

http://www.drweb.com/

Wireshark
Copyright © 2014 Hakin9 Media Sp. z o.o. SK

Table of Contents

Wireshark Tips and Tricks
By Tony Lee, Scientist at FireEye, Inc.
Jason Bevis, Managing Principal at FireEye Labs

If you were tasked to put together a forensic toolkit with 25 tools or less, chances are Wireshark would be
one of those tools--especially if you planned on dealing with packet captures. Because it is free, open source,
and cross-platform, Wireshark makes a great packet capture and analysis tool for just about any forensic
toolkit. Never the less, this staple tool has been around for so long (think back to the days of Ethereal) that
we sometimes take it for granted. In this article we will explore a few tips and tricks that highlight why we
like this tool so much.

Getting Started with Wireshark
By Sebastian Perez, Information Security Analyst at OLX, CEH

As a pentester, I always get involved in different projects from different clients and no matter what the
objective is, having the knowledge and the proper tool to perform the task will save a lot of time, and
avoid some headaches. This article will try to aid for those scenarios where a network analysis should be
performed. We will focus in one of the most important tools for a pentester: Wireshark.

Sniffing and Recovering Network Information Using Wireshark
By Fotis Liatsis, System/Network Administrator of Greek Student Security Team – CampSec

Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting, analysis,
software and communications protocol development, and education. Wireshark is cross-platform, using the
GTK+ widget toolkit to implement its user interface, and using pcap to capture packets, it runs on various
Unix-like operating systems including Linux, OS X, BSD, and Solaris, and on Microsoft Windows.

07

14

27

advertisement

http://www.it-securityguard.com/

Wireshark

Traffic Analysis and Capture Passwords
By Rafael Fontes, Co-Founder at Grey Hat and member of “French Backtrack Team”

It is known that Wireshark is a powerful tool that goes far beyond a simple sniffer. What many do not know
is that there are several ways to harness the potential of this tool, readers, this article will introduce. Let us
learn to sniff the network effectively, create filters to find only the information we want, see it as a black hat
would use this tool to steal passwords and finally, how to use Wireshark to diagnose network problems or if
a firewall is blocking packets correctly.

Detect/Analyze Scanning Traffic Using Wireshark
By Santosh Kumar, Technical Manager at Koenig Solutions Ltd., CEH, CCSE, CCMSE, CISCO
ASA SPECIALIST

“Wireshark”, the world’s most popular Network Protocol Analyzer is a multipurpose tool. It can be used as
a Packet Sniffer, Network Analyser, Protocol Analyser & Forensic tool. Through this article my focus is on
how to use Wireshark to detect/analyze any scanning & suspect traffic.

Discover How The Attack Happened By WireShark
By Basem Helmy, Information Security Engineer, ECSA/LPT

In this scenario a pcap file generated by cyberlympics <ref-here> in the 2013 competition will be used to
answer the following questions to identify how the attacker get in and how he extract the data from the
compromised machine.

Detecting Attacks and Threats in Elastic Cloud Infrastructures: the Case of
Side-channel Attacks
By Pasquale Puzio, CIFRE PhD Student at SecludIT and EURECOM,
Sergio Loureiro,Co-Founder and CEO at SecludIT

Cloud computing adoption is rising fast. Flexibility, pay-per-use and available resources on-demand with the
promise of lower ownership costs are a very attractive value proposition.

Content-Based Intrusion Detection System
By Mark Sitkowski, Consultant to Forticom Security, Design Simulation Systems Ltd,

Nobody ever broke into a bank’s IT system by cracking a user’s password. It’s not cost-effective to waste computer
time on such a pursuit, for the sake of the few thousand dollars thatmay, or may not be in the user’s account.

34

42

48

56

68
advertisement

Wireshark

5

Dear Readers,

We are happy to present you completlely new issue dedicated to the most known sniffer – Wireshark. We
are sure all of you know this special toll. You can use it to analyze network traffic, intrusion detection,

or communication protocols development.

This issue is a guidbook for all those who wants to learn step-by-step how to use this sniffing tool. With
this issue you will get basic knowledge on how to start an amazing adventure with Wireshark, but you will
also dive into deep waters of hacking knowledge. Except of BASICS section you will also find TRAFIC
ANALYSIS and INTRUSION DETECTION sections, full of our expert’s tutorials.

We would also thank to our friends from PenTest Magazine for sharing their great articles. We appreciate
their work which helped us to create this great issue.

Enjoy!

Regards,

Ewelina Nazarczuk

Hakin9 Magazine Junior Product Manager

and Hakin9 Team

Editor in Chief: Ewelina Nazarczuk
ewelina.nazarczuk@hakin9.org

Editorial Advisory Board: Bamidele Ajayi, Kishore PV, Gilles
Lami, Rodrigo Comegno, Tim Singletary, Jarvis Simpson, Dal-
las Moore, Hammad Arshed, Gregory Chrysanthou, Elia Pinto,
Jeff Smith, Arnoud Tijssen, Tom Updegrove and others.

Proofreaders: Jeff Smith, Krzysztof Samborski

Special thanks to our Beta testers and Proofreaders who helped
us with this issue. Our magazine would not exist without your
assistance and expertise.

Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic.@hakin9.org

Product Manager: Ewa Duranc
ewa.duranc@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Art. Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@hakin9.org
DTP: Ireneusz Pogroszewski

Marketing Director: Ewelina Nazarczuk
ewelina.nazarczuk@hakin9.org

Publisher: Hakin9 Media sp. z o.o. SK
02-676 Warszawa, ul. Postępu 17D
NIP 95123253396
www.hakin9.org/en

Whilst every effort has been made to ensure the highest qual-
ity of the magazine, the editors make no warranty, expressed
or implied, concerning the results of the content’s usage. All
trademarks presented in the magazine were used for informa-
tive purposes only.

All rights to trademarks presented in the magazine are reserved
by the companies which own them.

DISCLAIMER!
The techniques described in our magazine may be used in
private, local networks only. The editors hold no respon-
sibility for the misuse of the techniques presented or any
data loss.

www.uat.edu > 877.UAT.GEEK

[IT’S IN YOUR DNA]

[GEEKED AT BIRTH]

You can talk the talk.
Can you walk the walk?

LEARN:
Advancing Computer Science
Arti� cial Life Programming
Digital Media
Digital Video
Enterprise Software Development
Game Art and Animation
Game Design
Game Programming
Human-Computer Interaction
Network Engineering
Network Security
Open Source Technologies
Robotics and Embedded Systems
Serious Game and Simulation
Strategic Technology Development
Technology Forensics
Technology Product Design
Technology Studies
Virtual Modeling and Design
Web and Social Media Technologies

Please see www.uat.edu/fastfacts for the latest information about
degree program performance, placement and costs.

mailto:mailto:ewelina.nazarczuk%40hakin9.org?subject=
mailto:mailto:ewa.dudzic.%40hakin9.org?subject=
mailto:mailto:ewa.duranc%40hakin9.org?subject=
mailto:mailto:andrzej.kuca%40hakin9.org?subject=
mailto:mailto:ireneusz.pogroszewski%40hakin9.org?subject=
mailto:mailto:ewelina.nazarczuk%40hakin9.org?subject=
http://wwww.uat.edu

Wireshark

7

Wireshark Tips and Tricks
by Tony Lee and Jason Bevis

If you were tasked to put together a forensic toolkit with 25 tools or less, chances are
Wireshark would be one of those tools--especially if you planned on dealing with packet
captures. Because it is free, open source, and cross-platform, Wireshark makes a great packet
capture and analysis tool for just about any forensic toolkit. Never the less, this staple tool
has been around for so long (think back to the days of Ethereal) that we sometimes take it for
granted. In this article we will explore a few tips and tricks that highlight why we like this
tool so much.

Obtaining the software
This seems easy enough, right? Many Linux distributions come with Wireshark installed as a default
package and Windows has an easy point and click install package. But did you know there is a PortableApps
release of Wireshark? How about a U3 release as well?

Figure 1. Install options – http://www.wireshark.org/download.html

The PortableApps and U3 downloads allow you to run Wireshark from a USB stick without the needing to
install the software on the listening machine. Instead, when you insert the USB stick, you are good to go.
There are some caveats that exist so be sure to read the fine print. In any event, this provides a flexible and
portable option for running Wireshark on other machines.

Figure 2. PortableApps Wireshark Figure 3. U3 Wireshark

Wireshark

8

Working with pcaps
Again, this is another topic that seems self-explanatory. However, when we teach classes on capturing and
analyzing traffic we seem to get this question: “I have several interfaces, how do I know which interface
in which to listen?” The reason for this question stems from the main screen, which allows users to select
an interface, but it does not show which interface(s) are seeing traffic. The work around is to click capture
à Interfaces. This menu option shows you the interfaces in real time so you can see which are live and
receiving traffic.

Figure 4. Capture Interface screen showing live traffic

Opening pcaps that were saved or created in other programs is as easy as dragging and dropping them into
Wireshark, but did you know you can easily merge pcaps by doing the same thing? By default dragging and
dropping multiple pcaps into Wireshark will cause it to merge the pcaps chronologically. You can also merge
pcaps by going to File à Merge where you can select different options to merge the pcaps (prepend, append,
or chronologically). This is useful if you collect from multiple sensors or interfaces and want to see the
complete picture.

Figure 5. Merging pcap options

Wireshark

9

Need a few pcaps to work with? How about viewing some more interesting protocols than what is most
likely found on your home network? The wiki at Wireshark.org has lots of pcaps to pick and choose from:
http://wiki.wireshark.org/SampleCaptures.

Display filters
Since traffic on a busy pipe can be overwhelming, Wireshark provides the capability to use capture and
display filters. However, in most cases, for troubleshooting or quick analysis it is best to capture unfiltered
traffic and then identify packets of interest using display filters. It is inevitable though that sooner or later
you will have to learn a few basic display filters. Start off with easy ones such as the following:
Display only certain protocols: Display only certain addresses: Combine Display Filters
Examples:
http
telnet
ftp

Examples:
ip.addr == 172.16.100.11
ip.src == 172.16.100.11
ip.dst == 172.16.100.11

Examples:
ip.addr == 172.16.100.11 && http
dns || http

The simple filters above should be enough to meet most basic requirements, however if a more complex
display filter is needed, the Wireshark Expression button is very helpful. It is located right next to the display
filter field and acts as a sort of a wizard for building display filters.

Figure 6. Display filter Expression button

You can also check out this page for more good ideas: http://wiki.wireshark.org/DisplayFilters.

High to low level
At times you may be given a pcap with no background knowledge about the protocols or data captured. One
of the easiest ways to gain a quick understanding of the situation is by using Wireshark’s statistics features.
Our favorite option for drilling down on protocols is Statistics à Protocol Hierarchy.

http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/DisplayFilters

Wireshark

10

Figure 7. Statistics à Protocol Hierarchy displays an OSI breakdown

Not only does this give you an excellent OSI breakdown, but you can right click on a protocol to apply a
filter to look at only those packets of interest.

Extracting files
There are plenty of methods/tools to extract files from a pcap, including: foremost (http://foremost.
sourceforge.net) and Network Miner (http://sourceforge.net/projects/networkminer) – however, Wireshark
can also be used to extract files. Some would say that you have to follow the stream and export raw bytes to
extract a file. While this is one possible method, depending on the protocol, you may still have to use a hex
editor to clean up the resulting file. Wireshark can extract objects from supported protocols by using: File
à Export Objects à <Protocol>. In our example, we are exporting from HTTP – which is very common. It
makes exporting binaries, zip files, images, and even JavaScript and applets easy.

http://foremost.sourceforge.net/
http://foremost.sourceforge.net/
http://sourceforge.net/projects/networkminer/

Wireshark

11

Figure 8. Exporting HTTP objects from Wireshark

Generating firewall rules
Lastly, an interesting feature of Wireshark is that it can generate firewall rules (for different vendors) so you
can prevent further unwanted traffic from traversing your network boundary. Just select a packet of interest and
click Tools à Firewall ACL Rules. The product drop down allows you to select from the following vendors:

• Cisco IOS (standard)

• Cisco IOS (extended)

• IP Filter (ipfilter)

• IPFirewall (ipfw)

• Netfilter (iptables)

• Packet Filter (pf)

• Windows Firewall (netsh)

Then select the IP of interest and decide which IP address, inbound or outbound, and if you want to deny or
permit the traffic.

Figure 9. Tools à Firewall ACL Rules

Wireshark

12

Final thoughts
Wireshark is one of those tools that has been around so long we may take it for granted at times, but when
you need something to capture or carve packets it is freely available, reliable, and capable. Hopefully this
article has either cleared some cobwebs for you or possibly served as a brief introduction to some of the key
(and sometimes under advertised) features of the tool. Feedback is always appreciated using our contact
information below. Thanks for reading--now go carve some packets.

About the Author
Tony Lee has more than nine years of professional experience pursuing his passion in all
areas of information security. He is currently a principal security consultant at FireEye
Labs, in charge of advancing many of the network penetration testing service lines. His
interests of late are Citrix and kiosk hacking, post exploitation tactics, and malware
research. As an avid educator, Tony has instructed thousands of students at many venues
worldwide, including government, universities, corporations, and conferences such as
Black Hat. He takes every opportunity to share knowledge as a contributing author to
Hacking Exposed 7, frequent blogger, and a lead instructor for a series of classes. He

holds a Bachelor of Science degree in computer engineering from Virginia Polytechnic Institute and State
University and a Master of Science degree in security informatics from The Johns Hopkins University.

Email: Tony.Lee -at- FireEye.com
Linked-in: http://www.linkedin.com/in/tonyleevt

About the Author
Mr. Bevis has an outstanding track record in consulting services, strategic security
solutions, incident response, and client management. Jason is a results driven leader
with over 17 years of experience including more than six years of “Big X” Consulting
experience. He is an expert in the field of information security, incident management, and
risk management with a strong technical background in incident response, forensics,
security strategy, and network and system architecture. He runs his personal security
blog and his interested of late are within the maker community playing around with
Arduino projects and researching sensor communications.

Email: Jason.Bevis -at- FireEye.com
Linked-in: http://www.linkedin.com/in/jasonbevis

http://www.linkedin.com/in/tonyleevt
http://www.linkedin.com/in/jasonbevis

Join the
Wearables Revolution!

A conference for Designers, Builders and
Developers of Wearable Computing Devices

Wearable computing devices are the Next Big Wave
in technology. And the winning developers in the next decade are
going to be the ones who take advantage of these new technologies
EARLY and build the next generation
of red-hot apps.

Choose from over 35 classes and tutorials!
l Learn how to develop apps for the coolest gadgets like Google

Glass, FitBit, Pebble, the SmartWatch 2, Jawbone, and the Galaxy
Gear SmartWatch

l Get practical answers to real problems, learn tangible
steps to real-world implementation of the next generation
of computing devices

March 5-7, 2014
San Francisco
WearablesDevCon.com

A BZ Media Event

Wireshark

14

Getting Started with Wireshark
by Sebastian Perez

As a pentester, I always get involved in different projects from different clients and no matter
what the objective is, having the knowledge and the proper tool to perform the task will save
a lot of time, and avoid some headaches. This article will try to aid for those scenarios where
a network analysis should be performed. We will focus in one of the most important tools for
a pentester: Wireshark.

For most of the engagements a pen tester could perform, there is always a network component, and being
able to see, analyze and store all the network transactions is essential to understand network behaviors and
evidence all the performed tasks. For such objectives, Wireshark is what was promised, and more. Looking
for a formal definition of Wireshark, as stated in the official website (http://www.wireshark.org/faq.htm), it
is a free open-source network protocol analyzer. What does this mean? It means that Wireshark will capture
all the traffic it can hear from the selected network interface, parse it and present it to the user in a friendly
manner. Within the captures packets, Wireshark will allow us to perform several tasks, such as analyze
network problems, get network statistics, and even detect network intrusion attempts. Wireshark runs in
most of the operating system available in the market, including Windows, OS X, Linux and UNIX, and it
has two different interfaces, allowing users to adapt it to their own requirements; it could be executed in a
GUI (Graphic User Interface) or CLI (Command Line Interface). The installation process is really simple, no
matter if it’s being performed on Windows, or *nix based systems. Besides Wireshark, the Winpcap library
(libpcap in *nix) will be needed to be installed also. If the Windows GUI version is executed, the following
screen will be presented:

Figure 1. Wireshark main window

The main screen is divided in 3 tabs. The one in the left side is related to the capture options, and the list
of interfaces in which Wireshark may be able to listen and capture traffic. The middle tab shows the saved
Wireshark sessions; and the right one is for the online content, such as the user guide and official website.
We will focus on the Capture tab, as the other two are self-explanatory.

In order to capture traffic, we need to specify to Wireshark which network interface(s) we would like to
listen. Currently, most computers have more than one network interface, so in case we are unsure of which is
the proper one to listen, Wireshark provides an interface list. This option will show all the network interfaces
in the computer and the packet count on each of them (The count starts when we access this option). This
will make easier to identify the active interfaces, and probably the one with the most count of packets is the
one we would like to capture. Clicking on “Details” button, will provide even more information of each
network interfaces.

http://www.wireshark.org/faq.htm

Wireshark

15

Figure 2. Example of the list of interfaces to capture

Once proper network interface is identified, just select it in the main screen and click on the “Start” button.
Once the Wireshark starts to capture, will show a screen like the following: Figure 3.

This screen is divided in 3 rows, each of this showing different information. The top row is the packet list
pane; the middle row is the packet details pane and the bottom one is the packet bytes pane. Let’s talk about
each one of them:

Packet list pane (1)
This pane displays all the packets that are being captured during the current session; in case of a previously
stored session, it will display all the packets that were saved on that session. Each of the lines within this
pane corresponds to one packet that was captured. By selecting one of them, the packet details pane and
packet bytes pane will be updated to reflect the content of the selected packet. The default pane configuration
contains 7 columns, displaying the following attributes:

• No.: The number of the packet in the capture file. This number is related to the current session only, and is
incremented by one for each packet.

• Time: The timestamp of the packet. The default configuration shows the amount of seconds since the
beginning of the current session. This value could be changed to reflect the proper date and time instead,
such as the UTC time.

• Source: The IP address from where this packet came from. In case that no IP address was available (ARP
packets, for example), the name and part of the device’s MAC address is displayed.

• Destination: The IP address where this packet is going to. In case of Broadcast packets, the legend
“Broadcast” is displayed. And similar to “Source” field, if no IP address was available, the name and part of
the device’s MAC address is displayed.

• Protocol: Display the protocol used, in a short name version, or abbreviation, if a short name is not
available

• Length: Display the packet length

• Info: Provides additional information about the packet content, such as TCP header fields

More columns could be added as required, depending on the information the user may need to gather, as
Wireshark provides the functionality to add custom columns, using the packet fields available. In order
to add a column, just right-click on a column name and select the option “Column preferences”. A dialog
window will show up with a drop-down list, containing a list of predefined columns. Within this list, a
“custom” option is available to define personal filters.

Wireshark

16

Going back to the packet list pane, by right-clicking on this window, it is possible to access a menu of tasks
to perform, including options to filter packets, follow streams, and copy the packets in TXT or CSV formats.
One of the functions that can be very helpful if the user is working with TCP or UDP protocols is the Follow
TCP Stream or Follow UDP Steam. This function will display the data from a TCP or UDP stream in the
way that the application layer understands it. By selecting this function, an automated filter will be applied
within the packet list, and a dialog window will show a reconstruction of the messages that were sent and
received within this stream.

Figure 4. Following a Telnet stream

This window will display the requests to the server in red color, and the responses from the server in blue
color. This function is very helpful if the user wants to find some clear text within a particular connection,
such as user credentials, or even website cookies. Within this window, there is a search button, to find a
particular string within the stream. Also, it is possible to change the character representation between ASCII,
EBDCID, hexadecimal, C arrays, or even the raw data

Packet details pane (2)
This pane shows the protocols and protocol fields of the selected packet using a tree structure, which can be
expanded and collapsed. Every tree parent is related to a different network layer. This pane will disassemble
the packet and display the content of the different layers that compose it. It will parse and show the values of
the different fields in each of the protocols involved. In this structure, information like the MAC address of
the devices involved and the source and destination port could be observed. By right-clicking on this pane, it
is possible to access a menu of tasks similar to the one displayed in the packet list pane.

Packet bytes pane (3)
This pane is divided in 3 different columns to show the raw data of the selected packet, using a hexadecimal
notation:

• The left column displays the offset in the packet data;

• The middle column displays the packet data in hexadecimal representation

• The right column displays the corresponding ASCII codification, or the dot “.” character, if there is no
ASCII codification to display.

By right-clicking on this pane, it is possible to change the codification from hexadecimal to binary.

Before starting capturing packets, there are two things to analyze.

Wireshark

17

Figure 5. Capture options

The first one I would like to talk about is the capture options, as this allows to specify the behavior that Wireshark
will have related to the captures. Let’s enumerate the most important options available:

• Capture on all interfaces: allows Wireshark to capture on all network interfaces, or to select multiple
network interfaces to listen, using the interfaces list that appears above

• Use promiscuous mode on all interfaces: this option allows specifying if Wireshark should activate the
promiscuous mode setting in all the network interfaces. We will review this setting later.

• Capture Filter: this field could be used to specify a filter to be applied in all the selected interfaces to listen.
This filter will prevent unwanted packets to be captured and stored in the current session; if this field is not
completed, no filters will be applying to the interfaces. By clicking in the “Capture filter” button, a dialog
will open and show a list of saved filters, giving to the user the alternative to add or delete more filters. This
filter is not the same filter that appears in the Wireshark main screen, while a session is in progress. That
filter will be explained later.

• File: this field could be used to specify the filename where the session will be stored; if this field is not
completed, the session will be stored in a temporary file. By clicking on “Browse” button, a dialog will
appear, allowing the user to browse the file system and select the destination of the file.

• Use multiple files: Wireshark has the ability to store the session across multiple files, depending on the
criteria provided. By selecting this, four new options will appear as shown below:

• Next file every n mebibyte(s): Specify the maximum size in MiB of the capture file. Once this size is reached,
a new file is created.

• Next file every n minute(s): Specify the maximum time a capture file will be used. After this time is
reached, a new file is created.

• Ring buffer with n files: Specify the number of files that will be part of a ring buffer. This ring buffer
allows to rotate the captures within this number of files.

• Stop capture after n file(s): Specify the maximum number of files that Wireshark will use to store the
current session. If this value is reached, the capture will stop.

• Stop Capture Automatically After: this section contains 3 different options to automatically stop the
packets captures.

Wireshark

18

• n packets: Specify the maximum amount of packets that Wireshark will capture before stopping.

• n mebibyte (s): Specify the maximum amount of MiB that Wireshark will capture before stopping.

• n minute (s): Specify the maximum amount of time that Wireshark will capture packets before
stopping.

• Update list of packets in real time: this option allows the user to specify if Wireshark will update the
packet list pane while the capture is still active, or to not display the packets until the capture is stopped.
If this option is enabled, Wireshark will use one process to capture the packets and a different process to
display the packets in the packet list pane.

• Automatically scroll in live capture: this option allows the user to specify if Wireshark will perform an
automated scroll while new packets are being captured. If this is not enabled, the new packets will not be
shown in the packet list pane until the user scroll down.

• Hide capture info dialog: this option allows the user to specify if the info dialog will be displayed meanwhile
a capture is in progress. The info dialog will show statistics of the protocols captured, and the time since the
capture started

• Resolve MAC Addresses: this option allows the user to specify if the devices MAC address captured
should be resolved into names.

• Resolve network-layer names: this option allows the user to specify if the network-layer names captured
should be resolved into names.

• Resolve transport-layer name: this option allows the user to specify if the transport-layer names captured
should be translated into protocols.

• Use external network name resolver: this option allows the user to specify if the name resolution will be
performed through DNS lookups or not.

The second thing I would like to analyze before starting to capture packets is the necessity of configuring the
network interface in promiscuous mode. Let’s start with a short review of what is promiscuous mode and then
identify whether this is needed or not. If we consider a network environment connected through a hub device, all
the packets that came from one host will be sent to all the other hosts within the same network (similar to what
happens in a wireless network environment). Every host that receives the packet compares the destination MAC
address of the packet to the MAC address of its own network interface. If both MAC addresses match, then the
network interface captures the packet and processes it. If the MAC addresses do not match, then the packet is
discarded. If the promiscuous mode is enabled, every packet that arrives to the network interface, no matter
what its MAC address is, it will be captured from the network. This allows us to capture all traffic that
travel in the network. Now that we defined the promiscuous mode, let’s use a more realistic scenario. Today
it is not common to find hubs connecting networks; even it is getting difficult if you want to buy a hub in
a computer store. Today’s network uses switches to transmit messages only to the destination, avoiding
flooding the network with unnecessary packets, and making it more difficult to sniff traffic. With a switching
network, enabling the promiscuous mode will not have any effect, as we are not receiving traffic that is not
intended to us. Considering this scenario, if we want to capture all the packets that travel across the network,
we probably need to do one of the following: perform and ARP poisoning or connects to a mirroring port.
These topics are out of the scope of this article, but I wanted to give a real world scenario before continuing.

Going back to our topic, the main concern is if it is required to listen in promiscuous mode, or not.
There is not correct answer, as it depends of the nature of the tasks to be performed. In case of a network
administration that wants to inspect all the traffic that travel across the network, then yes, the promiscuous
mode will be necessary. But, if we consider a penetration tester that only wants to identify the traffic between
his computer and a website, or a particular server, then this mode is not required, and enabling it will provide
a lot of unnecessary traffic.

Wireshark

19

Figure 6. Filter expression

Now that we have enough information to adapt the Wireshark to our necessities, it is time to start the
sniffing. Once the capturing process is running, the packet list pane will display a lot of traffic, probably
more than the desired one. This is when another of the big features of Wireshark comes to play. This tool
provides an extensive set of filter options, allowing the user to display only the packets that he wants to see.
The filter toolbar is above the packet list pane. By clicking on the “Expression” button, a dialog box will
open with a complete list of filters that Wireshark is able to manage.

This list is a very good point to start for those who do not have expertise using Wireshark, as the user can
easily select the fields he wants to use in the filters; and it is an excellent way to learn how to write those
filters. This dialog is composed of 5 fields, as follows:

• Field Name: this field contains a list of protocols in a tree structure. Every protocol that has fields that
could apply as filters are displayed at the top level of the tree. By expanding the protocol tree, the user will
be able to get a list of the field names available for that protocol.

• Relation: this is the operator that will apply to this filter. The operators could be logical or comparison.
Once a relation is chosen, the user will be able to complete one of the following 3 fields, related to the
values.

• Value: this field contains the value that should be compared within the one in the packet, in order to
Wireshark be able to match it. Between will appear the type of value (Character, string, number, etc.).

• Predefined values: for particular protocols and fields, there is a list of predefined values from where the
user must select which is the desired one.

• Range: for some protocols it is possible to add a range of values to match with.

Within the filter toolbar there are 3 buttons that perform the following:

• The “Clear” button removes all the filters applied to the packet list pane.

• The “Apply” button use the filter typed in the text box.

• The “Save” button store the filter for a future use.

Wireshark

20

The text box in the left side of the toolbar could be used to write and apply filters. Instead of looking through
the list of filters, the user could easily write the desired ones, if the proper syntax and names are known.
Be aware that these filters are case sensitive; for instance, it is not the same thing writing “ip”, than “IP”.
The filter contains 3 different items that compose the syntax. There is one field (usually a packet field), one
operator and one value. One exception for this syntax is that the operator “is present”, does not require a
value to be compare with, as it returns true if the field is present within the packet. For example, if we want
to filter only packets from or to the IP address 192.168.0.1, I will use the following filter

ip == 192.168.0.1

There is a list of the most common operators used in the filters

Comparison operators
Operator C-like Description
eq == equal to
ne != not equal to
ge >= greater than or equal to
gt > greater than
le <= less than or equal to
lt < less than
matches matches to
contain contains
is present is present

Logical operators
Operator C-like Description
and && AND logical operation
or || OR logical operation
xor ^^ XOR logical operation
not ! NOT logical operation
[...] [...] Substring operator

For some popular filters, instead of writing the ports used for that protocol, the user could write the protocol name
instead. For example, it can be written http in the filter textbox, instead of the following rule (this is assuming that
in the current session, there are no other http servers in ports besides 80 and 443)

tcp.port == 80 || tcp.port == 443

The list of popular protocols that could be used instead of filtering within the ports used is presented:

arp, bootp, smtp, pop3, dns, smb, ldap, ftp, icmp, imap, nbss

Wireshark also allows the definition of advanced filters that could be used to match specific bytes positions
within the required fields. These bytes could be defined by the use of an offset and bytes length. The proper
syntax for the advanced filters is shown below, followed by an operator and value to match with:

Packet field or protocol[offset:length]

For example, if I want to filter all the ip packets that contains in the bytes 10 and 11 the values 0x30 and
0x45, the filter will be

ip[10:2] == 30:45

The next list contains some examples of useful filters.

Wireshark

21

• ip: displays only ip packets.

• tcp.port eq 23 or ftp: displays only packets of ftp and telnet protocols.

• ip.src==192.168.0.0/24 and ip.dst==192.168.0.0/24: displays packets sent between hosts in the same network 192.168.0.0

• ip.addr == 192.168.0.0/24: displays packets from or to the IP range selected. Be aware that this is not the
same than the previous one. This filter will display traffic from the LAN to an external host, and vice
versa.

• smb || nbns || dcerpc || nbss || dns: displays packets that is usually associated with Windows hosts.

• ls_ads.opnum==0x09: displays packets associated with the Sasser worm.

• eth.addr[0:3]==00:06:5B: displays those packets where the MAC address starts with 0x00, 0x06 and 0x5B. This
is useful to filter packets that came from a particular vendor’s network interface.

• http.request.uri matches “le.com$”: displays HTTP packets where the last characters in the URI field are
“le.com”.

• not broadcast and not multicast: displays all packets, except broadcast and multicast.

• ether host AA:BB:CC:DD:EE:FF: displays all Ethernet packets that goes to and from the network interface
that has that MAC address.

Now that we know how to capture traffic and filter all the undesired packets, it is time to see what we could
do with the traffic captured. Wireshark includes a sophisticated traffic analyzer and decoder. As more devices
are being connected to personal and business networks, traffic analysis is becoming more important. From
identifying a network misuse, to detect an intrusion, the ability to analyze the traffic is crucial for network
administrators and security officers. Wireshark provides several functionalities for a better understanding of
the traffic captured. These functionalities could be found within the toolbar, in the “statistics” menu. The most
important ones will be explained below:

• Summary: this function provides general statistics about the current session. This information includes the
timestamps of the first and last packets captured, information about the file where the session it is being
saved, and statistics about all the traffic captured, such as amount of packets, average packets per second,
and average bytes per second.

• Protocol Hierarchy: this function displays a tree structure of all the protocols captured in the current session.
The hierarchy is based on the OSI network model. It will also provide some statistics of amount of packets
and size per protocol. Be aware that usually, each packet has more than one protocol (each of them at a
different OSI layer) and there are some situations where the same protocol could appear more than once in
the same packet. Wireshark will count each of these occurrences as different packets.

• Conversations: this function displays a list of all the conversations captured and statistics for each of one,
within the current session. A conversation is the traffic that is sent and received between two specific
endpoints. The available tabs within this dialog box will be enabled depending the type of traffic captured
and will show the number of conversations captured in the label; if no conversations were captured for a
specific protocol, the tab will be greyed out.

• Endpoints: this function displays a list of all the endpoints captured and statistics for each of one, within
the current session. An endpoint is each end of a conversation, which means that for each conversation
we have identified, there are two endpoints. The available tabs within this dialog box will be enabled
depending on the type of traffic captured, and will show the number of endpoints captured in the label; if
no endpoints were captured for a specific protocol, the tab will be greyed out.

• IO Graphs: This function displays a customizable graphic. It has up to five different filters that could be
applied to be represented in the graphic with a different color. By clicking on the graph, will show the
selected packet in the Wireshark main window.

Wireshark

22

• WLAN Traffic: This function displays statistics of the captured wireless traffic within the current session.
In the network overview section, statistics for each of the wireless networks (BSSIDs) will be displayed.
By selecting a particular network, this will display information for each client connected to that wireless
network and statistics for each of these.

Another good feature of Wireshark is the ability to intercept and reassemble VoIP packets. This functionality
is located in the “Telephony” menu within the toolbar. This menu contains different VoIP protocols that
could be used to filter packets in the packet list pane, and display only the desired one. Wireshark currently
supports the following VoIP signaling protocols, including:

• SIP: Session Initiation Protocol (SIP) is a signaling protocol used to set up, manage and end VoIP
calls, and multimedia conferences. This protocol includes methods such as INVITE and ACCEPT, and
responses that indicate if the call was accepted, if it needs to be redirected, or error codes to indicate an
abnormal situation.

• H323: is a standard that defines the protocol to provide call signaling and control for multimedia
communication sessions.

• ISUP: ISDN User Part is part of the signaling protocol SS7, used to establish and release phone calls
within the PSTN (Public Switched Telephone Network).

• MGCP: Media Gateway Control Protocol (MGCP) is a protocol used to control media gateways that lay
on IP networks and are connected to the PSTN.

• Unistim: Unified Networks IP Stimulus is a telecommunications protocol designed by Nortel, used in
communications between IP Phones and IP PBX (Private branch exchange).

Wireshark also supports the RTP protocol (Real-Time Transport Protocol) which is the protocol used to actual
transmits packets in real time over an IP network. The type of packets supported by this protocol includes
audio, video or data, over multicast or unicast network services. It is commonly used in streaming, telephony
and even television services. It is used within RTCP (RTP Control Protocol) which monitor transmission statics
and quality of service. Now, going back to the “Telephony” menu, the user will see a list of protocols available
to select. Once a protocol is selected, a new window will appear, displaying, in most cases, the streams or
packet counters depending on the selected protocol. This menu also contains one option that is “VoIP Calls”.
By selecting this option, a new window will appear, listing all the calls that were found during the captured
session. Different attributes of the calls will be displayed, such as:

• Start Time: start time of the call.

• Stop Time: stop time of the call.

• Initial Speaker: the IP address from the device that initiated the call.

• From: depending on the signaling protocol used, it will display a telephone number or a terminal ID.

• To: depending on the signaling protocol used, it will display a telephone number or a terminal ID.

• Protocol: the protocol used to signal the call.

• Packets: number of packets that were sent and received during the call.

• State: the current state of the call. This value could be:

• CALL SETUP: indicates that the call is being setup.

• RINGING: only for MGCP protocol, indicates that the call is ringing.

• IN CALL: indicates that the call is in place.

Wireshark

23

• CANCELLED: indicates that the call was canceled before being connected.

• COMPLETED: indicates that the call was ended normally.

• REJECTED: indicates that the call was rejected by the addressee.

• UNKNOWN: indicates that the call is in unknown state.

• Comment: additional comments for the call. If the protocol H323 is being used, this field will indicate if
Fast Start or/and H245 Tunneling is being used.

Figure 7. VoIP Call using SIP protocol

It is possible to filter all the packets for a particular call in the Wireshark packet list pane. In order to do
so, within the VoIP window, the user just needs to select the desired call and click on the “Prepare Filter”
button. Wireshark will automatically filter only the traffic that is being involved in that particular call. The
“flow” button will present a graph analysis of the selected call. This analysis includes which packets were
sent and received, at what time this was done, and which protocols were used in each of these packets.

Figure 8. VoIP Graph Analysis

Wireshark

24

Figure 9. Playing VoIP captured packets

Wireshark also provides a functionality to play the RTP packets captured, that could be accessed from the
“Player” button. This option will open a dialog window displaying the actors involved in the call in separate
lines and the user could play the reconstruction of the call from each part in a separate way or all the parts
together (Figure 9).

If you have captured RTP stream packets, but not the SIP packets, it is probably that Wireshark may not
recognize the traffic as RTP. For this scenario, Wireshark provides functionality, allowing the user to try and
decode the RTP outside of conversations.

• Finally, but not least important, it’s the ability to decrypt SSL (Secure Socket Layer) traffic. As you may
know, SSL is a protocol that provides confidentiality and message integrity through a symmetric and
asymmetric algorithm, and it is widely used on public and private networks. It can be used to encapsulate
application layer protocols such as HTTP, SMTP, FTP, and so on. Let’s give a quick overview to the SSL
handshake, to understand how Wireshark is able to perform this decryption. The client start a connection
to an SSL service by sending a ClientHello message, and includes its own SSL client configuration,
including the protocol version and cipher settings

• The server receives this message and replies with a ServerHello message, including its own SSL server
configuration, including the protocol version, cipher settings, and the server certificate

• The client authenticates the server certificate against the certificate authority. It also generates a master
key, encrypts it with the server certificate, and sends to it

• The client and the server use the master key to generate a symmetric session key that will be used to
encrypt and decrypt the information exchanged, and to verity its integrity. The way the symmetric session
key is generated depends on the method used for key exchange (Diffie-Hellman, RSA, ECDH, etc.)

This is a quick explanation of how the SSL handshake is being performed. There are more factors involved,
but for the purpose of decrypting traffic with Wireshark, this gives a good overview.

There is one warning I must say before continuing. Wireshark is not able to decrypt ALL SSL traffic that
travel across the network. The SSL protocol provides integrity, and there is no way to decrypt its content.
There are a few techniques that could be used to crack this protocol, but only works on specific conditions.
Wireshark performs the decryption by having the private key that is being used to encrypt the traffic. There
are also a couple more of requirements needed to perform this. The communication must use RSA key to
encrypt the data, and the capture must include the handshake process (ClientHello and ServerHello requests).

Wireshark

25

Within this information Wireshark is able to decrypt the SSL traffic. In order to perform this, the user needs to
access the Wireshark preferences, under the “Edit” menu. A dialog window will appear with a tree structure on
the left side. Expand the “Protocol” tree, scroll down and select SSL. In the right side of the window, an edit
button will appear. By clicking this, a new dialog window will appear; click in “new” within this window; and a
new one will be presented, requiring the following information:

• IP address: is the IP address of the server that provides the SSL certificate to the client. Wildcard IP
address could be used (0.0.0.0)

• Port: is the port used by the server to provide the encrypted service. Wildcard port could be used (0)

• Protocol: is the protocol that was encrypted by SSL. Considering a web traffic (HTTPs), the protocol
encrypted was HTTP

• Key File: requires the location of the key file. The key must be in PEM or PKCS12 formats

• Password: is the password that was used to protect the key file, if any

After this configuration was saved, just start a new capture, and if everything was completed properly,
Wireshark will decrypt all the SSL traffic that was encrypted using the selected certificate

As observed, Wireshark is a tool that provides several functionalities to analyze network environments. In
this article we just covered the most important ones, but there are a lot more of things to do with this tool.
I hope you enjoyed reading this article, as much as I enjoyed writing it. See you in the next article.

About the Author
ar.linkedin.com/in/sebasperez/
Sebastian is a Senior Security Consultant in one of the Big Four, located in Buenos
Aires, with an experience of more than seven years providing IT Security services.
He is responsible for delivering security solutions; including penetration testing,
vulnerability assessment, security audits, security remediation, mobile and web
application penetration testing, infrastructure security assessments, network analysis, as
well as systems architecture design, review and implementation. He also offers internal

trainings related to ATM security and penetration testing Android apps. Prior to joining into his current
company, he worked as a systems administrator, security policy manager and IT security consultant.
His background gives him a thorough understanding of security controls and their specific weaknesses.
Furthermore, he is proficient in multiple security application tools, network technologies and operating
systems. Sebastian has a post-degree in Information Security, and is currently working on his master
degree thesis related to computer and mobile forensics. He also published a CVE # CVE-2012-4991
related to the Axway Secure Transport software, which was vulnerable to Path Traversal vulnerability.

http://ar.linkedin.com/in/sebasperez/

www.BigDataTechCon.com

March 31-April 2, 2014
Boston

The HOW-TO technical conference for professionals implementing Big Data

Come to Big Data TechCon
to learn the best ways to:
• Process and analyze the real-time data pouring into

your organization.

• Learn HOW TO integrate data collection technologies
with data analytics and predictive analysis tools to
produce the kind of workable information and
reports your organization needs.

• Understand HOW TO leverage Big Data to help your
organization today.

• Master Big Data tools and technologies like Hadoop,
MapReduce, HBase, Cassandra, NoSQL databases,
and more!

• Looking for Hadoop training? We have several Hadoop
tutorials and dozens of Hadoop classes to get you
started — or advanced classes to take you to the next level!

Become a Big Data Master! Over 45
HOW-TO,

practical classes
and tutorials to
choose from!

Attend
Big Data TechCon!The3rd

Big Data TechCon™ is a trademark of BZ Media LLC.

A BZ Media Event Big Data TechCon

Wireshark

27

Sniffing and Recovering Network
Information Using Wireshark
by Fotis Liatsis

Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting,
analysis, software and communications protocol development, and education. Wireshark is
cross-platform, using the GTK+ widget toolkit to implement its user interface, and using
pcap to capture packets, it runs on various Unix-like operating systems including Linux, OS
X, BSD, and Solaris, and on Microsoft Windows.

You can download Wireshark for Windows or Mac OS X from the official website (http://www.wireshark.
org/download.html). Most Linux systems have pre installed Wireshark tool. In the case that Wireshark
is not installed you can just follow the bellow documentaiton and run the proper command for each
operation system: Building and Installing Wireshark (http://www.wireshark.org/docs/wsug_html_chunked/
ChapterBuildInstall.html). Wireshark needs to be run as the root user in your system. After Wireshark run,
will give you a message – warning that you are running it as root, and that it might be dangerous.

Capture Interfaces
We can get an overview of the available local interfaces by navigating on Capture menu tab and then clicking
the Interfaces option as shown Figure 1. By clicking the Option button Wireshark pops up the “Capture
Options” dialog box. The table shows the settings for all available interfaces including a lot of information for
each one and some checkboxes like:

• Capture on all interfaces – As Wireshark can capture on multiple interfaces, it is possible to choose to
capture on all available interfaces.

• Capture all packets in promiscuous mode – This checkbox allows you to specify that Wireshark should
put all interfaces in promiscuous mode when capturing.

Figure 1. Wireshark Interfaces

By clicking the Start button we will see a lot of packets start appearing in real time. Wireshark captures each
packet sent from (Source) or to (Destination) our system.

http://en.wikipedia.org/wiki/Packet_analyzer
http://www.wireshark.org/download.html
http://www.wireshark.org/download.html
http://www.wireshark.org/download.html
http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html
http://www.wireshark.org/docs/wsug_html_chunked/ChapterBuildInstall.html

Wireshark

28

User Interface
Before proceed to analyze our traffic network we will explain the basic information we need to know about
the packet list pane, the color rules, the packet details pane and the packet bytes pane.

Packet List pane
The packet list pane displays all the packets in the current capture file. Each line in the packet list
corresponds to one packet in the capture file. If you select a line in this pane, more details will be displayed
on Packet Details and Packet Bytes panes.

The default columns will show:

• No. – The number of the packet in the capture file. This number won’t change, even if a display filter is used.

• Time – The timestamp of the packet. The presentation format of this timestamp can be changed.

• Source – The address where this packet is coming from.

• Destination – The address where this packet is going to.

• Protocol – The protocol name in a short (perhaps abbreviated) version.

• Info – Additional information about the packet content.

Color Rules
A very useful mechanism available in Wireshark is packet colorization. There are two types of coloring rules
in Wireshark; temporary ones that are only used until you quit the program, and permanent ones that will be
saved to a preference file so that they are available on a next session. So let’s focus to most important name
filters. Green Color refers to TCP packets but black identifies corrupted TCP packets. Light Blue refers to UDP
packets and dark blue on DNS traffic. For more information or if we would like to edit/add our own color rules
we can navigate to View menu and click the Coloring Rules.

Figure 2. List – Details Pane

Packet Details Pane
The packet details pane shows the current packet (selected in the “Packet List” pane) in a more detailed
form. This pane shows the protocols and protocol fields of the packet selected in the “Packet List” pane.
The protocols and fields of the packet are displayed using a tree, which can be expanded and collapsed.

http://www.wireshark.org/docs/wsug_html_chunked/index.html

Wireshark

29

Packet Bytes Pane
The packet bytes pane shows the data of the current packet in a hexdump style. The left side shows the offset
in the packet data, in the middle the packet data is shown in a hexadecimal representation and on the right
the corresponding ASCII characters are displayed.

Start Capturing – Analyzing
At this part we will start capturing once more our network, so click from Capture menu the Start option.
Next we will attempt to login to an account and will analyze it into wireshark tool to see if we can find
important information. As we can see there are lot of packets that Wireshark appears. A valuable options
here is the Filter mechanism which lets us quickly edit and apply-display filters. Let’s isolate the http packets
by typing http string on filter tab. As we can see the packet list pane shows only HTTP protocols. We need
to locate the HTTP protocol and identify the response of the Host which attempted to login. Looking at the
highlighted results, we can determine at info tab that there are packages which contain the GET method.
Let’s focus at this information and explain it.

Note

GET method requests a representation of the specified resource. Requests using GET should only retrieve
data and should have no other effect. At the packet list pane click the Hypertext Transfer Protocol, as we can
see the GET method appears and also a lot of important information such as the request version of the Server,
the Host and the User-Agent which contains the browser version and the OS that the user used to login. Next
we want to examine the full conversation between the client and the server by accessing the Follow TCP
Stream option (right click on the packet and then choose Follow TCP Stream). A pop-up window will appear
which will contain the entire conversation on stream content. The red words indicates the request and the
blue the response of the Host. Also as we can notice choosing the Follow TCP Stream option Wireshark
automatically added the property filter in Filter area.

Figure 3. TCP Stream Window

By reviewing the highlighted code closely on Figure 3 we can see that the index.php action has two
inputs, the username and the password. We can identify on Packet List pane a POST Request method
from our machine to the server using HTTP protocol. Selecting once more the Hypertext Transfer
Protocol tree we can verify the request and the method which used to login to the Host.

Wireshark

30

Note

POST method requests that the server accept the entity enclosed in the request as a new subordinate of the
web resource identified by the URI. The data POSTed might be, as examples, an annotation for existing
resources; a message for a bulletin board, newsgroup, mailing list, or comment thread; a block of data that is
the result of submitting a web form to a data-handling process; or an item to add to a database.

As we can notice on packet details pane there is also a new tree line named Line-based text data: By clicking
once it we can see the POST request which contains the username and the password in clear text. Also checking
the packet bytes pane we can draw the same information on Hex or Bit View.

Figure 4. Bytes Pane

Cracking – Analyzing W-Network
At this part of article we will explain how we can have access to our WLAN network, how to retrieve the
wireless password and finally how can use it to analyze the traffic packets into Wireshark.

First we will run the following command to get a list of our network interfaces:

wizard32@wizard32:~$ sudo airmon-ng
Interface Chipset Driver
wlan0 Unknown iwlwifi – [phy0]

As we can notice the only available interface is the wlan0 adapter. To capture network traffic without being
associated with an access point, we need to set the wireless network adapter in monitor mode (Listing 1).

Listing 1. Setting wireless network adapter in monitor mode

wizard32@wizard32:~$ sudo airmon-ng start wlan0

Found 4 processes that could cause trouble.
If airodump-ng, aireplay-ng or airtun-ng stops working after
a short period of time, you may want to kill (some of) them!

PID Name
1103 NetworkManager
1121 avahi-daemon
1125 avahi-daemon
1299 wpa_supplicant

Interface Chipset Driver

wlan0 Unknown iwlwifi – [phy0]
 (monitor mode enabled on mon0)

Wireshark

31

Next run once more the Wireshark tool and navigate to Capture menu and click Interfaces option. As we
mention before monitor mode enabled on mon0 so on wireshark pop-up window select the mon0 as capture
interface and click start (Figure 5). After starting the capturing we locate multiple SSID access points. By
typing HTTP or DNS on Filter menu, Wireshark doesn’t return any result. Looking on packet pist pane we
can search our access point or by locating the BSSID (basic service set identification) or the SSID (service
set identifier).

Figure 5. Wireshark Interfaces

• BSSID is the MAC address of the wireless access point (WAP) generated by combining the 24 bit Organization
Unique Identifier and the manufacturer’s assigned 24-bit identifier for the radio chipset in the WAP.

• SSID is the name of a wireless local area network (WLAN).

As we can notice two new tree lines has been added on packet details pane. Both of them specifies the
communication wireless protocol.

Another way to locate out access point is to use the airdump-ng tool.

wizard32@wizard32:~$ sudo airodump-ng mon0
BSSID PWR Beacons #Data, #/s CH MB ENC CIPHER AUTH ESSID
00:11:8F:8E:4E:32 -30 21 0 0 1 54 WEP WEP wizard32

To capture data into a file using airodump-ng tool once more, we must specify some additional option to
target a specific access point.

wizard32@wizard32:~$ sudo airodump-ng -c 1 -w ~/Desktop/W-packets --bssid 00:11:8F:8E:4E:32 mon0

At this time we can use two different ways to retrieve the password from our network. The first one is to use
a tool named aircrack-ng in association with the .pcap packets that we captured using the aiodump-ng tool or
using the .pcap file from Wireshark tool and performing a dictionary attack to a specific access point. Let’s
analyze them.

Method: aircrack-ng

To recover the WEP key aircrack only requiring collection of enough data. So in terminal we type the following
command to retrieve our WEP network key: Listing 2. As we can see aircrack decrypted and found correctly
our WEP network key. So let’s analyze how we can retrieve it using this time dictionary attack method on .pcap
Wireshark file (Listing 3).

-w: Identifies our wordlist file

Wireshark

32

Listing 2. Retrieving WEP network key

wizard32@wizard32:~$ sudo aircrack-ng ~/Desktop/W-packets-01*.cap
Opening /home/wizard32/Desktop/W-packets-01.cap
Read 61960 packets.

 # BSSID ESSID Encryption

 1 00:11:8F:8E:4E:32 wizard32 WEP (21124 IVs)

Choosing first network as target.

Opening /home/wizard32/Desktop/W-packets-01.cap
Attack will be restarted every 5000 captured ivs.
Starting PTW attack with 21124 ivs.

 Aircrack-ng 1.1
 00:00:02] Tested 7 keys (got 21124 IVs)

 KB depth byte(vote)
 0 0/ 1 4B(29696) E4(28160) 40(27648) C2(27392) D6(26368) 21(26112) 62(25344) A8(25344)

B3(25344) DB(25344) 2C(25088) 38(25088) A9(25088) 47(24832) C4(24832) CB(24832) CE(24832)
19(24320) 44(24320)

 [...]
 4 0/ 2 C4(29440) 12(28928) 78(28160) 87(27136) 60(26368) 84(26368) 93(25856) 00(25600)

4C(25600) BD(25344) C5(25344) 03(25088) 68(25088) 7B(25088) F4(25088) 02(24832) 1E(24832)
28(24832) 54(24832)

 [...]

 KEY FOUND! [4B:AB:FE:1C:02]
 Decrypted correctly: 100%

Listing 3. Retrieving WEP network key using dictionary attack method
wizard32@wizard32:~$ sudo aircrack-ng -w ~/Desktop/mywordlist.txt -b 00:11:8F:8E:4E:32 ~/Desktop/

W-capture.pcap
Opening /home/wizard32/Desktop/W-capture.pcap
Attack will be restarted every 5000 captured ivs.
Starting PTW attack with 21096 ivs.

 Aircrack-ng 1.1
 [00:00:02] Tested 7 keys (got 21096 IVs)

 KB depth byte(vote)
 1 0/ 1 AB(34816) 32(27904) C6(27648) B0(26624) 12(26112) 16(25600) 28(25600) B1(25600)

CD(25344) F5(25344) 60(25088) D0(25088) E1(25088) D4(24832) 20(24576) 10(24320) 82(24320)
21(24064) 4A(24064)

 [...]
 2 2/ 3 FE(27648) 4A(26624) B9(25600) EB(25600) 0D(25344) 2A(25344) 3A(25344) 46(25088)

25(24832) 7B(24832) 8E(24832) 9A(24832) AF(24832) 01(24576) C1(24576) 5E(24320) 78(24320)
8F(24320) BD(24320)

 [...]

 KEY FOUND! [4B:AB:FE:1C:02]
 Decrypted correctly: 100%

Note

Some of these tools (airmon-ng) might need to be installed unless if we are using a system which has
airmon-ng already installed, such as BackTrack/Kali or BackBox.

Wireshark

33

Figure 6. Decryption Keys Pane

On both cases aircrack successfully recovered the WEP key. Now it’s time to apply our WEP key into
Wireshark tool to enable decryption in order to locate possible sensitive information. Navigate to Edit menu,
then click on Preferences option and on Protocol tree line locate the IEEE 802.11 protocol. Next we mark
Enable decryption checkbox and then we click the Edit button to add our WEP key.

The Moment of Truth (TMT)
We searching once more for possible http || dns protocols.
By reviewing the highlighted code closely on figure 2 we
can see multiple http request to a specific host. To eliminate
even more results we will create a new filter which will
specify only those packages from the specific Host. So we
locate the GET request and we apply as filter the selected
line. As previously we locate the line which contains the
parameters (username/password). Notice that on packet
bytes pane the Frame tab and the Decrypted WEP data tab appearing.

Table 1. POST info request
Key Value
task: login
username: Admin
passwd: l3tmeIn!

Protect from Snooping
All the above examples shows how easy it is to obtain sensitive data from snooping on a connection. The
best way to prevent this is to encrypt the data that’s being sent. The most known encryption methods are SSL
(Secure Sockets Layer) and TLS (Transport Layer Security).

The Secure Socket Layer (SSL) and Transport Layer Security (TLS) are the most widely deployed security
protocol used today. It is essentially a protocol that provides a secure channel between two machines
operating over the Internet or an internal network. SSL Certificates have a key pair: a public and a private
key. These keys work together to establish an encrypted connection. The certificate also contains what is
called the “subject,” which is the identity of the certificate/website owner.

About the Author
Fotis Liatsis is a member and System/Network Administrator of Greek Student Security
Team – CampSec. Hi is also an OWASP member of the Greek Student Chapter and
System Administrator of Hackademic. His interests include Ethical Hacking, Penetration
Testing, Security/vulnerability research and applied Cryptography methods. He is a
security enthusiast and Athcon fanatic. You can follow his Twitter (@liatsisfotis) or his
blog for more information (http://www.liatsisfotis.com/).

http://www.liatsisfotis.com/

Wireshark

34

Traffic Analysis and Capture Passwords
by Rafael Fontes

It is known that Wireshark is a powerful tool that goes far beyond a simple sniffer. What
many do not know is that there are several ways to harness the potential of this tool, readers,
this article will introduce. Let us learn to sniff the network effectively, create filters to find
only the information we want, see it as a black hat would use this tool to steal passwords
and finally, how to use Wireshark to diagnose network problems or if a firewall is blocking
packets correctly.

Your password is hard to be broken? Has many characters and you trade with a certain regularity and one
day you’re surprised to receive allegations of invasion. Evidence indicates that the invasions third party
accounts departed from your account and you have no idea what is happening. That is, someone may
have made use of your account and performed such acts as you. How could this have happened? A strong
possibility is that you have been the victim of an attack of “sniffer”.

UNDESTAND THE MAIN CONCEPT
What are Sniffers? Well... Are very useful software, so great is the use of them, even the IDS systems are
made based sniffers. A sniffer is a program that can capture all traffic passing in a segment of a network.

Programs that allow you to monitor network activity recording names (username and password) each time
they access other computers on the network.

These programs are monitoring (“sniffing”) network traffic to capture access to network services, such as
remote mail service (IMAP, POP), remote access (telnet, rlogin, etc.), file transfer (FTP) etc. Accesses made,
captured packets. Always aiming to get identification for access the user’s account.

When we called the HUB computer and send information from one computer to another, in reality these data
are for all ports of the HUB, and therefore for all machines. It turns out that only the machine on which the
information was intended to send the operating system.

If a sniffer was running on other computers, even without these systems send the information travels there
for the operating system, the sniffer will intercede at the network layer, data capturing and displaying them
to the user, unfriendly way. Generally the data are organized by type of protocol (TCP, UDP, FTP, ICMP,
etc...) and each package shown may have read your content.

YOUR PASSWORD CAN BE CAPTURED BY
SNIFFERS
Many local area networks (LANs) are configured sharing the same Ethernet segment. Virtually any computer
of the network can run a “sniffer” program to “steal” users passwords. “Sniffers” work monitoring the flow
of communication between computers on the network to find out when someone uses the network services
previously mentioned. Each of these services uses a protocol that defines how a session is established, such
as your account is identified and authenticated and how to use the service.

To have access to these services, you first have to have a “log in”. Is the login sequence - the part of these
authentication protocols, which occurs at the beginning of each session - the “sniffers” are concerned,
because it is this part that is your password. Therefore, it is the only filter “strings” keys that the password
is obtained.

Wireshark

35

STEP BY STEP
Currently, almost all environments using switches and not hubs, which makes sniffing a little more difficult
because the switches do not send the data to all ports as a hub does, it sends directly to the port where the
host destination, so if you try to sniff a network switch you will only hear what is broadcast, or its own
connection. To be able to hear everything without being the gateway of the network, an ARP spoof attack is
necessary, or burst the CAM table of the switch.

Basic Usage
Now let’s put our hands dirty: I’m assuming you already have the program installed, if you do not download.
When starting Wireshark, the displayed screen will look something like Figure 1:

Figure 1. Wireshark

Before you can start capturing packets, we have to define which interface will “listen” to the traffic. Click
Capture > Interfaces

Figure 2. Interfaces

From there, a new window will appear with the list of automatically detected interfaces, simply select the
desired interface by clicking the box next to the name of the interface, as in Figure 3:

Wireshark

36

Figure 3. Capture Interfaces

If you click Start, it will begin automatically captures. You can only select the interface and only then start
the capture if necessary. When the capture process starts, you will see several packets traversing the screen
Wireshark (varying according to the traffic of your machine / network). Will look something like the Figure 4:

Figure 4. Capturing

To stop the capture, simply click the button, “Stop the running live capture”.

Figure 5. Stop

It is important to remember that you must take care if your network is busy, the data stream may even lock
your machine, then it is not advisable to leave the Wireshark capture for a long time, as we will see, we will
leave it running only during the process debug a connection. The greater the amount of packets, the longer it
takes to apply a filter, find a package, etc.

Wireshark

37

With this we have the basics of the program, we can set the capture interface, start and stop the capture. The
next step is to identify what interests among many packages. For this, we will start using filters.

Using Filters
There is a plethora of possible filters, but at this moment we will see just how to filter by IP address, port
and protocol. The filters can be constructed by clicking on “Filter”, then selecting the desired filter (there is a
short list of pre-defined filters), or by typing directly into the text box. After you create your filter, just click
“Apply”, if you wanted to see the entire list of packages again just click “Clear”, this will remove the filter
previously applied.

Figure 6. Filter

I will use a small filter list as an example:

Figure 7. Example by Rafael Souza (RHA Infosec)

It is also possible to group the filters, for example:

Wireshark

38

ip.src == 10.10.10.1 && tcp.dstport==80 OR ip.src == 10.10.10.1 and tcp.dstport==80

Source address 10.10.10.1
And destination port 80

CAPTURING PASSWORDS
Now we will see how you can capture passwords easily, just by listening to traffic. For this example we
will use the POP3 protocol, which sends the data in clear text over the network. To do this, start capturing
packets normally and start a session with your server pop3 email. If you use a safer as imaps or pop3s and I
just wanted to see the functioning of the mechanism, protocol is possible to connect via telnet pop3 without
having to add / modify your account, simply run the following:

telnet serveremail.com 110
user user@rhainfosec.com
pass rhainfosecpasswd

Now stop the capture, filter and put “pop” and then click “Apply”. That done, you see only the packets of
pop3 connection. Now click on any of them right, and then click “Follow TCP Stream”.

Figure 8. POP3

With this he will open a new window with the entire contents of the ASCII connection. As the pop3 protocol
sends everything in plain text, you can see all the commands executed, including the password.

Figure 9. Pass

This can be transported to any connection in plain text, such as ftp, telnet, http, etc.. Just to let you change
the filter and examine the contents of the connection.

Wireshark

39

Importing External Captures
Usually in servers, there is no graphical environment installed and with that you cannot use Wireshark
directly. If you want to analyze traffic on this server and you cannot install Wireshark, or if you do not have
to capture this traffic elsewhere, the best one can do is write traffic with tcpdump locally and then copy this
dump to a machine with Wireshark for a more detailed analysis is made.

We will capture everything that comes or goes to the host 10.10.10.1 with destination port 80 and save
content in capturerafaelsouzarhainfosec.pcap file from the local folder where the command was executed.
Run the server:

tcpdump -i eth0 host 10.10.10.1 and dst port 80 -w capturerafaelsouzarhainfosec.pcap

Once you’re finished capturing, simply use CTRL + C to copy the file to the machine Wireshark capture and
import by clicking on File -> Import. Once imported, you can use the program normally as if the capture had
occurred locally.

EVOLUTION OF THINKING

Why steal your password?
There are various reasons that lead people to steal passwords from simply to annoy someone (sending email
as you) up to perform illegal activities (invasion on other computers, theft of information, etc.) An attractive
to crackers is the ability to use the identity of others in these activities.

One of the main reasons that attackers try to break systems and install “sniffers” is able to quickly capture
the maximum possible accounts. Thus, the more accounts this attacker has, the easier it is to hide your stash.

How can you protect yourself?
Do not be thinking that “sniffers” can make all the insecure Internet. Not so. You need to be aware of where
the risk is, when you’re at risk and what to do to be safe.

When you have your stolen credit card or suspect that someone may be using it improperly, you cancel the
card and asks another. Likewise, as passwords can be stolen, it’s critical that you replace regularly.
This precaution limited the amount of time that a stolen password can be used by an attacker.

Never share your password with others. This sharing makes it difficult to know where your password is
being used (exposed) and is harder to detect unauthorized use.

Never give your password to anyone claiming access your account needs to fix some problem or want to
investigate a breach of the system. This trick is one of the most effective methods of hacking, known as
“social engineering.”

Use networks you can trust
Another aspect you should take into consideration is what network you can trust and which cannot. If you’re
traveling and need to access their computers remotely organization. For example, pick any file in your home
directory and you have available is a “LanHouse” or network of another organization. Are you sure you can
trust the network?

If you have no alternative for secure remote access and only have available resources such as telnet, for
example, you can “mitigate” this effect by changing the password at the end of each session. Remember that
only the first packet (200-300 bytes)of each session carry information from your “login”.

Wireshark

40

Therefore, to always change your password before logging out, this will not be captured and password
before it was exposed to the network is no longer valid. Of course it is possible to capture everything going
across the network, but has no intention of attacking fill the file system quickly and so easily discovered.

Why networks remain vulnerable to “sniffers” long?
There are several reasons and there is no quick solution to the problem.

Part of the problem is that companies tend to invest in more new features than add security. New security
features can leave the most difficult systems to configure and less convenient to use.

Another part of the problem is related to added costs for Ethernet switches, hubs, network interfaces that do
not support the particular “promiscuous” that sniffers can use.

CONCLUSION
The question that remains is how can we protect ourselves from this threat...

• Network cards that cannot be put into “promiscuous” mode. Thus, computers cannot be mastered and
transformed into “sniffers”.

• Typically, the Ethernet interface only passes packets to the highest level protocol that are intended for
local machine. This interface into promiscuous mode allows all packets are accepted and passed to the
higher layer of the protocol stack. This allows the selection you want.

• Packages that encrypt data in transit over the network, thus avoiding to flow passwords “in the clear”.

I would remind you that the safest is to adopt and encourage the use of software which enable remote access
encrypted sessions, help much to make your environment more secure.

One fairly common encryption technology currently in secure communication between remote machines SSH
(Secure Shell). SSH is available for different platforms. Its use does not prevent the password captured, but as
this is not encrypted serve to the attacker. SSH negotiates connections using RSA algorithm. Once the service is
authenticated, all subsequent traffic is encrypted using IDEA technology. This type of encryption is very strong.

In the future, security will increasingly intrinsic to the systems and infrastructure networks. No use having
all the “apparatus” of security you need, but do not use them. Security is not something that can be
completely secure. Remember, no one is 100% secure.

About the Author
Over the years, acquiring knowledge of Webmaster programmer (HTML5, CSS, XML,
ActionScript), developer in languages like Python, Shell Script, Perl, Pascal, Ruby,
Object Pascal, C and Java. I started studying with thirteen (SQL database), i have
extensive experience in operating systems such as Linux, UNIX, and Windows. I am
maintainer of the “project backtrack team brazilian”, I am also a member of the “French
Backtrack Team” and made partnerships with groups from Indonesia and Algeria;
prepared a collection of video lessons and made them available on the website. I have
good communication in groups and the general public, attended college projects with a

focus on business organization, I am currently seeking for a work experience outside of Brazil”.
http://sourceforge.net/projects/cypherpunks/

Thank you readers, I hope I have contributed in knowledge of you... I just want to remind that this article was written for educational purposes and for security experts,
I want to make clear that password stealing is a crime, and I hope you also have to apply a coincidence methods encrypted connection to protect themselves.

http://sourceforge.net/projects/cypherpunks/

IN SOME CASES

nipper studio
HAS VIRTUALLY

REMOVED

MANUAL AUDIT
CISCO SYSTEMS INC.

theNEED FOR a

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organizations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 45 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

www.titania.com

U P D A T E
NOW WITH
S T I G
AUDITING

Wireshark

42

Detect/Analyze Scanning Traffic Using
Wireshark
by Santosh Kumar

“Wireshark”, the world’s most popular Network Protocol Analyzer is a multipurpose tool.
It can be used as a Packet Sniffer, Network Analyser, Protocol Analyser & Forensic tool.
Through this article my focus is on how to use Wireshark to detect/analyze any scanning &
suspect traffic.

Let’s start with Scanning first. As a thief studies surroundings before stealing something from a target,
similarly attackers or hackers also perform foot printing and scanning before the actual attack. In this phase,
they want to collect all possible information about the target so that they can plan their attack accordingly. If
we talk about scanning here they want to collect details like:

• Which IP addresses are in use?

• Which port/services are active on those IPs?

• Which platform (Operating System) is in use?

• What are the vulnerabilities & other similar kinds of information.

• Now I am moving to some popular scan methods and how to detect them in Wireshark.

Ping Sweep
This scan is helpful to find out which IPs are active in the network. Ping Sweep can be performed using ICMP,
TCP or UDP, the most popular one is ICMP Ping Sweep. In this ICMP type 8, ECHO request is followed by
ICMP type 0, ECHO reply packets are being used while in TCP/UDP ping sweep packets are destined to TCP/
UDP port 7, The ECHO port. If that target host doesn’t support ECHO service then this TCP/UDP ping sweep
will not work. Thus ICMP ping sweep is mostly used, but if there is a firewall in between which is configured
to block ICMP packet then even ICMP ping sweep is useless. In this situation, ARP scan/ARP sweep can be
used which is discussed next (Figure 1).

Figure 1. Ping Sweep

Wireshark

43

To detect ICMP ping sweep in Wireshark apply simple filter icmp.type==8 or icmp.type==0. TCP ping sweep
can be detected with tcp.dstport==7 filter and for UDP ping sweep udp.dstport==7 filter can be used. After
applying these filters if we are getting more than expected packets then it’s possible that ping sweep is going
on in our network. We need to be careful about the volume of such traffic as it might be normal ping traffic.
It should be considered as a scan signature only if you are getting unexpected increase in ICMP traffic.

ARP Sweep/ARP Scan
As discussed in previous scan that if a firewall is implemented in between and ICMP is blocked then we
can’t use ICMP ping sweep. In such a situation, ARP scan is helpful to find out active IPs in the network.
Here, attacker sends ARP broadcast (for broadcast, destination MAC will be 0xff:ff:ff:ff:ff:ff) for
each and every possible IP in selected subnet and if he gets ARP response then it shows that IP is active.
Advantage of this scan is that ARP communication can’t be filtered or disabled because all TCP/IP
communication is based on it. Blocking or disabling ARP communication will break TCP/IP communication
or it will force static ARP entries and disadvantage of this scan is that it can’t cross layer 3 Devices. This
scan can be easily detected with filter ARP. After applying this filter if we are getting unexpected no. of ARP
queries as shown in the picture, it is a sign for ARP scan or ARP sweep (FIgure 2).

Figure 2. ARP Scan/ARP sweep

Figure 3. Stealth Scan

TCP Half Open/Stealth Scan
To detect open or close TCP port on target system, Stealth scan is the most often used method. In this scan,
attacker sends a SYN packet on the target port like a normal TCP communication. If the port is open, he will get
SYN+ACK and RST or RST+ACK if the port is closed. After getting SYN+ACK on the open port as a response,
attacker will send RST because attacker doesn’t want to open TCP session with a target. If that target port is

Wireshark

44

firewalled then expected response is ICMP type 3 Packet with Code 1,2,3,9,10, or 13. So in Wireshark if we
are getting a lot of RST packets or ICMP type 3 packets, it can be a sign for Stealth Scan or TCP Full Connect
Scan. As we can see that in the above picture a lot of SYN & RST packets are moving back and forth, but there
is no data communication between these hosts. To get a quick view in the above capture we can go to top menu
Statistics -> Conversations and then go to TCP tab. There we can see multiple TCP sessions, but all are having
less than 4 packet communications which is a sign for TCP port Scan (Figure 4).

Figure 4. Statistics->Conversation_ TCP tab

TCP Full Connect Scan
In this scan attacker is going to perform complete three way hand shake to find out if the port is open or
close. Attacker will send SYN on target port, if the port opens, he will get SYN+ACK and RST+ACK on the
closed port. After getting SYN+ACK, the attacker will send ACK and try to establish TCP session and then
terminate it. In Wireshark, we can use a similar method like TCP Half open scan to detect TCP full connect
as well. If that target port is firewalled then here also we will get the same response which is ICMP type 3
Packet with Code 1,2,3,9,10, or 13. Following filters can be used in Wireshark to detect TCP scan packet
quickly (TCP Half open & TCP Full Connect)

• To get SYN, SYN+ACK, RST & RST+ACK packet

tcp.flags==0x002 or tcp.flags==0x012 or tcp.flags==0x004 or tcp.flags==0x014

• To get ICMP type 3 Packet with Code 1,2,3,9,10, or 13 Packet

icmp.type==3 and (icmp.code==1 or icmp.code==2 or icmp.code==3 or icmp.code==9 or icmp.code==10
or icmp.code==13)

• To get SYN, SYN+ACK, RST & RST+ACK packet along with ICMP type 3 Packet with Code 1,2,3,9,10,
or 13 Packet

tcp.flags==0x002 or tcp.flags==0x012 or tcp.flags==0x004 or tcp.flags==0x014 or (icmp.type==3 and
(icmp.code==1 or icmp.code==2 or icmp.code==3 or icmp.code==9 or icmp.code==10 or icmp.code==13))

Null Scan
In this scan attacker sends a TCP packet without setting any flag on it and as a response if he is getting RST
packet it means the port is closed. There will be no response to null scan if the port is open or filtered and if
he is getting ICMP Type 3 Code 1,2,3,9,10 or 13 packet then port seems to be firewalled.To detect Null Scan
in Wireshark, we can use a simple filter TCP.flags==0x000. It will filter all TCP packets moving without Flag
(Figure 5).

Wireshark

45

Figure 5. TCP Null Scan

Xmas Scan
Here the attacker sends packet with FIN, PSH & URG TCP flags and response is exactly the same like
Null Scan. To detect this type of scan in Wireshark we can use filter “tcp.flags==0X029 (Figure 6).

Figure 6. TCP Xmas Scan

Figure 7. UDP Scan

Wireshark

46

UDP Scan
In UDP scan attacker sends a UDP packet (contains no meaningful data) on the target port and if that target
responds with ICMP Type 3 Code 3 port is unavailable but if there is no response then it might be open or
filtered. After capturing packets in Wireshark if you are getting high no. of packets with ICMP type 3 Code
3, it is a sign of UDP Scan. We can use filter icmp.type==3 and icmp.code==3 to detect UDP scan in Wireshark.

IP Protocol Scan
IP Protocol Scan is helpful in finding out protocols running over IP. To detect this attacker sends packet with
different protocol nos., if he gets ICMP type 3 Code 2 Packet as a response then it means that this protocol is
not running on the target system while no response means protocol is there or filtered. To detect this scan in
Wireshark, we can apply icmp.type==3 and icmp.code==2 as a filter (Figure 8).

Figure 8. Protocol Scan

ARP Poisoning
ARP poisoning is a layer 2 redirection technique which can be easily identified by Wireshark. If more than
one MAC addresses claim to have the same IP address it will highlight that packet as Duplicate IP Address
Detected (Figure 9).

Figure 9. ARP Poisioning

Wireshark

47

If we find challenge in finding such packets, by reading packet details we can go to top menu Analyze
-> ExpertInfo and then Warnings tab as shown in the picture (Figure 10). Here it will display all warning
messages related to this capture which will help us to identify problems quickly.

Figure 10. ExpertInfo window

Figure 11. Application Mapping

Application Mapping
Wireshark can be used for application mapping as well, for example, if I am using HTTP communication then
start looking for GET packet, within this packet if I will look for user-agent under Hypertext Transfer Protocol
section it may reveal application OS and browser information (Figure 11). As we can see in the above picture
that host is using Dropbox client tool version 2.0.22 on Windows 7 Operating System. I hope this article was
useful and it will help you in understanding how Wireshark can be used to detect/analyze scanning traffic.

About the Author
Santosh Kumar has more than 8 years of experience in IT Security. He is currently working
as Technical Manager (IT Security) with Koenig Solutions Ltd. Santosh is proudly certified
with Check Point Certified Managed Security Expert (CCMSE), Check Point Certified
Security Expert (CCSE), CISCO ASA Specialist, Certified Ethical Hacker (CEH) along
with many others. He also has proven track record of streamlining security processes,
design and implement efficient security solutions, lead and assist multi-disciplined, multi-
national teams in achieving security efficiency.

Wireshark

48

Discover How The Attack Happened By
WireShark
by Basem Helmy

In this article you will learn how to use wireshark effectively to identify how the attack
happened and what the attacker do on the compromised machine

Discover How The Attack Happened By WireShark:
In this scenario a pcap file generated by cyberlympics <ref-here> in the 2013 competition will be used to
answer the following questions to identify how the attacker get in and how he extract the data from the
compromised machine.

The questions are:

• What files were transferred to/from the victim?

• What malware/unauthorized programs were installed?

• What directory were files transferred to or from?

• What is the router password?

• What were user passwords changed to?

• We will start by loading the pcap file into wireshark

Figure 1. Loading pcap file into wireshark

After while navigating throw the packet we identify interesting packets. Those packets are using FTP
protocol. We will follow the stream to figure out what have been done.

Wireshark

49

Figure 2. Right click on the packet the select follow tcp stream

We found really interesting data in the stream

Figure 3. Stream content

Here we go, a username Administrator with password GMODEOWNZYOU has been logged in to the victim.
To identify the victim ip which is the ftp server we will select stream as follow

Wireshark

50

Figure 4. Select ftp server stream content

We will identify that the stream is represent a response command from the ftp server. Therefore the victim IP
is 192.168.245.12 and the attacker IP 192.168.245.3

Figure 5. ftp server response stream content

Wireshark

51

So we need now to identify the attacker stream by select as follow

Figure 6. Select attacker stream content

Figure 7. Attacker stream content

Wireshark

52

From the stream we could identify that the attacker use the following ftp commands to retrieve some data
from the ftp server

• CWD ftproot: this command used to change the working directory to ftproot

• CWD GMTMP: this command used to change the working directory to GMTMP

• LIST: this command used to list files inside the GMTMP directory

• RETR favicon.ico: this command used to download favicon.ico to the attacker machine

• RETR challenges.zip: this command used to download challenges.zip to the attacker machine

• RETR RPWD.RTF: this command used to download RPWD.RTF to the attacker machine

Currently we know that the attacker IP is 192.168.245.3. We will make a filter on the source IP of the
attacker as follow

Figure 8. Filter on the source IP of the attacker and ftp protocol

We found interesting stream in Figure 9

Figure 9. Attacker logged in before

We will use the same instructions as shown before in Figure 2 and Figure 6 to get the attacker stream

Figure 10. Attacker stream

Wireshark

53

From this stream we could identify that the attacker use the following ftp commands to store file on the ftp
server

• TYPE I: this command used to set the type of file to be transferred to binary data or image

• STOR PwDump7.exe: this command used upload pwdump7.exe to the ftp server

• TYPE A: this command used to set the type of file to be transferred to ASCII text

Also here is another stream

Figure 11. Attacker stream

From this stream we could identify that the attacker use the following ftp commands to store file on the ftp
server

• TYPE I: this command used to set the type of file to be transferred to binary data or image

• STOR sbd.exe,BFK.exe, MSINET.OCX, convert.dll, inetlog.txt, keylog.txt, needtosend.log and sclog.txt:
this command used upload files to the ftp server

• TYPE A: this command used to set the type of file to be transferred to ASCII text

• LIST: this command used to list files inside the GMTMP directory

So by the previous techniques you can figure out and answer the previous questions as follow:

What files were transferred to/from the victim?

Using wireshark filter “ftp.request.command==STOR” you find the following applications transferred to the
victim 192.168.245.12

• PwDump7.exe

• sbd.exe

Wireshark

54

• BFK.exe

• MSINET.OCX

• converter.dll

• inetlog.txt

• keylog.txt

• needtosend.log

Using wireshark filter “ftp.request.command==RETR” you find the following applications transferred from
the victim 192.168.245.12

• favicon.ico

• challenges.zip

• RPWD.RTF

What malware/unauthorized programs were installed?

According to The Logs and the file transfered to the vivtim The programs are:

• PwDump7.exe

• sbd.exe

• BFK.exe

What directory were files transferred to or from?

• All Files Transferred to a new Directory in C:\Inetpub\ftproot\ with name GMTMP

• Full path C:\Inetpub\ftproot\GMTMP

What is the router password?

• Router Password Found in RPWD.RTF file

• Router Password Encryption Type 7 0139562C753F2E5C067E16

• Router Clear Text Password J0HNTH3GR8

What were user passwords changed to?

Password changed for John, Administrator and nonadmin accounts to be GMODEOWNZYOU

About the Author
Basem Helmy| ECSA/LPT. He is information Security Engineer specialist in offensive
security track. He is specialist in penetration testing for network and web applications in
highly secured environments for more than 3 years’ experience. LinkedIn: https://www.
linkedin.com/in/bhelmy. Twitter: https://twitter.com/b4s3mh3lmy

http://www.appdra.com

Wireshark

56

Detecting Attacks and Threats in Elastic
Cloud Infrastructures: the Case of Side-
channel Attacks
by Pasquale Puzio, Sergio Loureiro

Cloud computing adoption is rising fast. Flexibility, pay-per-use and available resources on-
demand with the promise of lower ownership costs are a very attractive value proposition.

Virtualization is just a part of Cloud Computing, which leverages virtualization in order to provide resources
in an on-demand and pay-per-use fashion.

According to the official NIST definition, Cloud Computing can be classified into three main models:

• IaaS (Infrastructure as a Service): users have access to on-demand virtual machines and storage which are
provided from large shared data centers;

• PaaS (Platform as a Service): what is offered by IaaS plus ready-to-use development environment;

• SaaS (Software as a Service): on-demand software hosted on a remote server.

In this article we will focus on the main security concerns arising in IaaS environment, in particular multi-
tenancy.

Multi-tenancy
The wide adoption of Cloud technologies has brought enormous advantages but also several new security
concerns. One of the main causes for these new threats is multi-tenancy. Cloud Computing widespreads new
scenarios in which users’ applications and data share the same physical host.

Figure 1. Cloud capacities comparison

Wireshark

57

Figure 2. Basic cloud structure

Because of co-residency, an attacker has a new way to access the victim’s data: he can leverage the co-
residency factor and infer victim’s data by observing the activity of a shared component (e.g. the processor
cache) on the physical host.

This new class of attacks is called “Side-channel attacks”. While side-channel attacks have been developed for
years, for example on the smartcard field, their application to cloud computing infrastructures is just starting.

Problem Statement
Side-channel attacks
Before performing a side-channel attack, the attacker needs to create a virtual machine and determine if it
is running on the same physical host of the victim. In order to do so, he has to perform the so called “co-
residency”. The authors of [9] defined three possible ways to detect co-residency:

• matching Dom0 IP address: if the Dom0 IP address of two machines is equal, then co-residency has been
achieved;

• measuring the round-trip time: if the round-trip time between two machines is very small, there is a high
chance of co-residency;

• observing IP addresses: if two IP addresses are close enough, there is a high chance of co-residency.

On Amazon EC2, check #1 proved to be the most effective with a false-positive rate of zero. This means that
check #1 is sufficient to determine co-residency.

If the result of the co-residency check is positive, the attacker can go ahead with the side-channel attack.
Many techniques belonging to this class have been shown in the context of Cloud Computing Infrastructures,
but until now, just one has been implemented and actually proved [8]. This technique can be classified as
an “access-driven” attack since it manages to retrieve a given information which belongs to another user by
constantly observing (and accessing) the activity of a shared physical component, the processor cache.

However, even if this kind of attacks has been widely treated in the literature, performing such an attack is
very hard and there are several challenges to take into account:

Wireshark

58

• the attacker-VM needs to frequently monitor the status of the processor cache, so it needs to go in
execution often enough in order to make the observation granularity as fine-grained as possible;

• the attacker-VM has to clean the results and reduce the noise introduced by hardware and software
sources;

• last but not least, the attacker-VM has to be able to detect when the target VM is not running anymore on
the same physical host.

Figure 3. Basic attack scheme

The strategy adopted by the authors [8] to extract the wanted information can be summarized as follows:

• PRIME: the attacker fills the processor cache;

• IDLE: the attacker waits for a pseudo-random interval. During this interval the target VM is supposed to
access the cache and thus change the content of some blocks;

• PROBE: when the attacker resumes the execution, it refills the cache in order to learn the activity of the
target VM on the cache.

Once the attacker has collected a sufficiently high number of measurements, it can finally analyze these
measurements and infer the encryption key used by the target VM.

During the analysis, the measurements achieved during the previous phase are converted to basic operations
(operations performed during the execution of the target VM). This phase is called “cache pattern classifier”.
Of course, doing this requires to know in advance the algorithm which is being executed on the target VM.

After classifying each operation, a special Markov Model (Hidden Markov Model) is used to remove
noises and apply some heuristics (based on knowledge of the algorithm) in order to reconstruct the possible
execution paths. Finally, the attacker obtains a set containing all the possible encryption keys. This set is
composed by few thousands of keys, so the attacker can use these keys to perform a brute-force attack.

The existence of such an attack is the proof that traditional security systems such as intrusion detection
systems, antivirus, firewalls, etc. are not effective anymore in today’s virtualized and multi-tenant
environment, that is the Cloud Infrastructure. In order to protect users against Cloud threats, a new approach
is required and new techniques need to be developed.

Wireshark

59

Solution
In this section we will describe in detail all the characteristics of our solution and the rationale behind it.
At a high level of abstraction, the architecture we propose is composed by three main components: a cloud
provider, Elastic Detector and a SIEM.

The cloud provider provides an API which allows Elastic Detector to retrieve information on the status of the
infrastructure and events which are useful for the detection of threats and attacks.

Elastic Detector operates as an intermediary and its duty is to handle elasticity and make it transparent to
the SIEM system. Indeed, existing SIEM solutions do not take into account the elasticity of modern cloud
infrastructures.

Thanks to Elastic Detector, the SIEM system can work as usual to analyze and correlate logs.

The final goal of such an architecture is to catch security-relevant events in order to detect threats and
ongoing attacks.

Figure 4. Elastic detector

Elastic Detector
Cloud Computing brought, along with several benefits, a set of problems that changed the way we handle
security and need to be addressed in order to meet security needs:

• Lack of visibility. IaaS is more dynamic than classical infrastructures, since servers, network and storage
are launched for temporary usage or automatically. This makes it difficult to keep track of the availability of
each server, network and storage as well as their security status.

• Security degradation over time. Modifications to an IaaS environment, such as starting new services, tests
and starting new machines, generally reduce the level of protection of a system over time, which increases
the risk of external and internal attacks.

Wireshark

60

• Manual configuration errors. Today, due to the complexity and dynamic nature of cloud computing
infrastructures security in such environments can no longer be handled manually.

• New attack vectors and threats. The capabilities and the flexibility of IaaS brings as well new threats
as the nefarious use of resources by malicious insiders or threats related to the virtualization and APIs
technologies.

Figure 5. Services that use elastic detector

Moreover, Cloud Computing brings also a new way to build and manage IT infrastructures. Compared to the
traditional approaches, thanks to cloud technologies, such as APIs, infrastructures can become highly elastic.
This means that the set of active virtual machines, the storage and the network topology can change very
fast. As a consequence, the security system needs as well to react to these changes as fast as possible and
adapt its configuration to the new scenario.

Due to the highly elastic and easy-to-use nature of Cloud Computing technologies, it’s getting easier for
attackers to find vulnerable or not properly protected resources. As a proof, researchers [2] managed to
retrieve a large amount of private data from public Amazon EC2 AMIs. The same kind of vulnerabilities has
been found on Amazon S3 buckets by Rapid7 staff [3].

Our proposed solution to fulfill these requirements can be summarized as “virtual machine cloning”. By
cloning the virtual machine to be analyzed, we can perform very deep and intrusive security checks without
impacting the performance of the applications in production. This way, the vulnerability assessment process
can run smoothly and in a completely automatic way. It is worth pointing out that this solution is feasible
thanks to the features of Cloud Computing. Indeed, in a traditional environment (e.g. on-the-premises data
centers), it would not be possible to clone a machine on the fly and destroy the clone after performing all the
required security checks.

Wireshark

61

Figure 6. Cloning

From a practical point of view, cloning is the easiest solution to deploy. Indeed, no software (e.g. agent) has
to be installed on virtual machines or within your cloud infrastructure. Every action can be performed by
taking advantage of the API provided by the IaaS provider.

Cloning is also cost-effective since the cost of an additional virtual machine for a short period of time time
is very low within IaaS infrastructures. Moreover, as the whole analysis is performed on a different machine,
cloning avoids the risks of breaking applications and losing data.

Furthermore, new elastic and pay per use infrastructures bring higher percentages of stopped servers. These
“dormant” servers constitute potential threats to the infrastructure as acknowledged by the Cloud Security
Alliance. While stopped, the servers are not surveilled by agents or agentless solutions and they are not
patched. They become weak links of your infrastructure when started. That’s why we propose to test and
raise alerts in case of vulnerabilities in your dormant servers.

Auto-checks should be automatically set in order to monitor your IT cloud infrastructure. This is mandatory
on a continuously changing infrastructure. Therefore, while your IT infrastructure evolves to answer your
business needs, the right security checks are automatically set.

Our vision is that only a fully automated approach to security can cope with the elastic nature of new cloud
infrastructures and their new threats.

SIEM
Detecting attacks in distributed environments, such as cloud infrastructures, often requires the capability of
analyzing logs and correlating several events from different sources. Nowadays, the best approach to threat
detection in distributed environments is to employ a SIEM (Security Information and Event Management) system.

Wireshark

62

A SIEM system is much more than an analyzer of logs. A SIEM system takes care of several aspects which
can be summarized as follows:

• log and context data collection;

• normalization and categorization;

• correlation;

• notification/alerting;

• prioritization;

• dashboards and visualization;

• reporting and report delivery.

A SIEM system works with different kinds of data coming from different sources within one or more
networks. Starting from 2006 [6], when Cloud Computing appeared for the first time, a decentralization
process has started and several companies have decided to move their own data and infrastructures to the cloud.
Latest trend analysis [7] show that this tendency is not going to stop, so in the next few years, the number of
companies adopting cloud computing technologies will be even higher than now. Due to the remote nature of
the cloud computing, several new security concerns arise and companies are worried about the protection of
their own data and infrastructures.

In this scenario, SIEM plays a very important role and needs to effectively operate in new cloud networks.
Unfortunately, adopting SIEM systems in elastic cloud infrastructures is not an easy task. Indeed, SIEM
systems were designed to operate in traditional (static) environments. Therefore, we need to adapt existing
solutions in order to deal with elasticity. This means that a modern SIEM system should have the capability
of automatically detecting the virtual machines running in the cloud, performing security checks on them and
logging any security-relevant activity.

Nowadays, a system administrator needs to reconfigure his own SIEM system every time there is a
change (e.g. a new virtual machine starts running) in the cloud infrastructure. Configuring a SIEM
system is a very difficult task which requires the experience and skills of a security expert. Therefore, in
highly dynamic infrastructures, reconfiguring the SIEM system every time there is a change in the cloud
infrastructure would not be practical.

A possible alternative could be to install agents on each virtual machine running in the cloud but this
approach has various drawbacks affecting especially performance.

Elastic Detector, which is our flagship product, can be an easy and effective solution to make the deployment
of a SIEM for the cloud much faster. Moreover, Elastic Detector could easily aggregate all the data retrieved
by performing auto-checks in the cloud network and forward it to the SIEM system, where it can be properly
processed together with data collected locally.

From a practical point of view, integrating Elastic Detector with any SIEM system would not require any
complex integration platform. In particular, we analyzed the integration of Elastic Detector with OSSIM
[4], an open-source and widely adopted system for SIEM. One of the benefits brought by OSSIM is the
possibility of easily developing and integrating custom components (plugins).

Architecture
As we mentioned above, we want to take advantage of the capabilities of a SIEM system in order to correlate
logs and detect a potential side-channel attack. In our experiments, we employed OSSIM [10], a well-known
and open-source (with a commercial extension) SIEM system which is easily expandable with custom
plugins (Figure 7).

Wireshark

63

Figure 7. Architecture

Our strategy consist of forwarding all the security-relevant logs to OSSIM, where correlation can take
place. In order to collect and forward logs, we used Elastic Detector [11], which is our flagship product.
Thanks to Elastic Detector, we can smoothly and automatically detect changes (e.g. a virtual machine
has been launched/stopped) in the cloud infrastructure and communicate these changes to OSSIM, by
forwarding NAGIOS logs. Elastic Detector employs NAGIOS for performing automatic checks on the cloud
infrastructure. This way, every change concerning the status of the user’s virtual machines is automatically
detected and logged. OSSIM does not provide any remote API, however, every OSSIM installation includes
a RSyslog server, which can receive logs from remote machines. For this reason, the best way to forward
our logs is to configure configure NAGIOS so it can send logs to a remote server, that is the server on which
OSSIM is running.

Detailed Description
In order to test our solution, we developed a Python script which makes use of AWS standard APIs to
emulate a side-channel attack. In particular, this script emulates the first phase of a side-channel attack,
which is called “Placement”. During this phase, the attacker launches a high number of virtual machines
until he gets one virtual machine running on the same physical host of the victim. It is worth pointing out
that this is not a simulation of the real scenario, this is exactly what an attacker would do.

Figure 8. Basic algorithm

We think that our approach is the best one in terms of security, since the potential attacker is stopped before
performing the side-channel attack. Indeed, while the attacker creates and destroys virtual machine, logs are
collected, analyzed and correlated so the attack can be detected before it takes place.

Wireshark

64

Once logs have been delivered to OSSIM, thanks to our custom plugin, we can parse and convert them into
security-relevant events. After that, we are interested in correlating two kinds of events, the creation and the
termination of a virtual machine.

In order to parse logs generated by Elastic Detector, we needed to define a plugin and, as part of this plugin,
a regular expression which allows us to extract the specific information we need from a given log line.
Below we can see a typical log line generated when a virtual machine is launched and the regular expression
used to capture the event and extract the meaningful information.

Log:

Aug 19 15:51:32 debian-secludit nagios3: SERVICE NOTIFICATION: event@551;72-us-east-1;722;notify-
service-by-cloutomate;Found new Instance: i-f0ad689c

Regular expression:

^(?P<date>\w{3}\s\d{1,2}\s\d\d:\d\d:\d\d)\sdebian-secludit\snagios3:\sSERVICE\sNOTIFICATION:\
sevent@\d{3}\;(?P<account>\d{2,3})-(?P<region>\w{2}-\w{4,9}-\d)\;\d{3}\;notify-service-by-
cloutomate\;Found\snew\sInstance:\s(?P<instanceid>i-[a-z,0-9]{8})$

where 72 is the account identifier of the user who launched the virtual machine, us-east-1 is the region in
which the virtual machine is running and i-f0ad689c is the virtual machine ID.

Thanks to these information, we can proceed to the next stage, that is correlating these events and
determining if a user (the potential attacker) is performing a side-channel attack.

In Listing 1 we can have a closer look at the code we wrote for the plugin.

Listing 1. The code of the plugin

;; Elastic Detector
;; plugin_id: 9001
;; type: detector
;;

[DEFAULT]
plugin_id=9001

[config]
type=detector
enable=yes
source=log
location=/var/log/nagios3/nagios.log
create_file=false
process=
start=no
stop=no
startup=
shutdown=

[elastic-detector-found-new-instance]
#Aug 19 15:51:32 debian-secludit nagios3: SERVICE NOTIFICATION : event@551;72-us-east-

1;722;UNKNOWN;notify-service-by-cloutomate;Found new Instance: i-f0ad698c
event_type=event
regexp=”^(?P<date>\w{3}\s\d{1,2}\s\d\d:d\d:\d\d)\sdebian-secludit\snagios3:\sSERVICE\

sNOTIFICATION:\sevent@\d{3}\;(?P<account>\d{2,3})-(?P<region>\w{2}-\w{4,9}-\d)\;\
d{3}\;UNKNOWN\;notify-service-by-cloutomate\;Found\snew\sInstance\:s(?P(instanceid>i-[a-z,0-9]

mailto:event@551

Wireshark

65

{8})$”
date={normalize_date($date)}
#sensor={resolv($sensor)}
plugin_sid=1
#src_ip={$src}
userdata1={$region}
userdata2={$instanceid}
userdata3={$account}

[elastic-detector-instance-not-running]
#Aug 20 15:50:26 debian-secludit nagios3: SERVICE NOTIFICATION : event@551;72-us-east-

1;722;UNKNOWN;notify-service-by-cloutomate;Instance Terminated: i-7824db12
event_type=event
regexp=”^(?P<date>\w{3}\s\d{1,2}\s\d\d:d\d:\d\d)\sdebian-secludit\snagios3:\sSERVICE\

sNOTIFICATION:\sevent@\d{3}\;(?P<account>\d{2,3})-(?P<region>\w{2}-\w{4,9}-\d)\;\
d{3}\;UNKNOWN\;notify-service-by-cloutomate\;Instance\sTerminated:\s(?P(instanceid>i-[a-z,0-9]
{8})$”

date={normalize_date($date)}
#sensor={resolv($sensor)}
plugin_sid=2
#src_ip={$src}
userdata1={$region}
userdata2={$instanceid}
userdata3={$account}
As we can see above, defining a plugin means to define a set of events and a set of regular expressions to
convert a log line into an event.

Any SIEM system is based on correlation rules. In OSSIM, correlation rules define a set of conditions that,
if met, can raise an alarm. In our experiment, we defined a simple and effective correlation rule which can be
seen below.

Figure 9. Correlation rule
When a new virtual machine is created, OSSIM starts the evaluation of the correlation rule. If in the
following 60 seconds, 9 more virtual machines are created in the same region, by the same user, then the
evaluation proceeds to the next level. Finally, if within 15 minutes (approximation of the time required to
create a virtual machine and perform a co-residency check) all those virtual machines are terminated, then an
alarm is raised. At this stage, several countermeasures could be taken. For instance, a notification or an email
could be sent to the security administrator or a program/script could be executed. As an example, a realistic
reaction to such an alarm could be the temporary revocation of the user’s account.

In our experiments, we successfully managed to detect several potential side-channel attacks during the
placement phase. Potential attacks are detected as soon as virtual machines are terminated so that the proper
countermeasures can be taken before the attacker can try to steal any information.

A comprehensive DEMO of the above-mentioned solution is available at http://youtu.be/3NacQOksyJo.

Discussion
Our proposed solution does not require any change in the way local information are collected. The main
advantage of our approach is that the system administrator does not need anymore to re-configure the
SIEM system every time there is a change in the public cloud infrastructure. Therefore, Elastic Detector

mailto:event@551
http://youtu.be/3NacQOksyJo

Wireshark

66

is able to automatically detects changes in the cloud infrastructure and its configuration. This way, event
information and logs can be collected according to the current configuration and settings. The only thing
the administrator has to do is to provide his API credentials in order to enable Elastic Detector to connect
to the cloud.

When a relevant event occurs or a log file needs to be forwarded to the SIEM system, Elastic Detector can
seamlessly for the user communicate with it and deliver the required information. Once the SIEM system has
successfully communicated with Elastic Detector, it can finally process the events occurred and perform the
typical actions for SIEM: normalization, correlation, notification and alerting, prioritization, visualization
and reporting.

Furthermore, our solution does not even need the collaboration of the hypervisor, so it is fully compatible
with any existing platform. This is the main reason why we decided to detect side-channel attacks during
the placement phase. Indeed, detecting a side-channel attack during the following phases would require the
collaboration of other components of the infrastructure such as routers (co-residency check) and hypervisors
(side-channel attack), resulting in a more complex integration.

The main benefits of our strategy are:

• Full Automation. Keeping operating costs under control means being able to automate the security
management by eliminating the majority of manual setup, security monitoring, and corrective actions.

• Agentless. The performance footprint of agents on servers and potential conflicts with applications are
sources of problems. Moreover, agents are OS dependent and have vulnerabilities as well. Through the
virtualization layer, and using APIs such as VMware vShield or Amazon EC2 security groups, security
solutions can analyze resource information and enforce security with no agents.

• Comprehensive Security Assessment. The traditional layered approach, where each security component
takes care of a specific layer such as the network, is not enough. For this reason, there is a need for tools
that tackle the new security challenges brought by IaaS, such as multi-tenancy and side-channel attacks.

• No Lock-in. In some scenarios, it is important to have the ability to use different IaaS offerings for
reliability and flexibility. However, this should not compromise the effectiveness of security tools and the
ability to have a full visibility of the security of your infrastructure.

Conclusion
In this article we have presented a new class of attacks, the so called side-channel attacks, and a prototype
for protecting cloud users from these attacks. The main reason why we decided to focus on this use case is
that nowadays there is no solution to detect side-channel attacks in the cloud environment.

Deploying our solution would be extremely easy and safe for a cloud provider since it should just allow
Elastic Detector to access a very small subset of events (virtual machine creation/termination). Also, this
solution would be completely transparent to the user.

Furthermore, we provided also a solid architecture for adapting existing SIEM systems in cloud
infrastructures. In this particular case we have presented the integration of our main product, Elastic
Detector, and OSSIM, an open-source and widely adopted solution for SIEM.

Cloud infrastructures have the advantage of being highly elastic. Unfortunately, their elasticity also brings
several security concerns. Among these concerns, from a SIEM point of view, there is the necessity for
the system administrator to constantly monitor the public cloud infrastructure in order to detect changes
and re-configure the SIEM system accordingly. In most of the cases, this approach is unfeasible since
configuring a SIEM system can be very complex and take a long time.

We strongly believe that our proposed solution can help system administrators and IT professionals to easily
and safely manage their infrastructures without having the hassle of re-configuring their SIEM every time
there is a change in the public cloud.

Wireshark

67

Elastic Detector is an optimal and smart solution to overcome this serious issue by delegating the
monitoring activity of remote virtual machines to an external, automatic and elastic tool. In addition,
deploying Elastic Detector does not require any change in the infrastructure and no software agent has to
be installed on virtual machines.

References
[1] Cloud Security Alliance Top Threats https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
[2] A Security Analysis of Amazon’s Elastic Compute Cloud Service http://secludit.com/wp-content/uploads/2012/09/

securecloud.pdf
[3] There’s a Hole in 1,951 Amazon S3 Buckets https://community.rapid7.com/community/infosec/

blog/2013/02/14/1951-open-s3-buckets
[4] OSSIM http://communities.alienvault.com/
[5] Amazon Virtual Private Cloud http://aws.amazon.com/vpc/
[6] Announcing Amazon Elastic Compute Cloud (Amazon EC2) – beta http://aws.amazon.com/about-aws/whats-

-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
[7] Gartner Top 10 Strategic Technology Trends for 2013 http://apmdigest.com/gartner-top-10-strategic-technology-

-trends-for-2013-big-data-cloud-analytics-and-mobile
[8] 1 Cross-VM Side Channels and Their Use to Extract Private Keys Y Zhang, A Juels, MK Reiter, T Ristenpart

https://mexico.rsa.com/rsalabs/presentations/cross-vm-side-channels.pdf
[9] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, you, get off of my cloud: ex-

ploring information leakage in third-party compute clouds. In Proceedings of the 16th ACM conference on Compu-
ter and communications security (CCS ‘09). ACM, New York, NY, USA, 199-212. DOI=10.1145/1653662.1653687
http://doi.acm.org/10.1145/1653662.1653687

[10] OSSIM http://www.alienvault.com/open-threat-exchange
[11] Elastic Detector, SecludIT. http://elastic-detector.secludit.com

About the Author
Pasquale Puzio is a CIFRE PhD Student at SecludIT and EURECOM, under the
supervision of Sergio Loureiro and Refik Molva. He got a Master’s Degree in Computer
Science from University of Bologna and a Master’s Degree in Ubiquitous Computing
from University of Nice-Sophia Antipolis. The topic of his PhD thesis is Data Storage
Security in Cloud Computing but his research interests include also infrastructure
security in cloud computing.

About the Author
Sergio Loureiro, CEO and Co-Founder has worked in network security for more than 15
years. He has occupied top management positions in 2 startups where he was responsible
for email security products and services, and security gateways. Before he was the
lead architect for a number of security products such as SSL VPNs, log management,
web security and SSL crypto accelerators. His career started in several research labs,
where he participated in European projects focusing on security. Sergio holds a Ph.D. in
computer science from the ENST Paris and MSc and BSc degrees from the University of

Porto (Portugal). He is the holder of 3 patents.

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://secludit.com/wp-content/uploads/2012/09/securecloud.pdf
http://secludit.com/wp-content/uploads/2012/09/securecloud.pdf
https://community.rapid7.com/community/infosec/blog/2013/02/14/1951-open-s3-buckets
https://community.rapid7.com/community/infosec/blog/2013/02/14/1951-open-s3-buckets
http://communities.alienvault.com/
http://aws.amazon.com/vpc/
http://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
http://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
http://apmdigest.com/gartner-top-10-strategic-technology-trends-for-2013-big-data-cloud-analytics-and-mobile
http://apmdigest.com/gartner-top-10-strategic-technology-trends-for-2013-big-data-cloud-analytics-and-mobile
http://apmdigest.com/gartner-top-10-strategic-technology-trends-for-2013-big-data-cloud-analytics-and-mobile
https://mexico.rsa.com/rsalabs/presentations/cross-vm-side-channels.pdf
http://doi.acm.org/10.1145/1653662.1653687
http://www.alienvault.com/open-threat-exchange
http://elastic-detector.secludit.com/

Wireshark

68

Content-Based Intrusion Detection
System
by Mark Sitkowski

Nobody ever broke into a bank’s IT system by cracking a user’s password. It’s not cost-
effective to waste computer time on such a pursuit, for the sake of the few thousand dollars
that may, or may not be in the user’s account.

It’s far more cost-effective to persuade the bank to let you have access to its database, via a back door. Then,
you have access to all of the bank’s resources, for the expenditure of a minimum of effort, and without even
having to understand how the authentication system works.

On the other side of fence, when your company’s product actually is that bank’s authentication system,
and which it describes as ‘Uncrackable’, you have to expect this to be like a red rag to a bull, as far as the
world’s hackers are concerned.

Every day, dozens of them try to break the algorithm, but none ever succeed, so there is some excuse for the
complacency which ensues. However, you soon notice that, for every front door attack, there are over a hundred
attempts to totally bypass the authentication system, and get in via a back door.

Now, after you’ve told the world that the authentication system is uncrackable, it would be rather embarrassing to
find that the hackers had decided not to bother cracking it, but had broken into your authentication server, instead,
and hijacked your database.

You have no control over how the average bank, securities trading company or whoever uses your product,
configures their online access server or ATM machine, but you can lead by example, and make sure that your
authentication server, at least, can be made hack-proof.

Easy, right? All you need to do is to buy a device which will alert you, as soon as it detects a hack attempt,
and prevent it succeeding.

If, after a few weeks of searching on the internet, and talking to prospective suppliers, you find that nothing
on the market will do what you want, what do you do?

You write your own, of course...

Defining the problem
When we set up the infrastructure for our authentication server’s website, we did all the right things.

The only open port was port 80, there was no GET permission for cgi-bin, no POST permission for htdocs,
all other methods like MOVE, DELETE, COPY etc were disabled, and there were no interpreted scripts, like
those written in java, perl, shell or ruby.

The only HTML page was index.html, and the other sixty four pages were dynamically created by the CGI
– which was an executable, written in a compiled language. That way, if a hacker ran Wget on our site, he’d
have no additional clues as to which page called which CGI, or what any of the HTML variables meant.

Bulletproof.

As far as it went, it certainly was. We had many connections each day, from the usual hopeful hackers, who would
try to get in by breaking the authentication algorithm, and from the old-timers and incompetents, who would try
buffer overflow, not having heard that that particular method didn’t work on modern network applications.

Wireshark

69

Then, after a few months, things changed, as dozens of more determined hackers, with no life of their own,
decided that they could combine distributed denial of service attacks with hack attempts. We were inundated
with hundreds of queries, each designed to plant or exploit back doors, inject SQL or exploit vulnerabilities
in every file whose name ended in ‘.php’.

We don’t use WordPress, cPanel, Joomla, ccmail or any of the other traditionally exploited software
packages, so we were immune to all of these attacks, but it was extremely annoying to watch the server logs
scrolling like a Las Vegas slot machine, as every unimaginative hack script repeated the same dumb vector
anything from two to four hundred times.

Also, it was eating up our network bandwidth, and making the site respond less quickly than we would have
liked, and giving perverted pleasure to some hacker, who was watching hundreds of lines of hack script
execute.

The last straw came, one day, when we were hit with a DDOS from an address in the Netherlands. It started
about 4am, and continued till 11am, during which time the hacker had thrown over twenty thousand vectors
at us, at which point, I manually added a firewall rule to block his IP address.

The hacker continued to bang his head against the firewall till around lunch time, on every port from 1024
to 32767, and then gave up. The only positive outcome of this was that, during the attack, all of the other
hackers were blocked by the limited remaining bandwidth.

It was obvious that something positive had to be done to stop this nonsense.

We decided to find an intrusion detection system which, everyone agreed, would solve our problem, and
made a list of the functions we wanted it to perform.

First, it had to be content-based, so it could identify a hack attempt by the kind of thing the query was trying
to do, which implied that such a system would need a certain amount of intelligence.

Second, having identified the hack, it would need to remember the IP address, drop the connection, and
make sure that that IP address would never again be allowed to connect to our site.

Last, it would need to do all this in less than one second. The attacks that we faced were not directed from
Mum and Dad’s Wintel PC, but from high-end Unix servers in data centres. Having seen the speed at which
our log monitor scrolled up the screen when we were under attack, we then examined the access log, and
noticed that the average zombie hijacked server could shower us with hack vectors at a minimum rate of two
or three a second and, sometimes, if they’d hacked a decent machine, up to ten a second.

Our goal was to stop it after the first vector.

Figure 1. Before deployment of IDS

The search for the product
What we expected was, that we would make a quick list of suitable products, then spend a long period of
decision-making, choosing from many suitable candidates. This turned out to be a huge disappointment.

Wireshark

70

We noticed from the first day, that the vast majority of intrusion detection systems were really no more than
fancy java, shell and perl scripts, with a response time similar to that of a whale trying to turn itself around.

Disillusioned with the (not so) cheap end of the market, we decided that something used by banks had to be of
the right quality, so we took a look at the professional, so-called ‘enterprise level’ products.

While researching this kind of product online, the whole thing got off to an unpromising start, when I read
the comments of a security consultant to a bank, describing the product they used. During his speech, he
declared proudly, that they would be aware of an intrusion within forty-eight hours of its happening.

Forty-eight hours? To us, forty-eight seconds would be too long, never mind forty-eight hours.

Predictably enough, the search of the high end of the market showed that shell scripts could be available at
high prices, too.

Worse, most of this stuff only ran on Windows, and we’re a Sun Solaris shop. Who, in his right mind, would
run a website on Windows?

During the demo of one of these products, the salesman explained that his system took its data via a network
connection to the actual web server machine, and it had this absolutely mind-blowing graphical display of
how your website was being hacked, minute by minute. This was impressive, and a lot easier than watching
lines of text scrolling up the screen.

We asked how it worked, and were told that it counted the number of queries received in a given period and,
if that exceeded a given value (which we could preset, of course) it flashed a lot of lights on the panel, and
sounded an important alarm bell. Yes, but how did it differentiate between a legitimate connection, which
just happened to be from a particularly fast machine, and a hack script? Well, it didn’t, but the final decision
would be up to its operator. Did that mean that it didn’t automatically cut off the incoming connection?
That’s correct. The system administrator would have to do that.

The salesman explained, rather frostily, that what we wanted was an intrusion protection system, not an
intrusion detection system.

Since his product was totally unaware of the content of each query, we rejected it, and took a look at another,
which claimed to be content-aware. This was more promising, since it was possible to pre-program the thing
with a selection from a set of internally stored, popular hack strings, and have it do the usual light flashing
and frantic beeping when it discovered something interesting.

Although it ran on Linux, and a source code licence was available (at an additional cost), so that we could
recompile it to run on Solaris, it, too, relied on the system administrator to do something about the hacker.
Furthermore, there was no provision for adding new hack strings to the list hard-coded inside it.

Further questioning revealed that the thing ran like a packet sniffer, and reassembled each packet’s
payload to figure out the query string. This procedure resulted in many false positives, and false negatives,
and made its response time less than breathtaking.

Figure 2. After deployment of IDS

Wireshark

71

The only product which, apparently, did what we wanted was a proxy. Filled with new enthusiasm, we took a
cautious look at a few proxy offerings, only to be further disappointed.

Although a proxy really could do content-based filtering, accessing our web pages through it proved to be
virtually impossible. Also, the degree of remote control available was strictly limited, to the point of being
unusable.

So, there it was. The market was willing to sell us a few Linux offerings, a huge number of Windows
ornaments, but nothing that would examine the content of what was trying to get into our website, and
automatically drop the connection, if it saw something it didn’t like.

The solution
During the time we were talking to the representatives of the various intrusion detection companies, I was
thinking about the various issues which surrounded this problem.

Firstly, we absolutely needed to know the content of each query. However, there was no way that we would
accomplish this reliably, by tracking text strings across several hundred packets, and then reassembling
the original query. The packet stream contained too much information, some of which was irrelevant, and
identifying the query with any degree of certainty was too difficult.

What we needed was a pre-assembled query, which was guaranteed to be a query.

I was sitting in front of the apache access log monitor, in the middle of a botnet attack, watching it scroll
enthusiastically up the screen, when it occurred to me, that what happened at packet level was totally
irrelevant. Bad things would only happen at the time when apache had the whole query in its buffer, and was
about to act on it. Therefore, if we read the access log as it was being created, we would only be one line
behind apache.

The hack queries themselves didn’t bother us, since they attempted to exploit vulnerabilities in software we
didn’t use, so allowing one to slip through would be of no consequence.

So, the only criterion was to identify the first in a series of malicious queries from a given address, and do
something before the hacker could send a second query.

Now the question arose, as to what constituted a malicious hack?

So, what is a hack vector?
We filtered our access log, and removed all queries which accessed our legitimate web pages and CGI
executables. What remained, according to Sherlock Holmes, had to be the truth.

A lengthy and detailed examination of the logs showed a rich selection of attempted hacks.

One that was extremely prolific, was a GET followed by a series of ‘../../..’ of varying lengths, terminating
in some significant filename, like /etc/passwd. This would have to be the first on our list, since so many
hackers, with no lnowledge of Unix, thought it had some chance of succeeding.

Next, we noticed blocks of up to a thousand hexadecimal characters, each preceded by a percent sign.
Decoding these, revealed that they were either IP addresses, or filenames, which some incompetent hacker
assumed would slip past the casual observer. This hack’s secondary function was an attempted buffer
overflow, caused by its sheer length. A definite second choice for blocking.

Almost identical in purpose, was a similar hack, but with the percent sign replaced with ‘\x’. However,
the hexadecimal values weren’t ASCII.
This was a puzzle, which took a lot of research, until I recognized one of the hexadecimal values as
being the Intel processor opcode for ‘CALL subroutine’. Hackers call these things shellcodes, and the

Wireshark

72

intent is to execute a buffer overflow, so they can place Intel machine code in the system’s RAM, take
over the CPU’s program counter, index it to point to their own code, and execute anything they like on
your machine. For any machine running on an Intel CPU, this would be the kiss of death.

With so many ‘\x’ characters, this hack was easy to identify, so we added it to the list.

Then, there was the embedded question mark, usually followed by what looked like a script of some kind.
and the embedded exclamation mark, usually in the middle of a lot of different hexadecimal stuff, which was
obviously up to no good.

There were also the SQL injection hack attempts. I guess the most original, was one which attempted to
overflow the CAPTCHA buffer (which we didn’t use) with a script like this:

“captcha/img.php?code=1’%20AND%201=0%20UNION%20SELECT%20SUBSTRING(CONCAT(login,0x3a,passwo
rd),1,7)%20FROM%20User%20WHERE%20User_id=”

We decided against wasting computing time on these, since our other criteria, such as the string ‘.php’ and
the percent signs, would easily identify it. Finally, there were quite a few hacks containing an embedded
series of plus signs, usually accompanied by a string of hexadecimal, or plain text like ‘Result:+no+post+sen
ding+forms+are+found’. Just for the sake of complete coverage, we added a line of code to reject these.

Collating all of the information revealed something even more interesting. It became obvious that
approximately ninety percent of all hack attempts of all kinds were aimed at dozens of different PHP files.

The attacks varied from simple GET queries and POST queries, to a pattern, where an initial query would
attempt to GET a file like index.php (presumably, to establish its existence) and be followed by a second
query, which would try to POST to the same file, and overwrite it with a back door. Then, a third query
would try another GET.

In the light of these observations, we decided that another primary candidate for blocking would be any
query containing the string ‘.php’.

Command and Control
What happens once the malware is installed on your computer?

Since Unix, unlike Windows, doesn’t permit self-executing executables, the hacker needs to access his
malware after it has been installed.

How is he going to do so? Any self-respective server will have all ports closed except port 80, and believe
itself to be totally impregnable. Unfortunately, this is not the case, since it is through port 80 that the C&C
will wake up and direct the malware.

Almost all security devices concentrate on monitoring and defending TCP traffic through port 80. The C&C,
on the other hand, talks to the malware using the UDP protocol, also through port 80, and is invisible to
apache, and to many security systems.

It’s perfectly reasonable to block UDP traffic, with few resulting issues. However, just to complicate matters,
there are other services, which run on UDP. DNS queries and replies, the Unix XDMCP login, and time
server data are just a few examples. Any firewall rule which blocks UDP traffic, has to exclude these.

Dropping the connection
When we reached this point in the investigation, I could almost write the code for the content analyzer in my
head, and it was beginning to look more and more possible that we could write our own intrusion detection
system. Then, I thought about the tricky part: dropping the connection.

Wireshark

73

The first thing to come to mind was a utility called tcpkill, which will very nicely drop an established TCP
connection. However, a moment’s reflection showed that this would be inadequate. The average hack script
re-sent the same line anything up to four hundred times and, if we invoked tcpkill every time, not only would
the network traffic be no lighter, but the CPU would chase its tail trying to keep up with the repeated hack
attempts as well, especially when handling an attack from a few dozen servers simultaneously.

The next thought was that we would use the firewall.

Since we expected that our IDS would be a stand-alone process, it would be necessary to use a firewall
which was remotely programmable. Almost every supplier that we contacted claimed to have such a
device, so things were looking very promising.

Unfortunately, firewalls are very security-conscious animals, and the only way to remotely program them, is
to login to them first. The procedure for doing this was either through a gee-whiz graphical user interface, or
via a telnet or SSH TCP connection. The GUI was obviously unacceptable, so we wrote piece of code which
established a telnet connection to the firewall and sent it a new rule. Ten seconds later, it was back on line.

Most firewalls contain a minimal Linux computer, and every time a new rule is added, this computer is
rebooted. Even though ten seconds is a very short time for a reboot, it was just too long for our purposes.

Apart from the huge delay to add another rule, during that ten seconds, the machine would be sitting there
with open arms, welcoming all hackers to do their worst, since the firewall was resetting itself, and totally
inoperative. Further, that ten seconds would allow several hundred new hack attempts to queue up for
processing, resulting in a never-ending shuffle between our content analyzer and the firewall.

Firewalls were abandoned, and we turned our attention to the Unix operating system.

Solaris has am extremely powerful utility, called ‘ipf’, which is a version of the ‘ipfilter’ module, which
dates back to SunOS 4.1.3, in the good old BSD days.

It has all of the facilities available in stand-alone firewalls, such as NAT, but the filtering is actually
performed in the Unix kernel, making it extremely efficient. It gets its rule set from a file, which is a minor
drawback, but I decided to try it, anyway.

I wrote another piece of code, which appended a new firewall rule to the file, then told ipf to re-read the file
and restart. We ran a few tests, and found that the time delay was almost immeasurable.

This is actually not that surprising. Since the filtering is done in the kernel, there is no actual ipf process.
When a user issues a command to re-read the configuration file, the kernel activates a ‘read’ system call,
which is internal to itself, so there isn’t even a separate process to re-spawn. The only delay, is the time taken
to execute the disk I/O – which is always a high priority task, since the kernel knows it takes a long time.

We decided against including any facility to count the number of queries in a given time interval. If the
purpose was to identify a DDOS, then the hardware firewall could adequately cope with it. Also, this
would mean repeatedly stopping other processing for the duration of that time interval. This could add an
order of magnitude to the response time.

The complete system
We now had all of the building blocks for a complete intrusion detection – or, more accurately, intrusion
protection system.

On startup, the IDS would read the ipf configuration file, and store all of the rules in an array of data
structures. This would put the IDS in sync with the firewall, which was necessary, so that we didn’t try to
add a rule for an IP address which was already being blocked.

Next, we called a function which opened the apache access log, and performed a seek to the last line in the
file. Having done that, it entered an endless loop, and waited for another line to be added to the file.

Wireshark

74

The loop contained the code of the content analyser, and had no time delays or pauses built in, so it would
execute as fast as the CPU could execute machine code. This is usually extremely bad practice, since it uses
100% of the CPU’s processing power. In our case, it didn’t matter, since our machine had 32 CPU’s, and
devoting one of them to the IDS was a good investment.

As soon as apache logged another query, the content analyzer would scan it to see if it contained any of
the hack signatures which we had built into it. If a hack attempt was identified, a firewall rule would be
automatically created, to make comparison with the stored firewall rules easier, then another function would
be called, to see if that IP address was already being blocked.

If this turned out to be a new hack attempt, the ipf configuration file would be opened, the new rule
appended, and ipf re-invoked so it could re-read the file. Having performed the most important operations,
the IDS would then add the new rule to its internal store.

There is a great temptation, when designing a system like this, to use multi-threading, or parallel processing.
Although this would have considerably speeded up part of the processing cycle, the dangers of collision,
between threads or processes, in areas such as file reading or writing was too great. Semaphores and mutexes
are traditionally used to obviate such problems but, in general, if you need to use a mutex, you’re either
doing it wrong, or you shouldn’t be multi-threading.

Conclusion
After a short period of debugging, the IDS was commissioned, and we monitored its progress over the first
week, or so.

The performance was even better than we expected, and there were no false negatives. Anything that was
supposed to be stopped, was stopped dead, after apache received just one illegal query.

However, there were a number of false positives.

We examined the logs, and found that some query strings, especially those which were links from some
online magazines, and some social media sites contained elements containing the string ‘.php’. This was
enough to trip the content analyzer, and have the IP address blocked.

There were so few of these false positives, that we were willing to write this off as acceptable collateral
damage, when compared with the enormous benefit of limiting each hacker to one hack attempt per lifetime.
With the possible exception of LinkedIn, the social media sites were unlikely to bring us any significant
business, but some of the online magazines were important. Accordingly, we added a few lines of code into
the loop, which would cause it to ignore any positives containing the names of chosen sites.

So far, the IDS has been running continuously for over two years, with no modifications, apart from the
periodic addition of new rules, as new hacks are discovered.

If this were a commercial product, we would probably have it read a configuration file on startup, instead of
having the hacks and exceptions hard-coded. However, since it isn’t, we don’t mind recompiling it each time
there’s an update. It keeps it more secure.

About the Author
Design Simulation Systems Ltd
http://www.designsim.com.au
Consultant to Forticom Security
http://www.forticom.com.au

http://www.collabera.com

*

*Based on FireEye end-user data

http://www.fireeye.com/

	Cover
	Table of Contents
	Wireshark Tips and Tricks
	Obtaining the software
	Working with pcaps
	Display filters
	High to low level
	Extracting files
	Generating firewall rules
	Final thoughts

	Getting Started with Wireshark
	Packet list pane (1)
	Packet details pane (2)
	Packet bytes pane (3)

	Sniffing and Recovering Network Information Using Wireshark
	Capture Interfaces
	User Interface
	Start Capturing – Analyzing
	Cracking – Analyzing W-Network
	The Moment of Truth (TMT)
	Protect from Snooping

	Traffic Analysis and Capture Passwords
	UNDESTAND THE MAIN CONCEPT
	YOUR PASSWORD CAN BE CAPTURED BY SNIFFERS
	STEP BY STEP
	Using Filters
	CAPTURING PASSWORDS
	Importing External Captures
	EVOLUTION OF THINKING
	CONCLUSION

	Detect/Analyze Scanning Traffic Using Wireshark
	Ping Sweep
	ARP Sweep/ARP Scan
	TCP Half Open/Stealth Scan
	TCP Full Connect Scan
	Null Scan
	Xmas Scan
	UDP Scan
	IP Protocol Scan
	ARP Poisoning
	Application Mapping

	Discover How The Attack Happened By WireShark
	Discover How The Attack Happened By WireShark:

	Detecting Attacks and Threats in Elastic Cloud Infrastructures: the Case of Side-channel Attacks
	Problem Statement
	Solution
	Conclusion

	Content-Based Intrusion Detection System
	Defining the problem
	The search for the product
	The solution
	So, what is a hack vector?
	Command and Control
	Dropping the connection
	The complete system
	Conclusion

	uat:
	edu 6: Off

