are based on certain func-
tions which are believed, but not proved, to be hard to invert. 
Such computational assumptions form the basis for much of 
modern cryptography.

The advent of quantum computing complicates the picture 
somewhat. Even for cryptosystems which cannot be efficiently 
broken by a classical computer there may exist quantum at-
tacks. Indeed, one of the driving forces behind the develop-
ment of quantum computing has been the discovery of quan-
tum algorithms for factoring integers and searching disordered 
databases, each of which have important consequences for 
the security of current cryptosystems.

hidden subgroup problems
Perhaps the most celebrated of all results in quantum algo-
rithms was the discovery by Peter Shor, in 1994, of an efficient 
algorithm for integer factorization [1]. This discovery sparked 
a significant increase in interest in quantum computing, due in 
part to the central role the difficulty of the integer factorization 
problem plays in the RSA cryptosystem. In RSA, the public 
key is an integer which is the result of multiplying together two 
prime numbers. These numbers must be kept secret, since 
the private key can easily be calculated from them. The se-
curity of RSA therefore depends entirely on the difficulty of 
factoring integers. For years, factoring had been considered 
a good candidate one-way function, having been studied for 
centuries by mathematicians as illustrious as Fermat and Eu-
ler. While there has been significant progress in discovering 
novel classical algorithms for integer factorization, there is 
as yet no subexponential time algorithm, and many believe 
that no such algorithm exists. Shor’s discovery, therefore, was 
enormously important both in terms of showing that quantum 
computers could provide significant speed-ups over known 
classical algorithms for real world problems beyond the few 
fairly contrived examples already known then, and in showing 
that computational assumptions used in constructing crypto-
systems may not survive quantum attacks.

While the factoring result is widely known both inside and 
outside the quantum computing community, another result 
contained within the same paper has garnered less atten-
tion outside of the research community. Shor also presented  
a quantum algorithm for solving the discrete logarithm prob-
lem: the problem of computing an integer solution for logb(a) 
modulo n. This result, too, has important implications for pub-
lic-key cryptography. A wide variety of cryptosystems derive 
their security from the hardness of the discrete logarithm prob-
lem, including ElGamal, the Digital Signature Algorithm, and 
the Diffie-Hellman key exchange protocol.
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Both integer factorization and finding discrete logarithms 
are instances of a more general problem, known as the hid-
den subgroup problem. The definition of the hidden subgroup 
problem is rather mathematical in nature, however we give it 
here for completeness. Given a group G, a set S, and a func-
tion f which maps G onto S with the property that f(g1)=f(g2) for 
any g1 and g2 in G if and only if g1H = g2H for some subgroup 
H of G, the hidden subgroup problem is then to identify H. A 
wide variety of problems in theoretical computer science can 
be reduced to some form of the hidden subgroup problem, and 
it has played a central role in quantum algorithms research. 
Many cryptosystems derive their security from the assumption 
that the hidden subgroup problem is hard for specific choices 
of the group G, and so the hardness of this problem is an 
important question in determining whether or not such crypto-
systems are secure. At present, our knowledge is incomplete, 
but we do know that there exist efficient quantum algorithms 
for a number of commonly used groups. A general quantum 
algorithm exists for solving the hidden subgroup problem over 
finite abelian groups [2], which includes factorization and dis-
crete logarithms as special cases. Quantum algorithms also 
exist for certain finite non-abelian groups [3,4], however the 
general case of non-abelian groups remains open.

The net result of this is that few classical public-key cryp-
tosystems are robust against quantum attacks. RSA, Rabin-
Williams, DSA, ECDSA, Diffie-Hellman and eliptic curve cryp-
tography all fall foul of hidden subgroup attacks.

grover’s algorithm
Another area in which quantum computers have an advantage 
over their classical counterparts is when it comes to searching 
a disordered database. In 1996, Lov Grover showed that it is 
possible to search an unstructured database of N entries with 
only O(N½) queries [5], a substantial improvement over the ex-
pected N/2 queries required by any classical algorithm. The 
importance of this algorithm extends beyond searching actual 
databases, as it can be used in the context of algorithms to 
search for a specific input to a function which satisfies some 
specified criteria. If the best classical approach is simply to 
try evaluating the function for various inputs until a suitable 
choice is found, then Grover’s algorithm provides a way to find 
a solution with only the square root of the number of queries 
required classically.

In the context of cryptography, this approach can be used 
to solve any number of problems. For example, if you wish 
to find text which results in a particular hash, or to find an 
encryption key which decodes a given ciphertext to a plaintext 
with certain statistical properties, Grover’s algorithm can be 
used. It is truely one of the most versatile tricks to come out 
of quantum computation, but in the context of cryptography it 
is not all powerful. As the speed-up produced by the algorithm 
is only polynomial, the advantage to such attacks is limited. If 
the size of the search space is squared, then the advantage of 
Grover’s algorithm disappears. In the context of searching for 
the key for some symmetric cipher, for instance, this amounts 
to simply increasing the key length by a factor of two, while 
in the case of a hash function, this generally corresponds to 
a similar increase in the length of the hash.

Importantly, Grover’s algorithm is known to be optimal for 
searching unstructured data, and so there is no danger that an 
improved quantum algorithm will be discovered which improves 
the viability of such black-box attacks. Any quantum attacks 
which provide a better speed-up must necessarily make use of 

the structure of the particular cryptosystem being attacked. For 
many cryptosystems, then, all that is required to achieve a level 
of security against such black-box quantum attacks compara-
ble to their current security against classical attacks is at most 
a doubling of the size of the relevant key, which is unlikely to 
impose unmanagable computational overhead.

Finding collisions
Aside from the sort of brute force searches discussed in the 
previous section, there is another area where quantum search 
algorithms can potentially increase the efficiency of attacks. 
Classically, if one wishes to find two inputs for a function which 
result in the same output, for example if searching for two mes-
sages which hash to the same value, then it is only necessary 
to try a number of random inputs which scales as the square 
root of the number of possible values of the function before  
a collision is found. Such an approach is known as a birthday 
attack because it corresponds to the birthday paradox in prob-
ability theory. Here too quantum computation can provide an 
advantage. A quantum algorithm exists for the collision prob-
lem which requires a number of evaluations of the function 
that scales only as the cubic root of the number of possible 
values of the function [6]. As in the case of Grover’s algorithm, 
the collision algorithm is known to be optimal to within a con-
stant factor. Thus increasing the search space by a constant 
factor removes any quantum advantage.

post-quantum cryptography
While the above discussion may paint a bleak picture for cryp-
tography in a world where large scale quantum computers 
are available, all is not lost. As we have seen, certain areas 
of cryptography, such as symmetric-key ciphers and hashes, 
are not particularly inherently vulnerable to quantum attacks. 
Indeed, in these areas there do exist information theoretically 
secure protocols, which are of course invulnerable to quantum 
attacks. However, quantum attacks cause problems for areas 
of cryptography where such information theoretically secure 
classical schemes do not and cannot exist, such as public key 
ciphers, digital signatures and key exchange protocols. None-
theless, there exist some public-key schemes which are not 
currently known to be vulnerable to quantum attacks. There 
is increasing interest in the area of public-key schemes robust 
against quantum adversaries under the heading of post-quan-
tum cryptography [7].

Thus far, the most prominant examples of post-quantum 
cryptography include code-based systems, such as the 
McEliece cryptosystem, and schemes based on lattice prob-
lems, such as NTRU. In the realm of digital signatures, Lamp-
ort signatures are believed to be resistant to quantum attacks. 
However, while these schemes are currently believed to be 
secure against quantum adversaries, the evidence for this 
largely amounts to lack of progress on relevant quantum al-
gorithms.  

As we shall see in the next section, however, quantum me-
chanics offers us reason for hope ... at least in some areas.

Quantum cryptography
Thus far we have considered the advantages that quantum 
mechanics offers over classical computation in terms of com-
putational ability. However, this is not the full story of quantum 
information. Quantum mechanics also imposes restrictions not 
present in classical theories. In particular, our inability to per-
fectly distinguish quantum states means that if given a copy 
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of an unknown quantum state we are unable to determine a 
full classical description of the state. Indeed, a result known 
as Holevo’s theorem tells us that we can at most recover one 
classical bit per qubit (the basic unit of quantum information) 
we receive. This restriction on the information that can be 
learned from a quantum state also limits our ability to copy an 
unknown quantum state. 

Quantum key distribution (QKd)
Even before it was realised that quantum computers brought 
into question the security of public-key cryptography, scien-
tists had already realised that quantum mechanics could be 
used to achieve even more secure methods of communica-
tion. In 1984, Charles Bennett and Gilles Brassard proposed 
a scheme which, like Diffie-Hellman, allowed to remote par-
ties to agree on a shared secret key [8]. Unlike Diffie-Hell-
man, however, the scheme (now known as BB84) derived its 
security not from computational assumptions, but rather from 
physics. They noticed that if, rather than exchanging classical 
bitstrings, the two parties exchanged quantum states, then an 
eavesdropper could not intercept a message without altering 
the quantum state of the message in a way that would be de-
tectable to the users of the protocol. 

Another quantum mechanical approach to the key distribu-
tion problem was put forth by Artur Ekert in 1991 [9]. Ekert’s 
approach differed somewhat from the BB84 protocol, in that it 
exploited a phenomenon known as entanglement. Entangle-
ment is a form of quantum correlation that occurs in states 
which are in any superposition over the classical states of two 
systems such that the state of the system as a whole can-
not be factored into separate states of the two subsystems. 
A previous result, due to Bell, had shown that there existed 
inequalities on the statistics of measurement outcomes which 
could only be violated by measurements for which the results 
which were not predetermined [10]. Importantly, entangled 
quantum states can violate Bell’s inequality. Ekert’s protocol 
made use of this fact, by distributing entangled particles be-
tween parties, to ensure that the result of the measurements 
must be unknowable to an eavesdropper: if a third party could 
learn the outcome of the measurements by intercepting the 
entangled particles in advance of the measurements, then the 
results would be predetermined and hence unable to violate 
Bell’s inequality.

Both protocols are information theoretically secure, so even 
a computationally unbounded adversary cannot successfully 
eavesdrop. While these two protocols appear to take very dif-
ferent approaches to the same problem, a deeper look reveals 
striking similarities. If the measurement step made by one of 
the parties in the second protocol is moved earlier, prior to the 
distribution of the particles, it results in a remarkably BB84-like 
protocol, with no mathematical difference to the functioning of 
the protocol. However, such entanglement-based protocols do 
offer one substantial advantage over the alternative, which has 
only recently been realised. As the security relies only on the 
classical statistics of the measurement results, and not on the 
specific operation of the device, it is possible to verify security 
without trusting the device itself. This means that no trust in 
the manufacturer of the device is required: provided that the 
measurement results sufficiently violate Bell’s inequality, it is 
impossible that they can have been known to an eavesdrop-
per [11,12]. Such results only apply to the process of agreeing 
a key, and of course cannot ensure security after the key has 
been agreed. Thus, it is still necessary for the users to ensure 

the end points are secure. Nonetheless, this new notion of de-
vice independent security has become a hot topic in quantum 
cryptography research in recent years.

Quantum key distribution is perhaps the first technology 
based on quantum information processing to have reached 
the level of a commercial product. Currently a number of QKD 
systems are commercially available, though as yet device in-
dependent setups remain at the proof of concept stage.

secure random number generation
For many cryptographic tasks it is necessary to produce ran-
domness, and cryptographically secure pseudo-random num-
ber generators are an important element of classical cryptog-
raphy. Quantum mechanics, however, allows for true random-
ness to be generated, and currently it is possible to buy quan-
tum random number generators. The current generation of 
devices, however, essentially require the user to trust that they 
are correctly functioning, or to dismantle the device to verify 
each component works as advertised. Even then, the security 
is contingent on our current understanding of the dimensional-
ity of the state space for particular physical systems. However, 
as we have seen in the previous section, the violation of Bell’s 
inequality allows for a way to certify that measurement results 
cannot have been predetermined and hence are necessarily 
random, independent of the underlying physical system. Thus 
similar techniques to those which allow for device independent 
quantum key distribution also allow for the creation of random 
number generators for which a user can verify that the num-
bers produced are indeed truely random [13].

Beyond QKd
The utility of quantum mechanics in constructing secure cryp-
tographic schemes is not limited to key distribution. Over the 
years, quantum techniques have been applied to a variety of 
cryptographic tasks. Some of these schemes amount to ex-
tending classical results to the quantum realm, as for exam-
ple in the case of quantum secret sharing schemes [14] and 
protocols for secure multi-party quantum computation [15,16]. 
Others utilise quantum tricks to achieve information theoretic 
security, as in the case of quantum digital signatures [17] and 
quantum schemes for anonymous communication [18]. The 
area of distributed computing, in particular, has seen many 
novel quantum cryptographic protocols. These include infor-
mation theoretically secure protocols for performing remote 
computations in which an even an eavesdropper with access 
to the remote computer cannot learn which computation has 
been performed [19-22], and protocols for querying remote 
databases in such a way that any attempt to learn which query 
was performed, even by the computer storing the database, 
will be detected with high probability [23]. 

conclusions
The existence of large scale quantum computers would signifi-
cantly alter the balance of power between cryptographer and 
eavesdropper. As we have seen, many commonly used cryp-
tosystems are vulnerable to quantum attacks. However quan-
tum mechanics also allows for new cryptographic protocols, 
replacing some but not all of the infrastructure threatened by 
quantum computers, and providing secure protocols for tasks 
which could not previously be achieved. 

Some tasks remain beyond the reach even of quantum com-
puters. It is known that it is impossible to construct informa-
tion theoretically secure schemes for important cryptographic 
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primitives such as bit commitment and oblivious transfer. Yet 
even here, relativity, the other great pillar of modern physics, 
may offers us hope [24,25].  

One thing is for sure, the advent of quantum computers 
brings about a definite shift in the cryptographic landscape.
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In both DES and AES, the receiver and sender must share a 
secret key. It is the sharing of this secret key that presented 
one of the greatest hurdles to implementation. How could 

two parties, who had never met, agree on a secret key without 
tipping off anyone else? An electronic version of a one-time pad 
would be ideal but difficult to implement. In 1976 recent MIT 
graduate Whitfield Diffie and Stanford professor Martin Hell-
man developed a solution. The Diffie-Hellman public key ex-
change was based on the idea that the two communicating par-
ties would split the key. Mathematically they employed modular 
exponentiation in such a way that breaking the key would re-
quire solving what is known as the discrete log problem. The two 
communicating parties would choose two prime numbers, p and 
g, that combine in such a way that an eavesdropper would be 
overwhelmed by the number of possible solutions to the discrete 

log problem. In other words, Diffie-Hellman public key exchange 
had something in common with simple combination locks - the 
security of the system was based on the enormous number of 
possible solutions, i.e. brute force.

Seeking a different approach, Ron Rivest, Len Adleman, 
and Adi Shamir of the MIT computer science department, 
were seeking a function that was easy to compute but hard to 
“undo.” They hit upon the idea of multiplying two large prime 
numbers, of roughly the same size, together to get an even 
larger integer; the integer is easy to obtain but factoring it into 
a product of two large, roughly equal primes is quite difficult. 
The RSA approach (whose letters stand for the developers’ 
surnames) was developed in 1977 and included the first in-
stance of the now-standard terminology of Alice, Bob, and Eve 
for the two communicating parties and eavesdropper respec-

Quantum 
computers  
and information 
security:  
shor’s algorithm and the future of rsa

The backbone of information security in the digital age is cryptogra-
phy. Originally restricted to military purposes, the advent of ATMS 
and the increasing ubiquity of computers in business led to the de-
velopment of the first public cryptosystem standard in the 1970s. 
The Data Encryption Standard (DES) was developed by the United 
States’ National Bureau of Standards (now the National Institutes of 
Standards and Technology or NIST), modified behind the scenes by 
the US National Security Agency (NSA), and published in 1975. DES 
was ultimately cracked by the Electronic Frontier Foundation (EFF) 
in 1998 and has since been replaced by the Advanced Encryption 
Standard (AES) also developed by what is now NIST.

ian t. durham
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tively. In comparison to the Diffie-Hellman approach, the RSA 
approach relies on two mathematically difficult procedures: 
factoring a large integer into two large, roughly equal primes 
and what is now known as the RSA problem in which one 
must find the roots of an arbitrary number, modulo N where  
N is large1.

Over the years, numerous attacks have been waged against 
RSA, some of them successful, but the overall security re-
mains high, particularly when augmentations are included to 
fight some of these specific attacks. Nevertheless, it is thought 
that only partial decryption is possible and various padding 
schemes have been developed to protect against these. Part 
of the reason RSA is so secure is that no algorithm is known to 
exist for classical computers that can factor a large integer into 
two large, roughly equal prime numbers in polynomial time. 
The best known classical algorithm, the general number field 
sieve (GNFS), is not even quasi-polynomial in time (it is, in 
fact, sub-exponential).

In 1994, however, MIT’s Peter Shor discovered that a quan-
tum computer could solve the integer factorization problem 
in polynomial time. The reason for this is due to something 
known as quantum parallelism. In classical computers, data 
is, of course, stored in bits (binary digits) that can have val-
ues of 0 or 1. Quantum mechanics, however, allows for the 
existence of superpositional states. As such, quantum bits - 
qubits, as they are called2 – can have not only the values 0 
and 1 but also a simultaneous combination (superposition) of 
0 and 1. It is possible to interpret this as saying that a qubit can 
have values of both 0 and 1 at the same time, but it should be 
noted that when one measures a qubit in order to determine 
its value, the result is always either a 0 or a 1, never both. The 
difference is that the measurement of qubits is a probabilistic 
process. So, for instance, the general state of a qubit, prior to 
measurement, can be written as 

where the symbol |·〉 represents a state and cn represents  
a complex number whose square gives the probability of the 
associated state. This tells us that, upon measurement, we will 
get |0〉with a probability of (c1)

2 % and |1〉 with a probability of 
(c2)

2 %. Some people also interpret this as telling us that, prior 
to measurement, the qubit is in a state that consists of (c1)

2 %  
|0〉 and (c2)

2 % |1〉.
In other words, imagine we have a box and in that box could 

be either a man or a bull with some probability. When we open 
the box, we either see either a man or a bull and the outcome 
of the experiment (opening the box) depends on the associ-
ated probabilities of the two states - man and bull. Some peo-
ple, however, interpret this as saying that, before the box is 
opened, the state is actually something resembling a centaur, 
the mythic half-man, half-bull, that then becomes either a man 
or a bull when the box is opened. At any rate, whatever one’s 
beliefs about the state of the qubit, this superposition is not 
quite what is meant by quantum parallelism, however.

It turns out that in quantum mechanics, quantum objects can 
be correlated in non classical ways. So, imagine we have a 
bag that contains two marbles and suppose one is red and the 
other is blue. If Alice reaches in and pulls out one marble, but 
doesn’t look at it, and Bob does the same, regardless of when 
either one of them looks at their marbles, if Alice sees that hers 
is red, Bob instantly knows his is blue. There is nothing terri-
bly mysterious about this. An analogous quantum experiment, 
however, would be that the marbles do not actually possess 

a color and Alice and Bob may choose to either “measure” 
red/blue or black/yellow. If Alice and Bob happen to choose 
the same measurement, they are guaranteed to get opposite 
results (i.e. they can’t both find a blue marble). In quantum me-
chanics these marbles would be said to be “entangled.” This 
is quantum parallelism and it basically means you can do a lot 
more with a qubit than you can with a classical bit, but you pay 
the price for it in the fact that the operations are probabilistic.

So what does all this mean in terms of Shor’s algorithm and 
RSA? Shor’s algorithm makes use of a clever mathemati-
cal approach to factoring that arises in modular arithmetic.  
Suppose the number we wish to factor is M. We can, at ran-
dom, choose an integer a such that 1 < a < M. Now consider  
a function,

f(x)=ax mod M 

for x = 1,2,.. that has a period of r ≤ M. It turns out that if one 
can find the period, r, one can successfully factor M into two, 
roughly equal prime numbers. As previously noted, no classi-
cal algorithm is known to exist that could solve this problem 
in polynomial time. But here’s how Shor’s algorithm and the 
power of quantum computing can do it.

Through a series of operations, a quantum computer can be 
brought into a superposition of many distinct quantum states 
where each state expresses both a value of x and the cor-
responding value of f(x). In other words, a quantum computer 
can simultaneously hold numerous values of x and f(x). Think 
of the examples with the marbles. In a classical computer, only 
one type of measurement can be made at a time. So, for in-
stance, if it is a red/blue measurement and Alice finds a red 
marble, Bob can only find a blue marble. But if the marbles 
were quantum, Bob could choose to measure black/yellow 
while Alice measures red/blue.

Now, once the quantum computer is in this superposition, 
a quantum Fourier transform is performed that allows for the 
extraction of information regarding the period, r. In order to 
maximize the probability that we can obtain the period in this 
manner, we must compute the value of f(x) over many periods. 
Since a quantum computer can be in a superposition of many 
values of x and f(x), it can do this for many periods simultane-
ously. Incidentally, it turns out that a sufficiently high success 
rate can be achieved if we choose the maximum value of x to 
be approximately M2.

The actual steps carried out in the execution of the algorithm 
are fairly complex and implementation can depend on the type 
of quantum computer being used. Classical computers are 
fairly standard in their form. Certainly the various internal as-
pects of the microchips and circuit boards may be a little differ-
ent, but the point is that they’re all built from the same parts - 
resistors, wires, capacitors, transistors, etc. In short, classical 
bits are almost universally manifested as some sort of voltage 
difference. Quantum bits can be lots of things.

A discussion of the various implementations of quantum 
computers is worthy of an article unto itself. What’s important 
for the information security community is to know how close 
we are to achieving a large-scale quantum computer. Shor’s 
algorithm itself was first implemented by a group at IBM in 
2001 on a quantum computer with 7 qubits, though it was only 
able to factor the number 15 into 3 and 5. This implementa-
tion utilized nuclear magnetic resonance (NMR) technology 
at its core. Several groups utilizing different imple- mentation 
techniques have reproduced these results. In 2011 a group 
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from the University of Bristol managed to factor the number 
21 using an optical approach. While these numbers may be 
too small for practical purposes, many of the implementations 
have merely been proof-of-concept.

The first commercially available quantum computer is D-
Wave’s One system, a 128-qubit quantum computer that uti-
lizes an approach known as adiabatic quantum computing3.  
D-Wave’s system, however, demonstrates just how different 
quantum computing is from classical computing. As a ma-
chine, it is really best used for machine-learning tasks. In fact, 
Google used D-Wave’s system to improve aspects of Street-
View in recent years. But, given the way the computer oper-
ates, it is less ideal for implementations of something such 
as Shor’s algorithm. In other words, quantum computers are 
somewhat contextual in their design in that, though powerful, 
they may not (yet) prove to be terribly versatile.

All implementations of quantum computing fall into one of 
four models of quantum computation. The quantum gate ar-
ray implementation most resembles a classical computer in 
that it uses quantum logic gates that are somewhat analogous 
to the similar classical gates seen in classical computation. A 
one-way or cluster-state quantum computer decomposes the 
computation into a series of single-qubit measurements made 
on a highly entangled initial state, i.e. a cluster state. Adiabatic 
quantum computation, as implemented in D-Wave’s system, 
decomposes the computation into a slow, continuous trans-
formation of an operator called a Hamiltonian from an initial 
state to a final state whose ground state includes the solution. 
Topological quantum computing decomposes the computation 
into the braiding of particles called anyons that are two-dimen-
sional generalizations of fermions and bosons.

The question for the information security community, then, 
is what happens to algorithms such as RSA when quantum 
computing reaches maturity (it is a very young field at this 
point)? Luckily quantum mechanics provides an answer to 
that as well via quantum cryptography which, though still in 
its nascent stages, already provides commercially available 
products. Quantum cryptography relies on the fact that making 

a measurement in quantum mechanics necessarily disturbs 
the system. Thus an eavesdropper can be identified in a fairly 
straightforward manner, though all the results still must be 
turned into classical results (since our perception of them is 
classical) and this leaves room for some loopholes that are 
slowly being patched up. Nevertheless, it is at least reassuring 
that quantum mechanics is providing both the problem and its 
solution generally together.

further reading: 
•	 Protecting	Information:	From	Classical	Error	Correction	to	

Quantum	Cryptography	by Susan Loepp and William K. 
Wootters, Cambridge University Press, 2006.

•	 Quantum	Computer	Science:	An	Introduction by N. David 
Mermin, Cambridge University Press, 2007.

•	 Quantum	Processes,	Systems,	&	Information by Benjamin 
Schumacher and Michael Westmoreland, Cambridge Uni-
versity Press, 2010.

•	 Quantiki, an on-line encyclopedia (Wiki) of quantum infor-
mation: 

	 http://www.quantiki.org/wiki/Main	Page
•	 Qunet	Wiki:	Quantum	Computation	and	Quantum	 E r r o r	

Prevention, an on-line resource for quantum computing 
and error correction: 

	 http://qunet.physics.siu.edu/wiki/index.php5/Quantum_
Computation_and_Quantum_Error_Prevention

1 It can be shown mathematically that RSA is actually a generalization of the Diffie-Hellman 
approach.

2 Ben Schumacher of Kenyon College coined the term during a somewhat light-hearted 
discussion with Bill Wootters of Williams College on a drive to the airport. The name stuck. 
Cornell University’s David Mermin has argued that it should more properly be written ‘Q-bit’ 
and not ‘qubit’ but the former has not gained traction.

3 There has been considerable debate over D-Wave’s system over the years. Many have 
claimed it is not a true quantum computer. However, it is presently being independently 
tested at UCLA in a project funded by the Lockheed-Martin Corporation who purchased one. 
Preliminary results seem to indicate that it is, indeed, operating under quantum conditions.
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JEFFREY ZHI J. ZHENG, JIE-AO ZHU & JIE WAN 
 
Abstract – It is a top intelligent challenge to explain quantum interactive 
behaviors consistently using experimental evidences. Wave-particle paradoxes 
forced this type of formal discussions and historical Bohr-Einstein debates 
without a common solution from 1900s and still an open question in modern 
quantum foundation. Using advanced variant logic and measurement 
construction, it is feasible to identify complex quantum interactions under 
multiple/conditional probability into a series of symmetry/anti-symmetry and 
synchronous/asynchronous conditions. In addition to theoretical analysis and 
explorations, an online prototype http://vdps.sinaapp.com/single/ focus on 
simulation of single function has established to illustrate controllable 
combinations among possible parameters to generate interactive results with a 
total of 7680 configurations.  Main principles and architectures of the 
simulation prototype are discussed and key components and modules are 
illustrated. Sample interactive results from two polarized/separated paths and 
either double path for particles or double path for waves are organized into four 
groups of results for both single functions and global matrix representations.  
 
 

Introduction 
From 1900, Planck proposed quanta to explain 
black body radiation using a discrete approach 
[2,11,12]. During successful developments 
and applications over a century, modern 
Quantum Mechanics are still faced severe 
challenges on foundation from theories and 
experiments [2,11-17]. In addition to 
Heisenberg Uncertain Principle and Bohr 
Complementary for quantum foundation 
[14-16,19], how to explain particle and/or 
wave behaviors in quantum interactions are  
key clues from theoretical and experimental 

aspects [10-17,19]. 
People implemented many experiments to 
distinguish quantum interactive behaviors as 
particles and/or waves can be trace back to 
Newton time [15,16]. Isaac Newton 
(1642-1727) used particle concepts to explain 
his optical theory and experiments to simulate 
light as small dusts [14-16].  Thomas Young 
(1773-1829) proposed Double Slit Experiment 
DSE to illustrate wave interactive behaviors in 
interference patterns [14-16]. 
After Planck historical discovery on quanta, 
Einstein in 1905 proposed photo-electric 
effects using the quanta model. This is a 
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strengthen effort on   wave particle 
paradoxes for quantum foundation [14-16]. In 
1923, de Broglie proposed Wave-Particle 
duality [6], Heisenberg and Schrödinger 
developed Matrix Mechanics and Wave 
Functions for Quantum Mechanics [14-17]. 
After advanced developments and applications 
for a century [15-17,19], it is interesting to 
notice that even through great debates 
between Bohr and Einstein [4,5,7,14-17] both 
classical problems in quantum foundation and 
various interpretations on evidences from 
supporting experiments are still in open 
questions [2,15,16,20]. 
In relation to Wave-particle issue, neither 
precise experiments nor refined simulation 
devices are available to generate consistent 
results conveniently to separate two distinct 
aspects into a series of identified controllable 
conditions [2,15-17].  
Since Thomas Young and other classical DSEs 
are extremely important in this direction 
[2,10,11,15-17], it is necessary for us to 
discuss relevant modern DSE versions in 
further details.  

Mach-Zehnder Device 

Using optical fiber and Laser devices, 
classical DSEs have a modern representative 
as Mach-Zehnder Double Path Device DPD 
[2,14-16] shown in Figure 1. Physical device 
is shown in Fig. 1(a) and its description model 
is shown in Fig.1(b).  
Interaction of Mach-Zehnder DPD can be 
described as follows.  
Light Source (Laser) LS with function f using 
electric pulse X makes LS output photon flow 
ρ. This flow passes Bi-Prism BP, two 

polarized flows ρ‖ and ρ⊤ are separated as BP 

output. Mirrors L and R reflect flows via Left 
and Right paths to generate two controllable 
path flows ρL and ρR respectively. Both 
controllable flows are merged by IM as 
Interactive Measurements to form the final 

output of the DPD.  
Similar language expression can be used to 
describe flows using description model. They 
have equivalent properties in principle. 

Feynman models for quantum interactions 

Richard Feynman proposed his idea 
experiments for quantum interactions in 1940s 
and expressed models well in his popular 
books [8] in 1965.  
 
 
 
 
 
 
 
 

(a) Mach-Zehnder Double Path Device 
 
 
 
 
 

(b) Description Model 
 
 
 
 
 
 
 
 
 

(c) Notations  
Figure. 1 Double Path Model  (a)  

Mach-Zehnder Double Path Model  (b)  
Description Model  (c) Symbol Notations 

 
From a visual viewpoint, Hey and Walter’s 
book “The New Quantum Universe” [11] 
described two Feynman models in interesting 
forms shown in Figure 2(a-b). Output 
probability measurements in Fig. 2(a) claim 
particle properties to satisfy P12 = P1+P2; 

IM(ρL,ρR) 
ρL 

ρR 

ρ⊤ 

ρ‖ ρ 

X, f 

IM(ρL,ρR) IM 
ρ⊤ 

BP 

R 

ρL 

ρR 

ρ‖ ρ 

X 

f 

LS 

L 

LS BP LR IM 

X  Pulsed Input f    Control Function 
LS Light Source BP  Bi-Prism 
ρ  Photon Flow L,R  Left, Right Path 
ρl, ρr  Polarized Flows  
ρL, ρR  Left, Right Path Flow  
IM Interactive Measurements 
IM(ρL,ρR)  Results 
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however output probability measurements in 
Fig. 2(b) show wave properties with P12 ≠
P1+P2.  
Feynman models provide statistically 
significant characteristics [1,10-17,20] to 
distinct two types of distributions 
corresponding to either particles or waves 
interactions under DSE environments. 

Variant Logic and Measurement Construction 

Early version of variant construction 
developed as the conjugate classification and 
transformation from 1990s using balanced 
approaches to handle state classification and 
transformation on binary images on plane 
lattices [26]. In 2010, two vector operations: 
permutation and complementary are expanded 
into state spaces to make two operations on bit 
vector with 22𝑛𝑛  elements. Under this 
extension, variant logic construction has being 
proposed [26,29,30]. To apply variant logic on 
different applications, it is natural to use this 
new approach to simulate various quantum 
interactions, a list of theoretical and 
simulation results published [21-28]. 

 
(a) Feynman Model for Particles 

 
(b) Feynman Model for Waves 

Figure 2 Feynman Interactive Models (a) 
Particles (b) Waves 

Target of this paper 

It is difficult for most people to manipulate 
abstract construction via a list of boring 
definitions from foundation [3,9,18]. For 
easier understanding on variant construction, a 
simulation prototype is proposed for an online 
version http://vdps.sinaapp.com/single/ to let 
more people make their selections themselves 
to observe interference results conveniently. 
Under this consideration, briefly samples and 
descriptions are discussed on architecture and 
key component levels for the prototype. 
Following given samples and procedures, 
users with limited skills could control this type 
of online versions without difficulties. For 
advanced researchers and academic scholars 
with sufficient theoretical & methodical 
background, this prototype could provide a 
useful simulator for them to observe each 
controllable interaction in accurate details to 
separate complex operation as a series of 
combinations to explore top intelligent 
challenges and historical mysteries on 
quantum interactive behaviors under variant 
simulation mechanism. 
In consequent sections, simulation architecture 
and procedure are described in Section II, 
Simulation principles are discussed in Section 
III, Typical selections are illustrated in section 
IV and further descriptions are discussed in 
Section V.  

 

Simulation Architecture and 

Procedure 

Architecture 

The architecture of Variant Double Path 
Simulation VDPS is composed of four 
components: Initial, Reconfiguration, 
Generation and Output shown in Figure 3(a-c) 
respectively. 

L 

R 
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Initial  

Initial component provides a default 
configuration for prototype as an initial 
condition of an entry point.  

Reconfiguration 

Reconfiguration component provides all 
feasible parameters for variation to make a 
certain selection as a set of legal control 
parameters. When relevant parameters are 
selected, enabled Process button can be 
pressed, new configuration could be recreated 
and their distributions are outputted and 
organized via Generation and Output 
components. 

 

 

 

 

(a) Architecture 

 

 

 

 

 

 

 

 

(b) Generation Component 

 

 

 

 

(c) Output component 

Figure 3. VDPS Architecture & Key 
Components (a) Architecture (b) Generation 
Component (c) Output Component 

Generation 

Generation component is composed of two 
modules: Single and Global. It is the core part 
of the simulation system to use parameters 
prepared in either Initial or Reconfiguration 
component. Single module in Figure 3(b) 
works for single function 𝑓𝑓  and its 𝑁𝑁  bit 
vector 𝑋𝑋 exhausted all 2𝑁𝑁 elements as input.  
Under either Symmetry or Anti-symmetry 
condition, four sets of vector distributions 
{H(u|f) | H(v|f) | H(�̃�𝑢|𝑓𝑓) | H(�̃�𝑣|𝑓𝑓)} under 
either multiple {H(u|f) | H(v|f)} or conditional 
{H(�̃�𝑢|𝑓𝑓) | H(�̃�𝑣|𝑓𝑓)} probability to indicate Left 
Path L-P, Right Path R-P, Double Path for 
Particles D-P and Double Path for Waves D-W 
respectively as output results. For a given set 
of conditions, four distributions of {L-P, R-P, 
D-P, D-W} are generated as a group. Four 
groups of 16 distributions can be separated by 
Interaction: Multiple or Conditional and Parity: 
Symmetry or Anti-symmetry respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Procedure of VDPS 
Under Global module in Figure 3(b), 
distributions of {H(u|f) | H(v|f) | H(�̃�𝑢|𝑓𝑓) | 

H(�̃�𝑣|𝑓𝑓)} for all functions are provided as input, 
for a given FC, four matrices can be illustrated 
as SL, W, F and C schemes to show all 16 
function’s distributions exhaustive generated 
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f, for all X 
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one 

function  
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H(v|f)| 

H(�̃�𝑢|𝑓𝑓)| 

H(�̃�𝑣|𝑓𝑓)} 

 
{ H(u|f)| 

H(v|f) | 

H(�̃�𝑢|𝑓𝑓)| 

H(�̃�𝑣|𝑓𝑓)} 

for all f 

Given FC 

Global for all 

functions 

{M(u) | 

M(v) | 

M(�̃�𝑢) | 

M(�̃�𝑣)} 
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four groups of {M(u) | M(v) | M(�̃�𝑢) | M(�̃�𝑣)} as 
4x4 matrices in L-P, R-P D-P and D-W forms 
respectively.  Under this organization, a list 
of Symmetry /Anti-symmetry, Multiple 
/Conditional probability distributions on 
relevant matrices can be identified. 
Results of either a single function or a selected 
global configuration will be organized by 
Output component for visualization. 

Output 

Output component is shown in Figure 3(c) to 
be composed of three modules: Frame, 4-1 
and Graphics to support people to illustrate 
either one distribution or four distributions in 
one frame for either a single function or one of 
four global configurations, in addition to some 
Graphics features for output control. 

 

Procedure of VDPS 

The procedure of VDPS is shown in Figure 4. 
In this procedure, the first output is based on 
initial condition via Generation and Output 
components to represent results. If there is any 
change on any parameter, control of the 
Procedure will pass to Reconfiguration to 
enable Process button. Then it is necessary for 
user to press the Process button to push 
parameters into Generation and Output 
components for the selected configuration. 
Under normal environment, this procedure 
will be continued for the user to support 
explorations on various selections online.  
 

Simulation Principles 
Using variant principle described in the 
following subsections, for a N bit 0-1 vector 
X and a given logic function f , all N bit 
vectors are exhausted and variant measures 
generate four groups of histograms [21-30]. 
The main principles of Generation in variant 
simulation prototype shown in Figure 3(b) 
needs to be discussed in further details.  

In Fig 3(b), Single module is composed of 
three stages: Pre-process, Interaction and 
Post-process. At the pre-process stage, a N bit 
0-1 vector X and a function f feed into output 
two signals ( )  . After an interactive process, 
four groups of signal vectors are identified: 

( )u u for symmetry group and ( )v v  for 
anti-symmetry group. In the post-process 
stage, all N bit vectors are processed by 
pre-processing and interactive stages until all 
of the N2 data set has been processed to 
transform symmetry and anti-symmetry signals 
into a total of 16 histograms: eight for 
symmetry distributions and another eight for 
anti-symmetry distributions respectively.  

In the interaction stage, input two signals ( )   
processed by BP to generate four signals

   , ( , )       . LR output eight signals 

 
  

, (1 ) / 2, , (1 ) / 2

, (1 ) / 2, , (1 ) / 2

   

   
   

   

 

 
 though IM 

to generate four groups of signals ( )u u and
( )v v  respectively. 

Variant Principle  

The variant principle is based on n-variable 
logic functions [26,29,30]. For any n

-variables, 1 0... ... ,n ix x x x 0 ,i n 

2{0,1}ix B  .  Let a position j  be the 

selected bit 0 j n  , 2jx B  be the selected 

variable. Let output variable y and n
-variable function , ( )f y f x , 

nBxBy 22,  . For all states of x , a set ( )S n

composed of the n2  states can be divided 

into two sets: 0 ( )jS n  and 1 ( )jS n . 

 y \in B  x \in B 
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 
 
 

0 2

1 2

0 1

() | 0,

() | 1,

() (), ()

j n
j

j n
j

j j

S n xx x B

S n xx x B

Sn S nS n

   
  




 

For a given logic function f , there are input 
and output pair relationships to define four 

meta-logic functions , , , Tf f f f   : 

 
 
 
 

0

0

1

1

( ) ( )| ( ), 0

( ) ( )| ( ), 1

( ) ( )| ( ), 0

( ) ( )| ( ), 1

j

j

j

j
T

f x f x x S n y

f x f x x S n y

f x f x x S n y

f x f x x S n y







   

   


  


  

 

Two logic canonical expressions: AND-OR 

form is selected by  ( ), ( )Tf x f x  as y = 1 

items, and OR-AND form is selected from 

 ( ), ( )f x f x   as y = 0 items. Considering

 ( ), ( )Tf x f x , jx y  items, they are 

invariant themselves.  

To select  ( ), ( )f x f x  ; jx y  forming 

variant logic expression. Let

( ) | |f x f x f   be a variant logic 

expression. Any logic function can be 
expressed as a variant logic form. In 

| |f x f  structure, f selected 1 items in 

0 ( )jS n  as same as the AND-OR standard 

expression, and f  selecting relevant parts 

the same as OR-AND expression 0 items in

1 ( )jS n . For a convenient understanding of 

variant representation, 2-variable logic 
structures are illustrated for all 16 functions in 
Table 1.  
E.g. Checking two functions f = 3 and f = 

12 : 

 3:03,11:=0, 2:3f f f    

 

 12:21,14:=2,8:1f f f    

 

Variant Measures  

Let   be variant measure function [21-27].  

T  ,,,  

() (), (), (), ()

(), (), (), ()
T

T

fx fxfxfxfx

fxfxfxfx
  

  




 

 1, ()(), ,,,
()

0,
iffxfx

fx
others

 




 
Let  

, 0, 0;
, 0, 1;
, 1, 0;
, 1, 1.

v

x y
x y

x
x y
x y

  
     
    

, 1;
, 0.

x
x

x
 




    

It is convenient to transfer n=2 logic functions 
into their variant forms in Table 1 to list four 
meta functions for each partition respectively. 
For any given n-variable state there is one 
position in ( )f x  to be 1 and the other 3 
positions are 0. 
For any N bit 0-1 vector X; 

1 0 J 2 2... ... ,0 , , N
N JX X X X J N X B X B    

 under n-variable function f , n bit 0-1 output 

vector ,Y  

( ) | | ,Y f X f X f   1 J 0... ... ,NY Y Y Y

0 J ,N  j 2 ,Y B 2
NY B .   
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For the J-th position be  J
J 2... ... nx X B   to 

form J J
J ( ) | | ,Y f x f x f   let N bit 

positions be cyclic linked. Variant measures of 
( )f X  can be decomposed  

1

0
: ( ) ( )

, , ,

N
J

J

T

X Y f X f x

N N N N





  

    




 

as a quaternion , , , TN N N N   . 

E.g. N = 10, given f , (X)Y f . 
X = 0 1 1 0 0 1 1 1 0 0 
Y = 1 0 1 0 1 0 1 0 1 0 

Δ（X：Y）
 

= + - ⊤ ⊥ + - ⊤ - + ⊥ 

( ) , , , 2,3,3,2 , 10Tf X N N N N N     

 

Input and output pairs are 0-1 variables with 
four combinations. For any given function f , 

the quantitative relationship of  , , ,T    is 

determined directly from input/output 
sequences.  

Measurement Equations 

Using variant quaternion, signals are 
calculated by the following equations. For any 
N bit 0-1 vector X, function f , under 

measurement: ( ) , , , Tf x N N N N    ，

TN N N N N      .  

Equations for Multiple Probability 
Measurements 

Multiple probability Signal   is defined as 
follows [21,24,25]. 

TN
xf  ,,,)(



  

,10,  


 
N
N

  T,,,   

Using

   L L L -, , ; , , , ,R R R T            , it 

is feasible to select two signals for both Left 
and Right Paths. There are six configurations 
noted as {L0:R1, L0:R2, L0:R3, L1:R2, 
L1:R3, L2:R3} respectively.  
Each pair has following correspondence:  

L0:R1= ,   , L0:R2= ,   , 

L0:R3= , T  , L1:R2= + ,  ,  

L1:R3= + , T  , L2:R3= , T     

Under such condition from a pair of selected 
multiple probability signals, a pair of 

interactive signals  ,u v  with either 

symmetry or anti-symmetry property can be 
formulated: 

 
 

0 1

0 1

, , ,

, , ,

L R

L R

u u u u u u

v v v v v v




  


 

 

Symbol  , ,0,1L R  indicates four different 

output results on L: Left Path L-P, R: Right 
Path R-P, 0: Double Path for Particles D-P and 
1: Double Path for Waves D-W respectively.  

0

1

0

1

(1 ) / 2
(1 ) / 2

0.5

L L

R R

L R

L R

L L

R R

L R

L R

u
u
u u u
u u u
v
v
v v v
v v v








 
  


 
  
  


 
   

 

Where 0 , 1u v   ，  , ,0,1L R  ，  : 

Asynchronous addition, {+, -}: Synchronous 
addition and subtraction operations. 

Using  ,u v  signals, each u （ v ）

determines a fixed position in relevant 
histogram to make vector X on a position. 
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After completing N2 data sequences, eight 
symmetry/anti-symmetry histograms of 

 ( | )H u f   ( | )H v f  , ,0,1L R   are 

generated. 

Equations for Conditional Probability 
Measurements 

Conditional probability Signal   is defined 
as follows [22,23,27]. Different from multiple 
probability measurements, two separated 
measures for either 0 or 1 number are 
required.  

0 1, TN N N N N N       

0 0 1 1

, , , , , , T
T

N N N N
N N N N

       
     

Where , 0 1,      T,,,   

Using

   L L L -, , ; , , , ,R R R T            , it 

is feasible to select two signals for both Left 
and Right Paths. In this condition, there are 
four configurations noted as {L0:R2, L0:R3, 
L1:R2, L1:R3} respectively.  
Each pair has following correspondence:  

L0:R2= ,   , L0:R3= , T  ,  

L1:R2= + ,  , L1:R3= + , T     

Under such condition from a pair of selected 
multiple probability signals, a pair of 

interactive signals  ,u v  with either 

symmetry or anti-symmetry property can be 
formulated: 

 
 

0 1

0 1

, , ,

, , ,

L R

L R

u u u u u u

v v v v v v




  


 

 

Symbol  , ,0,1L R  indicates four different 

output results on Left Path L-P, Right Path R-P, 
Double Path for Particles D-P and Double 

Path for Waves D-W respectively.  

0

1

0

1

( ) / 2
(1 ) / 2
(1 ) / 2

0.5

L L

R R

L R

L R

L L

R R

L R

L R

u
u
u u u
u u u
v
v
v v v
v v v








 
  


 
  
  


 
   

 

Where 0 , 1u v   ，  , ,0,1L R  ，  : 

Asynchronous addition, {+, -}: Synchronous 
addition and subtraction operations. 

Using  ,u v  signals, each u （ v ）

determines a fixed position in relevant 
histogram to make vector X on a position. 
After completing N2 data sequences, eight 
symmetry/anti-symmetry histograms of 

 ( | )H u f   ( | )H v f  , ,0,1L R   are 

generated. 
 

Different Statistical Histograms 

For a function  , all measurement signals are 
collected and the relevant histogram 
represents a complete statistical distribution 
[21,22]. Using       ̃  ̃  signals, each signal 
selected from         ̃   ̃   determines a 
fixed position in the relevant histogram to 
make vector X on a position. After completing 
2  data sequences, a total of sixteen 
symmetry /anti-symmetry with 
multiple/conditional probability histograms of 
  (  | )  (  | )  ( ̃ | )  ( ̃ | )  could be 
generated as follows. 
For a function               
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{
 
 
 
 
 

 
 
 
 
  (  | )  ∑  (  |    )

     
 

 (  | )  ∑  (  |    )
     

 

 ( ̃ | )  ∑  ( ̃ |    )
     

 

 ( ̃ | )  ∑  ( ̃ |    )
     

 

 

 Global Matrix Representations 

After local interactive measurements and 
statistical process are undertaken for a given 
function f, 16 histograms are generated. The 
Global Matrix Representation in the 
Generation component performs its operations 
into two stages. In the first stage, exhausting 
all possible 16 functions for each distinct 
selection to generate eight sets, each set 
contains 16 elements and each element is a 
histogram. 
In the second stage, following FC information 
arranging all 16 elements generated as a 4x4 
matrix by one of the four SL, W, F and C code 
schemes. Under different coding schemes, it is 
feasible to observe selected Left and/or Right 
path signals to be polarized into Horizontal 
and Vertical relationships respectively.  

Matrix and Its Elements 

For a given coding scheme, let   〈   |   〉, 
each element 

{
 
 
 
  〈  |  〉(  | )   (  | )

 〈  |  〉(  | )   (  | )
 〈  |  〉( ̃ | )   ( ̃ | )
 〈  |  〉( ̃ | )   ( ̃ | )

 

Under this correspondence, 16 functions are 
located in relevant positions.  

Representation Patterns of Matrices 

Using n = 2, four given coding schemes are 
SL P(3210), W P(2103), F P(3201), C P (3102) 
conditions [21,22,26,29,30], each code case 
contains sixteen histograms arranged as a 4x4 
matrix as follows. 

      2    (
  
  

2  
  

  
 2   

    
    

), 

    2     (
  
2   

  
   

  2
   

   
   

)  

     2    (
 2
  

  
  

   
 2   

   
    

)  

       2  (
  
2  

  
  

  2
    

   
    

)  

 
All matrices in this prototype use this set of 
four configurations for matrix patterns to 
represent their elements to show their global 
properties. 

Typical Selections 
Using http://vdps.sinaapp.com/single/ online 
prototype, it is feasible to try various 
selections in exploration. In convenient for 
users, it is useful to describe typical samples 
of possible configurations as follows. Current 
online version mainly supports single function 
in simulation with limited restrictions & 
refined versions will be provided to enhance 
prototype systems in future developments.  

Legal selections 

When any user makes a selection, six groups 
of legal parameters could be available for the 
prototype. 
1. Vector length :=  N in {5-10}; 
2. Frame := {Single | Global}; 

Single := a single function f in {0-15}, 
Global := four code schemes {SL, W, F, 
C} , each one contains 16 functions; 

3. Interaction := one of ten cases from 
{Multiple(L0:R1, L0:R2, L0:R3, L1:R2, 
L1:R3, L2:R3) | Conditional(L0:R2, 
L0:R3,  L1:R2,  L1:R3)}; 

4. Parity := {Symmetry | Anti-symmetry}; 
5. Output := {L-P, R-P, D-P, D-W, 4-1}; 



VARIANT DOUBLE PATH SIMULATION 

www.hakin9.org/en 45

10 
 

L-P := a frame for Left Path, 
R-P := a frame for Right Path, 
D-P := a frame for Double Path for 
Particles, 
D-W := a frame for Double Path for 
Waves, 

4-1 := a 2x2 matrix composed of 

(    
D  D   

) in one frame. 

6. Graphics := {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑕𝑕𝑡𝑡}; 
Color :={        D  }, 
{L-P, R-P, D-W}Color := {yellow, red, 
green, black, orange, blue, grey}; 
Height := {L-P, R-P, D-P, D-W}; 
{L-P, R-P, D-P, D-W}Height := {10-1000}; 
 

Selections of Frame=Global on C code 
scheme 

It is difficult for people to understand four 
coding schemes without visual assistances. 
Relevant symbol representations are listed in 
Table 2 and six possible selections of {L0:R1, 
L0:R2, L0:R3, L1:R2, L1:R3, L2:R3} are 
used in this section to help users to illustrate 
various partitions and combinations in this 
prototype. Eight symbols {a={Φ}, b={0}, c={2}, 

d={2,0}} and { A={Φ}, B={3}, C={1}, D={3,1}} 
are used to represent corresponding eight sets 
of variant state combinations shown in Table 2. 
Since same projected function must have the 
same symbol representative corresponding to 
the same shape of a certain histogram 
distribution, this property could help users 
observe projected functions easily from L-P, 
R-P and D-P expressions in symbol 
expressions.  
Using matrices of C code scheme, the matrix 
of P(3102) can be represented as follows. 

 C  (
  
2  

  
  

  2
    

   
    

) 

Using symbol expressions, four projected 
matrices are symbolized as follows. 

  ⊥ C  (
  
  

  
  

  
  

  
  

) 

  + C  (
  
  

  
  

  
  

  
  

) 

  − C  (
D D
  

D D
  

  
  

  
  

) 

  ⊺ C  (
  
  

  
  

  
D D

  
D D

) 

It is interesting to notice that the first and 
second matrices are arranged within four 
symbols in vertical distributions and the third 
and fourth matrices within four symbols in 
horizontal distributions. This type of direct 
arrangements are only appeared in C code 
scheme and other SL, W and F code schemes 
cannot have such the simplest structure. Since 
numbers of complicated calculations are 
involved, users are suggested to manipulate 
this prototype initially to select N=5 or 6 first 
to reduce waiting time in generation. Many 
other selections are available in the prototype, 
it is convenient for users to do further 
explorations on other code schemes. 
Using this set of four symbol matrices, six 
cases of symbol matrix combinations can be 
expressed as follows. 
 
Case 1. 

 
   :    C

 (     )C |(     )C      ⊥ C|   + C   

 (
  
  

  
  

  
  

  
  

) | (
  
  

  
  

  
  

  
  

)   

 
Case 2: 



46

Hakin9 EXTRA

7/2012 (14)

11 
 

   : 2 C

 (     )C |( 2   )C      ⊥ C|   − C   

 (
  
  

  
  

  
  

  
  

) | (
D D
  

D D
  

  
  

  
  

)  

 
Case 3: 

   :   C

 (     )C |(     )C      ⊥ C|   ⊺ C  

 (
  
  

  
  

  
  

  
  

) | (
  
  

  
  

  
D D

  
D D

)  

 
Case 4: 

   : 2 C

 (     )C |( 2   )C      + C|   − C  

 (
  
  

  
  

  
  

  
  

) | (
D D
  

D D
  

  
  

  
  

) 

 
Case 5: 

   :    C

 (     )C |(     )C      + C|   ⊺ C  

 (
  
  

  
  

  
  

  
  

) | (
  
  

  
  

  
D D

  
D D

)  

 
Case 6: 

   2:   C

 ( 2   )C |(     )C      − C|   ⊺ C  

 (
D D
  

D D
  

  
  

  
  

) | (
  
  

  
  

  
D D

  
D D

)  

In multiple probability conditions, all six cases 
are possible to generate six sets of distinct 
matrices and each set contains eight matrices 
to illustrate their global distributions in 
symmetry /anti-symmetry and synchronous 
/asynchronous conditions respectively. 

However, in conditional probability conditions, 
four cases (Case 2 – Case 5) are satisfied 
essential conditions in listed equations for 
conditional interactions to generate four sets 
of distinct matrices and each set contains eight 
matrices to illustrate their global distributions 
in symmetry /anti-symmetry and synchronous 
/asynchronous conditions respectively.  
Two cases of Case 1 and Case 6 need to be 
ignored for a pair of dependent measurements 
involved.  
From a symbol representative review point, no 
different relationship between Multiple and 
Conditional can be observed, but under real 
interactive conditions, there are significant 
differences between two types of probability 
selections. Such differences are much easier 
for users to try the prototype on various 
selections observing significantly intrinsic 
differences. 
Four groups in C coding scheme for N=12 are 
selected for four groups of matrices shown in 
Figure 5 (I-IV).  
Group I.  
N=12, Frame=Global, Interaction = 
Multiple(L1:R2), Parity=Symmetry, 
Output=4-1 in Figure 5(I). 
Group II.  
N=12, Frame=Global, Interaction = 
Multiple(L1:R2), Parity=Anti-symmetry, 
Output=4-1 in Figure 5(II). 
Group III.  
N=12, Frame=Global, Interaction = 
Conditional(L1:R2), Parity=Symmetry, 
Output=4-1 in Figure 5(III). 
Group IV.  
N=12, Frame=Global, Interaction = 
Conditional (L1:R2), Parity=Anti-symmetry, 
Output=4-1 in Figure 5(IV). 
 
Four global selections are illustrated for 
people to show relevant global distribution 
characteristics as guide maps in exploration.  
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Typical selections on Frame=Single 

Under this condition, more selections are 
available for users to control the prototype in 
detailed configurations.  
Three groups with special pair properties can 
be identified from a 4x4 C code matrix and 
each group contains different members with 
overlap as follows. 
1. Six Symmetry pairs: {0:15, 1:7, 2:11, 

4:13, 6:9, 8:14} 
2. Six Anti-symmetry pairs: {1:8, 2:4, 

3:12, 5:10, 6:8, 7:14, 11:13} 
3. Four special pairs: {0:15, 3:12, 5:10, 

6:9} 
Four groups of f=12 are selected and their 16 
output results are shown in Figure 6(I-IV). 
Group I.  
N=8, Frame=Single, f=12, Interaction = 
Multiple (L1:R2), Parity=Symmetry, L-Pcolor = 
red, R-PColor = blue, D-WColor = black,  {L-P, 
R-P, D-P, D-W}Height = 300, Output=4-1 in 
Figure 6(I). 
Group II.  
N=8, Frame=Single, f=12, Interaction = 
Multiple (L1:R2), Parity=Anti-symmetry, 
L-Pcolor = red, R-PColor = blue, D-WColor = 
black,  {L-P, R-P, D-P, D-W}Height = 300, 
Output=4-1 in Figure 6(II). 
Group III. 
 N=8, Frame=Single, f=12, Interaction = 
Conditional (L1:R2), Parity=Symmetry, 
L-Pcolor = red, R-PColor = blue, D-WColor = 
black,  {L-P, R-P, D-P, D-W}Height = 300, 
Output=4-1 in Figure 6(III). 
Group IV. 
 N=8, Frame=Single, f=12, Interaction = 
Conditional (L1:R2), Parity=Anti-symmetry, 
L-Pcolor = red, R-PColor = blue, D-WColor = 
black,  {L-P, R-P, D-P, D-W}Height = 300, 
Output=4-1 in Figure 6(IV). 
 
For four groups, a selection changes from 
either Multiple to Conditional or Symmetry to 
Anti-symmetry, output results have 

significantly visual differences. 
 
After making a proper selection, user can 
press Process button to start generation under 
selected parameters. When the generation has 
complete, the Process button turns to be  
disable. 

 
( L-P)              (R-P) 

 

(D-P)             (D-W) 
( I) Multiple Symmetry Group 

 
( L-P)              (R-P) 

 
 (D-P)             (D-W) 

( II) Multiple Anti-symmetry Group 
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( L-P)              (R-P) 

 

(D-P)             (D-W) 
( III) Conditional Symmetry Group 

 
( L-P)              (R-P) 

 
(D-P)             (D-W) 
( IV) Conditional Anti-symmetry Group 

 Figure 6. (I-IV) Four Groups of 16 
distributions for a single function. N=8, 
Frame=Single, f=12, L-Pcolor = red, R-PColor = 
blue, D-WColor = black,  {L-P, R-P, D-P, 
D-W}Height = 300, Output=4-1; (I,II) 
Interaction=Multiple (L1:R2), (III,IV) 
Interaction= Conditional (L1:R2); (I,III) 
Parity=Symmetry, (II,IV) 
Parity=Anti-symmetry.  

Discussion 

Global Cases 

Initially  C  matrix itself does not show 
having special hidden features to organize its 
elements. Under variant projection, four 
symbol matrices are represented for their 
distinct characteristics under symbol 
representations. Four symbols {a, b, c, d} 
determine    ⊥ C   + C  matrices to provide 

four values in vertical directions and another 
four symbols {A, B, C, D} are in 
   − C   ⊺ C  matrices to provide four values 
in horizontal directions. The six interactive 
cases provide all possible 2-2 interactive 
combinations among four matrices.  
Due to intrinsic dependent properties in each 
meta matrix, output matrices of both Case 1 
and Case 6 are degenerated and four output 
matrices of Case 2 – Case 5 can be expressed 
as one matrix under four rotational operations 
on 90 degrees.  Visual characteristics can be 
easily observed via relevant histogram 
distribution matrices.  
Four groups of 16 matrices in C code scheme 
illustrate global properties on horizontal and 
vertical polarized distributions under variant 
matrix partition. Significant differences on 
distributions can be observed to change 
parameters from either Interaction = Multiple 
/Conditional or Parity = Symmetry 
/Anti-symmetry conditions. Four matrices in 
each group illustrate four distributions with 
D-P = L-P + R-P and D-W ≠ L-P + R-P 
properties.  
i.e. The simulated results can satisfy two 
critical conditions of Feynman models to 
explain wave-particle interactive behaviors. 

Single Cases 

Under selected interaction, it is possible to 
reconfigure other parameters via online 
interface. One important parameter is Parity 
that provides either Symmetry or 
Anti-symmetry characteristics. Another key 
parameter is Interaction that includes 10 
different selections, six cases for Multiple 
probability interactions and four cases for 
Conditional probability interactions.  
From an analogy viewpoint, this set of 
parameters provides core links corresponding 
to deep historical mysteries in foundation of 
quantum mechanics. Using graphic color 
control parameters, it is convenient to observe 
randomness in D-P distributions as separated 
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color segments with different lengths in some 
cases. Since wave interactions cannot generate 
new objects, it is impossible to distinguish 
each output recorder to be linked to their 
original resources. Under such condition, only 
one color could be resigned. It is interesting to 
see users in further exploration finding new 
results.  
Similar to global characteristics, it is feasible 
to find refined properties via various detailed 
selections on controllable parameters. In the 
prototype, it is convenient for user to click on 
one picture in 4-1 frame to get a zoom 
distribution for superior information. Users 
can use this type of tools to check each 
interactive result in finer details.  

Feasible Configurations 

In this prototype, a total number of 
configurations can be calculated as follows.  
For a single function in n=2, possible 
selections are based on six vector lengths, two 
parities, four interactive projections, 16 
functions, ten interactions. A total of 7680 
configurations (6×2×4×16×10 = 48×160) are 
available for all controllable selections on the 
prototype.  

Conclusion 
It is essential to design an online prototype 
properly for various implementations. The 
architecture and core components of VDPS in 
the paper are only a brief outline to guide 
further versions of VDPS to meet wider user’s 
requirements. Applying online simulation 
mechanism on Web, it is more convenient for 
people to apply VDPS facilities as computer 
assistant tools in future explorations and 
observations. 
This prototype provides a larger space as 
controllable configurations for the simulation 
to visualize various detailed distributions.  
In addition to single functions, different 
configurations on global coding schemes will 
be designed and implemented in near future to 

provide more powerful capacities of 
simulation mechanism to resolve historical 
mysteries and paradoxes in quantum 
interactions. 
Both theoretical and experimental solutions 
are expected in quantum foundation and 
practical applications consequently. To follow 
VDPS systematical guide maps, it is 
encouraged to resolve more historical 
problems and emerging practical challenges in 
natural world on either theoretical or 
experimental levels in near future. 
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( III) Conditional Anti-symmetry Group 
Figure 5. Four Groups of Global Matrices, N=8, Frame=Global, Output=4-1, (I, II) Interaction 
=Multiple(L1:R2); (III, IV) Interaction = Conditional (L1:R2); (I,III) Parity=Symmetry; (II, IV) 

Parity=Anti-symmetry 
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Table 1. Two Variable Logic Functions and Variable Logic Representation (n=2, j=0) 

f  

No. 
)2(S

f 
 

3 

11 

2 

10 

1 

01 

0 

00 

3v 

11v 

2v 

10v 

1v 

01v 

0v 

00v 
0
0 (2)

f
S
 

 )2(0
0S

f 

 )2(0
1S

f 

 0
0 (2)

f
S
 

 

0 {Φ} 0 0 0 0 - ⊥ - ⊥ {2,0} {Φ} {3,1} {Φ} 

1 {0} 0 0 0 1 - ⊥ - + {2} {0} {3,1} {Φ} 

2 {1} 0 0 1 0 - ⊥ ⊤ ⊥ {2,0} {Φ} {3} {1} 

3 {1,0} 0 0 1 1 - ⊥ ⊤ + {2} {0} {3} {1} 

4 {2} 0 1 0 0 - + - ⊥ {0} {2} {3,1} {Φ} 

5 {2,0} 0 1 0 1 - + - + {Φ} {2,0} {3,1} {Φ} 

6 {2,1} 0 1 1 0 - + ⊤ ⊥ {0} {2} {3} {1} 

7 {2,1,0} 0 1 1 1 - + ⊤ + {Φ} {2,0} {3} {1} 

8 {3} 1 0 0 0 ⊤ ⊥ - ⊥ {2,0} {Φ} {1} {3} 

9 {3,0} 1 0 0 1 ⊤ ⊥ - + {2} {0} {1} {3} 

10 {3,1} 1 0 1 0 ⊤ ⊥ ⊤ ⊥ {2,0} {Φ} {Φ} {3,1} 

11 {3,1,0} 1 0 1 1 ⊤ ⊥ ⊤ + {2} {0} {Φ} {3,1} 

12 {3,2} 1 1 0 0 ⊤ + - ⊥ {0} {2} {1} {3} 

13 {3,2,0} 1 1 0 1 ⊤ + - + {Φ} {2.0} {1} {3} 

14 {3,2,1} 1 1 1 0 ⊤ + ⊤ ⊥ {0} {2} {Φ} {3,1} 

15 {3,2,1,0} 1 1 1 1 ⊤ + ⊤ + {Φ} {2,0} {Φ} {3,1} 
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Table 2. Two Variable Logic Functions and Their Symbol Representations (n=2, j=0) 

f  

No. 
)2(S

f 
 

3 

11 

2 

10 

1 

01 

0 

00 

3v 

11v 

2v 

10v 

1v 

01v 

0v 

00v 
0
0 (2)

f
S
 

 )2(0
0S

f 

 )2(0
1S

f 

 0
0 (2)

f
S
 

 

0 {Φ} 0 0 0 0 - ⊥ - ⊥ d a D A 

1 {0} 0 0 0 1 - ⊥ - + c b D A 

2 {1} 0 0 1 0 - ⊥ ⊤ ⊥ d a B C 

3 {1,0} 0 0 1 1 - ⊥ ⊤ + c b B C 

4 {2} 0 1 0 0 - + - ⊥ b c D A 

5 {2,0} 0 1 0 1 - + - + a d D A 

6 {2,1} 0 1 1 0 - + ⊤ ⊥ b c B C 

7 {2,1,0} 0 1 1 1 - + ⊤ + a d B C 

8 {3} 1 0 0 0 ⊤ ⊥ - ⊥ d a C B 

9 {3,0} 1 0 0 1 ⊤ ⊥ - + c b C B 

10 {3,1} 1 0 1 0 ⊤ ⊥ ⊤ ⊥ d a A D 

11 {3,1,0} 1 0 1 1 ⊤ ⊥ ⊤ + c b A D 

12 {3,2} 1 1 0 0 ⊤ + - ⊥ b c C B 

13 {3,2,0} 1 1 0 1 ⊤ + - + a d C B 

14 {3,2,1} 1 1 1 0 ⊤ + ⊤ ⊥ b c A D 

15 {3,2,1,0} 1 1 1 1 ⊤ + ⊤ + a d A D 

Where eight symbols {a={Φ}, b={0}, c={2}, d={2,0}} and { A={Φ}, B={3}, C={1}, D={3,1}} are used to 
represent corresponding eight sets of variant state combinations respectively. 
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