

http://www.quatest.org/

team
Editor in Chief: Ewa Dudzic

http://www.appsecusa.org/

ewa.dudzic@hakin9.org
Managing Editor: Ewa Duranc
ewa.duranc@hakin9.org
Paweł Plocki
pawel.plocki@hakin9.org
Editorial Advisory Board: Board: Arsen Darakdjian, Scott Paddock, Matthew Holley, Derek
Thomas, Ewelina Soltysiak
Proofreaders: Ewa Duranc, Arsen Darakdjian, Scott Paddock
Special Thanks to the Beta testers and Proofreaders who helped us with this issue. Without their
assistance there would not be a Hakin9 magazine.
Senior Consultant/Publisher: Paweł Marciniak
CEO: Ewa Dudzic
ewa.dudzic@hakin9.org
Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org
DTP: Ireneusz Pogroszewski
Marketing Director: Pawel Plocki
pawel.plocki@software.com.pl
Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en
Whilst every effort has been made to ensure the high quality of the magazine, the editors make no
warranty, express or implied, concerning the results of content usage.
All trade marks presented in the magazine were used only for informative purposes.
All rights to trade marks presented in the magazine are reserved by the companies which own them.
To create graphs and diagrams we used program by
Mathematical formulas created by Design Science MathType™
DISCLAIMER!
The techniques described in our articles may only be used in private, local networks. The editors hold no responsibility for
misuse of the presented techniques or consequent data loss.

Dear Hakin9 followers,
This month’s issue is devoted to Wireshark. We have many articles that were written especially for
you by network security experts. The first article is by Patrick Mark Preuss who describes network
related problems and proves that Wireshark is the right tool to do that. What is more, we have an
article by Bob Bosen who shows that there are several means by which your neighbors could have
penetrated your WiFi LAN. Next, Hai Li demonstrates how to support a new wireless protocol in
Wireshark. Also, we have an article by William Favre Slater III on Cyberwarfare and Cybercrime.
Last but not least, you should take a look at article by Pedro Moreno-Sanchez and Rogelio Martinez-
Perez. Their article is devoted to tracing ContikiOS based IoT communications over Cooja
simulations with Wireshark.
Hakin9’s editorial team would like to give special thanks to the authors, betatesters, proofreaders and
our editor in chief, Ewa Dudzic.
I hope that you will enjoy reading this issue!

Ewa Duranc, Paweł Płocki & the Hakin9 Team.
A message from the whole team
It has been a difficult time for us over the past few weeks. A mistake has been made on our part,
which has led to a vast amount of criticism towards Hakin9. This situation has influenced us to
reflect on our past choices and policies. We want to assure you that from now on we will be working
even harder to bring you the best material on IT security out there.
We also wanted to take this time to thank all of you for staying by our side; with special thanks to our
authors, beta-testers, proofreaders and partners.

Thank you all for your support. We are truly blessed to be able to work with such gifted individuals
and to have such amazing readers.

Hakin9 Magazine’s Editorial Team

If you own or manage a website, two of your biggest concerns are keeping it secure and making it faster. Thanks to Incapsula, a
cloud-based service for SME’s, these needs can be fully met with a simple setup and without installing any hardware or so�ware.
Incapsula protects and accelerates websites. The service includes a bot detec�on technology to iden�fy and filter out malicious
bots, a PCI-cer�fied Web Applica�on Firewall (WAF) to provide Enterprise-grade website security against malicious a�acks and
hackers, and a content delivery network (CDN) to accelerate websites.
How does it work?
Once the user signs up to Incapsula, he gets simple direc�ons to change his website’s DNS records in order to route the traffic
through Incapsula’s global network of data centers. A�er the DNS changes have been completed (it takes minutes to make the
changes and up to 24 hours for the changes to fully propagate – but there is no down�me during the process), the incoming
traffic is profiled in real-�me by Incapsula, allowing Incapsula to block all threats to the website. Meanwhile, the outgoing traffic
is accelerated and op�mized by Incapsula.

By offering a distributed, cloud-based service, Incapsula is able to offer a variety of affordable plans, star�ng with a free plan for
small websites and up to Business and Enterprise plans which include Enterprise-grade security features.

The Dashboard
The Traffic tab provides an overview of the website visits and sessions, separa�ng human visits and bot visits, along with a list of
top countries & Applica�ons used to hit the website.
The Security tab lists the different threats and incidents iden�fied by Incapsula. For each threat there is an op�on to view the
event – which means to get a detailed session report. You can also view your current se�ng – is Incapsula blocking the threat,
repor�ng it or completely ignoring it.

http://www.incapsula.com/
http://www.incapsula.com/

The Performance tab in the dashboard helps in ascertaining the bandwidth consump�on and also provides insight on how much
speed has been increased by the caching and op�miza�on features provided by Incapsula.

As Incapsula provides a global Content delivery network (CDN), by presen�ng the content of the website to the visitor from the
nearest data center, the pages load can be drama�cally improved, which improves SEO ranking and of course the user
experience.
Se�ngs
Incapsula offers various se�ng op�ons to allow the user full control of his security and performance rules:

The Site Se�ngs screen offers various op�ons but the most interes�ng one is the ‘Advanced Accelera�on Mode’ that enables
Incapsula’s unique dynamic content caching. In my case, indeed it improved site performance significantly.
The No�fica�ons Se�ngs provides a few op�on to make sure that the user is always updated with the latest events:

• A Weekly report: sent automa�cally to the email, lis�ng all important security events in the passing week, and other traffic and

performance stats

• A PCI Compliance Report: PCI compliance is an important issue for e-commerce sites. The PCI report is a unique feature of

Incapsula and allows you to provide your auditor with a report indica�ng that your website has been protected by a Web

Applica�on Firewall during a specific period.

• Real-�me No�fica�ons: Including no�fica�on emails for specific types of threats and visitors to the site.

The Security Se�ngs: Incapsula’s Bot Access Control allows the user to decide which bots are allowed to visit the website, which
should be blocked, and which should get a CAPTCHA test.
As some of the bots disguise themselves through spoofed IPs & fake user-agents, Incapsula uses various iden�fica�on
techniques, to search for clues in the behavior pa�erns of the bot and the HTTP Headers.

The WAF Se�ngs: Incapsula’s PCI-Compliant Web Applica�on Firewall protects from 4 types of threats: SQL Injec�on, XSS, Illegal
Resource Access and DDoS a�acks. For each type of a�acks the user has various op�ons, star�ng from deciding what Incapsula
should do with the a�ack (Alert only, Block, ignore) and up to Blocking a specific User or IP.

DDoS Se�ngs
The ‘Automa�c’ feature in DDoS gets enabled at the �me of a�ack. The ‘Advanced Se�ngs’ op�on allows site administrator to
configure the challenge and DDoS request rate. Various configurable challenge op�ons are Cookie / Javascript / Captcha support.

Overall Assessment:
My overall assessment of the tool is 9 on a scale of 1-10 and would recommend customers using Incapsula for protecting their
websites against web threats and accelerating it.
If you have an eCommerce website, Incapsula provides a PCI-Cer�fied WAF with excellent reports that can be filed in your
compliance file. If you are a customer to whom true security, confiden�ality, integrity, and availability are of crucial or of utmost
importance – this is, in my opinion, one of the best tools to help you to reach this goal.
h�p://www.incapsula.com/

Amit Chugh
Amit Chugh, CEH®, ISO 27001 LA, Creative, innovative & results driven technology leader with over 14 years of
industry experience, with 7+ years specialising in Information Security Management, Incident Management, Business

Continuity Management and Software Development. He is reachable at chugh ‘dot’ a ‘at’ gmail ‘dot’com.

Wireshark – Sharks on the wire
Capturing and analyzing network data is one of the core skills
every IT professional should posses. If you have problems with
your system or application, suspect a security issue, in almost
every case the network is involved today. Wireshark is the right tool
to help you finding network related problems and analyze them.
Wireshark can be used for different tasks: Troubleshooting network
problems, security analysis, optimization, and application analysis. Network

http://www.incapsula.com/

data analysis can is a huge field and can be confusing if you are not so
familiar with it.

History
Before we begin with the Wireshark itself, we should have a look into the
history of packet tracing. Programs for network tracing are known since the
late 1980’s. At that time mainly commercial analyzers were unavailable, the
most famous being at this time was the program Sniffer, developed by
Network General. You may have noticed that the process, is sometimes
called sniffing, this term goes back to this program. On Unix machines the
program tcpdump has been developed by Van Jacobsen, Leers and
MacCanne in the late 1980s, this program and the library libpcap can be
seen as the grand fathers of Wireshark. In the early 1990s there were a lot of
commercial packet analyzers available, most of them was expensive and
built in hardware. This changed at the end of the 1990s with the
development of “Ethereal” by Gerald Combs, this program was build on top
of libpcap and the GIMP Tool Kit (GTK) library, this brought a free
analyzer to many different operating systems. In 2006 Gerald Combs
changed employment to CASE Technologies and new project was started on
the code base from Ethereal. The program since than is called Wireshark.
Wireshark is available on many different platforms, for example Microsoft
Windows, Linux/Unix and OSX, it can now be seen as the standard
application for network analysis.

TCP/IP Basics
Wireshark can deal with a many protocols families. To name some there are
AppleTalk, wireless protocols like Wlan, WiMax and the famous TCP/IP.
We should have a look on TCP/IP protocol suite because it is the most
frequently used protocol today.
The protocol was developed by the Defense Advanced Research Projects
Agency (DARPA) in the 1970s, its roots go back to the ARPANET
(Advanced Research Projects Agency Network).
TCP/IP provides end-to-end connectivity, specify how data should be
formatted, addressed, transported and routed.
The suite is divided into four layers, each with its own set of protocols,
from the lowest to the highest:

The physical layer defines wiring, electrics and low level protocols to
access the media and address nodes on the same medium. As an example
can be seen: Ethernet, Wireless, DSL (Digital Subscriber Line), PPP (Point
to Point Protocol) and others. The addresses used on this layer are called
MAC Address.
The internet layer (IP) is for addressing the nodes: each node becomes a
global unique address. The addressing can be IPv4 or IPv6. IPv4 addresses
are usually written as dotted decimal numbers, for example, 192.168.0.1.
The protocol has an address space of 32bit = 232 = 4.294.967.296 and this
space cannot give every device on the plant an address. To overcome this,
there is a technique called Network Address Translation (NAT).
To address this issue in 1998, the Internet engineering task force (IETF) has
released a new protocol standard to solve this problem. This protocol
standard is called IPv6 and brings many improvements over IPv4, such as: a
bigger address space, encryption support (ipsec), and has been redesigned
so that new feature can be easily implemented. The Addresses are now 128
bit long and will provide 3.403×1038 = 2128 unique addresses.
Routing is used when addresses are not local in your network. Most systems
have a default route to a router, which can forward these packets. There is
no magic in it, any system knows its own IP address and the network mask,
for example, the address is 192.168.0.100, and the network mask is
255.255.255.0. Netmask can also be written in another format, CIDR
(Classless Inter-Domain Routing). Here netmask will be written /24, which
means that the first 24 bits from the address are the network and the
remaining bits are the node. With this notation, it is obvious that the host
10.0.0.1 is not on the same network and that the packets need to be send to
the router.
The transport layer defines how data will be transported. Transmission
Control Protocol (TCP) is used for reliable transport of the data, like file
transfer or email. On the other hand, there is User Datagram Protocol
(UDP), with which the data sent is unreliable, and is used for time critical
applications like VoIP (Voice over IP). These applications have the need of
continuous arrival of packets and the information stored in a single packet is
not so important.

The Application Layer defines how the data is encoded, for example, HTTP
(Hyper Text Transfer Protocol), SMTP (Simple Mail Transfer Protocol),
SIP (Session Initiator Protocol – VoIP Call Control Protocol).
In the Table 1 you will find an overview of the TCP/IP suite.
Table 1. TCP/IP Layers

OSI Layer TCP/IP Layer Example
Application (7)

Application HTTP, SMTP, POP, SIPPresentation (6)
Session (5)
Transport (4) Transport TCP, UDP, SCTP
Network (3) Internet IP (IPv4,IPv6)
Data Link (2)

Link Ethernet, Wireless, DSL
Physical (1)

When you are not so familiar with the tcp/ip you can use Wireshark to
expand your knowledge. For example, you can trace the packets when
opening the URL http://www.wireshark.org in a web browser and see what
happens. You will see that the name is translated with DNS (Domain Name
Service) to an IP address and then, a TCP session to the address is opened.
Note: Please be aware when firewalls or WAN optimizers are installed in
the path, they can alter TCP/IP behavior and packet contents.

Getting started with captures
Getting started with data capture with Wireshark is pretty easy. The
program installs all the necessary components for capturing data. Wireshark
comes with an easy-to-use interface, many analysis features and tools.
When you start Wireshark, you will see the main window. Here you can
select the interface which should be used for data capture. During the
capture, you will see a live packet list and an analysis (Figure 1).

Figure 1. Capture window

What we see during a sample capture is that there was a ping to
www.wireshark.org and the answers. It is also possible to use Wireshark
from the command line (Listing 1). First, we looked up the available
interfaces with tshark -D and than, we started a capture on tshark -i wwan0, in
(Table 2) you can see some of the common command line options.

http://www.wireshark.orf/
http://www.wireshark.org/

Listing 1. Command line usage

[~]# tshark -D
1. eth0
2. eth1
3. any (Pseudo-device that captures on all interfaces)
4. lo
[~]# tshark -i eth0
Capturing on eth0
1.121921 10.0.12.10 -> 174.137.42.75 ICMP 98 Echo (ping) request id=0x03f9, seq=1/256,

ttl=64
1.307740 174.137.42.75 -> 10.0.12.10 ICMP 98 Echo (ping) reply id=0x03f9, seq=1/256,

ttl=51
2.122759 10.0.12.10 -> 174.137.42.75 ICMP 98 Echo (ping) request id=0x03f9, seq=2/512,

ttl=64
2.305570 174.137.42.75 -> 10.0.12.10 ICMP 98 Echo (ping) reply id=0x03f9, seq=2/512,

ttl=51
3.123583 10.0.12.10 -> 174.137.42.75 ICMP 98 Echo (ping) request id=0x03f9, seq=3/768,

ttl=64
3.307118 174.137.42.75 -> 10.0.12.10 ICMP 98 Echo (ping) reply id=0x03f9, seq=3/768,

ttl=51
6 packets captured
[~]#
Listing 2. Using multiple files

[~]$tshark -i eth1 -w /tmp/out.pcap -b duration:2 host www.Wireshark.org
Capturing on eth1
108
[~]$ls -la /tmp/out*
-rw-------. 1 root root 176 Oct 3 20:11 /tmp/out_00001_20121005201159.pcap
-rw-------. 1 root root 28084 Oct 3 20:12 /tmp/out_00002_20121005201201.pcap
-rw-------. 1 root root 16568 Oct 3 20:12 /tmp/out_00003_20121005201203.pcap
-rw-------. 1 root root 21396 Oct 3 20:12 /tmp/out_00004_20121005201205.pcap
-rw-------. 1 root root 176 Oct 3 20:12 /tmp/out_00005_20121005201207.pcap

In the GUI, you have the option to save the data to a file after you have
captured it, or during the setting up a new capture. It is possible to use more
than one file. This is useful when capturing high volume of traffic or switch
files on a regular base. My personal favorite for capture is the command
line because less system resources are used and you can easily use it on
remote systems. Listing 2 shows how it looks when using multiple files.
Table 2. Tshark options

-i <interface> name or idx of interface (def: first non-loopback)
-D print list of interfaces and exit
-n disable all name resolutions (def: all enabled)

-w <outfile> write packets to a pcap-format file named „outfile”filesize:NUM – switch to next file after
NUM KB

-b <capture ring buffer
option>

filesize:NUM – switch to next file in NUM KB duration:NUM – switch to next file in NUM
seconds

-r <infile> set the filename to read from (no pipes or stdin!)
-Ttext|fields format of text output

-e <field> field to print if -Tfields selected (e.g. tcp.port); this option can be repeated to print multiple
fields

-R <read filter> packet filter in Wireshark display filter syntax

The needle in a haystack

So far we have seen how to capture data, but we might see a lot of data. To
get useful information out of huge captures might not be easy, it’s like
trying to find the needle in a haystack. Wireshark can help us to limit the
traffic we capture and see. There are two type of filters: capture filters are
used during the capture process and are applied directly to the interface.
This will use less system’s resources, they are a good starting point to
reduce the amount of traffic we capture. Some examples: to filter traffic to a
particular host: host 192.168.0.1, a network net 192.168.0.0/24 or a specific
application like HTTP port 80
When you are beginning a new capture, the filter can be applied directly on
the command line or in the capture options dialog, for example: tshark -i
eth0 host www.wireshark.org this will capture all the traffic from and to
www.wireshark.org.
There are more options if you have to write filters, for more details please
use the Wireshark Wiki and the libpcap site. Capture filters are
implemented in the library. The same filters can be used with any pcap
based program like tcpdump. You can use those filters, for example, for
security analysis, like this one for the blaster worm dst port 135 and tcp port
135 and ip[2:2]==48. The display filters, on the other hand, give access to the
processed protocols, the filter can be used also during the capture or after
the capture has been finished. For example, tcp.analysis.ack_rtt gives you
access to the acknowledgment round trip times, Hosts can be selected with
ip.host eq <hostname> or ip.src, ip.dst. The filters are powerful tool for limiting
the display of the captured packets. You have the possibility to look for
errors, follow specific streams or see which urls have been accessed, you
can even trace SIP Calls and look for a specific number. For example:
http.request.uri contains “GET”. In listing 3 you can see an example capture to
Wireshark.org in the first part we have used a capture filter we will see the
complete tcp traffic, tree-way handshake and the GET request for the
Wireshark homepage. In the second part, we applied a display filter that
shows us only the GET request for the homepage.
Listing 3. Capture and display filters

[~]$tshark -i eth0 host www.Wireshark.org
Capturing on eth0
0.000000 10.0.12.10 -> 174.137.42.75 TCP 74 48739 > http [SYN] Seq=0 Win=14600 Len=0

MSS=1460 SACK_PERM=1 TSval=70646065 TSecr=0 WS=16
0.184523 174.137.42.75 -> 10.0.12.10 TCP 74 http > 48739 [SYN, ACK] Seq=0 Ack=1

Win=5792 Len=0 MSS=1452 SACK_PERM=1 TSval=641801134 TSecr=70646065 WS=128

http://www.wireshark.org/
http://www.wireshark.org/

0.184598 10.0.12.10 -> 174.137.42.75 TCP 66 48739 > http [ACK] Seq=1 Ack=1 Win=14608
Len=0 TSval=70646111 TSecr=641801134

0.185521 10.0.12.10 -> 174.137.42.75 HTTP 181 GET / HTTP/1.1
<output omitted>
42 packets dropped
36 packets captured
[~]$
[~]$tshark -i eth1 -R “http.request.uri”
Capturing on eth1
2.932826 10.0.12.10 -> 174.137.42.75 HTTP 181 GET / HTTP/1.1
1 packet captured
[~]$

Analyzing captured data
After we have reduced our captured data to a reasonable level, we can now
begin with the analysis of the data. Wireshark provides a rich set of easy to
use tools. You will find them in the menu under Analysis or Statistics.
Listing 4. Capture information

[~]$capinfos /tmp/out.pcap
File name: /tmp/out.pcap
File type: Wireshark - pcapng
File encapsulation: Ethernet
Packet size limit: file hdr: (not set)
Number of packets: 28234
File size: 29260904 bytes
Data size: 28300663 bytes
Capture duration: 47 seconds
Start time: Fri Oct 5 20:38:03 2012
End time: Fri Oct 5 20:38:50 2012
Data byte rate: 604322.15 bytes/sec
Data bit rate: 4834577.20 bits/sec
Average packet size: 1002.36 bytes
Average packet rate: 602.90 packets/sec
SHA1: 5284fc1b1d17836b0670ec07f751ad38369f49fb
RIPEMD160: 4ffd2e5e6ad5d0577aad6391e77aca5a4d1d2357
MD5: f1fd14e630f7bfffcd8f292545113dd1
Strict time order: True
[~]

A good start is to look at the overall capture statistics, you can access them
under Analysis->Statistics, or command line with the capinfos tool (Listing
4). The most important information is about the data rate, round about 5
mbit/s is a good value for my Internet connection, and the average packet
size around 1000 bytes per packet is a good value. This was a download of
Wireshark from the website, so packets sizing 1500 bytes were travelling to
me from the web server, but the acknowledgment to the web server was
sent in small packets. The other interesting point is the Expert Info where
we can find summarized errors, warnings, and other information seen in the
capture (Figure 2).

Figure 2. Expert info

Other helpful tools are:

• the IO Graph (Statistics->IO Graph) (Figure 3),
• Time Sequence Graph (Statistics->TCP StreamGraph->Time Sequence

Graph (Stevens),
• or Statistics->TCP StreamGraph->Time Sequence Graph (tcptrace)),
• and Round Trip Time Graph (Statistics->TCP StreamGraph->Round Trip

Time Graph) can help you visualize how your traffic flow is developing
over the time. Spikes and holes in the graphs are good indication that
something is wrong.

Figure 3. Normal io graph

Security analysis can also be done. You might want to look for unusual
traffic like a lot of TCP connect packets or when one host is trying to
connect to many hosts, maybe outside of your network. You might also
want to search for a specific pattern in your traces, for example, for the
Conficker worm you might use smb.services contains “NetPathCanonicalize” as
filter. This will help you identify the infected hosts.

Exporting data for reporting
Sometimes it is necessary to write a report for a problem or to prepare a
presentation, but the graphs are not adequate, or don’t fit your presentation
style. Wireshark can produce during analysis some graphs, but there is no
reporting feature built in. However, you can export the data into several
formats, like CSV (Comma Separated Values). This is done under File-
>Export Packet Dissections->as CSV, also with tshark format the output,

for example, please look at (Listing 5). This data you can process with
Office tools like Excel or OpenOffice.
Listing 5. exporting data as csv

[~]$tshark -r /tmp/out.pcap -T fields -e frame.number -e frame.time_relative -e ip.src
-e ip.dst -e ip.proto -e frame.len -e tcp.analysis.ack_rtt -E header=y -E
separator=, -E quote=d -E occurrence=f

frame.number,frame.time_relative,ip.src,ip.dst,ip.proto,frame.len,tcp.analysis.ack_rtt
“1”,”0.000000000”,”10.0.12.10”,”174.137.42.75”,”6”,”74”,
“2”,”0.183815000”,”174.137.42.75”,”10.0.12.10”,”6”,”74”,”0.183815000”
“3”,”0.183845000”,”10.0.12.10”,”174.137.42.75”,”6”,”66”,”0.000030000”
“4”,”0.184419000”,”10.0.12.10”,”174.137.42.75”,”6”,”241”,
“5”,”0.371743000”,”174.137.42.75”,”10.0.12.10”,”6”,”66”,”0.187324000”

Where to capture
After we have discussed how we can filter and analyze the data, we should
take a look where we can get the data from. Sometimes it is not practicable
to capture directly on the client or the server. But it is also possible to add a
network tap or use a port mirror on the switch, it is even possible to capture
the traffic on the network device and export this in pcap format so that
Wireshark can read the capture. Each of this methods has both advantages
and disadvantages.
You have seen how to capture data directly on the nodes. To capture data
with a network tap or a hub is not more complex, just add it somewhere
along the path of the packets. The main disadvantage is that you will have
to unplug cables, so this process is disruptive for the traffic and may have
other side effects for the connection, for example, most hubs operate with
10mbit speed.
Listing 6. traffic capture on a Cisco Switch

#configure terminal
(config)#monitor session 1 source interface GigabitEthernet 0/2
(config)#monitor session 1 destination interface GigabitEthernet 0/3
#

Port Mirrors on switches are a good idea, as long as you have ports and
resources on the switch, because this method is non-disruptive and gives
you the possibility to capture a large amount of data. When setting up the
wrong mirror port, you might see not the traffic you expect to see or packets
will be dropped on the mirror port which are exiting the mirrored port. For
example, Cisco Catalyst Switches can mirror traffic, this feaure is called
SPAN (Switched Port Analyzer), a session would be set up is this way:
This will configure the switch to copy all frames from GigabitEthernet 0/2
also to GigabitEthernet 0/3, this will give a system connected to port 2 and

Wireshark installed to trace traffic to and from the system on port 2.
Some network devices can capture the data to an internal ring buffer and
export this in pcap format, like the Cisco ASA Firewall Series (Listing 7),
Cisco Routers (Listing 8) and Juniper Devices. You can use those when you
want to capture only a limited amount of traffic, because they have limited
availability of memory. If you need more information on how to capture
packets on specific hardware, on the websites from the manufacturer,you
will find appropriate information.
Listing 7. traffic capture on a Cisco ASA

#configure terminal
(config)# ! define interesting traffic
(config)# ! make sure to define both directions
(config)# access-list capture-list permit tcp host 10.0.12.10 host 174.137.42.75
(config)# access-list capture-list permit tcp host 174.137.42.75 host 10.0.12.10
! Start the capture
#capture capture-inside interface inside access-list capture-list buffer 100000 packet

1522
#
#! export the capture
#copy /pcap capture:capture-inside ftp://myhost/mycapture.pcap
Listing 8. traffic capture on a Cisco Router

#!create the capture access-list
(config)#ip access-list extended capture-list
(config-ext-nacl)# permit ip host 10.0.12.10 host 174.137.42.75
(config-ext-nacl)# permit ip host 174.137.42.75 host 10.0.12.10
(config-ext-nacl)#
#monitor capture buffer capture-buffer size 1024 max-size 1500 circular
#monitor capture buffer capture-buffer filter access-list capture-list
#monitor capture point ip cef capture-point fastEthernet 0 both
#monitor capture point associate capture-point capture-buffer
#monitor capture point start capture-point
#
#sh monitor capture buffer all parameters
Capture buffer capture-buffer (circular buffer)
Buffer Size : 1048576 bytes, Max Element Size : 1500 bytes, Packets : 998
Allow-nth-pak : 0, Duration : 0 (seconds), Max packets : 0, pps : 0
Associated Capture Points:
Name : capture-point, Status : Active
Configuration:
monitor capture buffer capture-buffer size 1024 max-size 1500 circular
monitor capture point associate capture-point capture-buffer
monitor capture buffer capture-buffer filter access-list capture-list
#
#! export capture
#monitor capture buffer capture-buffer export ftp://myhost/cap
#
#! for more options please review the cisco website

The shark goes wireless
Capturing wireless control traffic can be done with Wireshark. To capture
the control frames, the system must support the monitor mode on the card.
Its availablity are platform, driver and libpcap dependent, on most Linux

systems it is possible to get the card into monitor mode with iwconfig or more
easy with the airmon-ng script, for example, airmon-ng start wlan0, on
windows, the AirPcap adapters from Riverbed allows the capture of full raw
wireless traffic.
The WLAN traffic summary will look like (Figure 4).

Figure 4. WLAN Traffic summary

Security and Legal Aspects
The use of Wireshark is not without risks. Unauthorized people can come
into the ownership of sensitive information, maybe healthcare, bank data,
and so on. It is therefore advisable to have a clear policy for the use of
Wireshark and other tools. Questions that should be answered are: Who is
allowed to capture? How to deal with the captured data? Your policy should
also include the need to encrypt the data. If you do not do this, sensible data
can leave the company and may have serious legal and financial
consequences for the company and you as an individual. In many countries
the use of Wireshark and other tools has been banned and placed under
strict and heavily regulated laws. Please inform yourself beforehand about
the law and consider contacting a lawyer.

Summary
Wireshark is a powerful tool to analyze network data and it can help you
improve your network skills.
We have seen that it is pretty easy to capture traffic in the network and that
we analyze them for issues. Tracing wireless networks is more demanding,
and, when possible, capture the traffic on the wire. In my experience, it is
helpful to have a baseline of captures at hand and to update it when there
are changes in applications.
On the Web
• http://www.Wireshark.org – The Wireshark Homepage
• http://www.tcpdump.org/ – Home of tcpdump and libpcap
• https://www.cisco.com/en/US/customer/products/hw/switches/ps708/products_tech_note09186a008015c612.shtml – Cisco

Catalyst Mirror Ports
• https://www.cisco.com/en/US/docs/ios-xml/ios/epc/command/epc-cr-m1.html – Cisco Routers Packet Capture

http://www.wireshark.org/
http://www.tcpdump.org/
https://www.cisco.com/en/US/customer/products/hw/switches/ps708/products_tech_note09186a008015c612.shtml
https://www.cisco.com/en/US/docs/ios-xml/ios/epc/command/epc-cr-m1.html

• https://supportforums.cisco.com/docs/DOC-1222 – Cisco ASA Packet Capture
• http://www.aircrack-ng.org/doku.php?id=airmon-ng – airmon-ng script
Glossary
• SPAN – Switched Port Analyser
• IP – Internet Protocol
• IPv6 – IP Version 4
• TCP – Transmission Control Protocol
• UDP – User Datagram Protocol

Patrick Preuss
Patrick Preuss is working as a network engineer for a large company in Germany. He has more than
twelve years of experience in network design and analysis. He can be contacted under
patrick.preuss@gmail.com.

https://supportforums.cisco.com/docs/DOC-1222
http://www.aircrack-ng.org/doku.php?id=airmon-ng
mailto:mailto:patrick.preuss%40gmail.com?subject=

Wireshark Not Just A Network
Administration Tool
Wireshark, a powerful network analysis tool formerly known as
Ethereal, captures packets in real time and displays them in
human-readable format.
Wireshark was developed by Gerald Combs and is free and open-source. It
is used for network troubleshooting, analysis, software and communications
protocol development, and education and in certain other ways in hands of a
penetration tester as we will learn further in this article. Wireshark is
platform independent, and runs on Linux, Mac OS X, BSD, and Solaris, and
on Microsoft Windows. There is also a Command Line version called
Tshark for those of us who prefer to type.

Where to get Wireshark?
You can download Wireshark for Windows or Mac OS X from its official
website. If you’re using Linux or another UNIX-like system, you’ll
probably find Wireshark in its package repositories. For example, if you’re
using Ubuntu, you’ll find Wireshark in the Ubuntu Software Center.
Features of Wireshark

• Distributed under GNU Public License (GPL)
• Can capture live data from a number of types of network, including

Ethernet, IEEE 802.11, PPP, and loopback.
• Wireshark can also read from a captured file. See here for the list of

capture formats Wireshark understands.
• Supports tcpdump capture filters.
• Captured network data can be browsed via a GUI, or via the terminal

(command line) version of the utility, TShark.
• Captured files can be programmatically edited or converted via command-

line switches to the “editcap” program.
• Data display can be refined using a display filter.
• Plug-ins can be created for dissecting new protocols.
• VoIP calls in the captured traffic can be detected. If encoded in a

compatible encoding, the media flow can even be played.

http://www.wireshark.org/download.html
http://www.wireshark.org/docs/wsug_html_chunked/ChIOOpenSection.html#ChIOInputFormatsSection

• Raw USB traffic can be captured.
• Wireshark can automatically determine the type of file it is reading and

can uncompress gzip files
Wireshark Command Line Tools

• tshark – similar to tcpdump, uses dumpcap as packet capture engine.
• dumpcap – network traffic dump tool, capture file format is libpcap

format.
• capinfos – command-line utility to print information about binary capture

files.
• editcap – remove packets from capture files, convert capture files from

one format to another, as well as to print information about capture files.
• mergecap – combines multiple saved capture files into a single output file.
• rawshark – dump and analyse network traffic.

Let us get started – Capturing Packets
with Wireshark
After downloading and installing Wireshark, you can launch it and click the
name of an interface under Interface List to start capturing packets on that
interface (Figure 1).

Figure 1. Packet Capture

Or you can go to the menu bar and click on Capture > Interfaces and select
the interface on which you want to capture the traffic (Figure 2).

Figure 2. Packet Capture

Here we click on the Vmware network adaptor and start capturing the
packets (Figure 3).

Figure 3. Packet Capture

Let us try some basic packet capture. Let us browse to www.google.com and
see the traffic generated.
The local computer 192.168.239.129 queries the DNS server 192.168.239.2
to find out who is google.com. The DNS query response by 192.168.239.2
is displayed which gives the IP addresses of multiple google web servers.
This is followed by the three way TCP handshake (SYN, SYN-ACK, ACK)
with one of the google web server on 74.125.236.183 as shown Figure 4.

Figure 4. Google Browsing Traffic

The HTTP traffic which commences post TCP handshake commences with
a GET request as shown. Here we can use another feature of Wireshark to
follow this particular HTTP traffic. For this, we right click on the GET
request and select Follow TCP Stream (Figure 5).

Figure 5. Follow TCP Stream

We can view the entire HTTP transaction in a new window (Figure 6).

Figure 6. HTTP Traffic Stream

http://www.google.com/

Separating out Network Traffic of our
interest – Use of Display Filters
Wireshark provides an interesting feature of filtering the network traffic
using display filters. Let us look at some of these filters and how we can
mix and match them to get down to an item of our interest.
The most basic way to apply a filter is by typing it into the filter box at the
top of the window and clicking Apply (or pressing Enter). For example,
type “dns” and you’ll see only DNS packets. When you start typing,
Wireshark will help you auto complete your filter. Another way to achieve
the same result is to go to the Analyse tab in the main menu bar and select
display filter.
Let us say we want to check out all DNS packets which are from
Authoritative DNS Servers. After tying DNS, we can scroll down the drop
down list and select dns.flags.authoritative (Figure 7).

Figure 7. DNS Authoritative Flag

The selected DNS packet shows that the DNS server is not an authoritative
server for the requested domain as the Authoritative Flag is not set.

Playing Around with Filters Using
Operators
Some basic operators we can use with display filters are as shown.

• Equal: eq, = =
• Not Equal: ne, ! =
• Greater than: gt, >
• Less Than: lt, <
• Greater than or equal to: ge, > =
• Less than or equal to: le, < =

Example
Say we want to see all HTTP GET requests in the captured traffic. We can
type http.request.method = = “GET” into the Display Filter box and get all
the GET requests made by the user (Figure 8).

Figure 8. HTTP GET

Over with Basics, Time to Have Some fun
now..
Let us now see if we can sniff unencrypted passwords. So, I need to find an
insecure website which uses http for sending login credentials instead of
https. Unfortunately, this fun is almost over now as most of the websites
have shifted to https. This is a test website for checking web application
vulnerabilities (http://demo.testfire.net) (Figure 9).

Figure 9. Sniff Password

So, let us use the filter feature in Wireshark to just only filter the HTTP
POST method. Type – http:.request.method == “POST” into the display
filter box and let us see what we get. Twp packets with HTTP PST request
are filtered out, we select the packet of our interest and view packet details
in the lowermost window. I think we just got lucky here.. (Figure 10).

http://demo.testfire.net/

Figure 10. Sniff Password

How can Wireshark Help me in Network
Security?
Wireshark can give a network administrator a very good idea of what is
happening on his network. Although not an Intrusion detection tool, it can
easily help in checking some security policy violations.

Identifying Bittorent Downloads
The protocol used for peer to peer transfers is the giveaway here. We can
view only the BitTorrent packets by typing bittorrent in the filter box. You
can do the same for other types of peer-to-peer traffic that may be present,
such as Gnutella, eDonkey, or Soulseek (Figure 11).

Figure 11. Identify Bittorrent

We can also view the network usage based upon protocol by going to
Statistics tab on Menu bar and selecting Protocol hierarchy.
Here we see that the bittorrent traffic is occupying almost 70 % of overall
network traffic. So much for downloading movies at the wrong time and
place (Figure 12).

Figure 12. Bittorent Stats

Identifying Facebook Usage
Can’t live with or without it? Well, your network admin may be watching if
your organisation does not allow it.
Sites like Facebook often use several servers to provide content to users. We
can’t just filter one ip address and be done with it. It can involve many
different addresses, and usually changes per user. The simplest way to set a
filter for Facebook users is to use the “tcp contains facebook” filter (Figure
13).

Figure 13. Facebook

So once, we are done with the so called bad guys on the inside of our
network, let us watch out for the bad guys outside the network. Well, having
said that these attacks can be better done from inside the network bypassing
all our perimeter security and taking advantage of the trust placed by the
organisation on its employees.

Identifying Port Scans
Let us now see how a TCP SYN scan would appear on Wireshark interface.
TCP SYN scan is also known as half open scan because a full TCP
connection is never established. It is used to determine which ports are open
and listening on target device.

We can see that the attacker IP 192.168.239.130 is ending packets to victim
IP 192.168.239.129 with the SYN Flag set (Figure 14).

Figure 14. SYNscan

The victim IP responds with a RST ACK packet. This indicates that the port
is closed.
In case if SYN /ACK is received, it indicates that the port is open and
listening

X-Mas Scan
The X-Mas scan determines which ports are open by sending packets with
invalid flag settings to target device. This scan is considered stealthier then
SYN scan as it may be able to bypass some firewalls and IDSes more
easily.
The attacker send TCP packets with FIN, URG and PSH flags set and gets
RST ACK reply back. This indicates that the port is closed. An open port
will simply drop the packet and not respond.
X-Mas scan would appear like this on Wireshark (Figure 15).

Figure 15. XmasScan

Identifying Malware Infection
So someone has already clicked, despite all the security training,
presentations, workshops, etc, etc. In fact, we are slowly reconciling to the
fact that no matter what you do, the user will always fall to the ever tricky

ways of attacker and this should be the basis of our risk assessment. If we
can save our networks and data even after a machine has got compromised,
we have a chance to survive in this world of zero days.
Wireshark can help us in identifying malware infections on our network.
Most of the modern malware operate in a client server mode and allows the
attacker to have full remote control of the target machine.
Let us consider a case scenario wherein an employee indulges in indiscreet
surfing on internet. As is likely, the malicious websites visited by the
employee would try to download malicious code on the employee computer
(you can find nothing for free in life and certainly not on internet). If we
have a packet capture of the network traffic, it can be analysed by using
Wireshark. Let us see how it happens. For this, we go the File menu and
select Export Objects > HTTP (Figure 16).

Figure 16. Export Objects

Wireshark provides us with a list of all HTTP objects downloaded on the
employee machine. Here we select a file “javascript.js” and save it to a
desired location on the local computer (Figure 17).

Figure 17. Jssaveas

Our suspicion about this file is confirmed as the antivirus alert pops up
immediately on our desktop indicating that the file is malicious (Figure 18).

Figure 18. Jsdetection

So, now we are level zero of Wireshark proficiency. To dig deeper (and I’m
sure it is worth it), we have the option of attending free live training
webinars by Laura Chappell, or go through her Wireshark Network
Analysis guide and get ourselves certified as Wireshark Certified Network
Analyst.
Arun Chauchan
Joint Director CIRT Navy at Indian Navy

Wireshark: The Network Packet
Hacker or Analyzer
The purpose of this article is to provide the overview of the
powerful tool Wireshark. The document also explains how to build
a working setup to analyze Ethernet standardized network packets.
In order to run wireshark, there are following pre-requisites that must be
present.

• Linux/Windows desktop host machine.
• Host machine must have Ethernet interface.
• The user should have basic Linux/Windows environment knowledge.
• PC should be connected to network via a Ethernet cable.
Table 1. Acronyms and Abbreviations

Wireshark Wireshark is an open source network packet sniffer tool
IP Internet Protocol
GSM Mobile phone communication network terminology (Global System for Mobile Communications)
VoIP Voice over IP

Overview
Wireshark is an open source tool for capturing and analysing network
packets, from standard network protocols such as Ethernet, TCP, UDP,
HTTP to GSM Protocols like LAPD. Wireshark works like a network

packet X-Ray and can listen to network traffic to help identify problems
related to protocols, applications, links, processing time, latency and more.
This tool expands packet header and data information which is user friendly
understandable information for debugging networking issues.
On running the Wireshark Analyser tool, network packets are displayed in
the Graphical User Interface (GUI) at run time. Each packet shown in GUI
can be expanded to view various header fields of the network packet.
Wireshark supports IPv4, IPv6, 6lowPAN and many more networking
standards & protocols.

Wireshark tool usage
• Debugging Internet Protocol TCP and UDP which are the most commonly

used protocols for communication. Debugging for the following problems
when analysing TCP-based applications using Wireshark
• Zero Window
• Window is Full
• Keep-Alive
• Window Update
• Previous Segment Lost
• Retransmissions/Fast Retransmissions
• Duplicate ACKs

• Wireshark is a useful tool to determine the cause of slow network
connections.

• To expose problems for VoIP using Wireshark.
• To expose LAPD/ABIS GSM protocol message debugging for missing

acks session close etc.
Wireshark is an open source tool which can be extended for any
communication protocols message debugging.

How to setup Wireshark
Connect Wireshark host machine to a hub to capture network packet flow
(Figure 1).
Configuring setup on Windows and Linux system:

Figure 1. Setup block diagram

The following steps show you how to configure Wireshark:

• Install Wireshark: On Windows, download Wireshark and install with the
default selections,
including WinPcap. On Linux, enter the commands with root privileges:
• yum search wireshark
• yum install wireshark
• yum install wireshark-gnome

• Configure the interface to be analysed
• Start Wireshark.
• Select the “Capture | Interfaces” menu item.
• Choose the network interface exhibiting issues and click Start.

• Launch the application you want to analyse (the TCP client, for example).
• To configure a filter with a focus on Perforce network traffic click the

Expression item next to the Filter item.
• Select the Capture | Stop menu item when you have completed

reproducing the issue.
• To save the results, select the File | Save as... menu item to save the output

as a .pcap file. This file can be sent to Perforce for analysis.
Linux based wireshark setup block diagram (Figure 2).

http://www.wireshark.org/

Figure 2. Setup Linux PC

How wireshark works (Technical block
diagram)
It taps the packet from wire and a handler is called for packet parsing and
display. As show Figure 3.

Figure 3. Wireshark packet tapping and parsing

Wireshark Packet Analyser Screenshots
• The Figure 4 displays the Wireshark main window with packets captured

from the network

Figure 4. Wireshark packet capture main window

• Wireshark statistics view window (Figure 5)

Figure 5. Wireshark statistics view

• Wireshark time reference window (Figure 6).

Figure 6. Wireshark time reference window

• Wireshark packet analyse view (Figure 7).

Figure 7. Wireshark packet analyser view

Conclusion

Tapping into the communications in a passive manner enables you to
identify communication problems. Mastering analysis of communication
protocols is critical when identifying the source of those problems and
differentiates. Wireshark shows each bit and byte of the filtered protocol
packet along with sensible header byte information to show detailed
information that aids in problem solving within the network. Network
analysis is one of the key skill sets all IT and security professionals should
master. Wireshark assists network professionals to learn how the protocols
and applications interact with each other.
Anand Singh

WiFi Combat Zone: Wireshark
versus the neighbors
If you’re one of the regular readers of Hakin9, then you know that
there are several means by which your neighbors could have
penetrated your WiFi LAN. Do you ever wonder if it’s already
happened? Would you like to learn how to monitor anybody that’s
abusing your network?
Then take a look at “WiFi Combat Zone: Wireshark versus the neighbors”,
where we will take a deep look at the well-known, free “Wireshark”
Ethernet diagnostic software, concentrating on its use while monitoring the
activities of uninvited guests on our networks.
If you’re one of the regular readers of Hakin9, then you know that there are
several means by which your neighbors could have penetrated your WiFi
LAN. Do you ever wonder if it’s already happened? Would you like to learn
how to monitor anybody that’s abusing your network?
You’ve come to the right place!
In today’s message, we will take a deep look at the well-known, free
“Wireshark” Ethernet diagnostic software, concentrating on its use while
monitoring the activities of uninvited guests on our net-works.
Wireshark has been around for a long time! I first stumbled upon it back in
the late 1990s, when it was known as “Ethereal”, the product of a talented
American network engineer named Gerald Combs. I was thrilled with it. At
the time, I was designing a new, commercial network security system for
my own small company, and I had been trying to persuade investors that the
future would bring increasing need for security products. Using Wireshark
with their permission, I was able to capture usernames and passwords on
the Ethernet LANs of potential investors. They had all heard that this sort of
thing was possible, but prior to the appearance of Ethereal, the necessary
tools had been very expensive.
When I told them that Ethereal was free, legal, easy to use, and compatible
with almost every inexpensive PC then in existence, my investors got out
their checkbooks! I’ve been using it ever since.

Wireshark Architectures
Wireshark software is easy to install, and the installation process follows
the general and well-established norms for each computing platform. It will
run on almost any personal computer, using LINUX, MAC OS-X,
Windows, and several of the most popular versions of Unix. Free versions
for Windows and Macintosh platforms can be downloaded from
www.wireshark.org. Even the source code is available there, for public
examination. Linux users could install from the source code, but most
Linux distributions include Wireshark as a precompiled application within
their “repository” libraries, according to the common new Linux traditions.
But there is a problem....
Although it is easy to obtain and install Wireshark, it is generally NOT easy
to get it to intercept WiFi traffic in a broad, general-purpose way.
Interception and examination of WiFi traffic with Wireshark is NOT the
same as using the well-known “Promiscuous Mode” to examine
conventional Ethernet traffic.
Although all WiFi adapters are capable of gathering WiFi signals from
every compatible 802.11 emitter within range, the “driver” software that
connects your hardware WiFi adapter with your operating system will
discard any of those signals that are directed toward other computers unless
it has been specifically designed to support what WiFi engineers call
“Monitor Mode”. And here’s the problem: Most popular, low-cost WiFi
drivers do NOT support Monitor Mode (This is especially true of drivers
written for the Microsoft Windows operating system).
Unless you are among the fortunate few with a WiFi card whose device
driver software supports Monitor Mode, your copy of Wireshark will
display only packets directed at your own computer, and “broadcast
packets” that are deemed to be safe when broadcast to everybody on your
LAN. You won’t be able to see conversations between the other computers
and nodes of your network, and you won’t be able to monitor the details of
the traffic they exchange on the Internet.
For the remainder of this article, we are going to assume that you suffer
from these constraints like most people.
Don’t despair.... We have two simple, low-cost solutions for you! You
WILL be able to monitor your neighbors (and others) using WiFi to connect

to your LAN as they send and receive information through your Internet
connection. We call these solutions “Wireshark Intercept Architectures”.
They will require you to make some changes to your home or small office
LAN, but the changes are simple and very low in cost. As illustrated in the
two figures below, the two architectures are: Figure 1 and Figure 2.
As shown in Figure 1 and 2, an Ethernet Hub is central to all of our plans.
An Ethernet Hub looks a lot like a common “Ethernet Switch”, and
although it connects into your network in the same way, it is NOT the same
thing. When you go shopping for an Ethernet Hub, you’ll be looking for a
low-cost, profoundly dumb device.
Although Ethernet Switches use more modern technology and are more
common, Ethernet Hubs are still readily available. The difference between
an Ethernet Hub and an Ethernet Switch is fundamental to our interception
architectures. Here are the definitions: Figure 3.
Ethernet Hub: An electronic device that expands the number of Ethernet
connections by a process of mindless signal replication, so that any Ethernet
signal that enters into the hub through any of its connectors is replicated at
all of the others (Figure 4).
Ethernet Switch: An electronic device that expands the number of Ethernet
connections by a process of intelligent signal switching. The source address
of every Ethernet frame entering the switch through any of its connectors is
examined and recorded in a table, associating it with the connector through
which it arrived, so that the switch learns the Ethernet addresses of
equipment attached to each connector. The destination address of every
Ethernet frame entering the switch through any of its connectors is also
examined and compared with the table. If the switch does not yet know
which connector leads to the addressed destination, then the switch behaves
exactly like an Ethernet Hub, “broadcasting” the packet to every connector
to maximize the likelihood of proper transmission. On the other hand, if the
switch already knows the proper connector for delivery, it sends the packet
ONLY out that connector to minimize traffic congestion (Figure 5).
By now it should be clear why we want to insert an Ethernet Hub into our
network: It creates a perfect “wiretap” for Wireshark! Wherever you insert
your Ethernet Hub, you can connect an additional computer, running
Wireshark, and you can then see ALL of the Ethernet traffic traversing the
Hub. It doesn’t matter whether the traffic originated on an encrypted WiFi

link, or through hardwired Ethernet: you get it ALL, and the computer
hosting Wireshark won’t even need a WiFi adapter! (On the other hand, an
Ethernet Switch in the same position would filter out all of the most
interesting traffic, sending only Ethernet traffic that is designated for
broadcast to every-
body).
Take a look at Figure 1. In this architecture, we assume that the WiFi Router
at your network’s “head end” is separate from your broadband modem.
(About half of the world’s domestic WiFi networks look like this.) Before
beginning this exercise, a single Ethernet cable led between the Broadband
Modem and the WiFi Router’s “Internet” connector. The Ethernet Hub that
we’ve inserted between the Broadband Modem and the WiFi Router allows
the Wireshark Host to see ALL of the Internet traffic for every user of the
network.
Now Take a look at Figure 2. In this architecture, we assume that your WiFi
Router (designated “WiFi Router 1”) has a built-in broadband modem, so
you can’t get access to an Ethernet segment upstream of your WiFi traffic.
This is another very common situation, because most domestic Internet
Service Providers install an “all in one” WiFi Router and Broadband
Modem combination. In this situation, we chose to install a second WiFi
Router, designated “Honeypot” router in the illustration. An Ethernet Hub
and Wireshark host are then connected between the 2 routers, more-or-less
duplicating the wiretap situation shown in Figure 1.

Figure 1. Ethernet Hub between WiFi Router and Broadband Modem

Obviously, the architecture of Figure 2 allows our Wireshark host to see all
of the Internet traffic exchanged through the Honeypot Router, but it cannot
see Internet traffic exchanged through the original WiFi Router.
Accordingly, we must force any unauthorized users to switch to the
Honeypot Router.

Figure 2. Honeypot WiFi Router and Ethernet Hub

How do we do that? Easy! We just change the WPA encrypting key of WiFi
Router 1, and we leave the “Honeypot Router” running WiFi in the clear,
without any encryption. All of the users will immediately face a decision:
They can ask us for the new WPA key for their familiar WiFi Router 1, or
they can experiment with the Honeypot Router’s access.

Figure 3. Ethernet Hub

As you have no doubt surmised, all of the “Interesting” traffic will go for
the Honeypot router, and you’ll be able to monitor it!

Figure 4. Ethernet Switch

The Wireshark software
Once Wireshark is installed on your computer, you can begin capturing
traffic. You will need to designate a network “Interface” whose traffic you
want to monitor. Most computers nowadays have more than one Ethernet
interface (Usually a hard-wired Ethernet connector and a WiFi card), and
Wireshark’s administrative interface displays a prominent “Capture”

Section where you can activate a “live” list of available interfaces. Each
interface in that list is accompanied by a counter that continuously displays
the number of Ethernet packets that have been observed.

Figure 5. Ethernet Switch Internals. An Ethernet Switch is a lot like an Ethernet Hub, but it includes microprocessor-
based intelligence so it can avoid broadcasting most Ethernet signals. Instead, it learns the specific and appropriate
destination for each Ethernet frame it processes, and forwards each incoming message fragment only to the
appropriate Ethernet connector. This can increase network efficiency and privacy, but it interferes with our desire to
monitor all network traffic. For our purposes in this discussion, a Hub is better!

Figure 6. Wireshark's "Capture Interface" Selector

Figure 6 illustrates this list after 2,687 packets had been observed through
interface “eth1” (If you just want to examine all packets from all interfaces,
you can select the interface labeled “any”).
Once you choose an interface and press the prominent “Start” button, your
display will look a lot like Figure 7.

Figure 7. Wireshark in action, showing 3 main sections tiled beneath the usual set of dropdown menus

Beneath the usual arrangement of drop-down menus and icons, your display
will be dominated by three large sections tiled on top of one another, each
of which will span your entire display window from left to right. You can

re-size each of these 3 areas by left-clicking and dragging on the dividing
horizontal boundaries between them.
From top to bottom, these three sections are:
Section 1 of 3
A scrolling list summarizing all captured frames. Each frame is described
on a separate horizontal row, identified by a sequence number and its arrival
time. Additional fields reveal the frame’s source address, destination
address, protocol type, and a brief explanation. You can use your mouse to
highlight one of the lines in this area for further exploration. In Figure 7 we
have highlighted Packet #1, which is identified as an “ARP” frame from
Ethernet Address “Cisco_eb:d9:78”.
Section 2 of 3
A Protocol Interpretation Area revealing additional information about the
Ethernet frame highlighted in the scrolling list. Because Ethernet frames
can contain many different types of data packets, Wireshark has been
designed to use this area dynamically, and with deep intelligence. Although
the general format and arrangement of this area will remain constant, the
details change as appropriate to help you explore different kinds of Ethernet
frames and as you “drill down” into their contents. As shown in Figure 7,
this area is dominated by a series of horizontal lines, each commencing with
an “arrowhead” icon to indicate the presence of additional details that can
be accessed with a mouse-click.
This arrangement mimics the general organization of Ethernet frames,
which can contain packets within packets within packets, and each of those
inner packets consists of several “fields” whose purpose and format have
been standardized by committees of engineers (who had to come to
agreement before data could be interchanged).

Figure 8. Any of the lines in Section 2 can be expanded for further detail by left-clicking on its arrowhead icon. Here
we see the first line expanded, revealing details about the entire, selected Ethernet frame. Note that there are 3
additional lines beneath that first one, each representing content that is buried correspondingly "deeper" within the
frame, and that each of those 3 additional lines has its own arrowhead icon, indicating the presence of additional,
available details that can be accessed with a simple click of the mouse

Thus the top line in Area 2 of Figure 7 summarizes the entire,
corresponding Ethernet frame at the “highest” level. Additional lines
beneath that one focus on embedded packets or significant field areas
within the frame, with “deeper” embedded frames corresponding with lines
beneath upper ones. Clicking on the arrowhead icon at the left of any of
these lines will invoke additional, expert logic to analyze the contents of the
corresponding data, revealing its structure and purpose in the vocabulary of
the engineers who designed and standardized it.
Take a look at Figure 8, showing the way Area 2 examines the 66th
captured Ethernet Frame, after left-clicking on the arrowhead icon to
expand the very first horizontal line. As you can see, the contents of that
summary line have been GREATLY expanded to reveal more information
about the entire packet.

Figure 9. Wireshark's examination of a more interesting Ethernet frame containing a Domain Name System query
packet from a computer operating within our own local IP subnet. Note the text at the bottom identifying the "Internet
Movie Database" www.imdb.com. It looks like somebody is going to be looking for movie entertainment....

Section 3 of 3
Return to Figure 7, where you can see Section 3 across the bottom. In this
area, Wireshark displays all of the “raw” data within the selected Ethernet
frame, without trying to analyze its structure. The data is “dumped” in
Hexadecimal across the left side of Section 3, revealing the relative position
and precise value of each data byte. If you are comfortable with
Hexadecimal math, you can get to “bedrock” using this data dump, even if
you encounter an Ethernet frame using a protocol that is completely
undocumented. The right side of Section 3 tries to show additional insight,
on the assumption that some of the characters may be formatted according
to the popular conventions of the “ASCII” character set. Thus, if the data
contains a printable word or phrase formatted in the usual way, you’ll see it

here (It is commonplace to see usernames and passwords in this area when
unsophisticated, non-encrypted protocols are in use).

Figure 10. Wireshark's "Filters" tool allows you to filter unwanted information from view. In this example, we are
preparing to hide all frames that do NOT contain an IPv4 packet

Capture Everything!
After you begin capturing Ethernet data as described above, you’ll notice
that the list of data in Section 1 will scroll up as additional frames appear at
the bottom. Within a few minutes you’ll probably capture thousands of
frames, and you may want to stop capturing.
Click the “Capture” drop-down menu heading at the top of your display,
and then select “Stop”. No further data will be captured, and the scrolling
list will stop moving, giving you time to explore individual frames already
captured.
At this point you can use the “Save As” option from the usual “File” drop-
down menu to save a copy of the captured packets. I recommend that you
take this step whenever you’ve captured traffic that you suspect may
contain anything interesting (This is a reversible process; you can load the
saved file for further analysis whenever you need to).

Explore the Details
Click on one of the horizontal lines in Section 1, and you’ll see associated
details in Sections 2 and 3. Click on the resulting, little “arrowhead” icons
in Section 2 and you will see further details and labels identifying the
purpose and structure of the selected areas. Sometimes, as you explore areas
of Section 2, you may notice that areas of the data in Section 3 change color
to help you identify the raw data that’s associated with the area under
examination.
Real expertise with Wireshark will come as you select an individual frame
in Section 1 and then use Section 2 to explore its contents, referring to
Section 3 as appropriate to read any text messages that it may contain.

All of this will take time! As you will observe, there are a great many
different kinds of data packets that can be wrapped up inside Ethernet
frames. Most of these won’t be very interesting. The great preponderance of
Internet traffic is mundane stuff. But every once in a while, you’ll find a gem!
Pay special attention to the “Source” field in Section 1. Watch for IP
addresses from your own local subnet, paying special attention to any that
are unfamiliar or that you have not specifically authorized as part of your
own network. (Usually these local IP addresses will begin with “192.168”,
and the subsequent address digits will be assigned by your router according
to guidelines you’ve set up through its management menus.) If neighbors or
other unauthorized people are using your network, their packets will be
among this group.
For example, take a look at Figure 9, in which we examine frame #208,
originating from IP address 192.168.10.123. Obviously this IP address
comes from our own, local subnet, so it’s likely from a computer that’s very
close by. From Section 1 we can see that it’s a DNS packet. Section 2
reveals further that it’s a Domain Name System query. By clicking on the
associated arrowhead icon in Section 2, we can force Section 3 to highlight
the associated data, where we can see that somebody is requesting the IP
address of the well-known “Internet Movie Database” at www.imdb.com.
This is EXACTLY the kind of behavior that we might expect from an
unsophisticated neighbor casually using our Internet connection via WiFi.
At this point, it might be wise to browse into the management interface of
our WiFi router to see when IP address 192.168.10.123 was issued, and the
hardware address of the Ethernet adapter it uses....

More Wireshark tools: “Analyze”
Wireshark’s dropdown menus offer additional tools that you might enjoy.
For example, after selecting a line representing TCP traffic in Section 1,
take a look at the “Analyze” dropdown menu. An option to “Follow TCP
Stream” is prominent. Click that option and you’ll see a very interesting
summary of that TCP packet and all of the other TCP packets comprising
the associated TCP session, which could span a long period of time. All of
those TCP packets will be located from your captured data, sequenced into
proper order, and formatted for your convenient viewing. If this TCP
Stream is like most, it will contain printable words and phrases that will be

http://www.imdb.com/

prominently displayed. This is one of the best ways to get a quick, high-
level understanding of the messages traversing your network (Similar
analysis tools are also available for examination of sequenced UDP and
other session-oriented traffic).

Figure 11. Sometimes additional information is needed in order to complete construction of an appropriate Wireshark
display filter. In this case, the filter will exclude all frames unless they are communicating with IP address
192.168.10.123

More Wireshark tools: “Filters”
After capturing thousands of Ethernet frames, you will want to sort through
them quickly and easily. For example, you may want to concentrate only on
those originating from or going to IP address 192.168.10.123. You can
easily use the “Filter” facility to eliminate all other frames from the display
list. This is done by clicking on the prominent “Expression” button (as
shown near the top of Figure 9), near the blank “Filter” box).
A long, scrollable list of “Field Names” will appear. Scroll that list down to
“IPV4” and then click the associated arrowhead icon for further expansion,
as shown in Figure 10. Now scroll down further, among the newly
displayed ip subfields, to select “ip.addr”. Then, as shown in Figure 11,
click within the “Relation” box to select “==”. Finally, type the target IP
address “192.168.10.123” into the “Value” box. This will automatically
construct what Wireshark calls a “Display Filter” meeting our requirements.
From that moment onward, only captured frames originating from or sent to
IP address 192.168.10.123 will be displayed, allowing us to concentrate our
efforts on the most interesting traffic for our chosen situation.

Conclusions
Wireshark is a very powerful, free software tool that will allow you to
examine every detail of traffic on your Local Area Network, including a
great many things that casual users assume they can keep private. By
configuring your network with an Ethernet Hub near your main Internet

connection, you will be able to connect Wireshark strategically so that you
can see the contents of WiFi (and other) traffic exchanged on the Internet. If
somebody is abusing your network, you will be able to monitor their
activities whenever they happen to use a routine, unencrypted protocol for
Internet access.
This will require patient research, because the vast majority of the Ethernet
frames that you capture will contain traffic that is either uninteresting, too
complex to allow easy analysis, or has been encrypted. However, even the
most clever users will eventually access resources that can easily be
examined, and by studying their activities with Wireshark, you will be able
to determine the IP addresses that they use on your network, the amount of
time they spend connected, the amount of traffic they generate, the probable
manufacturer and Ethernet address of their Ethernet adapter, the web sites
they access, and some of the messages they exchange.
Bob Bosen
Bob Bosen began building personal computers in 1969, and he had already completed and
programmed three of his own machines before Jobs and Wozniak revealed the “Apple 1”. He
invented modern one-time password systems in 1979 and holds corresponding patents in the US and
UK. His “SafeWord System” is in widespread use throughout the world, providing strong
authentication for millions of network users every day. He frequently uses Wireshark to troubleshoot
and research network applications, and he publishes the well-known “AskMisterWizard.com” online
video magazine.

Using Wireshark to Analyze a
Wireless Protocol
Wireshark is the perfect platform to troubleshoot wireless networks.
In this tutorial, I will demonstrate how to support a new wireless

http://www.askmisterwizard.com/

protocol in Wireshark. A wireless protocol in the real world is very
complicated, so I will use ASN.1 technology to generate the source
code of a dissector. Some advanced topics, such as export
information, tap listeners, and so on, will be briefly introduced.
Protocol analysis is extremely important, both for engineers in developing a
complicated communication system, or for network supervision and fault
diagnosis. Wireless networking is a bit more complex than a wired one.
Countless standards, protocols, and implementations causes trouble for
administrators trying to solve network problems. Fortunately, Wireshark has
sophisticated wireless protocol analysis support to troubleshoot wireless
networks.
In this article, we’ll try to demonstrate how to analyze the real-world
captures of a wireless communication protocol, TErrestrial Trunked RAdio
(TETRA). We will discuss how to sniffer the wireless data and to dissect
the protocol data.

TETRA Protocol Stack
TETRA is a specialist Professional Mobile Radio specification approved by
ETSI. TETRA was specifically designed for use by government agencies,
emergency services, rail transportation staff, transport services and the
military. TETRA requires fast call set-up times (<0.5s), and since most call
durations last less than 1 minute, the operations of channel assignment and
release are frequent.

Figure 1. TETRA V+D Air Interface protocol stack

The TETRA Voice plus Data Air Interface (V+D AI) protocol stack is
shown in Figure 1. The base of the protocol stack rests on the physical
layer. The data link layer is composed of two sub-layer entities (MAC and
LLC). An explicit Medium Access Control (MAC) sub-layer is introduced

to handle the problem of sharing the medium by a number of users. At the
MAC, the protocol stack is divided into two parts, the user plane (U-plane),
for transporting information without addressing capability, and the control
plane (C-plane), for signaling and user data with addressing capability. A
Logical Link Control (LLC) resides above the MAC and is responsible for
controlling the logical link between a MS and a BS over a single radio hop.
An explicit Mobile/Base Control Entity (MLE/BLE) sub-layer resides
above the LLC for handling establishment and maintaining the connection
to the BS. The MLE/BLE also acts as a convergence, so the same layer 3
entities could be used on top of different layer 2 entities. At the top of the
protocol stack (layer 3), several entities may be present: Mobility
Management (MM), Circuit Mode Control Entity (CMCE) and TETRA
packet data protocol (PD). The interactions between layers go through
Service Access Points (SAPs).

Capture wireless data
We need a hardware device to capture the traffic from the air and send it to
Wireshark, that then decodes the traffic data into a format that helps
administrators track down issues.
The primary motive for using Wireshark to analyze TETRA protocol data,
is to help us develop our base station (BS) and mobile switch center (MSC)
of TETRA. Figure 2 shows a diagram of our system architecture. A TETRA
BS includes TETRA layer 1 and layer 2. The MAC itself is divided into two
sub-layers, the upper and lower MAC. The lower MAC performs the
channel coding, interleaving and scrambling. The upper MAC performs the
other MAC protocol functions. In our system, an FPGA is used to
implement the features of physical layer (PL) and the lower MAC (LMAC),
while Base Station Controller (BSC) provides the functions of the upper
MAC and LLC layers. TMV-SAP inside the MAC layer allows a protocol
description using primitives and logical channels. By using the TMV-
UNITDATA request primitive, the C-plane or U-plane information provided
by higher layers will be placed into the appropriate logical channel and
transmitted to the physical layer in the assigned timeslot, in the multiple
frames. When lower MAC receives the data from an MS, it will send the
data to upper MAC using TMV-UNITDATA indication primitive.

Figure 2. System architecture of TETRA BSC and MSC

There is no TETRA standard between a BS and an MSC, so we define this
interface as AZ Interface in our system, just like A-Interface in GSM or Iu
Interface in UMTS. A BSC connects to an MSC via Ethernets, and
exchanges signaling using UDP protocol. U-Plane traffic data will be
transferred using Real-time Transport Protocol (RTP) among TETRA
networks. RTP provides mechanisms for the sending and receiving
applications to support streaming data, so we choose RTP protocol to
transfer traffic data in our system like most VoIP systems.

Figure 3. The packet format of TMP

BSC forwards all signaling and U-plane data, exchanged at both AZ
Interface and TMV-SAP, to a monitoring computer for the purpose of
observation and analysis. We defined the format of the TMV-SAP data as
TETRA Monitor Protocol (TMP). This protocol will be discussed in a later
section. Wireshark will be installed in the monitoring computer to capture
and save the packet data. Because all the signaling and U-plane data is not
standardized, we need to develop custom dissectors to analyze the captured
data.
Another choice to capture the wireless TETRA data is using Osmocom
TETRA. Osmocom TETRA project is an open source Software Defined
Radio TETRA Air interface sniffer, which aims at implementing the
sending and receiving part of the TETRA MAC/PHY layer.
Currently, Osmocom TETRA project can

• receive, demodulate and decode TETRA downlink signals of real-world
TETRA networks

• display information about SYNC, SYSINFO, MM and CMCE PDUs

• forward those TETRA downlink signals to the Wireshark protocol
analyzer

• forward IP packets contained in TETRA SNDCP to a local tun/tap device
Osmocom TETRA also adopts our TETRA Monitor Protocol.

TETRA Monitor Protocol
TETRA Monitor Protocol (TMP) is used to collect the information from
TMV-SAP of a TETRA base station. TMP is based on UDP protocol and
the target port number is 7074. Each TMP packet contains only one TETRA
burst. The packet format for TMP data is defined in Figure 3. The
Command type field indicates the nature of the follow-up data in the
monitoring message, which is defined in Table 1. MAC-Timer is not a
primitive defined in the TETRA standard, and it is used to help software
developers to process the interrupt of the time slot. TMV-UNITDATA
indication Done and TMV-UNITDATA request Done are similar to TMV-
UNITDATA indication and TMV-UNITDATA request primitives, which are
conducive to software debugging.
Table 1. Command type field information element contents

Command
type Meaning Remark

1 TMV-UNITDATA request The BS sends the data to an MS.
2 TMV-UNITDATA indication An MS sends the data to the BS.
3 MAC-Timer No data to be sent or received

127 TMV-UNITDATA indication
Done

This message will be sent by a base station after the data are written to the
LLC layer.

128 TMV-UNITDATA request
Done

This message will be sent by a base station after the data are written to the
lower MAC layer.

Carrier number field is used to distinguish different carrier.
Table 2. Bit description of Timer field

BIT Symbol Description
5:0 MFN multiple frame number
10:6 FN frame number
12:11 SN Slot number
31:13 Reserved

TETRA is a TDMA system, and hence Timer field contains the time slot
information about the packet. The bit description of Timer field is shown in
Table 2.
The meaning of Register field depends on the value of the Command type
field. The bit description of the Register field of TMV-UNITDATA request
and TMV-UNITDATA indication primitive are respectively shown in Table 3
and Table 4.
Table 4. The bit description of Register field of TMV-UNITDATA indication primitives

BIT Symbol Value Description
1:0 LCHN 01 1 logical channel

10 2 logical channels
Reserved Reserved

2 CRC1 0 OK
1 Error

3 CRC2 0 OK
1 Error

7:4 FLCHTP (First logical channel) See Table 5
11:8 SLCHTP (Second logical channel) See Table 5
31:12 Reserved Reserved Reserved
Table 5. Logical channel type information element contents

Logical Channel type Meaning
1 AACH
2 SCH/F
3 SCH/HD
5 BSCH
6 BNCH
7 TCH/F
8 TCH/H
9 TCH/2.4
10 TCH/4.8
11 STCH
12 TCH/7.2
15 SCH/HU
Others Reserved

Writing Wireshark Dissectors
Dissectors are what allow Wireshark to decode individual protocols and
present them in readable format. We developed three Wireshark dissectors,
TMV-SAP dissector, AZ Interface dissector and TETRA traffic dissector,
for deep analysis of the TETRA protocol.

• TMV-SAP dissector will decode all the parameters of TMV-SAP
primitives, including time slots, logical channel type and data, and so on.

• AZ Interface dissector will decode all the parameters of TLA-SAP, TLB-
SAP and TLC-SAP primitives.

• Wireshark provides a built-in dissector for RTP, but RTP payload types
defined in RFC 3551 do not include TETRA traffic data, so the default
RTP dissector can’t identify our TETRA traffic data. We need to write a
TETRA traffic dissector to solve this problem.

Both TMV-SAP dissector and AZ Interface dissector are registered as the
dissector of “udp.port”. TETRA traffic dissector is a sub-dissector of
“rtp.pt”, and it will decode all parts of TETRA traffic data except the RTP
protocol header.

TETRA TMV-SAP dissector is integrated into the official release of
Wireshark since version 1.6 and you can view the complete source code of
TMV-SAP dissector in the source code package. The implantation details of
the other two dissectors are outside the scope of this article.
A protocol dissector can be written in C or Lua. Lua is a powerful light-
weight programming language designed for extending applications.
Although it’s possible to write dissectors in Lua, most Wireshark dissectors
are written in C, because it is several times faster. You can use Lua for
prototyping dissectors, as during reverse engineering, you can save time for
finding out how things work.
Wireshark also supports the implementation of protocol dissectors as plug-
ins. Plug-ins can be developed and debugged without having to rebuild the
whole Wireshark distribution. Under Windows, you can compiled a plug-in
into a .DLL file and place it into C:\Program
Files\Wireshark/plugins/<VERSION NUMBER> directory. Wireshark will
automatically load all plug-ins when it starts.
The first step in the development process is to acquire the Wireshark source
code. The source code of Wireshark including all protocol dissectors can be
done directly from the Wireshark website by hovering over the Develop
link and clicking ‘Browse the Code’. This link will send you to the
Wireshark subversion repository, where you can view the current release
code for Wireshark as well as the code for previous releases. Several open
source libraries and tools are required for compiling the source code of the
Wireshark dissector, so it is inconvenient to configure the build
environment. If you are developing a Wireshark dissector under Windows,
please refer to Ken Thompson’s excellent article, “Creating Your Own
Custom Wireshark Dissector”, which is published on the Code Project web
site. You can find detailed step by steps required to configure the build
environment. You can also find a lot of useful information about the
Wireshark build environment on other OS’ at www.wireshark.org website.
We need to create a proto_register_tetra function that was registered with
Wireshark for our packet dissection.
Listing 1. The code of proto_reg_handoff_tetra function

537 void proto_reg_handoff_tetra(void)
538 {
539 static gboolean initialized=FALSE;
540
541 if (!initialized) {

http://www.wireshark.org/

542 data_handle = find_dissector(“data”);
543 tetra_handle = create_dissector_handle(dissect_tetra, proto_tetra);
544 dissector_add_uint(“udp.port”, global_tetra_port, tetra_handle);
545 }
546
547 }

The proto_reg_handoff_tetra function is used to instruct Wireshark on
when to call your dissector (Listing 1). The create_dissector_handle
function passes the function that Wireshark calls to dissect the packets and
the proto_xxx value that was registered as the protocol in the
proto_register_protocol function. The dissector_add function will trigger
Wireshark to pass only the packet of UDP port 7074 to our dissector.
When Wireshark receives a packet met with the criteria specified in the
proto_reg_handoff_tetra function, it will call dissect_tetra and pass three
important data structures to this function: tvb, pinfo, and tree.

• The tvb structure is used to extract and decode the data contained in each
element of the packet.

• The pinfo structure provides specific information about the packet, based
on information that was previously dissected by other processes (e.g., the
pinfo structure tells you which packet number each relates to). It also
contains flags for processing fragmented packets or multiple dissections.

• The tree structure provides a pointer towards the location in memory of
the protocol tree data.

Please refer to the README.developer document located in the doc
directory of the Wireshark source code package for further information
related to dissector development.

Generate the dissector from ASN.1
As previously mentioned, a protocol dissector is commonly written in C,
but Wireshark also provides the Asn2wrs compiler which generates the C
source code of a dissector from an Abstract Syntax Notation One (ASN.1)
specification of a protocol. ASN.1 is an international standard and provides
flexible notation that describes rules and structures for representing,
encoding, transmitting, and decoding data in telecommunications and
computer networking. The Asn2wrs compiler is still a work in progress but
has been used to create a number of dissectors. Next, we will use ASN.1 to
develop the TMV-SAP dissector.

Figure 4. An example of PDU description in TETRA standards

The TMV-SAP dissector will decode all three layers of PDUs, both uplink
and downlink, and which remarkably improves the efficiency of debugging
the AI protocol. The biggest challenge is the complex PDU encoding rule of
TETRA. The TETRA protocol is defined using a tabular notation, to
identify fields in the encoding structure (Figure 4), supplemented by
English language text to define the encoding of those fields. The listed
fields include both those carrying application semantics (that are relevant to
an application programmer) and also determinant fields (that are relevant
only to encoding/decoding code). Thomas Weigert and Paul Dietz pointed
out that TETRA PDUs can’t be expressed in ASN.1 syntax, so they
designed a specific language and code generator for PDU decoding, only
available in Motorola for internal use. With carefully investigation, we find
that although the rule of TETRA does not accord with any existing ASN.1
encoding rules. However, it is very close to the UNALIGNED PER rule of
ASN.1 (except from some uncommon features, such as Type 3 elements),
so most TETRA PDU still can be processed by Asn2wrs compiler in
Wireshark.
PDU decoding using ASN.1
Three different types of fields may be contained in a TETRA PDU.
Type 1 fields are mandatory and are therefore always present. They can be
simply defined one by one in ASN.1 file with proper data type.
After all type 1 fields, a TETRA PDU will contain a bit, referred to as the
O-bit, indicating whether any more bits will follow. O-bit-optional can also
be expressed by a CHOICE type, where the first element is NULL type, and
the second element is a SEQENCE type, of all Type 2 fields. An example of
O-bit-optional is shown as follows.

……
optional-elements CHOICE
{
no-type2 NULL,
type2-parameters SEQUENCE {
…..
}
}
……

Type 2 fields, in a TETRA PDU, are optional. The presence of each such
field is indicated by a flag bit, referred to as the P-bit. While the Type 2
field itself may be missing, its correlated P-bit will always be present
(provided that the O-bit indicates that there are any following bits). Type 2
fields may be omitted but their order cannot be changed. Similar to O-bit-
optional, Type 2 fields can also be expressed by a CHOICE type. Following
is an example of Type 2 field.
……
called-party-mnc CHOICE {
none NULL,
called-party-mnc INTEGER (0..16383)
},
……

Listing 2 is a complete example of a TETRA PDU with Type 1 and Type 2
fields expressed in ASN.1 notation. Figure 5 is the decoding result
displayed in Wireshark.
Listing 2. D-CONNECT PDU expressed in ASN.1 notation

2130 D-CONNECT::=
2131 SEQUENCE{
2132 call-identifier INTEGER (0..1023),
2133 call-time-out INTEGER (0..31),
2134 hook-method-selection BOOLEAN,
2135 simplex-duplex-selection ENUMERATED {simplex(0), duplex(1)},
2136 transmission-grant INTEGER (0..3),
2137 transmission-request-permission INTEGER (0..1) ,
2138 call-ownership INTEGER (0..1) ,
2139 optional-elements CHOICE{
2140 no-type2 NULL,
2141 type2-parameters SEQUENCE {
2142 call-priority CHOICE{none NULL, call-priority INTEGER (0..15)},
2143 basic-service-information CHOICE{none NULL, basic-service-information Basic-

service-information},
2144 temporary-address CHOICE { none NULL, temporary-address Calling-party-address-

type},
2145 notification-indicator CHOICE { none NULL, notification-indicator INTEGER

(0..63)},
2146 prop [15] CHOICE {none NULL, prop [15] Proprietary }
2147 }
2148 }
2149 }

Asn2wrs Compiler
Asn2wrs Compiler is included in the source code package of Wireshark,
which is written in Python. The compiler needs 4 input files; an ASN.1

description of a protocol, a .cnf file, and two template files. One template
file is .c file, which includes the register and handoff function of the
dissector. The other one is the header file (.h).

Figure 5. The decoding result of D-CONNECT PDU

In our TETRA dissector, we decode the TMV header part in the template
file with manual codes and handle the PDU data using ASN.1 generated
codes.
The .cnf file tells the compiler what to do with certain things, and to skip
auto generation for some ASN1 entries. In Listing 3, we append a string
about the PDU name to the INFO column of Wireshark Graphical User
Interface (GUI) window when the code dissects a PDU. Put %(DEFAULT_BODY)s
inside and #.FN_BODY will insert the original code there.
Listing 3. A block of code in .cnf file

113 #.FN_BODY D-CONNECT
114 %(DEFAULT_BODY)s
115 col_append_sep_str(actx->pinfo->cinfo, COL_INFO, NULL, “D-CONNECT”);
116 #.END

Display Filters
In a busy TETRA system, the deluge of packets would be too much to
handle. In this situation, Wireshark provides powerful display filters, so that
users can specify which packets will be shown in Wireshark’s GUI.
Because all of the packets are still in memory, they become visible when
you reset your display filter.
Wireshark provides a simple but powerful display filter language that
allows you to build quite complex filter expressions. You can use any
filterable fields provided by our dissectors to sift through the display
records. For example, if you want to find a setup of a voice call, you can
simply enter tetra.u_Setup in the filter window. Table 6 shows some
common display filters.
Table 6. Some display filters

Display filter Filter expression
TMV-SAP primitives tetra.timer

TMV-UNITDATA request primitive tetra.txreg
TMV-UNITDATA indication primitive tetra.rvster
Both MAC-RESOURCE and MAC-ACCESS PDU tetra.MAC_RESOURCE || tetra.MAC_ACCESS
CMCE U-SETUP PDU tetra.u_Setup
Uplink voice data (TCH/F) tetra.rxchannel1 == 3
Downlink voice data tetra.txchannel2 == 3

Further improvements
The TETRA dissector included in the official release of Wireshark provides
the basic ability to analyze the TETRA AI protocol. We can use some
advance features of Wireshark to improve the function of the TETRA
dissector. In this section, we will show improvement in our dissector.
Expert information
Expert information is the log of “possibly interesting” behavior in a capture,
which allows users to get a summary of what they might want to look at.
Expert information will be recorded by calling expert_add_info_format API
with an item to which expert info is attached during the packet dissection.
Four severity levels are supported: Chat, Note, Warn and Error. For
example, we can check the CRC (Cyclic Redundancy Check) value of all
logical channels as follows:
if(!(rxreg >> (i + 2) & 0x01)) /* CRC is true */
{
……
}
else
expert_add_info_format(pinfo, crc_item, PI_CHECKSUM, PI_WARN,
“The CRC of this channel is incorrect.”)

If the CRC value is incorrect, the dissector will report it as a warning.
From the expert information dialog in Figure – 6, we found 10 CRC errors,
which is much higher than we would expect. All the errors were occurring
on STCH (STealing CHannel). The STCH is a channel associated with a
TCH (Traffic Channel) that temporarily “steals” a part of the associated
TCH capacity to transmit control messages. With careful checking of these
error packets, we found a tiny bug in the channel decoder.

Figure 6. Error message shown in Expert Information dialog

Tap listener

The tap system is a powerful and flexible mechanism to get event driven
notifications on packets matching certain protocols and/or filters. In
proto_register_tetra function, we can attach to taps provided by dissectors.
Here is the example code:
stats_tree_register(“tetra”, /* the proto we are going to “tap” */
“tetra_terms”, /* the abbreviation for this tree */
str, /* the name of the menu and window */
0,
tetra_stats_tree_packet, /* the per packet callback */
tetra_stats_tree_init, /* the init callback */
NULL); /* the cleanup callback (in this case there isn’t) */

In this example, tetra_stats_tree_packet function is the callback function of
the tap listener, which will receive the data sent by taps.
Taps can supply pre-digested data to listeners via tap_queue_packet funtion,
and then the tap listeners process data supplied by the taps.
Now, we will show an example about the channel load of Main Control
CHannel (MCCH). In each TETRA cell, one RF carrier shall be defined as
the main carrier. Whenever a MCCH is used, it is located on the timeslot 1
of the main carrier. MCCH is very important for the TETRA system. The
MCCH is used for signaling related to the setup of voice calls that are then
performed on TCH. In the TETRA system, the Short Data Service (SDS),
similar to short message service in GSM, also uses the MCCH. Hence, in
cases of extremely high SDS traffic activity in a cell, the voice call could be
blocked due to the collision in random access. We have to monitor the
uplink channel load of MCCH.

Figure 7. Statistics of channel load of MCCH

Figure 7 is a running test of the uplink channel load of MCCH. MAC-
TIMER indicates no uplink load, while TMV-UNITDAT-IND means that
some MSs send the signaling or data to MCCH. In this test, the uplink only

loads about 7.28%, and this is relatively low. If the channel load of MCCH
is higher than 50%, we need to take some actions such as, for instance,
adding a SCCH to the cell.
On the Web
• http://www.codeproject.com/Articles/19426/Creating-Your-Own-Custom-Wireshark-Dissector – A guide for developer

WireShark dissector under Windows
• http://tetra.osmocom.org/trac/ – The Osmocom TETRA project
• http://www.itu.int/ITU-T/asn1/introduction/index.htm – Introduction to ASN.1

LI Hai
LI Hai is an associate professor of Beijing Institute of Technology (BIT). He is the leader of
Professional Mobile Communication Research Group of BIT. He has led his team to develop a base
station and switch system of the TETRA system, including both hardware devices and software
protocol stacks. His team also provides the world’s first automatic TETRA interoperability test system
based on TTCN-3. His research interests include embedded operating systems, real-time systems, and
protocol engineering of wireless communication systems. You can reach him at haili@bit.edu.cn.

Capturing WiFi traffic with
Wireshark
For many years, Wireshark has been used to capture and decode
data packets on wired networks. Wireshark can also capture IEEE
802.11 wireless traffic while running on a variety of operating
systems.
This article describes how Wireshark is used to capture / decode 802.11
traffic and its configuration specifics based on the operating system you are
running. It covers three popular OS: MS-Windows, Linux and OS X. It also
covers two ways to indirectly collect 802.11 traffic and then analyze it with
Wireshark.

Wireshark on Windows
Wireshark in conjunction with AirPcap will enable you to capture 802.11
traffic on Microsoft Windows platforms. AirPcap is a WiFi USB adapter
from Riverbed (formerly CACE Technologies). It provides a wireless
packet capture solution for MS Windows environments. AirPcap captures
full 802.11 data, management and control frames that can be viewed in
Wireshark, providing in-depth protocol dissection and analysis capabilities.
AirPcap is available in three models: AirPcap Classic, AirPcap Tx and
AirPcap Nx. All models can perform packet capture and both the Tx and Nx
models can also do packet injection. Pricing varies from $198 to $698.

http://www.codeproject.com/Articles/19426/Creating-Your-Own-Custom-Wireshark-Dissector
http://tetra.osmocom.org/trac/
http://www.itu.int/ITU-T/asn1/introduction/index.htm%20-%20Introduction%20to%20ASN.1
mailto:haili@bit.edu.cn

Please note that AirPcap Classic and Tx only support 802.11b/g whereas
AirPcap Nx supports 802.11a/b/g/n (Figure 1).

Figure 1. Wireshark Multi Pack

AirPcap setup is easy. Its USB adapter requires a special driver to be
installed in Windows. This can be done from the provided CD by selecting
‘install driver’ at the install dialog. Depending on the Windows operating
system version, when you plug the adapter in for the first time, Windows
may show the “Found New Hardware Wizard”. From that same CD, you
can also install Wireshark for Windows.
Once the driver installed, the new adapter will display in AirPcap control
panel as “AirPcap USB wireless capture adapter nr 00”. Zero meaning the
first adapter, 01 the second adapter and so on.
An AirPcap adapter will capture on one channel at a time. AirPcap control
panel also enables you to select the channel on which the adapter will
capture packets. If you purchased the multi-channel version, the control
panel will display “AirPcap Multi-channel Aggregator”. Using 3 USB
adapters, AirPcap enables Wireshark capturing simultaneously on 3
channels. For instance, channels 1, 6 and 11 in the 2.4 GHz band.
A special wireless toolbar appears in Wireshark when at least one AirPcap
adapter is plugged into one of the USB ports, and can be used to change the
parameters of the currently active wireless interfaces. This is where you can
select to frame decryption for WEP or WPA/WPA2.
The AirPcap driver can use a set of WEP keys to decrypt traffic that
encrypted with WEP. The list of keys can be edited by selecting the Keys
tab in the AirPcap control panel. The AirPcap driver will attempt to decrypt
the WEP encrypted frame using the your supplied set of WEP keys. That is,
the driver will try all of the WEP keys for each frame until it finds one that
decrypts the frame. By configuring the AirPcap driver with several WEP

keys, it is possible to decrypt traffic coming from multiple WiFi access
points that are using different WEP keys.
Decryption of WPA/WPA2 can be done by Wireshark by setting the
wireless toolbar decryption mode to Wireshark. In this mode, the driver
doesn’t perform any decryption of the captured packets (as in the case of
WEP), and they are decrypted by Wireshark while displaying them. In order
to decrypt WPA and WPA2 you will need to configure the pre-shared key
and capture the 4-way EAPOL handshake used to establish the pairwise
transient key (PTK) used for a session. Wireshark can only decrypt “WPA
personal” sessions, which use pre-shared keys. Decryption of “WPA
Enterprise” sessions is not supported.
Finally, one nice feature about AirPcap Nx adapter hardware: it has two
internal antennas and two integrated MC-Card connectors for optional
external antennas allowing you to do long-range capture. External antennas
can be either omnidirectional or directional.
References
• AirPcap Home Page – http://www.riverbed.com/us/products/cascade/wireshark_enhancements/airpcap.php

• AirPcap Products Catalog – Pricing –
http://www.cacetech.com/products/catalog/

Wireshark on MAC OS X
Capturing 802.11 frames with Wireshark under OS X can be achieved using
your MacBook built-in WiFi adapter. The following discussion relates how
it was setup with OS X Lion. This may vary with other versions. Open a
terminal window and set permissions on the BPF devices (Berkeley Packet
Filter) so they can be accessed in read and write mode:
sudo chmod 666 /dev/bpf*

The above sudo command requires you provide your account password
Verify whether the BPF devices are correctly set: Listing 1.
Listing 1. Setting BPF devices

ls -l /dev/bpf*
crw-rw-rw- 1 root admin 23, 0 4 Oct 06:31 /dev/bpf0
crw-rw-rw- 1 root admin 23, 1 4 Oct 06:31 /dev/bpf1
crw-rw-rw- 1 root admin 23, 2 4 Oct 06:31 /dev/bpf2
crw-rw-rw- 1 root admin 23, 3 4 Oct 06:31 /dev/bpf3

Next, create a symbolic link to the airport utility, this will prevent you from
typing the whole path every time:
ln -s sudo /System/Library/PrivateFrameworks/

http://www.riverbed.com/us/products/cascade/wireshark_enhancements/airpcap.php
http://www.cacetech.com/products/catalog/

Apple80211.framework/Versions/Current/Resources
/usr/sbin/airport

Now, with the airport utility, disassociate your WiFi adapter and set it to the
channel you want to capture. In the following example the -z flag will
disassociate your NIC and flag -c 11 sets the channel to 11.
sudo airport -z -c 11

To verify whether your channel is set correctly, type airport -I and check the
last line of the output: Listing 2.
Listing 2. Verifying your channel

airport -I
agrCtlRSSI: -73
agrExtRSSI: 0
agrCtlNoise: -91
agrExtNoise: 0
state: running
op mode: station
lastTxRate: 18
maxRate: 54
lastAssocStatus: 0
802.11 auth: open
link auth: wpa2-psk
BSSID: 10:84:d:e4:b8:7f
SSID: xtnet
MCS: -1
channel: 11

Next, download and install Wireshark for OS X at:
http://www.wireshark.org/download.html.
Start Wireshark. From the Capture Options make sure your WiFi adapter
will be listed as en1 802.11 plus Radiotap Header and it must be enabled.
Also, ensure you check Capture all in promiscuous mode.
You are all set to go and can start capturing WiFi on interface en1.
Optionally, you can add a new column display channel & frequency. To do
so, right click any column heading in Wireshark OS X, select Column
Preferences, click the Add button and select Frequency/Channel from the
Field Type pull-down list. Also rename that new column to something
meaningful (e.g., channel).
Note
The airport utility can also be used to display nearby access points: Listing
3.
Listing 3. The airport utility displaying access points

airport -s
SSID BSSID RSSI CHANNEL HT CC SECURITY (auth/unicast/group)
linksys 00:18:f8:ef:93:af -87 6 N -- NONE
bing 10:c8:d0:1a:e4:f3 -90 10 Y CA WPA2(PSK/AES/AES)
NETGEAR 00:0f:b5:5d:06:0c -89 11 N -- WPA(PSK/TKIP/TKIP)
BELL789 c0:83:0a:53:b7:41 -88 11 N US WEP

http://www.wireshark.org/download.html

lolo 00:22:b0:d2:63:67 -89 1,+1 Y -- WEP
xxtnet5 10:84:0d:f4:c8:80 -63 36,+1 Y CA WPA(PSK/TKIP/TKIP) WPA2(PSK/AES,TKIP/TKIP)
xxtnet 20:54:4d:d4:98:4f -64 11 N CA WPA(PSK/TKIP/TKIP) WPA2(PSK/AES,TKIP/TKIP)
Belkin 00:1c:df:39:81:f6 -84 11 N -- WPA(PSK/TKIP/TKIP)

You can repeat the above command in a loop as you walk/survey with your
MacBook:
while true; do airport -s; sleep 1; done

To stop it, type control-c.

Wireshark on Linux
Wireshark can run on several Linux distributions. In order to capture /
decode 802.11 frames, you need to set your WiFi adapter into promiscuous
mode and use Wireshark from that point. That procedure varies from one
WiFi adapter vendor to another.
One way to help achieving this is through the airmon-ng utility from the
aircrack-ng suite. It can be installed on the Linux variant you prefer. You
will find convenient to use the BackTrack Linux distribution. BackTrack is
already loaded with hundreds of tools for penetration testing, security
analysis, etc. And it already has both aircrack-ng and Wireshark installed.
You can download the BackTrack .iso file, burn it onto a DVD and boot
from that DVD.
BackTrack can later be installed on your hard drive. Even better, install
BackTrack on a persistent USB thumb drive and use it to run BackTrack
from any laptop that can boot from a USB. With this portable Linux
solution, your scripts, test cases, configurations, etc. will be preserved from
one boot to another. For more details on how to create a persistent USB for
BackTrack, please visit the link listed in the references below.
Airmon-ng creates a new network interface which is automatically
configured to operate in promiscuous mode (or monitor mode). Please note
that the Aircrack-ng suite will work with several WiFi adapters that are
shipped with the laptops and external USB WiFi adapters. A compatibility
list is available here: http://www.aircrack-ng.org/doku.php?
id=compatibility_drivers.
Once you have a WiFi adapter capable of capturing, you can use Wireshark
to capture and decode the 802.11 traffic. You can check the interfaces status
by typing airmon-ng:
airmon-ng
Interface Chipset Driver
eth1 Intel 2200BG ipw2200

http://www.aircrack-ng.org/doku.php?id=compatibility_drivers

The eth1 interface above is the built-in Intel WiFi adapter. We now insert
the ALFA USB wireless adapter and invoke airmon-ng again. In the following
example, we use an external WiFi USB adapter. Its model is ALFA
AWUS036EH, 802.11b/g and WPA/WPA2 compliant. It uses a 5 dBi
external antenna. Its chipset is a Realtek 8187 and it is packet injection
capable.
airmon-ng
Interface Chipset Driver
eth1 Intel 2200BG ipw2200
wlan0 RTL8187 rtl8187 – [phy0]

Notice that Linux OS named this interface wlan0 and the ALFA USB adapter
rtl8187 chipset is revealed. Now we set interface wlan0 into promiscuous
mode and we specify channel 11:
airmon-ng start wlan0 11
Interface Chipset Driver
eth1 Intel 2200BG ipw2200
wlan0 RTL8187 rtl8187 – [phy0]
(monitor mode enabled on mon0)

the above command confirms that wlan0 is now in monitor mode
(promiscuous). If you type airmon-ng again, you will notice a new mon0
interface:
airmon-ng
Interface Chipset Driver
eth1 Intel 2200BG ipw2200
wlan0 RTL8187 rtl8187 – [phy0]
mon0 RTL8187 rtl8187 – [phy0]

Now start Wireshark and from Capture > Interfaces > mon0 > Options
ensure that you checked Capture packets in promiscuous mode (this is the
default value).
You can now start capturing on interface mon0. Wireshark will capture
802.11 traffic on channel 11 since it was specified in the previous airmon-
ng command.
Note
To add the channel column in Wireshark Linux, proceed as follows: Edit >
Preferences > User Interface > Columns.
Click New and enter a meaningful name in the Title field. Then select
Frequency/Channel from the Format pull-down list. Adjust the column
order using the Up and Down buttons. If you need to change channels, use
the iwconfig command:
iwconfig mon0 channel 6

The above will cause Wireshark to start capturing on channel 6. There is no
need to stop Wireshark while doing this.
It is possible that the channel you set using iwconfig doesn’t take effect.
This might happen if your WiFi adapter is associated to an access point. To
prevent this, stop your networking daemon:
sudo /etc/init.d/networking stop

You may want to enable networking later when you are done with sniffing:
sudo /etc/init.d/networking start

Rebooting Linux will remove the mon0 interface you created earlier with
airmon-ng. But you can also remove mon0 as follows:
airmon-ng stop mon0

References
• BackTrack Home Page – http://www.backtrack-linux.org/
• BackTrack Persistent USB – http://www.backtrack-

linux.org/wiki/index.php/Persistent_USB
• Aircrack-ng Home Page – http://www.aircrack-ng.org/

Wireshark and Kismet
Kismet is an 802.11 layer2 wireless network detector, sniffer, and intrusion
detection system. Kismet will work with any wireless card which supports
raw monitoring (rfmon) mode, and (with appropriate hardware) can sniff
802.11b, 802.11a, 802.11g, and 802.11n traffic. Every time you launch
Kismet, it will create a whole set of new files. For instance:
ls kismet*
Kismet-20121004-13-37-22-1.alert
Kismet-20121004-13-37-22-1.gpsxml
Kismet-20121004-13-37-22-1.nettxt
Kismet-20121004-13-37-22-1.netxml
Kismet-20121004-13-37-22-1.pcapdump

Kismet captures 802.11 frames in the file with extension .pcapdump. To
ensure files are unique, Kismet prefixes them as follows: Kismet-yymmdd-hh-mm-
ss-sequence#.
While using Kismet to perform WiFi network analysis, 802.11 frames are
collected on various channels. By default, Kismet is configured to do
channel hopping. That is, Kismet will capture some 802.11 frames on
channel 1, then will move to channel 6 and collect some frames, and then
move to channel 11, etc. If you need to focus on a specific channel (e.g.,
channel 11), you can easily change this from the Kismet GUI as follows:

http://www.backtrack-linux.org/
http://www.backtrack-linux.org/wiki/index.php/Persistent_USB
http://www.aircrack-ng.org/

Kismet > Config Channel
default is (*) Hop
set it to (*) Lock and set Chan/Freq to 11

If you have the aircrack-ng suite installed, you can issue the airmon-ng
command to examine the interfaces:
airmon-ng
Interface Chipset Driver
eth1 Intel 2200BG ipw2200
wlan0 RTL8187 rtl8187 – [phy0]
wlan0mon RTL8187 rtl8187 – [phy0]

Above, are listed two physical interfaces, eth1 with an Intel chipset and wlan0
with a Realtek 8187 chipset. Kismet is currently configured to use wlan0 for
network analysis. After starting Kismet for a first time, it will create a
monitor mode logical interface called wlan0mon. Kismet uses that interface to
perform both network analysis and 802.11 frame capture.
The iwconfig command will also list the system interfaces. The following
example shows two physical interfaces, eth1 and wlan0 along with logical
interface wlan0mon (Mode:Monitor). As we previously locked the channel to
11, interface wlan0mon displays frequency 2.462 GHz which translates to
channel 11. If you do not explicitly configure Kismet to lock in a specific
channel, this will be reflected every time you execute the iwconfig command
(the frequency value will vary constantly) (Listing 4).
Listing 4. The usage of Kismet

iwconfig
lo no wireless extensions.
eth0 no wireless extensions.
eth1 unassociated ESSID:off/any
Mode:Managed Channel=0 Access Point: Not-Associated
Bit Rate:0 kb/s Tx-Power=20 dBm Sensitivity=8/0
Retry limit:7 RTS thr:off Fragment thr:off
Encryption key:off
Power Management:off
Link Quality:0 Signal level:0 Noise level:0
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0
wmaster0 no wireless extensions.
wlan0 IEEE 802.11bg ESSID:””
Mode:Managed Frequency:2.462 GHz Access Point: Not-Associated
Tx-Power=27 dBm
Retry min limit:7 RTS thr:off Fragment thr=2352 B
Encryption key:off
Power Management:off
Link Quality:0 Signal level:0 Noise level:0
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0
wlan0mon IEEE 802.11bg Mode:Monitor Frequency:2.462 GHz Tx-Power=27 dBm
Retry min limit:7 RTS thr:off Fragment thr=2352 B
Encryption key:off
Power Management:off
Link Quality:0 Signal level:0 Noise level:0
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

Tx excessive retries:0 Invalid misc:0 Missed beacon:0

After collecting 802.11 frames for a certain time, you can stop Kismet.
Next, start Wireshark from the command line followed with the .pcapdump file
name:
wireshark Kismet-20121004-13-37-22-1.pcapdump

Or if you prefer, start Wireshark and then: File > Open > your .pcapdump
file.
In case 802.11 frames are not decoded properly in Wireshark, check the
pcapdumpformat parameter in Kismet configuration file kismet.conf. If is usually
located under directory /usr/etc. You should see something similar to:
#pcapdumpformat=ppi
pcapdumpformat=80211

By default, pcapdumpformat is set to ppi. Try commenting out ppi and
uncomment 80211. Restart Kismet, capture 802.11 frames for a while, then
stop Kismet and use Wireshark to decode the newly created .pcapdump file.
References
• Kismet Home Page – http://www.kismetwireless.net/
• Kismet Documentation –

http://www.kismetwireless.net/documentation.shtml

Wireshark and Cisco Lightweight AP
A Cisco LAP (Lightweight Access Point) is an enterprise AP that runs a
lightweight IOS image (not to be confused with Apple iOS). Several
enterprise LAPs will join a Cisco WLC (Wireless LAN Controller). LAPs
then encapsulate all 802.11 client traffic in CAPWAP (RFC5415) frames
and forward them to the WLC. This mode of operation is known as CUWN
or Cisco Unified Wireless Networking.
Each LAP normally runs in local mode and forwards all client traffic to the
WLC. You can configure a LAP in sniffer mode so it can capture 802.11
frames and forward them to a workstation that runs Wireshark. As a
network administrator of several hundreds of LAPs, you can use Wireshark
to sniff any LAP without having to travel to remote sites. In order to
achieve this, you need to configure both the LAP and the Wireshark
workstation.
LAP Configuration

http://www.kismetwireless.net/
http://www.kismetwireless.net/documentation.shtml

From the WLC graphical interface, under the Wireless tab, select a LAP that
you will dedicate as a sniffer. From the LAP General tab configure the AP
Mode to Sniffer. The WLC will warn you that the LAP requires a reboot.
Click on the OK button and wait a few minutes for the LAP to display again
in the WLC user interface (Figure 2).

Figure 2. WLC Sniffer Mode

Next, from the Wireless tab, select the radio for which you need to capture
traffic (802.11a/n or 802.11b/g/n) Wireless > Access Points > Access Point
Name > Radios 802.11a/n or 801.11b/g/n.
Then, hover your mouse cursor on the blue triangle on the right and when
the small pop-up displays, click Configure (Figure 3).

Figure 3. WLC Configure Radio

Under Sniffer Channel Assignment, check Sniff, then provide a channel on
which to capture and then configure the IP address of the workstation
running Wireshark. In the example below, the channel is set to 11 and the
workstation is at IP 192.168.1.104 (Figure 4).

Figure 4. WLC Sniffer Channel

Wireshark Configuration
Start Wireshark on your wired workstation (e.g. at the IP address configured
above).
Next, make sure you set Wireshark to decode for either AIROPEEK or
PEEKREMOTE. This depends on the version of Wireshark you use.
Starting with Wireshark 1.8.0, only PEEKREMOTE is available. These

decodes were originally developed for Airopeek / Omnipeek but also work
with Wireshark. You will find more information about these decodes in the
references section below (Figure 5).

Figure 5. Wireshark Peekremote

Analyze > Decode As
Transport Tab > UDP source (5555) AIROPEEK or PEEKREMOTE
Next, set the interface capture options to receive only traffic on UDP/5555
This filter is optional but strongly recommended as it excludes all the non-
wireless related traffic from the capture. Consider that the WLC sends
traffic to a UDP port there’s no application listening on the sniffer side; this
results in having a ICMP port-unreachable response for each packet
received from the WLC.
Although this is expected, the filter above helps to exclude also this traffic
which is useless and so it can only cause the trace to be bigger and more
difficult to read.
Capture > Interfaces > Options

• double click the interface that will be used for capture
• set the Capture Filter box to: udp port 5555 (Figure 6)

Figure 6. Wireshark Capture Filter

Wireshark now displays 802.11 traffic captured from the Cisco LAP.
Whenever you are done with the capture, you can return to the WLC and
reset the LAP configuration to local mode.
References
• CAPWAP RFC – http://tools.ietf.org/html/rfc5415
• Cisco Unified Wireless Networking –

http://www.cisco.com/en/US/products/hw/wireless/index.html

http://tools.ietf.org/html/rfc5415
http://www.cisco.com/en/US/products/hw/wireless/index.html

• Wireshark Display Filter Reference –
http://www.wireshark.org/docs/dfref/a/airopeek.html;
http://www.wireshark.org/docs/dfref/p/peekremote.html

Conclusion
Wireshark remains a free / low-cost solution for capturing wireless frames.
Wireshark can be used to capture and decode 802.11 WiFi traffic on a
variety of operating systems. Third-party tools can collect WiFi traffic and
save it in Wireshark readable format. Additionally, specialized hardware
can capture 802.11 traffic and forward it directly to Wireshark for analysis.
Depending on the operating system in use, you will need specific Wireshark
/ system configuration as well as appropriate hardware to get the job done.
STEVE WILLIAMS
Steve Williams is a freelance consultant with expertise in WiFi, Firewalls and Identity Management.
Mr. Williams has been in the consulting business for the past 20 years. During that time, he tackled
very large projects with major North American ISPs (Internet Service Providers), cable companies,
manufacturing, banking. He also had the opportunity to consult and provide WiFi training to several
enterprises, public and educational entities. Mr. Williams is the founder of Sudo Networks based in
Montreal, Canada and he can be reached at info@sudonetworks.com.

http://www.wireshark.org/docs/dfref/a/airopeek.html
http://www.wireshark.org/docs/dfref/p/peekremote.html
mailto:info@sudonetworks.com

http://htbridge.ch/

Decoding and Decrypting Network
Packets with Wireshark
In the article I will cover dissecting and decrypting Bluetooth High
Speed over wireless traffic.
The main idea is that well known Bluetooth protocols, profiles and security
mechanisms to be used with secondary radio are already present in many
devices. Given that secondary radio is usually significantly faster we
achieve faster data transfer while keeping existing API. The user does not
need to wory about changing his code. See [1] for more details.
There are two flows of traffic during High Speed data transfers. One is
coming through BR/EDR Bluetooth channel and the other through a
wireless 802.11 interface. In this article decoding wireless traffic will be
covered. Since an L2CAP connection is established through Bluetooth, the
wireless dump lacks the connection signalling packets and therefore
Wireshark cannot find out which protocol is in use on upper layers.
Wireshark also needs Bluetooth the key to be able to decrypt wireless
frames.

Encryption Basics
Connections between High Speed devices are encrypted and share
symmetric keys. In 802.11 it has name Pairwise Transient Key. The PTK is
generated by concatenating the following attributes: PMK, AP nonce
(ANonce), STA nonce (SNonce), AP MAC address, and STA MAC
address. Terminology 802.11 means: STA – station and AP – access point,
for High Speed initiator and responder, a nonce is an arbitrary number used
only once in a cryptographic communication. PMK is a shared secret key
between two AMP controllers. It is valid throughout the whole session and
needs to be exposed as little as possible. For more information see [3].

Getting Pairwise Master Key (PMK)
Bluetooth provides key material for wireless security by creating Dedicated
AMP Link Key which is used by wireless devices as Pairwise Master Key.
The PMK is needed for decrypting wireless encrypted frames.

After we pair two devices (SSP pairing is needed) bluetooth creates
Bluetooth Link Keys (LK) which are usually stored. In Linux, the LK can
be found in the following path:
/var/lib/bluetooth/<MAC Address>/linkkeys .

First we create Generic AMP Link Key (GAMP) given known LK.
GAMP_LK = HMAC-SHA-256(LK||LK, ‘gamp’, 32) where LK||LK means concatenations of 2
16 bits Link Keys forming 32 bit result array. Then we create Dedicated
AMP Link Key.
Dedicated_AMP_Link_Key = HMAC-SHA-256(GAMP_LK,‘802b’, 32). See [2] “Vol 2: 7.7.5 The
Simple Pairing AMP Key Derivation Function h2” for more info.
The result PMK will be used by wireshark decryption engine after some
modification below.

Decoding Bluetooth High Speed Traffic
Over Wireless
Figure 1 shows captured wireless traffic taken with an external wireless
card in monitor mode filtered by MAC addresses. We see two types of
frames: LLC frames and 802.11 data which Wireshark was able to decode.
Since we know that all High Speed frames shall have LLC headers we
might assume that those frames without LLC headers are encrypted and that
means that authentication and key generation is happening in packets
marked as LLC.

Figure 1. Captured wireless traffic

The Bluetooth specification specifies encapsulation methods used for data
traffic in [2] “Vol 5: Table 5.1: 802.11 AMP LLC/SNAP encapsulation.”
Wireshark already has LLC dissector and we only need to define our

Organization Unique Identifier (OUI) or Company Id and then register our
OUI like it is shown in Listing 1.
Listing 1. Registration of Bluetooth OUI

#define OUI_BLUETOOTH 0x001958 /* Bluetooth SIG */
void proto_register_bt_oui(void)
{
static hf_register_info hf[] = {
{ &hf_llc_bluetooth_pid,
{ “PID”, “llc.bluetooth_pid”, FT_UINT16, BASE_HEX,
VALS(bluetooth_pid_vals), 0x0, “Protocol ID”, HFILL }
}
};
llc_add_oui(OUI_BLUETOOTH, “llc.bluetooth_pid”, “Bluetooth OUI PID”, hf);
}

Once complete, packets with Bluetooth OUI will be identified as Bluetooth
High Speed packets. The field llc.bluetooth_pid identifies the type of data the
packet contains. Listing 2 shows all possible data types.
Listing 2. Types of Bluetooth High Speed frames

#define AMP_U_L2CAP 0x0001
#define AMP_C_ACTIVITY_REPORT 0x0002
#define AMP_C_SECURITY_FRAME 0x0003
#define AMP_C_LINK_SUP_REQUEST 0x0004
#define AMP_C_LINK_SUP_REPLY 0x0005
static const value_string bluetooth_pid_vals[] = {
{ AMP_U_L2CAP, “AMP_U L2CAP ACL data” },
{ AMP_C_ACTIVITY_REPORT, “AMP-C Activity Report” },
{ AMP_C_SECURITY_FRAME, “AMP-C Security frames” },
{ AMP_C_LINK_SUP_REQUEST, “AMP-C Link supervision request” },
{ AMP_C_LINK_SUP_REPLY, “AMP-C Link supervision reply” },
{ 0, NULL }
};

What we have now is only LLC is dissected. The data coming after LLC
header is dissected as raw data. We want Wireshark to dissect encapsulated
frames from Wireshark’s known protocols list since the tool already has
almost all major protocol supported. For that we need to register dissectors
of known protocols according to their bluetooth_pid values to LLC
dissector table. AMP Security frames represents X11 Authentication which
might be decoded by eapol dissector, AMP L2CAP ACL data frames might
be decoded by btl2cap dissector.
Listing 3. Registering eapol and btl2cap dissectors

void proto_reg_handoff_bt_oui(void)
{
dissector_handle_t eapol_handle;
dissector_handle_t btl2cap_handle;
eapol_handle = find_dissector(“eapol”);
btl2cap_handle = find_dissector(“btl2cap”);
dissector_add_uint(“llc.bluetooth_pid”, AMP_C_SECURITY_FRAME, eapol_handle);
dissector_add_uint(“llc.bluetooth_pid”, AMP_U_L2CAP, btl2cap_handle);
}

Listing 3 shows adding L2CAP and EAPOL dissectors in the dissector
table. First we find dissector handles with find_dissector and then we add
handles with dissector_add_uint.
The change above allows Wireshark to decode EAPOL frames from the
dump. Figure 2 shows Wireshark dissecting EAPOL frame, the first
message in the 4-way authentication sequence.
After the EAPOL frames traffic is encrypted. This is because the
authentication LLC header is also encrypted and those packets cannot be
identified as Bluetooth High Speed data. We need to decrypt the packets
and then Wireshark is able to understand the packet by looking at the
decrypted LLC.

Figure 2. Decoding EAPOL packets

Decrypting Bluetooth Encrypted Data
Next step is to determine the decryption key. Fortunately we have all the
required information like Bluetooth supplied PMK and trace containing the
4-way authentication. Wireshark already has the capability to derive
Pairwise Transient Key (PTK) from a 4-way authentication sequence
(shown as EAPOL in Wireshark) in the airpdcap library.
Bluetooth EAPOL frames are not recognized because airpdcap tries to only
decode packets with special LLC header specifying type 0x88, 0x8E /* Type:
802.1X authentication */. The solution is to add second LLC header and filter
only those two headers shown in Listing 4.
Listing 4. Adding second LLC header

file: epan/crypt/airpdcap.c function: AirPDcapPacketProcess
const guint8 bt_dot1x_header[] = {
0xAA, /* SSAP=SNAP */
0x03, /* Control field=Unnumbered frame */
0x00, 0x19, 0x58, /* Org. code=Bluetooth SIG */
0x00, 0x03 /* Type: Bluetooth Security */
};

/* Filter 802.1X authentication frames */
if (memcmp(data+offset, dot1x_header, 8) == 0 ||
memcmp(data+offset, bt_dot1x_header, 8) == 0) {

After this change airpdcap is able to find PTK key (given that PMK key is
known by Wireshark through preferences) and then decrypt data
traffic.Figure 3 shows.

Figure 3. Decoding L2CAP packets in decrypted CCMP data
References
[1] Bluetooth High Speed. http://www.bluetooth.com/Pages/High-Speed.aspx
[2] BLUETOOTH SPECIFICATION Version 4.0 https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
[3] IEEE 802.11i-2004: Amendment 6: Medium Access Control (MAC) Security Enhancements

http://standards.ieee.org/getieee802/download/802.11i-2004.pdf

Andrei Emeltchenko
Author has over 12 years of experience working with network protocols in Nokia, Nokia Siemens
Networks and Intel.

Wireshark – Hacking WiFi Tool
Wireshark is cross-platform free and open-source packet analyzer.
The project, formerly known as Ethereal started in 1998 and
become the world’s foremost network protocol analyzer.
Gerald Combs, Ethereal’s creator, was unable to reach agreement with his
now former employer, which holds trademark rights to the Ethereal name.
Later, Wireshark was born. The current stable release of Wireshark is 1.8.3
at the time of writing this article. It supersedes all previous releases,
including all releases of Ethereal.
When placed properly, Wireshark can be a great help for network
administrator when it comes to network troubleshooting, such as latency
issues, routing errors, buffer overflows, virus and malware infections
analysis, slow network applications, broadcast and multicast storms, DNS
resolution problems, interface mismatch, or security incidents.

http://www.bluetooth.com/Pages/High-Speed.aspx
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=229737
http://standards.ieee.org/getieee802/download/802.11i-2004.pdf

As data streams flow across the network, the sniffer captures each packet
and, if needed, decodes the packet’s raw data. Depending on your needs,
network data can be browsed via a GUI, or via the TTY-mode TShark
utility. Importing traces from other programs such as tcpdump, Cisco IDS,
Microsoft Network Monitor and others are also supported, so analyzing
information from other sources is granted.

Capture Options
Wireshark is a really great tool when it comes to digging into large dump of
wireless traffic. Capturing live network data is one of the major features.
Before starting a packet capture, user should know answers to a simple
question. Does my operating system supports mode I am going to use with
my network interface? To answer this question please make some research
about two of the six modes that wireless cards can operate in – Monitor
mode and Promiscuous mode. In general Monitor mode only applies to
wireless networks, while promiscuous mode can be used on both wired and
wireless networks.
Monitor mode allows packets to be captured without having to associate
with an access point or ad-hoc network. This mode may be used for
malicious purposes such as passive packets sniffing, injecting packets to
speed up cracking Wired Equivalent Privacy (WEP) or to obtain 4-way
handshake required to bruteforce WPA.
Changing the 802.11 capture modes is very platform and driver dependent
and Windows is very limited here. Monitor mode works with some Atheros
chipset based cards with appropriate drivers but thats another story. Unless
you don’t have AirPcap – wireless packet capture solution for MS Windows
environments this could be very painful so for this article we are going to
use Linux operating system. Particularly BackTrack would be the vises
choice as it has Wireshark and other tools pre-installed with the best
wireless support available. Also try out TShark (command-line based
network protocol analyzer), or Dumpcap (network traffic dump tool) for if
you are not a GUI fan.

Packets Capture
Wireshark can capture traffic from many different network media types,
including wireless LAN as well. Threats to wireless local area networks

(WLANs) are numerous and potentially devastating. In this article we will
focus mostly on (undetectable) wireless sniffing. Lets look at some simple
examples how attacker may use Wireshark to compromise your
infrastructure.
The process of wireless traffic sniffing can pose a number of challenges. In
order to begin sniffing wireless traffic with Wireshark, your wireless card
must be in monitor mode. Determine chipset/driver of your interface and
check for monitor support mode or get supported one. This is not covered
here. Wireshark does not do this automatically, you have to it manually.
I suggest to use airmon-ng for all drivers except madwifi-ng to put your
card into monitor mode. This script can be used to enable monitor mode on
wireless interfaces. It may also be used to go back from monitor mode to
managed mode. Entering the airmon-ng command without parameters will
show the interfaces status.
Usage: airmon-ng <start|stop> <interface> [channel]

For never chipsets there is airmon-zc script which is intended to replace
airmon-ng in 1.3 and is functionally based on it. Selecting a static channel is
recommended in order to avoid packet loose.
root@bt:~# airmon-ng start wlan0 4
Interface Chipset Driver
wlan0 Atheros AR5414 ath5k – [phy0]
(monitor mode enabled on mon0)

To confirm that the card is in monitor mode, run the iwconfig command or
rerun airmon-ng without any parameters. If you see output similar like
above the wireless card is operating in monitor mode.
Fire up Wireshark, examine the detailed capture options if needed, choose
your interface and start packet capture: Figure 1.

Figure 1. Capture-interface

Please ensure that you are capturing packets that belong to your network
only!

Inspecting Packets
Click a packet to select it and you can dig down to view it’s details. The top
panel is where captured data packets are listed, and they are usually ordered
by the time they were sent. Underneath the Packet List (the second of the
three panels) is the Packet Details window. This shows the data contained
within the packet of data selected in the packet list. The third and final
panel is the Packet Bytes panel. This panel reveals all the data that was sent
or received as hexadecimal binary. There is also intuitive statistics menu
available to display all kind of summaries, graphs allows user to sort
packets.

Display filters
First time user may be surprised of “packet storms” flying around
Wireshark, but there is nothing to be afraid of. This is the place when
display filters can be handy. Display filters are used to change the view of a
capture file. Before, when observing detailed capture options, you may
noticed capture filter option. The main difference between capture filters
and display filters is capture filter must be set before launching the
Wireshark capture. Display filter can be modified at any time. Wireshark
allows live capture and offline analysis of hundreds of protocols combined
with powerful display filters. Display filters allows to display only selected
packets by protocol, frame types, fields, values... When using a display
filter, all packets remain in the capture file. The most basic way to apply a
filter is by typing it into the filter box at the top of the window and clicking
Apply (or pressing Enter). For example, type “dns” and you’ll see only
DNS packets. When you start typing, Wireshark will help you autocomplete
your filter. You can also click the Analyze menu and select Display Filters
to create a new filter.
Extensive explanation and list of display filters is beyond of scope of this
article, so few examples only:

• encryption mechanism is used to encrypt the contents of the frame:
wlan.fc.protected

• identify all unencrypted wireless traffic:
wlan.fc.protected ne 1

• BSSID filter, exclude traffic from any other APs:
wlan.bssid eq 00:11:22:33:44:55

• identify hidden SSID:
wlan.bssid eq 00:11:22:33:44:55 and wlan.fc.type_subtype eq 0

Building a custom filter is very easy. Build some filter and save them for
future use. Lets say we want to see only DNS traffic comes from one single
IP address and all we care about is our wireless access point. Filter would
looks like this:
dns && wlan.bssid eq 00:11:22:33:44:55 && ip.src == 192.168.2.102

or all we care about is HTTP traffic contains plaintext “admin”:
http contains “admin”

Detecting Wireless Attack
Wireshark isn’t an intrusion detection system, however, it can be used as
such. One of the most interesting purposes for network security engineers is
its ability to use it to examine security problems. Networks using 802.1.1
are also subject to a number of denial of service (DoS) attacks that can
render a WLAN inoperable. Network administrator suspects there is
something wrong around wireless network. He applies filter for
Deauthentication frame subtype and examine the content (Figure 2).

Figure 2. Wireshark-deauth-attack

As you can see there is ongoing aireplay-ng deauth attack (deauthenticate 1
or all stations (-0)). This filter can be also used to detect all kind of attack
causing denial of service (MDK3).
Useful filter strings:
wlan.fc.type == 0 Management frames
wlan.fc.type == 1 Control frames
wlan.fc.type == 2 Data frames
wlan.fc.type_subtype == 0 Association request
wlan.fc.type_subtype == 1 Association response
wlan.fc.type_subtype == 2 Reassociation request
wlan.fc.type_subtype == 3 Reassociation response
wlan.fc.type_subtype == 4 Probe request
wlan.fc.type_subtype == 5 Probe response

wlan.fc.type_subtype == 8 Beacon

Sniffing Unencrypted Traffic
By default, wireless routers and access points have security turned off.
Wireshark passively captures packets and allows us to examine their
content. In a WLAN environment, this protection is no longer enough since
a wireless network can be accessed remotely from a distance without the
need for a physical connection anyone using compatible wireless equipment
can potentially
access the LAN. Networks that use wireless are vulnerable whether they are
switched or not. When there is no encryption at all – public Hot spots, you
never know who is listening. When surfing the websites using normal
HTTP protocol / data sent over port 80 will be in plain text so without even
knowing anything about network protocols, even script kiddie can view the
unencrypted data contained within each packet clearly. The technique of
finding a password with Wireshark is relatively simple.
Coloring rules can be applied to the packet list for quick, intuitive analysis.
There are protocol decoders (or dissectors, as they are known in Wireshark)
for a great many protocols. Different packets are shown in different colors
in the packet lists. For start, we are going to use simple “http filter” to see
only HTTP packets no matter from what source it comes from. There is
very useful mechanism available in Wireshark for packet colorization. By
default HTTP packets are colored green, but you can change that in
Coloring Rules under the View menu if needed. Lets assume that your
wireless router does not support secure login, turn off encryption of your
wireless router, and try to log in into web interface using another wireless
interface. You will see many packets flying around, apply http filter and hit
CTRL+F to find the right packet contains your password entered before.
Mark string to be found in packet details and see how easy this was (Figure
3).

Figure 3. Wireshark-http-pass-sniff

Sniffing Encrypted Traffic
In order to start wireless sniffing we have to decrypt the traffic. Wireshark
is armed with decryption support for many protocols, including IPsec,
ISAKMP, Kerberos, SNMPv3, SSL/TLS, WEP, and WPA/WPA2. The
802.11 dissector supports WEP and WPA/WPA2 decryption. In order to
decrypt traffic, attacker should use other security tools and computing
power to obtain credentials. There is nothing unusual to find hidden SSID
in matter of seconds, crack WEP key in less than ten minutes but... Let me
use well known saying I see every day when booting my favorite Linux
operating system “The quieter you become, the more you can hear”. More
recently, IDS have been developed for use on wireless networks. These
wireless IDS can monitor and analyze user and system activities, recognize
patterns of known attacks, identify abnormal network activity, and detect
policy violations for WLANs. To reduce the risk of capture, hackers use
passive OS fingerprinting on their target. Sniffers identify the operating
systems on a network by the type of traffic they send and how they respond
to traffic they receive. Patient attacker will sniff your traffic passively and
gather all information about network infrastructure, not to risk to be
uncovered by Intrusion Detection Systems / Wireless Intrusion Detection
Systems. Wireless intrusion detection systems can identify even packet
injection attack and warn the administrator.
Many companies have firewalls, intrusion detection systems, a solid
authentication methods, strict password politics and all kind of security
mechanism in place but there is always week point somewhere. I have seen
so many meeting rooms inside companies complex with no encryption at all
because comfort is what matters. It would be not that hard to rent a near
flat, use directional antenna and sniff all the traffic around. If there is some

network activity it shouldn’t take more than few hours to collect enough
initialization vectors to crack WEP key.

Adding Keys: 802.11 Preferences
Once entered (Edit/Preferences/Protocols/IEEE 802.11), there is no
difference between sniffing unencrypted traffic and encrypted with Wired
Equivalent Privacy security algorithm (Figure 4).

Figure 4. Wireshark-decode-wep

Decoding & Sniffing WPA
Cracking WPA is nowadays not that hard. Simple and often short
passphrase makes this very easy for malicious attacker which often do have
solid computing resources. Recently, faulty underlying design of the WPS
PIN method on routers makes it easier for an attacker to crack the PIN
combination by brute force using software tools that repeatedly guess the
PIN. Depending on the exact wireless router, these tools can usually figure
out a network’s PIN and full WiFi password (the WPA or WPA2
passphrase) within a few hours. Don’t forget that many routers have WiFi
Protected Setup enabled by default. Assume this is the security whole
attacker used to obtain WPA password. Just like before, enter WPA key into
Wireshark preferences, but no traffic at all seems to be decoded? WPA and
WPA2 use keys derived from an EAPOL handshake to encrypt traffic.
Attacker would apply eapol filter and wait till client connects to access
point or deauthenticate one or all stations to force them to reconnect (Figure
5).

Figure 5. Wireshark-eapol

Theory says that unless all four handshake packets are present for the
session we are trying to decrypt, Wireshark won’t be able to decrypt the

traffic.
But it doesn’t need message 3 for anything. Feel free to play with eapol
filter and make your own conclusion.
FTP is one of the most commonly used means of transferring large amounts
of data. After a while, attacker often observes the most valued IP address in
the network. As you can see we have applied simple display filter to view
only FTP packets from single host which is our point of interest and
wireless access point we are sniffing. Another simple example of
compromising FTP password being captured from the air (Figure 6).

Figure 6. Wireshark-decrypted-tkip-sniffing-ftp-pass

Used Display Filter
ftp and ip.src == 192.168.2.102 && wlan.bssid eq 00:11:22:33:44:55

Our password has been compromised. See down left corner of screenshot,
as as indicated, we gathered decrypted TKIP data along with 4-way
handshake and decrypted FTP password successfully. You may also notice
that this password is easily guessable so choosing strong one with special
characters would be appropriate.

Following TCP Streams
One of the greatest analysis features is ability to view TCP streams as the
application layer sees them. Rather than viewing data being send from
client to server in a bunch of small chunks, the TCP stream feature sorts the
data to make it easily viewable. One can spend a lot of time writing down
the information from each packet and combining it to find out that is being
said in the chat, but that is a bit time consuming and not really practical.
Useful things to do is right click on a packet of interest and select “Follow
TCP Stream” option this will give you the transactions that happened
between two points, perfect for reassembling an AIM conversation. We

could go further with capturing and decoding SIP/VoIP traffic but previous
demonstrations should be enough.
Facebook – the place for social engineering attacks may reveal sensitive
informations that can be later used. We still have our wireless interface in
monitor mode and we are able to decrypt WPA-TKIP but not when comes
to secure connection. Facebook has added a new feature to browse the
popular social network on a secure connection. However, it is not yet turned
on by default. So the recommendation is to always use HTTPS or you have
no privacy at all. After a while, when searching for plain text around HTTP
packets there is a message sniffed from chat... (Figure 7).

Figure 7. Wireshark-sniffing-facebook-chat

When there is “some” encryption present, setting rogue access point should
do the trick too. Wireshark can decrypt SSL traffic as long as you have the
private key, but the question if the key is really necessary. The rogue AP
can be configured to looks like a legitimate AP and, since many wireless
clients simply connect to the AP with the best signal strength, users can be
“tricked” into inadvertently associating with the rogue AP. Tools like
Airbase-ng will eventually convict victim access point to choose... Once a
user is associated, all communications can be monitored by the hacker
through the rogue AP.
Now is the time for previously mentioned promiscuous mode. Promiscuous
mode allows a network device to intercept and read each network packet
that arrives in its entirety. This mode is normally used for packet sniffing
that takes place on a router or on a computer connected to a hub (instead of
a switch) or one being part of a WLAN.
At this stage attackers are not longer worried about IDS or other security
mechanisms because all malicious attempts runs outside protected network.
Once they have accessed systems, intruders
can launch denial of service attacks, steal identities, violate the privacy of

legitimate users, insert viruses or malicious code, and disable operations.
Common man in the middle attack, exploit kits takes their places from here
and takes care even about SSL.
One simple note – if there is an access point in range with SSID same or
similar to company’s name it not always have to be access point under
company’s control. Once an unauthorized user has gained access to the
network, monitoring of the now unprotected data can lead to user names
and passwords being intercepted, which can then be used for further attacks
like stealing authentication cookies.
If this short article encourages you get your hands on Wireshark, don’t
hesitate and get your shark now from wireshark.org Take your time and
study well written documentation which will take you step by step through
wonderful experiences.

Conclusion
WLAN devices based on the IEEE 802.11 standard have a number of
vulnerabilities related to the fact that wireless signals are sent over the air
rather than through closed wiring paths. In WLANs, network traffic is
broadcast into uncontrolled public spaces, which may result in the
compromise of sensitive information. Always use the highest security
methods of encryption possible and lower AP transmit power. Security is a
process, not an instant soup. Discovering one even simple vulnerability
could lead to compromise whole network.
MI1
MI1 is a security enthusiast with university degree in the field of informatics currently working for
one of Europe’s largest IT and Telecommunications service provider. He is the founder of hack4fun.eu
where you can reach his thoughts written in English or Slovak language.

Using Wireshark and Other Tools
to as an Aid in Cyberwarfare and
Cybercrime
Attempting to Solve the “Attribution Problem” – Using Wireshark
and Other Tools to as an Aid in Cyberwarfare and Cybercrime for

http://hack4fun.eu/

Analyzing the Nature and Characteristics of a Tactical or Strategic
Offensive Cyberweapon and Hacking Attacks.
One of the main disadvantages of the hyper-connected world of the 21st
century is the very real danger that countries, organizations, and people who
use networks computer resources connected to the Internet face because
they are at risk of cyberattacks that could result in anything ranging from
denial service, to espionage, theft of confidential data, destruction of data,
and/or destruction of systems and services. As a recognition of these
dangers, the national leaders and military of most modern countries have
now recognized that the potential and likely eventuality of cyberwar is very
real and many are preparing to counter the threats of cyberwar with modern
technological tools using strategies and tactics under a framework of
cyberdeterrence, with which they can deter the potential attacks associated
with cyberwarfare.

What is Cyberwarfare?
During my studies prior to and as a student in this DET 630 – Cyberwarfare
and Cyberdeterrence course at Bellevue University, it occurred to me that
considering the rapid evolution of the potentially destructive capabilities of
cyberweapons and the complex nature of cyberdeterrence in the 21st
century, it is now a critical priority to integrate the cyberwarfare and
cyberdeterrence plans into the CONOPS plan. Indeed, if the strategic
battleground of the 21st century has now expanded to include cyberspace,
and the U.S. has in the last five years ramped up major military commands,
training, personnel, and capabilities to support cyberwarfare and
cyberdeterrence capabilities, the inclusion of these capabilities should now
be a critical priority of the Obama administration if has not already
happened.
How large a problem is this for the United States?
Without the integration of cyberwarfare and cyberdeterrence technologies,
strategies, and tactics into the CONOPS Plan, the national command
authorities run a grave risk of conducting a poorly planned offensive
cyberwarfare operation that could precipitate a global crisis, impair
relationships with its allies, and potentially unleash a whole host of
unintended negative and potentially catastrophic consequences. In non-

military terms, at least four notable cyberspace events caused widespread
damages via the Internet because of the rapid speed of their propagation,
and their apparently ruthless and indiscriminant selection of vulnerable
targets. They are 1) the Robert Morris worm (U.S. origin, 1988); 2) the
ILOVEYOU worm (Philippines origin, 2000); the Code Red worm (U.S.
origin, 2001); and the SQL Slammer worm (U.S. origin, 2003). If not
executed with great care and forethought, a cyberweapons could potentially
unleash even greater damage on intended targets and possible on
unintended targets that were connected via the Internet.
Other Not So Obvious Challenges for Cyberweapons and
Cyberdeterrence
The cyberspace threat and vulnerability landscape is notable in that it is
continually dynamic and shifting. Those who are responsible for protecting
assets in cyberspace have many more challenges on their hands than their
military counterparts who utilize weapons like guns, explosives, artillery,
missiles, etc. For example, there are by some estimates over 350 new types
of malware that are manufactured each month. There are also monthly patch
updates to most Microsoft software and operating systems, and phenomena
such as evil hackers and zero-day exploits are apparently never ending.
Therefore, the inclusion of cyberweapons and cyberdeterrence capabilities
into the CONOPS Plan would require more frequent, rigorous, complex,
and integrated testing to ensure that it was always effective and up to date.
In the dynamic world of cyberspace with it’s constantly shifting landscape
of new capabilities, threats and vulnerabilities, the coordination of the
constant refresh and testing of a CONOPS Plan that integrated these
cyberwarfare and cyberdeterrence capabilities would be no small feat. In
addition, constant intelligence gathering and reconnaissance would need to
be performed on suspected enemies to ensure that our cyberweapons and
cyberdeterrence capabilities would be in constant state of being able to
deliver the intended effects for which they were designed.
Is it a problem for other countries?
The careful planning and integration of cyberweapons and cyberdeterrence
is likely a challenge for every country with these capabilities. For example,
much is already known about our potential adversaries, such as Russia,
China and North Korea, but what is perhaps less understood is the degree to

which they have been successful in integrating cyberwarfare and
cyberdeterrence capabilities into their own national war plans. Nevertheless,
due to the previous extensive experience of Russia and the U.S. with
strategic war planning, it is more likely that each of these countries stand
the greatest chance of making integrating cyberwarfare and cyberdeterrence
capabilities into their respective war plans. Yet, as far back as June 2009, it
was clear that the U.S. and Russia were unable to agree on a treaty that
would create the terms under which cyberwarfare operations could and
would be conducted (Markoff, J. and Kramer, A. E., 2009).
Is it problematic for these countries in the same ways or is
there variation? What kind?
Every country that is modern enough to have organizations, people, and
assets that are connected to computers and the Internet faces similar
challenges of planning and managing cyberweapons and cyberdeterrence,
and the poorer the country, the more significant the challenges. For
example, when a small group of hackers from Manila in the Philippines
unleashed the ILOVEYOU worm on the Internet in 2000, it caused over $2
billion in damages to computer data throughout the world. Agents from the
FBI went to Manila to track down these people and investigate how and
why the ILOVEYOU worm catastrophe occurred. To their surprise, they
learned that each of these hackers who were involved could successfully
escape prosecution because there were no laws in the Philippines with
which to prosecute them. So actually most countries lack the technological
and legal frameworks with which to successfully build a coordinated effort
to manage the weapons and strategies of cyberwarfare and cyberdeterrence,
despite the fact that most now embrace cyberspace with all the positive
economic benefits it offers for commerce and communications.
What are the consequences to the U.S. and others if this threat
is left unchecked?
As stated earlier, without the careful integration of cyberwarfare and
cyberdeterrence technologies, strategies, and tactics into the CONOPS Plan,
the national command authorities run a grave risk of launching a poorly
planned offensive cyberwarfare operation that could precipitate a global
crisis, impair relationships with its allies, and potentially unleash a whole
host of unintended negative and potentially catastrophic consequences.

What consequences has the threat already produced on
American/global society?
I believe that yes, the absence of well-defined cyberwarfare and
cyberdeterrence strategies and tactics in the CONOPS Plan has already
produced some situations that have either damaged America’s image
abroad, or that could imperil its image and have far more negative
consequences. For example, operates such as Stuxnet, Flame, Duque, etc.,
might have either been better planned or possibly not executed at all if
cyberwarfare and cyberdeterrence strategies and tactics were defined in the
CONOPS Plan. Also, the news media indicated during the revolution in
Libya that resulted in the fall of Qaddafi, cyberwarfare operations were
considered by the Obama administration. The negative reactions and
repercussions on the world stage might have far outweighed any short term
advantages that could have resulted from a successful set of cyberattacks
against Libyan infrastructure assets that were attached to computer
networks. Again, a comprehensive CONOPS Plan that included well-
defined cyberwarfare and cyberdeterrence strategies and tactics could have
prevented such possible cyberattacks from even being considered, and it
could have prevented the news of the possible consideration being
publicized in the press (Schmitt, E. and Shanker, T., 2011). Without such
restraint and well-planned deliberate actions, the U.S. runs the risk of
appearing like the well-equipped cyber bully on the world stage, and an
adversary who is willing to unleash weapons that can and will do crippling
damage to an opponent, using technologies that are rapid, decisive, and not
well-understood by those for whom they are intended. A similar effect and
world reaction might be if U.S. Army infantry troops were equipped with
laser rifles that emitted deadly laser blasts with pinpoint precision across
several hundred yards.
Has this threat evolved or changed over time or is it relatively
constant? If it has evolved or changed, exactly how has that
change happened and what political consequences have
emerged from them?
The threat has certainly rapidly evolved over time. Since Stuxnet was
released in 2010, countries and the general public are now aware of some of

the offensive, strategic and destructive capabilities and potential of
cyberweapons (Gelton, T., 2011).
The changes that produced Stuxnet and other recent, more modern
cyberweapons were a national resolve to excel in the cyberwarfare area,
coupled with excellent reconnaissance on desired targets, and partnering
with computer scientists in Israel. The political consequences are not well
understood yet, except to say that the U.S. and Israel are probably less
trusted and suspected of even greater future capabilities, as well as having
the will to use them. Again, having well-planned cyberwarfare and
cyberdeterrence strategies and tactics defined in the CONOPS Plan might
indeed, restrain such possibly reckless decisions as to unleash cyberweapon
attacks without what the world might consider the correct provocation.
Final Thoughts about Cyberwarfare Operations
In the words of Deb Radcliff, in an article published in SC Magazine in
September 2012, “we are already in a cyberwar” (Radcliff, D., 2012). But
as I was performing my research, it occurred to me that a country like the
U.S., might in the future unleash such a devastating cyberattack that it could
cripple the enemy’s ability to communicate surrender. I think that the moral
implications of such circumstances need to be justly considered as a matter
of the laws of war, because if a country continues to attack an enemy that
has indicated that they are defeated and want to surrender, this shifts the
moral ground from which the U.S. may have it was conducting its
cyberwarfare operations. This is one other unintended consequence of
cyberwarfare and one that needs to be carefully considered.
To further understand the relationship of threats, counter-measures, and
exposures in cyberspace, I have included this diagram by Jaquith, shown
Figure 1.

Figure 1. Logical Model of IT Security Management Controls (Jacquith, 2007)

The Attribution Problem
One of the most perplexing issues of cyberwarfare and cybercrime is the
fact that attackers can and very often will use software and other servers
from which to launch their attacks. Because of the way the Internet was
designed its end-to-end nature of IP communications using other computers
to launch attacks is not that difficult. In fact, the computers that actually
perform the attacks are called “zombies” as they are configured with remote
control programs that are manipulated by the attackers. The recipients can
do forensic analysis and determine which “zombie” computers sent the
attacks, however, it is practically impossible to collect the data about who
the person or persons that originated the attacks. Thus, it is very difficult to
attribute the original cause of the attack, hence the name the “attribution
problem.” In cyberwarfare, this is particularly difficult, because the
National Command Authorities would want to understand to whom and
where they should employee the cyberwarfare capable units of the U.S.
Military to launch a punishing retaliatory cyberattack.
The most common type of attack for “zombie” computers is known as the
distributed denial of service attack or DDoS attack. In February 2000, the

first sensational wave of DDoS attacks were launched from “zombie”
computers that were physically located at major universities in California.
The following figures provide some of the details about those attacks and
which companies were the targets (Figure 2-4).

Figure 2. Denial of Service Attack diagram from ABC news in February 2000

Figure 3. Denial of Service Attack Victims diagram from ABC news in February 2000

Figure 4. Denial of Service Attack Zombies diagram from ABC news in February 2000

Recent Cyber Attacks
As recently as September 23, 2012 – September 30, 2012, cyber attacks in
the form of distributed denial of service (DDOS) attacks from the Middle
East against several major U.S. banks based have publicly demonstrated the
ire of the attackers and also the vulnerabilities of banks with a customer
presence in cyberspace (Strohm and Engleman, 2012).

How do you know?
It’s not always intuitively obvious, but if your network is slowing down or
computers or other devices attached to your network are acting strangely,

you could be under attack. But it’s best to use analysis tools to understand
what is really going on.

Free Tools You Can Use
This section covers three free tools that you can use to understand network
activity on your network in greater detail.
Wireshark
Wireshark is a free, open source packet analysis tool that evolved from its
predecessor, Ethereal.
Wireshark is notable for its ability to quickly, capture and display traffic in a
real time sequential way, and allow this traffic to be displayed, broken down
at the packet level by each level of the OSI model, from the physical layer
up through the application layer. The traffic can also shows the senders and
the receivers of each packet, and can be easily summarized with the
selection of a few menu choices. The first figure below is from a table in the
Wireshark documentation, and the figures that follow are from an actual
Wireshark session where about 500,000 packets were collected for
summarization and analysis. All this data can also be saved for later
analysis.
Wireshark will run on both Windows-based platforms and Mac OS X
platforms. This is the website location where you can find Wireshark:
http://www.wireshark.org/download.html (Table 1 and Figure 5-8).
Table 1. Wireshark Documentation – Packet Analysis Capabilities for Captured Packets

The menu items of the "Packet List" pop-up menu

Item

Identical to
main
menu’s
item:

Description

Mark Packet
(toggle) Edit Marklunmark a packet.

Ignore
Packet
(toggle)

Edit Ignore or inspect this packet while dissecting the capture file.

Set Time
Reference
(toggle)

Edit Set/reset a time reference.

Manually
Resolve
Address

Allows you to enter a name to resolve for the selected address.

Apply as
Filter Analyze Prepare and apply a display filter based on the currently selected

item.
Prepare a
Filter Analyze Prepare a display filter based on the currently selected item.

http://www.wireshark.org/download.html

Conversation
Filler

- This menu item applies a display filter with the address nformationflonitly selected packet.
E.g. the IP mein enttywill eta filter to show the trafficbetweenthe two IP addresses of the
current packet. XXX - add a new section describing this better.

Cobrize
Conversation - This menu item uses adisplayfilterwiththe address infounaticei from the selected packet to

build a new colorizing rule.
SCTP - Allows ycii to analyze and prepare a filter for this SCTP associafion.
Follow TCP
Stream Analyze Allows you to view all the data on a TCP streambetw een a pair of noles.

Follow UDP
Stream Analyze Allows you to view all the data on a UDP datazrain stnain b etw een a pair of nodes.

Follow SSL
Stream Analyze Same as "Follow TCP Sbeanz" but for SSL. XXX - add a new ection descnbing this better.

Copy/
Summary
(Text)

- Copy the surtunny fields as displayed to the clipboard, as tab-separated text.

Copy/
Summary
(CSV)

- Copy the summary fields as displayed to the clipboard, as conuna-separated text.

Copy/ As
Filter - Prepare a display filterbased on the currently selected item aid copy that filter to tle

clipboard.
Copy/ Byter
(Offset Hex) - Copy the packet bytes to the clipboard in hexdump-like format, butwitlrut the text partion.

Copy/ Byter
(Pantable
Text Only>)

- Copy the packet bytes to the clipboard as ASCII text, excludin; non-pzintab le characters.

Copy/ Wier
(Hex
Stream)

- Copy the packet bytes to the clipboard as an unpuirtuated list of hex digits.

Copy/ Byter
(Binary
Stream)

- Copy the packet bytes to the clipboard as raw binary. The data is stored intly clipboard as
MIME-tyre "application/octet-stteam".

Decode As... Analyze Change or apply a new relationbetween two dissectors.
Print… File Print packets.
Show Packet
in New
Window

View Display the selected packet ma new window.

Figure 5. Wireshark Opening Screenshot after a Network Interface Has Been Selected for Packet Capture

Figure 6. Wireshark Conversation Analysis Screen

Figure 7. Wireshark Protocol Analysis Screen

Figure 8. Wireshark Endpoint Analysis Screen

Ostinato
Ostinato is a free, open source-based packet generator that can be used to
conduct network experiments, particularly for packet analysis in
conjunction with a tool such as Wireshark. It is easy to install, configure
and use. Figure 8 shows a screenshot from Ostinato.
Ostinato will run on Windows-based platforms and several other platforms.
This is the website location where you can find Ostinato:
http://code.google.com/p/ostinato/ (Figure 9).

http://code.google.com/p/ostinato/

Figure 9. Ostinato Packet Generator Screen

TCPView
TCPView is an excellent analysis program that shows what is happening on
your computer at layer four of the OSI networking model. If you remember,
this is where TCP and UDP activities take place. TCPView allows the user
to view and sort data by process, PID, protocol (TCP or UDP), local
address, remote address, port number, TCP state, sent packets, sent bytes,
received packets, and received bytes. The data can also be saved for later
analysis.
TCPView was originally written by Mark Russinovich and Bryce Cogswell
and was published and distributed for free by their company, Sysinternals.
In 2006, Microsoft acquired Sysinternals and TCPView and many other
tools that were created by Sysinternals continue to be updated and
distributed
by Microsoft for free. TCPView will only run on Windows-based platforms
and this is the website location where you can find TCPView and many
other great Sysinternals tools: http://technet.microsoft.com/en-
us/sysinternals (Figure 10).

Figure 10. TCPView in operation, with records sorted by sent packets, in descending order

Traffic to Watch
By far the most interesting and dangerous external traffic to watch on most
networks is ICMP traffic. ICMP is the Internet Control Messaging Protocol,
and there are eight types of ICMP messages. Hackers can easily use ICMP
(PING) messages to create DDOS attacked. A tool like Simple Nomad’s
“icmpenum” can issue ICMP messages such as
ICMP_TIMESTAMP_REQUEST and ICMP_INFO and make it possible to
map a network inside of a firewall (K, 2011).

http://technet.microsoft.com/en-us/sysinternals

Outbound traffic is just as important as inbound traffic if not more so
(Geers, 2011). It is not uncommon for programs like botnets to take up
residence and open up secure channels to transmit data to remote servers in
places like China, Russia, Eastern Europe and even North Korea.
Programs that are unrecognizable should be suspected as possible malware
and should be quickly researched to determine if they are hostile. If they
cannot be easily identified, that is a bad sign and they should probably be
uninstalled.

A Caution to those Who Understand
Network Attacks
Title 10 of the U.S. Code forbids U.S. Citizens from taking offensive action
against network attackers. Nevertheless, monitoring the evidence and
results of unwanted traffic could help you understand it and also help you
decide how to improve upon your network defenses (firewall settings for
inbound traffic, desktop firewalls, etc.) and even provide evidence to law
enforcement authorities.

The Future
Without trying to present a gloomy picture of the cyberspace environment
that is composed of the Internet and all the computers, smart phones and
other devices attached to it, it appears that for the time being, the bad guys
far outnumber the good guys and it appears that they are winning. But it is
also apparent that that now more free information and free tools are
available than ever before. For the foreseeable future, every person who
uses the Internet should seek to educate themselves about the dangers in
cyberspace and the ways to protect themselves from these dangers.

Conclusion
This article has briefly reviewed the topic of cyberwarfare and presented
some information about free network analysis tools that can help you better
understand your network traffic.
The good news is that President Obama and his Administration have an
acute awareness of the importance of the cyberspace to the American
economy and the American military. The bad news is that because we are
already in some form of cyberwarfare that appears to be rapidly escalating,

it remains to be seen what effects these cyberattacks and the expected
forthcoming Executive Orders that address cybersecurity will have on the
American people and our way of life. I believe it will be necessary to act
prudently, carefully balancing our freedoms with our need for security, and
also considering the importance of enabling and protecting the prosperity of
the now electronically connected, free enterprise economy that makes the
U.S. the envy of and the model for the rest of the world.

References
• Andreasson, K. (Ed.). (2012). Cybersecurity: Public Sector Threats and Responses. Boca Raton, FL: CRC Press.
• Andress, J. and Winterfeld, S. (2011). Cyber Warfare: Techniques and Tools for Security Practitioners. Boston, MA: Syngress.
• Arndreasson, K. (ed.). (2012). Cybersecurity: Public Sector Threats and Responses. Boca Raton, FL: CRC Press.
• Barnett, M. B. and Finnemore, M. (2004). Rules for the World: International Organizations in Global Politics. Ithaca, NY:

Cornell University Press.
• Bayles, A., et al. (2007). Penetration Tester’s Open Source Toolkit, Volume 2. Burlington, MA: Syngress.
• Blitz, A. (2011). Lab Manual for Guide to Computer Forensics and Investigations, fourth edition. Boston, MA: Course

Technology, Cengage Learning.
• Bousquet, A. (2009). The Scientific Way of Warfare: Order and Chaos on the Battlefields of Modernity. New York, NY:

Columbia University Press.
• Brancik, K. (2008). Insider Computer Fraud: An In-Depth Framework for Detecting and Defending Against Insider IT Attacks.

Boca Raton, FL: Auerbach Publications.
• Britz, M. T. (2009). Computer Forensics and Cyber Crime: An Introduction, second edition. Upper Saddle River, NJ: Prentice-

Hall.
• Bush, G. W. (2008). Comprehensive National Cybersecurity Initiative (CNCI). Published by the White House January 2008.

Retrieved from http://www.whitehouse.gov/cybersecurity/comprehensive-national-cybersecurity-initiative on January 5, 2012.
• Calder, A. and Watkins, S. (2010). IT Governance: A Manager’s Guide to Data Security and ISO27001/ISO27002, 4th edition.

London, UK: Kogan Page.
• Carr, J. (2012). Inside Cyber Warfare, second edition. Sebastopol, CA: O’Reilly.
• Carrier, B. (2005). File System Forensic Analysis. Upper Saddle River, NJ: Addison-Wesley.
• Carvey, H. (2009). Windows Forensic Analysis DVD Toolkit, second edition. Burlington, MA:
• Casey, E. (2011). Digital Evidence and Computer Crime: Forensic Science, Computers and the Internet, third edition. New York,

NY: Elsevier.
• Chappell, L. (2010). Wireshark Network Analysis: The Official Wireshark Certified Network Analyst Study Guide, first edition.

San Jose, CA: Chappell University.
• Cialdini, R. B. (2009). Influence: Science and Practice, fifth edition. Boston, MA: Pearson Education.
• Clarke, R. A. and Knake, R. K. (2010). Cyberwar: the Next Threat to National Security and What to Do About It. New York,

NY: HarperCollins Publishers.
• CNBC. (2012) Cyber Espionage: The Chinese Threat. A collection of articles about the cyber threats posed by Chinese hackers.

Retrieved from http://www.cnbc.com/id/47962207/ on July 10, 2012.
• Cole, E. and Ring, S. (2006). Insider Threat: Protecting the Enterprise from Sabotage, Spying, and Present Employees and

Contractors from Stealing Corporate Data. Rockland, MA: Syngress Publishing, Inc.
• Cole, E., et al. (2009). Network Security Bible, second edition. Indianapolis, IN: Wiley Publishing, Inc.
• Czosseck, C. and Geers, K. (2009). The Virtual battlefield: Perspectives on Cyber Warfare. Washington, DC: IOS Press.
• Davidoff, S. and Ham, J. (2012). Network Forensics: Tracking Hackers Through Cyberspace. Upper Saddle River, NJ: Prentice-

Hall.
• Dhanjani, N. (2009). Hacking: The Next Generation. Sebastopol, CA: O’Reilly.
• Edwards, M. and Stauffer, T. (2008). Control System Security Assessments. A technical paper presented at the 2008 Automation

Summit – A Users Conference, in Chicago. Retreived from the web at http://www.infracritical.com/papers/nstb-2481.pdf on
December 20, 2011.

• Fayutkin, D. (2012). The American and Russian Approaches to Cyber Challenges. Defence Force Officer, Israel. Retrieved from
http://omicsgroup.org/journals/2167-0374/2167-0374-2-110.pdf on September 30, 2012.

• Freedman, L. (2003). The Evolution of Nuclear Strategy. New York, NY: Palgrave Macmillan.
• Friedman, G. (2004). America’s Secret War: Inside the Hidden Worldwide Struggle Between America and Its Enemies. New

York, NY: Broadway Books.
• Geers, K. (2011). Strategic Cyber Security. A Cybersecurity technical paper published at DEFCON 20.
• Georgetown University. (2012). International Engagement in Cyberspace part 1. A YouTube video. Retrieved from

http://www.youtube.com/watch?v=R1lFNgTui00&feature=related on September 21, 2012.
• Gerwitz, D. (2011). The Obama Cyberdoctrine: tweet softly, but carry a big stick. An article published at Zdnet.com on May 17,

2011. Retrieved from http://www.zdnet.com/blog/government/the-obama-cyberdoctrine-tweet-softly-but-carry-a-big-
stick/10400 on September 25, 2012.

• Gjelten, T. (2010). Are ‘Stuxnet’ Worm Attacks Cyberwarfare? An article published at NPR.org on October 1, 2011. Retrieved
from the web at http://www.npr.org/2011/09/26/140789306/security-expert-u-s-leading-force-behind-stuxnet on December 20,
2011.

http://www.whitehouse.gov/cybersecurity/comprehensive-national-cybersecurity-initiative
http://www.infracritical.com/papers/nstb-2481.pdf
http://omicsgroup.org/journals/2167-0374/2167-0374-2-110.pdf
http://www.youtube.com/watch?v=R1lFNgTui00&feature=related
http://www.zdnet.com/blog/government/the-obama-cyberdoctrine-tweet-softly-but-carry-a-big-stick/10400
http://www.npr.org/2011/09/26/140789306/security-expert-u-s-leading-force-behind-stuxnet

• Gjelten, T. (2010). Stuxnet Computer Worm Has Vast Repercussions. An article published at NPR.org on October 1, 2011.
Retrieved from the web at http://www.npr.org/templates/story/story.php?storyId=130260413 on December 20, 2011.

• Gjelten, T. (2010). Stuxnet Computer Worm Has Vast Repercussions. An article published at NPR.org on October 1, 2011.
Retrieved from the web at http://www.npr.org/templates/story/story.php?storyId=130260413 on December 20, 2011.

• Gjelten, T. (2011). Security Expert: U.S. ‘Leading Force’ Behind Stuxnet. An article published at NPR.org on September 26,
2011. Retrieved from the web at http://www.npr.org/2011/09/26/140789306/security-expert-u-s-leading-force -behind-stuxnet
on December 20, 2011.

• Gjelten, T. (2011). Stuxnet Raises ‘Blowback’ Risk In Cyberwar. An article published at NPR.org on December 11, 2011.
Retrieved from the web at http://www.npr.org/2011/11/02/141908180/stuxnet-raises-blowback-risk-in-cyberwar on December
20, 2011.

• Gjelten, T. (2011). Stuxnet Raises ‘Blowback’ Risk In Cyberwar. An article published at NPR.org on December 11, 2011.
Retrieved from the web at http://www.npr.org/2011/11/02/141908180/stuxnet-raises-blowback-risk-in-cyberwar on December
20, 2011.

• Glenny, M. (2011). Dark Market: Cyberthieves, Cybercops and You. New York, NY: Alfred A. Knopf.
• Grabo, C. M. (2004). Anticipating Surprise: Analysis for Strategic Warning. Lanham, MD: University Press of America, Inc.
• Guerin, J. (2010). The Essential Guide to Workplace Investigations: How to Handle Employee Complaints & Problems.

Berkeley, CA: Nolo.
• Guerin, J. (2010). The Essential Guide to Workplace Investigations: How to Handle Employee Complaints & Problems.

Berkeley, CA: Nolo.
• Harper, A., et al. (2011). Gray Hat Hacking: The Ethical Hacker’s Handbook, third edition. New York, NY: McGraw Hill.
• Hintzbergen, J., el al. (2010). Foundations of Information Security Based on ISO27001 and ISO27002, second edition.

Amersfoort, NL: Van Haren Publishing.
• Honker’s Union of China. (2012). Honker’s Union of China website. Retrieved from http://www.huc.me/ on September 21,

2012.
• Hyacinthe, B. P. (2009). Cyber Warriors at War: U.S. National Security Secrets & Fears Revealed. Bloomington, IN: Xlibris

Corporation.
• Jones, K. J., et al. (2006). Real Digital Forensics: Computer Security and Incident Response. Upper Saddle River, NJ: Addison-

Wesley.
• Jones, R. (2006). Internet Forensics: Using Digital Evidence to Solve Computer Crime. Cambridge, MA, CA: OReilly.
• K., Dr. (2011). Hacker’s Handbook, fourth edition. London, U.K.: Carlton.
• Kaplan, F. (1983), The Wizards of Armagedden: The Untold Story of a Small Group of Men Who Have Devised the Plans and

Shaped the Policies on How to Use the Bomb. Stanford, CA: Stanford University Press.
• Kerr, D. (2012). Senator urges Obama to issue ‘cybersecurity’ executive order. An article published at Cnet.com on September

24, 2012 Retrieved from http://news.cnet.com/8301-1009_3-57519484-83/senator-urges-obama-to-issue-cybersecurity-
executive-order/ on September 26, 2012.

• Knapp, E D. (2011). Industrial Network Security: Securing Critical Infrastructure Networks for Smart Grid, SCADA, and Other
Industrial Control Systems. Waltham, MA: Syngress, MA.

• Kramer, F. D. (ed.), et al. (2009). Cyberpower and National Security. Washington, DC: National Defense University.
• Landy, G. K. (2008). The IT/Digital Legal Companion: A Comprehensive Business Guide to Software, IT, Internet, Media, and

IP Law. Burlington, MA: Syngress.
• Langer, R. (2010). Retrieved from the web at http://www.langner.com/en/blog/page/6/ on December 20, 2011.
• Libicki, M.C. (2009). Cyberdeterrence and Cyberwar. Santa Monica, CA: Rand Corporation.
• Lockhart, A. (2007). Network Security Hacks: Tips & Tools for Protecting Your Privacy, second edition. Sebastopol, CA:

O’Reilly.
• Logicalis. (2011). Seven Ways to Identify a Secure IT Environment. Published at IT Business Edge in 2011. Retrieved from

http://www.itbusinessedge.com/slideshows/show.aspx?c=92732&placement=bodycopy in May 5, 2011.
• Long, J., et al. (2008). Google Hacking for Penetration testers, Volume 2. Burlington, MA: Syngress Publishing, Inc.
• Long, J., et al. (2008). No Tech Hacking: A Guide to Social Engineering, Dumpster Diving, and Shoulder Surfing. Burlington,

MA: Syngress Publishing, Inc.
• Markoff, J. and Kramer, A. E. (2009). U.S. and Russia Differ on a Treaty for Cyberspace. An article published in the New York

Times on June 28, 2009. Retrieved from http://www.nytimes.com/2009/06/28/world/28cyber.html?pagewanted=all on June 28,
2009.

• Mayday, M. (2012). Iran Attacks US Banks in Cyber War: Attacks target three major banks, using Muslim outrage as cover. An
article published on September 22, 2012 at Poltix.Topix.com. Retrieved from http://politix.topix.com/homepage/2214-iran-
attacks-us-banks-in-cyber-war on September 22, 2012.

• McBrie, J. M. (2007). THE BUSH DOCTRINE: SHIFTING POSITION AND CLOSING THE STANCE. A scholarly paper
published by the USAWC STRATEGY RESEARCH PROJECT. Retrieved from http://www.dtic.mil/cgi-bin/GetTRDoc?
AD=ADA423774 on September 30, 2012.

• Middleton, B. (2005). Cyber Crime Investigator’s Field Guide, second edition. Boca Raton, FL: Auerbach Publications.
• Mitnick, K. and Simon, W. (2002). The Art of Deception: Controlling the Human Element Security. Indianapolis, IN: Wiley

Publishing, Inc.
• Mitnick, K. and Simon, W. (2006). The Art of Intrusion: The Real Stories Behind the Exploits of Hackers, Intruders &

Deceivers. Indianapolis, IN: Wiley Publishing, Inc.
• Nelson, B., Et al. (2010). Guide to Computer Forensics and Investigations, fourth edition. Boston, MA: Course Technology,

Cengage Learning.
• Northcutt, S. and Novak, J. (2003). Network Intrusion, third edition. Indianapolis, IN: New Riders.
• Obama, B. H. (2012). Defense Strategic Guidance 2012 – Sustaining Global Leadership: Priorities for 21st Century Defense.

Published January 3, 2012. Retrieved from http://www.defense.gov/news/Defense_Strategic_Guidance.pdf on January 5, 2012.
• Obama, B.H. (2011). INTERNATIONAL STRATEGY for Cyberspace. Published by the White House on May 16, 2011.

Retrieved from http://www.whitehouse.gov/sites/default/files/rss_viewer/international_strategy_for_cyberspace.pdf on May 16,

http://www.npr.org/templates/story/story.php?storyId=130260413
http://www.npr.org/templates/story/story.php?storyId=130260413
http://www.npr.org/2011/09/26/140789306/security-expert-u-s-leading-force
http://www.npr.org/2011/11/02/141908180/stuxnet-raises-blowback-risk-in-cyberwar
http://www.npr.org/2011/11/02/141908180/stuxnet-raises-blowback-risk-in-cyberwar
http://www.huc.me/
http://news.cnet.com/8301-1009_3-57519484-83/senator-urges-obama-to-issue-cybersecurity-executive-order/
http://www.langner.com/en/blog/page/6/
http://www.nytimes.com/2009/06/28/world/28cyber.html?pagewanted=all
http://politix.topix.com/homepage/2214-iran-attacks-us-banks-in-cyber-war
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA423774
http://www.defense.gov/news/Defense_Strategic_Guidance.pdf
http://www.whitehouse.gov/sites/default/files/rss_viewer/international_strategy_for_cyberspace.pdf

2011.
• Osborne, M. (2006). How to Cheat at Managing Information Security. Rockland, MA: Syngress.
• Parker, T., et al. (2004). Cyber Adversary Characterization: Auditing the Hacker Mind. Rockland, MA: Syngress Publishing, Inc.
• Payne, K. B. (2001). The Fallacies of Cold War Deterrence and a New Direction. Lexington, KY: The University of Kentucky

Press.
• Philipp, A., et al. (2010). Hacking Exposed Computer Forensics: Secrets and Solutions, second edition. New York, NY:

McGraw-Hill.
• Pry, P. V. (1999). War Scare: Russia and America on the Nuclear Brink. Westport, CT: Praeger Publications.
• Radcliff, D. (2012). Cyber Cold War. An article published in the SC Magazine, September 2012 issue.
• Radcliff, D. (2012). Cyber cold war: Espionage and warfare. An article published in SC Magazine, September 4, 2012. Retrieved

from http://www.scmagazine.com/cyber-cold-war-espionage-and-warfare/article/254627/ on September 7, 2012.
• Reynolds, G. W. (2012). Ethics in Information Tehnology, 4th edition. Boston, MA: Course Technology.
• Reynolds, G. W. (2012). Ethics in Information Tehnology, 4th edition. Boston, MA: Course Technology.
• Rogers, R., et al. (2008). Nessus Network Auditing, second edition. Burlington, MA: Syngress.
• Rosenbaum, R. (2011). How the End Begins: The Road to a Nuclear World War III. New York, NY: Simon and Schuster.
• RT. (2012). Iran may launch pre-emptive strike on Israel, conflict could grow into WWIII – senior commander. An article

published at RT.com on September 23, 2012. Retrieved from http://rt.com/news/iran-strike-israel-world-war-803/ on September
24, 2012.

• Sanger, D. E. (2012). Confront and Coneal: Obama’s Secret Wars and Surprising Use of America Power. New York, NY: Crown
Publishers.

• Schell, B. H., et al. (2002). The Hacking of America: Who’s Doing It, Why, and How. Westport, CT: Quorum Press.
• Schlesinger, J. (2012). Chinese Espionage on the Rise in US, Experts Warn. An article published at CNBC.com on July 9, 2012.

Retrieved from http://www.cnbc.com/id/48099539 on July 10, 2012.
• Schmidt, H. S. (2006). Patrolling Cyberspace: Lessons Learned from Lifetime in Data Security. N. Potomoc, MD: Larstan

Publishing, Inc.
• Schmitt, E. and Shanker, T. (2011). U.S. Debated Cyberwarfare in Attack Plan on Libya. An article published in the New York

Times on October 17, 2011. Retrieved from http://www.nytimes.com/2011/10/18/world/africa/cyber-warfare-against-libya-was-
debated-by-us.html on October 17, 2011.

• Seagren, E. (2007). Secure Your Network for Free: Using NMAP, Wireshark, SNORT, NESSUS, and MRTG. Rockland, MA:
Syngress.

• Seagren, E. (2007). Secure Your Network for Free: Using NMAP, Wireshark, SNORT, NESSUS, and MRTG. Rockland, MA:
Syngress.

• SEM. (2011). The Hacker’s Underground. Retrieved from http://serpentsembrace.wordpress.com/2011/05/17/the-hackers-
underground/ on September 21, 2012.

• Simpson, M. T., et al. (2011). Hands-On Ethical Hacking and Network Defense. Boston, MA: Course Technology.
• Skpudis, E. and Liston, T. (2006). Counter Hack Reloaded: A Step-by-Step Guide to Computer Attacks and Effective Defenses,

second edition. Upper Saddle River, NJ: Prentice-Hall.
• Soloman, M. G., et al. (2011). Computer Forensics Jump Start, second edition. Indianapolis, IN: Wiley Publishing, Inc.
• Stallings, W. (2011). Network Security Essentials: Applications and Standards, fourth edition. Boston, MA: Prentice Hall.
• Stiennon, R. (2010). Surviving Cyber War. Lanham, MA: Government Institutes.
• Strohm, C. and Engleman, E. (2012). Cyber Attacks on U.S. Banks Expose Vulnerabilities. An article published at

BusinessWeek..com on September 28, 2012 Retrieved from http://www.businessweek.com/news/2012-09-27/cyber-attacks-on-
u-dot-s-dot-banks-expose-computer-vulnerability on September 30, 2012.

• Technolytics. (2011). Cyber Commander’s eHandbook: The Weaponry and Strategies of Digital Conflict. Purchased and
downloaded from Amazon.com on April 16, 2011.

• The Hacker’s Underground. An article published at the Serpent’s Embrace blog. Retrieved from
http://serpentsembrace.wordpress.com/tag/honker-union-of-china/ on September 21, 2012.

• Trost, R. (2010). Praaactical Intrusion Analysis: Prevention and Detection for the Twenty-First Century. Boston, MA: Addison-
Wesley.

• Vacca, J. R. (2002). Computer Forensics: Computer Crime Scene Investigation. Hingham, MA: Charles River Media.
• van Wyk, K. R. and Forno, R. (2001). Incident Response. Cambridge, MA, CA: OReilly.
• Verizon. (2012). The 2012 Verizon Data Breach Investigations Report. Retrieved from

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf on September 17,
2012.

• Version. (2012). The 2012 Verizon Data Breach Investigations Report. Retrieved from
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf on September 17,
2012.

• Volonino, L. and Anzaldua, R. (2008). Computer Forensics for Dummies. Hoboken, NJ: Wiley Publishing, Inc.
• Waters, G. (2008). Australia and Cyber-Warfare. Canberra, Australia: ANU E Press.
• Whitman, M. E. and Mattord, H. J. (2007). Principles of Incident Response & Disaster Recovery. Boston, MA: Course

Technology – Cengage Learning.
• Wikipedia Commons. (2011). Stuxnet Diagram. Retrieved from the web at

http://en.wikipedia.org/wiki/File:Step7_communicating_with_plc.svg on December 20, 2011.
• Wiles, J., et al. (2007). Low Techno Security’s Guide to Managing Risks: For IT Managers, Auditors, and Investigators.

Burlington, MA: Syngress Publishing, Inc.
• Wiles, J., et al. (2012). Low Tech Hacking: Street Smarts for Security Professionals. Waltham, MA: Syngress Publishing, Inc.
• Wilhelm, T. and Andress, J. (2011). Ninja Hacking: Unconventional Penetration Testing Tactics and Techniques. Burlington,

MA: Syngress Publishing, Inc.
• Zalewski, M. (2005). Silence on the Wire: A Field Guide to Passive Reconnaissance and Indirect Attacks. San Francisco, CA:

No Starch Press.
• Zetter, K. (2011). How Digital Detectives Deciphered Stuxnet, the Most Menacing Malware in History. An article published on

July 11, 2011 at Wired.com. Retrieved from the web at http://www.wired.com/threatlevel/2011/07/how-digital-detectives-

http://www.scmagazine.com/cyber-cold-war-espionage-and-warfare/article/254627/
http://www.nytimes.com/2011/10/18/world/africa/cyber-warfare-against-libya-was-debated-by-us.html
http://serpentsembrace.wordpress.com/2011/05/17/the-hackers-underground/
http://serpentsembrace.wordpress.com/tag/honker-union-of-china/
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://en.wikipedia.org/wiki/File:Step7_communicating_with_plc.svg
http://www.wired.com/threatlevel/2011/07/how-digital-detectives-deciphered-stuxnet/all/1

deciphered-stuxnet/all/1 on December 20, 2011.
• Zittrain, J. (2012). Professor Zittrain Q&A Hacktivism: Anonymous, lulzsec, and Cybercrime in 2012 and Beyond. A YouTube

video. Retrieved from http://www.youtube.com/watch?v=CZWjfxY8nmU&feature=related on September 21, 2012.

William F. Slater III
William F. Slater, III, MBA, M.S., PMP, CISSP, SSCP, CISA, ISO 27002, ISO 20000
President, Slater Technologies, Inc.

Wireshark/LUA
This article explores an extension mechanisms offered by
Wireshark. After a brief description of Wireshark itself, it shows
how Wireshark can be extended using Lua as an embedded
language. It shows the benefits to be gained from using the
combination of Wireshark and Lua. Next, the article explores a way
to extend Lua with C code. It shows how Lua can be leveraged by
using functions implemented in plain C.
Caveat: The focus of this article is the Wireshark/Lua interplay and the
Lua/C interplay. Descriptions of Wireshark as a network analyzer,or Lua
and C as as programming languages are out of scope for this article.

Wireshark
Wireshark is the de facto industry standard for network protocol analysis.
To say it with the words of wireshark itself: “Wireshark is a network packet
analyzer. A network packet analyzer will try to capture network packets and
tries to display that packet data as detailed as possible.
(http://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.h
tml#ChIntroWhatIs retrieved on Oct, 11th 2012)” The open source product
successfully overtook commercial competitors. The wireshark’s playground
is network communication in all its glory. Protocol analysis typically
consists of two separate steps: harvest and analysis. Prior to analysis we
need to harvest things to analyse. Wireshark outsources this task to external
libraries (WinPcap for Windows, libpcap for other OS). These libraries
implement the pcap API. Wireshark grabs network communication using
these libraries and writes it to disk. Once network communication has been
harvested we end up with files containing raw binary data (also known as
traces or dumps). This data contains all the secrets we might ever want to
know. Unfortunately, the format is somewhat unwieldily, hard to understand

http://www.wired.com/threatlevel/2011/07/how-digital-detectives-deciphered-stuxnet/all/1
http://www.youtube.com/watch?v=CZWjfxY8nmU&feature=related
http://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html
http://dict.leo.org/ende?lp=ende&p=DOKJAA&search=unwieldily&trestr=0x8004

and as efficient for network communication as unsuitable for human
consumption. This is where Wireshark displays his real strength: It splits
any given dump into single packets (also known as frames), dissects the
different protocol layers of any given frame, and displays the protocol tree
and all the fields contained within the different protocols in a human
readable user friendly format.
Benefits
Wireshark successfully bridges the gap between a machine friendly efficient
binary representation of network communication and mere mortals. To
illustrate this point in brutal clarity, we compare the raw view on the data
with the wireshark view. As an example we take a http GET requests to
http:// http://hakin9.org/: Figure 1.

Figure 1. raw view

The expert might notice the beginning of the IP header (hex: 45 00) in
postion 14. Reading hex, however, soon becomes inefficient and boring.
Thus, a more human-friendly representation of the information contained in
the raw data is what we really need. This is exactly where Wireshark helps
(Figure 2).

Figure 2. Dissected view

The raw binary data is analyzed and the onion like structure of the protocol
tree is unwrapped and displayed in an expandable tree like fashion. This
way wireshark enables the human reader to have a clear view on the
protocols and fields of each and every packet contained in a given trace.
Apart from this core functionality, Wireshark overwhelms the user with a

http://hakin9.org/

plethora of advanced analysis features. These features are out of scope for
this article. Now that we can easily see the complete communication
contained in a given trace we can easily answer each and every question
that might come into our mind – at least if we know the intricacies of all
protocols involved in the trace.
Limitations
Wireshark is the tool of choice for manual expert analysis of trace files.
This core capability also directly leads us to two major areas of concern: the
analysis is manual and has to be done by experts.
Wirehark is not ideally suited for automation, but is mainly conceived for
interactive use. As an example, guiding us through the rest of this article,
we look at a simple question that is as typical as harmless. Let’s assume we
have a trace containing plenty of TCP/IP traffic and we are interested in the
duration of connection establishment (“RTT from 3WHS, Roundtrip time
from three way handshake in tcptrace (see http://www.tcptrace.org/,
retrieved Oct 11th 2012) lingo”).
The answer of course is simple. We briefly look into the relevant RFCs and
soon find out that all we have to do is to calculate the timespan between the
first syn request and the ack request from the counterparty. We can
accomplish this interactively by using the “Follow TCP Stream” feature of
Wireshark and doing our little math. We set the time display format to
“Seconds since Beginning of Capture” and subtract the time value of the
syn requests from the value of the ack request. This is fine for a single TCP
session or a smallish number of sessions. It soon becomes tedious once the
number of sessions rises.
Of course, there is an obvious improvement to this approach. We soon
befriend Wireshark’s batch cousin tshark, do some fancy filtering, pipe the
result into a shell script and do our math in the shell script. As this becomes
hard to maintain, we substitute the shell script with a script language of our
choice. Now we already need Wireshark, a suitable interpreter and our
script to do our analysis. Alternatively, we could resort to tools like tcptrace
and parse and process the results.
From an engineering point of view, these solutions are workable and
pragmatic but less than elegant. The engineer would prefer an integrated
solution to this exemplary problem.

http://www.tcptrace.org/

Lua
This is where Lua (Portuguese for “Moon”) enters the fray. Lua is a small
and fast script language that is embedded into wireshark. We can use it to
automate Wireshark. In order to use Lua from within Wireshark, we first
check if our particular Wireshark instance has been compiled with Lua
support (Figure 3).

Figure 3. Help-> About Wireshark

In the About Dialog we verify that our particular Wireshark has been
compiled with Lua support. We are now ready to go.
The language
Let us introduce Lua in its own words: “Lua is an extension programming
language designed to support general procedural programming with data
description facilities. (…) Lua is intended to be used as a powerful, light-
weight scripting language for any program that needs one.”
(http://www.lua.org/manual/5.1/manual.html, retrieved Oct 11th, 2012).
The Lua interpreter is contained within wireshark. This means we do not
need any external interpreter or other external tools. Any solution build
upon Wireshark and Lua runs stand-alone without external dependencies.
This considerably improves the robustness of any such solution and
considerably eases deployment.
Overcome Wireshark limitations
We now have the means to overcome Wireshark’s limitations. We can
codify expert know-how using the Lua language. Within the embedded Lua
language we have full access (well, nearly full) to Wireshark capabilities.
We can now accomplish typical batch processing tasks without resorting to
shell scripts or external script languages. Using Lua we have the benefit of a
clean API to access Wireshark capabilities instead of piping the results of a

http://www.lua.org/manual/5.1/manual.html

Wireshark processing step into an external process. The beauty of this
approach consists of the chance of combining the strength of frame/packet
oriented dissectors with the capabilities of a full programming language
without incurring the extra cost of additional dependencies.

Real world example
The example from above (RTT from 3 WHS) may serve as our real world
example. It shows the mechanics of Lua programs running embedded
within Wireshark.
First, we identify a script named “init.lua” and follow the advice given in
the header section: “Lua is disabled by default, comment out the following
line to enable Lua support.” We bravely comment out the line reading
disable_lua = true; do return end; and proceed (Figure 4).

Figure 4. Content of rtt.lua

In line 1 we register a listener for tcp. The callback function tap_tcp.packet
is invoked for each tcp packet. We can easily access various fields of the
packet using the pinfo structure. In line 3-6 we directly access Wireshark
fields. Wireshark exposes all fields of all protocols using this API. The
idiom behind the listener/callback construction is similar to the mechanics
of pattern matching tools like awk. Awk scans text files, checks if a
specified pattern occurs within a scanned text file and executes actions
registered with certain patterns. The basic mechanism of Lua scripts within
Wireshark consists of registered and callback functions that are called
whenever a particular listener “fires” while scanning a trace file.
We invoke the script with the command line “tshark -q -X lua_script:rtt.lua
–r yourtracefile.pcap”. The script writes out the frame number of the ack
request, source and destination ip, frame number of the syn request,
duration of connection establishment and the absolute time of the ack
request.

Benefit of team Wireshark/Lua

Using Lua as an extension language embedded in Wireshark gives a number
of benefits. To name but a few:

• Tight integration into Wireshark allows access of tons of Wireshark
functionality without any further hassle.

• Lua as a full blown language allows any procedural processing we feel
obliged to do. This way it is possible to use Wireshark asynchronously in
a batch environment.

• Being able to script analyses formerly done in an interactive way allows
us to perform the analyses in a more efficient way.

• Putting expert know how in scripts allows non experts to perform
analyses.

• The approach works in restricted environments where other languages
might not be available

The possibilities shown so far only scratch the surface of Lua/Wireshark
integration. Lua can be used to write full blown custom dissectors. The user
interface is not limited to the command line. Lua can also be used to access
GUI capabilities. Output from functionality implemented with Lua can be
rendered by GUI components.

Outlook: extend Wireshark/Lua with C
There are situations where we might feel the urge to access functionality
buried in C from within Lua. Either there is existing functionality to be
reused or there are challenges more easily solved in C than in Lua.
Warning
Setting up a suitable c compilation environment can pose challenges. A
detailed description is out of scope for this article (see
http://www.troubleshooters.com/codecorn/lua/lua_c_calls_lua.htm retrieved
Oct 11th, 2012 for details). Your mileage may vary. The compilation
described below has been tested in a MingW Environment.
After these words of warning we proceed with our endeavor of exposing C
functionality to the winning combination of Lua/Wireshark. In order for the
compile to succeed it is necessary to put lua header files and lua libraries in
directories where the compiler can find them. In case these files live in
other directories the compiler has to be informed by suitable compiler
switches (-l and –L in case of gcc) of the directories these files live in. It is

http://www.troubleshooters.com/codecorn/lua/lua_c_calls_lua.htm

all important that header and libraries match with the Lua version used by
wireshark. For Lua 5.1 in Wireshark use Lua 5.1 header and libraries. The
header files (lua.h, luaconf.h, lauxlib.h, lualib.h) may live in
MingW/include. The libraries (liblua.a, liblua.dll.a) may live in MingW/lib
(Figure 5).

Figure 5. callfromlua.c. Function to be called from Lua

The custom function to be used from Lua is straight forward. It simply
returns a random number. The function has to be registered in the call to
luaopen_*. This function actually registers each function that is exposed to
lua. From within Lua we can access the functionality using the name
“random”. We compile the code to a dll using a command like gcc -Wall -
shared –o random.dll callfromlua.c”. This call may vary for your system
depending on compiler and environment. The compilation should proceed
without any warnings or errors. The resulting dll has to be placed in the
wireshark root directory. We are now ready to play with our C extension
(Figure 6).

Figure 6. c.lua. Calling our C function

First, we require the module implemented in C (line 1). Wireshark looks at
several locations for a shared library named like the module – random.dll in
case of windows. It then loads the library and executed the
luaopen_mondulename function named like the module and reports an error
in case this function is not found. The functions registered by this function –
in this case a single function “random” are now available for ordinary Lua
code. We simply invoke the custum function implemented in C (line 2).
From the Lua point of view using functions implemented in C is similar to

other function calls. A command line like “tshark -X lua_script:c.lua” now
prints out our random number generated by C code.
This bare bones example merely illustrates the general mechanics of using
C code with Lua/Wireshark. For the sake of simplicity it has been reduced
to the essentials.

Where to go from here
We started our exploration with Wireshark as a standard tool for manual
expert analysis of network packets. We then explored ways to extend the
core Wireshark functionality using the embedded Lua language. Finally, we
saw how Lua itself can be extended using C. Using these building blocks
we can now go on and leverage Wireshark and automatically perform
arbitrary trace analyses using the dissector functionality provided by
Wireshark. We can accomplish this without additional external
dependencies purely by using functionality offered by Wireshark itself. We
can fully automate Wireshark and can use all the functionality in a batch
like fashion.
Jörg Kalsbach

Tracing ContikiOs Based IoT
communications over Cooja
simulations with Wireshark Using
Wireshark with Cooja simulator
Internet of Things is getting real. Billions of devices interconnected
between each other retrieving data and sharing information using
wireless communication protocols everywhere. We present an
introduction about how to start developing radio communication
applications for Contiki OS, one of the most widespread IoT
operating systems and how to use Cooja simulator together with
Wireshark.
The number of devices with wireless connection capability has increased
over the last years. Nowadays, most of the people deal with the so-called

smart devices, for example, smartphones. However, not only smartphones
are able to be connected to Internet, but also a big number of hand held
devices such as tablet PC.
Another important trend is related to Wireless Sensor Network (WSN),
spatially-distributed autonomous devices equipped with several kinds of
sensors and interconnected to each other using wireless communication
systems. These devices are small-size computers with reduced computation
capabilities, which are responsible to retrieve information about its
environment and send it to data sinks computers. It is common to refer to
WSN as smart durst because of the size of its devices, which are called
sensor motes. All those devices are part of the Internet of Things (IoT), a
scenario where everything is interconnected and identified via Internet,
using technologies like IPv6, RFID tags or other systems like barcodes.
With the appearance of this concept, we will also be able to communicate
with daily use devices, such as the lighting or the heating system available
in our house.
Several research works have been performed in order to study the
possibilities of this new generation of devices. In fact, related fields such as
security, constrained devices properties or communication skills are some of
the hottest topics within the researching community.
Regarding to this communication skills, Wireshark has been used as a
world-wide network sniffer tool recognising the information exchanged
between the elements involved in a network communication. Its use
provides us with a clearer way to understand the information exchanged. On
the other hand, the motes are small devices that do not include graphical
interface in order to facilitate the interaction user-mote. Thus, becoming
developers of embedded applications, in other words, applications
specifically designed for IoT devices, we need a way to check their correct
functioning. A simulator is used to mimic the working mode of a embedded
application within a constrained device. However, when the application
simulated involves network communication between different nodes, the
use of Wireshark in conjunction with the simulator allows a more
understable way to check the correcting communications conducted.
Given that, in this article we present deeply the Internet of Things concept.
The deployment of a constrained Contiki OS based application within a
Cooja simulated IoT device is one of the main points in this work. Thus, a

brief overview of Contiki OS and Cooja is pointed out. Finally, a
communication embedded application is set using the simulator and
allowing us to get the messages exchanged in different formats. Thi
messages exchanged data is handled by some methods explained in this
article, getting in this way different Wireshark visualizations. Finally, the
article finishes with a set of conclusions regarding to the whole work
carried out.
CONTIKI OS
IoT devices are resource constrained devices. In fact, within their features it
is worthy highlighting the constraints in the communication skills available
as well as computation performance. In addition, the memory available
either ROM or RAM, is considerably smaller than the memory sizes we are
used to deal with in general purpose computers.
Given those features, there are several dedicated operating systems that help
the programmers to face up the challenges found on constrained devices. In
the deployment outlined in this article, we will work with Contiki OS, an
open source operating system for the Internet of Things. Contiki OS allows
tiny, battery-operated low-power systems to communicate with Internet.
Within Contiki OS, several platforms are available. Although some of those
platforms are embedded platforms such as Micaz, Redbee-Econotag or Sky,
there are also available platforms that can be simulated in a PC: minimal-
net and Cooja. Thus, if we develop an embedded application and there is no
possibility to use a physical device to test the software, a PC-based
simulation can be performed. In fact, this is the case outlined in this work,
where the simulations of already deployed embedded applications will be
performed within Cooja, a PC-based simulator for the Internet of Things.
Regarding to each platform itself, Contiki OS provides us with a framework
to work with the different hardware elements available in them. Thus, using
this framework we can handle the resources available such as leds and
wireless radio. In fact, within this work we will focus in this wireless radio
connection, with which we will perform different examples in several uses
cases. Besides, the information exchanged between the different simulated
nodes can be traced by using the well-known sniffing traffic network tool
Wireshark. However, before that it is worthy knowing a bit more about how
the communication is performed between these constrained devices.
Communication protocol stacks

The communication of embedded devices is performed in a different way to
how traditional communication is performed. As its own name indicates,
the Internet of Things devices are communicating each other based on IP.
However the underlayer configuration is different in order to fulfil the
requirements given by the scarce resources available.
Thus, the physical layer as well as the link layer are deployed following the
802.15.4 definition instead of Ethernet, WiFi or WiMax. This new layer
configuration will result in a different format in the message exchanged
during the communication between the devices. On the other hand, the rest
of the stack remain the same.
Within the Contiki OS, this new communication protocol stack has been
developed by the called microIP stack (Figure 1).

Figure 1. Representation of the microIP stack

In this stack, apart from the above explained modification based on
802.15.4, the 6LoWPAN adaptation layer has been added. This new layer is
used for adapting the whole IP layer to a suitable lightweigh-version within
the constrained environments. Thus, the main feature of this a IP adaptation
layer is to compress the IP headers in order to make the whole packages as
small as possible to be sent over 802.15.4 based communications.
This feature is essential in order to understand the whole format of a packet
exchanged in this new type of constrained networks. This packet format
will lead most part of the work described in this article. Thus, it becomes
important to make clear this format itself.
Cooja

Cooja is a simulator of sensor networks for Contiki OS. This java based
application allow us to simulate embedded applications over different
platforms such as Cooja, Sky or Micaz. The main parts of this simulator are
the interfaces and the plugins.
On one hand, Cooja interfaces involves several graphical
representations,where information and interaction with the user is offered.
Thus, most of the simulated elements available in a constrained devices can
be handled through these interfaces: leds, radio communication module or
serial port communication are some examples of interfaces available. On
the other hand, Cooja plugins are the best way for a user to interact with a
simulation. These plugins, implemented as regular Java Panel, allow the
user to control the whole simulation itself. One of this Cooja plugins is the
called Radio messages. This plugin will allow us to extract the information
exchanged in a simulated embedded communication and work with it in
order to get a representation with Wireshark, as we will see later on this
document.

First steps in Cooja
How to start
Before installing it, Java 1.6 or later is required on the system. Cooja is
included in Contiki source tree since version 2.0. We can find this simulator
in [Contiki Folder]/tools/cooja. Once we are within this folder, we have to
compile and execute it throught an Ant script:
$ ant run

Once it is open, we want to execute a hello world example. Go to File
menu/New simulation/Create. As a result, a new simulation without any
mote and using default parameters will appear. We want to run a simulation
in a specific type of mote, then we need to create that mote and load the
program on it. We use Cooja type mote here because all the programs
should run on it: Motes menu/Add motes.../Create new mote type/Cooja
mote...
Then we have to choose the program we want to execute: click on Browse
and go to [Contiki folder]/examples/hello world/hello-world.c, then press Compile.
This process will compile the whole Contiki OS and the application,
creating just a file hello-world.cooja that contains both the OS and the
application. Last step requires us to introduce the number of motes for the

simulation, then click on Add motes. In this case just one mote is enough.
Once the simulation is ready, just click on Start and we will see the output
in the Mote output window (Figure 2).

Figure 2. Hello world example simulated in Cooja

The environment
When creating a new simulation, several properties can be modified. It is
possible to modify the radio medium, the motes startup time and also the
random seed for the random number generator. By default, there are some
kinds of motes available, included Sky mote, Micaz and also a general one
called Cooja mote, but it is also possible to extend Cooja simulator in order
to introduce different platforms. Simulations can be exported, saved and
loaded. Simulations can be automatized using shell scripts that also retrieve
the data after perform the simulation. Cooja includes a toolbox that aid to
perform the simulations and gather data from them:

• simulation control tool allows to set simulation speed,
• mote output shows all the data from the serial port,
• event listener helps establishing break points in the simulation,
• radio messages captures radio communication between motes and allows

to export those captures,
• mote radio duty cycle allow performing measurements about the radio

utilization on a device,
• the simulation visualizer window shows the simulation behaviour and

allows to show different information about the motes being used such as
LEDs or radio information,

• finally there is a timeline component which shows the different events in
the simulation among the existing motes.

In summary, Cooja is a very useful tool in the design phase of Contiki OS
applications. It can deal with different kind of platforms and it is extensible.
Thus, it is a very useful tool to deploy embedded applications and check
them within simulated constrained devices.

How to set a Communication Simulation
Client – server
The first communication based basic program available as an example in
Contiki involves a client and a server exchanging information over UDP.
This example shows us how a UDP based communication is performed by
using microIP stack. Thus, it becomes in a good example to see how
Wireshark traces are obtained within this environment and how they can be
managed.
How to write the code
Taking a look of the code of both client and server, a similar structure is
defined. The most important functions are:

• tcpip_handler(). This is used for handling the messages received through
wireless radio communication. At this point, two main variables are taken
into account: uip_appdata, a pointer to the buffer with the received
information and uip_datalen(), a function returning the length of the
message received.

• timer related functions. A timer is used in the client to send a message to
the server every time the timer is expired. Thus, it is essential to handle
also several timer related functions such as etimer_set(), etimer_expired() and
etimer_restart().

• timeout_handler(). Once a timer is defined, a corresponding handler has to be
defined as well. In the example that we are using, the related handler is
the timeout_handler() function. In this function, a message is created and sent
to the other communication end.

• set_connection_address(). This essential function is used for setting up the IP
address of the other end in the communication. Thus, in the client’s code,
the server’s IP address has to be correctly set and viceversa.

• uip_udp_packet_send(). A function called to send a message over the wireless
connection established. If every parameter is previously correctly
configurated, the message included in this function call will be sent to the
other end within the communication.

With these essential and simple functions, a main client and server
programs can be developed. The complete C code of those programas can
be found in [Contiki Folder]/examples/udp-ipv6.
How to Simulate
Previously in this article, a simulation of the helloWorld embedded
application has been outlined. In order to create a simulation containing the
UDP client and the UDP server, the same basic steps have to be followed
for each application.
Thus, a new simulation has to be created. Within this simulation, two new
Contiki type motes should be added. In one of them, the udp-client.c
application is loaded whereas in the other mote the udp-server.c must be
loaded. If every step has been successfully performed, a simulation
containing both elements, client and server, should be correctly showed
(Figure 3).

Figure 3. Client-server scenario simulated in Cooja

At this point, if the simulation is executed, the client will keep on sending
messages to the server, but they will not reach it. This will happen because
the IP address set in the [Contiki Folder]/examples/udp-ipv6/upd-client.c,
within the set_connnection_address() function, is not correct. In order to fix it,
we should check the IP address of the server in our Cooja simulation and set
it in the upd-client.c program. Once we have the server’s address just go to
set_connection_address() function and modify uip_ip6addr() function’s
parameters. In our case, the IP address assigned to the server is
aaaa:301:1ff:fe01:101, so the function invocation is
uip_ip6addr(ipaddr,0xfe80,0,0,0,0x301,0x1ff,0xfe01,0x101) (Figure 4).

Figure 4. Client-server fixed scenario simulated in Cooja

How to log the messages
Once the simulation is working properly, we have the opportunity of
extracting the Wireshark traces of the communication performed between
the client and the server. For this purpose, the first step is to reload the
simulation to get it as a new one. Thus, click on File/Reload simulation/new
random seed. The whole simulation will be loaded again.
Once the simulation is correctly loaded and before starting the simulation,
we need to set up the plugin to capture the messages exchanged in the
communication. For this purpose, we should click on Tools/Radio
messages. A new window will appear. In this Radio messages window, a
representation of the messages exchanged in the communication will be
stored.
Now we can start the simulation and we will see that the client and the
server are correctly sending messages each other through two interfaces
available. On one hand, in the Mote output window, the log of both
applications will appear. On the other hand, in the Radio messages window,
the hexadecimal representation of the messages will be logged as well.
After some simulation time, when some messages are exchanged between
the client and the server, the simulation can be stopped. Now, we are ready
to export our simulated communication to a Wireshark format.
How to see the messages in Wireshark
The Radio messages plugin allow us to export the hexadecimal based
communication log to a pcap format, which is recognized by Wireshark. In
order to get that, once the log has been collected in the Radio messages
plugin, we should click on Analizer menu and select 6LoWPAN Analyzer
with PCAP. In this moment, a Wireshark trace is created with every
message exchanged between the two motes.

This new trace can be found under [Contiki Folder]/tools/cooja/build/. It
will be called radiolog-xxxxxxxx.pcap, where the x are substituted by
numbers. This file can be directly opened using Wireshark application. We
will obtain a trace as depicted in fig. In this trace we can see how every
message is defined as 802.15.4 message (Figure 5).
A 802.15.4 based network behaves like a general purpose network. Thus,
before the messages containing the data Hello from the client and Hello
from the server appear in the communication, other set of 802.15.4
messages are exchanged in order to establish the network communication
itself. We can compare this previous messages exchanges with the ARP
mechanism deployed in general purpose networks in order to discover the
addressing information related to the network peers.
Once the 802.15.4 network is established, we will be able to see client and
server application data within the messages depicted in Wireshark trace.
How to format messages following the traditional IP stack
The output obtained directly from the Radio messages plugin is not easily
understandable. Opening the trace obtained with Wireshark application, we
can observe different messages composed by an 802.15.4 header carrying
some data. However, it can be formatted in order to get a more
understandable format of the application data exchanged.
For this purpose, the first step to perform is to obtain the raw data
exchanged instead formatted as pcap. This can be done by selecting
File/Save to file option in the Radio messages. We save the raw data
application exchanged in a file, in this case called output. If we open this
output file, a hexadecimal representation of the 802.15.4 messages is
depicted. However, we want to have them following the traditional IP stack.
Thus, the next step is to format every message in order to get only the UDP
and application parts of the message. In order to get this, we need to take
into account in which byte position the UDP related information starts
within the message.
Knowing that, we will format the messages previously saved in the output
file in order to keep just their UDP and application related data. Besides, a
set of zeros need to be set at the beginning of the message in order to
simulate its sequence number as expected by Wireshark application.
The step described above can be done using this C++ code (Listing 1).
Listing 1. Parser from Cooja to Wireshark

#include <iostream>
#include <string>
#include <cstring>
#include <stdio.h>
using namespace std;
#define POS_INIT_UDP 113
int main (){
string str;
while (getline(cin,str)){
cout << “000000 “;
for(int i=2; i<str.size();i++){
if (i>POS_INIT_UDP) {
cout << str[i];
if(i%2)
cout << “ “;
}
}
cout << endl;
}
}

Assuming that we save this code in a file called parser-from-cooja.cpp, we
compile this C++ code by using the next command line:
g++ parser-from-cooja.cpp -o parser.out

In this point, we have the parser needed for extracting a file with every
message parsed. Thus, if we apply directly this parser to the output file we
will obtain messages tailed with the UDP and application data only. To get
this tailed file we can perform
sudo chmod 777 ./parser.out; ./parser.out < output

However, this remains to be in a incorrect format understandable by
Wireshark application. Thus, we need to add the underlayer headers to these
messages in order to get them over a simulated traditional communication
stack. In other words, we need to simulate that the message has been
exchanged by using the following underlayer headers: ethernet, IP, UDP,
application data.
For this purpose we can use the next bash script:
cut -f2- -d “ “ < output | tr -d “ “ |
./parser.out > delete_wireshark_temp && text2pcap
-o hex -i 17 delete_wireshark_temp out && wireshark out

This script parses the raw ouput obtained from the Cooja plugin called
Radio messages, obtaining the file delete_wireshark_temp. Within this file we
have a representation of every message containing just their UDP and
application layers. After that, with the GNU/Linux tool text2pcap, we will
simulate a IPv4 stack. By indicating that the Next Header is a UDP header
(option -i 17), this tool will create this simulated IPv4 stack and it will

append the UDP and application data contained within the
delete_wireshark_temp file.
Finally, the Wireshark application will be opened and then every messages
is depicted as an UDP message. As explained before, several messages are
exchanged in order to set the network in which our simulated nodes are
exchanging information. In order to check the messages in which we are
interested, we should look for those which UDP port numbers are 3000 and
3001. Those messages are the ones exchanged between udp-client and udp-
server. Actually, as depicted in Figure 6, we can see how the string Hello
from the client can be correctly be watched in the Wireshark application.

Figure 6. Wireshark trace showing UDP/IP based messages

Conclusions
In this work we present an overview of the recently appeared work of
Internet of Things. Developing embedded applications for embedded
devices is a task that can be helped by using a simulator. Cooja, the
simulator described within this work, allow the developer of constrained
applications to check their correct functioning given the lack of graphical
interfaz in IoT devices. The Cooja environment presented in this article will
allow the reader to simulate his first embedded application as tutorized
within this work. Finally, a deep handling of the Wireshark application in
conjunction with the simulations carried out, show how this world wide
known application is applicable in this new area. In addition, handling the
associated message information allows the developers to get a more
understable and totally configurable output within the Wireshark
application. Thus, the IoT background, the simulation procedures as well as
the Wireshark related techniques presented in this work aim at becoming in
a referencing start point for those developers who want to create their own
constrained applications.
On the Web
• http://www.contiki-os.org/ – Contiki operating system main page

http://www.contiki-os.org/

• http://wiki.contiki-os.org/doku.php?id=an_introduction_to_cooja – Introduction to Cooja simulator
• http://www.wireshark.org – Wireshark official web page

Pedro Moreno-Sanchez
Pedro Moreno-Sanchez. M.Sc. student at the University of Murcia, Spain. His background is related
to IP-based security protocols. Nowadays, he is directly involved in the project OpenPANA: An
opensource implementation for network access control based on PANA.
Rogelio Martinez-Perez
Rogelio Martinez-Perez is a BCs in Computer Science at the University of Murcia, Spain. He has
experience in working on the Internet of Things and Smart Sensor Networks.

http://wiki.contiki-os.org/doku.php?id=an_introduction_to_cooja
http://www.wireshark.org/

http://www.cyber51.com/affiliates/idevaffiliate.php?id=109&url=17

http://www.uathackad.com/Nov12

	Wireshark – Sharks on the wire
	Wireshark Not Just A Network Administration Tool
	Wireshark: The Network Packet Hacker or Analyzer
	WiFi Combat Zone: Wireshark versus the neighbors
	Using Wireshark to Analyze a Wireless Protocol
	Capturing WiFi traffic with Wireshark
	Decoding and Decrypting Network Packets with Wireshark
	Wireshark – Hacking WiFi Tool
	Using Wireshark and Other Tools to as an Aid in Cyberwarfare and Cybercrime
	Wireshark/LUA
	Tracing ContikiOs Based IoT communications over Cooja simulations with Wireshark Using Wireshark with Cooja simulator

