Ha I

Reverse <o - & “)
Enﬂ@ﬂw@@[ﬁ)

) ®) O‘,.

X
endllum Or O
How to Analyze Appllcatlons @) O.f
With Olly Debugger?. ~. O\ O}'
e 2 *..,*
How to'Disassemble ""& ™ Q“
Debug Executable Programs :

on Linux, Windows ﬂl‘ld Muc (0SHX73

How to Identify and Bypass
Anti-reversing Techniques?

Write Your Own Debue

Joe Security LLC

Automated Malware Analysis

Next Generation Sandbox System

Joe Sandbox is an automated, highly configurable and scalable malware analysis
system that provides extensive in-depth analysis reports to customers worldwide.

Technology Leader

Introducing Hybrid Code Analysis, Joe Security has developed a unique
algorithm that combines dynamic and static code analysis in an intelligent way.

Cross Platform

Joe Sandbox is the only fully-automated Sandbox System to support
Windows XP, Vista, W7, W7 x64 and Android platforms.

Quality Support and Consulting

With direct access to the developer team,
Joe Security provides excellent technical support and custom code to his customers.

Joe Security LLC [y
[
J O a‘m -1. I | i m Hochbergerstrasse 60C .. .4,
www.joesecurity.org 4057 Basel, Switzerland coffware

http://www.joesecurity.org

Joe Security LLC

Automated Malware Analysis

Introducing Joe Sandbox Mobile!

The new solution for in-depth malware analysis on Android based systems.
Using Hybrid Code Analysis, static and dynamic analysis is combined in a clever way.

oy 0

The highly-configurable, generic Instrumentation Engine not only analyzes
System API calls, but any function matching specified signatures up to parameter level.

Powerful Instrumentation Engine

Generic Behavior Signatures

Providing an open interface and a solid initial set of generic behavior signatures,
application activity is abstracted into well-formatted report data.

Free Services Available Online

All of Joe Security’s Sandbox Systems are available as free web services at
apk-analyzer.net, file-analyzer.net, url-analyzer.net and document-analyzer.net

J O a:mm g Joe Security LLC iy
s Ly \"/ Hechbergerstrasse §0C sxiies madi
www.joesecurity.org 4057 Basel, Switzerland software

http://www.joesecurity.org

HARINS

HAaRINS

team

Editor in Chief: Ewelina Nazarczuk
ewelina.nazarczuk@hakin9.org

Editorial Advisory Board: John Webb, Marco
Hermans, Gareth Watters, Peter Harmsen, Dhawal
Desai

Proofreaders: Jeff Smith, Krzysztof Samborski

Special Thanks to the Beta testers and Proofreaders
who helped us with this issue. Without their assistance
there would not be a Hakin9 magazine.

Senior Consultant/Publisher: Pawet Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Product Manager: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director: Ewelina Nazarczuk
ewelina.nazarczuk@hakin9.org

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Publisher: Hakin9 Media sp. z 0.0. SK
02-676 Warszawa, ul. Postepu 17D
Phone: 1 917 338 3631
www.hakin9.org

Whilst every effort has been made to ensure the
highest quality of the magazine, the editors make no
warranty, expressed or implied, concerning the results
of the content’s usage. All trademarks presented in the
magazine were used for informative purposes only.

All rights to trade marks presented in the magazine
are reserved by the companies which own them.

DISCLAIMER!

The techniques described in our

articles may only be used in private,

local networks. The editors hold no
responsibility for misuse of the presented
techniques or consequent data loss.

HaRINg

PRACTICAL PROTECTION IT SECURITY MAGAZINE

Dear Readers,

e would like to introduce a brand new compendium
made by Hakin9. This time you will deal with reverse
engineering. It is the process of exploration products
such as computer devices or software to analyze how it is work-
ing and how it is made at all. Or try to make a new product
working in the same way but without duplication of the original.
With our new Reverse Engineering Compendium you will
lear different types of reverse engineering techniques, the tools
such as debbugers. Furthermore you will read a bit about mal-
ware reverse engineering. We are also sure that Reverse It
Yourself chapter will allow you to understand basics of reverse
enginnering, and will be a great guide to start your adventure
with it.
We hope our step-by-step tutorials written by experts will
turn you into professional reverse engineers!

Enjoy your time with Hakin9!
Regards,
Ewelina Nazarczuk

Hakin9 Magazine Junior Product Manager
and Hakin9 Team

<))

TBO 04/2013

mailto:mailto:ewelina.nazarczuk%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:ewelina.nazarczuk%40hakin9.org?subject=
mailto:mailto:radoslaw.sawicki%40hakin9.org%20?subject=

CONTENTS

TOOLS

How to Analyze Applications With Olly
Debugger? 8

By Jaromir Horejsi, Malware Analyst at AVAST
Software

When you write your own programs and you would like
to change or modify some of their functions, you simply
open the source code you have, make desired changes,
recompile and your work is done. However, you don’t
need to have source code to modify function of a program
— using specialized tools, you can understand a lot from
program binary file, you can add your new functions and
features and you can also modify and alter its behavior.
Process of analyzing computer program’s structure,
functions and operations without having a source code
available is called reverse engineering.

How to use Socat and Wireshark
for Practical SSL Protocol Reverse
Engineering?

20

By Shane R. Spencer, Information Technology
Professional

Secure Socket Layer (SSL) Man-In-the-Middle (MITM)
proxies have two very specific purposes. The first is to
allow a client with one set of keys to communicate with
a service that has a different set of keys without either
side knowing about it. This is typically seen as a MITM
attack but can be used for productive ends as well. The
second is to view the unencrypted data for security,
educational, an reverse engineering purposes. For
instance, a system administrator could set up a proxy to
allow SSL clients that don’t support more modern SSL
methods or even SSL at all to get access to services
securely. Typically, this involves having the proxy set up
behind your firewall so that unencrypted content stays
within the confines of your local area.

www.hakin9.org/en

<))

IDA Pro How to Disassemble
and Debug Executable Programs on

Linux, Windows and Mac OS X? 26

By Jacek Adam Piasecki, Tester/Programmer

The Interactive Disassembler Professional (IDA Pro) is
an extremely powerful disassembler distributed by Hex-
Rays. Although IDA Pro is not the only disassembler, it is
the disassembler of choice for many malware analysts,
reverse engineers, and vulnerability analysts.

MALWARE REVERSE
ENGINEERING

Malware Reverse Engineering

38

By Bamidele Ajayi, OCP, MCTS, MCITP EA,
CISA, CISM

Reverse engineering is a vital skill for security professionals.
Reverse engineering malware to discovering vulnerabilities
in binaries are required in order to properly secure
Information Systems from today’s ever evolving threats.

Android Reverse Engineering:
An Introductory Guide
to Malware Analysis

42

By Vicente Aguilera Diaz, CISA, CISSP, CSSLP,
PCI ASV, ITIL Foundation, CEH|I, ECSP|I, OPSA

The Android malware has followed an exponential
growth rate in recent years, in parallel with the degree of
penetration of this system in different markets. Currently,
over 90% of the threats to mobile devices have Android
as a main target. This scenario has led to the demand
for professionals with a very specific knowledge on this
platform.

Deep Inside Malicious PDF 50

By Yehia Mamdouh, Founder and Instructor of
Master Metasploit Courses, CEH, CCNA

Nowadays People share documents all the time and
most of the attacks based on client side attack and
target applications that exist in the user, employee OS,

HaHIN9 /.

CONTENTS

from one single file the attacker can compromise a
large network. PDF is the most sharing file format, due
to PDFs can include active content, passed within the
enterprise and across Networks. In this article we will
make Analysis to catch Malicious PDF files.

REVERSE ENGINEERING
TECHNIQUES

How to Identify and Bypass Anti-reversing
Techniques? 54

By Eoin Ward, Security Analyst — Anti Malware at
Microsoft

Learn the anti-reversing techniques used by malware
authors to thwart the detection and analysis of their
precious malware. Find out about the premier shareware
debugging tool Ollydbg and how it can help you bypass
these anti-reversing techniques.This article aims to look
at anti-reversing techniques used in the wild. These
are tricks used by malware authors to stop or impede
reverse engineers from analysing there files.

How to Defeat Code Obfuscation While
Reverse Engineering?

62

By Adam Kujawa, Malware Intelligence Analyst at
Malwarebytes

Have you ever decompiled malware or another
application and found nothing but a small amount of
code and lots of junk? Have you ever been reading
decompiled code only to watch it jump into a section
that does not exist? If you have been in either of
these situations, chances are you were dealing with
obfuscated code or a packed binary. Not all is lost
however, as getting around these methods of code
protection is not impossible. However, all obfuscated
code must be de-obfuscated before it can run. Keeping
this in mind, it is possible to decrypt, de-obfuscate and
unpack every line of code in every kind of program, the
trick is simply knowing how.

. HaRIN9

<))

Reverse Engineering — Shellcodes
Techniques

72

By Eran Goldstein, CEH, CEIl, CISO, Security+,
MCSA, MCSE Security

The concept of reverse engineering process is well
known, yet in this article we are not about to discuss the
technological principles of reverse engineering but rather
focus on one of the core implementations of reverse
engineering in the security arena. Throughout this article
we’ll go over the shellcodes’ concept, the various types
and the understanding of the analysis being performed
by a “shellcode” for a software/program.

REVERSE IT YOURSELF

How to Reverse the Code?

76

By Raheel Ahmad, Writer — Information Security
Analyst & eForensics at Hakin9

Although revealing the secret is always an appealing
topic for any audience, Reverse Engineering is a
critical skill for programmers. Very few information
security professionals, incident response analysts and
vulnerability researchers have the ability to reverse
binaries efficiently. You will undoubtedly be at the top of
your professional field (Infosec Institute). It is like finding
a needle in a dark night. Not everyone can be good at
decompiling or reversing the code. | can show a roadmap
to successfully reverse the code with tools but reverse
engineering requires more skills and techniques.

How to Reverse Engineer dot NET
Assemblies

82

By Soufiane Tabhiri, InfoSec Institute Contributor
and Computer Security Researcher

The concept of dot NET can be easily compared to the
concept of JAVA and Java Virtual Machine, at least when
talking about compilation. Unlike most of traditional
programming languages like C/C++, application were
developed using dot NET frameworks are compiled to
a Common Intermediate Language (CIL or Microsoft
Common Intermediate Language MSIL) — which can
be compared to bytecode when talking about Java

TBO 04/2013

CONTENTS

programs — instead of being compiled directly to the
native machine executable code, the Dot Net Common
Language Runtime (CLR) will translate the CIL to the
machine code at runtime. This will definitely increase
execution speed but has some advantages since every
dot NET program will keep all classes’ names, functions’
names variables and routines’ names in the compiled
program. And this, from a programmer’s point of view,
is such a great thing since we can make different parts
of a program using different programming languages
available and supported by frameworks.

Reversing with Stack-Overflow and
Exploitation

96

By Bikash Dash, RHCSA, RHCE, CSSA

The prevalence of security holes in program and
protocols, the increasing size and complexity of the
internet, and the sensitivity of the information stored
throughout have created a target-rich environment for
our next generation advisory. The criminal element is
applying advance technique to evade the software/tool
security. So the Knowledge of Analysis is necessary. And
that pin point is called “The Art Of Reverse Engineering”

How to Reverse Engineer?

102

By Lorenzo Xie, The owner of XetoWare.COM
If you are a programmer, software developer, or just

tech savvy, then you should have heard about reverse
engineering and know both its good and evil side. Just
in case, here is a brief introduction for those who don’t
know what it is. In this article, we are going to talk
about RCE, also known as reverse code engineering.
Reverse code engineering is the process where the
code and function of a program is modified, or may
you prefer: reengineered without the original source
code. For example, if a software programmer has
created a program with a bug, does not release a fix,
then an experienced end user can reverse engineer
the application and fix the bug for everyone using the
program. Sounds helpful doesn't it?

Write your own Debugger

108

By Amr Thabet, malware Researcher at Q-CERT,
ictQUATAR

Do you want to write your own debugger? ... Do you have
a new technology and see the already known products
like OllyDbg or IDA Pro don'’t have this technology? ...
Do you write plugins in OllyDbg and IDA Pro but you
need to convert it into a separate application? ... This
article is for you.In this article, I'm going to teach you
how to write a full functional debugger using the Security
Research and Development Framework (SRDF) ... how
to disassemble instructions, gather Process Information
and work with PE Files ... and how to set breakpoints
and work with your debugger.

| ITiSechri’i[yéuEJra

Lets secure IT

©

Web Penetration testing

Android Vulnerability Scan

Secure hosting

contact: contact@it-securityguard.com
www.it-securityguard.com

http://www.it-securityguard.com/

THETOOLS

How to Analyze Applications With

Olly Debugger?

When you write your own programs and you would like

to change or modify some of their functions, you simply
open the source code you have, make desired changes,
recompile and your work is done. However, you don't need
to have source code to modify function of a program - using
specialized tools, you can understand a lot from program
binary file, you can add your new functions and features and
you can also modify and alter its behavior.

structure, functions and operations without
having a source code available is called re-
verse engineering.

In this article | would like to introduce you to
the one of the most important tools for reverse
engineers — Olly debugger. While reading this ar-
ticle, | will introduce Olly debugger, explain the
basic features and functions and ways of using
them, and later we will analyze two programs
(crackmes). “Crackme” is a program that is used
for practicing your reverse engineering skills. As
reverse engineering of commercial applications
may violate some laws, we will stay with crack-
mes during this article. In the first program, we
will use program patching to change its function-
ality, in the second program we will try to reverse
the algorithm behind its password checking
routine.

After reading the article, you should be able to
open a program in Olly debugger and start ana-
lyzing it. If necessary, you should be able to make
your own patch or reverse simple algorithms.

P rocess of analyzing computer program’s

Prerequisites

Before you continue reading this article, make sure
you have Olly debugger downloaded and installed.
When you search (on the Internet) ollydbg, you
quickly discover the project's main webpage ol-
lydbg.de. From this page, download version 2 of
the debugger, unpack archive and execute ollyd-

. HaRIN9

<))

bg.exe. You also need two target programs (crack-
mes) — crackme1.zip and crackme2.zip. See at-
tachment for more information. Now you are ready
to follow the rest of this tutorial.

What is Olly Debugger?

Olly Debugger (we will call it OllyDbg) is a 32-bit
debugger for analyzing portable executable (PE)
files for Microsoft Windows. (There are many dif-
ferent types of computer files. PE files are stan-
dard executable .EXE files, DLL libraries, SCR
screensavers, etc... When you open the file in any
editor, you notice two signatures — MZ in the be-
ginning and PE a bit further. At address ox3c you
will see the offset of PE signature. In our example
value on address ox3c is oxro, therefore on address
oxso you will see PE signature). See Figure 1 for
screenshot.

Figure 1. PE file format

TBO 04/2013

Debugger overview

When you execute ollydbg.exe and drag and drop
any executable file on it (in my case | used crack-
me_01.exe), you will notice four sub-windows —
disassembly (upper left), registers (upper right),
dump (bottom left) and stack (bottom right) (see
Figure 2). We will say a little bit about each of
these sub-windows.

Debugger sub-windows

The Disassembly sub-window shows the disas-
sembly of the program. Each line contains sever-
al columns — memory address, opcodes, opcodes
translated into assembly language, additional in-
formation added by debugger (in case of API calls
you can see parameter values and their types). If
you look at the first line of Figure 2, you will see
00401000 (memory address), 6A 00 (opcode),
PUSH 0 (disassembly of opcode 6A 00, i.e. instruc-
tion which stores number 0 on the stack), Type =
MB_OK|MB_DEFBUTTON1|MB_APPLMODAL
(additional information added by debugger — it
says that this value in Type parameter of Mes-
sageBox Windows function). If you want to know

Dillpideg Lrphree Blcee [0 sk D gel, rossiule Crackine_01)
[E] Bl Vo Bty Face _ (obor Wit el :
Afuf b)eml-] s|mn] iF

How to Analyze Applications With Olly Debugger?

more about MessgeBox or any other API function,
search in internet for “msdn messagebox.” MSDN
means Microsoft Developer Network.

The Register sub-window contains processor
registers. When a register changes, its color be-
comes red. Below registers (in middle part of sub-
window), you can see processor flags — 1 bit val-
ues which signalize results of previously performed
operations (results of comparison of two numbers,
etc...). In bottom part of sub-window, you can see
Floating Point Unit registers, which are used for
arithmetic operations involving decimal point num-
bers. If you want to know more about registers,
processor instructions, etc., search in internet for
“IA-32 architecture.”

The dump sub-window shows you raw binary
data from addresses you specify. When you right
click into dump sub-window, select Go To -> Ex-
pression (Ctrl+G), you can choose the address
which you want to display binary data from. You
can choose from various forms of data representa-
tion — just right click on dump window and select
one of the options (Hex, Text, Integer, Float or Dis-
assemble).

a0

)

-ty Arre

| Bberent = dee (AT i

I_.__.

leds

S e R e NI TN

[ring pcind of mater: wybe

Figure 2. OllyDbg main window

www.hakin9.org/en

s

<))

HaHIN9 '

THETOOLS

The stack sub-window shows a block of memory
generally used for storing parameters of functions,
return addresses of function calls, local variables
within functions. Stack is a data structure based
on “Last In First Out” principle. When you push a
value (instruction PUSH) onto the stack, it appears
on the top, when you pop value (instruction POP)
from the stack, the value from the top of the stack is
removed. In Figure 2, first line in stack sub-window
is 0012FFC4 (address), 7C816D4F (value stored
on address), RETURN to kernel32.7C816D4F (ad-
ditional information added by debugger).

That'’s all for the description of the four basic sub-
windows. However, if you need to display more in-
formation, you can click on View menu and select
any of those options to display optional sub-win-
dows — see Figure 3.

Executable modules shows list of all modules
loaded in the memory space of the analyzed pro-
gram. It gives basic information as 00400000
(base address), 0004000 (size of image in mem-
ory), 00401000 (address of entry point, where ex-
ecution of module starts), Crackme_01 (name), file

Bl e st Dree L

version and path to file. The Threads window enu-
merates all thread in active program. It shows ba-
sic information like identifier, windows title, last er-
ror, entry point, status, priority, etc.

Beeak or Dk siper Hatdesne st

:_Fiuutm i ;-E.l,u : '- 1“|w.ur.1 j.l..';m_m DR (46 _:

! ~ AceersiPiw] | | Cowed | | &2 fimoy | |

| = e £ Diverd | 3 fErew | |
i C4 ferey |

™ Dieableet [w] | 1

Figure 5. Setting up hardware breakpoint

@] =i SN 4] 4 MR W]

e e
e
Foneind SEeatl nod ey i

ﬂ PR R T -

[} Herirere bresbpets

Figure 3. Optional sub-windows

o HAaRINSG

[
TS
i r
- =
. Fip g b o
D | pE R
& B o
=
| L. [}
o e g iH
B aas ke pm el I i
% L el . 1] P by] Pl Cogs
m!m |a ;-bn--ll_-il aTEeY T i ﬂ BE a Eﬁ:—
I e, 1 & TEN§ [wparta R e
S0 | k0 e B oy R s
1 [l el L Naw W H
et Ha n " R"
S st EME X
T
Elg Priv o =
i i wet |EadnrinEbe = T
< ¢ 4 Py i
el el lata Eada ey | P ﬂ Com=
EL el H:: $ ST :.l'.rl- -y = Eﬂh
sl SEET i
Y RS EUS 2y | T e BE
:u-um [tasd i, LBSC i EebirH i - s
TR “ sl Ll e o P Gl A il
FEEi i it Ty ot [[
| | L | P | i [Bimim
[*al] aTe o0 '.llﬁlillml gy K Wl s
ol m E‘lﬂ! - T v |- H Eﬁ:—
et o -ME st Code, 4 ROOCT L, ERDGrTY s B E e
m.:mm-u!ll- S i =T i ME
o LSS TG S P Evimaries B .
[T i | =k gtk =R - o
Trielom o nyih hor: et SR e
¥ RGE sra=y ' TN EEpRrEY
T AT jseild idana |Ewam ol TR (Rt oy ek
=g.1.-lm 1PN my i aTufd Bl r i g B L W
A Lol -11'&:" vl HIUI.III'I“ e (A .y
FISTMB | (T | B LS o b — P
PR et e ey LK FLY S - e T o LI I Pl Eomgm
T LALRLY dans [P [=
E TRET [k e Ll] ﬁ e
’w B ra e By joce o s (R -
C T i ae (T e =3 i
g] el et Kb 4 e 8 U -y R T
i-';_ AR 3 e & Edda ey FE G R L
™ M H o | - i | ﬂ (=
mﬁ e sTEloe B i ion e g R Eﬂ;h
ol | Ly nrd B Pepwcder g = e
LT | s Br4 TS, o) LD 4 DO L ST e | E o=
i =|m nrd Al Ll -y - i
i | Fa - |- b £
fni'-m Fa s (S [k et Y = Gt
il S B har e R
Ty A REOE T N, T =1 e
r:ruﬁ Red I;i & wl ey . = [
’Ht L WlH rige el . L
:r F '-:\ ol =IE:‘;|-I-’. Lad : i m
FERT SR L] TR ¥+ MR | = |- S
T m wapna i . I:ﬁﬂl =} :- E Cogs
L AEen Tarc AT LN = =
e Ha FE F e =3 o
P s 1l _— =T
- - . s
For T e bl L - oy N Gt L
T | Gl (T e FRFD FEree. g B Bl e
hm mm meall 1t By | azen Loy s Bl el o=
T nc W@ L
bt e s B "
=|m Frierey Eavidisrem Bhs Priv, A9 1
e 1 - Eata Bims ol nain Shee, Prio L
% ﬁ L el Dala Friv & L]
7 warra| Ay Kapn

TBO 04/2013

To explain the purpose of following optional win-
dows, we should understand what a breakpoint is.
A Breakpoint is a condition set in debugger. When
this condition is met, program stops running and
waits for user action. Three main types of break-
point are: software breakpoint, memory break-
point and hardware breakpoint. In order to have
the same output as in this tutorial, do the following:
Set software breakpoint at address 401021 (click
on line with address 401021 and press F2), set
memory breakpoint at address 40102D (right click
on line 40102D, select Breakpoint-> Memory and
press OK — see Figure 4), and finally set hardware
breakpoint at address 401046 (right click on line
401046, select Breakpoint->Hardware and press
OK - see Figure 5).

After all theses steps, the disassembly window
will look like Figure 6 — lines on which breakpoints
are set, become red.

INT3 breakpoints window shows all addresses
where software breakpoints were set. In our ex-
ample, it shows 00401021 (address), Crackme_01
(module name), Active(status, not disabled now),
disassembly of address the breakpoint was set on,
comment added by debugger.

The Memory breakpoints window enumerates
all memory breakpoints. In our example, it shows
0040102D (address), 0000005 (size of region in
bytes), Crackme_01 (module name), E (type Ex-
ecution), Active (Status, it is not disabled now).

The Hardware breakpoints window enumerates
all hardware breakpoints. In our example, 1 (one
of four slots), Write:1 (type of hardware breakpoint
and number of bytes it is applied for), 00401046
(address where breakpoint was set), Crackme_01
(module name), Active (status, not disabled now).

The Memory map shows all memory regions
loaded to user mode. It displays address, size of
region, owning process, section name, description
of contents, memory type and access rights. In the

How to Analyze Applications With Olly Debugger?

case for our Crackme_01 program, it gives us fol-
lowing information: It has 4 memory blocks.

00400000,
(as shown in Figure 1)
00401000,
00402000,
00403000,

which is PE header of Crackme (Ol.exe
which is .text section of Crackme 0Ol.exe
which is .rdata section of Crackme 0l.exe
which is .data section of Crackme 0Ol.exe
The first example

If you followed tutorial in the previous sections, you
have Crackme_01.exe loaded in your OllyDbg,
you set three different breakpoints and now you
are ready for your first analysis.

When you press key F9 or Run icon from tool-
bar ¥ application Crackme_01.exe starts running.
It continues running until breakpoint is hit or until
user action is expected. In this case, message box
is display and application waits for user to click on
OK button (Figure 7).

After clicking OK, no more messages are be-
ing displayed, however, the debugger stops at ad-

Acid_Cool_1 |

Win3zasm Crackme 1

Figure 8. The second message box in crackme_01.exe

=] 5]
BA2BE4668 |PUSH OFFSET B@4630606
182646868 |(PUSH OFFSET 88463016

[55) 5]
EZ %Em@@ﬁ CAHLL EMP.&UEEREE.HE*ES&QEEQHH}

FPUSH OFFSET @4Ba3Rz3
PUSH QFFSET @@4@3847

a
CALL EMF" - EUSERZ2. MescagsBon A

PUSH OFFSET @@4@E3871
PUSH OFFSET @R4@2070

5]
CALL EMF‘.&USERSE MessaaeBou A
KERMELZZ, Ex it Process

23384008
47264068

ea
1ABEAEEE
Ea
71264068
FrHpAEEd

Ea
BY BE8E 68
4

EEI OB @ -3
6a
Ba
aa

nd hardware breakpoints

<))

Flgure6 Software, memory an

www.hakin9.org/en

EZ Beo@@nes | COLL <.JHP.% *
- FF25 BEz2ndaal JHP OW0RD FPTR D5: [<&USERSZ. MessageBoxA>|
i e -25 BEZa480 -JI“IF' [Ill]iﬁ[l FTR D5:[<{&KERHEL3Z.Ex itFroces]

ITT ype = = HE_OK {HE_DEFBUTTOM1 ME_AFPLHMODAL

C aotion = "Hcid Cool 178" <™

Tent = "|.l.| ind2H=m Crackms 17

hidwner = HULL

-L-:-EF'%E Ie*—'s.ageEIm.':l

= HE_OK HE_DEFEUTTON1 iME_APPLMODAL

Captlon = "GreeTlnds goes too all My friends..™
=-H' = "HﬁE“EFazcrge. tCH, FHCF, DAF and the rest. ..

-La-EF 32.HeszageBoxA

FTypc = HE_OK !HE_DEFBUTTOM1 :ME_NPPLMODMAL

Caption = "Remowe Met™
Teut - "NAG MAST
hidwner = MULL

| LUSERS2. 11eeaau98m A

4 LTLOOE =

|LKERNELZ2. Ex i tProcess

HaRIN9 .

THETOOLS

dress 401021, where we set software breakpoint.
It is just before the second message box will be
displayed. Now, we will press F8 Step Over, tool-
bar icon * and another message is displayed
(Figure 8).

After pressing OK, we stop at 401026. If we
press F9 (Run) again, we stop at 40102D, be-
cause we set Memory Breakpoint on Execute at
this address. We can continue either by pressing

Remove Mel W

MAG MAG

Figure 9. The third message box in crackme_01.exe

TS x|
DMO1026 [rord =|
W Eeep e
= Flluesd vath WOPs Azzamble | Clo= |

Figure 10. Dialog for replacing instructions

F9 once or by pressing F8 for each line of code
until we reach another message box at 401034.
This message box says “NAG NAG Remove Me!”
(Figure 9). As strings displayed in message box
show, our goal is to remove this message box so
that when we run the crackme again, it is not dis-
played anymore.

After pressing OK and F9 (Run) again, the de-
bugger does not stop at 401046, because we set
hardware breakpoint on write, not hardware break-
point on execute. Meanwhile, the application called
ExitProcess and exited (you can see red text “Ter-
minated” in right bottom corner).

Now restart the application by pressing
CTRL+F2 # delete all breakpoints because we
do not need them anymore (go to all windows
with breakpoints, select breakpoint, right click and
Remove) and continue stepping through the ap-
plication using F8 (Step Over). When you reach
line 401026, you are at the place where the first
parameter of the message box is pushed on the
stack. As long as we want to remove the message
box, we should remove not only “call Message-
BoxA” instruction, but also all its parameter. Re-
moval will be done by replacing the instructions

Bj44x] > =) w33 L] £ M)W T] g
J EU msuquuu ELLE: E!-l-u:l (LRt At
55 lededoon |PUSH CFFEST eosedoie OAIRR? W j
AA | A
Fa Pnnnmnn rﬂl «' IHF . &IISFRA? . Heasapefired : :
&R FilSH @ [Feep e
S e o e e it oo |
b e ﬂ w Fill rect with MOPz
£2 1nooeans | ﬁq:_L £JHP. LUBERZE. HessageBonl®
Y | e |
B LIMAUUE | PUSH URFSET B4 L Laption - "Hemoua NET™
£5 7CI04008 |FUSH OFFSET @24@3@7C - "HAG HAGT
A A |FIlEH @& = HILL
FA APARRARRA | TRl < IHP. &UISFRSF . HewsonpmeRosi hn|| Loy IEFRER., Mesm R A
&A |FUSH @ [i}
ES Paoopgon | CRLL {dHF &K}EHHELSZ EnitProses=y ‘EFRt LLS...ExlIPLLL-t 5
fre5 A0ca+00| J TR DS BISORE)E . He s ssgeDon}
¥ FFE2G 5 BEI04 O I:I".ISIIIRIZI PTR DG [{MECRACLOT, Cn i £ Froces |
Flgure 11. Replacing with NOP instructions
&A E@ FLEEH 8 g HE_OK iMB_DEFEUTTOM1 | ME_RPFLHODAL
AR AERSRLAAAA | PIESH NFFSFT RA4AEERA i = "Anid Nl _17R"s""
58 19384088 PUSH OFFSET 88482618 t "iin22Asn Crackme 1"
e @36 FIEEH @ cr = MULL
ES2 ZDeEpens CALL <JHP.%USER3Z.HessageBouRA HeszageBonf
SH &3 e a T MO0 FMD_DCrDUT TOR L I MD_RCCLHMODAL
&8 23384808 PUSH OFFSET @9483823 I 5:\' Lon_ = "Ereet ings goes too all my friends..™
E& 47384888 | FIESH OFFSET 89483847 HT = HEllfDI‘gE. TLH, FHCF, DAF and the I‘E“i‘l: -
SA &8 FLEEH 8 wner = HULL
EE’ THHEEALE 'ﬁ;l_ LMF . B RS, less ageBorH > leI:Hd.:' MNessageboHH
L MG
S M
L HOF
] o
28 HOP
s FIo
20 HOP
Sl HOE
28 MR
H ML
L HOE
4 HOP
=i el
28 MO
=l o=
28 HOP
S8 HOP
20 HOP
1.- SH. B0 FLSH @ Ex ik Cunle a
- ES BohB@EEn | CRLL <JHP.&KERMEL32.Ex itProcessy Jupp to kernEESE Ex itProcess
5= FF25 B3Z84ad JIF DWORD FTR D5: CL&USERSZ.IlessageborA s
i i— FF25 bez@40el Je DWORD PTR OS: [<&KERHEL3Z.Ex itProcesd
Figure 12. Replaced PUSHes and CALL
- HaHIN9 @ @ T80 0412013

How to Analyze Applications With Olly Debugger?

= &R B& FIISH & HB_DK HE_DEFEUTTOM1 HB RFPLHOD
= 58 BE304068 | PUSH OFFSET DodazaEn _1rg’ s
= 58 10304068 | FUSH OFFSET oodazala =T in32Asm Crackms 1"
= GR BB FUSH & hlwrer = HULL
- E& 208886068 | CRLL <JHMP.&USER3Z.HessageBoxAl USER32. HE‘SEEQEBDHH’
=« FAE AR FIESH @ Turme = MA_NEIHR_NOFFRITTAMT : HR_RBPPI MON
= &8 23304008 | PUSH OFFSET 00493023 Caption = "Greetings goes too all my
« 58 47304088 | FUSH OFFSET DB4a36047 Ternt = "Hel lforge, tCR, FHCF, DEF and
= Ef @& FUSH @ hidunar — MULL
- E‘g 1 AEFERES %L NP EUSERSZ. NessageBorAl USER32. MessageBoxR
[EIEE RN =y Qi Mo
2@ ROP
= L) ROE
it} o
26 HDE
o8 ROP
SB HiP
28 Hoe
o8 H2
= 1H0F
9B M
& i
o HOP Bal:h.lp 3 I
- e Edit § Unda sclection Alt 1 ElSpe
28 Hoe Add label. .. Colom
26 Hoe G Copy a3 kable Chel 1 C
EA 0@ PUSH B Bssemble... Space
EEob nAopanal HE TWMEN PTE Add comme i Copy address Al+Insert
= ; aan i H
FFE Bo2n4ao e DWORD pTR 00 comment... Sseicolon ()
gg E-g 33 Breakpoint F Binary copy Chri+-Insert:
] OB G :
gg EE %E Fallow in Dupnp ¥ Binary edi... CriH+HE
GE OE @A Go ko * _
gg EE 2? Filll with zeros
O G0 :
L] OB @@ Search For P Fll with MOPs
- hiZk Fird references ko k R
e i Highlight register y
2 E 28 :
SE EE gg Addressing 3
int TR Cnmenenbs b
o0 BE o
i) i 3
2 0B Ba Diisyeie
jolt] DE @@
AR Me A/ Help on command Shift+FL
o BE 29
b : ArrEaranss [3

Figure 13. Copying modifications into new executable

| Comments

ASCII "Greel ings woes boo all ey Friends..™

ri 3 MeCIl "Hel lforgs, 0N, FHCF, DOF and the root
E8 CALL o@ansddo
39 10F |
% |
g Backup »
& HOP Edit [
AARERA =0 % |ﬁ fissemble., Space
155 T el MU Eaun File .
senbly | Comment 6 DO0EECas|
3 QOERE300
el ieleffeciel)
i3 B00E]ean
0| BEA0 S BR|
| AL R
el
0|
= 1
|
a3
3|
M| |
6| BEBOZE0E HSCTF
Hex L 0| DBBE4000| HSCTE
E DPREGaE| HECTF
lext L | AARATRAR| mant £ ine_ i mes
Integer » ?EIF“WEI BOBZ7800| nsotf ime_ ime
TEICE000 0001808 nectf ime_ Lne
TS1Co008| DODAZBDE| WECTF LMe_ Lme
fLde= | connent Float ¥ TS1CESDS, DDDOSSD0| Ul f ire_ s
| ; 7ECCAZ0R 02001308 USP18
v Disawsemnble PECE1 @00 0EBI4E0E) USP10
7535000 09010088| USP1
Appearance] TELACE0G Dobaza0e UsPle

| ELHEE | MR 12| s 1Y

Figure 14. Saving modified executable into new file

<))

HaHRIN9 /-

www.hakin9.org/en

THETOOLS

Figure 15. The second crackme

by other instructions which do nothing. For such
a purpose, No OPeration instruction (NOP) with
opcode ox90 is the best candidate. It has only one
byte, therefore it allows us to replace any other
instruction with it, removing the effect of original
function and doing nothing instead.

OllyDbg allows to edit instructions in disassem-
bly by pressing Space key. Dialog as in Figure 10
displays. You only need to overwrite original in-
struction address with “nop” and press “Assemble”
button. After pressing “Assemble” button, original
instruction with size 2 bytes is replaced with two
NOP instructions (red colored lines in Figure 11).

Repeating the same for all PUSH instructions
(belonging to call) and the call instruction itself will
result in following code (Figure 12).

Now, we should save all modifications into a
new file and we are done with this task. Therefore,
select all modified lines with mouse, right click,

select Edit->Copy to Executable. A New window
with the modified exe file will open (Figure 13).
Right click into this newly created window, right
click and select Save File... Enter new file name
(something like crackme_01_patched.exe), click
on Save and patched file is saved. Later, when
you try to run the patched file, only two message
boxes are displayed and instead of the third mes-
sage box, several nop instructions are executed,
therefore nothing happens and no message box
is displayed.

The second example

Our second example will be a slightly more com-
plicated crackme — sf_cme04.exe. First of all, we
run the crackme to see how the application looks
like. Figure 15 shows that we have two text fields,
About link, Exit link. When we try to insert random
text into both fields, nothing happens.

Let’'s open the application with OllyDbg and try
to find some information to help us start reversing.
The first step will be to look at string references.
Right click on disassembly window, select “Search
for” -> “All referenced text strings” (Figure 16).

We scroll down the list of text strings and try
to find anything interesting or suspicious. We are
quite lucky, because we can see a lot of strings in
this crackme. The strings are not encrypted or ob-
fuscated so we can see them in their plain forms.
After lengthy scrolling down we notice the fol-
lowing interesting message: “You were success-
full Now send me your serial or write a tutorial”
(Figure 17).

b BEF & T
OO Q047788 \ -
OO 34776 : -
oo i -
{6 Rl a7
MmEas - e
[ETIRT EARFL ey
[F R RS T e .
PERS | R INERE S TN B‘$|‘; ’
CHELL [MMSIMTH: K Al
MR TR, IR IPTH EEG: [4+EET) Edt ¥ o I H
PR |, IS TH IRz CER]
Hil E:II:‘!-'I:HI.H-E e A lakel. (. Codon () ol 4
Fen EN"'Wd?E:{R %1 [AR) RECII “Crechlle Mo, 4= e 1. 080
] %LEgaﬂME e . - Sudd commend,., Semicokn () L B
0] Cefedded |00 EAX, DWORD PTR 0F:[44E8CE] Drsskpant b EET #8239 Cond I
208 soreudes 0 EDL DUORD PTR D4: Fiarbeel Lavs oomd SRIBMT
" 1, F | CALL_B0-128384 s Foliow in Cumo i [- L HAECH i
- | O] CEEEAAB |00 ER, DNORD PTH Ofi[44S8C8 o to r -
1300 Efic, DWORD PTR D8 [EFC] -
£2 IEEELE | adiaaann
00 _B¥TE PTR 081 DEAXI. AL e Ehand
FEFFEFFF LQ FERFFFEF Fird references to 1
£l 5 b G REED "Crackte Mo, & Bl PCrackie Mo, 4~ Phghlacht ragister] e e
ARl i 3 Sequence of commands
::: z i 15 : Corstank...
0l LATHTIE
i Binsery shiing CrkE
w1
;‘:KI anshyss b Modfcation
L2
|
| E Helo on command Shifts'1 all inrarmodular cals
'rﬁ All poensmands....
| 8a Appearane LA r
I EGEIE]
For=00 1 S rren
Junfia ook SR 474000
| CIET |

TR

| - e ‘e

Figure 16. Displaying all referenced text strings

« HaRINS

<))

TBO 04/2013

How to Analyze Applications With Olly Debugger?

i b = T allrin dgjl
L3
; e -l
t | B E -sul---\pur--z- | BT “BErLsgFurmat ™
5 ESCTE "Tran | EECTE MTranamarans”
Ha 1l “Uslea™ | T “Uslus™
ﬁ;! :\l:_—Hu!un | BT "UieH e vae™
| P g Fe HECID S2p =i
R e Gt rlgann
3| Baet] =lnTEButron1 R i T
S| BECTE PRI ERu o GECTT "reTFRu T a7
BRI E il Bl o
PEETE "Funedd |4 {0 [BEEH] “Punedgdingd "
R "Wuseclcll cd™ | el 'Tilrl'l'dlh
o | e e |
FECTE e[EBursenaDl e {FEET] ~irttl Bl vanat i ick
S e LT T N e T T
BECIE "Funecd (00 Lick™ BT "Fuieddi e T L ick™
GECTE "Funeal| o0k g™ GECTT "Fuswdialnithenge™
d HA1D “TRaonl™
BEC1E “TFurnl ool™
BAC10 "drh Cracatl from stesichPIG . . . ~eticre
EHEC10 CWER CREANe From ol ea|1HF IEHTRES PR
WTE USCIRIMLT Mo i EUTEE
TREETT Ciws were sosotsaral] Moy sond s wour sorioior coiee & woveristis
wet1l "hnr WOME N, [lllll‘
L WP wouE N, BlEners
= R
=25 0 | el a8
BRI “Crachfls flo, &
GEC]1T “Cranifle My, 4
%;E %nl |MI1::rur :ﬁﬂ %MP HTTOE W RN
5| BACTE st inicactEr = | Eaetl iy DA RO -]
A L [oE o g o
| B0 SMDERET FEG1T 08, "EDerolivige™
1| CIN_ {RA4IN CTN] R T L
| el SQand Darli™ (e "M S Dar L6
OO ek | 1F 04 GECTT "piR| ok
| DO ERA1IL LS ERLLD e Amacesn®
1| B0 B 1E2E Bl "l 2
AR AEM1 TEIRI B0 “eADl e
| DO fed] 1EAE 1L "eilea™
O i | IFER BECTT " iPurpie®
B e e
| Do Eum | esc1 o i
id | AP e] TER | 1D iR
14 D0 4] IEED BT "pilk Lre™
w44 | DX WE341 1T EE1D Bodve | law®
LATEEA| DO el | JEDA BEC]] "aiB Lee™
o0 DO a1 1EES | EELTE “miFughsis®
E A1 IEFY ERAC1D e ifge ™
s FaE BECLE “albh ive™
O 1 AF b BT “oifcral Uhar”
OO e8] IF 2T EECID oEek mnd
O ond | iF 44 BEC1E "olray ivelany ion™
Oy i1 1PN o "r1|:m|rtlwl:mh.nd'
OO s 1F7R | Bt ol M ™
| O b | AT | BAETE Pl nckou®
| OO] TR | MECTD oM s
C| B D AFES | BT "o ey Tews™
| LX) KE341IFCH | T HensdouTaue®_ 2
R s At e e g
"]
Figure 17. Interesting string
-
¥ (5]
¥ L) Installs SC handler 447GCC
g CoF_pcovcB4. ABA47470
¥ L5
v HEES EECE MU B, DMUMD FIH DS LES L+20 0
« EY SWFAFERF UHLL Wbquciaed Caf_owalded, W
= 8095 EC LER EDX, [EEF-14]
= SEBES FOOlSdg MU EHI,MD PTR OS5:CESI+IF@l
« F& |PFFOFF CAll ARdIRTSR
« ARdS FI U FAX, NWNRD PTR 55: TFRP-141
» ANSS FR |LFA FOX, [FRF=R1
 E8 4TF4FEFF |CALL 80486503 CxF Lreeid. 60486305
= 8B43 FC |10V EAK.DWORD FTR 33: LEEF-41
- oooG ro HOU COW.DW0AD TR 35: CCOM 01
- LCO T4COrDrT | CALL 98492008
- ar4ca |0ETe DL
- 0D4D T4 \LCA ECH, [CD™-BC]
¥ fejsed] {HOU EL,
- HS [A0E23168 MOV EMF, 1E240
= EBY¥ SFRFERF | GILL O UeEr ok _or e . DEueETY
" ki |LEH ELX, LEE¥-101
 HH RN USRS UL LN, 1
« B2 FIFESS®3 HI Enx AFEF1
+ FA RIFSFRFE |rAll ARSARR>4 CaF_rasied. ANdAAR>E
» ARdS Fd (F) FARX, AWMDRN FTRE S55: TFRF=-ACT
« ARRS FA IOL FIE, OWORN PTR A33: TFRFP-1A1
= FA FPOAFRFF | CALL ARKASEFA
= GF3CH | 8ETL
L] D& TEST BL.BL
== T4 15 CHIORT @B447SCA ’
= GA 09 (ruSh 8 Argal =0
E %Em GCTG: MO CH,WORD M'TR DG: [4470G0C]
= BE 79764408 MOY ENX, 00447673 MECIT ™Wou ware sucocssfult Nouw send me your seriallor write a tusoriall™
= bBY BENLFEFF | LILL H@d1o00 o _ o . L'I-U'1di/f!:!
L IEX] ELpHL
LR] LA RHUH WEad sbde
w R DI R ORI

Figure 18. Breakpoint set on function which we expect to display success message

www.hakin9.org/en H a H I n 9 ‘ 15

THETOOLS

Double click on this line and we will land at ad-
dress 4475E0 in the disassembly window. Scroll
slightly above, procedure which has something to
do with our suspicious string starts at 00447540
with PUSH EBP instruction. Remember this ad-
dress — later we will set a breakpoint here. Run
crackme by pressing F9, enter arbitrary strings

5% CrackMe No. 4

Figure 19. Crackme window with both textboxes filled up

in both text fields (in our case we enter “crack-
me” and “123456” — Figure 19), set breakpoint at
4475E0 (Figure 18). Now we can try to click on
various places of crackme’s window, but nothing
happens. Only when we try to modify the text in
the second text field (for example from “123456” to
“1234567"), debugger breaks at 4475EO0.

Then we keep pressing F8 (Step Over) and ob-
serve stack window, register window if we notice
any changes, which are interesting for us. Typi-
cally we are looking for situations where we can
see the data which we inserted into program’s
text boxes. When we reach address 447563
(the address right after call XXXX), we can see
that register EDX contains address of the string
“‘emkcarc”, which is reverse string of “crack-
me” — contents of the first text field we entered
(Figure 20).

Stepping out further, another interesting address
is 447573. In register EAX, we can see reference

OllyDbg - sF_cmedd.exe - [OPU - main thread, module sF_cmel4]
[ﬂ Eir Wiew DOelng Trae 0. Opliome H_'iuhm Hedyi

Isﬂﬂlxl J+IIIJ ‘*-I'-iHII U]

[£ W[[c[R[] B[wn] &

FUSH EEF

MISH BR447G00

FIFSH UMLDHU K 52 LEHK]

104 DWORD PTR F3: [ERX].ESF
0DCG MO CAK,CSI

EY SLEERRFF O CHLL WH34 /e

SBCE J «ESL

CO BGITITTT | CALL Ao447470

2055 FC LER EDX, [EBF-4] [
ARAR_ PRAZ AR FOL ch mnnn FTR N&:TFST+2AAT

CO GOr4rorr | CALL

2DEE EC LER El:l!-!.. I:EHF'—Lni:I

ARAR_FRA1AAM HOL FAX, TWORN FTR NS: TFST+IFAT
CO 1242F0FT [CALL @341D7™I0

. Text box contents found in register

Installs 3E handler 44765E

|RSCTT

11 *poD™
ol _credq, 00447470

| E2r_cnesd. pp4nco00

afRegisters (LU
ER- aalEFrre
Gonans:]

LEHLD WS Penknare™

FUSH DWORD FTR FS:[ERX]
FER) LRI FIHE FS:DRHED S

LEAR EDE.[EEF-4]
MOLL EQE, DWORD. PTR DS=[ESI+280]

LEH FIX, | FHF=14
MOA ENG, DWORD PTR DEw [ESI+1FE]
CALL 00416735

Flgure 21. Magic string

s HAaRIMS

Inatalls 5 handier 49/505F

C ol _cnedd, 0447470

| ExF_umeBd . B0406508

<))

FIF AME475H bk _rmekbd . Mgl

ES

rni
0 8 LastErr 00009999 ERFOR
FL BO88EE4E |10

TR emotw -FF% FFEF
i snoty =777 FFEF

TBO 04/2013

How to Analyze Applications With Olly Debugger?

to string “754-09.” We don’t know what these num- passed in registers EAX and EDX. You can sim-
bers means, but we can guess that they come out ply verify it by keeping the first text box with text
from procedure 447565 (Figure 21). “crackme” and modifying the second text box to

A few lines below — at address 447597, reqgister value “754-09”. When you do this, you can expect

EAX contains our magic value “754-09”, register to see something like in Figure 23.
EDX contains string “1234567” (which we entered Now our work is over. We found the correct
to the second text box). Then at 00447597 a pro- name/serial combination, but unfortunately we
cedure is called and if a zero flag is set during the do not yet know what the exact relation between
call of the procedure, then SETZ BL sets BL reg- name and serial number. Is the serial number
ister to 1 (Figure 22). However, in our case, zero
flag is not set during calling procedure 00447597, | CrackMe No.» ;IEl_l
therefore SETZ BL sets register BL to O.

Further in the code, at address 4475D1, you
can see instruction TEST BL, BL followed by JZ
4475EA (you can see it in Figure 22 too). If BL
equals 0, TEST BL, BL (which corresponds to logi-
cal function BL & BL) sets zeroflagto 1 (0 & 0 =
0, result is zero, therefore zero flag = TRUE = 1)
and JZ jumps to 4475EA, therefore no message is
displayed.

The opposite situation occurs when a ze-
ro flag is not set during function call at 447597.

In such case, SETZ BL sets BL register to 1. ;
‘:‘) You were successfull Mow send me wour serial

Infurmal:lun a x|

Later in the code, TEST BL, BL results in zero WAL s i
flag = 0, JZ does not jump and message box is ;
displayed.

From the aforementioned description, we can
expect that instruction CALL at address 447597
is comparison of two strings, which pointers are Figure 23. Correct name/serial combination found

] O [CORGa1
20 RGOTL M= A s
= s P .
o 5 8
¥ &S PUEEH BB et
- DDDg MO COF. CoP o
. DOC9 ¥OR CCH, ECH B
» & FiESH Frod F By e
el FiFsH ECKE i
£l PLFM ECK IF BAMATEST oF_reeDd, Rddd TEST
7 | FLEEH S J N
£1 PUGH CCH 1
] MU CO gl
A FiESH F3l 1
EBFD ROl ESI, ERK 3
=3 R ERX, EAE Té
B FUEH EBF 5
GO GL7CA400 | M3 00447650 3 g R
GA:FT 20 M3 DWORD FTR 55 (CAK) ¢ B Leitler DOUROON
2 {3 HOLl MRiORT PTR F3: [CFRA, FSF Inatal la 5F handler $47A5F D004 [HO.HD
5 HoU BN, EST i LR '
E EZ SEFEFFFF | CALL ©0«d4r3EE
Sl - BHCS M B, EE]
- CO_QGETFIFT | CALL D0447470 CaF_crB4. 0447470
+ 0055 FC | CEA COH. COOP-43
g R, FTR [5: [EST +Fii]
= ES &FJ4FEFF | CALL SDdocsDE CaF _cradd . B4 i 308
- BOES El: LER EDX, CEBF=14)
E - B Itl}'.lm-' T LHH.! FTR D5 LERI1+1FRR]
1|] - ©0 1z42FOFF 0041 0700
- 0045 L0 Pt TaY | DUORD TR 56: [DP-141
» RORS FA LFA FM, CFRF-81 =
« ES 47F4FEFF |CALL mﬁ:lﬂ CaF _orgBd | Beidins S0 _'
EB8dS FC ROl ERX, wdRD FTR S5: [(EBF=4] |
HHLS FE M B, DNOED FTE S5 CEEF=8]
| 007D I
- OFMCY o
F » RO«0 Fd LEA FC¥, CFRF-0CY
= v BE OB | HO g |
» ES dABEDBIED I'El.l EIIl! JEE-J-VB
i + kY FSREEFEFF EsF_orei IR et
vil| - Go40°Fd LI:FI |:-:.'-: [|:nr~ 103
pil| - DR QIGEang
F3l| = FA FIFRRSSA I'H'IILI Fl\H qFH.FI
=il + Fa ARIFRFRFF |CHELL PEHFF\H.?-I CaF_sreid . dnrfsd
» EBdS Fd POl ERx, DedRD FTR S5: (EEF=8C]
-] MF EL, BNUHD FTR St CEEF=191
0 22CirDrT DO4000r D
LR
e Td 1R .I." mr MALATRFR
Sl r 6A 0@ FiFsH B (1]
L M:M H..."I:AI'I.F-' w,u.w FIR GubHfestl
an44rrol] - III "I:I"HJ-EE HH‘J I:Pﬁ:i gl'.l:l;;;{-?ﬂ Rgt]l] Wi successfult o
. Foll « LAl sF coperihd, b5 E PR
Di-lt'\lp_cnalei. [TET=a) U

Figure 22. Comparison procedure

<) HaKINg

THETOOLS

S055 FC

BEdd PAHE] ¥
« SE23 ECB1880

"LEA EDX, [EBP-41
MO EAY,DWORD PTR DS:[EE+1EC]

MOUZ s EAX,BYTE PTR OS: CESI+EMX-11
MOUZ: EDW,BYTE PTR DS: CESI+EDH-11
ADD DWORD PTR DS: CEEX+1F21, ERAX

AR 7401 ES E242FOFF CALL @a41E73S

5555 =1 2B45 FC Mou EAX, OWORD PTR S5: CEBP-41]
B4 7459 BFEE4438 FF

FE44 7 4BE SE92 FCAl1@8at] Moy ED, DWoORD PTR 0OS5: CEEX+1FC]
fAEd44y4C4] -« BFBSE432 FF

BEd4d 7 4C39)) - FPER IHMUL EDi

AEd4474CE - B183 F201860

BEdd P40l = 46 INC ESI

pEdd P40z - 4F DEC EDI

BE447403] -~ F5 03 = JME SHORT BE4474R5

Figure 24. Serial computing loop

computed from the name? Is the serial number
computed from something else? Is the serial
number constant and hardcoded somewhere in
program? In the text above, we mentioned that
“magic text” “754-09” appeared in the program
soon after calling procedure at address 447565.
Let’'s examine this procedure a little bit. First of
all, we need to press F9 to continue running the
application (leave from debugger), we edit text
in the second text box, and we hit breakpoint
at 447540 again. We keep pressing F8 to Step
over until we reach 447565, where we press F7
to Step into * the procedure. Now we land at
447470.

Keep pressing F8 Step over again and observe
what happens. In the middle of the procedure, you
will find a loop (Figure 24), which

* measures length of text of the first text box
(004474B1: cALL 0041B798)

+ gets pointer to the text of the first text box
(004474B6: MOV EAX,DWORD PTR SS:[EBP-4])

* reads (ESI-1)-th character from the beginning
of the string to EAX (004474B9: MOVZX EAX,BYTE
PTR DS:[EST+EAX-1])

* reads (ESI-1)-th character from the end of
the string to EDX (004474c4: mMovzx EDX,BYTE PTR
DS: [EST+EDX-1])

* multiplies EAX by EDX (004474c9: 1MUL EDX)

* adds result to temporary variable (004474cB: apD
DWORD PTR DS: [EBX+1F8],EAX)

* repeats length-1 times

In our example, the following is being computed
for string “crackme”. ASCII code for character ‘c’
is 0x63, for character ‘e’ is 0x65, etc...

c*e)+ (r*m) +

((a*k)+ (c*c) +
(k*a) +

(m*r)+ (e *c) =
= (0x63 * 0x65) + (0x72 * 0x6D) + (Ox61 *
0x6B) + (0x63 * 0x63) + (Ox6B * 0x61) +

(Ox6D * 0x72) + (0x65 * 0x63) =
= 0x270F + O0x308A + 0x288B + 0x2649 + 0x288B +
0x308A + 0x270F = 0x12691 = 75409

s HAaRIMNSG

(in decimal)

<))

This is the method of computing serial number
from string supplied by user.

Conclusion

In this article, we learned fundamentals of using
OllyDbg. We took the first simple example and
made our first patch, which prevented application
from showing a message box we did not want to
display. In the second example, we learned how
to locate interesting procedure in the lengthy list-
ing of assembly code and analyzed it in detail. We
found the correct name/serial combination and un-
derstood the way of computing serial number from
user supplied name.

JAROMIR HOREJSI

Jaromir is a computer virus research-
er and analyst. He specializes in reverse
engineering and analyzing malicious
PE files under Windows platform. He is
interested in malware internals — how it
is packed/crypted, how it is installed in-
to computer, how it protects itself from
being analyzed, etc. He also likes solv-
ing interesting crackmes. Except for reverse engineering, his
hobbies include traveling, exploring new places, flying remote
control models and playing board games.

TBO 04/2013

Two Factor
Authentication

Email and Web
Security

Endpoint Security

Mobile Device
Management

Wireless Security
Data Governance

Secure Remote
Access

Perimeter Security

Intrusion Detection
& Prevention

Secure Infrastructure

infosec

Infosec Technologies

Reducing risk through technical excellence

Technology alone cannot solve today’s security challenges, but by
applying the right mix of technology and services to solve even the
most complex security challenges, we are able to reduce both cost
and business risk.

Infosec Technologies provides impartial advice and expert
technical support that can help you secure your IT infrastructure
and achieve your business goals.

About Infosec Technologies:

Infosec Technologies is a UK based, award winning supplier of information
security solutions. We have delivered over five hundred projects in the last
seven years and have partnerships with both established and new security

Venaors.

We are dedicated to researching and testing new and innovative technologies
to provide our clients with ever stronger, more resilient and agile security

products and services.

QOur clients span every business sector; from government to pharmaceuticals,

financial to ISP, retail and charity. Extensive experience in the design,

implementation and support of security and infrastructure solutions allows us
to meet specific requirements whilst still maintaining the highest levels of
customer service and technical support

Cur technical excellence, focus on customer service and flexible approach

ensures we are ready to be your trusted security aavisors.

Phone: +44 (0)1256 397790
Email: sales@infosectechnologies.com
Wehbsite: www.infosectechnologies.com

Contact us today for expert
advice and support:

=] - -
s apess: morak. USSR @c"’"" .y 1 Check Pont KAJPERSIYS 470 12

Cisee Legrima

SecurErmei’ @rm«:ql welbsense aman A%

SOURCE '+ moideide

http://www.infosectechnologies.com

THETOOLS

How to use

Socat and Wireshark

for Practical SSL Protocol Reverse Engineering?

Secure Socket Layer (SSL) Man-In-the-Middle (MITM) proxies
have two very specific purposes. The first is to allow a client
with one set of keys to communicate with a service that

has a different set of keys without either side knowing
about it. This is typically seen as a MITM attack but can be
used for productive ends as well. The second is to view

the unencrypted data for security, educational, an reverse

engineering purposes.

set up a proxy to allow SSL clients that don’t

support more modern SSL methods or even
SSL at all to get access to services securely. Typi-
cally, this involves having the proxy set up behind
your firewall so that unencrypted content stays
within the confines of your local area.

Being able to analyze the unencrypted data is
very important to security auditors as well. A very
large percentage of developers feel their services
are adequately protected since SSL is being used
between the client and the server. This includes
the idea that if the SSL client is custom closed
source software that the protocol will be unbreak-
able and therefore immune to tampering. If you're
investing your companies funds using a service
that could easily be subject to tampering then you
may end up with a nasty surprise. Lost funds per-
haps or possibly having your account information
publicly available. This article focuses on using an
SSL MITM proxy to reverse engineer a simple web
service. The purpose of doing so will be to create
your own client that can interact with a database
behind an unpublished API. The software used will
be based on the popular open source software So-
cat as well as the widely recognized Wireshark.
Both are available on most operating systems.

F or instance, a system administrator could

Lets get started!
We will be reverse engineering a LiveJournal client
called LogJam which supports SSL connections

» HaAaRING

<))

to the Livedournal API servers. Since this article
is purely educational we don’t mind getting some
experience using the LiveJournal APl which al-
ready public and LogJam which is a free and open
source project.

Prerequisites

* Install Socat — Multipurpose relay for bidirec-
tional data transfer: http.//www.dest-unreach.
org/socat/

* Install Wireshark — Network traffic analyzer:
http://www.wireshark.org/

* Install OpenSSL — Secure Socket Layer (SSL)
binary and related cryptographic tools: http:/
www.openssl.org/

* Install TinyCA — Simple graphical program for
certification authority management: http.//ti-
nyca.sm-zone.net/

* Install Logdam — Client for LiveJournal-based
sites: http.//andy-shev.github.com/LogJam/

Generating a false SSL certificate
authority (CA) and server certificate
The API domain name for LivedJournal is simply
www.livejournal.com and any SSL compliant client
software will require the server certificate to match
the domain when it initially connects to the SSL
port of the server.

An SSL CA signs SSL certificates and is noth-
ing more than a set of certificates files that can be
used by tools like OpenSSL to sign newly gener-

TBO 04/2013

http://www.dest-unreach.org/socat/
http://www.dest-unreach.org/socat/
http://www.wireshark.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://tinyca.sm-zone.net/
http://andy-shev.github.com/LogJam/

ated certificates via a certificate signature request
(CSR) key that is generated while creating new
server certificates. The client simply needs to trust
the certificate authority public key and subsequent-
ly the client will trust all server certificates signed
by the certificate authority private key.

Generating a certificate authority

Run tinycaz for the first time and a certificate au-
thority generation screen will appear to get you
started (Figure 1).

It doesn’t matter what you put here if you don'’t
plan on keeping this certificate authority information
for very long. The target server at LiveJournal.com
will never see the keys you are generating and they
will stay completely isolated to your testing environ-
ment. Be sure to remember the password since it
will be required for signing keys later on.

Select Export CA from the CA tab and save a
PEM version of the public CA certificate to a new
file of your choosing.

Generating a server certificate

Click on the Requests tab in TinyCA and then the

New button that will help us create a new certificate

signing request and private server key (Figure 2).
The common name must be www.livejournal.

com. The password can be anything and we will

be removing it when we export the key for use.

Croale a new CA

Marna (For local storsge]

[myedyna
Bata lor CA Cantbcals
Commaon MNama (for the CA) [ieyedra Propuluion Systers
Country Mame (2 ketter code) Jus
Pasvmstd [needed lor segrang) [.-..
Password (confemation T
Slald o Privance Mol alderms
Locality Mams [8g. cityl: [T TE—
Organizatsan Mame (. companyl E—p—
Sz atuaral Ung Waire (eg. secbend; [ormatin tcmaogy
atdad Address | rlo@ycrndyne
s fot (D) ess
Kaylength I-_ W [ry |) 2 = 4054
Dugaat (= SHa- L) D O MecE O Mod D) MDS D) ePiMD- 150
[«fax I ¥ cancel

Figure 1. TinyCA new certificate authority window

Crasle & now Cortificale Reqguest
Comeman Mema (8], your Name. [Insepisrnal com
| ¥

wour abad Addresi
arths Serars Hama)
ebdad Address: I

Paswwitd [pretect wirad prraate Koyl (anae

(enee
Countny Nars (3 eLer codel T

Pasreord [orfumatan]

State or Province Nama: [Calfomnia

Locality Mams (ag. city]: J5an Marcan

1
Srganizatsn Mame leg. tompanyl [y

Organizatioral Uni Hama (g, sectionk [eformanon Technology
Kindangth (&) 00E O 1024) 2048
Degast) S5 O D O MODE2 0 M) MDS) FBiiMb- 185
Algorthm (=) MSA O DsA
Do ¥ Cancel

Figure 2. TinyCA new certificate request window

www.hakin9.org/en

<))

Socat and Wireshark

Under the Requests tab there is now a certifi-
cate named www.livejournal.com that needs to be
signed. Right click and select Sign Request and
then Sign Request Server. Use the default values
to sign the request.

Now there will be a new key under the Key tab
now. Right click on it and select Export Key and
you'll be presented a new dialog (Figure 3).

As seen in the figure you want to select PEM
(Key) as well as Without Passphase (PEM/
PKCS#12) and Include Certificate (PEM). Doing
so will export a PEM certificate file that contains
a section for the certificate key as well as the cer-
tificate itself. The PEM stanard allows us to store
multiple keys in a single file.

Congratulations, you now have a perfectly val-
id key for https://www.livejournal.com as long as
the web server running the site is under your own
control and uses the server key you’ve generated.
Trusting the key is the tricky part.

Allow logjam to trust the certificate authority

So we have to dig in a bit to understand what SSL
Certificate trust database LogJam will be using.
Most Linux based GTK and console programs rely
on OpenSSL which has it's own certificate author-
ity database that is very easy to add a new certifi-
cate to.

In Debian/GNU Linux the following will install
your new Yoyodyne CA certificate system wide:
Listing 1.

Now LogJam as well as programs such as wget,
w3m, and most scripting languages will trust all
keys signed by your new CA.

Using Socat to proxy the stream and
hijacking your own DNS

Socat is basically a swiss army knife for commu-
nication streams. With it you can proxy between
protocols. This includes becoming an SSL aware
server and proxying streams as an SSL aware cli-
ent to another SSL aware server

Export Key to File

urmial Cormi-kay e - A
Export Format:

(&3 PEM {Kay)

() DER (Key without Passphrase)

O PrCs#12 (Cartificate & Kay)

Filu: I —

D Tar (Cortdicale B K'l:y]
‘without Passphrase (PCMPRCS#12)

(#) Yaz) Mo

Include Certificats (PEM)

(=) Yes O o
Eﬁ:wl' | %s'ﬁ-ll“ il

Figure 3. TinyCA private key export window

HaRIN9 .

http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com
https://www.livejournal.com

THETOOLS

Set up your system and start up socat
Since we should aim for transparency we will need
to intercept DNS requests for www.livejournal.com
as well so that our locally operated proxy running
on port 443 0n 1P 127.0.2.1 is in the loop.

First, we will need to know the original IP of www.
livejournal.com:

$ nslookup www.livejournal.com
8.8.8.8
Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
Name: www.livejournal.com
Address: 208.93.0.128

Bingo! Now add the following line to /etc/hosts
near the other IPv4 records:

127.0.2.1 www.livejournal.com

Now lets do a test run by listening on port 443
(HTTPS) and forwarding to port 443 (HTTPS) of
the real www.livejournal.com:

$ sudo socat -vvv \ OPENSSL-
LISTEN:443,verify=0, fork, key=www.livejournal.com-
keyem, certificate=www.livejournal.com-key.pem,
cafile=Yoyodyne-cacert.pem \
OPENSSL:208.93.0.128:443,verify=0, fork

Simple enough. Browsing to https:/www.livejour-
nal.com with w3m and wget should work sucess-
fully now and a stream of random encrypted infor-
mation will be printed by socat.

Listing 1. Install Yoyodyne CA certificate

ert.crt

spencersr@bigboote:~S$ sudo chmod at+rw \

figuration

Trust new certificates from certificate authorities?

cacert.org/cacert.org.crt
custom/ Yoyodyne-cacert.crt
debconf.org/ca.crt

mozilla/XRamp Global CA Root.crt
spi-inc.org/spi-ca-
spi-inc.org/spi-cacert-
(Enter
Certificates to activate:

added,

Running hooks in [/etc/ca-certificates/update.d....

Updating certificates in [etc/ssl/certs...

Adding debian:Yoyodyne-cacert.pem
done.

spencersr@bigboote:~$ sudo mkdir [usr/share/ca-certificates/custom
spencersr@bigboote:~$ sudo cp Yoyodyne-cacert.pem \ [usr/share/ca-certificates/custom/Yoyodyne-cac-

/usr/share/ca-certificates/custom/Yoyodyne-cacert.crt
spencersr@bigboote:~S sudo dpkg-reconfigure -plow ca-certificates -f readline \ ca-certificates con-

This package installs common CA (Certificate Authority) certificates in [usr/share/ca-certificates.
Please select the certificate authorities you trust so that their certificates are installed into

/etc/ssl/certs. They will be compiled into a single [etc/ssl/certs/ca-certificates.crt file.

the items you want to select, separated by spaces.)

removed; done.

- HAaRINS

<))

TBO 04/2013

http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://www.livejournal.com/
http://ww.livejournal.com
https://www.livejournal.com
https://www.livejournal.com

Chaining two socat instances together with
an unencrypted session in the middle.

So far so good! Now we need to have socat con-
necting to another socat using standard TCP4 pro-
tocol in order to view the unencrypted data. This
works by having one socat instance listening on port
443 (HTTPS) and then forwarding to another socat
on port 8080 (HTTP) which then forwards on to port
443 (HTTPS) of the real www.livejournal.com.

Listing 2. Socat terminal

> 2012/08/29 00:10:27.527184 length=209
from=0 to=208

POST [interface/flat HTTP/1.1\r

Host: www.livejournal.com\r

Content-Type: application/x-www-form-
urlencoded\r

User-Agent: http://logjam.danga.com; martine(@
danga.com\r

Connection: Keep-Alive\r

Content-Length: 23\r

\r

> 2012/08/29 00:10:27.566184 length=23
from=209 to=231

ver=1&mode=getchallenge< 2012/08/29
00:10:29.551570 length=437 from=0 to=436

HTTP/1.1 200 OK\r

Server: GoatProxy 1.0\r

Date: Wed, 29 Aug 2012 08:10:56 GMT\r

Content-Type: text/plain; charset=UTF-S5\r

Connection: keep-alive\r

X-AWS-Id: ws25\r

Content-Length: 157\r

Accept-Ranges: bytes\r

X-Varnish: 904353035\r

Age: O\r

X-VWS-Id: bill-varn2I\r

X-Gateway: bill-swlblO\r

\r

auth scheme

c0

challenge

c0:1346227200: 656 60 : XXXXXX: XXXXXXXXXXXXX

expire time

1346227916

server time

1346227856

success

OK

www.hakin9.org/en @

MOVE TOMORROW'’S BUSINESS
TO THE CLOUD TODAY

MULTI-VENDOR
ANY DEVICE
HYBRID CLOUD

http://www.livejournal.com

THETOOLS

Socat instance one:

$ sudo socat -vvv \
OPENSSL-LISTEN:443,verify=0, fork,
key=www.livejournal.com-key.pem, certificate=
www.livejournal.com-key.pem, cafile=Yoyodyne-cacert.
pem \
TCP4:10.1.0.1:8080, fork

Socat instance two:

$ sudo socat -vvv \
TCP-LISTEN:8080, fork \
OPENSSL:208.93.0.128:443,verify=0, fork

Load up LogJam and the socat instances will start
printing out the stream to the terminal (Listing 2).
Hurray! You should be dancing at this point.
But wait, | mentioned using Wireshark before
didn’t 1?

Using Wireshark to capture and view the
unencrypted stream.

Now it's time for the easy part. I'm going to as-
sume that you are comfortable capturing packets
in Wireshark and focus mainly on the filtering of

Capture
imerface: b lloopback]
IP address: [127.5.0.1
=l
v Duffer '5|ze.|1 =] magabytals)

[Capture packets in promiscuous mode t |

) Limit aach packer ta ';.:-h}-fr-'.
il Sapture Filer jpm B090 and host 127.0.2.1

' ;_h_vnlp-

Figure 4. Wireshark lo (loopback) interface capture window
with capture filter

J Compile BFF

Cancal 1 <ok |

o« F J 1S 5L EL B

..l urﬂ e
. — e
i [EemaaEs LI | il
i EENEEE TN L) e “-." 1i|l.a*“l’ﬁ—
¥ ey LB, | LR == urtr.--n-uuﬂm,-mhq-
LR rEE | TN = 1
':'I“':".‘:ﬂl"" 1 Ll T I-':l' i af LB J""\I
S | 1 L B pi- L1 ¥ man |
vy e = - L
IJ-MI-IJ‘IIF SR T H#-“l“i"mﬂ‘-‘l
§ 1.000WM000 L2703 1 LT i L == :NFII' ﬂl-—mm-‘
e [55, | [N ¥ WA e et ke [afe] e st
|| 1l .MLI' '.II (T8 W) r H‘-""I Ilﬂ.'-- |'|"Il.|'l"|.ﬂ||
L3 1Rt LT AP i |
HJ.—MH}I’IW‘I (o8 NN = H“I-'I'Il-l“l"l!-ﬂ!l H¢I

ol
LN RS E T BRI

1 i LAl
[Femieralen 1F (12 byteal]
H e g e, Lo ek 12

Figure 5. Wireshark with captured unencrypted packets

- HAaRIMNS

= (]
el L P

Al badaed 10 E L ewte Dilapped - [oelsc Delfm

<))

the capture stream.

Since by default Wireshark captures all traffic we
should set up a capture filter that only listens for
packets on port 8080 of host 127.0.2.1 (Figure 4).

Once LogJdam is run packet will start streaming in
while Wireshark is recording (Figure 5).

What now?

This articles is about viewing unencrypted data in
an SSL session. Whatever your reverse engineer-
ing goal is SSL is less of an obstacle now.

How can SSL be secure then if this method
is so simple?

SSL and all of the variations of digests and ciphers
contained within it are pretty reliably secure. Some
of the major areas this article focused on was the
ability to fool a client by having the ability to trust a
new certificate.

If you are interested in securing your site or cli-
ent software against this sort of spying | recom-
mend not using an SSL certificate authority key-
ring or trust database that is easily modified by the
user. Including an SSL server certificate in client
software ,encrypted and protected by a hard cod-
ed key somewhere in the binary, and requiring it for
use on SSL connections using a hardened socket
library will dramatically cut down on the looky-loo
factor.

Conclusion
Thanks to how simple it is to add certificate au-
thorities to most browsers, mobile devices, and
custom client software it's a trivial matter to pull
back the curtain on SSL encrypted streams with
the right tools.

Remember to thank your open source hacker
friends.

SHANE R. SPENCER

Shane R. Spencer is based out of An-
chorage Alaska and has over 10
years of system administration and
programming experience. Many of
his projects are Python based and
interface with external services that
provide no usable APl and commu-
nicate over HTTPS only.

TBO 04/2013

Before They Beqgin!

+ Earily War g Syustem

+ hlobal Affacl-:: Deftectionm

+ Pesl-Time Thresast NotifFicastions
+ Threat Proftectiom Action=s

+ Threat Anglusis &EeEnmngime

+ Thireatr Anaolgtics Doshboard

+ FFree Membersship

www.threafr-analdfics.com

www.threaftintelligence.com

IiNmnfegratrtred Peneftratiom Testimg
Dunmaomic Rissk Moamagement
Threat anmnd Intelligences
INncidenmnt Pepons&=

Security Traininmg

THREAT T

——INTELLIGENCE—

Borm Hlobasl

Contact Uis Noww

https://www.threatintelligence.com/

THETOOLS

IDA Pro

How to Disassemble and Debug Executable Programs on

Linux, Windows and Mac OS X?

The Interactive Disassembler Professional (IDA Pro) is an
extremely powerful disassembler distributed by Hex-Rays.
Although IDA Pro is not the only disassembler, it is the
disassembler of choice for many malware analysts, reverse
engineers, and vulnerability analysts.

he program is published by Hex-Rays (http:/

I www.hex-rays.com), which provides a free
version for non-commercial uses that is one

version less than the current paid version. It is now

version 5.0.
IDA Pro will disassemble an entire program and

perform tasks such as function discovery, stack

analysis, local variable identification, and much
more. IDA Pro includes extensive code signatures

within its Fast Library Identification and Recogni-

tion Technology (FLIRT), which allows it to recog-

nize and label a disassembled function, especially

library code added by a compiler.

IDA Pro is meant to be interactive, and all as-

pects of its disassembly process can be modified,
manipulated, rearranged, or redefined. One of the

best aspects of IDA Pro is its ability to save your

analysis progress: You can add comments, label

data, and name functions, and then save your
work in an IDA Pro database (known as an idb) to
return to later. IDA Pro also has robust support for
plug-ins, so you can write your own extensions or

leverage the work of others.

Loading an Executable

When you load an executable, IDA Pro will try to
recognize the file’s format and processor archi-

tecture. Figure 1 displays the first step in loading

an executable into IDA Pro. When loading a file
into IDA Pro (such as a PE file with Intel x86 ar-
chitecture), the program maps the file into mem-

<))

» HaAaRING

ory as if it had been loaded by the operating sys-
tem loader. To have IDA Pro disassemble the file
as a raw binary, choose the Binary File option in
the top box. This option can prove useful because
malware sometimes appends shellcode, additional
data, encryption parameters, and even additional

]

Load a new hie .

Load file Z:M\batic_example eve at

Hartable cxcoutabbs for SUEE IHE | joe:ldw) |
MS-NNS pxecatalide [FF] [ios hie]

Binaty hia

Processor type

;_]

Irilel AAR pruowmoams: nwelagn:

o fnalysic
Loadng segmeni 000D 71 Enatled
L cuachnn pillsed 7| Indcator crablcd
Optong
3t aogmants , F.amal options |

Load resouecos
¥ Hename ULL cnincs

M arwial load ozl opharisd

o Md-u:-rnpl:nté gogment
Lreabe FLAT group

Processor optiong

Cyabern DLL ducctory L-VWindowe

| oK Cancel Help

L = |

Figure 1. Loading a file in IDA Pro

TBO 04/2013

http://www.hex-rays.com
http://www.hex-rays.com

executables to legitimate PE files, and this extra
data won’t be loaded into memory when the mal-
ware is run by Windows or loaded into IDA Pro. In
addition, when you are loading a raw binary file
containing shellcode, you should choose to load
the file as a binary file and disassemble it.

PE files are compiled to load at a preferred base
address in memory, and if the Windows loader
can’t load it at its preferred address (because
the address is already taken), the loader will per-
form an operation known as rebasing. This most
often happens with DLLs, since they are often
loaded at locations that differ from their preferred
address. You should know that if you encounter
a DLL loaded into a process different from what
you see in IDA Pro, it could be the result of the
file being rebased. When this occurs, check the
Manual Load checkbox shown in Figure 1, and
you'll see an input box where you can specify
the new virtual base address in which to load
the file.

By default, IDA Pro does not include the PE
header or the resource sections in its disassem-
bly (places where malware often hides malicious
code). If you specify a manual load, IDA Pro will
ask if you want to load each section, one by one,
including the PE file header, so that these sections
won’t escape analysis.

IDA Pro

The IDA Pro Interface

After you load a program into IDA Pro, you will see
the disassembly window, as shown in Figure 2.
This will be your primary space for manipulating
and analyzing binaries, and it's where the assem-
bly code resides.

Disassembly Window Modes

You can display the disassembly window in one
of two modes: graph (the default, shown in Figure
2) and text. To switch between modes, press the
spacebar.

Graph Mode
In graph mode, IDA Pro excludes certain informa-
tion that we recommend you display, such as line
numbers and operation codes. To change these
options, select Options— General, and then select
Line prefixes and set the Number of Opcode Bytes
to 6. Because most instructions contain 6 or fewer
bytes, this setting will allow you to see the memory
locations and opcode values for each instruction in
the code listing (If these settings make everything
scroll off the screen to the right, try setting the In-
struction Indentation to 8).

In graph mode, the color and direction of the ar-
rows help show the program’s flow during analy-
sis. The arrow’s color tells you whether the path is

; ALLribubes: bp-based Frame

sub_&ITBED proc near

var_B= dword plr -8
var b= dword ptr -4
arng_W= dwnrd pte H

ebp

ebp, esp

esp, H
[cbp+arg_B], O
short loc 40104E

eax, [ebp+ary_ 0]
[esp+B+ypar L], eax

printf
inp short 1uurul.hﬂiﬁﬂn

[Fspritvar_H], afFset asuccessD ; “Success Sdyn”

; GODE SREF: suh_S@10F&c8CLp sub_SI10F S EZLD

|loc_4B1BAE: : CODE XREF: sub_uoipspsnt
muy [esp+Bevar B], offset aFailure ; “Failureyn"
call printf

N1

locret_NO10BN:
leaye

retn

sub_HUTHHD endp

; CODE XREF: sub_kod@8D+1FT]

Figure 2. Graph mode of the IDA Pro disassembly window

www.hakin9.org/en

<))

HaHIN9 /-

THETOOLS

based on a particular decision having been made:
red if a conditional jump is not taken, green if the
jump is taken, and blue for an unconditional jump.
The arrow direction shows the program’s flow;
upward arrows typically denote a loop situation.
Highlighting text in graph mode highlights every in-
stance of that text in the disassembly window.

Text Mode

The text mode of the disassembly window is a
more traditional view, and you must use it to view
data regions of a binary. Figure 3 displays the text
mode view of a disassembled function. It displays
the memory address (0040105B) and section
name (.text) in which the opcodes (83EC18) will
reside in memory.

The left portion of the text-mode display is known
as the arrows window and shows the program’s
nonlinear flow. Solid lines mark unconditional
jumps, and dashed lines mark conditional jumps.
Arrows facing up indicate a loop. The example in-

cludes the stack layout for the function and a com-
ment (beginning with a semicolon) that was auto-
matically added by IDA Pro.

Useful Windows for Analysis

Several other IDA Pro windows highlight particular
items in an executable. The following are the most
significant for our purposes.

Functions window Lists all functions in the exe-
cutable and shows the length of each. You can sort
by function length and filter for large, complicated
functions that are likely to be interesting, while ex-
cluding tiny functions in the process. This window
also associates flags with each function (F, L, S,
and so on), the most useful of which, L, indicates
library functions. The L flag can save you time dur-
ing analysis, because you can identify and skip
these compiler-generated functions.

Names window Lists every address with a name,
including functions, named code, named data, and
strings.

Figure 3. Text mode of IDA Pro’s disassembly window

= HaAaRING

<))

LLOKE DL ET Oa

Sbext: DELE 0D sub WEOED proc near ; COBE MREF: sub L BAD:2ALp

JLCRCIDBYET 0N

Leock D ABLRA DAD var 18 = dwnrd ptr -18h

LEERT 0BT 040 var_1h = gword ptr -16n

SEpsk s MBL R DA var_10 = dwned ptr -1ih

Lol 0Bh@1040 var_C = dword ptr -0Ch

LT By ET na var_# = gwotd ptr ¥

Sl DRSO 0&D var b = dword ptr <k

LOCRE DL ET as

Jtexk: DBLEH DLD 55 push ebp

JLCREI0BYET10NT 89 ES ROy cbp, Csp

ext: DBLEMNAZ B3 EC 1R sub esp, 18h

LLextopnet1ons C7 N5 FL 00 0D DRe nov [ebpsuar C], @

Jext:OBUEINAD C7 A% FR AR 00 AR now [ebpiuar 0], @

Lexl:0BH@1054 C7 A5 FC 4h DD DO moy [ebpevar W], dhl

LEXE DBy a1 g

Lol :0BLET0SE loc LOTO5E: + CODE XREF: wsulby 4010h0+5C) j
—+ text:UBHEI0SE 83 /D FC M thp [ebpevar &), 1

Jtext:0BLEHO5F TE 3D jle short locret e O9E

LLCREIOBYOT1061 C7 55 FO 00 0D D@+ nov [ebprvar_10], @

Aext ABLMMNGE BB &S FR now pax, [phpruar R]

LeXEIDBNe106E 3 &S FC add eax, [ebpsuar i)

Lext:OBUMINSE A9 &% Fh now [phpiuar L], eax

LLexL:0BH@1071 83 70 Fh 1E cp [ebpevar C], 1Ek

LEXCIopunss M o jnz short loc 4U180L

LexU:0BS@107T C7 &5 FO 01 DO D@« mu [ebpevar 107, 1

Lot nEe e

bext D 0BLEH OTE loc_WBROTE: ; CODE KREF: sub LOH0ED+35Tj

LLCREIDBYOTOVE 83 7D F4y oA chp [cbprvar C]. 0

Ltext ABLEHRR? 75 13 jnr shart loc_4EB97

LLexrIopnei10gy 88 5 FC now eax, [ebpsuar i

et DBLRANAT A9 Bk DL Bh now [espeifhevar 1k], eax

LexL 001088 C7 06 24 20 20 hie nov [esps18hevar 18], offsel aPrintBumber® ; “Prinl Humbe L

LLeXEIDB4RINY2 LU U7 R @@ ue call print

Lext:0BLO1097

JOOKE e s loc_4wHipl/s: : CODE XREF: Sub 4@10m0+4271

© Jbext:DBLEA09T 8D AL FC lea eax, [ebpruar k]

LLeXCI0BuE1O?A FF 08 e dword por [eax]
. EpxE:MBLEANSE FR RD jop short Toc_40HESE

Lexriophenove

Sl LI I9E

el 0B a1 0%E locrel H@109E: 5 CODE XREF: sub 4010%0+1FTj

LLEXEIUBYRIOYL CY leave

SLexb:DBLB10%F C3 reln

LLeKE DRy ETOPF cub_4e10%0 endp

TBO 04/2013

Strings window Shows all strings. By default, this
list shows only ASCII strings longer than five char-
acters. You can change this by right-clicking in the
Strings window and selecting Setup.

Imports window Lists all imports for a file.

Exports window Lists all the exported functions
for a file. This window is useful when you’re ana-
lyzing DLLs.

Structures window Lists the layout of all active
data structures. The window also provides you the
ability to create your own data structures for use as
memory layout templates.

These windows also offer a cross-reference fea-

IDA Pro

Returning to the Default View

The IDA Pro interface is so rich that, after press-
ing a few keys or clicking something, you may find
it impossible to navigate. To return to the default
view, choose Windows—Reset Desktop. Choos-
ing this option won’t undo any labeling or disas-
sembly you’ve done; it will simply restore any win-
dows and GUI elements to their defaults.

Listing 1. Navigational links within the disassembly
window

jnz short loc 40107E

ture that is particularly useful in locating interesting mov [ebptvar 10],

code. For example, to find all code locations that loc_40107E: ; CODE XREF:
call an imported function, you could use the import sub_401040+35]

window, doubleclick the imported function of inter- cmp [ebptvar C],

est, and then use the cross-reference feature to jnz short loc 401097

locate the import call in the code listing. mov eax, [ebptvar 4]

mov [esp+ +var 14], eax
&P IDA - Pi\basic_example.exe EEy e daee 4B, el
) aPrintNumberD ; “Print Number= %d\n”
File Edit Jump Search View call printf
call sub 4010A0
B H|| -~ ||
Figure 4. Navigational buttons
a d v e r t i s e m e n t

Workbooks.com

Web Based CRM & Business Applications for
small and medium sized businesses

Find out how Workbooks CRM
can help you

- Increase Sales

- Generate more Leads

- Increase Conversion Rates

- Maximise your Marketing ROI

- Improve Customer Retention

ContactUs to Find Out Mare

+44[0] 118 3030 100
infafdworkbooks.com

http://workbooks.com

THETOOLS

By the same token, if you've modified the win-
dow and you like what you see, you can save the
new view by selecting Windows— Save desktop.

Navigating IDA Pro

As we just noted, IDA Pro can be tricky to navigate.
Many windows are linked to the disassembly win-
dow. For example, double-clicking an entry within
the Imports window or Strings window will take you
directly to that entry.

Using Links and Cross-References

Another way to navigate IDA Pro is to use the links
within the disassembly window, such as the links
shown in Listing 1. Double-clicking any of these
links will display the target location in the disas-
sembly window. The following are the most com-
mon types of links:

* Sub links are links to the start of functions such
as printf and sub_4010A0.

* Loc links are links to jump destinations such as
loc_40107E and loc_401097.

» Offset links are links to an offset in memory.

Cross-references are useful for jumping the dis-
play to the referencing location: ox401075 in this ex-
ample. Because strings are typically referenc-

Listing 2. The disassembly listing

push offset aMab ; “S$mab”
lea 0 +var 1C]
push
call strcmp
add ,
test 7
jnz short loc 401104
push offset aKeyAccepted ; “Key
Accepted!\n”

call printf

add ,

jmp short loc 401118

loc_401104 ; CODE XREF: _

main+537j

push offset aBadKey ; “Bad key\n”

call printf

Figure 5. Searching example

» HAaRING

<)

es, they are also navigational links. For example,
aPrintNumberD Can be used to jump the display to
where that string is defined in memory.

Exploring Your History

IDA Pro’s forward and back buttons, shown in Fig-
ure 4, make it easy to move through your history,
just as you would move through a history of web
pages in a browser. Each time you navigate to a
new location within the disassembly window, that
location is added to your history.

Navigation Band

The horizontal color band at the base of the tool-
bar is the navigation band, which presents a color-
coded linear view of the loaded binary’s address
space. The colors offer insight into the file contents
at that location in the file as follows:

» Light blue is library code as recognized by
FLIRT.

* Red is compiler-generated code.

» Dark blue is user-written code.

You should perform malware analysis in the dark-
blue region. If you start getting lost in messy
code, the navigational band can help you get
back on track. IDA Pro’s default colors for da-
ta are pink for imports, gray for defined data, and
brown for undefined data.

Jump to Location

To jump to any virtual memory address, simply
press the G key on your keyboard while in the dis-
assembly window. A dialog box appears, asking for
a virtual memory address or named location, such
as sub_401730 or printf.

To jump to a raw file offset, choose Jump—Jump
fo File Offset. For example, if you're viewing a PE
file in a hex editor and you see something inter-
esting, such as a string or shellcode, you can use
this feature to get to that raw offset, because when
the file is loaded into IDA Pro, it will be mapped as
though it had been loaded by the OS loader.

Searching

Selecting Search from the top menu will display
many options for moving the cursor in the disas-
sembly window:

* Choose Search—Next Code to move the cur-
sor to the next location containing an instruc-
tion you specify.

* Choose Search—Text to search the entire dis-
assembly window for a specific string.

TBO 04/2013

* Choose Search—Sequence of Bytes to per-
form a binary search in the hex view window
for a certain byte order. This option can be
useful when you’re searching for specific data
or opcode combinations.

The following example displays the command-line
analysis of the password.exe binary. This mal-
ware requires a password to continue running,
and you can see that it prints the string Bad key
after we enter an invalid password (test).

C:\>password.exe
Enter password for this Malware: test
Bad key

We then pull this binary into IDA Pro and see how
we can use the search feature and links to unlock
the program. We begin by searching for all occur-
rences of the Bad key string, as shown in Figure 5.
We notice that Bad key is used at ox401104, SO We

IDA Pro

jump to that location in the disassembly window by
double-clicking the entry in the search window.

The disassembly listing around the location of
0x401104 is shown next. Looking through the list-
ing, before "Bad key\n", we see a comparison at

Il mrefs to sub
Dirsction T... Addisss Teut C
IVl p b SIEEIC+ u
L\J.L'lma i} sy IFAL 2 cal b AEFIH
L.\J.L'lwq: i} s AIFGAL 20 cal wub AETIED
L\J.L'Ims i} suly I cal Tub AESIEIN
L.\J.L'lma 5] g I B call sub AETIHD
L.IJ.L'IM: i} iy A« 37 cal Tub AFIEN
L\J.L'lma i} sy A w40 cal b AEFIH
LAl D ab AUAEILSEE call sub SUETED
L\J.L'Ims i} suly 1S« cal Tub AESIEIN
L.\J.L'lma 5] ol UEES call sub AETIHD
Il D i dlaFI«Hd cal puby AIEIED =
i ;]]
[ok Gomtl Helr Gonich
Line] ol B4
W - -

Figure 6. Xrefs window

Listing 3. Code cross-references

0401000 sub 401000 proc near ; CODE XREF:
_main+3p
00401000 push ebp
0040 mov ebp, esp
0401003 loc 401003: ;
sub_401000+197
00401003 mov

CODE XREF':

eax, 1
00401008 test eax, eax
040100A jz short loc 40101B
0040100C push
A (call
add

jmp

offset aLoop ; “Loop\n”
printf
esp, 4

short loc 401003

Listing 4. Data cross-references

)040C000 dword 40C000 dd 7F000001h g
DATA XREF: sub 401020+14r

040C004 aHostnamePort db
<Port>’,0Ah,0 ; DATA XREF: sub 401000+30

‘<Hostname>

Listing 5. Function and stack example

0401020 ; Attributes: ebp-based frame

function proc near ; CODE XREF:
~main+l1Cp

)0401020 var C = dword ptr -0Ch
00401020 var_ 8 = dword ptr -¢
00401 var 4 = dword ptr -4
00401 arg 0 = dword ptr &
00401020 arg 4 = dword ptr 0Ch
0040
0040 push ebp
0040102 mov ebp, esp
00401023 sub esp, 0Ch
00401026 mov [ebptvar 8],
102C mov [ebptvar C],
00401034 mov eax, [ebpt+var 8]
)0401037 add eax, 22h
4 3A mov [ebpt+arg 0], eax
040103D cmp [ebpt+arg 0], 64h
401041 jnz short loc 40104B
00401043 mov ecx, [ebptarg 4]
0401046 mov [ebptvar 4], ecx
401049 jmp short loc 401050
40104B loc 40104B: ; CODE XREF':
function+21j
0040104B call sub 401000
00401050 loc 401050: ; CODE XREF:
function+297j
0401050 mov eax, [ebptarg 4]
401053 mov esp, ebp
)401055 pop ebp
0401056 retn
0401056 function endp

www.hakin9.org/en

<))

HaRIN9 .

THETOOLS

ox4010r1, Which tests the result of a strcmp. One of
the parameters to the strcmp is the string, and likely
password, smab (Listing 2). The next example shows
the result of entering the password we discovered,
smab, and the program prints a different result.

C:\>password.exe

Enter password for this Malware: S$mab
Key Accepted!

The malware has been unlocked

This example demonstrates how quickly you can
use the search feature and links to get information
about a binary.

Using Cross-References

A cross-reference, known as an xref in IDA Pro,
can tell you where a function is called or where
a string is used. If you identify a useful function
and want to know the parameters with which it is
called, you can use a cross-reference to navigate
quickly to the location where the parameters are
placed on the stack. Interesting graphs can also be
generated based on cross-references, which are
helpful to performing analysis.

Code Cross-References
Listing 3 shows a code cross-reference that tells us
that this function (suo_401000) is called from inside

i AR R A

Figure 7. Graphing button toolbar

Table 1. Graphing Options

Function

Button

..m Graphs function calls for the entire
program

Description

Use this to gain a quick understanding of the hierarchy of function calls
made within a program, as shown in Figure 8. To dig deeper, use WinG-

the main function at offset ox3 into the main func-
tion. The code cross-reference for the jump tells us
which jump takes us to this location, which in this
example corresponds to the location marked at
the end. We know this because at offset ox19 into
sub_401000 iS the ymp at memory address ox4010109.
By default, IDA Pro shows only a couple of cross-
references for any given function, even though ma-
ny may occur when a function is called. To view all
the cross-references for a function, click the func-
tion name and press X on your keyboard. The win-
dow that pops up should list all locations where
this function is called. At the bottom of the Xrefs
window in Figure 6, which shows a list of cross-ref-
erences for sub 408980, you can see that this func-
tion is called 64 times (“Line 1 of 64”). Double-click
any entry in the Xrefs window to go to the corre-
sponding reference in the disassembly window.

Data Cross-References
Data cross-references are used to track the way
data is accessed within a binary. Data referenc-
es can be associated with any byte of data that
is referenced in code via a memory reference, as
shown in Listing 4. For example, you can see the
data cross-reference to the pworp o0x7r000001. The
corresponding cross-reference tells us that this da-
ta is used in the function located at ox401020. The
following line shows a data cross-reference for the
string <#ostname> <Port>.

The static analysis of strings can often be used
as a starting point for your analysis. If you see an

raph32’s zoom feature. You will find that graphs of large statically linked
executables can become so cluttered that the graph is unusable.

3 RS LR R

currently selected symbol

=y Graphs the crossreferences from the This is a useful way to see a series of function calls. For example, Figure 9
displays this type of graph for a single function. Notice how sub_4011f0

calls sub_401110, which then calls gethostbyname. This view can
quickly tell you what a function does and what the functions do un-
derneath it. This is the easiest way to get a quick overview of the func-

tion.

- HAaRING

<))

TBO 04/2013

interesting string, use IDA Pro’s cross-reference
feature to see exactly where and how that string is
used within the code.

Analyzing Functions

One of the most powerful aspects of IDA Pro is its
ability to recognize functions, label them, and break
down the local variables and parameters. Listing 5
shows an example of a function that has been rec-
ognized by IDA Pro. Notice how IDA Pro tells us
that this is an EBP-based stack frame used in the
function, which means the local variables and pa-
rameters will be referenced via the EBP register
throughout the function. IDA Pro has successfully
discovered all local variables and parameters in this
function. It has labeled the local variables with the
prefix var_ and parameters with the prefix arg_, and
named the local variables and parameters with a
suffix corresponding to their offset relative to EBP.
IDA Pro will label only the local variables and pa-
rameters that are used in the code, and there is no
way for you to know automatically if it has found ev-
erything from the original source code. Local vari-
ables will be at a negative offset relative to EBP and
arguments will be at a positive offset. You can see

reaphld -
Bebs Yo fooem o pldip
b e [el [~

- —

Ll

43 macdan, 88 soiga sageranes, X cramgs

Figure 8. Cross-reference graph of a program

Table 2. Function Operand Manipulation

IDA Pro

that IDA Pro has supplied the start of the summary
of the stack view. The first line of this summary tells
us that var c corresponds to the value -oxcnh. This
is IDA Pro’s way of telling us that it has substituted
var_c for -oxc; it has abstracted an instruction. For
example, instead of needing to read the instruction
as mov [ebp-0ch], 3, we can simply read it as “var c
is now set to 3” and continue with our analysis. This
abstraction makes reading the disassembly more
efficient.

Sometimes IDA Pro will fail to identify a function.
If this happens, you can create a function by press-
ing P. It may also fail to identify EBP-based stack
frames, and the instructions mov [ebp-0Ch], eax
and push dword ptr [ebp-010h] might appear in-
stead of the convenient labeling. In most cases, you
can fix this by pressing ALT-P, selecting BP Based
Frame, and specifying 4 bytes for Saved Registers.

Using Graphing Options
IDA Pro supports five graphing options, accessible
from the buttons on the toolbar shown in Figure 7.

- I
Iﬁ *-hllﬂl
———

B miedramil . et 8, 8911P0
e Yew feem Maw lew
(] aam|] + | [F ol [

|

i':_.lr\. -1 - ﬂ

Figure 9. Cross-reference graph of a single function
(sub_4011F0)

16 wates, |8 wigr e, § g

Without renamed arguments With renamed arguments

004013C8
004013CB
004013CC
004013D1
004013D4
004013DB movzx ecx,
004013E2 test
004013E4 Jnz

004013E6 push
004013EB call
004013F0 add

004013F3

004013F8 ;
004013F8

004013F8 loc _ 4013F8:
004013F8 movzx edx,
004013FF push edx

00401400 call ds:htons

mov
push
call
add
mov

eax, [ebptarg 4]
eax

_atoi
esp, 4
[ebptvar

[ebptvar

598], ax
598]
ecx, ecx
short loc 4013F8
offset aError
printf

esp, 4

loc _4016FB

[ebptvar 598]

004013C8 mov eax, [ebptport str]
004013CB push eax

004013CC call _ atoi

00401301 add esp, 4

004013D4 mov [ebptport], ax
004013DB movzx ecx, [ebptport
004013E2 test ecx, ecx

004013E4 jnz short loc 4013F8
004013E6 push offset aError
004013EB call printf

004013F0 add esp, 4

004013F3 Jjmp loc 4016FB
004013F8 ; ———=——=———————————————
004013F8

004013F8 loc _ 4013F8:

004013F8 movzx edx, [ebp+port
004013FF push edx

00401400 <call ds:htons

www.hakin9.org/en

<))

HaHIN9

THETOOLS

Four of these graphing options utilize cross-refer-
ences. When you click one of these buttons on the
toolbar, you will be presented with a graph via an
application called WinGraph32. Unlike the graph
view of the disassembly window, these graphs
cannot be manipulated with IDA. (They are often
referred to as legacy graphs.) The options on the
graphing button toolbar are described in Table 1.

Enhancing Disassembly

One of IDA Pro’s best features is that it allows you
to modify its disassembly to suit your goals. The
changes that you make can greatly increase the
speed with which you can analyze a binary.

Renaming Locations

IDA Pro does a good job of automatically nam-
ing virtual address and stack variables, but you
can also modify these names to make them more
meaningful. Auto-generated names (also known
as dummy names) such as sub_401000 don’t tell you
much; a function named ReverseBackdoorThread
would be a lot more useful. You should rename
these dummy names to something more meaning-
ful. This will also help ensure that you reverse-en-
gineer a function only once. When renaming dum-
my names, you need to do so in only one place.
IDA Pro will propagate the new name wherever
that item is referenced.

After you've renamed a dummy name to some-
thing more meaningful, cross-references will be-
come much easier to parse. For example, if a func-
tion sub 401200 is called many times throughout a

cmp [Phptuvar_ W], &1h
jz short loc_N0101E
cmp [ebpsyvar k], E-2I.
j7 shart loc_4i1uzl ‘| Lize standard symbalic constant
cmp [chp+var_&], 63l
jz shurt luc hoi03(s 98 H
imp short loc &M l]hl_-l 1426
T 1100010 B
=S R

Figure 10. Function operand manipulation

Table 3. Code Before and After Standard Symbolic Constants

program and you rename it to DNSrequest, it will
be renamed DNSrequest throughout the program.
Imagine how much time this will save you during
analysis, when you can read the meaningful name
instead of needing to reverse the function again or
to remember what sub_401200 does.

Table 2 shows an example of how we might re-
name local variables and arguments. The left col-
umn contains an assembly listing with no argu-
ments renamed, and the right column shows the
listing with the arguments renamed. We can actu-
ally glean some information from the column on
the right. Here, we have renamed arg 4 tO port_
str and var_s9s to port. You can see that these re-
named elements are much more meaningful than
their dummy names.

Comments
IDA Pro lets you embed comments throughout
your disassembly and adds many comments au-
tomatically.

To add your own comments, place the cursor
on a line of disassembly and press the colon (:)
key on your keyboard to bring up a comment win-
dow. To insert a repeatable comment to be echoed

rﬁ Phease choose a syrmbal |E|Lﬁ1
Tpe name Drechua.. Twpe ooy P
ft- L5 _CONTIMUDLS 0000000 MS SDEK [Mirdows HP|
)T EVENT_THALE FLAG EXTENSIUON SOUDDDUD W5 0K MWirdows =F)
£ FILE_FLAG_WRITE_THROUGH B00000C0 M5 SDFK fwindowes =F)
fr_ FINDFRAME _INTERMAI AN0NNN0 ME SDEK fwWindows =F)

£ FINDTONT_MATCHALEFHAMZS (0000000 M5 SOK [wWindows X
£ FR_MATCHALEFHAMZA SO0000] WS SOK. Pwfirwdows +F
A7 F5_STHEOL s:mm:u M SDE Mwirekoes =F)
A P _ALLMWRTLREANING ME qmc [fircdona =)
VAGENERIC READ BN WS SOK (Widows 56

i HELY LLA' SRS _RUOT
}T HLMF_MEWWINDUPW S MANAGED

HeaoMetadata
£ INE NFEMISE

Ll.l'.l.l.'l.l.l.l H'.- '.sl.'lF ['-'.-'nd-n-w HF|
SOUUDUL M= SDE M rrkes =2F)

20000000 WS SDK Mwindaws =F)
SONINNTN . WS SE M W01

[ok th[Enarch |

=

" -

Figure 11. Standard symbolic constant window

Before symbolic constants After symbolic constants

mov esi, [espt+lCh+argv] mov esi, [espt+lCht+argv]
mov edx, [esit4] mov edx, [esit4]
mov edi, ds:CreateFileA mov edi, ds:CreateFileA
push 0 ; hTemplateFile push NULL ; hTemplateFile
push 80h ; dwFlagsAndAttributes push FILE ATTRIBUTE NORMAL ; dwFlagsAndAttributes
push 3 ; dwCreationDisposition push OPEN EXISTING ; dwCreationDisposition
push 0 ; lpSecurityAttributes push NULL ; lpSecurityAttributes
push 1 ; dwShareMode push FILE SHARE READ ; dwShareMode
push 80000000h ; dwDesiredAccess push GENERIC _READ ; dwDesiredAccess
push edx ; lpFileName push edx ; lpFileName
call edi ; CreateFileA call edi ; CreateFileA
- HaRIN9 @ @ 80 042013

across the disassembly window whenever there is
a cross-reference to the address in which you add-
ed the comment, press the semicolon (;) key.

Formatting Operands

When disassembling, IDA Pro makes decisions re-
garding how to format operands for each instruc-
tion that it disassembles. Unless there is context,
the data displayed is typically formatted as hex
values. IDA Pro allows you to change this data if
needed to make it more understandable.

Figure 10 shows an example of modifying op-
erands in an instruction, where 62h is compared
to the local variable var 4. If you were to right-
click 62h, you would be presented with options
to change the 62h into 95 in decimal, 1420 in oc-
tal, 11000100 in binary, or the character » in ASCII —
whatever suits your needs and your situation.

To change whether an operand references mem-
ory or stays as data, press the O key on your key-

IDA Pro

board. For example, suppose when you're analyz-
ing disassembly with a link to 10c_410000, you trace
the link back and see the following instructions:

mov eax, loc 410000
add ebx, eax
mul ebx

At the assembly level, everything is a number,
but IDA Pro has mislabeled the number 4259840
(oxa10000 in hex) as a reference to the address
410000. To correct this mistake, press the O key
to change this address to the number 4710000h
and remove the offending cross-reference from
the disassembly window.

Using Named Constants

Malware authors (and programmers in general)
often use named constants such as GENERIC_
READ in their source code. Named constants pro-

Table 4. Manually Disassembling Shellcode in the paycuts.pdf Document

File before pressing C File after pressing C

00008384 db 28h ; (00008384 db 28h ; (

0000839B db O0FSh ;

0000839C db 0
0000839D db 7
0000839%9E db 0
0000839F db 0

000083A0 db 75h ; u
000083A1 db OF3h ;
000083A2 db 0C2h ; -
000083A3 db 1Ch
000083A4 db 7Bh ; {
000083A5 db 16h
000083A6 db 7Bh ; {
00008327 db 8Fh ; A

00008385 db OFCh ; n 00008385 db OFCh ; n

00008386 db 10h 00008386 db 10h

00008387 db 90h ; E 00008387 nop

00008388 db 90h ; E 00008388 nop

00008389 db 8Bh ; 1 00008389 mov ebx, eax

0000838A db 0D8h ; + 0000838B add ebx, 28h ; ('
0000838B db 83h ; & 0000838E add dword ptr [ebx], 1Bh
0000838C db 0C3h ; + 00008391 mov ebx, [ebx]

0000838D db 28h ; (00008393 xor ecx, ecx

0000838E db 83h ; & 00008395

0000838F db 3 00008395 loc 8395: ; CODE XREF: seg000:000083A0j
00008390 db 1Bh 00008395 =xor byte ptr [ebx], 97h
00008391 db 8Bh ; 1 00008398 inc ebx

00008392 db 1Bh 00008399 inc ecx

00008393 db 33h ; 3 0000839A cmp ecx, 700h

00008394 db 0CSh ; + 000083A0 jnz short loc 8395
00008395 db 80h ; C 000083A2 retn 7B1Ch

00008396 db 33h ; 3 000083A2 ; =—==————— e 000083A5 db 16h
00008397 db 97h ; u 00008326 db 7Bh ; {

00008398 db 43h ; C 00008327 db 8Fh ; A

00008399 db 41h ; A

0000839A db 8lh ; 1

www.hakin9.org/en

<))

HaHIN9 /-

THETOOLS

vide an easily remembered name for the program-
mer, but they are implemented as an integer in the
binary. Unfortunately, once the compiler is done
with the source code, it is no longer possible to de-
termine whether the source used a symbolic con-
stant or a literal.

Fortunately, IDA Pro provides a large catalog of
named constants for the Windows API and the C
standard library, and you can use the Use Stan-
dard Symbolic Constant option (shown in Figure
10) on an operand in your disassembly. Figure 11
shows the window that appears when you select
Use Standard Symbolic Constant on the value
0x800000000.

The code snippets in Table 3 show the effect of
applying the standard symbolic constants for a
Windows API call to CreateFileA. Note how much
more meaningful the code is on the right.

Sometimes a particular standard symbolic con-
stant that you want will not appear, and you will
need to load the relevant type library manually. To
do so, select View—Open Subviews— Type Librar-
ies to view the currently loaded libraries. Normal-
ly, mssdk and vcbwin will automatically be loaded,
but if not, you can load them manually (as is often
necessary with malware that uses the Native API,
the Windows NT family API). To get the symbolic
constants for the Native API, load ntapi (the Mi-
crosoft Windows NT 4.0 Native API). In the same
vein, when analyzing a Linux binary, you may need
to manually load the gnuunx (GNU C++ UNIX) li-
braries.

Redefining Code and Data

When IDA Pro performs its initial disassembly of a
program, bytes are occasionally categorized incor-
rectly; code may be defined as data, data defined
as code, and so on. The most common way to re-
define code in the disassembly window is to press
the U key to undefine functions, code, or data.
When you undefine code, the underlying bytes will

On the Web

http://www.hex-rays.com/idapro/idadownfreeware.htm
— free version of IDA Pro.

be reformatted as a list of raw bytes.

To define the raw bytes as code, press C. For ex-
ample, Table 4 shows a malicious PDF document
named paycuts.pdf. At offset 0x8387 into the file,
we discover shellcode (defined as raw bytes), so
we press C at that location. This disassembles the
shellcode and allows us to discover that it contains
an XOR decoding loop with 0x97.

Depending on your goals, you can similarly de-
fine raw bytes as data or ASCII strings by pressing
D or A, respectively.

Conclusion

As you’ve seen, IDA Pro’s ability to view disas-
sembly is only one small aspect of its power. IDA
Pro’s true power comes from its interactive abil-
ity, and we’ve discussed ways to use it to mark up
disassembly to help perform analysis. We’ve also
discussed ways to use IDA Pro to browse the as-
sembly code, including navigational browsing, uti-
lizing the power of cross-references, and viewing
graphs, which all speed up the analysis process.

JACEK A. PIASECKI

Author is currently a Junior Software Develop-
er in Ericpol, where he is UMTS systems soft-
ware testing, and as a freelancer creating desk-
top applications for Windows and web appli-
cations, including the MySQL and MSSQL data-
base.

g

Contact the author: japiasecki@autograf.pl

~
=

o |

ERICPOL

- HaRING

@@

=ENOQOLUTI

TBO 04/2013

mailto:mailto:japiasecki%40autograf.pl?subject=
http://www.ericpol.pl/
http://www.hex-rays.com/idapro/idadownfreeware.htm

MOVE TOMORROW’S BUSINESS
TO THE CLOUD TODAY

~

YOUR TRUSTED ADVISOR
ON CLOUD COMPUTING

-

MULTI-VENDOR
ANY DEVICE
HYBRID CLOUD

(CLOUD! ITERATION)
= M

/l. "N |

http://www.clouditeration.com

MALWARE REVERSE ENGINEERING

Malware Reverse
Engineering

In today’s highly sophisticated world in Technology, where
Information Systems form the critical back-bone of our
everyday lives, we need to protect them from all sorts of

attack vectors.

ogy, where Information Systems form the criti-
cal back-bone of our everyday lives, we need to
protect them from all sorts of attack vectors.
Protecting them from all sorts of attack would re-
quire us understanding the modus operandi without
which our efforts would be futile. Understanding the
modi operandi of sophisticated attacks such as mal-
ware would require us dissecting malware codes
into bits and pieces with processes such Reverse
Engineering. In this article readers would be intro-
duced Reverse Engineering, Malware Analysis, Un-
derstanding attack vectors from reversed codes,
tools and utilities used for reverse engineering.

I n today’s highly sophisticated world in Technol-

Introduction

Reverse engineering is a vital skill for security pro-
fessionals. Reverse engineering malware to dis-
covering vulnerabilities in binaries are required in
order to properly secure Information Systems from
today’s ever evolving threats.

Reverse Engineering can be defined as “Per
Wikipedia’s definition: http://en.wikipedia.org/wiki/
Reverse_engineering:Reverse engineering is the
process of discovering the technological principles
of a device, object or system through analysis of its
structure, function and operation. It often involves
taking something (e.g., a mechanical device, elec-
tronic component, biological, chemical or organic
matter or software program) apart and analyzing
its workings in detail to be used in maintenance, or
to try to make a new device or program that does
the same thing without using or simply duplicating
(without understanding) the original. Reverse engi-

= HAaRING

<))

neering has its origins in the analysis of hardware
for commercial or military advantage. The purpose
is to deduce design decisions from end products
with little or no additional knowledge about the
procedures involved in the original production.
The same techniques are subsequently being re-
searched for application to legacy software sys-
tems, not for industrial or defense ends, but rather
to replace incorrect, incomplete, or otherwise un-
available documentation.”

Assembly language is a low-level programming
language used to interface with computer hard-
ware. It uses structured commands as substitu-
tions for numbers allowing humans to read the
code easier than looking at binary, though it is eas-
ier to read than binary, assembly language is a dif-
ficult language and comes in handy as a skill set
for effective reverse engineering. For this purpose,
we will delve into the basics of assembly language;

Registers

Register is a small amount of storage available on
processors which provides the fastest access data.
Registers can be categorized on the following basis:

* User-accessible registers — The most common
division of user-accessible registers is into data
registers and address registers.

+ Data registers can hold numeric values such
as integer and floating-point values, as well as
characters, small bit arrays and other data. In
some older and low end CPUs, a special data
register, known as the accumulator, is used im-
plicitly for many operations.

TBO 04/2013

http://en.wikipedia.org/wiki/Reverse_engineering:Reverse
http://en.wikipedia.org/wiki/Reverse_engineering:Reverse

* Address registers hold addresses and are used
by instructions that indirectly access primary
memory. Some processors contain registers that
may only be used to hold an address or only to
hold numeric values (in some cases used as an
index register whose value is added as an off-
set from some address); others allow registers to
hold either kind of quantity. A wide variety of pos-
sible addressing modes, used to specify the ef-
fective address of an operand, exist. The stack
pointer is used to manage the run-time stack.
Rarely, other data stacks are addressed by dedi-
cated address registers, see stack machine.

* Conditional registers hold truth values often
used to determine whether some instruction
should or should not be executed.

* General purpose registers (GPRs) can store both
data and addresses, i.e., they are combined Da-
ta/Address registers and rarely the register file is
unified to include floating point as well.

* Floating point registers (FPRs) store floating
point numbers in many architectures.

+ Constant registers hold read-only values such
as zero, one, or pi.

» Vector registers hold data for vector process-
ing done by SIMD instructions (Single Instruc-
tion, Multiple Data).

* Special purpose registers (SPRs) hold program
state; they usually include the program coun-
ter (aka instruction pointer) and status regis-
ter (aka processor status word). The aforemen-
tioned stack pointer is sometimes also included
in this group. Embedded microprocessors can
also have registers corresponding to special-
ized hardware elements.

» Instruction registers store the instruction cur-
rently being executed. In some architectures,
model-specific registers (also called machine-
specific registers) store data and settings relat-
ed to the processor itself. Because their mean-
ings are attached to the design of a specific
processor, they cannot be expected to remain
standard between processor generations.

» Control and status registers — There are three
types: program counter, instruction registers
and program status word (PSW).

Registers related to fetching information from RAM,
a collection of storage registers located on separate
chips from the CPU (unlike most of the above, these
are generally not architectural registers).

Functions

Assembly Language function starts a few lines of
code at the beginning of a function, which prepare

www.hakin9.org/en

<))

Malware Reverse Engineering

the stack and registers for use within the function.
Similarly, the function conclusion appears at the end
of the function, and restores the stack and registers to
the state they were in before the function was called.

Memory Stacks
There are 3 main sections of memory:

« Stack Section — Where the stack is located,
stores local variables and function arguments.

+ Data Section — Where the heap is located,
stores static and dynamic variables.

* Code Section — Where the actual program in-
structions are located.

The stack section starts at the high memory ad-
dresses and grows downwards, towards the low-
er memory addresses; conversely, the data sec-
tion (heap) starts at the lower memory addresses
and grows upwards, towards the high memory ad-
dresses. Therefore, the stack and the heap grow
towards each other as more variables are placed
in each of those sections

Debuggers

Are computers programs used forlocating and fix-
ing or bypassing bugs (errors) in computer pro-
gram code or the engineering of a hardware de-
vice. They also offer functions such as running a
program step by step, stopping at some specified
instructions and tracking values of variables and
also have the ability to modify program state dur-
ing execution. some examples of debuggers are:

* GNU Debugger

* Intel Debugger

« LLDB

» Microsoft Visual Studio Debugger
* Valgrind

* WinDbg

Hex Editors

Hex editors are tools used to view and edit binary
files. A binary file is a file that contains data in ma-
chine-readable form as opposed to a text file which
can be read by a human. Hex editors allow editing
the raw data contents of a file, instead of other pro-
grams which attempt to interpret the data for you.
Since a hex editor is used to edit binary files, they
are sometimes called a binary editor or a binary
file editor.

Disassemblers

Disassemblers are computer programs that trans-
late machine languages into assembly language,

HaHIN9 .

MALWARE REVERSE ENGINEERING

whilst the opposite for the operation is called an
assembly. The outputs of Disassemblers are in hu-
man readable format. Some examples are:

- IDA
. OllyDbg

Malware is the Swiss-army knife used by cyber-
criminals and any other adversary against corpo-
ration or organizations’ Information Systems.

In these evolving times, detecting and removing
malware artifacts is not enough: it’s vitally impor-
tant to understand how they work and what they
would do/did on your systems when deployed and
understand the context, the motivations and the
goals of a breach.

Malware analysis is accomplished using specific
tools that are categorized as hex editors, disassem-
blers/debuggers, decompiles and monitoring tools.

Disassemblers/debuggers occupy important po-
sition in the list of reverse engineering tools. A dis-
assembler converts binary code into assembly
code. Disassemblers also extract strings, used li-
braries, and imported and exported functions. De-
buggers expand the functionality of disassemblers
by supporting the viewing of the stack, the CPU
registers, and the hex dumping of the program as
it executes. Debuggers allow breakpoints to be set
and the assembly code to be edited at runtime.

Background

Zeus is a malware toolkit that allows a cybercrimi-
nal to build his own Trojan horse for the sole pur-
pose of stealing financial details.

Once Zeus Trojan infects a machine, it remains
idle until the user visits a Web page with a form to
fill out. It allows criminals to add fields to forms at
the browser level. This means that instead of di-
recting the end user to a counterfeit website, the
user would see the legitimate website but might be
asked to fill in an additional blank with specific in-
formation for “security reasons.”

The malware can be customized to gather cre-
dentials from banks in specific geographic areas
and can be distributed in many different ways, in-
cluding email attachments and malicious Web
links. Once infected, a PC can be recruited to be-
come part of a botnet.

Approach

For reverse engineering malware a controlled en-
vironment is suggested to avoid sprawling of mali-
cious content or using a virtual network that is com-
pletely enclosed within the host machine to prevent
communication with the outside world. Tools such

« HaRING

<))

as PE, Disassemblers, Debuggers, etc would also
be required to effectively reverse malwares.

Zeus Crimeware Toolkit

This is a set of programs which is designed to
setup a botnet over networked infrastructure. It
aims to make machines agents with the mission
of stealing financial records. Zeus has the ability to
log inputs entered user as well as to capture and
manipulate data that are displayed on web forms.

Architecture
The structure of Zeus crimeware toolkit is made up
of five components namely;

* A control panel which contains a set of PHP
scripts that are used to monitor the botnet and
collect the stolen information into MySQL data-
base and then display it to the botmaster. It also
allows the botmaster to monitor,control, and man-
age bots that are registered within the botnet.

» Configuration files that are used to customize
the botnet parameters. It involves two files: the
configuration file config.txt that lists the basic
information, and the web injects file webinjects.
txt that identifies the targeted websites and
defines the content injection rules.

* A generated encrypted configuration file con-
fig.bin, which holds an encrypted version of the
configuration parameters of the botnet.

* A generated malware binary file bot.exe, which
is considered as the bot binary file that infects
the victims’ machines.

* A builder program that generate two files: the
encrypted configuration file config.bin and
the malware (actual bot) binary file bot.exe.
On the Command&Control side, the crime-
ware toolkit has an easy way to setup the
Command&Control server through an installa-
tion script that configures the database and the
control panel. The database is used to store re-
lated information about the botnet and any up-
dated reports from the bots. These updates con-
tain stolen information that are gathered by the
bots from the infected machines. The control
panel provides a user friendly interface to dis-
play the content of the database as well as to
communicate with the rest of the botnet using
PHP scripts. The botnet configuration informa-
tion is composed of two parts: a static part and
a dynamic part. In addition, each Zeus instance
keeps a set of targeted URLs that are fed by
the web injects file webinject.txt. Instantly, Zeus
targets these URLs to steal information and to
modify the content of specific web pages

TBO 04/2013

before they get displayed on the user‘s screen.
The attacker can define rules that are used to
harvest a web form data. When a victim visits a
targeted site, the bot steals the credentials that
are entered by the victim. Afterward, it posts the
encrypted information to a drop location that is
meant to store the bot update reports. This serv-
er decrypts the stolen information and stores it in-
to a database.

Code Analysis

The builder is part of the component in the crime-
ware toolkit which uses the configuration files as
input to obfuscated configuration and the bot bi-
nary file.

The configuration File: It converts the clear text
of the configuration files to a pre-defined format
and encrypts the it with RC4 encryption algorithm
using the configured encryption key.

Zeus Configuration file includes some cam-
mands namely:

» url_loader: Update location of the bot

» url_server: Command and control server location

* AdvancedConfigs: Alternate URL locations for
updated configuration files

» Webfilters: Web filters specify a list of URLs
(with masks) that should be monitored. Any da-
ta sent to these URLs such as online banking
credentials is then sent to the command and
control server. This data is captured on the cli-
ent prior to SSL. In addition, one can specify to
take a screenshot when the left-button of the
mouse is clicked, which is useful in recording
PIN numbers selected on virtual keyboards.

+ WebDataFilters: Web data filters specify a list of
URLs (with masks) and also string patterns in
the data that must be matched. Any data sent to
these URLs and match the specified string pat-
terns such as ‘password’ or ‘login’ is then sent
to the command and control server. This data is
also captured on the client prior to SSL.

* WebFakes: Redirect the specified URL to a dif-
ferent URL, which will host a potentially fake
version of the page.

* TANGrabber: The TAN (Transaction Authen-
tication Number) grabber routine is a special-
ized routine that allows you to configure match
patterns to search for transaction numbers in
data posted to online banks. The match pat-
terns include values such as the variable name
and length of the TAN.

* DNSMap: Entries to be added to the HOSTS
file often used to prevent access to security
sites or redirect users to fake Web sites.

www.hakin9.org/en

<))

Malware Reverse Engineering

References

« http://searchsecurity.techtarget.com/definition/Zeus-
Trojan-Zbot
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Zeus_(Trojan_horse)
https://github.com/Visgean/Zeus
http://www.ncfta.ca/papers/On_the_Analysis_of_
the_Zeus_Botnet_Crimeware.pdf
http://en.wikipedia.org/wiki/Processor_register
http://www.cs.fsu.edu

» file_webinjects: The name of the configura-
tion file that specifies HTML to inject into online
banking pages, which defeats enhanced secu-
rity implemented by online banks and is used
to gather information not normally requested by
the banks. This functionality is discussed more
in-depth in the section “Web Page Injection”.

Conclusion

The ZEUS trojan captures your keystrokes and im-
plements ‘form grabbing’ (taking the contents of a
form before submission and uploading them to the
attacker) in an effort to steal sensitive information
(passwords, credit cards, social securities, etc.). It
has capabilities to infect Windows and several mo-
bile platforms, though a recent variant based on
ZUES'’s leaked source, the Blackhole exploit Kit,
can infect Macs as well.

Zeus is predominantly a financial-interest mal-
ware, however if infected, your machine will be
recruited into one of the largest botnets ever. The
master could then use your computer (along with
any other infected machines of that bot) to be used
to do any number of nefarious tasks for him (launch-
ing DDOS attacks, sending spam, relays, etc.).

Part 2 (Continued in Next Article)

This would be focused on creating the bot.exe and
using tools like IDA Pro and ollydbg to reverse and
show the inner workings from the binary files.

BAMIDELE AJAYI
Bamidele Ajayi (OCP, MCTS, MCITP EA, CI-
SA, CISM) is an Enterprise Systems Engineer
experienced in planning, designing, imple-
menting and administering LINUX and WIN-
‘ DOWS based systems, HA cluster Databas-
: 1 es and Systems, SAN and Enterprise Stor-
age Solutions. Incisive and highly dynamic
Information Systems Security Personnel with vast security archi-
tecture technical experience devising, integrating and successful-
ly developing security solutions across multiple resources, servic-
es and products.

HaRIN9 .

http://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot
http://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Zeus_(Trojan_horse)
https://github.com/Visgean/Zeus
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
http://www.ncfta.ca/papers/On_the_Analysis_of_the_Zeus_Botnet_Crimeware.pdf
http://en.wikipedia.org/wiki/Processor_register
http://www.cs.fsu.edu/

MALWARE REVERSE ENGINEERING

Android Reverse
Engineering:

an introductory guide to malware analysis

The Android malware has followed an exponential growth
rate in recent years, in parallel with the degree of penetration
of this system in different markets. Currently, over 90% of the
threats to mobile devices have Android as a main target. This
scenario has led to the demand for professionals with a very

specific knowledge on this platform.

ing to Chikofsky and Cross [1], refers to the

process of analyzing a system to identify its
components and their interrelationships, and cre-
ate representations of the system in another form
or a higher level of abstraction. Thus, the purpose
of reverse engineering is not to make changes or
to replicate the system under analysis, but to un-
derstand how it was built.

The best way to tackle a problem of reverse en-
gineering is to consider how we would have built
the system in question. Obviously, the success of
the mission depends largely on the level of experi-
ence we have in building similar systems to the an-
alyzed system. Moreover, knowledge of the right
tools we will help in this process.

In this article we describe tools and techniques
that will allow us, through a reverse engineering
process, identify malware in Android applications.

To execute the process of reverse engineering
over an application, we can use two types of tech-
niques: static analysis and / or dynamic analysis.
Both techniques are complementary, and the use
of both provides a more complete and efficient vi-
sion on the application being discussed. In this ar-
ticle we focus only on static analysis phase, ie, we
will focus on the analysis of the application by ana-
lyzing its source code, and without actually running
the application.

Static analysis of Android application starts from
the moment you have your APK file (Application
PacKage). APK is the extension used to distribute
and install applications for the Android platform.
The APK format is similar to the JAR (Java AR-

- HAaRING

The software reverse engineering, accord-

<))

chive) format and contains the packaged files re-
quired by the application.

If we unzip an APK file (for example, an APK
corresponding to the application “Iron Man 3
Live Wallpaper” available at Play Store: https:/
play.google.com/store/apps/details?id=cellfish.
ironman3wpd&hl=en):

$ unzip cellfish.ironman3wp.apk

typically we will find the following resources: Figure 1.
An interesting resource is the “AndroidManifest.

xml” file. In this XML file, all specifications of our ap-

plication are declared, including Activities, Intents,

Hardware, Services, Permissions required by the
application [2], etc. Note that this is a binary XML

B5gels

CiHn

METAMNF

A A 4 A 4

«J:" AndroidManifest.xml

E classes.dex
E IS OUI LU, Arse

Figure 1. Typical Structure of an APK File

TBO 04/2013

https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en
https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en
https://play.google.com/store/apps/details?id=cellfish.ironman3wp&hl=en

Android Reverse Engineering

file, so if you want to read easily its contents you
should convert it to a human-readable XML format.
The “AXMLPrinter2.jar” tool performs this task:

$ java -jar AXMLPrinter2.jar AndroidManifest.xml >
AndroidManifest.xml.txt
$ less AndroidManifest.xml.txt

Another important resource that we find in any
APK is the “classes.dex” file. This is a formatted
DEX (Dalvik EXecutable) file containing the byte-
codes that understands the DVM (Dalvik Virtual
Machine). Dalvik is the virtual machine that runs
applications and code written in Java, created
specifically for the Android platform.

Since we want to analyze the source code of the
application, we need to convert the DEX format to
Java source code. To do this we will pass through
an intermediate state. We will convert the DEX
format to the compiled Java code (.class). Many
tools exist for this purpose. One of the most used
is “dex2jar”.

This tool takes as input the APK file and gener-
ates a JAR file as output:

$ /vad/tools/dex2jar/d2j-dex2jar.sh cellfish.
ironman3wp.apk
dex2jar cellfish.ironman3wp.apk -> cellfish.

ironman3wp-dex2jar.jar

Now we only need to decompile the Java classes
to get the source code. To do this, we can use the
‘JD-GUI” tool (Figure 3):

$ /vad/tools/jd-gui/jdgui cellfish.ironman3wp-
dex2jar.jar

One of the first observations we draw from de-
compile the Java code in our example, is the fact
that it has been used some code obfuscation tool
that complicates the process of analyzing the ap-
plication. The most common tools are “ProGuard”
[3] and “DexGuard” [4].

Although these tools are commonly used to pro-
vide an additional layer of security and hinder the
reverse engineering process, these applications
can also be used in order to optimize the code and
get a APK of a smaller size (eg, optimizing the by-
tecode eliminating unused instructions, renaming
the class name, fields, and methods using short
meaningless names, etc..).

In our example, we can deduce that the develop-
ers have used “ProGuard” (open source tool) be-
cause we can observe that some of the features
offered by “DexGuard” are not been implemented
in the analyzed code:

www.hakin9.org/en

<))

» The strings are not encrypted

* The code associated with logging functionality
are not removed

* Does not exist encrypted files in the /assets re-
source

* There are no classes that have been entirety
encrypted

Once we have access to source code, we can try
to better understand how the application is built.
‘JD-GUI” allows us to save the entire application
source code in a ZIP file, so you can perform new
operations on this code using other tools. For ex-
ample, to search for key terms on the entire code
using the “grep” utility from the command line.

<fxml version="1.0" encoding="utf-@"f=
«manifast
mmlngrandrolds®http: ffschesas . android . com fapk Sres fandroid®
amdraid: versionCode="1"
androld: varsionhame="1,0"
androad: installlocation="a"
package="cellfish, ironeandwp"

algds - fdk
andraid: minSdk Vers1on="5"
android: targetSdkVersion="17"
=

= s - sk
585 - faature
android:name="android.software. live_wallpaper"

= uses - Teatures

auges- feature
android:name="android. hardvare. touchscrean®
andraid: requi reds® false®
5

</uses- featuras

alfns - foaturs
android: g lEsVe rs 1 ons" 0o 0000000
=

</ufih- featura=
LIS I. HraLrsslian
android; name="con. android, vending BILLING

USRS - pErmission:

SIS - [P LS LT
android: name="android. peraission. INTERNET
=

7 LSS pErmlSsLons

<585 -pErALSELON
android:name="android. pereission. ACCESS_NETWORK_STATE"
p

USRS - pErmSS 10nE

“|5e5-peraission
android:name="android. pereission. VIBRATE"
Ed

f!hSES-i!rIliSiﬂﬂi

Figure 2. Contents of an AndroidManifest.xml File

Figure 3. Viewing the Source Code Decompiled with JD-GUI

HaHRIN9 /.

MALWARE REVERSE ENGINEERING

Although “JD-GUI” allows us to browse the entire
hierarchy of objects in a comfortable manner, we
generally find applications where there is a large
number of Java classes to analyze, so we need to
rely on other tools to facilitate the understanding of
the code .

Following the aim that defined Chikofsky and
Cross in reverse engineering, which is none other
than that of understanding how the application is
built, there is a tool that will help us greatly in this
regard: “Understand”.

According to the website itself, “Understand” is a
static analysis tool for maintaining, measuring and
analyzing critical or large code bases. Although is
not purely a security tool (do not expect to use it as
a vulnerability scanner), it helps us to understand
the application code, which is our goal (Figure 4).

There are several online tools that have a similar
purpose. For example, “Dexter” gives us detailed
information about the application we want to ana-
lyze. As with any online service, our analysis is ex-
posed to third party who can get to make use of
our work, so we should always keep this in mind.

With the “Dexter” tool, is a simple as registering,
create a project and upload the APK that we want
to analyze. After the analysis, we can view infor-
mation such as the following:

Figure 4. Understand Showing the UML Class Diagram of the
Application

Figure 5. Initial View of an Application Analysis with Dexter

« HAaRINGg

<))

» Package dependency graph

» List of classes

» List of strings used by the application

» Defined permissions and used permissions

« Activities, Services, Broadcast Receivers, Con-
tent Providers

+ Statistical data (percentage of obfuscated
packages, use of internal versus external pack-
ages, classes per package, etc.).

Possibly, the power of this tool lies in its ease of
use (all actions are performed through the brows-
er) and navigating the class diagram and applica-
tion objects (Figure 5).

Malware Identification in the Play Store
It's not a secret that Google’s official store (the
Play Store, which we have received an update in
late April this year), hosts malware. Now, how do
we identify those malicious applications? How do
we know what they are really doing? Let us then
how to answer these questions.

The techniques for introducing malware on a
mobile application can be summarized in the fol-
lowing:

» Exploit any vulnerability in the web server host-
ing the official store (typically, for example, tak-
ing advantage of a XSS vulnerability)

» Enter malware in an application available at
the official store (most users trust it and can
be downloaded by a large number of potential
users)

» Install not malicious applications that at some
point installs malware (eg, include additional
levels with malware into a widespread game)

» Use alternatives to official stores to post appli-
cations containing malware (usually, offering
free applications that are not free in the official
store)

When we talk about to introduce malware into an
application, we can refer to two different scenarios:

* The published application contains code that
exploits a vulnerability in the device, or

* The published application does not exploit any
vulnerability, but contains code that can per-
form malicious actions and, therefore, the us-
er is warned of the permissions required by the
application as a step prior to installation.

In this article we focus on the second case: ap-

plication with malicious code that exploits the us-
er’s trust.

TBO 04/2013

Android Reverse Engineering

How to Identify Malicious Applications on
the Play Store?

A malicious application includes code that per-
forms some action not expected by the user. For
example, if a user downloads from the official
store an application to change the wallpaper of
his device, the user do not expect that this app
can read his emails, can make phone calls or
send SMS messages to premium accounts, for
example.

A tool that allows us to quickly assess the exis-
tence of malicious code is “VirusTotal” [5]. For ex-
ample, if we use the service offered by “VirusTotal”
to analyze the APK of the “Wallpaper & Background
Browser” application of the “Start-App” company,
and available in the Play Store (https://play.google.
com/store/apps/details?id=com.startapp.wallpa-
per.browser), we note that 12 of the 46 supported
antivirus by this service, detect malicious code in
the application. Exactly, the following:

« AhnLab-V3. Result: Android-PUP/Plankton

* AVG. Result: Android/Plankton

* Commtouch. Result: AndroidOS/Plankton.A.gen!
Eldorado

« Comodo. Result: UnclassifiedMalware

* DrWeb. Result: Adware.Startapp.5.origin

« ESET-NOD32. Result: a variant of Android/
Plankton.l

* F-Prot. Result: AndroidOS/Plankton.D

* F-Secure. Result: Application:Android/Counter-
clank

« Fortinet. Result: Android/Plankton.Altr

+ Sophos. Result: Andr/Newyearl-B

» TrendMicro-HouseCall. Result: TROJ_GEN.
F47Vv0830

* VIPRE. Result: Trojan.AndroidOS.Generic.A
(Figure 6)

Here’'s another example. If we search at the Play
Store the “Cool Live Wallpaper” application (https:/
play.google.com/store/apps/details?id=com.own-
skin.diy _01ztiOrso7rb), developed by “Brankhox”,
we find the following information:

Package

com.ownskin.diy 0lztiOrso7rb
Permissions
android.permission.INTERNET
android.permission.READ PHONE STATE

android.permission.ACCESS NETWORK STATE
android.permission.WRITE EXTERNAL STORAGE

www.hakin9.org/en

<))

android.permission.READ SMS
android.permission.READ CONTACTS
com.google.android.gm.permission.READ GMAIL
android.permission.GET ACCOUNTS
android.permission.ACCESS WIFI STATE

Potential malicious activities

The application has the ability to read text
messages (SMS or MMS)

The application has the ability to read mail
from Gmail

The application has the ability to access user
contacts

The questions we must ask is why and for what
purpose the application need these permissions,
like reading my email or access my contacts? It's
really so intrusive as it sounds?

We will use some of the tools described above,
to reverse engineer this application and see if it is
using some of the more sensitive permissions that
it requests.

Step 1: Get the APK file of the application
There are multiple ways to obtain an APK:

* Downloading an unofficial APK

* Google: we can use the Google search en-
gine to locate the APK.

* Unofficial repositories: we can find the APK
in several alternative markets [6] or other re-
positories like 4shared.com, apkboys.com,
apkmania.co, aplicacionesapk.com, aptoide.
com, flipkart.asia, etc.

* Downloading an official APK

* Real APK Leecher [7]: This tool allows us to
download the official APK for some applica-
tions.

+ SaveAPK [8]: This tool (required to have
previously installed the ,Ol File Manager”

L
¥
o

[~ total

o)

Figure 6. Result of a VirusTotal Analysis on an APK

HaHIN9 /.

https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.startapp.wallpaper.browser
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb
https://play.google.com/store/apps/details?id=com.ownskin.diy_01zti0rso7rb

MALWARE REVERSE ENGINEERING

application) available on the Play Store, lets
us generate the APK if we have previously
installed application on the device.

» Astro File Manager [9]: This tool is available
in the Play Store, and we can get the APK if
we have previously installed the application
on the device. When performing a backup
of the application, the APK is stored in the
directory that is defined for backup.

Given the risk involved in dealing with malware,
if we choose the option to download the APK
existing in the Play Store from a previous instal-
lation of the application, we should use prefer-
ably an emulator [10] or a device of our test lab
(Figure 7).

EVAT CUONG

.lJ
- — S
PO = il
g 4
I' S— - u « =2

Figure 7. Downloading an APK with APK Real Leecher

Step 2: Convert the application from the
Dalvik Executable format (.dex) to Java
classes (.class)

The idea is to have the application code into a
human-readable format. In this case, we use the
“dex2jar” tool to convert the format Android to the
Java format:

$ /vad/tools/d2j-dex2jar.sh com.ownskin.
diy 0lztiOrso7rb.apk
dex2jar com.ownskin.diy 01ztiOrso7rb.apk ->
com.ownskin.diy 0lztiOrso7rb-dex2jar.jar

Step 3: Decompile the Java code
Using a Java decompiler (like “JD-GUI”), we can
obtain the Java source code from the .class files.
In our case, we will choose a fast track. “JD-GUI”
allows us to save the entire application source
code in a ZIP file. We'll keep this file as “com.own-
skin.diy_01ztiOrso7rb-dex2jar.src.zip”, and unzip it
to perform a manual scan.
We note that there are 353 Java source files:

$ find /vad/lab/Android/com.ownskin.diy 01ztiOr
so7rb-dex2jar.src/ -type f | wc -1
353

Step 4: Find malicious code in the application

We can now search in any resource of the appli-
cation to identify strings that may be susceptible
of being used for malicious purposes. For exam-
ple, we have previously identified that this appli-
cation sought permission to read SMS messages.

Listing 1. Finding Malicious Code in the Application

$ grep -1 sms -r *

arrayOfObject[0]) ;
com/ownskin/diy 0lztiOrso7rb/ht.java:
dress());
com/ownskin/diy 0lztiOrso7rb/ht.java:
com/ownskin/diy 01lztiOrso7rb/hm.java:
com/ownskin/diy 0lztiOrso7rb/hm.java:
com/ownskin/diy 0lztiOrso7rb/hs.java:
com/ownskin/diy 0lztiOrso7rb/hs.java:

$ cd /vad/lab/Android/com.ownskin.diy 0lztiOrso7rb-dex2jar.src/

com/ownskin/diy 01lztiOrso7rb/ht.java:import android.telephony.SmsMessage;

com/ownskin/diy 0lztiOrso7rb/ht.java: SmsMessage[] arrayOfSmsMessage = new
SmsMessage [arrayOfObject.length];
com/ownskin/diy 0lztiOrso7rb/ht.java: arrayOfSmsMessage[0] = SmsMessage.createFromPdu ((byte[])

hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAd-

hs.c(this.a, arrayOfSmsMessage[0].getMessageBody()) ;
if (!”SMS MMS”.equalsIgnoreCase (this.U))
a (Uri.parse (“content://sms”));

Uri localUri = Uri.parse(“content://sms”);

this.P.1() .registerReceiver (this.ac, new

IntentFilter (“android.provider.Telephony.SMS RECEIVED”)) ;

« HAaRING

<))

TBO 04/2013

Android Reverse Engineering

Let’s see if the application actually use this per-
mission (Listing 1).

Using the “grep” command, we identified that the
following resources (Java classes) seem to con-
tain some code that allows read access to the us-
er's SMS:

» com/ownskin/diy 01ztiOrso7rb/hm.java
+ com/ownskin/diy_01ztiOrso7rb/hs.java
» com/ownskin/diy_01ztiOrso7rb/ht.java

Let’s see the source code detail of these resourc-
es in JD-GUI:

» com/ownskin/diy 01ztiOrso7rb/hm.java

if (!”SMS MMS”.equalsIgnoreCase(this.U))
break label89;
a(Uri.parse (“content://sms”));
a(Uri.parse (“content://mms”)) ;

+ com/ownskin/diy_01ztiOrso7rb/hs.java
It creates a ,localUri” object of the “Uri” class,
calling the “parse” method to be used in the
query to the Content Provider that allows to ac-
cess to the SMS inbox:

public static final Uri a = localUri;
public static final Uri b = Uri.

withAppendedPath (localUri, “inbox”);

static
{
Uri localUri =
}
and registers a Receiver to be notified of the
received SMS:

Uri.parse(“content://sms”);

..this.P.1().registerReceiver (this.ac,new
IntentFilter (“android.provider.
Telephony.SMS RECEIVED”)) ;

..» com/ownskin/diy _01ztiOrso7rb/ht.java
This class implements a Broadcast Receiver.
This is simply an Android component that al-
lows the registered Receiver to be notified of
events produced in the system or in the appli-
cation itself.

In this case, the implemented Receiver is capa-
ble of receiving input SMS messages. And this
notification occurs before that the internal SMS
management application receive the SMS mes-
sages. This scenario is used by some malware,
for example, to perform some action and then
delete the received message before it is pro-
cessed by the messaging application and be de-
tected by the user.

In this example, when the user receives an SMS,
the application identify its source and read the mes-
sage, as shown in the following code: Listing 2.

As we can see (at this point, we can complete
the process of analysis of the application by a dy-
namic analysis of it), in fact, the application ac-
cesses our SMS messages. However, it's im-

public final void onReceive (Context paramContext,
{
Object[]
SmsMessage|]
if (arrayOfObject.length > 0)
{
arrayOfSmsMessage[0] =

arrayOfObject =
arrayOfSmsMessage =

if ((hs.b(this.a)

hs.b(this.a,

== null) |
hs.a(this.a));

hs.c(this.a);

Listing 2. When the User Receives an SMS, the Application Identify its Source and Read the Message

(Object[])paramIntent.getExtras () .get (“pdus”) ;
new SmsMessage[arrayOfObject.length];

SmsMessage.createFromPdu ((byte[])arrayOfObject([0]);
hs.a(this.a, arrayOfSmsMessage[0].getOriginatingAddress());

hs.b(this.a, go.a(this.a.P.1(), hs.a(this.a)));

(hs.b(this.a).length() == 0))

hs.c(this.a, arrayOfSmsMessage[0].getMessageBody()) ;

Intent paramIntent)

www.hakin9.org/en

<))

HaHIN9 /-

MALWARE REVERSE ENGINEERING

Table 1. Static Analysis Tools for Android Applications

TOOL DESCRIPTION URL

Dexter
Androguard Analysis tool (.dex, .apk, .xml, .arsc)

smali/baksmali

apktool Decode/rebuild resources

JD-GUI Java decompiler

Dedexer Disassembler tool for DEX files
AXMLPrinter2.jar Prints XML document from binary XML
dex2jar Analysis tool (.dex and .class files)

apkinspector Analysis functions

Static android application analysis tool

Assembler/disassembler (dex format)

https://dexter.bluebox.com/
https://code.google.com/p/androguard/
https://code.google.com/p/smali/
https://code.google.com/p/android-apktool/
http://java.decompiler.free.fr/?2q=jdgui
http://dedexer.sourceforge.net/
http://code.google.com/p/android4me/
https://code.google.com/p/dex2jar/
https://code.google.com/p/apkinspector/

Understand Source code analysis and metrics http://www.scitools.com/
Agnitio Security code review http://sourceforge.net/projects/agnitiotool/
References

be/~lore/Research/Chikofsky1990-Taxonomy.pdf

[4] DexGuard Tool http://www.saikoa.com/dexguard
[5] VirusTotal http.//www.virustotal.com

[1] “Reverse Engineering and Design Recovery: A Taxonomy”. Elliot J. Chikofsky, James H. Cross. http:/win.ua.ac.

[2] “Security features provided by Android” http://developer.android.com/guide/topics/security/permissions.html
[3] ProGuard Tool http://developer.android.com/tools/help/proguard.html|

[7] Alternative markets to the Play Store http://alternativeto.net/software/android-market/

[8] Real APK Leecher https://code.google.com/p/real-apk-leecher/

[9] SaveAPK https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en

[10] Astro File Manager https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
[11] “Using the Android Emulator” http://developer.android.com/tools/devices/emulator.htm|

portant to recall that we have accepted that the
application can perform these actions, because
we have accepted the permissions required and
the application has informed to us of this situation
prior to installation.

Similarly, we can verify as any application makes
use of the various permits requested, with particu-
lar attention to those that may affect our privacy or
which may result in a cost to us.

Some people sees no malware in this type of ap-
plications that take advantage of user trust, and
has been the subject of controversy on more than
one occasion. In any case, Google has decided to
remove applications from the Play Store that can
make an abuse of permits that these require to be
confirmed by users who wish to use them. That
does not mean, on the other hand, that there still
exist such applications in Google’s official store
(Table 1).

« HAaRING

<))

VICENTE AGUILERA DIAZ

With over 10 years of professional expe-
rience in the security sector, Vicente Agu-
ilera Diaz is co-founder of Internet Securi-
ty Auditors (a Spanish firm specializing in
security services), OWASP Spain Chapter
Leader, member of the Technical Adviso-
ry Board of the RedSeguridad magazine,
and member of the Jury of the IT Security Awards organized
by the RedSeguridad magazine.

Vicente has collaborate in several open-source projects, is a
regular speaker at industry conferences and has published
several articles and vulnerabilities in specialized media. Vicen-
te has the following certifications: CISA, CISSP, CSSLP, PCI ASV,
ITIL Foundation, CEH|l, ECSP|l, OPSA and OPST.

TBO 04/2013

http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://win.ua.ac.be/~lore/Research/Chikofsky1990-Taxonomy.pdf
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/tools/help/proguard.html
http://www.saikoa.com/dexguard
http://www.virustotal.com
http://alternativeto.net/software/android-market/
https://code.google.com/p/real-apk-leecher/
https://play.google.com/store/apps/details?id=org.mariotaku.saveapk&hl=en
https://play.google.com/store/apps/details?id=com.metago.astro&hl=en
http://developer.android.com/tools/devices/emulator.html

Exchange Glances - Look At Each Other's
Websites

InterGlance is the only social network where two people that share similar interests can connect and
exchange looks at each other's favorite websites. All you need to do is invite the other person to

"exchange glances" with a simple click of a button!

Connection is based ONLY on the shared interests - there are no friendship requests, no personal

information or private details required!

A
’
i

What's even better - there are thousands upon thousands of interests out there in the world, all

being explored online by people just like you.

InterGlance has an amazing selection of websites shared by the members, all unique and unusual in
their own way, all waiting to be discovered. Learn more about your personal interests
by searching or let us recommend users that share your interests and passions!

Please LOG IN here OR if you have not yet registered, take a moment to REGISTER HERE and
begin enjoying the experience of Interglance. Joining Interglance is COMPLETELY FREE! All you
need is an email address - and you are in! So don't wait any longer - join Interglance today!

http://www.interglance.com/

MALWARE REVERSE ENGINEERING

Deep Inside Malicious

PDF

In now days People share documents all the time and

most of the attacks based on client side attack and target
applications that exist in the user, employee OS, from one
single file the attacker can compromise a large network.,
PDF is the most sharing file format, due to PDFs can include
active content, passed within the enterprise and across
Networks. in this article we will make Analysis to catch

Malicious PDF files.

hen we start to check the PDF files that
W exist in our Pc or Lap top we may use an-

tivirus scanner but in this days it seems
not good enough to detect malicious PDF that
counties a shell code because, as attacker mostly
encrypt it's count -ant to bypass the antivirus scan-
ner and in many times target a zero day vulnerabil-
ity that exit in Adobe Acrobat reader or un updated
version, the Figure 1 show how PDF vulnerabilities
rising every year.

Before we start analyze malicious PDF we go-
ing to have a simple look at PDF structures as to
understand how the shell code work and where it
locate.

PDF components
PDF documents counties four main parts (one-line
header, body, cross-reference table and ftrailer).

PDF Header

The first line of pdf show the pdf format version
the most important line that give to you the basic
information of the pdf file for example “%PDF-1.4
means that file fourth version.

PDF Body

The body pdf file consist of objects that com-
pose contents of the document, these objects
include fonts, images, annotations, text streams
And user can put invisible objects or elements,
this objects can interactive with pdf features like
animation, security features. The body of the pdf
supports two types of numbers (integers, real
numbers).

» HAaRING

<))

The Cross-Reference Table (xref table)

The cross- reference counties links of all objects
and elements that exist on file format, you can use
this feature to see other pages contents (when the
users update the PDF the cross-reference table
gets updated automatically).

The Trailer
The trailer contains links to cross-reference table
and always ends up with s:ror to identify the end

Vulnerabilities Br Year

1988 1

M 2000 1

M 2001 1

W 2002 1

& 2003 3

f | B0 2004 &

2005 4

M 2008 7
M 20070
2008 11
2009 30
M 2018 s
M 2011 60
M 2012 30

[

Figure 1. Vulnerabilities By Year

8 o s B et Pl R ot e
Figure 2. Setting Metasploit Variables

TBO 04/2013

of a PDF file the trailer enables a user to navigate
to the next page by clicking on the link provided.

Malicious PDF through Metasploit

Now after we have talking a tour inside PDF file
format and what it contains we will start to install
old version of Adobe Acrobat reader 9.4.6 and 10
through to 10.1.1 that will be vulnerable to Adobe
U3D Memory Corruption Vulnerability.

This exploit are exist in Metasploit framework so
we going to create the malicious PDF and analysis
it in KALI Linux distribution. Start opens the termi-
nal and type msfconsole (Figure 2). As the picture
below, we going to setting some Metasploit vari-
ables to be sure that everything is working fine.

*After choosing the exploit type we going to choose
the payload that will execute during exploitation in
the remote target and open Meterpreter session.

The file has been saved on /root/.msf4/10cal.

So we going to move the file to Desktop for eas-
ier located by typing in the terminal

root@kali :~# cd /root/.msfd4/local
root@kali :~# mv msf.pdf /root/Desktop
PDFid

Now we going to use pdfid to see what the pdf con-

tinue of elements and objects and JavaScript and

see if something interesting to analyze (Figure 3).
The PDF has only one page maybe its normal.

There are several JavaScript objects inside... this

is very strange. There is also an OpenAction ob-

ject which will execute this malicious JavaScript
So we going to use peepdf.

Peepdf
Peepdf its python tool very powerful for PDF analy-
sis, the tool provide all necessary components that
security researcher need in PDF analysis without
using many tools to do that, it support encryption,
Object Streams, Shellcode emulation, Javascript
Analysis, and for Malicious PDF it

Shows potential Vulnerabilities, Shows Suspi-
cious Elements, Powerful Interactive Console,
PDF Obfuscation (bypassing AVs), Decoding:
hexadecimal — ASCIl and HEX search (Figure 4).

Analysis
If we going to start analysis go to the directory of
the PDF file then start with syntax /usr/vin/peepds
—-f msf.pdf.

*choose the LHOST which is our IP address and we can view
through typing ifconfig in new terminal

*finally we type exploit to create the PDF file with configuration we
created before

www.hakin9.org/en

<))

Deep Inside Malicious PDF

We use -t option to avoid errors and force the
tool to ignore them (Figure 5).

This the default output but we see some interest-
ing things first one we see is the highlighted one
object 15 continue JavaScript code and we have
also one object 4 continue two executing elements
(/AcroForm & /OpenAction) and the last one is /U3D
showing to us Known Vulnerability for now we will
start to explore this objects by getting an interactive
console by typing syntax /usr/bin/peepdf -i msf.pdf
(Figure 6).

Figure 3. PDFid

Figure 4. Peeppdf

Figure 5. /usr/bin/peepdf —f msf.pdf

HaRIN9 .

MALWARE REVERSE ENGINEERING

l=/varsion:=
k=f{dklsai fodpsaj fopjdslo=f</fjdklsaj fodpsa] fopidsio>

Figure 7. The Tree Commands Shows the Logical Structure of
the File, and Starting Explore Object 4

Figure 8. JavaScript Code, that Will be Executed when the
PDF File will be Opened

- HaRIN9

Figure 9. Heap Spraying with Shell Code plus Some Padding
Bytes

The tree commands shows the logical structure
of the file, and starting explore object 4 (/Acro-
Form) (Figure 7).

As we see in the picture above when we type
object 4 it gave you another objects to explore
for now we didn’t see any impotent information or
seems suspicious except object 2 (XFA array) that
gave us the element <fjdaxisaj fodpsaj fopjdsio>
and seems to us not continue something special.

Let's move to the another object (Open Action)
(Figure 8).

No we can see JavaScript code, that will be ex-
ecuted when the pdf file will be opened.

The other part of the JavaScript code is barely
obfuscated like writing some variables in hex and
in this code we can see a heap spraying with shell
code plus some padding bytes. The attackers typi-
cally use unicode to encode their shell code and
then use the unescape function to translate the
unicode representation to binary content (now we
are sure that defiantly a malicious pdf) (Figure 9).

Defend

We defend our network from that type of malicious
files by providing strong e-mail and web filter, IPS
and by.

Application control: disable JavaScript and Disable
PDF rendering in browsers, Block PDF readers
from accessing file system and Network resourc-
es. Security awareness.

Conclusion

We’'ve take a tour pdf file format structure and what
it counties and we’ve seen how to detect a mali-
cious pdf and know where and how can locate sus-
picious objects and showing the JavaScript code,
an finally know how to defend our network.

YEHIA MAMDOUH EL GHALY

Certified (CCNA, CEH), Founder and in-
structor of Master Metasploit (Course).
Trained in (Exploiting Web Applications
| with Samurai- Application Security- Cyber
Crime Investigation). | also have 5 years
'\ experience in penetration testing

TBO 04/2013

http://www.eventbrite.com/event/3131958773?ct=t(Q_CERT_Weekly_Newsletter_18_March_20123_18_2012)&gooal=eyJjaWQiOiJiYmZhMTU5ZTUyIiwidGFnIjoiUV9DRVJUX1dlZWtseV9OZXdzbGV0dGVyXzE4X01hcmNoXzIwMTIzXzE4XzIwMTIiLCJ1aWQiOiIzM2E4MTkzZmNlYzY0MzA1Y2JhYjUyZDRmIn0%3D|bWlzbWFpbEBtYnQuZ292LnFh&mc_cid=bbfa159e52&mc_eid=%5BUNIQID%5D
http://www.eventbrite.com/event/3131958773?ct=t(Q_CERT_Weekly_Newsletter_18_March_20123_18_2012)&gooal=eyJjaWQiOiJiYmZhMTU5ZTUyIiwidGFnIjoiUV9DRVJUX1dlZWtseV9OZXdzbGV0dGVyXzE4X01hcmNoXzIwMTIzXzE4XzIwMTIiLCJ1aWQiOiIzM2E4MTkzZmNlYzY0MzA1Y2JhYjUyZDRmIn0%3D|bWlzbWFpbEBtYnQuZ292LnFh&mc_cid=bbfa159e52&mc_eid=%5BUNIQID%5D

www.itsecurity.ma
security is not cnmnlele =
wﬂhnul 8 B

Reverse EII!IﬁEBI‘?II!I:MﬂWﬂI‘B Aﬂﬂlﬂﬁﬂsm Analvsis,
Vuilnerahility Analv3|s PBIIlBSl Hacking,

Exploitation & Buy Hunlmg W Ilsecul'llv mais
me most advanced blog i

http://www.itsecurity.ma

REVERSE ENGINEERING TECHNIQUES

How to

Identify and Bypass

Anti-reversing Techniques?

Learn the anti-reversing techniques used by malware
authors to thwart the detection and analysis of their
precious malware. Find out about the premier shareware
debugging tool Ollydbg and how it can help you bypass

these anti-reversing techniques.

his article aims to look at anti-reversing
techniques used in the wild. These are tricks
used by malware authors to stop or impede

reverse engineers from analysing there files. As an
entry level article we will look at:

+ Setting up a safe analysis environment
* Ollydbg an X86 debugger
* Basic techniques like;
» Verification of dropped location
Anti-debugger
Obfuscation of strings
Hiding APIs
Anti-Virtualisation

We will look at the code as written by the malware
authors in C++. We will compare this code to the
debugger code in Ollydbg. Ollydbg is the x86 de-
bugger of choice for reverse engineers. We will
look at the different techniques and possible im-
provements. We will also find out how to bypass
each technique using Ollydbg. Finally, | have writ-
ten a small ‘Reverse_Me.exe’ that contains all of
these techniques so you can practice your newly
gained malware smashing expertise.

Analysis Environment

First off we need an analysis environment. The ‘Re-
verse_Me.exe’ | have provided is not malicious. It
is, however, good practice to only analyse files in
a safe environment. Ideally, all your analysis would

« HaRIN9

<))

occur on a second computer which is not connect-
ed to any network. Typically, this analysis computer
would run an operating system other than Windows.
This machine hosts multiple virtual machines (Win
XP, Win7, Server 2008) and samples are trans-
ferred by ‘snicker-net.’ Typically, the samples would
be password protected in zip files. Having differ-
ent host and guest operating systems reduces the
chances of propagation of malware. A quicker way
to get you started is to use a Virtual Machine and
ensure that all shares are read-only. Disable all net-
work connections before performing any analysis.
It's not perfect but if you are mindful it should be
adequate to get you started. Start by downloading
your virtualisation environment of choice; VMware,
Virtualbox, Windows Hypervisor, etc. (I have used
a VMWare detection in the anti-virtualisation layer
of the Reverse-Me sample). It is common for anti-
malware engineers to use Windows XP SP2 as an
analysis machine, the idea being that this version
of Windows has weaker security so it has a better
chance of running. That said Windows 7 is perfectly
adequate, | have done testing on both. After install-
ing any required tools, take a snapshot so you can
jump back to this point, this will save you having to
remove the malware from your machine. Your envi-
ronment is now setup so let us look at the tools.

Tools

For tools | am going to try and limit it to just one;
‘Ollydbg.’ Ollydbg is a debugger just like the debug-

TBO 04/2013

How to Identify and Bypass Anti-reversing Techniques?

ger in your compiler but it can run without source
code. It does this by converting the machine code
into assembler so that it is human readable. It also
gives us the ability to view and edit the assembler
code as well as the values in the registers and on
the stack and heap. Ollydbg has some very pow-
erful plugins that can help you bypass many of the
techniques | will mention. These Plugins are out-
side the scope of this article but please feel free
to investigate yourself. Ollydbg is shareware but
the author, Oleh Yuschuk, does ask you to regis-
ter with him if you use it frequently or commercially
http.//www.ollydbg.de/register.txt. Version 2 of Ol-
lybdg is available but it is still in beta so we are go-
ing to use V1.1 for this article. Please download it
from http://www.ollydbg.de/.

| am also going to use a hex editor written by
Eugene Suslikov, mainly to show parts of the PE
file system. You don’t need it to get through this
article but a demo version of Hiew is available on
his website http://www.hiew.ru/. If you get serious
about reversing, Hiew is a must have tool.

Microsoft Visual Studio 2010

| used Visual Studio 2010 to compile the “reverse
me” sample, if you do not have it installed on your
analysis machine you will require the following
DLLs to run the binary: http.//www.microsoft.com/
en-us/download/details.aspx?id=5555.

Getting started with Ollydbg
Download Ollydbg and unzip it into its own direc-
tory. It does not need to be installed. When you
open Ollydbg for the first time you will more than
likely be met by the warning in Figure 1. Using the
menus at the top of the window navigate to Op-
tions->Appearance->Directories and point it to the
directory that you just dropped Ollydbg into.

When you open a file in Ollydbg you will see four
panes in the window.

» Top-Left

+ Top-Right

+ Bottom-Left

* Bottom-Right

Disassembler Pane
Registers and Flags Pane
Hex Dump Pane

Stack Pane

f
UDD Dereciony absent

LD duectory " docsn'd canils Plesse specdy vabd path in
Options|appesance|Directories, othenwise breakpeints, comments and |
analysn data will be ol afler debugged program termanates

il |

Figure 1. Setting up the UDD directory

www.hakin9.org/en

<))

We are mainly going to use the disassembler pane.
The registers and flags panes we will use to manip-
ulate jumps and see the values in the register. We
will not use the dump and stack pane at this stage.
We are going to use short-cut keys for speed; the
following shortcuts are all you should need;

* F2Toggle breakpoint

* F7Stepinto

+ F8Step over

* F9Run continually

+ Ctrl-G Go-to a Virtual address

We are mainly going to use strings to navigate for
simplicity. If you right click on the disassembler
pane and select ‘Search For-> ‘All referenced Text
Strings’ (Figure 2). You will see the strings of each
layer; just double click on that required layer to get
to its location in code. On the top left hand corner of
the main window you will see something like “CPU —
main thread, module <module _name>", this will tell
you the module you are currently running in. When
you open the ‘Reverse_Me’ in Ollydbg it may start
in the ntdll module, just press F9 and it will go to the
entry point of the ‘Reverse_Me'. The first instruction
in the ‘Reverse_Me’ sample is a call.

The Binary

The binary is available here http://download.ha-
kin9.org/en/Reverse_Me.zip you can work along
with the article. If you are more adventurous, read
the article and then see if you can get through all
the layers on your own. As a disclaimer | am not
a Software Developer by trade. | do write python,
C and C# on a daily basis but it is typically to get
something done ‘quick and dirty’ or for in house
tools. | apologise in advance for any errors in my
code, the lack of style and the non-existent error
checking. In my defense, most malware code is
of a similarly poor structure, so this should make it
more realistic &.

Figure 2. Find referenced strings

HaHRIN9 /-

http://www.ollydbg.de/register.txt
http://www.ollydbg.de/
http://www.hiew.ru/
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://download.hakin9.org/en/Reverse_Me.zip
http://download.hakin9.org/en/Reverse_Me.zip

REVERSE ENGINEERING TECHNIQUES

Just a short preamble, malware usually consists
of layers. Typically, the most external is a packer
of some sort (UPX, Aspack, etc.). | have not add-
ed a packer to this Reverse_Me.exe, although most
are not hard to bypass and easy to add. | think they
would overly complicate the binary for such a short
article. | have tried to make all the layers very easy
to identify by putting in lots of strings that you can
search for. | have not encrypted each layer as would
be typical of a “Reverse_Me” puzzle. This is to help
in your navigation through the binary. It does leave
you open to jump to the final layer and skip the rest
&. The virtual addresses in the article may not cor-
respond to the ones on your machine so please use
the strings. | have displayed some of the strings
in Figure 3. You will have to press <Enter> before
each layer initiates. This may be a pain but it will
help you to be systematic in your steps.

Layer 1: Verification of dropped location

A lot of malware will drop executables onto your
system. | frequently see ‘dIl’ files dropped into the
‘C:\Windows\system32’ directory. Some malware
will confirm its location before it will run. The anti-
malware engineer is probably going to analyse the
file in a directory like C:\Infected\<current_date>.

Listing 1. Verification of dropped location

void First challenge()
{
char buf[1;
char buf temp[] = {'T’,’e’,’'m’",’p"};
// getcwd gets the current working direc-
tory
_getcwd(buf,)
bool Program Running In Temp Folder = true;
// we are starting at 3 to avoid the drive
letter
for (int temp =
{
if (bufl[temp] '= buf templ[temp-3])
Program Running In Temp Folder =

; temp < 7; temptt)

false;

}

if (Program Running In Temp Folder)

printf (“Well done first

T awmr Ae Rl .
layer passed”);

else

printf (“Sorry not this time, you are
in the wrong directory”);

exit(0);

s HaARING

<))

So, this basic trick can be effective against simple
dynamic analysis. We will see later how to obfus-
cate strings which would make this technique even
harder to detect by hiding the word “Temp.”

Layer 1: The C++ code
In Code Segment 1 there is a short function that
checks that afile is in a directory called Temp.

The corresponding assembler code as produced
by Ollydbg is in Figure 4. As this may be your first
time seeing assembler we will try and walk you
through the code. The first point to identify is the call
to getcwa, this will get the current working directory.
The next few lines compare the values in the path to
the hex digits 0x54, 0x65, 0x6D, 0x70. If you pull up
an ASSCI table from the web you will find that these
hex bytes correspond to the string “Temp.’ The final
two jumps in the image below can redirect you away
form "Well done first layer passed." This will happen
if any of the hex bytes that represent “Temp’ do not
match the path supplied by getcwa.

Locate and set a breakpoint (F2) on the line with
JNZ (jump not equal to zero). If you click F9 it will
run to that breakpoint. Now look at the top right of
your screen and you should see a set of flags like
the Figure 5, the registers and flag Pane. Locate
the flag Z and click it. This will toggle the jump.
Click it again. You should be able to see a small
arrow showing you where the jump will terminate.
By toggling the jump you can insure that it will not
jump but fall through to ‘Test AL AL’. Repeat the
flag manipulation on the next jump at JE (jump

L g T s nts]

sl doms Birwi | ganin®

Figure 4. Layer 1 Directory Detection, Assemble view

TBO 04/2013

How to Identify and Bypass Anti-reversing Techniques?

equal too) to insure you are directed to the “Well
done first layer passed”. This technique of manipu-
lating the jump can be used throughout the binary
to jump to your chosen branch.

Layer 2: Anti-debugger

Anti-debugging techniques are used by programs to
detect if it runs under control of a debugger. The aimis
to impede the process of reverse-engineering. There
are a lot of anti-debugger tricks, we will just show you
the most basic. It is based around the following win-
dows function (Listing 2). It is simply an ‘if statement’
as you can see in Code Segment 2 (Listing 3).

The assembler code is available in Figure 6. It
calls the IsDebuggerPresent APl and based
on its response jumps to the “Not running in a de-
bugger” printf or continues on to the printf which

|Bagisters (FPU] A | { { i {

Flgure 6. IsDebuggerPresent ‘if’ statement as see from Ollydbg

www.hakin9.org/en

<))

is passed “Running in a Debugger” and then the
program exits. After a debug trick you will normally
see a crash or exit. The Idea being that the analyst
will think the file is benign or corrupt. To bypass
this trick we are again going to use the zero flag
as shown in the previous example. If we set the
zero flag to 1 we will jump to the "Not running in a
debugger” branch and continue to the next layer.

Layer 3 Obfuscation of strings and hiding APIs
| am going to take these two topics together as they
are intrinsically linked. Windows executable files

Listing 2. /sDebuggerPresent APl
BOOL WINAPI IsDebuggerPresent(void) ;

Listing 3. /sDebuggerPresent ‘if statement’

void Second challenge()
{
if (IsDebuggerPresent())
{
printf(“"Running in a debugger”);
exit (0);
}
else

{

printf(“Not running in a debugger”);

£5 FiFEH EEF
HOU COM.CSP
- hA FF PiEsH -1
. BE FiE=H 1 o ERSELECE
s HOL CEH, PTR Fo:001
a E-B FUSH EfN
. EUE B, 00
& ﬂl 135&% I'H'H.l FFlk! E'H"'h“.l'l FTR DSzl __securicy_couk (el
. IZI'H"} Fi w MR SSe e =101, CRX
. BA FiEsH Fal
. B PUEH i
« 004G F4 LCA PR S89:[C0F-C]
. BdrOE OeEa0dn | D(RD PTR FS5: (8], B
» FFIb EREREE LRHD FTH [ESREERMELSZ, | sibuggerFretent »] ClsietuggerFrasent
« FRCR i FiR=, FRi |
=74 BE g Uhas. B8 361 268
« CP4G CO Droosd Wig a
- CP45 Fd mAnesi |'-
« EB4E L4 W
. g‘?g?:m I.t# DCHEPJOLIF JOMEF Hfunn ina MEin® I armat = "BRunning in & debugser. I'm eoing to enit i7
. FFIG w X PR U= FLAEE 2] prELAEE
- HI AL FFIK mn F‘TR]'ﬂ I{hlﬂLE‘P! . T il L RS e o_
- oBas Hl EC*'MDF‘TR'B‘S-[EHIJ
« N B4 e L Mﬂ.l TR B LLCH 4]
- AA04 i A FSFP,
. EhEN PUSH o
- GICD ADD CCH. TR
= BBFD %E?[ER
» FFIB aﬂm’l.ld L WML FITH [DETITCH TR Vo Laeh I FDad Lo Lo T IVCH LW, Fu | G IFPT B Lo L SEUUT T of S0 &0 SFURG T O ¥ ORUEE DU
- BF] HOLEY FTod, Al
. 82 FUFEH EDX
. PR LGE
D O LFA P, MEOARTPTR BESETPRF=S
EE_432E3000 Haa \Hus. stdiges |LLnedohar, stduishar_sraltsdohar)
0IC4 a0 wtﬁ‘
R P] (1§ [
FFIL ﬁw LoD TR DS E S TEVCHIE, el L8 2] BT
R Ii +l OFFArT Ui . 7 ﬂ_ﬂ!”mlm'&’lhrﬂrrunnnmt st = "Bt running in & debugger™
FFI15 EE0CEMD Eﬂ:ﬂl:l FTR FCEEMSCRIQ . by inTF 2] print#
. a4 B ¥ ExF,
. AR4D F4 HL
+ EA1BH0D 0ODGM HOY DWORD PTR F51 000 ,ECH
« L2 POP CCX
= i EETTEEP=18]
« HEW RO P RS
. noen [EH, CT
EE STOCa00 Ubhen. __secur Lty_check_oook Le
i o e, Epp
Fi* FRP
; 3
ek 65 Cor

HaHIN9 |,

REVERSE ENGINEERING TECHNIQUES

follow a structure called the PE file structure. This
structure tells Windows how to load the executable
into memory and what bit of code to run first, among
other things. Without going into too much detail the
PE structure has many tables and one that holds
imports. This table is called the imports table and
contains all the APIs that are called by the execut-
able. As a Reverse engineer this is a very good
place to start. It will give you a good Idea of what the
program is going to do. If you see loads of network-
ing APlIs in a program that claims to be a calculator
it would raise your suspicions. Figure 7 shows part
of the Import table displayed by the excellent tool
Hiew. In the table you can see APIs that we have
used already e.g. IsDebuggerPresent. You will not
see CreateFileA. Please notice two important API’'s
LoadLibrary and GetProcAdress as these two API’s
give us the ability to load any API.

Layer 3:GetProcAdress

‘GetProcAddress’ is essentially a wild card. You
can use ‘GetProcAddress’ to get the address
needed to call any other API. There is a catch,
you must pass the name on the API you require to
‘GetProcAddress’. That would mean that although
the API is not visible in the Imports table it will be
glaring obvious in a string dump of the file. So, a
malware author will typically obfuscate the strings

[e H-:_ﬂhn:-* . ol]

Wil | els buggerlrannnt | KEWELA2 ANl

£Fo| ¥ 53 PLSH EBF
« 00CC | HOY EEIF' Ccor
« &l FF | PUEH
- BY TSR | FUSH H-a-J_FJ"‘I-Ua L

- Rdral ARMAAMN HNU FAX, MORN FTR FR:0A]
| FUSH EFIH S

| 5uUD L5
.H'l:"rl EFlh I:M'ZIRD PR DFe[__=ecur ity_cookield

EEF
2 [For] L ——
= BA FlI5H FRx

« 56 PUSH E3I

« 57 | PUSH COT

. E@ | PUSH Efl=

: ngaab;nmnnﬁ |1ﬁﬂ lIE“nR.n PTR_F5:if], FRX

- h

. BI:M-S Ed .LE mm'ssﬂw:m

Ll « D] G5
- II?-15 E4 49&5?”[” m :Iﬂ [EH“-:I[‘:].bE".:EEIn
3 - Lras B eSeL MU K BhE LEEE- P Tt
| . CReS FL AR HNU BYTE FTR M!I'm'ili-l
| L FA Fa1,MAR0 FTR MR: TFHJHI'I

¥ GRDE | 0w CL.EBVTE FTR OS: [ERX]
48 IHC CAs
2408 TEET CL,CL
AfL FY JHE "_-'yl-U.lHI H'a-:l_tl"lua B 2L
FRCA AlIR FAX,
aore a1 LER E31. IJ.IJZIF:I:I FTR D3: [ERH+1]
w SO HOR LG, DG
« 2BLE HOU EM, ES]

Flgure 8. Building Kernel32 as a Character Array

= HaARING

in the binary and then pass them to a deobfusca-
tion routine. The deobfuscation routine will pass
the cleartext APl names to ‘GetProcAddress’ to get
the location of the API. So, between the obfusca-
tion of the strings and the use of ‘GetProcAddress’
they can hide the APIs they are calling.

Layer 3: String Obfuscation

If you run a strings dump on the binary you will see
something like Figure 3. If you scroll down through
the strings in Hiew or another tool you will not see
the following strings although they are used in the
next function

+ ‘Kernel32’
+ ‘CreateFileA’
» <A secret code to pass layer 3>

| have used three types of obfuscation to hide the
above strings. The first two are very similar and
are really just to subvert a string search of the bina-
ry. When you see the C++ code they will look very
easy to see through. When you view the assembler

Listing 4. Character Buffer to String Obfuscation,
pushed in order

LPCWSTR get Kernel32 string()

{
char buffer Kernel32[9];

I
=
3

buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[
buffer Kernel32[

o U S i i S S
I
®
~

//The following is code to convert the char
buffer into a LPCWSTR

size t newsize = strlen(buffer Kernel32)

+ I

wchar t * wcstring = new wchar t[newsize];
size t convertedChars = 0;
mbstowcs s (&convertedChars, wcstring, new-
size, buffer Kernel32, TRUNCATE) ;

return wcstring;

<))

TBO 04/2013

How to Identify and Bypass Anti-reversing Techniques?

code it will be slightly more difficult. First is a meth-
od where you push values into an array and then
convert the array to a string, see Listing 4.

Let’s look at the same code in assembler it’s a lot
more difficult to find. Pull out your ASCII table again.
If you look at the cluster of four mov instructions
highlighted below, you will see the two DWORDs
are moved onto the stack. If you translate these hex
bytes into ASCII and change the byte order you will
see ‘Kernel32.” So, this simple method is very effec-
tive at obfuscating strings (Figure 8).

The second type of obfuscation is very similar. It
uses the same technique but goes a step further.
It does not add the characters to the array in order.
For longer strings this can make the reverse engi-
neer’s job very tough. Let’s have a look at the C++
code in Listing 5.

As you can see, the values are not pushed in
order. If you look at the code you can see ‘real-

Listing 5. Character Buffer to String Obfuscation,
unordered

LPCSTR get CreateFileA string()
{

char * buffer CreateFileA = new char[17];

buffer CreateFileA[l] = 'r’; //0x72
buffer CreateFileA[2] = ‘e’; //0x65
buffer CreateFileA[3] = ‘a’; //0x61
buffer CreateFileA[8] = '1’; //Oxéc
buffer CreateFileA[6] = 'F’; //0x46
buffer CreateFileA[7] = 'i’; //0x69
buffer CreateFileA[4] = 't’; //0x74
buffer CreateFileA[0] = 'C’; //0x43
buffer CreateFileA[9] = ‘e’; //0x65

buffer CreateFileA[5] = ‘e’; //0x65
buffer CreateFileA[10] = ‘A’;//0x41
buffer CreaterFileA[11] = '\0’;

return (LPCSTR)buffer CreateFileA;

. B8 8C FIEH oo

. EE TDAvaaae |CALL llag_Wwa,operator newll
. 2BFa Mol EST, Ef

. 8304 1C AOD ESP, 10

- b FU=H EUL

. 92EE G2 |MOL EVTE PTR DS. [ESI+21,BL

1,
. CEde 832 &C (MO BYTE PTR DS:[ESI+21,
. BEICT46 BE 461 MOU WORD FTR DS:[ESI+&],
« ESCFME 32 £17MOM WORD PTR DEs[ESI+2 !
. BEICTAG 4372 MOU WORD PTR OS5:[ESIN, 72
. SERE 82 MOt BYTE FTR O&:[ESI+3],E
« OOCC Qo %
ER

I'h \Il'r\l""\-

(LR s T]
IT\-.b.

| MIZI-U OYTC I'TR D"‘ [EGII
. BE:CT4E GBH 4111 I.|.IDHI:I F'TR ESI+A
. FF15 B4383E88 TR I:IS [LK

- BE1D QSSasEae | o EBﬁ'-. I:II.I.I'I:IR'I:I FTR DS: [<&
ARFR ML FﬁT,FI:I}c!

FUSH ESI

FUSH EDI

EEH
FUSH ESI
FLEEH EElI

CHLL EE
wOR EBX, EEF.H

ﬁﬁ”??‘

Figure 9. Butld/ng CreatefileA as a Character Array

www.hakin9.org/en

EL32, Loadl ibraryliz]
RHELSE. et FrocAdlie=s 1

<))

FitCeeA'l It is not a huge leap to get ‘CreateFileA’
from this. But this method is surprisingly effective.
How does it look in Assembler, Figure 9:

The block of ‘mov’ instructions builds the string.
As you can see, it is much harder to pull out Cre-
ateFileA from this code. It is a very simple and ef-
fective obfuscation technique. The API name is
built on the ESI register and then passed to Get-
ProcAddress. So, a good option is to put a break-
point on all GetProcAdresses calls. By looking at
the stack you can see what is being passed into
the function. This will give you a more complete
picture of the APlIs that are being called.

The final type of obfuscation we are going to look
at is called Exclusive OR (Xor for short). Xor is very
popular with malware authors. Itis a very basic type
of ‘encryption’. | don’t even want to use the word en-
cryption as the technique is more like polarization.
One pass, encrypts the string and a second pass
with the same key decrypts the string. It is very light
weight and fast. It is also very easy to break.

The string | wanted to hide was copied it into a
buffer. | ran the code once and it created the ci-
phertext. | placed this ciphertext into the original
buffer so the next time | ran it would create the
plaintext. | have only used a byte wise encryption,
malware may use longer keys. The C++ code to
build the buffer containing the chipertext is below
followed by the decryption loop: Listing 6.

Let's have a look at the assembler code (Fig-
ure10). We can see the buffer being loaded with the
Hex characters as before. Marked below is where
each byte of the ciphertext is xored with OxFA. Af-
ter the Xor you can see INC EAX and CMP EAX,
18 followed by a jump.

This is the ‘for loop’ that will iterate 0x18 (the length
of the secret message) before it continues. JB stands
for ‘jump below,” so, the jump will happen for the full
length of the string decrypting each byte of the ci-
phertext. This is later compared against the value
the contain in the text file. If they match the layer is
passed, or you could manipulate a jump or two.

F 1 lefame

Loadl ibraryll
Eerme 152 Ge LPrucRU L ees

Procizmelrdrdinal
hiiody le
GetProclddress

FProciamelrdrdinal
hiltocu le

GatProchddress

HaHIN9 /.

REVERSE ENGINEERING TECHNIQUES

Listing 6. Secret Code Buffer, (ciphertext) Xored with OxFA to produce plaintext

unsigned char buffer SecretCode[24] = { g 0 7 7 v v

14 ’ 14 ’ 14 ’ 14 ’ 14 ’ 4 ’

14 ’ 14 ’ };

for (int i = 0; i < sizeof(buffer SecretCode); i++)
buffer SecretCode[i] *= g

Listing 7. Calling CreateFileA dynamically using getProcAddress and LoadLibrary

HANDLE hFile;

HANDLE hAppend;

DWORD dwBytesRead, dwBytesWritten, dwPos;

LPCSTR fname = “c:\\temp\\mytestfile.txt”;

char buff[25];

//Get deobfuscated Kernel32 and CreateFileA strings
LPCWSTR DLL = get Kernel32 string();

LPCSTR PROC = get CreateFileA string();

FARPROC Proc;

HINSTANCE hDLL;

//Get Kernel32 handle

hDLL = LoadLibrary(DLL) ;

//Get CreateFileA export address
Proc = GetProcAddress(hDLL, PROC) ;

//Creating Dummy function header
typedef HANDLE (_ stdcall *GETADAPTORSFUNC) (LPCSTR, DWORD, DWORD, LPSECURITY ATTRIBUTES,DWORD, DWORD, HANDLE) ;
GETADAPTORSFUNC fpGetProcAddress;

fpGetProcAddress = (GETADAPTORSFUNC) GetProcAddress(hDLL, PROC) ;
//Dynamically call CreateFileA
hFile = fpGetProcAddress (fname, GENERIC READ, 0, NULL, OPEN EXISTING, FILE ATTRIBUTE NORMAL, NULL) ;

if (hFile == INVALID HANDLE VALUE)
printf(“Could not open $S\n”, fname) ;

else
printf(“Opened $S successf fname) ;
53 | FUSH EBR) [zt sLus
FF1E EQ30ZEGE | BALE DWORD PTR DEl [<{&HEVWCR1G8.cn itr] cil it
HHA EHAMEEE | AU FL, IREE PR EeSe D ERETSULCH TFEA. pr ank o3+ 1 AN HIHM. pi it
65 FC343E00 | PLSH OFFSET Mau Whes, 77 08 BEHBHOFOF IFIBCISPE0enuBon | [0 — “opsbemrrmlestf L le, ynt™
ECEGZEG0 | PUSH OFFSET Mag \Whes. 37_CE_OEJERIE0KMEE0pen cd?E 24 0F s [it = "Opened Mo sucowssful ly.O7
FRUS CHLE LI printé
8304 83 AOD uB
MUS CDW E T d
HUAL Fe LEH ECH, DNORDN PTR S5§ IEEF=5E1
51 FIISH Firx FaRF
oA 19 MUSH 19 ToRead = 19 (2041
S0EE 3 LEN ED:, CWORDTPTR S5 (ERP=39]
H PIIF\.H Frix

55 EE E3l

FFl'E waem EIUEIF!D P‘TFI IZIBl E-’&KEFEELBE 'Ht.\:an.lnHl
HESC=40 ML IR o FRP=LH

I:T'45 EH DRSS HoU

C74E B2 2ESZY HOU

Lidt BT HYY-9] N

.-.xuu-_-uu-.-.-.-..-.-,_,-

CT45 CA SFEED Hov % E
CP45 C4 20000 HOW
=+ | KUK EEI")E!.ELI-D(
BAT4ES BO FA | XOR “FTR S5z [EBF¥ERS=581. 0 -
| INC CAM
E?FE 12 CHP ERH, 12
IR "\l‘m'l' Hag UHua. AR3RE 1R
%&E&E F'U IJ'I'F I:'I' I"h-a_ﬂ"ha ':""' BOLEH0COr IPHEC 0T 2cenp T80l ASCIT "citenpewmtestiila.tas™
F' aone EDI LLFEThe?EFf ol lowind MNECII "The follewing pass oode was entracted from Hoad™
FFI'I?

Figure 10. Xor Encryption in Assembler

. HaKINg <)

How to Identify and Bypass Anti-reversing Techniques?

Layer 3: LoadLibrary and GetProcAddress
To bypass this layer you are going to need to cre-
ate a file in "c:\temp\mytestfile.txt” this file will need
to contain the ‘Secret code’ that is Xored in the Fig-
ure 10. The C++ code below will open and read this
file. It will then compare the contents to the secret
code. We are not calling CreateFileA as we normally
would. We are using GetProcAdress to locate it with-
in the Kernel32 DLL. Next, we dynamically call the
CreatFileA export with the correct parameters. We
are doing all this so as to hide CreatefFileA from both
the import table and a string dump. Listing 7 shows
the code used, with comments for clarification.

Listing 8. VMWare detection function

bool IsInsideVMWare ()
{

bool rc = true;
printf ("

_ try
{
__asm
{
push edx
push ecx
push ebx
mov eax, 'VMxh’ // The Magic Number
mov ebx,
mov ecx,
mov edx, 'VX’ // The port
in eax, dx // The IN Instruction

‘WMXh’ // Check if ebx

contains the magic number

cmp ebx,

setz [rc] // set return value
pop ebx
pop ecx
pop edx

}

}
__except (EXCEPTION EXECUTE HANDLER)

{

rc = false;

}

return rc;

}

www.hakin9.org/en

<))

Layer 4: Anti-Virtualisation

The final layer uses anti-virtualisation. We will
look at detecting VMWare. Intel x86 provides two
instructions to allow you to carry I/O operations,
these instructions are the "IN" and "OUT" instruc-
tions. Vmware uses the “IN” instruction to read
from a port that does not really exist. If you access
that port in a VMWare you will not get an excep-
tion. If you access it in a normal machine it will
cause an exception. The detection is based on
this anomaly. To perform the test you load oxoa in
the ECX register and you put the magic value of
0x564D5868 (‘VMXh)' in the EAX register. Then
you read a DWORD from port 0x5658 (VX). If an ex-
ception is caused you are not in VMware.

A good way to look for this trick is to search for
the magic number oxs64ps5868. In My code you can
search for the string; "Just going to test if you are
running in VMWARE:\n". | have not displayed the
assembler code as seen in Ollydbg as it is identical
to the inline assembly in Listing 8. Just after this
code there is a jump instruction you can manipu-
late to bypass this detection. Last little bit of ad-
vice you may see ‘Privileged instruction — use Shift
+F7/F8/F9 to pass exception to program’, If you
press Shift + F9 it will continue past the exception.

Conclusion

We have looked at setting up a safe analysis envi-
ronment and also at some of the basics of Ollydbg.
We then focused our attention at some anti-mal-
ware techniques namely; verification of dropped
location, anti-debugger techniques, obfuscation
of strings, hiding APIs and anti-virtualisation. All of
these methods are used in the wild. These meth-
ods can really impede the process of reverse en-
gineering. By manipulation of jumps and reading
buffers after the deobfuscation of strings we can
bypass most of these techniques. | hope you get
the chance to familiarise yourself with the anti-
debugging techniques and the methods used to
detect and bypass them. If you work your way
through the “Reverse_Me.exe” sample, send me a
tweet so | know someone made it!!

EOIN WARD

-~

Eoin Ward holds a Bachelor of Computer En-
gineering, a Masters in Computer Security
and Forensic and passed the CISSP exam last
year. He worked with the Symantec Security

1 Response team primary as an Anti-Malware
Engineer for four years and is currently work-
ing as an Anti- Malware Analyst with Micro-

soft Corporation.

HaRIN9 .

REVERSE ENGINEERING TECHNIQUES

How to

Defeat Code Obfuscation

While Reverse Engineering?

Have you ever decompiled malware or another application
and found nothing but a small amount of code and lots of
junk? Have you ever been reading decompiled code only to
watch it jump into a section that does not exist?

chances are you were dealing with obfuscated

code or a packed binary. Not all is lost howev-
er, as getting around these methods of code pro-
tection is not impossible. However, all obfuscat-
ed code must be de-obfuscated before it can run.
Keeping this in mind, it is possible to decrypt, de-
obfuscate and unpack every line of code in every
kind of program, the trick is simply knowing how.

I f you have been in either of these situations,

Introduction

Obfuscation, or code distortion, is found in binaries
where the programmer wanted to hide the original
code. The programmer might be working for a ma-
jor company that does not want their source code
stolen. The programmer might also be a malware
author who is attempting to make the malware bi-
nary appear legitimate. Either way, it is common
practice in the malware and legitimate software
industries to employ obfuscation techniques. In
this article, you will learn about various methods
involved in breaking open the code and revealing
the chewy center where the legitimate code re-
sides. It will discuss how to deal with packed bi-
naries and how to extract obfuscated data directly
from memory.

Unpacking

Packer algorithms are employed in order to distort
the code of a compiled binary. A packing applica-
tion takes the algorithm, runs the data of the bina-

- HAaRIN9

<))

ry through it, and attaches a decryption routine to
the binary. The resulting file is a distorted version
of the original and, if fed into a disassembler like
IDA Pro, would reveal not much more than the de-
cryption routine. This is useful to prevent novice
reverse engineering of a binary or to hide the mali-
cious functionality from AV software.

Packer Identification

The first step in dealing with a packed binary is to
try to find out what kind of packer you are dealing
with. There are numerous ways at doing this; how-
ever, | find that the easiest way is to use a packer
identifier like PEID.

PEID
A great resource for the malware analyst or re-
verse engineer, PEID references an internal data-

M PEID +0.94 EF -J.-Lil
Mg | CoAMmnedy, al SelaweAkmiteal nrResk oph F5ome g 75m | .
Frbrypeict: | DOD4FE00 [P fectinn: [LPoL L=
File CFfset: 00013000 First Nytes: | 60,6E,00,60 | = |
Linkes Into: 4.0 Suhsgstem: | Win3Z UL =
Mok Sian | | Taskvewer | | oplioe | ot | Ed |
W “kayontop <

Figure 1. PEID Interface

TBO 04/2013

How to Defeat Code Obfuscation While Reverse Engineering?

base full of different packer signatures in order to
identify what packing algorithm is in use.

To use PEID, simply drag the binary onto the
PEID interface and it will automatically ana-
lyze the file. The depressed section of the inter-
face displays the packing algorithms detected. In
the case of figure 1, the file in question has been
packed with the UPX packer algorithm.

Manual Identification

If you do not have access to PEID or it does not
recognize the packer employed, you might have
some luck by examining certain features of the
binary, looking for anything that might reveal the
packer. In some cases that is incredibly easy, for
example figure 2 shows the file strings associated
with a UPX packed file.

However, in most cases, it would be more diffi-
cult to determine the type of packer based on just
strings. Additional information may be required for
example, certain bytes of data located in specific
file sections or even entire decryption routines may
be required to identify the packer. In many cases
it might be more trouble than it's worth and unless
your job is to determine what type of packer is be-
ing used and it is not detected with PEID, then it is

o = ﬂl =
Frd Firudl Gaweh A4

T FSomehagses fl
WD e daiialen i nalfse O 01563
Sina 100302

M Shirags
1Thez proagriars corvrul b an in DS s
Fichs?

nre

L]
il fwliad
E[Sf
NF&
K0
Dl
lpP

L
eifx

bl
i
orn

el[F B

L LR —
LU sawe LM awem s, el woa el Pvadas] ¥

L
7 e R b —

I e e g | TR
TR ok

.
I O it e 1L 5 ikl ot
T bl e | B prisiry i et
I P el ' oo

I pom st i i g bt

Ly of
Figure 3. QUnpack Interface

www.hakin9.org/en

<))

best left unknown and you might not be able to un-
pack it in any easy way.

Custom Packer

While there are plenty of publicly known packers
out there and many of them are used by both legiti-
mate software and malware organizations, it does
not mean they are the only ones used. Cyber-
crime organizations will create their own “custom
packer algorithm” which they can quickly modify in
order to avoid AV detection. They could also imple-
ment anti-reversing and anti-unpacking measures
and stay under the radar for longer periods.

Automated Unpacking

Now that we have identified the packer employed,
we can try to unpack the binary. As is the key to re-
verse engineering anything efficiently, we want to
see if we can skip some of the manual work and
use automated methods. Depending on the pack-
er, there is usually an unpacker application some-
where on the web you can download. There are
also applications that can unpack multiple packing
algorithms; an example of such is QUnpack.

QUnpack

When you want a tool that can unpack multiple
packer types, QUnpack should be in your toolbox.
It can detect packers like PEID can and unpack
using multiple methods. In addition it can restore
import tables, allow custom LUA scripting and an
array of other useful functions. For the purposes of
this article, | will just go into the unpacking feature.
After opening QUnpack, you can just drag and
drop the packed binary onto the interface. Once
QUnpack identifies the binary and the packer, your
first step is to tell QUnpack what is the Original En-

[OEP Findcrs] A

Generi. OEP Frader by derubu & &rchier
FurceOEF ber Fewerrades &dinder
Generi. OEP Fawder Ly Hurnan & Archer
Gereric OEP Frsder Ly Usar & fircles

Figure 4. OEP Finders Listing

HaHIN9 /.

REVERSE ENGINEERING TECHNIQUES

try Point (OEP) of the binary. If you do not know it,
you can let QUnpack find it for you by clicking the
“>” putton next to the OEP input box.

A listing of all available OEP Finder tools will pop
up and all you need to do is select one, see figure
4. In this example, we selected the top one “Gener-
ic OEP Finder by Deroko & Archer.” Which one you
decide to use is up to you. Generally, you want to
use something other than ForceOEP if you can, on-
ly because the output for that finder has a lower ac-
curacy. Each OEP finder might find either the same
OEP as the others or a different one; feel free to ex-
periment with different ones to find the best output for
your needs. The OEP Finder interface has a listing of
all the packed sections located within the file. We se-
lected the OEP button to tell the finder to analyze the
binary and detect the OEP automatically (Figure 5).

Figure 6 shows the OEP Finder asking wheth-
er the section of code it determines might be the
OEP is in fact the OEP. Your knowledge of function
headers in x86 assembly code can help you here
and based upon the address scheme and use of
the “__cdecl” function header, we decide that this
is most likely the correct OEP. If the OEP Finder
provided a possible OEP that we believe is false,
we could select “No” and it would continue to sug-
gest possible OEP locations.

=101
File: [\decuemants and ssttings'adminis stcddackiop\Teoma
Command |
Uep |
LIPS - D48 O] - CREOD - it
UP=1 - 00435000 - DOMBD0] - Awi< J;!:lau:hl
UPW2 = 004511000 - 00001 000 - Riw
mie -+ 00453000 - 00012933 -A Count I
Dymnp I
™ Use Custem Bange | Size: | o0 Em |
Memoly Start | End |

Figure 5. OEP Finder Interface

|
00420034 2BFF mow edi, edi
MNAANNAT: 55 niezh ehp
00420030:; 8BEC mav ebp_esp
O042008F. B3EC10 sl e, 0000001 Ok

Q0420002 A100G24400 oy e, [4462000]

Q04 20097: BIEEFE00 and [abp-02h], COO00000
DZU04E: S9ERFUI and [ebpUih), UODOUUDR
M4 2NMEF- /3 nish e

0420040 57 push edi

00420047, BF4EEG40BE 1w edi, BE4OEGSE R
(0420046; BEODDOFFFF mov obe, FFFFOO0O0R
0042004B: 32C7 cinp eax, adi

LA LY; S 2 §40kh

] Mo

Figure 6. OEP Finder “Is This OEP” popup

« HaRIN9

<))

With the OEP located, our next step is to click
on the “Full Unpack” button on the right side of
the QUnpack interface. The unpacker will analyze
the binary and attempt to retrieve the import table.
Keep in mind that this might not happen with other
packers or a binary using a custom packer; lucky
for us though, QUnpack gives us a listing of all the
API functions is was able to retrieve and asks us if
it is correct (Figure 7).

After selecting the “Save” button on the import
interface, QUnpack finishes unpacking the bina-
ry and saves it in the same directory and with the
same file name with the exception of a double un-
derscore appended to the end (Figure 8).

At this point, we have successfully unpacked our
binary using QUnpack and can now test in IDA Pro
whether or not the output binary is the complete
original code or if we need to go back and try to
unpack it with a different combination of options.
Keep in mind that unpacking a binary is most use-
ful when you want to observe the file statically us-
ing something like IDA Pro and | do not recom-
mend running the unpacked binary in OllyDbg.
Rather, navigating to the point in memory where
the unpacked code resides and setting a break-
point will ensure that the binary executes correctly.

Manual Unpacking
Automated unpacking is the most efficient way of
revealing the true code of a packed binary. How-

7 iy g i .‘:.
(2 =
e bt s

LEEE LT T "'i":-"‘:'!""
T ke =

1 ot il mwtor e L Sl rpomma vt

T pubsls L] B poksiry dim mpet

I Feenr el ' o

I Fom g wirees e~ woy o

T ipmrd e ar

& Wi

R
Figure 8. QUnpack unpacked operations output
TBO 04/2013

How to Defeat Code Obfuscation While Reverse Engineering?

ever, there may be some instances when using an
unpacker might not work, in which case you will
need to unpack the binary manually. You might find
yourself in this situation if you are working on a bi-
nary that is packed with a custom algorithm or if
dealing with a modified known packer, resulting in
automated unpacking being ineffective.

In some cases, doing a simple search online
might reveal instructions on how to unpack a cer-
tain type of packer algorithm manually or it might
reveal nothing at all, be sure to check anyway in
case it can save you some time. While the thought
of manual unpacking might seem daunting, keep
in mind that a binary must always unpack its own
code before it can execute its functionality, there-
fore all we need to do is let the binary do the work
for us.

IDA Pro Roadmap
Ouir first step in manually unpacking a binary is to
determine where the unpacking algorithm ends
and where the legitimate code begins. To do this,
we open the packed binary in IDA Pro, it might not
be obvious at first but the entry point function of the
binary should lead you to the unpacking algorithm
(Figure 9).

Once you find that algorithm, all you need to do
is follow the code until you find a JMP or a CALL to

- - alal=
[t ek

) tha 6
B L8 Jaw . . K
= s S e P s = e X = 00 e | I

T e T Ty TR e
/|

s

i T

Figure 10. Unpacked legitimate code

www.hakin9.org/en

a function or a location that either does not exist or
is nothing but random junk data. This is a good in-
dicator that the location referenced is where the le-
gitimate code will start. Figure 9 shows the instruc-
tion POPA, which POPs all top values off the stack
and stores them in the registers. This instruction is
a sign that the UPX unpacking algorithm is nearly
completed (1) and then the actual JMP call to the
unpacked code (2).

OllyDump

The next step is to open the binary in a debug-
ger like OllyDbg and manually navigating to the
address of the JMP or CALL instruction. Once
there, set a breakpoint and execute the binary, the
debugger should stop on the instruction and you
can follow the instruction to the legitimate code,
Figure 10 shows the unpacked legitimate code
in OllyDbg.

There are usually two types of code you will find
at this point, either the completely unpacked code
or more unpacking algorithms; we will deal with
the additional unpacker code shortly. If you have
found the original code, we now need to be able to
output the newly modified binary code so that we
can view it statically using IDA Pro. To do this we
use a plug-in included with OllyDbg known as “Ol-
lyDump” and it will allow us to dump the entire bi-
nary, unpacked code and all, into a new file.

To use OllyDump, simply find it in the “Plugins”
dropdown menu at the top of the OllyDbg inter-
face. In the OllyDump sub-menu, select “Dump
Debugged Process” (Figure 11).

"
Frad OEF by Seoiacm b [Timom ity
Fird DEP by Stien b [Tiisce oo |

Do
A

l.':m'runl—_-|

Figure 11. OllyDump menu navigation

ASCII "aHR8cDowl:

HaHRIN9 /.

REVERSE ENGINEERING TECHNIQUES

The OllyDump interface will pop up and have an
array of different values and options, at this point it
is a good idea to write down the Entry Point (EP),
Modify and Size values because you will most
likely need them later. In addition to taking down
notes, make sure to de-select the “Rebuild Import”
checkbox because we will be using a different tool
to repair the import table for the dumped file (Fig-
ure 12).

Click on “Dump” and OllyDump will ask you
where you want to save the dump file and under
what name, | would keep this somewhere easy to
get to and with a name like “Malware_dumped.
exe.” At this point, we are done with OllyDump and
have an unpacked binary that we can analyze stat-
ically in IDA Pro. However, the import table of the
binary is not present and therefore even though
the code is unpacked, none of the function calls
will be apparent to us. Do not close OllyDbg be-
cause we will still need it.

1
Siart fddrezz: | 15110000 S [D000 IEI

Enliy Pk REAL < Moy [0
B of Code: | 3000 Bz of Diate i[‘[[l:l

¥ Fo e Sz & Offeat of Duemp Image
Section | Vitual Size | Virtual Difsst | Baw Size

GetEW st OEP | Concet |

Rawe Oifeet | Chaactanstics

LI [CTTETT e | [0 DHVECE) LR 100 ECENMICHRE
LIFX1 DGO OOS000 00000 OO0 E 040
U2 D00} Qo) QOOOCO00 D000 1000 ODOC 000 COOa

:

I Bebedd Impord
% Method] Seatch JMPIAFT] | CALLJAPT] in memony imags
™ Method? : Seach DLL & AP name eting in dumped fis

Figure 12. OllyDump interface

lrpponil FIF Conatuto v | 7 FINAL (IZ] 20002810 Mack T fulF P [Y |
Allach tn an e Process
- |
g e
st e darh mon JOIOOOTEC]
o e T, - 3 (i inih |
:.'-micw:'-:i.'::I:‘-:l:r;emu.Uﬂ'd-'.| = :l
Lesy
[Clos Log
AT e peeaded Hieres vt Induee UL ST L OADER] Uabony
L rer oo | e OmED . Sice [P0G0000
R¥a Tae F -
-
| | | EELTE

Figure 13. ImpREC interface

« HAaRING

<))

ImpREC

To fix the import table issue, we will be using a
tool called “ImpREC” or Import REconstructor. Im-
pREC analyzes a currently running program and
extracts the loaded import table, which we will then
be able to attach to our dumped binary.

To begin, we use the pull down menu at the top
of the ImMpREC screen to find the process match-
ing our dumped file. Since OllyDbg keeps all bina-
ries it is currently analyzing loaded in a suspended
state, we can access the process for the binary we
are currently analyzing; Figure 13 shows the pro-
cess listing drop-down.

Once our process is loaded, we can try to let Im-
pREC find the Import Address Table (IAT) on its
own by selecting the “IAT AutoSearch” button on
the bottom left of the screen. This might not work
and if that is the case, we need to pull out our notes
on the EP, Modify and Size values provided by OlI-
lyDump. In Figure 14, we plugged in the modify
value into the Original Entry Point (OEP) box and
used the IAT AutoSearch to find an import table.
By clicking the “Get Imports” button, all available
import functions located in the IAT show up in the
center of the screen.

Now that we have found an import table, all that
remains is to fix the binary dump we made earlier.
We do this by selecting the “Fix Dump” button on
the bottom of the screen and point to the dumped
binary from earlier (“malware_dumped.exe”). Im-
pREC will output in the “Log” box whether the op-
eration was successful and if so, we now have a
fully unpacked and import loaded version of our
original binary. From here, you could use the un-
packed binary to statically parse through the code
and determine any obstacles you might come
across (Figure 15).

¢ It B Conedivcim w1 T FINAL [C] 2000 79010 Mack T fulF 2 _| F ' !I
Altach o an e Piooss
e documents snd setirgsadmerd bsordarkios pached_lerbolmalhme see 'J:.l.lJ.I'l..-Ij Pk DLL

Irnguaisnd Furetions Fours]

= nhengn= ol FTheank. (000 000 MbFuee B jecamal 5] wold YES 5 b il
W dhenapn o8 F T b OOO1004 KF e 2 fdereoral 21wt YES
w0 o2 o0 Tk 00T b unc 2. foecmal 5] vl 115 Hheres
= e K ol Tk D000 0L C HEFunc'? [dscinat | ekt TS Sty
= wirirat A FT bk OO0 0F 4 WSFume-7 acireal T) wal$ VS
= was?_ 37 FThonk OO0 114 MbFure: [fdecir 15 wald YES
a1 vl PPk, B0 185 KbFure: | fdecmal 1) vabi VES
e |
L
AT radl maccesthuly |
v T CFI oot i i il o e DM obeos T asffi 8 s
AT Lo PR 0 O L e e, Al S S LR Dew Log I
Fiws irpart Infos HI0+ASCI-LOADEA) e |
va [ORO00 see [O0OCORD
aed |
fivm (00001000 S [D000IISA [T rep——

Lot Tvom | SrvnToon | [Fis b || Epee]

Figure 14. ImpREC Imports Found for Malware.exe

TBO 04/2013

How to Defeat Code Obfuscation While Reverse Engineering?

Where this might not work

Let us be honest, if every malware used easy
to get around packing and unpacking tech-
niques, we would have no trouble catching them
and analyzing them. Unfortunately, a lot of the
more complex malware out there employs their
own custom packers and even layers upon lay-
ers of packers. Therefore, even after performing
the manual unpacking technique in this article
you may still end up with packed code, in which
case you may need to run through the entire
technique again.

There is no end-all-be-all answer to unpacking
malware or other binaries but that is where the
detective aspect of a reverse engineer comes in.
If you find yourself unable to reach the legitimate
code for whatever reason, attack the problem
from multiple angles, go online and ask for help
or perform the code extraction techniques | will
discuss next.

Obfuscated Code

Packers aside, even after unpacking a binary
there still might be some obfuscated code hid-
den within that is yet to be decrypted or even cre-
ated yet. A lot of malware will split up code sec-
tions when compiling and put them back together,
decrypted, in new memory space to either run as
a new thread, copied to a separate file or inject-
ed into a legitimate process. The techniques re-
quires to extract this code for static code analysis
will not leave you with a neatly organized dumped
binary, instead you will have non-executable files
full of unattributed code that you have to do your
best to decipher out of context or without the abil-
ity to step through the code dynamically using
a debugger.

Finding the code

The first step in obtaining dynamically created,
obfuscated code is to find it. You can accom-
plish this in one of two ways, depending on how
you prefer to do your reversing. The first way in-
volves statically parsing through the code using
IDA Pro; this is an effective method of reversing
unless you come across a call to “WriteProcess-
Memory” that loads dynamically created code into
virtual space. The other method, which is what |
personally prefer, involves stepping through the
code using a debugger, taking multiple snapshots
at every “fork in the road” and using IDA Pro as
a roadmap that we can comment, customize and
use to make sure we are on the right path to find
that hidden code.

IDA Pro Roadmap

The IDA Pro roadmap approach works best if you
have two separate virtual machines, one for dy-
namically parsing through the code using a debug-
ger like OllyDbg and the other for keeping your
map up to date using IDA Pro. The purpose of
keeping the two separate is because of the pos-
sibility that your IDA Pro save file might become
corrupted, deleted or otherwise made useless and
therefore forcing you to return to the start.

My personal technique involves creating as
much of a picture as | can before ever executing
the code by renaming functions, commenting in-
teresting chunks of code and creating a predicted
path that | need the binary to follow in order to get
to the more juicy functions.

The benefit of this technique is that you always
know where you are going before you get there

s ot e e ==
fim B g el Yew Leiygee Deerd Weden Hee
W v (R L g A Xty X D00 = =
| | =
Eoanral) | Trmcmea) D By = o

b

LT .

Figure 15. Unpacked binary loaded in IDA Pro

www.hakin9.org/en

<))

ol e T

nee simm
[R TR TN T
Biake aEcE

PRI W Tl

Figure 16. Call to WriteProcessMemory found using IDA Pro

HaHIN9 /.

REVERSE ENGINEERING TECHNIQUES

and the possibility of getting lost in the code by
parsing through with only a debugger is slim to
none. In addition, you can be prepared for the cre-
ation of dynamic memory and keep track of what
variables are being referenced or what data is be-
ing copied. | find that when attempting to extract
previously obfuscated code, this is the best meth-
od to find out where the code resides.

Figure 16 shows this technique in action by dis-
playing a call to WriteProcessMemory found by
referencing the import table for the binary. From
here, the next step would be to rename the function
that calls this APl something unique like “CallToW-
riteProcMem.” Then by following cross references,
make our way back to the start of the binary, leav-
ing breadcrumbs along the way in the form of dif-
ferent colored function graphs and comments. In

51
E1
£1
Ei
£1
£1
E1
E1
£1
E1
E1

Commang -

Breakport o Mavie 15112614

addition, we also have access to the variable used
as the buffer for the function, which we can trace
back to find out exactly where the obfuscated code
will be loaded locally.

Now that the path is clear, we can navigate our
way to the function call dynamically by using Olly-
Dbg and using our roadmap. Figure 17 shows the
function ready to execute as well as the variables
passed to the function and the location of the buf-
fer code. Our next step is to extract the buffer code
to get a better look at it.

Extracting the Code

Finding the location of the obfuscated code is a
big part of this entire process, however we are not
out of the woods just yet. Now we need to extract
that code so that we can analyze it statically using

Figure 18. OllyDbg interface displaying current execution environment

« HAaRING

<)

TBO 04/2013

How to Defeat Code Obfuscation While Reverse Engineering?

IDA Pro and figure out exactly what it does. In mal-
ware, code which is hidden in the memory of other
processes, decrypted from a hidden section of the
file or created dynamically after the binary is ex-
ecuted usually holds the most important, powerful
and dangerous functionality. Before we go any fur-
ther in attempting to extract it, we need to answer a
few questions and list out what we know. Figure 18
shows the current execution environment in Olly-
Dbg before WriteProcessMemory executes, each
number corresponds to what kind of data we know
before execution.

* Based on the assembly code we know that the
function is only called once, therefore the data
located in the buffer is the entirety of the obfus-
cated code.

+ Based on the current variables pushed onto
the stack, we know the handle of the receiv-
ing process and the address of the buffer that
holds the current data. We also know the size
of the data, information that will be very useful
if we need to extract the data manually.

+ Based on the buffer data located at the refer-
enced address, the data might be an execut-
able binary since it has an MZ header.

Using the above information, we can successful-
ly extract the obfuscated code in one of two ways,
using an application to extract the data and ex-
tracting it manually.

55| LiwdPF Flopall 5 | bep pela =10 x
Pwh o P T o

Figure 19. LordPE Interface

[— l
Addetn S Protect fishe Tips -
DT 0000 DO00E 00D AW CORMIT MAFPLD
QOZCC000 D000 WOACCLSS FACE
EN0O000 O nnn R COMMIT PRMATE
0000 OOOOFNNG NMNACTESS FREE

IE; 1 ! AEE
e D A NOALLE 55 FHEE
QX000 Q000000 F COHBIT IMALGE
o D) D000 Bl COLRIT IMAGE
OO0 00T e ' COEHT &G
040700 IOOCTNn R COIT IMAGE
[N [EEETIm RI1ALE S FREE
LRI LU CTEE] *H LM MAFFED
WA L RESERVE MAFFED
0MO0000 Q000000 S]] COMIT MAPPED -

[I nframestion:

Addesr: | 000E0000 Size | OOOODO0G husngr

Figure 20. Dump region interface, obfuscated code location
highlighted

www.hakin9.org/en

<))

LordPE

Our first method involves the use of a tool known
as LordPE, a very powerful and useful PE editor.
Using it, we can open the current process memory
of our malware and extract the region of memory
that includes the obfuscated code. To begin with,
after opening LordPE we have to scan through the
process listing and find our target “Malware.exe”;
Figure 19 illustrates this.

When we find our process, we right click it and
select the “Dump Region” option. Using the dump
region interface, we scroll through all of the mem-
ory regions belonging to the file and find the one
that correlates to the buffer memory address we
observed previously.

In Figure 20, notice how the memory location
0x3E0000 has the size 0xD000, the same size as
the data passed to WriteProcessMemory. Our next
step is to simply dump the region and load it into
IDA Pro either by itself or as an additional file to our
currently loaded instance of IDA.

Manual Extraction

While rare, there might be an occasion when
you cannot use LordPE to extract code from
memory. This might be due to memory locked
by the binary using it. In any case, there is a
way around this problem and it is as simple as
‘cut and paste’.

Using the previous example, we are going to ex-
tract the same code as we did with LordPE but by
only using OllyDbg. The first step is to locate the
memory location in the OllyDbg dump window to

Figure 21. OllyDbg dump window using address offsets

HaHIN9 .

REVERSE ENGINEERING TECHNIQUES

Figure 22. Performing a Binary Copy on the selected data

the lower left of the screen; the number 3 in figure
18 represents this window.

The next step is to double click on the memory
address referenced by the code loading the obfus-
cated data, you should see a “==>" appear where
the memory address was and notice that all other
memory addresses in the dump are an offset from
the original (Figure 21).

By scrolling down, navigate to the offset address
that matches the size of the obfuscated data, in
this case it would be 0xD00O. Then Shift + R-Click
the memory location and you should be selecting
all the data between the origin address and the
current address. Next, right click on the selection
and navigate to the ‘Binary’ sub-menu and click
“Binary Copy” (Figure 22).

Finally, open your favorite Hex editor to a new file
and paste the external text as hex numbers, the
data should appear inside of your text editor exact-
ly as how they appeared in the OllyDbg dump win-
dow. Save the file as whatever you wish and load
the file into IDA Pro to get a closer look.

Conclusion

One of the first steps in reverse engineering le-
gitimate applications or malware is always break-
ing through any anti-reversing protection by using
unpacking applications or just letting the code de-
crypt itself and ripping out the data from memo-
ry. You should now be able to de-obfuscate a bi-
nary protected by a known packer, custom packer
or custom obfuscation methods by using the tech-
niques included in this article. However, always

» HAaRING

<))

Geanch boe
Golo

Hix
Test
St

w Long

Fioat

[Drisaztemble

.:|‘l‘|’.\'ﬂ

keep in mind that new anti-reversing techniques
are being developed all the time and with that, your
own ability to defeat them will need to constant-
ly be honed and practiced. Remember, no matter
how encrypted, obfuscated or packed a binary is,
the code must always be clean when it is executed
and that is a vulnerability you can always exploit.

ADAM KUJAWA

Adam Kujawa is a computer scientist
with over eight years’ experience in re-
verse engineering and malware analy-
sis. He has worked at a number of Unit-
ed States federal and defense agencies,
helping these organizations reverse en-
gineer malware and develop defense
and mitigation techniques. Adam has
also previously taught malware analysis and reverse engi-
neering to personnel in both the government and private sec-
tors. He is currently the Malware Intelligence Lead for the Mal-
warebytes Corporation.

TBO 04/2013

Protected Only by Antivirus?

Complete your PC's security by running Malwarebytes
Anti-Malware alongside your Anti-Virus to become fully

protected from the latest threats.

Protect Your Business Now!
Visit__ﬁ_\Malﬁyare.b_ytes.org

Contact us at Corpnrate Sales@Malwarebytes org

_./ . W\

Ou® Malwarebytes

http://www.malwarebytes.org/

REVERSE ENGINEERING TECHNIQUES

Reverse Engineering
— Shellcodes Techniques

The concept of reverse engineering process is well

known, yet in this article we are not about to discuss the
technological principles of reverse engineering but rather
focus on one of the core implementations of reverse
engineering in the security arena. Throughout this article
we'll go over the shellcodes’ concept, the various types and
the understanding of the analysis being performed by a

“shellcode” for a software/program.

hellcode is named as it does since it is usu-
S ally starts with a specific shell command.

The shellcode gives the initiator control of
the target machine by using vulnerability on the
aimed system and which was identified in ad-
vance. Shellcode is in fact a certain piece of code
(not too large) which is used as a payload (the part
of a computer virus which performs a malicious
action) for the purpose of an exploitation of soft-
ware’s vulnerabilities.

Shellcode is commonly written in machine code
yet any relevant piece of code which performs the
relevant actions may be identified as a shellcode.
Shellcode’s purpose would mainly be to take con-
trol over a local or remote machine (via network) —
the form the shellcode will run depends mainly on
the initiator of the shellcode and his/hers goals by
executing it.

The Various Shellcodes’ Techniques

When the initiator of the shellcode has no lim-
its in means of accessing towards the destina-
tion machine for vulnerability’s exploitation it is
best to perform a local shellcode. Local shellcode
is when a higher-privileged process can be ac-
cessed locally and once executed successfully,
will open the access to the target with high privi-
leges. The second option refers to a remote run,
when the initiator of the shellcode is limited as
far as the target where the vulnerable process is
running (in case a machine is located on a local
network or intranet) — in this case the shellcode
is remote shellcode as it may provide penetration
to the target machine across the network and in

- HaRIMNS

<))

most cases there is the use of standard TCP/IP
socket connections to allow the access.

Remote shellcodes can be versatile and are
distinguished based on the manner in which the
connection is established: “Reverse shell” or
a “connect-back shellcode” is the remote shell-
code which enables the initiator to open a con-
nection towards the target machine as well as a
connection back to the source machine initiating
the shellcode. Another type of remote shellcode
is when the initiator wishes to bind to a certain
port and based on this unique access, may con-
nect to control the target machine, this is known
as a “bindshell shellcode”.

Another, less common, shellcode’s type is when
a connection which was established (yet not closed
prior to the run of the shellcode) will be utilized to-
wards the vulnerable process and thus the initiator
can re-use this connection to communicate back to
the source — this is known as a “socket-reuse shell-
code” as the socket is re-used by the shellcode.

Due to the fact that “socket-reuse shellcode” re-
quires active connection detection and determina-
tion as to which connection can be re-used out of
(most likely) many open connections is it considered
a bit more difficult to activate such a shellcode, but
nonetheless there is a need for such a shellcode as
firewalls can detect the outgoing connections made
by “connect-back shellcodes” and /or incoming con-
nections made by “bindshell shellcodes”.

For these reasons a “socket-reuse shellcode”
should be used in highly secure systems as it does
not create any new connections and therefore is
harder to detect and block.

TBO 04/2013

http://en.wikipedia.org/wiki/Computer_virus

A different type of shellcode is the “download
and execute shellcode”. This type of shellcode
directs the target to download a certain execut-
able file outside the target machine itself and to
locate it locally as well as executing it. A vari-
ation of this type of shellcode downloads and
loads a library.

This type of shellcode allows the code to be
smaller than usual as it does not require to spawn
a new process on the target system nor to clean
post execution (as it can be done via the library
loaded into the process).

An additional type of shellcode comes from the
need to run the exploitation in stages, due to the
limited amount of data that one can inject into the
target process in order to execute it usefully and
directly — such a shellcode is called a “staged
shellcode”.

The form in which a staged shellcode may work
would be (for example) to first run a small piece
of shellcode which will trigger a download of an-
other piece of shellcode (most likely larger) and
then loading it to the process’s memory and ex-
ecuting it.

“Egg-hunt shellcode” and “Omelets shellcode
are the last two types of shellcode which will be
mentioned. “Egg-hunt shellcode” is a form of
“staged shellcode” yet the difference is that in
“Egg-hunt shellcode” one cannot determine where
it will end up on the target process for the stage
in which the second piece of code is downloaded
and executed. When the initiator can only inject a
much smaller sized block of data into the process
the “Omelets shellcode” can be used as it looks
for multiple small blocks of data (eggs) and re-
combines them into one larger block (the omelet)
which will be subsequently executed.

”

Introduction to MSFPAYLOAD Command

In this part we’ll focus on the msfpayi0ad cOmmand.
This command is used to generate and output all
of the various types of shellcode that are available
within Metasploit. This tool is mostly used for the
generation of shellcode for an exploit that is cur-
rently not available within the Metasploit’s frame-
work. Another use for this command is for testing
of the different types of shellcode and options be-
fore finalizing a module.

Although it is not fully visible within it's “help ban-
ner” (as can be seen in the image below) this tool
has many different options and variables avail-
able but they may not all be fully realized without a
proper introduction.

msfpayload -h

www.hakin9.org/en

<))

Reverse Engineering - Shellcodes Techniques

Type the following command to show the vast
numbers of different types of shellcodes avail-
able (based on which one can customize a spe-
cific exploit):

msfpayload -1

One can browse the wide list (as seen in the
image below) of payloads that are listed and
shown as the output for the msfpayicad -1 com-
mand: Figure 2.

In this case we chose the “shell_bind_tcp” pay-
load as an example. Prior to the continuum of our
action let us change our working directory to the
Metasploit framework as so:

= rootECE-Lineg -

w Ter

Figure 2. Msfpayload Payload List

= roab@bCF-Linun ‘pentestiexploiisframework

Figure 3. Listing the Shellcode Options

HaHRIN9 /-

REVERSE ENGINEERING TECHNIQUES

cd /pentest/exploits/framework

Once a payload was selected (in this case the
shell bind _tcp payload) there are two switches
that are used most often when crafting the pay-
load for the exploit you are creating.

In the example below we have selected a simple
Windows’ bind shellcode (sheil bind tep). When
we add the command-line argument “O” for a pay-
load, we receive all of the available relevant op-
tions for that payload:

msfpayload windows/shell bind tcp O

As seen in the output below these are results for
“0” argument for this specific payload: Figure 3.
As can be seen from the output, one can config-
ure three different options with this specific pay-
load. Each option’s variables (if required) will come
with a default settings and a short description as to

its use and information:

EXITFUNC

Required

Default setting: process
LPORT

= rFeotfHCr-Linus: jpenteatjexploits framewark

Figure 4. Specifying the Shellcode Options Data

= rodtBICF-Linun Jpentestenploiis framawork

Figure 5. Generating the Shellcode Using Msfpayload

« HaRINS

<))

Required

Default setting: 4444
RHOST

Not required

No default setting

Setting these options in msfpayload is very sim-
ple. An example is shown below of changing the
exit technique and listening port of a certain shell
(Figure 4):

./msfpayload windows/shell bind tcp EXITFUNC=seh
LPORT=8080 O

Now that all is configured, the only option left is
to specify the output type such as C, Perl, Raw,
etc. For this example ‘C’ was chosen as the shell-
code’s output (Figure 5):

#./msfpayload windows/shell bind tcp EXITFUNC=seh
LPORT=8080 C

Now that we have our fully customized shellcode,
it can be used for any exploit. The next phase is
how a shellcode can be generated as a Windows’
executable by using the msfpayicaa command.

msfpayload provides the functionality to output
the generated payload as a Windows executable.
This is useful to test the generated shellcode ac-
tually provides the expected results, as well as for
sending the executable to the target (via email,
HTTP, or even via a “Download and Execute”
payload).

The main issue with downloading an executable
onto the victim’s system is that it is likely to be cap-
tured by Anti-Virus software installed on the target.

To demonstrate the Windows executable gen-
eration within Metasploit the use of the “windows/
exec” payload is shown below. As such the initial
need is to determine the options that one must pro-
vide for this payload, as was done previously using
the Summary (S) option:

$ msfpayload windows/exec S
Name: Windows Execute Command

Version: 5773
Platform: [“Windows”]
Arch: x86

Needs Admin: No
Total size: 113

Provided by:
v1ad902

TBO 04/2013

Basic options:

Name Current Setting Required Description

CMD yes the command string to execute

EXITFUNC thread yes Exit technique: seh, thread,
process

Description:

Execute an arbitrary command

As can be seen the only option is to specify the
“CMD” option. One simply needs to execute “calc.
exe” so that we can test it on our own systems.

In order to generate a Windows’ executable us-
ing Metasploit one needs to specify the X out-
put option. This will display the executable on the
screen, therefore there is a need to pipe it to a file
which will call pscalc.exe, as shown below:

$ msfpayload windows/exec CMD=calc.exe X > pscalc.exe
Created by msfpayload (http://www.metasploit.com).
Payload: windows/exec
Length: 121
Options: CMD=calc.exe

Now an executable file in the relevant directo-
ry called “pscalc.exe” is shown. One may confirm
this by using the following command:

$ 1s -1 pscalc.exe
-rw-r--r-- 1 Administrator mkpasswd 4637
Oct 9 08:53 pscalc.exe

As can be seen this file is not set to being an
executable, so one will need to set the execut-
able permissions on it using via the following
command:

Reverse Engineering - Shellcodes Techniques

$ chmod 755 pscalc.exe

It is now testable by executing the “pscalc.exe”
Windows executable. The following command
should trigger the Windows Calculator to be dis-
played on your system.

$./pscalc.exe

As was mentioned in the beginning of the arti-
cle we have focused on one aspect of the securi-
ty’s field reverse engineering concept — the shell-
codes. This is a very basic “know how” for the use
of “shellcodes” but it should be the first step and
the gates’ open for a further and a much more
in depth search of the versatile use and features
shellcodes can supply.

ERAN GOLDSTEIN

Eran Goldstein is the founder of
Frogteam|Security, a cyber security vendor
company in USA and Israel. He is also the
creator and developer of “Total Cyber Se-
8 curity — TCS” product line. Eran Goldstein
is a senior cyber security expert and a soft-
ware developer with over 10 years of expe-
rience. He specializes at penetration testing, reverse engineer-
ing, code reviews and application vulnerability assessments.
Eran has a vast experience in leading and tutoring cours-
es in application security, software analysis and secure de-
velopment as EC-Council Instructor (C|El). For more informa-
tion about Eran and his company you may go to: http://www.
frogteam-security.com.

IT-Securityguard
Lets secure |1

LA

Android Vulnerability Scan

Web Penetration testing

Secure hosting

contact: contact@it-securityguard.com
www.it-securityguard.com

http://www.frogteam-security.com
http://www.frogteam-security.com
http://www.it-securityguard.com/
http://www.it-securityguard.com/

REVERSE IT YOURSELF

Although revealing the secret is always an appealing topic
for any audience, Reverse Engineering is a critical skill for
programmers. Very few information security professionals,
incident response analysts and vulnerability researchers have
the ability to reverse binaries efficiently. You will undoubtedly
be at the top of your professional field (Infosec Institute).

eryone can be good at decompiling or reversing

the code. | can show a roadmap to successfully
reverse the code with tools but reverse engineer-
ing requires more skills and techniques.

Software reverse engineering means differ-
ent things to different people. Reversing the soft-
ware actually depends on the software itself. It
can be defined as unpacking the packed, disas-
sembling the assembled or decompiling the com-
plied piece of code termed as software. Some
people have also named it as Auditing the Bi-
nary or Malware Analysis. This depends on the
motive.

Before we jump into more details, let's high-
light some pre-requisites of software reverse
engineering.

I tis like finding a needle in a dark night. Not ev-

Most importantly, you should be a programmer
who understands the basic concepts of how the
software world works. It is like driving your car

| DOZ - Assernbly languadge

| N
001 = C4 Furdament sl |
Farndatme
- N - rtals

| 00 - Fille Sructure

|
,,_JI 005 - Crash Anshysis .J_'_,_,_J Uinderst

-

Figure 1. Fundamental Requirements

 HAaRING

<))

in reverse gear and reaching home without acci-
dents! So yes, it's not an easy job and it requires
practice.

Understanding following requirements is funda-
mental in reversing any piece of code.

001 — You should be good in at least one pro-
gramming language so it could be C++.

002 — Understanding assembly language is the
key to success in reversing the code and
reaching the target. Understanding of stack
and memory works, types of registers and
pointers are the important factors.

003 — Which DLL is mapped to which statement
is very important.

004 — Try identifying the algorithms used and
drawing the map of them.

005 — Performing crash analysis to identify bugs,
understanding the functionally of the soft-
ware code by applying the hit and miss rule.

006 — Identifying files used.

007 - Identify variables used in the code, this is
very important.

Il 003 = Dd Mapping

-

— —

,ll 004 = Algorithm Anabysic

|| 008 - Vudnerabdity Anslysis

| 007 - Varisbles Anabesi
! P

_—

TBO 04/2013

How to Reverse the Code?

1 O THY: e FETEH |

I u.l [lwllhl-ﬂrlirldui

- e]

-

[i

[T =)

Ll

=~

=

i

(= L

|l ?

. .

e

L = e b e s o gt

puk 1 4

il J

L]

.

-

g

v

pa A 5 i Emine BTG G U T e

(] o o 1 e Bl WE EEH NS SR gk '-'.

|l < halrnad bl g I|l|'HIIH'||I|HI|'N“H"II|II'I1HT'I N

[mll.riﬁ'llﬂ.n DL T ol e

T

i o

L L ke LRI SRR

1 Dreee e T EIIll st

L ! LI RIE R LD LR L I)

g Wi, T _'l [. P W e e e

e omet A = PTEE Um0 el e) e

a wk ; gl Lo ""| aa Fwm am FUE RO MR O S

Sl e | b e oL LR LIRS LN LY R]
H_.i" I

;OB THT | WA | -
- o . o — EEL YRl
L = -

Uy kg - ollydbg

345

4 W

i

25

[E "Fleck om while™
.-||.5H.'.-_I PR T3
hr.- % @i FFFFFFFF |
t i it BiFFFFFFFF]
a L 'I r it ! FFFFI'-"'FI
a =

Il
o different “J . MRS ?-.'.l: i F'-'I-TE".‘CL.'" 'FF
HULL

EERT

ol Db VI 4'AY RAEl v THESERNM. 1 13TF_ ISl 10 iSraN
RTINS, T, PR I PG T

ok lnueEtasus = iB? EXCERT [OH_HOT_KAHD .
v C40sCg] o] =LEHORH §19] EOEFBEC SODDODES
=1 T4MEN41 = 0 r sLONS ST ORSETRD FTFTTTTT
LERI LP o (00 o

1 OF 2T EFR
E. 187 4SS L ADLLEE T D=L I T
]
01 NSNS HRHE R R RN

BEN
;35:

|

Format = TOLINDER received debug ewvent.
2l Iwabg. ﬁ*']l.i

[ok IfuafEaEud I'I'I".._I'!-\ﬂ'l"'l' EOH_HOT_HaHE I'u HrEn
[aadld = me = 1 S ORI DA
i mu-|

.

|

'r"-:.-. d D] = l! 1

FERMELEE, L'uu! mu'ﬂrl.nu.E-m-! i

Ef i
[|

SEGEaaE

Col lwdba, IR
Gwiteh lomies L..9, 1B, exitil

ey iml 'BgaEIELP-M _M Flgure3 - OllvDbg in
- L

sEd 53008 |

Flewr

Figure 3. OllyDbg

www.hakin9.org/en R (— H a H I n 9 ‘ 77

REVERSE IT YOURSELF

008 — Most importantly is Vulnerability Analysis,
this is applicable when you are trying to mod-
ify the normal behaviour of the code.

Approach: Different Reversing Approaches.

There are many different approaches for revers-
ing, and choosing the right one depends on the
target program, the platform on which it runs and
on which it was developed, and what kind of infor-
mation you’re looking to extract. Generally speak-
ing, there are two fundamental reversing method-
ologies: offline analysis and live analysis.

Offline analysis of code means that you take a bi-
nary executable and use a disassembler or a de-
compiler to convert it into a human-readable form.

Reversing is then performed by manually read-
ing and analysing parts of that output.

Offline code analysis is a powerful approach be-
cause it provides a good outline of the program
and makes it easy to search for specific functions
that are of interest.

The downside of offline code analysis is usually
that a better understanding of the code is required
(compared to live analysis) because you can’t see
the data that the program deals with and how it
flows. You must guess what type of data the code
deals with and how it flows based on the code.
Offline analysis is typically a more advanced ap-
proach to reversing.

There are some cases (particularly cracking-
related) where offline code analysis is not pos-
sible. This typically happens when programs are
“packed”, so that the code is encrypted or com-
pressed and is only unpacked in runtime. In such
cases only live code analysis is possible.

Live Analysis involves the same conversion of
code into a human-readable form, but here you
don’t just statically read the converted code but in-
stead run it in a debugger and observe its behav-
iour on a live system.

This provides far more information because you
can observe the program'’s internal data and how it
affects the flow of the code. You can see what in-
dividual variables contain and what happens when
the program reads or modifies that data.

Generally, it is said that live analysis is the bet-
ter approach for beginners because it provides a
lot more data to work with. The section on “Need
for Tools” discusses tools that can be used for live
code analysis.

» HAaRING

<))

Need for Tools: which tool to select is based on
the piece of software code you’re trying to reverse.
There are many tools available on internet but key
tools are IDA Pro & OllyDbg. IDA Pro is a wonder-
ful tool with a number of functionalities; it can be
used as debugger as well as disassembiler.

On the other side OllyDbg is an assembler lev-
el analysing debugger for Microsoft® Windows ®.
Emphasis on binary code analysis makes it partic-
ularly useful in cases where source is unavailable.

In my opinion IDA Pro is most powerfull tool and
is mostly used in reverse engineering, its function-
alities are vast in number, however, | should high-
light the key one:

Adding Dynamic Analysis to IDA

In addition to being a disassembler, IDA is also a

powerful and versatile debugger. It supports mul-

tiple debugging targets and can handle remote ap-

plications, via a "remote debugging server".
Power Cross-platform Debugging:

* Instant debugging, no need to wait for the anal-
ysis to be complete to start a debug session.

» Easy connection to both local and remote pro-
cesses.

» Support for 64 bits systems and new connec-
tion possibilities.

Highlights of OllyDbg Functionalities

* It debugs multithread applications.

» Attaches to running programs

» Configurable disassembler
MASM and IDEAL formats

« MMX, 3DNow! And SSE data types and in-
structions, including Athlon extensions.

+ It recognizes complex code constructs, like call
to jump to procedure.

+ Decodes calls to more than 1900 standard API
and 400 C functions.

supports both

As per Information Risk Management PLC, high
level Reverse Engineering can be divided into
three quick steps. This methodology is the culmi-
nation of exiting tools and techniques within the IT
Security research community, presenting the ways
to identify process operation at a higher-level of
abstraction than traditional binary reversing.

In this methodological approach attention is on
application DLLs and functions implemented. Fol-

TBO 04/2013

lowing this approach the researcher is free to ex-
plore and take any further steps as desired.

When analysing this way the researcher can fo-
cus attention on functions that appear more “inter-
esting” from information security point of view.

A Practical Example
A practical example while working on this method-
ology as explained below.

* Functionality Explored: Microsoft Fingerprint
Reader (manufactured by Digital Persona)

* Tools Required: Universal Hooker (uhooker by
Core Security Technologies), Interactive Disas-
sembler (IDA) and the OllyDbg debugger.

It is assumed that the reader is familiar with these
tools; further information on how to use these
tools can be obtained on the vendor website. |
have already explained a bit about IDA and OllyD-
bg, Uhooker is a tool to intercept execution of pro-
grams. It enables the user to intercept calls to API

How to Reverse the Code?

Functions inside the DLL and also arbitrary ad-
dresses within the executable file in the Memory.
Uhooker builds on the idea that the function han-
dling the hook is the one with knowledge about
parameter types of the function it is handling.
Uhooker is implemented as an OllyDbg plug-in,
which takes care of function hooking using soft-
ware breakpoints.

Phase 1: Identify Relevant Components
This first phase demands the investigation of the
core component of the target; in this case it is Mi-
crosoft Fingerprint Reader. A number of methods
can be applied for identifying core components of
Microsoft Fingerprint Reader at this level. The no-
ticeable start point for us would be to include the
device drivers that are used, in Windows case the
operating system itself provides much information
on the device drivers and their system location, it's
only the matter of knowing it as shown in Figure 5.
Here we can identify different DLLs and device
drivers that are used to control the device, this will

Table 1. Identifying possible system functions from filenames alone

System Component / Filename Likely Functionality

DPHost.exe Digital Persona Host — Main host application
Crypt32.dll and DPSecret.dll Encryption / Decryption Functionality (Fingerprint images are purportedly en-
crypted between device and host)
Dpdevctl.dll Digital Persona Device Control - Control commands for the fingerprint device
Dpdevdat.dll Digital Persona Device Data - Functions for handling data received from the
device
DPCFtrEx.dll Digital Persona Feature Extraction - functions for extracting biometric features
from fingerprint images
DpCmpMgt.dll Digital Persona Comparison/Component Management
DPCRecEn.dll Digital Persona Recognition Engine — functionality relating to the biometric
matching algorithm
Phase1: Identifying
Relevant Components el e sy Nlarain
= Dormin Lacubo b Hplegr Aeron
L k.iu- 'h-. ks
- B FfS D E=RE
A Dt -
s P s Py i Kk
o § ot
o g Dtk oo
0§ Dy e
* i PR e Gesenl D | Dbty
:i:x:::_1 @ AP g i
i HE AT i
b e e h
& 7 P e o e Fairn Puriin
ZE'.'.T.’l-‘..T:'-'. o0 | D smntags
& e OO BT i i | B e
Fypaiiiucian [B (- e PR
§ monsen) (=i || g camonimmmte
Ld [T ey — 7 LA F T AR, P)
1 ks [R S e e S T
- T S HT A gt % vl
Phaved: Functional Analysiz Fhazed; Idantifving Relevant [FelBui Eoe |

Companent Functions
Figure 5. Identification of core driver module of fingerprint

reader from System Manager

<))

Figure 4. High Level Reversing Methodology

HaHIN9 /-

www.hakin9.org/en

REVERSE IT YOURSELF

serve as a good starting point to our High Level
understanding of device and the system operation.

Typically, the next step includes examination of
system interaction with the underlying operating
system. Again, a number of tools exists for this
purpose — well known tools such as Sysinternal
tools, regmon, filemon and process explorer, pro-
vide great deal of possibility for exploring process
interaction with registry, file system and the oth-
er processes respectively. Here, knowledge about
DLL Mapping is the essential, which | highlighted
in the beginning refer 003 — DLL Mapping.

Note

Findings from this step should be documented by
the researcher as they will form the basis of later
phases. In the above example the following table
presents some of the findings (Table 1).

The minor information leakages in the filenames
can be very useful for identifying the functionality
of the system, and in this case DPHost.exe looks
like the core process. We will further proceed by
attaching the debugger to the interesting process.
OllyDbg’s Executable Modules Window will list all
executable modules currently loaded by the de-
bugged process. Figure 6 is an example for this.

Phase 2: Identifying Relevant Component
Functions

This is the analysis of components identified in the
previous phase to dig out function level informa-

(Milydbg - Dpd lost.exe - || secutable modules |
|E| Fis View Dabary Bugne Opbonc Windws Halp

tion from the components. We will again need help
of various tools for this. Here, we are interested in
identifying named and exported functions and the
virtual memory addresses for specified DLL files.
DLL Export View can be used as presented in Fig-
ure 7.

IDA Pro can also be used to dig out this level
of information. As you can see, the names of the
functions, their addresses in memory and the files
they are coded in. We can further reverse the func-
tion to get the actual code, but | am limiting this
Phase to this level. You should try your luck after it
is getting this far.

Note
Keep documenting what you have so far obtained.

Phase 3: High Level Functional Analysis
This is nothing but the high level analysis of the
function code that you should be able to obtain in

Em!w\‘hﬂr
Fis Ed Vew Oplices Felp

L IR AR |

Furaitar o Bkt Fslatron by | Ovnal Floriin
o _Ceselewce [T U FTT] et
FU_Oope{aviceblanager [t £ INORILT D] 4 e dpdewcildl
Fib_[8Cstiher sare i Dol Ereilc b 11514] dpderl i
o _tery (e B L e 5 o) dpdevin.
FO_Lraurmrar péelarvicn e 2 I | e ShECn gl ATy gt
FO_Geelial o orest 0 2 DDA R0 L] T 0Ty dpckevcllll
[8 OCATL OUODK0AZL0 =iy e |
FOI_GetPir pale DL Oty Qa0eTH1] dpcrridl
FO_Cpmrilevicd 0 B DRS00 Coc O 50 R dpckrertal
P _Cgmr Gorviclanage B OO0 L0000 11 (et e |

Y T e— e OXCRT0 000 b2 (itax dpdeert
FO_TeADervics EH] LR] i] dpcreildl

Figure 7. DLL Export Viewer to Identify Functions

= T B I = T I A LT R S A S (A P =
L e

1ML RSILE LIPS, '\:fl'l'I.IIHI'IT
WS S0 - & EOF AT DS Seorer . o Foadu 1

FOIEIST ?

sraPniney | [Pteares

TiDdnoid | DS EODED | Ti0dIPRD ot oimes L Fhi -r'F:n - JF st '\ weiupay [avstesd
| 1k 1l|.|| walar
FPEI0) | BREAFREY | ECFRORDE ECURCAET O N witen
FAMAD | INMEAANED | RDEEEAEN oonnt 1. SFodu lebnt Lokot L3y sEEm.
TIOCOMD | TPOCIOCE COMMes, {bese :[n'\-r..-r":n-\'t'} EOMNes [spstand
FTIINAMES | VLICRLIERARE | 7 FITH DR Lw"‘li.‘ £ H‘:ﬂl. LeEaErySaing s CHWPTER [agetamd
[I Ikn":'.i Sink LR Lewstamd
alal | SRR e:eﬁ i, e SR ol 0 A Rl el S ok
NONTOE | PO e Hr'ﬁnn:lmn.mn. CPiEk iefncrgPuolney | opileellal (epsismd | 8,
TTIC LMY | D g0 _"I'Ini-’i'i‘? G:IIJ._ '-Hcd.llf_r TEWFOLRE Y [re] 0 [2wasEmd
AL | PO PG R nE |.|P|u||> THEGEHLF | apstamd
TeIONEY | O DDC0 ""[E E‘I‘Iﬂ-. 'fl'l-ad.-hl:rt \l"mB: THEIE [swatarmd
LR A Ly .-L.'I:Wa-l Eraglzld ebneryPaint) | keone |22 L systard
TEITA | DORIIOER | TPRSESYE MSENL . -.r-u-cu ILn‘I‘.iI"aI-’\'F} FREm LaysTerd
ACLIOORAY | oAy FLIFSHL masscod o (r\:—:u- slnirpfeain maucri Tapnigmd
LIHM'IMIF AL L] ‘.IH:I'..\IMI M THIP LS, CPad lALAEFaBSnE) | L PIPLE" | spakaEm]
Tk | PR | TCEIRIER el | |Hrﬂ]it‘lTll,IPnl.Hr'l mrall feperam)

Pl | 0 GF? fHcado leFrL cuPolat) I [ipstew)
;"I... o) E ?? 5& H..EEST ‘.?-I'Lu.lu ieEncraPointy ELEE’!’&E L svstar)
THFCOH0 | O 1] -i.!f pasad o AFed ieEncoePolnty | pavedh o [svarand
i T | M afd RPCAT4. “‘hcu abnsrelaingd R4 Tigatamd
aF LY ety] li'FFEE‘I-El PEaEnA o P | lEn!ﬂPan't‘.- Teaeeh stard
FTFERSNY | W3] 1080 | TPFEILE] Sroardd. Oode LeEstoy®oin®? Seourdld Laysterd
FREANELS | LA SR .-'u LAR] W TIREET, ek ledbnE raBmnt 3 | L PSR T epekasd
L V| BLESRENA | TOWE ek SRS O [BEAERUSA AR Y SHELL A 1 euntam]
FiL | BT .-.-FEE!IFS‘ ‘S-ll,il'-F']' <ch;hl¢E||r" FginTl | ML

FEart i (i el L oenali Linat Ll || URFRSE | spstem)

SHNE | reaiead U gt Bty

ster
ST Wed 32y UFoes (glnbrsl :u'ﬂ-

‘&E'i'f’t'ﬁr
[apntand

......,qrpu [ewetas)
conet 132

SHO 0000 | CeEsopEn 'ﬂ..f L34} I.Ilt-'lr"l' ek LeEabCyFong 2 wgiherr Lswaterd
TOCH0Y | DOOO0E0 01195 W u Wk LeCabie v Puring ¥ \:ra:m I swaberd
ggmm | DL a0 "(-H!ﬂb? UIII'I'I -'Mh{rtwpmnt » [ewztamd

nﬁm | valar

FIAMEE opmat L. I Podu IeERErgF e

SEooooD :l

1
11 | SN 14 AP . TR IWTCFAPLIE ¢ mlﬁu
0 0ANAND | OGEFO0N | 81 REI3 n-r;-q-ﬁ': £ P leTaerabmine s | CpCepHae 3
040NN | DOETSNeR | R C ‘E ik [eFabcu®pint b IPCDow s -
aiiD | 2 | el I.FH DFCRecEn . <Fodu wEntroPointy | EPCRecEn 3
BTN | Lt"'H. g | el 00 PO lelnTraloiaty oron 4
Q0NN | IZ‘C‘.'DW IN.'HC'L b D"ﬂl Wi e APedu leCrnvrpPabnyd | IR0l lay 3
(iR | poe | = O ga, {Fadu lalasrpPaint | EPDe0b; & i
o P [#ERE L] 7
s S |G pupLiresio eihtesn e | DBlCPers

Ill'u'
CiaFrwgrsm P | LesiClQlCe D" er-sonaim un I'ﬁ,'l.le %]

| 5
11
£
I3
-
E
E
L
LB
(aysram) (€.
L4
g
£i1adeg
£i8
K
E
[

3 5

]
s

jiiE

L2l (HpERp_tEa
LB g aar

g

EE;&

s m s e e n
nararaE R i

%B

T R T T

L0 ALEF | RDuD. 20w 0D
A, FUED { wpriga ap @it e D)
080, 2100 oo sl x

SRR, 2L 1Y | epnp S e
Sub, LSS (Wpip, i Mg
T e T e T Y 1]
I T e Y L L |
1, ek ZLEA §wman_sn?_rrm
!.iﬁ gl. Hapriga_ i od e PR
B S8 (e ws 09

ot N LT

1o i, 2LEL g, RAETRE-1 620
2e), 2L mp_ﬂ).d._r:ﬂ.ﬂ"lu
LML § petp 2t e LB

N, 51 [UpEE 1nd w o

JE150 [AUSE. MO, 'L'| e
E10D € mwaie sl o e D
L83 {uoco, co. rtm BMR

ﬁﬂ“ﬁ{ B?;é’.;“foéﬂf she Bl
‘F‘

D

(L LIS L F P -4l
U yuranai et 2L
Gl THEOOES veys it en A v Dol 0 L |

il DG 2vaTenddaDi ad.di |
ool a0 wym w30 [HAGEHLF . J 0 |

) sestendon[HHIE,

sayatenduetng (2, dl |
LN s sy et endd . AL
Uil IR aysl an I arscot. 2l 1
L% CRC RS mpm e S TR LD . A |
CruPiTRSyapereniard il ALl

S N

Cr i PR, £ 24 Sl SR TURT

ool PR RS a vt an=ru iRl L s d
Cond[ORS g an 32 SHLMGF [g
R R et o = |
Ci 'I:m vRiem3d anthiere.d
Gi W THDCRE vt emd ESOL O J 1
Cr i [NDORS cuctengdx i M. d] |

N A
o [HDOAIG B

(=] M\UIHHI"\IM HI.J:I'DHI‘“ WL S, Loerein -Ls

Figure 6. The OllyDbg Executable Modules window identifies modules loaded by our debugged process

« HaRING

<))

BLCE T
e, LT CrwProgren FLLeasigles b er smnme6 in Al
ﬂ-.'ﬂq CrowPrrwareses F i Leanf)iaf va | Fer-amha B n "h|-| |||
. L85 CiPromram FilesDogauta PewonanBi ||‘\ "'{!er.ﬁ'l dil
LD CiProarsn I | Les DiaiTa D er sone D in \0roo,d L
¥ GOED Gi~Neaacan CilezBiaiva 1™ sonaDi n-l:l"'D-'h-'I:\ dill
[] M i Tl leanDH |1-|.|"'\n-|-m-l B o000 Ok e A
G :'lfﬂli i i P"Md
Eﬂg E'\ m“tlzl,ﬂtg glte g !"'Iﬂt"l\g Wn EII
TS R L! WFTOQraM F L LF AL @LUTE D aT- s on LFFa.a]
fi. e E1 b .n F UL wmoDh gl e soros B on D Secr e o 1
o b, R, PR (i nnd rin B I'.‘-'LH "'Il.'l“.'m'\"‘ wuwa il |
2 H e WE i B4 E:'Hl TAVEL IE
ok il M:'lvln u
|I DH‘UM-N Wl [P] -:Imld-c.dlni
IE 414,000 G N THDOAG :»,:'I-:-\.'J"" S 2. 410
HLPRL TIHS VR R PR D DR gy el T S

TBO 04/2013

AT | MG
€

{44 s| wu] sfeg § 0 4] of D]] R 8] = 2]
1 m s MT.I'F:.!IFP'"

ey el e e

niworesal Hoslow sovvar eoarced

Fingerprint Registration Wizard

Fegister a Fingerprin

Yo ek suctcaaiully acan your bngenpert hear broca mionder bo regaifon aghl g fagee

- L

TR T Tecir | ~ Wit iz it s compatnd. o yoen.r Pirayer was b T -
- rngeerrnt reader agan

¢ Back i_F__-_l:_-r > | Cercd

T ronad (CCODEAS krmimae, ol sadda 0 Furrieg
Figure 8. Example of uhooker examining function calls with the Microsoft Fingerprint Reader

Fhe form of assembly_language. For_t’his OllyDbg Infosec Institute, Information Risk Management PLC ap-
'S_ the be?’t tool. By _usmg such too_ls it's all GUI'_A proach towards ’high level reverse engineering. OllyDbg,
simple click can quickly put machine language in DA Pro, Core Securities Uhooker Docs.
front of you. However, you must be experienced
with assembly language to make it useful.

A quick snapshot of Functional Analysis | have
taken for from OllyDbg tool is presented in Figure 8.

Next Steps

You can further extend your study to parameter
analysis of functions, variable analysis and then
input validation and boundary checks. However,
you should be good enough in performing 005 —
Crash Analysis. This analysis forms the basis for
vulnerability analysis resulting in identification of RAHEEL AHMAD

loop holes in the software code. Raheel Ahmad, CISSP, is an Information Se-
curity Consultant with around 10 years of ex-
perience in security and forensic investiga-
tions while working for Big4 Audit Firms and
Consulting companies.

Reverse engineering is a critical skill, and this ar-
ticle just highlights the steps, approach and a high-
level methodology of how to kick off reverse engi- He holds several security certifications as CIS-
neering of the software code. Remember that all % SP, CEH, CEl, MCP, MCT, CRISC, and CobIT
code was created by a brain, and only a brain can Foundation. Raheel is a certified instructor for
decode it; tools are the hands on the typewriter. ethical hacking boot camps.

<) HaKINg.

REVERSE IT YOURSELF

The concept of dot NET can be easily compared to the
concept of JAVA and Java Virtual Machine, at least when

talking about compilation.

guages like C/C++, application were devel-

oped using dot NET frameworks are com-
piled to a Common Intermediate Language (CIL or
Microsoft Common Intermediate Language MSIL)
— which can be compared to bytecode when talk-
ing about Java programs — instead of being com-
piled directly to the native machine executable
code, the Dot Net Common Language Runtime
(CLR) will translate the CIL to the machine code
at runtime. This will definitely increase execution
speed but has some advantages since every dot
NET program will keep all classes’ names, func-
tions’ names variables and routines’ names in the
compiled program. And this, from a programmer’s
point of view, is such a great thing since we can
make different parts of a program using different
programming languages available and supported
by frameworks.

Just like Java and Java Virtual Machine, any dot
NET program firstly compiled (if we can permit
saying this) to a IL or MSIL language and is ex-
ecuted in a runtime environment: Common Lan-
guage Runtime (CLR) then is secondly recompiled
or converted on its execution, to a local native in-
structions like x86 or x86-64... which are set de-
pending on what type of processor is currently
used, thing is done by Just In Time (JIT) compila-
tion used by the CLR.

To recapitulate, the CRL uses a JIT compiler to
compile the IL (or MSIL) code which is stored in a
Portable Executable (our compiled dot NET high
level code) into platform specific code, and then
the native code is executed. This means that dot

- HAaRINS

l l nlike most of traditional programming lan-

<)

NET is never interpreted, and the use of IL and JIT
is to ensure dot NET code is portable.

Basically, every compiled dot NET application is
not more than its Common Intermediate Language
representation which stills has all the pre coded
identifiers just the way they were typed by the pro-
grammer.

Technically, knowing this Common Intermediate
Language will simply lead to identifying high level
language instructions and structure, which means
that from a compiled dot NET program we can re-
constitute back the original dot NET source code,
with even the possibility of choosing to which dot
NET programming language you want this transla-
tion to be made. And this is a pretty annoying thing!

When talking about dot NET applications, we talk
about “reflection” rather than “decompilation”, this
is a technique which lets us discover class infor-
mation or assembly at runtime. This way we can
get all properties, methods, functions... with all pa-
rameters and arguments, we can also get all inter-
faces, structures ...

Before starting the analysis of our target (not yet
presented) | will clarify and in depth some dot
NET aspects starting by the Common Language
Runtime.

Common Language Runtime is a layer between
dot NET assemblies and the operating system
in which it's supposed to run; as you know now
(hopefully) every dot NET assembly is “translated”
into a low level intermediate language (Common
Intermediate Language — CIL which was earlier

TBO 04/2013

How to Reverse Engineer dot net Assemblies

called Microsoft Intermediate Language — MSIL)
despite of the high level language in which it was
developed with; and independent of the target plat-
form, this kind of “abstraction” lead to the possibili-
ty of interoperation between different development
languages.

The Common Intermediate Language is based
on a set of specifications guaranteeing the inter-
operation; this set of specifications is known as the
Common Language Specification — CLS as defined
in the Common Language Infrastructure standard
of Ecma International and the International Organi-
zation for Standardization — ISO (link to download
Partition | is listed in references section).

Dot NET assemblies and modules which are de-
signed to run under the Common Language Run-
time — CLR are composed essentially by Metadata
and Managed Code.

Managed code is the set of instructions that
makes the “core” of the assembly / module func-
tionality, and represents the application’s func-
tions, methods ... encoded into the abstract and
standardized form known as MSIL or CIL, and this
is a Microsoft's nomination to identify the managed
source code running exclusively under CLR.

On the other side, Metadata is a way too ambigu-
ous term, and can be called to simplify things “data
that describes data” and in our context, very sim-
ply, metadata is a system of descriptors concern-
ing the “content” of the assembly, and refers to a
data structure embedded within the low level CIL
and describing the high level structure of the code.

—P ='='~'_‘__: Managed Compiler :____",":—

Just-in-Time

Compiler

o
&
Ty
c
3
(4
o
W
3
c
m
- |
o
o
E
E
o
%]

It describes the relationship between classes, their
members, the return types, global items, meth-
ods parameters and so on... To generalize (and
always consider the context of the common lan-
guage runtime), metadata describes all items that
are declared or referenced in a module.

Basing on this we can say that the two princi-
pal components of a module are metadata and IL
code; the CLR system is subdivided to two major
subsystems which are “loader” and the just-in-time
compiler.

The loader parses the metadata and makes in
memory a kind of layout / pattern representation of
the inner structure of the module, then depending
on the result of this last, the just-in-time compiler
(also called jitter) compiles the Intermediate Lan-
guage code into the native code of the concerned
platform.

The Figure 1 describes how a managed module
is created and executed.

Understanding MSIL

Beyond the obvious curiosity factor, understanding
IL and how to manipulate it will just open the doors
of playing around with any dot NET programs and
in our case, figuring out our programs security sys-
tems weakness.

Before going ahead, it’'s wise to say that CLR ex-
ecutes the IL code allowing this way making opera-
tions and manipulating data, CRL does not handle
directly the memory, it uses instead a stack, which
is an abstract data structure which works accord-

<Managed module
h METADATA

Il Code |

SN—

Figure 1. Compilation and execution of a managed module

www.hakin9.org/en

<))

HaHIN9 /.

REVERSE IT YOURSELF

Table 1. Non-exhaustive IL instruction list

IL Instruction | Function Byte represen-
tation

>
o

nd Computes the bitwise AND of two values and pushes the result onto the evaluation stack. 5F

Be Transfers control to a target instruction if two values are equal. 3B

Beq.s Transfers control to a target instruction (short form) if two values are equal. 2E

Bge Transfers control to a target instruction if the first value is greater than or equal to the sec- 3C
ond value.

Bge.s Transfers control to a target instruction (short form) if the first value is greater than or 2F

equal to the second value.

Bge.Un Transfers control to a target instruction if the first value is greater than the second val- 41
ue, when comparing unsigned integer values or unordered float values.

Bge.Un.s Transfers control to a target instruction (short form) if the first value is greater than the 34
second value, when comparing unsigned integer values or unordered float values.

Bgt Transfers control to a target instruction if the first value is greater than the second value. 3D

Bgt.s Transfers control to a target instruction (short form) if the first value is greater than 30
the second value.

Bgt.Un Transfers control to a target instruction if the first value is greater than the second val- 42
ue, when comparing unsigned integer values or unordered float values.

Transfers control to a target instruction (short form) if the first value is greater than the 35
second value, when comparing unsigned integer values or unordered float values.

Transfers control to a target instruction if the first value is less than or equal to the sec- 3E
ond value.

Transfers control to a target instruction (short form) if the first value is less than or 31
equal to the second value.
Ble.Un Transfers control to a target instruction if the first value is less than or equal to the 43
second value, when comparing unsigned integer values or unordered float values.
Ble.Un.s Transfers control to a target instruction (short form) if the first value is less than orequalto 36
the second value, when comparing unsigned integer values or unordered float values.
Transfers control to a target instruction if the first value is less than the second value. 3F
Blt.s Transfers control to a target instruction (short form) if the first value is less than the 32
second value.
Blt.Un Transfers control to a target instruction if the first value is less than the second value, 44
when comparing unsigned integer values or unordered float values.
Blt.Un.s Transfers control to a target instruction (short form) if the first value is less than the 37
second value, when comparing unsigned integer values or unordered float values.
Bne.Un Transfers control to a target instruction when two unsigned integer values or unor- 40
dered float values are not equal.
Bne.Un.s Transfers control to a target instruction (short form) when two unsigned integer val- 33
ues or unordered float values are not equal.
Unconditionally transfers control to a target instruction. 38
Brfalse Transfers control to a target instruction if value is false, a null reference (Nothing in Vi- 39
sual Basic), or zero.
Transfers control to a target instruction if value is false, a null reference, or zero. 2C
Transfers control to a target instruction if value is true, not null, or non-zero. 3A
Transfers control to a target instruction (short form) if value is true, not null, or non-zero. 2D
Unconditionally transfers control to a target instruction (short form). 2B
Calls the method indicated by the passed method descriptor. 28

Compares two values. If the first value is less than the second, the integer value 1 (int32)is FE 04
pushed onto the evaluation stack; otherwise 0 (int32) is pushed onto the evaluation stack.

Compares the unsigned or unordered values valuel and value2. If valuel is less than ~ FE 03
value2, then the integer value 1 (int32) is pushed onto the evaluation stack; otherwise
0 (int32) is pushed onto the evaluation stack.

Jmp Exits current method and jumps to specified method. 27

HaKINS <)

84

How to Reverse Engineer dot net Assemblies

Loads an argument (referenced by a specified index value) onto the stack. FE 09
Load an argument address onto the evaluation stack. FE OA
Load an argument address, in short form, onto the evaluation stack. OF
Loads the argument at index 0 onto the evaluation stack. 02
Loads the argument at index 1 onto the evaluation stack. 03
Loads the argument at index 2 onto the evaluation stack. 04
Loads the argument at index 3 onto the evaluation stack. 05
Loads the argument (referenced by a specified short form index) onto the evaluation stack. =~ OE
Pushes a supplied value of type int32 onto the evaluation stack as an int32. 20
Pushes the integer value of 0 onto the evaluation stack as an int32. 16
Pushes the integer value of 1 onto the evaluation stack as an int32. 17
Pushes the integer value of -1 onto the evaluation stack as an int32. 15
Pushes the supplied int8 value onto the evaluation stack as an int32, short form. 1F
Pushes a new object reference to a string literal stored in the metadata. 72
Exits a protected region of code, unconditionally transferring control to a specific targetin- DD
struction.
Exits a protected region of code, unconditionally transferring control to a target in- DE
struction (short form).
m Multiplies two values and pushes the result on the evaluation stack. 5A
Multiplies two integer values, performs an overflow check, and pushes the result on- D8
to the evaluation stack.
Multiplies two unsigned integer values, performs an overflow check, and pushes the D9
result onto the evaluation stack.
m Negates a value and pushes the result onto the evaluation stack. 65
Creates a new object or a new instance of a value type, pushing an object reference 73
(type O) onto the evaluation stack.
Not Computes the bitwise complement of the integer value on top of the stack and push- 66
es the result onto the evaluation stack as the same type.
Compute the bitwise complement of the two integer values on top of the stackand 60
pushes the result onto the evaluation stack.
m Removes the value currently on top of the evaluation stack. 26
Divides two values and pushes the remainder onto the evaluation stack. 5D
Divides two unsigned values and pushes the remainder onto the evaluation stack. 5E
Ret Returns from the current method, pushing a return value (if present) from the caller's 2A
evaluation stack onto the caller’s evaluation stack.
Re throws the current exception. FE 1A
Stores a value of type int8 at a supplied address. 52
Stores a value of type int16 at a supplied address. 53
Stores a value of type int32 at a supplied address. 54
Pops the current value from the top of the FE OE
evaluation stack and stores it in a the local variable list at a specified index.
Subtracts one value from another and pushes the result onto the evaluation stack. 59
Subtracts one integer value from another, performs an overflow check, and pushes DA
the result onto the evaluation stack.
Subtracts one unsigned integer value from another, performs an overflow check,and DB
pushes the result onto the evaluation stack.
Implements a jump table. 45
Throws the exception object currently on the evaluation stack. 7A
Xor Computes the bitwise XOR of the top two values on the evaluation stack, pushing the 61

result onto the evaluation stack.

www.hakin9.org/en

<))

HaHIN9 /.

REVERSE IT YOURSELF

CrackMe#2- -dotlET-Revers]

About

Unregistered Crack Me

Figure 2. Crack Me’s main form

% < Systmen. D (4. 0.0.7]
0! <2 Sritme, Mrdtws Sorrm (40,09
= Svitme vt (40,55

aosemithy mescorin
i S0
hash sigathm

| pebichey = (00 00

- System (4.0.0.0)
-3 System.Core (4.0.0.0)

.0 System.Xml (4.0.0.0)

.0 System.Data (4.0.0.0)

-0 System.Web (4.0.0.0)

-3 System.Drawing (4.0.0.0)

3 System.Windows.Forms {4.0.0.0)

- System.ServiceModel (4.0.0.0)

-3 System.Workflow.ComponentModel (4.0.0.0)
-3 System.Workflow.Runtime (4.0.0.0)

-3 System. Workflow. Activites (4.0.0.0)

-0 Microsoft.VisualBasic (8.0.0.0)

) CraddMe5-Obfuscated
- CraddMe3

I Y Y = = I R

othNET-Reversing (1.0.

Figure 4. Crack Me loaded on Reflector

« HAaRING

ing to the “last in first out” basis, we can do two im-
portant things when talking about the stack: push-
ing and pulling data, by pushing data or items into
the stack, any already present items just go further
down in this stack, by pulling data or items from the
stack, all present items move upward toward the
beginning of it. We can handle only the topmost el-
ement of the stack.

Every IL instruction has its specific byte repre-
sentation, I'll try to introduce you a non exhaustive
list of most important IL instructions, their functions
and the actual bytes representation, and you are
not supposed to learn them but use this list as a
kind of reference: Table 1.

What this Means to a Reverse Engineer?

Nowadays there are plenty of tools that can “reflect”
the source code of a dot NET compiled execut-
able; a good and really widely used one is “Reflec-
tor” with which you can browse classes, decompile
and analyze dot NET programs and components,
it allows browsing and searching CIL instructions,
resources and XML documentation stored in a dot
NET assembly. But this is not the only tool we will
need when reversing dot NET applications and we
will need more than one article to cover all of them.

What Will you Learn From this First Article?
This first essay will show you how to deal with Re-
flector to reverse a simple practice oriented crack

w1 CrackMe I dothET-Reversing (1.
M CrackMed — |-dotNET-Reversing.exe
| Resources

Figure 5. You Can Expend the Target by Clicking the “+” Sign

B -2 Cra:dd'ﬂe:-il I-doWEF-ReuEfsing (1.0.0.0)

<))

= W% Craddd=3 ofNET-Reversing.exe
[+ =3 References
m 4} -
£} CrackMe3 | | dotNET_Reversing
§) CreddMed | | dotMLCT_Reversing.My
{} CrackMe3 | | dotMET_Reversing.My.R.
& [Resources

Figure 6. Keep on Developing Tree and See What is Inside of
this Crack Me

G 47 M..lorml_Load{Object, DventhArgs) : Woid

private vnid Form i _L nad{nhject sender, Fuentargs)

{
thiz_bmEnablaiz Enabled = falce;

this.Lbi5tat.MoreColor = Color Red;
h

\

Figure 7. We Can See Actual Code Just by Clicking on the
Method'’s Name the Way We Get This

TBO 04/2013

me | did the basic way, so | tried to simulate in this
Crack Me a “real” software protection with disabled
button, disabled feature and license check protec-
tion (Figure 2).

So basically we have to enable the first button
having “Enable Me” caption, by clicking it we will
get the “Save as...” button enabled which will let us
simulate a file saving feature, we will see where the
license check protection is trigged later in this ar-
ticle.

Open up Reflector, at this point we can configure
Reflector via the language’s drop down box in the
main toolbar, and select whatever language you
may be familiar with, I'll choose Visual Basic but
the decision is up to you of course (Figure 3).

Load this Crack Me up into it (File > Open menu)
and look anything that would be interest us. Tech-
nically, the crack me is analyzed and placed in a
tree structure, we will develop nodes that interest
us: Figure 4.

You can expend the target by clicking the “+”
sign: Figure 5.

Keep on developing tree and see what is inside
of this Crack Me: Figure 6.

Now we can see that our Crack Me is composed
by References, Code and Resources.

+ Code: this part contains the interesting things
and everything we will need at this point is in-
side of HiddenNAME dotNET Reversing (WhICh is

5«0 crackee JdomET-Reversing (L0.0.0) a
= W% Cra kMFi—hhlthﬂ'—r-ﬂr".'ﬂ\;ll_j.FlF 7|
=3 References
m i
- {} CrackMe | dotMET_Revercng
-
%) AAaze Types
0 Devived Types

¥ .ctor()

2" binAbout_ChcklObject, EventArgs) @ Vesd

4% binknableme_Uhdi{Ubgect, 5) 1 Wioed
¥ hinFnahleMe_Clidk_ 1{0hjert, Fuentangs) < Vinid

@ thedklicence() ; Void
¢ chedfegStat) : Void
+ Dispose (Boolean) : Void
,.1.'4 Form1_Load{Cbject, Eventinge) : Void
/ ﬁ‘-l' InitiakzaComponent() = Void
J_r_-"f & 0 el : Buslion
- TR binCnableMe : D
binSaveAs ¢ Button
4 j LbiSkat : Labeal
g* _bmabout : Buttan
g# _hmFnahlede : Rutton
__I-IV _binSaveds ; Bullonm
o LbiSiat: Labe
gV comp b5 ¢ 1

o icHegetered | Hoolean

= {} ﬂmuqﬁ_mm.My -
m FL A il Y . N FRRCRTE T A | A
[

Figure 8. Crack Me’s nodes expanded

Duthon

Containcr

www.hakin9.org/en

<))

How to Reverse Engineer dot net Assemblies

a Namespace)

+ References: is similar to
used in other PE files.

* Resources: for now this is irrelevant to us, but
it this is similar to ones in other windows pro-
grams.

“imports”, “includes”

By expanding the code node we will see the fol-
lowing tree: Figure 8.

We can already clearly see some interesting
methods with their original names which is great,
we have only one form in this practice so let’s see
what Forml Load (object, EventArgs): void has to
say, we can see actual code just by clicking on the
method’s name the way we get this: Figure 7.

If you have any coding background you can
guess with ease that “this.btnEnableMe.Enabled =
false;” is responsible of disabling the component
“btnEnableMe” which is in our case a button. At
this point it's important to see the IL and the byte
representation of the code we are seeing, let’s
switch to IL view and see: Listing 1. In the code
above we can see some IL instruction worth of be-
ing explained (in the order they appear):

* |darg.0 Pushes the value 0 to the method onto
the evaluation stack.

 callvirt Calls the method get()
the object btnEnableMe.

* Idc.i4.0 Pushes 0 onto the stack as 32bits integer.

callvirt Calls the method set() associated with

the object btnEnablene.

associated with

This says that the stack got the value 0 be-
fore calling the method set Enabled(boo1), 0 is
in general associated to “False” when program-
ming, we will have to change this 0 to 1 in order
to pass “True” as parameter to the method set
Enabled(bool); the IL instruction that pushes 1 onto
the stack is 1dc.i4.1.

In a section above we knew that byte representa-
tion is important in order to know the exact location

Table 2. /L reference

IL Instructio | Function Byte repre-
sentation
Ldc.l4.0 Pushes the integer value of 0
onto the evaluation stack as
an int32.
Ldc.14.1 Pushes the integer value of 1 17
onto the evaluation stack as
Callvirt Call a method associated 6F
with an object.

an int32.
Ldarg.0 Load argument 0 onto the stack. 02

HaHIN9 /-

REVERSE IT YOURSELF

pf the IL mstrucf:hop to change and by what chapg- =] Aximp.exe 26/10/2006 13:44
ing it, so by referring to the IL byte representation T— 30812005 07156
reference we have: Table 2. i Siuspiass s
We have to make a big sequence of bytes to et s

search the IL instruction we want to change; ==l gacuif.exe 23/03/2005 07:01
we have to translate 1dc.i4.0, callvirt, gacutil.exe.config 25/10/2006 13:45
and calivire to their respective byte representa- Z3fUf2005 0701
tion and make a byte search in a hexadecimal idasm. exe.config 26/10/2006 13:45
editor. _ Bk eve 26/10/2006 13:45
) R’(’aferrlng the list above we get: 166722076122, the D RN 26/10/2006 13:45
??” means that we do not know neither instance

&mscnr:fq.msc 26/10/2006 13:45
void [System.Windows.Forms]System.Windows.Forms.) :
Control::set Enabled (bool) (at IL _0007) bytes) macormemc.dl 2010061345
representation nor bytes representation of | mscormmc11.cfg 26/10/2006 13:45
instance class [System.Windows.Forms]System. B | PEVerify.axe 26/10/2006 13:45
Windows.Forms.Label CrackMe2 HiddenName dotNET PEVerify.exe.config 26/ 10/ 2006 L3:45
Rever.sing.MainForm:.:getiLblStat () (a.t IL 000d). % Nequirednermissions. di 26/10/2006 13:45

Thlngs are getting morc’a com_phcated and we R T ——
will use some extra tools, I’'m calling ILDasm! This o s
. . . - TLERE (10y 13

tool is provided with dot NET Framework SDK, S L

B /| cigntool.exe 26/10/2006 13:45

if you have installed Microsoft Visual Studio, you
can find it in Microsoft Windows SDK folder, in my Figure 9./LDASM

Listing 1. /L code

.method private
instance void Forml Load (
object sender,
class [mscorlib]System.EventArgs e
) cil managed

// Method begins at RVA 0xlb4dic
// Code size 29 (0x1d)
.maxstack 2

.locals init (

[0] valuetype [System.Drawing]System.Drawing.Color

IL 0000: ldarg.0
IL 0001: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2
HidenName dotNET Reversing.MainForm::get btnEnableMe ()
IL 0006: 1ldc.i4.0
IL 0007: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
Enabled (bool)
IL 000c: ldarg.0
IL 000d: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()
IL 0012: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Dra
ing.Color::get Red()
IL 0017: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
ForeColor (valuetype [System.Drawing]System.Drawing.Color)
IL 00lc: ret
} // end of method MainForm: :Forml Load

. HaKINg <)

system ILDasm is located at C:\Program Files\Mi-

crosoft Visual Studio 8\SDK\v2.0\Bin (Figure 9).
ILDasm can be easily an alternative tool to Re-

flector or ILSpy except the fact of having a bit

r LU ers |\ Sowliane | Deskilop | itkiba dol
Fr View Help

F HMAMNIFFST
a0 crackeie B T _Bawerang

= B e ot T Fawersneg My

= E c.;t.:j:tmr_nm <irg, MamFures
¥ _rlwss pobbe ko ansi
¥ extends [System wWindows. | orms ovsbem. Windows. | ores. | oom
¥ oumbom mbars woid [Mrosol L s ool | Voo, Cor
W _\HSral = privabe clyes [Syshem Wintdoes Foemes }oypestem. Windows Frimes.
i bbnakuk - peresbe class [st Windows, Forme opsten, Windows Forms
& _blsiEnsldsie ; privalbe dass [Sysbem, Wirdows Forme [Sysben, Windoes Fo
9 _bleSaveis ; privale dass [Splemn, Wirdows Fome Sk o, Wk Py
& pomponents @ private dass [Syestem]System. Compunneninded. [0 onkainer
W ERegshenad ;| private bool
B cbor ; vkl
B Déspose ¢ weid(bacl)

Forenl Losd : woid{oboedt, dass [meoorib Eapstem, Lvertangs)
‘;" B LeliakenComponmnl, ; voud)
W hinokouk Click : void{nhjert class [mscolb]System. Fvankirgs)
’-' B hnEnahieMe_Clrk 1 wnidnbject, rlass [rerorlih Fpstem, Eueniings)

W bontnabiarte Chok 1 wold{obiect, dass [mscorkt Topstem, Cvertangs)
B kLo ; ok
B rheckfengSear @ vnd()
B et LbEEsE - clacs [Syshem Vet | orms Fopstam Wirckoass 1o Labsk
B gl _bindibod ; cless | Sysbeo Winmdores, Forme Jystem, Wirckess Foms.,

sty
R it e e —

Figure 10. Target loaded on ILDASM

F C:\Users\Soufiane\Desktop\itkfta\dotNET R
File | View Help

= Set Fonts
v Sort by name
¢ Full Class Names
Verbal CA blobs

F BiitkfraldothNET Reve

kute_dotMNET_Rewver:
nstitute_dotMET_Re
nstitute_dotMET_Re

Hide Public ko ansi

Hide Private e, Windows Formns]
Hide Family re void [Microsoft, is
Hide Assembly ke class [Syskem, Wir

Hide FamAMNDAssem
Hide FamOR.Assem
Hide PrivateScope

vate class [Syskem.h
| private class [Tyske
rivate class [Swstem
rivate class [Swstem
Drivake bool

Show member types

Show bytes

Show token values [
Show source lines ¥ ass
Quote all names
v Expand try/catch
Headers
Statistics
Metalnfo

» woid{object, class [
lick. : woid{object, cla
lick_1 : woid{object,

; v ovioid()
ol get_| LI::IStaI: class [Sysktem. Window
o @ net htnahnnot o rlass MSwestem o

Figure 11. Show bytes on ILDASM

www.hakin9.org/en

<))

How to Reverse Engineer dot net Assemblies

less user friendly interface and no high level code
translation feature. Anyway, once located open it
and load our Crack Me into it (File -> Open) and
expand trees as following: Figure 10.

ILDasm does not show byte representation by de-
fault, to show IL corresponding bytes you have to
select View -> Show Bytes: Figure 11. Then double
click on our concerned method (Form1_Load...) to
get the IL code and corresponding bytes: Figure 12.

We have more information about IL instructions
and their Bytes representations now, in order to
use this amount of new information, you have to
know that after “|” the low order byte of the num-
ber is stored in the PE file at the lowest address,
and the high order byte is stored at the highest ad-
dress, this order is called “Little Endian”.

What Does this Mean?
When looking inside rorm1 10ad() method using
ILDasm, we have this:

IL 0006: /* 16

\
IL 0007: /* 6F | (0A)000040
IL 000c: /* 02 |
IL 000d: /* 6F | (06)000022

These Bytes are stored in the file this way:
166F4000000A026F22000006.

Back to Our Target

This sequence of bytes is quite good for making a
byte search in a hexadecimal editor, in a real sit-
uation study; we may face an annoying problem
which is finding more than one occurrence of our
sequence. In this situation, instead of searching for
bytes sequence we search for (or to better say “go
to”) an offset which can be calculated.

An offset, also called relative address, is used
to get to a specific absolute address. We have to
calculate an offset where the instruction we want
to change is located, referring to Figure 1, ILDasm

(R R

i Frd Fired feest
|fmetrod HTYEDE SN0 Vil Fooml_LO#0 (¢ eCT e,
class [mecorh jSystem Sventangs o] of managad
A SIG: 703 0] 1C 12 2D
{
A WlaFhasd beaguees af RS Du fhddr
i Caoda mra 29 [fmpd)
Tastack 2
Jocals et -.-.:ue:-n-e {Systen l:rl-m-g System. Dravng. Cobor V)
._E000: =/ Haig.0
E_go0d f° oF {800 =f calvel Walance chass [Systemwnduss Forms iy
I 0006 /™ 16 = W0
B_ooar /8 {0A 000040 =i calbrry Filsnes voud [Satem. Wenckerad . Forrma] Sye et
B_o00w §* 02 = idaiy.d
L _o00di [/ 6F (SO0 2 =f calvirt inakance Class [System Windows Forms [Syate
E_G0E3: 530 | (DANDI005A =i call wbsitype [Sywtem Drawing RS yatem, Drawirg ¢
E_do1h _" o :D’«ONDJ callyrt wolse voud [y tem. Windds o] Syt
| L_DJ koo ™ 3k '\tt

§ and af rrvlll:-d Manlaim: Foml_Lasd

Figure 12./LDasm IL + bytes representations encoded
Form1_Load() method

HaHIN9 /.

REVERSE IT YOURSELF

and ILSpy indicate the Relative Virtual Address
(RVA) at the line // Method begins at RVA Oxlb4dc
and in order to translate this to an offset or file lo-
cation, we have to determinate the layout of our
target to see different sections and different offsets
| sizes, we can use PEID or any other PE Tool,
but | prefer to introduce you a tool that comes with
Microsoft Visual C++ to view PE sections called
“dumpbin” (If you do not have it, please referrer to
links on “References” section).

Dumpbin is a command line utility, so via the
command line type “dumpbin -headers target_
name.exe” (Figure 13).

By scrolling down we find interesting information:

SECTION HEADER #1
.text name
1C024 virtual size
2000 virtual address
1C200 size of raw data
400 file pointer to raw data
0 file pointer to relocation table

Figure 13. Dumpbin screenshot

%)
Affichage Editon 7
eaaa eaea 2828 Baead 208 28 ea &R a8 28 pa
goee o000 e0e@ o©E@1 1001 1808 QLlEG 1llol
& Hex I uuul A | :,1L| l'..'lll| M5| M—| M |
" Dr | e = |
oo | 10| 0] 6T S | 5 IS5
C Ein no1|non|c|?[8|9| | |
cawod | or| x| D| 4| 5| 6] |]
" Do
o U0 0 - S 3 X
* Octet Hur| .ﬁ.m!l F | 0 | | + | =

Figure 14. (1B44C - 2000) + 400 = 1984C

« HaRING

<))

0 file pointer to line numbers
0 number of relocations
0 number of line numbers
60000020 flags
Code
Execute Read

Notice that the method rormi 10ad() begins at
RVA ox1v44c (refer to Figure 1) and here the text
section has a virtual size of ox1co24 with a virtual
address indicated as ox2000 sO our method must
be within this section, the section containing our
method starts from ox400 in the main executable
file, using these addresses and sizes we can cal-
culate the offset of our method this way:

(Method RVA — Section Virtual Address) + File
pointer to raw data; all values are in hexadecimal
so using the Windows’s calculator or any other cal-
culator that support hexadecimal operations we
get: (1B44C — 2000) + 400 = 1984C (Figure 14).

So ox19s84c is the offset of the start of our method
in our main executable, using any hexadecimal ed-
itor we can go directly to this location and what we

ONN1%a40 |00 OO 04 DA AF 59 ON0 N0 D& 24 00 OO 03] 30 02 OO0
UOD1S850 | 1D OU D DU 1C DU U0 11 U2 6F 26 0U 00 06 [I]6E
000D1%ge0 |40 OO0 00 DA D2 GF 22 00 DD 06128 SA 00 0D OA &F
QO01%370 |(SB 0D OO0 OA 24 0D OO 00 1E 02 &F 24 00 00 05 2ZA
OOD1%8E0 (13 30 0F N0 2F OO On o0 1D o0 o0 11 02 &F 22 OO0
Qoo1Fg90 (o0 06 20 S0 U0 00 DA GF SE 00 DO Ua 02 GF 22 00
0OD1%9A0 |00 08 72 09 02 00 70 6F 4B 00 00 DA 02 7B OE OO
0O01%8B0 |00 04 2D 06 02 6F 2B 00 OO0 06 2A 0D 13 30 03 00
OOn1%aCO (93 nD an oo 1E 00 an 11 28 SO0 00 o0 o0& 72 1D 02
QUo1MD0 |00 Y0 20 HE 0D DD DA DA D6 20 SE OO OO0 O& 2D 53
QO0O1%98ED (72 2F 02 0O 70 LF 10 72 7F 02 00 70 28 &0 00 QO
QOD1%8F0 |(0OA 26 02 16 7D OE 00 00 O4 02 &F 22 00 00 08 28
Qo01%900 |[SA& DD OD DA &F SB OO 0D DA 02 &F 22 00 0D D06 72
mEnIEs1n 12 01 00 70 &F 4B 00 DO 04 0F &F 26 0O 00 06 16
0O01%920 |&F 40 Q0 00 OA D2 &F 20 OO0 OO0 D6 16 &F 40 00 OO
Q0019930 0& 2B 27 D2 &F 22 00 00 D6 28 5C 00 00 QX &F SB
QO01%940 |00 0D OA D2 6F 22 00 00 D6 72 A3 02 00 70 &F 4B

[EHT 9950 oo on o 02 17 F0OOOE 0O (o 04 2& O0 36 0F 6 20
00019960 |00 00 06 L7 &F 40 00 00 0k 24 00 00 4E 72 BD 02
[Che 18845

Figure 15. Location on a hexadecimal editor

u Crackd=ied_pl.exe
1 DLMPETN, EXE I
" LINKLEXE |
[oot |
Unroglistorod Crack Me
Lrackric] I z]
|
| ot]
Unregisterad Crack Me

Figure 16. “Enable Me” button is enabled

TBO 04/2013

How to Reverse Engineer dot net Assemblies

want change is few bytes after this offset consider-
ing the method header.

Going back to the sequence of bytes we got a bit
ago 166r40000002026r22000006 and going to the off-
set calculated before we get: Figure 15.

We want to change 1dc.i4.0 which is equal to
16 by 14c.i4.1 which is equal to 17, let’'s make this
change and see what it reproduces (before doing
any byte changes think always to make a backup
of the original file) (Figure 16).

And yes our first problem is solved; we still have
“Unregistered Crack Me” caption and still not test-
ed “Save as...” button. Once we click on the button
“Enable Me” we get the second one enabled which
is supposed to be the main program feature. By
giving it a try something bad happened: Figure 17.

Before saving, the program checks for a license,
if not found it disables everything and aborts the
saving process.

Protecting a program depends always on de-
veloper’s way of thinking, there is as mush ways
to protect software as mush ways to break them.
We can nevertheless store protections in “types”
or “kinds” of protections, among this, there is what
we call “license check” protections. Depending on
how developer imagined how the protection must
behave and how the license must be checked, the
protection’s difficulty changes.

Let’'s see again inside our target: Figure 18.

The method otn Enableve click _1() is trigged
when we press the button “Enable Me” we saw
this, btn_about ciick() is for showing the mes-

- cmor et b O Ll Joenaimm—— i
_a L 1 |
a o By mpsr et e [Faer = |
Mt |

= |

E¥ bin _Cligk_
W chedilicence() : Vioid
W checkRegStat() : Void
% Dispose(Boolean) : Void

&% Forml_load(Object, EventArgs) :

m m X
I

m m
[
[

LN] L AU L

+ [Darowd Tvpss

 Wabimrend) | Voul
w el) « vind

o Tspoas Mo 4 et
s ;

Figure 19. btn_EnableMe_Click() actual code source

www.hakin9.org/en

<))

sage box when cliquing on “About’ button, then we
still have two methods: btn Enableme ciick () and
checkLicence () Which seems to be interesting.

Let's go inside the method vtn Enableme click()
and see what it has to tell: Figure 19.

By clicking on the button save, instead of sav-
ing directly, the Crack Me checks the “registra-
tion stat” of the program, this may be a kind of
“extra protection”, which means, the main feature
which is “saving file” is protected against “forced
clicks”;The Crack Me checks if it is correctly reg-
istered before saving even if the “Save as...” but-
ton is enabled when the button “Enable Me” is
clicked, well click on checkregstat () t0 see its con-
tent: Figure 20.

Here is clear that there is a Boolean variable
that changes, which is isRegistered and till now
we made no changes regarding this. So if isReis-
tered is false (if (!this.isRegistered)...) the Crack
Me makes a call to the checkricense () method, we
can see how isregistered is initialized by clicking
on .ctor () method: Figure 21.

.ctor () is the default constructor where any mem-
ber variables are initialized to their default values.
Lets go back and see what the method
checkLicense () does exactly: Figure 22.

This is for sure a simple simulation of software
“license check” protection, the Crack Me checks
for the presence of a “lic.dat” file in the same direc-
tory of the application startup path, in other words,
the Crack Me verifies if there is any “lic.dat” file in
the same directory as the main executable file.

L+ L Rep— e T
{ ehrchBlrga)

“ (% Dervved "o -
% ol sl v
P i

o I ATTAr
¢ [D]

% chedd oeree] © et

¥ =
v Cegonc Pockear) | vl

Figure 20. Original source code of checkReStat() method

W chench menrel) - rut

® dem bl Al | Ve

Figure 21. ctor() method

Figure 22. Method chcekLicense()

HaRIN9 .

REVERSE IT YOURSELF

Listing 2. checkLicence() IL code

.method public instance void checkLicence() cil managed

{

.maxstack 3
.locals init (
[0] string str,
[1] valuetype [System.Drawing]System.Drawing.Color color)
L 0000: call string [System.Windows.Forms]System.Windows.Forms.Application::get StartupPath ()
L 0005: ldstr “\\lic.dat”
L 000a: call string [mscorlib]System.String::Concat (string, string)
L 000f: stloc.0
L 0010: ldloc.0
L 0011: call bool [mscorlib]System.IO.File::Exists(string)
L 0016: brtrue.s L 006b
L 0018: ldstr “license file missing. Cannot save file.”
L 001d: ldc.id4.s 0x10
L 001f: ldstr “License not found”
L 0024: call valuetype [Microsoft.VisualBasic]Microsoft.VisualBasic.MsgBoxResult [Microsoft.

VisualBasic]Microsoft.VisualBasic.Interaction: :MsgBox (object, valuetype [Microsoft.VisualBasic]

Microsoft.VisualBasic.MsgBoxStyle, object)

L 0029: pop

L 002a: ldarg.0

L 002b: 1dc.i4.0

L 002c: stfld bool CrackMe2 HidenName dotNET Reversing.MainForm::isRegistered

L 0031: ldarg.0

L 0032: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0037: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.
Color::get Red()

L 003c: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
ForeColor (valuetype [System.Drawing]System.Drawing.Color)

L 0041: ldarg.0

L 0042: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0047: ldstr “Unregistered Crack Me”

L 004c: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Label::set
Text (string)

L 0051: ldarg.0

L 0052: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2
HidenName dotNET Reversing.MainForm::get btnEnableMe ()

L 0057: 1dc.i4.0

L 0058: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
Enabled (bool)

L 005d: ldarg.0

L 005e: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Button CrackMe2
HidenName dotNET Reversing.MainForm::get btnSaveAs ()

L 0063: 1dc.i4.0

L 0064: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set
Enabled (bool)

L 0069: br.s

L 006b: ldarg.0

L 006c: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2

- HaRINS

TBO 04/2013

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm/checkLicence()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Application
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Application/get_StartupPath():String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.IO.File/Exists(String):Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a/Microsoft.VisualBasic.Interaction
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://Microsoft.VisualBasic:10.0.0.0:b03f5f7f11d50a3a/Microsoft.VisualBasic.Interaction/MsgBox(Object,Microsoft.VisualBasic.MsgBoxStyle,Object):Microsoft.VisualBasic.MsgBoxResult
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Object
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Object
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_Enabled(Boolean)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm

How to Reverse Engineer dot net Assemblies

Color::get Green()

L 007b: ldarg.0

L 0081: ldstr “File saved !”

Text (string)
L 008b: ldarg.0
L 008c: ldc.id.1l

HidenName dotNET Reversing.MainForm::get LblStat ()
L 0071: call valuetype [System.Drawing]System.Drawing.Color [System.Drawing]System.Drawing.

L 0076: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Control::set

ForeColor (valuetype [System.Drawing]System.Drawing.Color)

L 007c: callvirt instance class [System.Windows.Forms]System.Windows.Forms.Label CrackMe2
HidenName dotNET Reversing.MainForm::get LblStat ()

L 0086: callvirt instance void [System.Windows.Forms]System.Windows.Forms.Label::set

L 008d: stfld bool CrackMe2 HidenName dotNET Reversing.MainForm::isRegistered

Well, technically at this point, we can figure out
many solutions to make our program run fully, if we
remove the call to the checkricense () method, we
will remove the same way the main feature which
is saving, since it is done only once the checking is
done (Figure 2).

If we force the isRegistered variable taking the
value True by changing its initialization (Figure 3),
we will lose the call to checkricense () method that
itself calls the main feature (“saving”) as its only
called if isRegistered is equal to false as seen here
(refer to Figure 2):

public void checkRegStat ()
{
this.LblStat.ForeColor = Color.Green;
this.LblStat.Text = «Saving...»;
if (!this.isRegistered)
{

this.checkLicence();

We can alter the branch statement (if... else... en-
dif, Figure 4) the way we can save only if the li-
cense file is not found.

We saw how to perform byte patching the “clas-
sical” way using offsets and hexadecimal editor, Ill
introduce you an easy way which is less technical
and can save us considered time.

We will switch again to Reflector (please refer
to previous parts of this series for further informa-
tion), this tool can be extended using plug-ins, we
will use Reflexil, a Reflector add-In that will allow
us editing and manipulating IL code then saving
the modifications to disk. After downloading Re-

www.hakin9.org/en

<))

flexil you need to install it; Open Reflector and go
to Tools -> Add-ins (in some versions View -> Add-
ins), a window will appear click on “Add...” and se-
lect “Reflexil.Reflector.dIl’; Once you are done you
can see your plug-in added to the Add-ins window
which you can close.

Well basically we want to modify the Crack Me a
way we get “File saved!”, Switch the view to see IL
code representation of this C# code: Listing 2.

| marked interesting instructions that need some
explanations, so basically we have this:

.method public instance void checkLicence() cil

managed
{
.maxstack 3
//
(...)
L 0011: call bool [mscorlib]System.
I0.File::Exists (string)
L 0016: brtrue.s L 006b
L 0018: ldstr “license file missing.
Cannot save file.”
(...)
L 0069: br.s
L 006b: ldarg.0
(...)
L 0081: ldstr «File saved !»

(.

By referring to our IL instructions reference we
have: Table 3.

The Crack Me makes a Boolean test regarding
the license file presence (Figure 4), if file found

HaHIN9 /.

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Control/set_ForeColor(System.Drawing.Color)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://System.Windows.Forms:4.0.0.0:b77a5c561934e089/System.Windows.Forms.Label/set_Text(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://CrackMe2-InfoSecInstitute-dotNET-Reversing:1.0.0.0/CrackMe2_InfoSecInstitute_dotNET_Reversing.MainForm/checkLicence()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.IO.File/Exists(String):Boolean
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String

REVERSE IT YOURSELF

it returns True, which means brtrue.s will jump to
the line L_006b and the Crack Me will load “File
saved!” string, otherwise it will go to the uncon-
ditional transfer control br.s that will transfer con-
trol to the instruction ret to get out from the whole
method.

Table 3. /L Instructions

IL Instruc- Function Byte represen-
tion tation

Call Calls the method indicat-
ed by the passed meth-
od descriptor.

Transfers control to a tar- 2D
get instruction (short

form) if value is true, not

null, or non-zero.

Brtrue.s

Unconditionally transfers 2B
control to a target in-
struction (short form).

Returns from the cur- 2A
rent method, pushing a
return value (if present)

from the caller’s evalua-

tion stack onto the call-

er's evaluation stack.

41

a % Maintorm.checkiscance() & Vioid
public void checkLicencel)
i

it [File. Dists[Application, StartupPath + @"ic.dat™)
i
Interaction MaglowNrense file missing. Cannok save fle.",
this.isRegistered = false;
thee.d bilslal.FueeCokn = Cobe Real;
this | HlS1al. Texl = Ureegisteed Crack Me®;
thie. hinFralieMe_Fralied = fae;
this. binSaveds Ernebled = fabe,

¥

alee

Magflowityls

this Lbistat ForeColor = Color Green;
théc. Lblstat Text = Flle zaved 17

fehastion | IMRTON's Befewl w15
—Method definitian
Atmbutes | Custom atributes |

| System. String Syste. .

a3 |15 sl .0
M4 |16 Idloc.0
- call | bystem, Boohean Lyst...

— e La | i "

‘[‘lCcrrﬁﬂlJfE WLWT Remover ., | r

Figure 23. Reflexil add-in panel

« HaRINS

Remember, we want our Crack Me to check for
license file absence the way it returns True if file
not found so it loads “File saved!” string. Let’s get
back to reflector, now we have found the section
of code we want to change (Figure 5), here comes
the role of our add-in Reflexil, on the menu go to
Tool -> Reflexil v1.x; This way you can get Reflexil
panel under the source code or IL code shown by
Reflector: Figure 23.

This is the IL code instruction panel of Reflexil
as you can see, there are two ways you can make
changes using this add-in but I'll introduce for now
only one, we will see how to edit instructions using
IL code.

After analyzing the IL code above we know that
we have to change the “if not found’ by “if found”
which means changing brtrue.s (Table 1) by its op-
posite, by returning to the IL code reference we find,
brfalse.s: Branch fto target if value is zero (false),

Mrtgd afiance
Sercson | rrabien | Farserie | Lo Harders | Doprin | e | Cusee st |
e L=< e
[-l Soutrr Lryg Svntr Wieden Sr ey Accifor g Ll hoda])
Ei o e
(1] I .'H Fyrien Sarrg Dywmen Sorng: DoncaeSavteen S Syewen Sy
L] e
[]
I (.1 | .'.I Fvrien Boossn G [0 P Dornlh e Srrgd

] =z [S e 9
- | o .'J‘. L] "
i . i

Figure 24. Reflexil panel
T T 2|

[z = veawe |

Temrabers control 1o o bargel irstruction ishert form | valus & bus,

Descibion ot . ormon-zom.
[ePE TR S ———— =]
Opstod [R g 0 =]

Figure 25. Editing instruction on Reflexil

RlotET Aaversing (1.0.0.00

I Madisle Croackb ity | InpEctresource
ol "'-'h

Figure 26. Saving changes on Reflexil

<))

TBO 04/2013

Cracich< I ot

Enable Me

Aho
F - \ 4

ile saved ! £rvomrmmmm———" s —
B

Figure 27. All problems are solved!

Reflexi | - http://sourceforge.net/projects/reflexil/

Dumpbin - ftp://www.fpc.org/fpc32/VS6Disk1/VC98/ -
BIN/DUMPBIN.EXE

LINK.exe - ftp://www.fpc.org/fpc32/VS6Disk1/VC98/

BIN/LINK.EXE

Crack ME #2 - http://www.mediafire.com/?42vml4f

Ic6yj097

GEEKED AT BIRTH

short form. This said, on Reflexil’s panel; find out
where is the line we want to change: Figure 24.

Right click on the selected line -> Edit..., now
you get a window that looks like: Figure 25.

Remove “brirue.s” and type the new instruction
“brfalse.s” then click “Update”, you see your mod-
ification done. To save “physically” this change,
right click on the root of the disassembled Crack
Me select Reflexilv1.x then Save as... (Figure 26).

This way we have a modified copy of our Crack
Me, we have the “Enable Me” button enabled, by
clicking on it we enable “Save as...” button and by
clicking on this last we get our “File Saved!” mes-
sage: Figure 27.

This article is at his end, it takes more time with
more complex algorithms and protections but if IT'S IN YOUR DNA
you are able to get the IL code and can read it
clearly you will with no doubt be able to bypass
software protection.

You can talk the talk.
Can you walk the walk?

SOUFIANE TAHIRI
&, Soufiane Tahiri is also an InfoSec Insti-
j§ tute contributor, and computer securi-
ty researcher from Morocco, specializ-
ing in reverse code engineering and soft-
ware security. He is also founder of www.
itsecurity.ma and practiced reversing for
more several years. Dynamic and very in-
volved, Soufiane is ready to catch any se-
rious opportunity to be part of a work-
group. Contact Soufiane in whatever way works for you:
Email:soufianetahiri@gmail.com Twitter: https://twitter.
com/i7s3curi7y LinkedIn: http://ma.linkedin.com/in/soufi-
anetabhiri.

Please see www.uat.edu/fastfacts for the latest information about
degree program performance, placement and costs.
www.hakin9.org/en

http://www.itsecurity.ma/
http://www.itsecurity.ma/
mailto:soufianetahiri@gmail.com
https://twitter.com/i7s3curi7y
https://twitter.com/i7s3curi7y
http://ma.linkedin.com/in/soufianetahiri
http://ma.linkedin.com/in/soufianetahiri
http://sourceforge.net/projects/reflexil/
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/DUMPBIN.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/DUMPBIN.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/LINK.EXE
ftp://www.fpc.org/fpc32/VS6Disk1/VC98/BIN/LINK.EXE
http://www.mediafire.com/?42vml4flc6yj097
http://www.mediafire.com/?42vml4flc6yj097
http://wwww.uat.edu

REVERSE IT YOURSELF

Reversing with
Stack-Overflow and
Exploitation

The theater of the Information security professional has
changed drastically in rhe world of computing or digital
World. So we are going to find the root.The keynote for
secure the business is complete analysis of internal Business.

and protocols, the increasing size and com-

plexity of the internet, and the sensitivity of
the information stored throughout have created
a target-rich environment for our next generation
advisory. The criminal element is applying ad-
vance technique to evade the software/tool secu-
rity. So the Knowledge of Analysis is necessary.
And that pin point is called “The Art Of Reverse
Engineering”

T he prevalence of security holes in program

Reverse engineering is the process of taking a
compiled binary and attempting to recreate (or
simply understand) the original way the program
works. A programmer initially writes a program,
usually in a high-level language such as C++ or
Visual Basic (or God forbid, Delphi). Because the
computer does not inherently speak these lan-
guages, the code that the programmer wrote is
assembled into a more machine specific format,
one to which a computer does speak. This code is
called, originally enough, machine language. This
code is not very human friendly, and often times
requires a great deal of brain power to figure out
exactly what the programmer had in mind.

* Military or commercial espionage. Learning
about an enemy’s or competitor’s latest re-
search by stealing or capturing a prototype and
dismantling it. It may result in development of
similar product.

« HAaRING

<))

* Improve documentation shortcomings. Reverse
engineering can be done when documenta-
tion of a system for its design, production, op-
eration or maintenance have shortcomings and
original designers are not available to improve
it. RE of software can provide the most current
documentation necessary for understanding
the most current state of a software system

+ Software Modernization. RE is generally need-
ed in order to understand the ‘as is’ state of ex-
isting or legacy software in order to proper-
ly estimate the effort required to migrate sys-
tem knowledge into a ‘to be’ state. Much of this
may be driven by changing functional, compli-
ance or security requirements.

* Product Security Analysis. To examine how a
product works, what are specifications of its
components, estimate costs and identify poten-
tial patent infringement.

* Bug fixing. To fix (or sometimes to enhance)
legacy software which is no longer supported
by its creators.

» Creation of unlicensed/unapproved duplicates.

* Academic/learning purposes. RE for learning
purposes may be understand the key issues of
an unsuccessful design and subsequently im-
prove the design.

+ Competitive technical intelligence. Understand
what your competitor is actually doing, versus
what they say they are doing.

The Stack: The stack is a piece of the process
memory, a data structure that works LIFO (Last

TBO 04/2013

Submission deadline: June 30, 2013

Vulnerability Discovery, & Exploitation
Reverse Engineering & Obfuscation
Malware Creation, Analysis & Prevention’
Embedded Systems Security
Hardware Vulnerabilities
Web Application Security

Network Exfiltration

Applied Cryptography & Cryptanalysis
Infrusion Detection & Prevention
Security & Privacy in Cloud, P2P
Penetration Testing

Disclosure & Ethics

Digital Forensics

LakEeHack

*En-:l editior

November 15, 2013
Grenoble, France

(Intel, Israel) Dan Alloun

(NICT, Japan) Ruo Ando

(Kudelski Sec., Switz.)Jean-Philippe Aumasson
(Google, US) Elie Bursztein

(CEA-DAM, France) Fabrice Desclaux
(UCSB, US) Adam Doupe

(LIG, France) Fabien Duchene
(Veracode, US) Chris Eng

(Corelan, Belgium) Peter Van Eeckhoutte
(CMU, US) Manuel Egele

(IF-UJF, France) Philippe Elbaz-Vincent
(ESIEA, France) Eric Filiol

(Thailand) The Grugq

www.grehack.org

[

EREa R

Cea

Mario Heiderich (Ruhr U. Bochum, Germany)
Pascal Lafourcade (VERIMAG, France)
Cédric Lauradoux (INRIA, France)

Pascal Malterre (CEA-DAM, France)

Laurent Mounier (VERIMAG, France)
Marie-Laure Potet (VERIMAG, France)

Paul Rascagneres (Malware.Lu, Luxembourg)
Sanjay Rawat (India)

Raphaél Rigo (ANSSI, France)

Nicolas Ruff (EADS Innovation Works, France)
Steven Seeley (Immunity, US)

Fermin J. Serna (Google, US)

Nikita Tarakanov (Russia)

3 @grehack

Journal in Computer Virology
and Hacking Techniques

Grenobl IHP‘
ErISIrTIFlI;l

@ Springer

http://grehack.org/en/

REVERSE IT YOURSELF

in first out). A stack gets allocated by the OS, for
each thread (when the thread is created). When
the thread ends, the stack is cleared as well. The
size of the stack is defined when it gets created
and doesn’t change. Combined with LIFO and the
fact that it does not require complex management
structures/mechanisms to get managed, the stack
is pretty fast, but limited in size.

LIFO means that the most recent placed data
(result of a PUSH instruction) is the first one that
will be removed from the stack again. (by a POP
instruction).

Each and every software has predefined subrou-
tine or sub function that is called dynamically in the
program, means

When a function/subroutine is entered, a stack
frame is created. This frame keeps the parameters
of the parent procedure together and is used to
pass arguments to the subrouting. The current lo-
cation of the stack can be accessed via the stack
pointer (ESP), the current base of the function
is contained in the base pointer (EBP) (or frame
pointer).

The CPU’s general purpose registers (Intel, x86)
are:

+ EAX: accumulator: used for performing calcu-
lations, and to store return values from function
calls. Basic operations such as add, subtract,
compare use this general-purpose register.

+ EBX: base (does not have anything to do with
base pointer). It has no general purpose and
can be used to store data.

+ ECX: counter: used for iterations. ECX counts
downward.

+ EDX: data: this is an extension of the EAX reg-
ister. It allows for more complex calculations
(multiply, divide) by allowing extra data to be
stored to facilitate those calculations.

» ESP: stack pointer

+ EBP: base pointer

» ESI: source index: holds location of input data

» EDI: destination index: points to location of
where result of data operation is stored

» EIP: instruction pointer

So The Espinosa tools are used for complete go
through or analytic of software which are listed
below.

What kinds of tools are used?

There are many different kinds of tools used in
reversing. Many are specific to the types of pro-
tection that must be overcome to reverse a bi-
nary. There are also several that just make the

« HAaRING

<))

reverser’s life easier. And then some are what |
consider the ‘staple’ items- the ones you use reg-
ularly. For the most part, the tools fit into a couple
categories:

Disassemblers

Disassemblers attempt to take the machine lan-
guage codes in the binary and display them in
a friendlier format. They also extrapolate data
such as function calls, passed variables and text
strings. This makes the executable look more like
human-readable code as opposed to a bunch of
numbers strung together. There are many disas-
semblers out there, some of them specializing
in certain things (such as binaries written in Del-
phi). Mostly it comes down to the one your most
comfortable with. | invariably find myself working
with IDA.

Debuggers

Debuggers are the bread and butter for reverse
engineers. They first analyze the binary, much like
a disassembler Debuggers then allow the reverser
to step through the code, running one line at a time
and investigating the results. This is invaluable to
discover how a program works. Finally, some de-
buggers allow certain instructions in the code to be
changed and then run again with these changes in
place. Examples of debuggers are Windbg, Immu-
nity Debugger and Ollydbg. | almost uses Immu-
nity debugger and ollydbg.

REAL ATTACK

Before start this we are using the following vulner-
ability which have stack based overflow and we
will reversely analyze that file and will exploit for
our cause.

* Vulnerability item-RM To MP3 Converter

+ BOX-Windows xp SP2/SP3 (I m using sp3)

+ Tool: Ollydbg, Immunity Debugger

» Backtrack Machine/Machine with metasploit in-
stalled

First of all create a python script with predefined
written data into buffer and create a .m3u file.
Open this file in rm to mp3 converter.so the file/
software will crash due to stack overflow. In the
image | loaded a script with 30,000 bytes of da-
ta into mp3 file which will get crash on the 2™ im-
age or buffer overflow causes. This is the pro-
gram (Figure 1).

#!/usr/bin/python
filename ='30000.m3u’buffer = “\x41” * 30000

TBO 04/2013

file = open (filename, 'w’)
print”Done!”
file.close()

So the below diagram is the crash file of rm to
mp3 (Figure 2).

The Debugger

In order to see the state of the stack (and value
of registers such as the instruction pointer, stack
pointer etc.), we need to hook up a debugger to
the application, so we can see what happens
at the time the application runs (and especially
when it dies).

There are many debuggers available for this
purpose. The two debuggers | use most often are
ollydbg, and Immunity’s Debugger (Figure 3 and
Figure 4).

This GUI shows the same information, but in a
more...errr.. graphical way. In the upper left corner,
you have the CPU view, which shows assembly in-
structions and their opcodes (the window is emp-
ty because EIP currently points at 41414141 and
that’s not a valid address). In the upper right win-
dows, you can see the registers. In the lower left
corner, you see the memory dump of 00446000 in
this case. In the lower right corner, you can see the

contents of the stack (so the contents of memory
at the location where ESP points at).

Anyways, in both cases, we can see that the in-
struction pointer contains 41414141, which is the
hexidecimal representation for AAAA. And The Po-
sition is called “offset” value.

Checking The EIP Position

* From the result we know that the ESP and EIP
register is overwritten.

* We don’'t know where the ESP and EIP register
overwritten, so we make the structured string
using pattern_create.rb to know the location
the register overwritten.

Backtrack has the solution like metasploit.so we
will use

root@dimitry-TravelMate-5730:/opt/metasploit3/msf3/
tools# ./pattern create.rb 30000

we will got a generation and we will again cre-
ate m3u file and run to the rm to mp3 converter to
see the result (Figure 5).

Again Creating a m3u file with the following gen-
eration to check EIP Location and we have to open

__——:_r
Figure 1. Fuzzer Test with 30,000 Bytes of Data

Figure 2. Crash with RM to mp3 Converter

www.hakin9.org/en

<))

Figure 3. Debugger Analysis with Immunity Debugger
_

HE MW S EE S o AR N BT

——m_ -

Figure 4. Debugger Analysis with Ollydbg

HaHIN9 /.

REVERSE IT YOURSELF

in rm to mp3 converter (Figure 6 and Figure 7). So
we will get a value which is nearer between 5792
to 26072.see the picture below. so in that location
EIP Value is written. EIP sits between 25000 and
30000.

For that reason | have taken 30000 byte of data
to see what happens to the data or program. see
the picture below you will understand (Figure 8).

In the above screen | used two command to
check the EIP AND ESP Location and fortunately
| have not get any value for 2" option and | got 1¢
value 5792 for command, because | have taken
the beyond bytes of data.

]
Figure 5. Checking the EIP Position with Msfcreat

e T 3
s iehdriEe e ——

B = =
AES w NN A

B e
Figure 6. Compile with Immunity

Flgure 7. Compile with Ollydbg

w» HAaRIMNSG

<))

Finding JMP ESP And Memory Location
Before try to exploit we should know the exact
memory location, JMP, ESP Location so that our
exploit will work perfectly.

Ollydbg: go to view-executable modules and
search for Shell 32 modules and

right click on shell32, view JMP ESP Command
and location.

Same procedure will be applied for Immumnity
Debugger. For More Information See the Figure 9

Analysis in Immunity Debugger see Figure 10.
Analysis in Ollydbg.

Figure 8. Our Buffer Overflow String

-.l.lyl.llh.-i S P vt g | © o

Dby Pln Irv e Fois Tl

Sk w*uu»rawu;-l 1
T

smoiwh e Pk be oo)

[Pl

Figure 9. Locationg JMP EsP In Immunity

rﬂJ"JxJ |'-|"| ‘:J'J HH | [J_IETJWJ_IEJ_IIJHJlJl_JHJ =
iG =D

D oo d

i
o
=

Figure 10. Locating JMP EsP IN Ollydbg

TBO 04/2013

As we know creating and building exploit there is
great contribution towards Metasploit Built-in Pay-
load generator and encoders. so we will use one of
them for our Development of exploit.

So we will use Encoder: x86/shikata ga nai Which
is a good encoders for generating the payload
which can be available in just writing msfconsole-
show payloads-use payload(in this case bind_tcp)-
show encoder-generate encoder

And we will use a program namely calculator
in windows machine to boom the application.For
That we have to riun a perl script behind it and
open in rm to mp3 converter (Figure 11).

So we will add the encoder to our final exploit to
run calculator on “rm to mp3 converter” to get buf-
fer overflow.

And Exactly we add the location of memory as
well as EIP ESP Location into exploit of our code
to get into buffer.

Again Create Vulnerable .m3u file and run in “rm
to mp3 converter” to see the calculator and to ana-
lyze in debugger either we have to open in immu-
nity debugger or ollydbg debugger and analyze lo-
cation where EIP AND ESP Overwritten (Figure 12
and Figure 13).

Application Boom to Calculator Application.

You can create the .m3u file and reverse connect
to your shell some tool like nmap.netcat etc...

Figure 11. x/86/shikata_ga_nai encoder

e T e

Figure 12. Final exploit that we will insert our encoder

§rvn A 1 0§ ieres B S sl § e
el vedy 13 pheVe W @ wwr b b e ——

BIKASH DASH

Bikash Dash over 3 years of experience it security, malware
analysis,Reverse engineering, Firewall security, Trojan Analy-
sis. PE Auditor, Assembly Programming Cyber crime analyst,
threat management, Honeypot analysis, Speaker.

Current Position:Ethical Hacker At Innnobuzz Knowledge so-
lution

e]

Easy M ta b

Contact-Bikash Dash
Figure 13. Application View and Our Programm Ran (CALAC. ~ Web: www.whitehatsecurity.in
EXE) Email: bikash.nit.12@gmail.com

wwhakind org/en @ @ HaIN9g .

http://www.whitehatsecurity.in
mailto:mailto:bikash.nit.12%40gmail.com?subject=

REVERSE IT YOURSELF

If you are a programmer, software developer, or just

tech savvy, then you should have heard about reverse
engineering and know both its good and evil side. Just in
case, here is a brief introduction for those who don’t know

what it is.

also known as reverse code engineering. Re-

verse code engineering is the process where
the code and function of a program is modified, or
may you prefer: reengineered without the original
source code. For example, if a software program-
mer has created a program with a bug, does not
release a fix, then an experienced end user can
reverse engineer the application and fix the bug
for everyone using the program. Sounds helpful
doesn’t it?

That’s because we only touched the tip of the ice-
berg; the road of reverse engineering is a long one
and the end leads to somewhere dark and illegal.
Why you wonder? Because, by that logic, computer
users can modify the code of any program, alter li-
censing features of a commercial product and re-
move critical features to their own liking. For exam-
ple, a software such as Photoshop that requires you
to buy a serial key to register and use it, can be re-
verse engineered to either extract a valid key or just
to remove the whole serial system altogether. This
is illegal and these people who reverse engineer
applications illegally, known as crackers or hack-
ers, have encountered legal issues since the first
software was released. Teams also dedicate them-
selves to this activity, but to this present day, most
have been arrested or have ‘voluntarily shutdown’.

So how exactly does one reverse engineer?
What tool do you need to do so? Read on because
we are getting there!

« HaRIMNS

I n this article, we are going to talk about RCE,

<)

Reverse engineering has drawn a lot of attention
to itself in the past few years, especially when
hacked programs are released to the general
public, and spread across websites that dedicate
themselves to distributing them. Though it is main-
ly used for sinister purposes, reverse engineering
can also be used for good, such as removing bugs,
fixing crashes and so on. The next paragraph will
give you the brief on how programs (EXE files)
are created.

The process of making a program is quite
straight forward. First you need a programming
language with a compiler. Many that are available
include C, C++, Python, Delphi, etc. The program-
mer uses this programming language to make
a source file containing all the editable code for
his/her program. When the programmer has fin-
ished coding his application and plans to distrib-
ute it, he/she will have to compile the code to an
EXE file.

The source code, the human readable and un-
derstandable file that is created by the program-
mer himself is firstly compiled in to an object file
with readable symbols, meaning that it is still un-
derstandable by a normal human.

The compiler then transforms the object file
in to an executable, the format which all of
your windows programs is compiled in, render-
ing the binary code symbol-less, in other words:
unreadable.

TBO 04/2013

The source code of a simple ‘Hello World’
application
For example, if you make a simple application in
C++, you need to write a source file first, some-
thing like ‘MyApp.c’. When you are done, you
want to make an executable file out of your code,
so you compile it. During the compilation, the file
‘MyApp.c’ is translated into object and then bina-
ry code, making it extremely hard to humanly in-
terpret and almost impossible to uncompile or de-
compile back to the original file; ‘MyApp.c.’
Programmers rely on this idea for security of their

application. The harder it is to decompile their ap-
plication and reverse the actions of a compiler, the
more secure their code. However, when there’s a

way in, you can be sure that there is one out.

Editing Code AKA Debugging

Although the compiled code is unreadable, there Security develo
are, however, programs that can translate it into
a semi-readable state. These programs are called
debuggers. Debuggers are programs that read
those binary codes that the program has been
compiled to and convert them into easier to under-
stand terms. Those terms make up an extremely
low level programming language known as Assem-
bly. If you thought learning C++ was a headache
then wait till you try out assembly. Though complex
as it may be, assembly code is what all applica-
tions are written in when compiled. It is extremely
low level meaning. It takes approximately 10 lines
of assembly to compensate for one line of C++.
For that reason, assembly code is not a preferred

language among software developers. Join our
Now knowing the connection between your pro- -
gram, assembly and the debugger, we can move Exclusive and Pro club
on to the next topic: the debugging. and get:
Debugging is the process of removing bugs =Hakin9 one year SUbSEripti'ﬂ"
or errors from a program _ ««e Fyll page advertisement in
A debugger, is a program that does what its name - '
implies, it removes bugs. To do that, it allows us- H“kmg EVEW month!

ers to edit the assembly of a program, changing rewslpformation about your company
its structure and function. For example, if | had an

annoying bug where a program always counts 0s send to over 100,000
as 1s, | can create a fix myself with a debugger by Hakin9 readers!
simply loading my program and then editing the

section of assembly where the program confuses

Os with 1s. Then | can release the fix online for all

the users of that program.

Assembly Code

Before you can debug anything, you need a fair bit > 2

of knowledge on assembly, not enough to code pro- More information at
grams, but enough to understand how programs

en@hakin9.or
= g

www.hakin9.org/en

REVERSE IT YOURSELF

are coded in assembly. You can access this great
tutorial here: http://www.cs.virginia.edu/~evans/
cs216/quides/x86.html.

OK, so you know a bit of assembly and you have a
program to reverse engineer, let's get a debugger.
Nowadays, there are a lot of debuggers available
so choosing the right one can be confusing.

Below is the list of debuggers that work for any
Windows application. Those include:

» OllyDbg

» Softlce

» Microsoft Visual Studio Debugger
+ AQTime

+ GDB

« AQT

In addition, there is over a hundred different de-
buggers, all made for different platforms and lan-
guages. But since we are debugging under win-
dows, this is not relevant. You can though, simply
Wikipedia the word ‘Debugger’ to find a long list
of debuggers.

In this demonstration we will use a free and widely
used debugger: OllyDbg. You can get it from their
official website: http://www.ollydbg.de/.

After downloading the debugger, unzip and open
it. Load your application that you want to debug by
clicking ‘Open’ on the main toolbar.

In this demonstration, we will debug a superfi-
cial program that simulates the licensing features
in a real program. Let’s call it HackMe.EXE. Ba-
sically HackME.EXE asks for a serial key and
name and returns the message ‘Valid Key’ if the
key and name match, and ‘Invalid Key’ if they do
not. Your purpose is to either find a valid serial key
or a way to bypass this process and skip to the
point where you can enter any key, and get a ‘Valid
Key’ message.

This is a classic example of RCE and to at-
tack such a problem is fairly easy if you have
the right tools. OllyDbg is an excellent choice as
it works for all windows compiled executables,
has a lot of use functions such as setting break-
points, finding string references, etc. Because of
that we will use OllyDbg as our debugger in our
demonstration.

Step 1

Open the program ‘HackME.EXE’ in OllyDbg by
clicking ‘Open’ and choosing the file.

« HaRIMNS

<))

Step 2

Right click on the window where you see a lot of
assembly code, and then select ‘Find All Refer-
enced Strings.”

Step 3

You should be taken to a window where all the
strings in the HackMe.EXE is listed. We want to
see all its strings because we know for a fact that
the messages ‘Valid Key’ and ‘Invalid Key’ is em-
bedded somewhere in the application. If we can
find its location, the corresponding code that gen-
erates these messages will also be there.

Step 4

Search. Search through all the strings listed until
you find the text ‘Invalid Key’. You should find it, if
not, then you will have to read the section defen-
sive mechanisms.

Step 5
Double click on the text ‘Invalid Key.’ It should take
you to the disassembly where the actual text is lo-
cated.

Step 6

Now here’s the tricky part. Look at the assembly
above where the text is located. If you have done
your homework and researched a bit on assembly
you will know what to look for. If you don’t, then |
will briefly fill you in. In order to determine if the
key is valid or not the program needs to actual-
ly compare the key and name. This is where we,
as REers, do our thing. In windows assembly, the
commands JZ, JNZ stand for operators that com-
pare values and if they are true then they will jump
to a section of the code.

Because the program we are debugging is com-
paring your name and serial key, we needed to find
the section of the assembly that shows the ‘Invalid
Key’ message, as done so in steps 1 to 5. Now
that we have located this section, we are going to
search for the JNZ or JZ operator replace it with
themselves. For example if the program uses JZ
to evaluate whether the key is valid or not, we re-
place it with JNZ and vice versa.

With that being said, look up from the point where
you found the text ‘Invalid Key’ search for the com-
mands JZ and JNZ; you only need to find one of
them as there is only one anyway.

When you find the command, double click on it
on the debugger to edit and do the following:

* Ifthe command is JZ then change it to JNZ
» Ifthe command is JNZ change it to JZ

TBO 04/2013

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
http://www.ollydbg.de/

Now run the program again by clicking ‘Run’ on
the toolbar.

Step 7
Enter any serial number and name and you should
get the message ‘Valid Key.’

Congrats! You have just reverse engineered an
application. Seems easy huh? Are application re-
ally that easy to modify?

Reverse engineering a small and unprotected ap-
plication is extremely easy, but applications today
are complex and protected as software piracy is
extremely popular.

Since the uprise of reverse engineering, soft-
ware companies have used packers to encrypt or
scramble their code, giving crackers a hard time
when they attempt to debug it.

For example, a program that is encrypted and
scrambled would be impossible to debug unless
the hacker can retrieve the original executable.
This process seems secure right? Wrong. For ev-
ery executable packer out there, there is always
an unpacker. A hacker can simply search up the
packer and then download the unpacker from il-
legal software piracy websites. The scrambled ex-
ecutable can then be unscrambled and debugged.
If you are a software developer, your best bet is
to find an uncommon executable packer to secure
your files.

The windows executable format is more
vulnerable to debugging and modification
than Mac or Linux binaries

Just packers and encrypts are not enough and all
software companies know that. That's why they
employ more advanced and complex defensive
techniques against cracking with some of them
making you think ‘Who will go to such lengths just
fo protect a file?’

Long Serial Key: Many companies use a serial
which is several KB long of arithmetical transforms,
to drive anyone trying to crack it insane. This makes
a keygenerator almost impossible — Also, brute
force attacks are blocked very efficiently.

Encryption is used in most commercial
applications

Encrypted Data: A program using text which is en-
crypted until runtime has a pretty good chance of
throwing amateur hackers off. Developers often
use their own encryption algorithms to encrypt

www.hakin9.org/en

<)

their strings internally. When the program is run,
then string is then decrypted, confusing the hacker.

Example: Imagine a hacker tries to use the func-
tion ‘Find All Referenced Text Strings’ as men-
tioned in our tutorial above. If the strings for the ap-
plication are encrypted internally then the hacker
will only find a few lines of messed up, non-sense
characters.

Traps. A method I’'m not sure about, but | have
heard some apps are using it to trap crackers and
hackers:

Do a CRC check on your EXE. If it is modified
then don’t show the typical error message, but wait
a day and then notify the user using some cryptic
error code. When they contact you with the error
code, you know that it is due to the crack.

Frequent updates: Developers often release fre-
quent updates that make the current version of
the app stop working until the user installs the up-
date for it. This lets the developers modify their
“anti-cracking” routines frequently and renders the
cracks released for the previous versions com-
pletely useless.

“Destructive” code: A bit farfetched, but some-
times developers put destructive routines in their
programs in case their internal checking routines
detect that the app was cracked. They delete sys-
tem files on the user’s system or mess up the
Windows Registry, let the program create bug-
gy results (obviously buggy or just noticeable af-
ter careful checks) or simply pop up warnings that
“a certain patch” leads to “damage to the system
files” or “contains a virus.” While this might be a
good way to “shock” sensible novice crackers, |
truly don’t believe this is a good (or even effective)
method to protect your work as it may violate the
laws of certain countries and create a bad reputa-
tion for the application.

Besides disassembling a program, reverse engi-
neering can be accomplished by decompilation,
a process aimed to retrieve the source code of a
compiled file. A decompiler is the name given to
a computer program that performs, as far as pos-
sible, the reverse operation to that of a compiler.
That is, it translates a file containing information
at a relatively low level of abstraction (usually de-
signed to be computer readable rather than hu-
man readable) into a form having a higher lev-
el of abstraction (usually designed to be human
readable). The decompiler does not reconstruct
the original source code, and its output is far less
intelligible to a human than original source code.
Most programs designed in high level program-

HaHRIN9 /.

REVERSE IT YOURSELF

ming languages or are based on an interpreter
can be decompiled. Such languages include Del-
phi, Visual Basic, Java and so on.

VB Decompiler, one of the most popular
decompilers out there today

To further clarify the meaning of decompilation,
consider a program you wrote in Visual Basic or
as many prefer, VB. You compile it and transform
your source files in to a windows executable.
However as VB compiles to a high level, inter-
preted code, as opposed to C++’s native code,
it can be easily dissembled. A hacker can simply
use a program such as VB Decompiler or VB Re-
former and obtain almost every single source file
you wrote.

Though it seems that any windows program is
vulnerable to modification and tampering, as long
as you compile that program with a native lan-
guage such as C++ or C, your app should be rela-
tively safe from decompilation.

Today, there are teams dedicated to REing soft-
ware, forums dedicated to teaching users the pro-
cess and websites dedicated to spreading the re-
verse engineered app. A simple search on Google
on something like ‘How to crack’ or ‘How to hack’
will lead you to over a million tutorials on the
subject. There are teams, such as CORE which
stands for “Challenge Of Reverse Engineering”,
there are unnamed websites that allow hackers to
upload their work, but why. Why does one reverse
engineer?

The answer is simple. It is because software isn’t
free. In the world of commercial software, you have
to buy a license to use it. You have to subscribe by
paying a certain amount every month to use it. You
have to register your software to use it.

It would be fine if software were like cars. They
can’t be copied or pasted. They can’t be upload-
ed on to software piracy dedicated websites. That
can’t be loaded into debuggers. There is only one
car for every person.

However, that's software’s weak point. Software
can be modified, debugged, copied and distribut-
ed. Software isn’t real, it’s virtual, and hackers rec-
ognized this as early as when the first version of
Windows was released.

Reverse engineering software eliminates the re-
quirement of users purchasing a valid license, and
in return saves them time and money. Though il-
legal as it may be, it is human nature to find the
cheapest and easiest way to obtain something
they want.

o HAaRIMS

<))

A famous example of reverse-engineering involves
San Jose-based Phoenix Technologies Ltd., which
in the mid-1980s wanted to produce a BIOS for
PCs that would be compatible with the IBM PC’s
proprietary BIOS. (A BIOS is a program stored in
firmware that's run when a PC starts up).

To protect against charges of having simply (and
illegally) copied IBM’s BIOS, Phoenix reverse-en-
gineered it in a way that was smart but indirect.
First, a team of engineers studied the IBM BIOS
— about 8KB of code — and described everything it
did as completely as possible without using or ref-
erencing any actual code. Then Phoenix brought
in a second team of programmers who had no pri-
or knowledge of the IBM BIOS and had never seen
its code. Working only from the first team’s func-
tional specifications, the second team wrote a new
BIOS that operated as specified.

The resulting Phoenix BIOS was different from
the IBM code, but for all intents and purposes, it
operated identically. Using the clean-room ap-
proach, even if some sections of code did happen
to be identical, there was no copyright infringe-
ment. Phoenix began selling its BIOS to compa-
nies that then used it to create the first IBM-com-
patible PCs.

In conclusion, reading this article should have
granted you with some more insight in the topic of
reverse engineering. You should have learnt how
reverse engineering works, how reverse engineer-
ing is accomplished and, most importantly, how re-
verse engineering is used. If you want more infor-
mation on RE or RCE, you can visit the webpages
listed below:

* www.en.wikipedia.org/wiki/Reverse_engineering

* www.searchcio-midmarket.techtarget.com/defi-
nition/reverse-engineering

* www.youtube.com/watch?v=vGBFEDsIWhQ

* www.Ssecuritytube.net/video/1363

LORENZO XIE

Lorenzo Xie is the owner of XetoWare.com and AceVideoCon-
verter.com. He also works with several other software compa-
nies and specialises in windows software development. You
can contact him directly at Lorenzo@xetoware.com.

TBO 04/2013

http://www.en.wikipedia.org/wiki/Reverse_engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.searchcio-midmarket.techtarget.com/definition/reverse-engineering
http://www.youtube.com/watch?v=vGBFEDslWhQ
http://www.securitytube.net/video/1363
http://XetoWare.com
http://Ace
VideoConverter.com
http://Ace
VideoConverter.com
mailto:Lorenzo@xetoware.com

A Cyber criminal can target and breach
your organization's perimeter in less than
a second from anywhere in the world ...

Are You Prepared?

ANRC delivers advanced cyber security training, consulting, and development services

that provide our customers with peace of mind in an often confusing cyber security environment,
ANRC's advanced security training program utilizes an intensive hands-on laboratory method

of training taught by subject matter experts to provide Information Security professionals with
the knowledge and skills necessary to defend against today's cyber-attacks and tomorrow's
emerging threats.

ANRC's consulting and development services leverage team member knowledge and experience
gained in the trenches while securing critical networks in the U.S. Department of Defense and

large U.S. corporations. ANRC tailors these services to deliver computer security solutions specific

to the needs of the customer's operational environment. Our approach emphasizes a close relationship
with our clients as an integral part of our service. We believe we're all in the security battle together,
and we view our customers as key members of our team in the fight.

TRAINING :: CONSULTING :: SOLUTIONS www.anrc-sarvices.com

REVERSE IT YOURSELF

Do you want to write your own debugger? ... Do you have

a new technology and see the already known products like
OllyDbg or IDA Pro don't have this technology? ... Do you
write plugins in OllyDbg and IDA Pro but you need to convert
itinto a separate application? ... This article is for you.

a full functional debugger using the Security Re-

search and Development Framework (SRDF) ...
how to disassemble instructions, gather Process In-
formation and work with PE Files ... and how to set
breakpoints and work with your debugger.

I n this article, I'm going to teach you how to write

Debugging is usually used to detect application bugs
and traces its execution ... and also, it's used in re-
verse engineering and analyzing application when
you don’t have the source code of this application.

Reverse engineering is used mainly for detecting
vulnerabilities, analyzing malware or cracking appli-
cations. We will not discuss in this article how to use
the debugger for these goals ... but we will describe
how to write your debugger using SRDF... and how
you can implement your ideas based on it.

This is a free open source Development Frame-
work created to support writing security tools and
malware analysis tools. And to convert the secu-
rity researches and ideas from the theoretical ap-
proach to the practical implementation.

This development framework created mainly to
support the malware field to create malware anal-
ysis tools and anti-virus tools easily without rein-
venting the wheel and inspire the innovative minds
to write their researches on this field and imple-
ment them using SRDF.

In User-Mode part, SRDF gives you many help-
ful tools ... and they are:

« HAaRIMS

<)

Assembler and Disassembler

x86 Emulator

Debugger

PE Analyzer

Process Analyzer (Loaded DLLs,
Maps ... etc)

MDS5, SSDeep and Wildlist Scanner (YARA)
API Hooker and Process Injection

Backend Database, XML Serializer

And many more

Memory

In the Kernel-Mode part, it tries to make it easy to
write your own filter device driver (not with WDF
and callbacks) and gives an easy, object oriented
(as much as we can) development framework with
these features:

* Object-oriented and easy to use development
framework

Easy IRP dispatching mechanism

SSDT Hooker

Layered Devices Filtering

TDI Firewall

File and Registry Manager

Kernel Mode easy to use internet sockets
Filesystem Filter

Still the Kernel-Mode in progress and many fea-
tures will be added in the near future.

If you decided to debug a running application or
you start an application for debugging. You need

TBO 04/2013

to gather information about this process that you
want to debug like:

+ Allocated Memory Regions inside the process

* The Application place in its memory and the
size of the application in memory

* Loaded DLLs inside the application’s memory

* Read a specific place in memory

» Also, if you need to attach to a process already
running ... you will also need to know the Pro-
cess Filename and the commandline of this
application

Begin the Process Analysis

To gather the information about a process in the

memory, you should create an object of cProcess

class given the Processld of the process that you

need to analyze.

cProcess myProc(792);

If you only have the process name and don’t have

the process id, you can get the process Id from

the ProcessScanner in SRDF like this:
cProcessScanner ProcScan;

And then get the hash of process names and
Ids from ProcessList field inside the cProcess-
Sanner Class ... and this item is an object of
cHash class.

cHash class is a class created to represent a
hash from key and value ... the relation between
them are one-to-many ... so each key could have
many values.

In our case, the key is the process name and
the value is the process id. You could see more
than one process with the same name running on
your system. To get the first Processld for a pro-
cess “Explorer.exe” for example ... you will do this:

ProcScan.ProcessList[“explorer.exe”]

This will return a cString value includes the Pro-
cessld of the process. To convert it into integer,
you will use atoi() function ... like this:

atol (ProcScan.ProcessList [«explorer.exe»])

Getting Allocated Memory
To get the allocated memory regions, there’s a list
of memory regions hamed memorymap the type of this
Item is cList.

cList is a class created to represent a list of buf-
fers with fixed size or array of a specific struct. It
has a function named cetnumberofrtems and this
function gets the number of items inside the list. In

www.hakin9.org/en

the following code, we will see how to get the list of
Memory Regions using cList Functions (Listing 1).

The struct vevory var describes a memory region
inside a process ... and it’s:

struct MEMORY MAP
{
DWORD Address;
DWORD Size;
DWORD Protection;
i

In the previous code, we loops on the items of
MemoryMap List and we get every memory re-
gion’s address and size.

Getting the Application Information

To get the application place in memory ... you will
simply get the Imagebase and SizeOflmage fields
inside cProcess class like this:

As you see, we get the most important infor-
mation about the process and its place in mem-
ory (Imagebase) and the size of it in memory
(SizeOflmage).

Listing 1. How to Get the List of Memory Regions Using
cList Functions

for (int i=0; i< (int) (myProc->MemoryMap .GetNum-
berOfItems()) ;i++)

{

cout<<”Memory Address “<< ((MEMORY MAP*)
myProc->MemoryMap.GetItem(i))->Address;

“<<hex<<((MEMORY_MAP*)myProc—

>MemoryMap.GetItem(i))->Size <<endl;

cout << “ Size:

}

Listing 2. cProcess Class

cout<<”Process: “<< myProc->processName<<endl;
cout<<”Process Parent ID:
<<endl;

“<< myProc->ParentID

cout<< “Process Command Line:
>CommandLine << endl;

“<< myProc-

cout<<”Process PEB:\t”<< myProc->ppeb<<endl;

cout<<”Process ImageBase:\t”<<hex<< myProc-
>ImageBase<<endl;

cout<<”Process SizeOfImageBase:\t”<<dec<<
myProc ->SizeOfImage<<” bytes”<<endl;

<)

HaHIN9 .

REVERSE IT YOURSELF

Loaded DLLs and Modules
The loaded Modules is a cList inside cProcess
class with name moduiesrist and it represents
an array of struct wooure_tnro and it’s like this:
Listing 3.

To get the loaded DLLs inside the process, this
code represents how to get the loaded DLLs:
Listing 4.

Read, Write and Execute on the Process

To read a place on the memory of this process,
the cProcess class gives you a function named
Read(...) which allocates a space into your memo-
ry and then reads the specific place in the memory
of this process and copies it into your memory (the
new allocated place in your memory).

DWORD Read (DWORD startAddress, DWORD size)

For writing to the process, you have another func-

tion name Write and it’s like this:

DWORD Write (DWORD startAddressToWrite , DWORD
buffer ,DWORD sizeToWrite)

This function takes the place that you would to
write in, the buffer in your process that contains the
data you want to write and the size of the buffer.

If the startaddressTowrite iS NUll ... Write () func-
tion will allocate a place in memory to write on and
return the pointer to this place.

Listing 3. “MODULE_INFO”
struct MODULE INFO

{
DWORD moduleImageBase;
DWORD moduleSizeOfImage;
cString* moduleName;
cString* modulePath;

}i

Listing 4. How to Get the Loaded DLLs

for (int i=0 ; i< (int) (myProc->modulesList.
GetNumberOfItems ()) ;i++)

{

cout<<”Module “<< ((MODULE INFO*)myProc-
>modulesList.GetItem (1)) ->moduleName-
>GetChar () ;

cout <<” ImageBase: ,<<hex<<((MODULE
INFO*)myProc->modulesList.GetItem(i)) -
>moduleImageBase<<endl;

» HAaRIMNSG

<))

To only allocate a space inside the process ...
you can use allocate () function to allocate memory
inside the process and it’s like that:

Allocate (DWORD preferedAddress, DWORD size)

You have also the option to execute a code inside
this process by creating a new thread inside the
process or inject a DLL inside the process using
these functions

DWORD DllInject (cString DLLFilename)
DWORD CreateThread (DWORD addressToFunction ,
DWORD addressToParameter)

And these functions return the Threadld for the
newly created thread.

Debugging an Application
To write a successful debugger, you need to in-
clude these features in your debugger:

1. Could Attach to a running process or open an
EXE file and debug it

2. Could gather the register values and modify

them

3. Could Set Int3 Breakpoints on specific ad-

dresses

4. Could Set Hardware Breakpoints (on Read,

Write or Execute)

5. Could Set Memory Breakpoints (on Read,
Write or Execute on a specific pages in mem-
ory)

. Could pause the application while running
Could handle events like exceptions, loading
or unloading dlls or creating or terminating a
thread.

~N O

In this part, we will describe how to do all of these
things easily using SRDF’s Debugger Library.

Open Exe File and Debug ... or Attach to a
process
To Open an EXE File and Debug it:

cDebugger* Debugger = new cDebugger (“C:\\upx01l.exe”);
Or with command line:

cDebugger* Debugger = new cDebugger (“C:\\upx01.

"o

exe”,"xxxx");
if the file opened successfully, you will see Is-

Found variable inside cDebugger class set to
TRUE. If any problems happened (file not found

TBO 04/2013

or anything) you will see it equal FALSE. Always
check this field before going further.

If you want to debug a running process ... you
will create a cProcess class with the Processld you
want and then attach the debugger to it:

cDebugger* Debugger = new cDebugger (myProc) ;

to begin running the application
function run() like this:

... you will use

Debugger->Run () ;

Or you can only run one instruction using function
step() like this:

Debugger->Step () ;

This function returns one of these outputs (until
now, could be expanded):

DBG_STATUS_STEP
DBG_STATUS_HARDWARE_BP
DBG_STATUS_MEM_BREAKPOINT
DBG_STATUS_BREAKPOINT
DBG_STATUS_EXITPROCESS
DBG_STATUS_ERROR
DBG_STATUS_INTERNAL_ERROR

Nooahkwdh=

If it returns pec _staTus ErrOR, yOou can check the
Exceptioncode Field and the debug event Field to
ge more information.

Getting and Modifying the Registers:
To get the registers from the debugger ... you have
all the registers inside the cDebugger class like:

* Reg[0 — 7]

* Eip

+ EFlags

* DebugStatus — DRY for Hardware Breakpoints

To update them, you can modify these variables
and then use function updateregisters() after the
modifications to take effect.

Setting Int3 Breakpoint

The main Debuggers’ breakpoint is the instruc-
tion “int3” which converted into byte oxcc in bi-
nary (or native) form. The debuggers write int3
byte at the beginning of the instruction that they
need to break into it. After that, when the execu-
tion reaches this instruction, the application stops
and return to the debugger with exception: status
BREAKPOINT.

www.hakin9.org/en

<))

Write your own Debugger

To set an Int3 breakpoint, the debugger has a
function named setsreakpoint (..) like this:

Debugger->SetBreakpoint (0x004064AF) ;

You can set a UserData For the breakpoint
like this:

DBG_BREAKPOINT* Breakpoint = GetBreakpoint (DWORD
Address) ;

And the breakpoint struct is like this:

struct DBG_BREAKPOINT
{
DWORD Address;
DWORD UserData;
BYTE OriginalByte;
BOOL
WORD
}i

IsActive;

wReserved;

So, you can set a UserData for yourself ... like
pointer to another struct or something and set it
for every breakpoint.

When the debugger’'s run() function returns
‘DBG_STATUS BREAKPOINT” you can get the
breakpoint struct oec_erearkrornt by the Eip and get
the UserData from inside ... and manipulate your
information about this breakpoint.

Also, you can get the last breakpoint by using a
Variable in cDebugger Class named vastBreakpoint
like this:

cout << “LastBp: “ << Debugger->LastBreakpoint <<
\\\nll;

To Deactivate the breakpoint, you can use func-
tion RemoveBreakpoint(..) like this:

Debugger->RemoveBreakpoint (0x004064AF) ;

Setting Hardware Breakpoints

Hardware breakpoints are breakpoints based on
debug registers in the CPU. These breakpoints
could stop on accessing or writing to a place
in memory or it could stop on execution on an
address. And you have only 4 available break-
points only. You must remove one if you need to
add more.

These breakpoints don’t modify the binary of the
application to set a breakpoint as they don’'t add
int3 byte to the address to stop on it. So they could
be used to set a breakpoint on packed code to
break while unpacked.

HaHIN9 .

REVERSE IT YOURSELF

To set a hardware breakpoint to a place in the
memory (for access, write or execute) you can set
it like this:

Debugger->SetHardwareBreakpoint (0x00401000,DBG BP
TYPE WRITE,DBG BP SIZE 2);
Debugger->SetHardwareBreakpoint (0x00401000,DBG_BP_
TYPE CODE,DBG_BP SIZE 4);
Debugger->SetHardwareBreakpoint (0x00401000,
DBG_BP TYPE READWRITE,DBG BP SIZE 1);

For code only, use pec _srp _stze 1 for it. But the
others, you can use size equal to 1 byte, 2 bytes
or 4 bytes.

This function returns false if you don’t have a
spare place for you breakpoint. So, you will have
to remove a breakpoint for that.

To remove this breakpoint, you will use the func-
tion RemoveHardwareBreakpoint (..) like this:

Debugger->RemoveHardwareBreakpoint (0x004064AF) ;

Setting Memory Breakpoints

Memory breakpoints are breakpoints rarely to see.
They are not exactly in OllyDbg or IDA Pro but they
are good breakpoints. It's similar to OllyBone.

These breakpoints are based on memory pro-
tections. They set read/write place in memory to
read only if you set a breakpoint on write. Or set
a place in memory to no access if you set a read/
write breakpoint and so on.

This type of breakpoints has no limits but it set
a breakpoint on a memory page with size 0x1000
bytes. So, it's not always accurate. And you have
only the breakpoint on Access and the Breakpoint
on write.

To set a breakpoint you will do like this:

Listing 5. GetMemoryBreakpoint

struct DBG MEMORY BREAKPOINT
{
DWORD Address;
DWORD UserData;
DWORD OldProtection;
DWORD NewProtection;
DWORD Size;
BOOL IsActive;
CHAR cReserved;
ten for padding
WORD wReserved;

//they are writ-

= HaRINS

<))

Debugger->SetMemoryBreakpoint (0x00401000,0x2000,
DBG_BP_TYPE WRITE);

When the run() function returns psc srtaTus
MEM _BREAKPOINT SO @ Memory Breakpoint is trig-
gered. You can get the accessed memory
place (exactly) using cDebugger class variable:
LastMemoryBreakpoint.

You can also set a UserData like Int3 breakpoints
by using cetMemoryBreakpoint (..) With any pointer in-
side the memory that you set the breakpoint on it
(from Address to (Address + Size)). And it returns
a pointer to struct *~ which describe the memory
breakpoint and you can add your user data in it
(Listing 5).

You can see the real memory protection inside
and you can set your user data inside the break-
point.

To remove a breakpoint,
RemoveMemoryBreakpoint (Address) to
breakpoint.

use
the

you can
remove

Pausing the Application

To pause the application while running, you need
to create another thread before executing run()
function. This thread will call to rause() function
to pause the application. This function will call to
suspendThread t0 suspend the debugged thread in-
side the debuggee process (The process that you
are debugging).

To resume again, you should call to resume () and
then call to run () again.

You can also terminate the debuggee process by
calling rerminate () function. Or, if you need to exit
the debugger and makes the debuggee process
continues, you can use exit () function to detach
the debugger.

Handle Events

To handle the debugger events (Loading new DLL,
Unload new DLL, Creation of a new Thread and so
on), you have 5 functions to get notified with these
events and they are:

DLLLoadedNotifyRoutine
DLLUnloadedNotifyRoutine
ThreadCreatedNotifyRoutine
ThreadEXxitNotifyRoutine
ProcessExitNotifyRoutine

ahwh =

You will need to inherit from cDebugger Class and
override these functions to get notified on them.

To get information about the Event, you can
information from debug event variable (see
Figure 1).

TBO 04/2013

DOS MZ header

DOS stub

PE header

Section table
Section 1
Section 2
Section ...

Section n

Figure 1. PE File Format

We will go through the PE Headers (EXE Head-
ers) and how you could get information from it and
from cPEFile class in SRDF (the PE Parser).

The EXE File begins with “MZ” characters and
the DOS Header (named MZ Header). This DOS
Header is for a DOS Application at the beginning
of the EXE File.

This DOS Application is created to say “it’'s not a
win32 application” if it runs on DOS.

The MZ Header contains an offset (from the
beginning of the File) to the beginning of the PE
Header. The PE Header is the Real header of the
Win32 Application.

PE Header

Signature: PE,0,0

File Header

Optional Header

Data Directory

Figure 2. PE Header

It begins with Signature “PE” and 2 null bytes
and then 2 Headers: File Header and Optional
Header.

To get the PE Header in the Debugger, the cPE-
File class includes the pointer to it (in a Memory
Mapped File of the Process Application File) like
this:

cPEFile* PEFile = new cPEFile(argv([l]);
image header* PEHeader = PEFile->PEHeader;

The File Header contains the number of section
(will be described) and contains the CPU archi-
tecture and model number that this application
should run into ... like Intel x86 32-Bits and so on.
Also, it includes the size of Optional Header (the

www.hakin9.org/en

<))

Write your own Debugger

Next Header) and includes The Characteristics of
the Application (EXE File or DLL).

The Optional Header contains the Important In-
formation about the PE as you see in the Table 1.

Table 1. The Optional Header Contains the Important
Information about the PE

Field Meanings
AddressOfEntryPoint | The Beginning of the Execution

ImageBase The Start of the PE File in Mem-
ory (default)

SectionAlignment Section Alignment in Memory

while mapping

FileAlignment Section Alignment in Harddisk

(~ one sector)

MajorSubsystemVer- | The win32 subsystem version

sion

MinorSubsystemVer-

sion

SizeOflmage The Size of the PE File in Mem-
ory

SizeOfHeaders Sum of All Header sizes

Subsystem GUI, Console, driver or others

DataDirectory Array of pointers to important

Headers

To get this Information from the cPEFile class in
SRDF ... you have the following variables inside
the class: Listing 6.

DataDirectory are an Array of pointers to other
Headers (optional Headers ... could be found or
could the pointer be null) and the size of the Header.

It Includes:

* Import Table: importing APIs from DLLs

» Export Table: exporting APIs to another Apps

* Resource Table: for icons, images and others

* Relocables Table: for relocating the PE File
(loading it in a different place ... different from
Imagebase)

Listing 6. Following Variables Inside the Class

bool FilelLoaded;

image header* PEHeader;
DWORD Magic;

DWORD Subsystem;

DWORD Imagebase;

DWORD SizeOfImage;
DWORD Entrypoint;

DWORD FileAlignment;
DWORD SectionAlignment;
WORD DataDirectories;

short nSections;

HaRIN9 /.

REVERSE IT YOURSELF

We include the parser of Import Table ... as it in-

Listing 7. Array of All Imported DLLs and APls cludes an Array of All Imported DLLs and APls
like this: Listing 7. After the Headers, there are the
cout << PEFile->TmportTable.nDLLs << “\n”; section headers. The application File is divided in-
for (int i=0;i < PEFile->ImportTable.nDLLs;i++) to section: section for code, section for data, sec-
{ tion for resources (images and icons), section for
cout << PEFile->ImportTable.DLL[i].DLLName << import table and so on.
“\n"; Sections are expandable ... so you could see
cout << PEFile->ImportTable.DLL[i].nAPIs << its size in the Harddisk (or the file) is smaller than
“\n”; what is in the memory (while loaded as a process)
for (int 1=0;1<PEFile->ImportTable.DLL[i]. ... so the next section place will be different from
NAPTs; 1++) the Harddisk and the memory.
{ The address of the section relative to the begin-
cout << PEFile->ImportTable.DLL[i].API[i]. ning of the file in memory while loaded as a pro-
APTName << “\n”; cess is named RVA (Relative virtual address) ...
cout <<PEFile->ImportTable.DLL[i].API[i]. and the address of the section relative to the be-
APIAddressPlace << “\n”; ginning of the file in the Harddisk is named Offset
} or PointerToRawData (Table 2 and Listing 8).

}
Table 2. The Information that the Section Header Gives

Listing 8. You Can Manipulate the Section in cPEFile m
Class Like This

Name The Section Name
<< PEFile-> i << ™\n”; . .

cout o * ? nse.cuons _\n ; VirtualAddress The RVA address of the section

for (int i=0;i< PEFile->nSections;it++)

(VirtualSize The size of Section (in Memory)
cout << PEFile->Section[i].SectionName << “\n”; SizeOfRawData The Size of Section (in Harddisk)
cout << PEFile->Section[i].VirtualAddress << PointerToRawData The pointer to the beginning of
“\n”; file (Harddisk)
cout << PEFile->Section[i].VirtualSize << “\n”; Characteristics Memory Protections (Execute,
cout << PEFile->Section[i].PointerToRawData << Read, Write)

\\\nll;

cout << PEFile->Section[i].SizeOfRawData << The Real Address is the address to the begin-
“\n”; ning of this section in the Memory Mapped File. Or
cout << PEFile->Section[i].RealAddr << “\n”; in other word, in the Opened File.

} To convert RVA to Offset or Offset to RVA ... you

can use these functions:

Instruction REX Mod .

1-4 bytes 1 byte 1-3 bytes 1, 2, or 4 bytes 1, 2, or 4 bytas
(optianal) joptional) (mandatory) (if required) (if required)

T B 5 A 2 a T L) 3 2 0
el Bl Bl
1 byte 1 byte
(if required) (if required)

Figure 3. The Disassembler

114‘ HaHInQ @ @ TBO 04/2013

Write your own Debugger

DWORD RVAToOffset (DWORD RVA) ;

DWORD OffsetToRVA (DWORD RawOffset); Listing 9. Create a New Class and Use It Like This

The Disassembler CPokasAsm* Asm = new CPokasAsm();
To understand how to work with assemblers and DWORD InsLength;
disassemblers ... you should understand the char* buff;
shape of the instructions and so on. buff = Asm->Assemble (“mov eax,dword ptr [ecx+
That's the x86 instruction Format: Figure 3. 00401000h]”, InsLength) ;
cout << “The Length: “ << InsLength << “\n”;
* The Prefixes are reserved bytes used to de- cout << “Assembling mov eax,dword ptr [ecx+
scribe something in the Instruction like for ex- 00401000h]\n\n";
ample: for (DWORD 1 = 0;i < InsLength; i++)
* oxr0: Lock Prefix ... and it’s used for syn- {
chronization cout << (int*)buff[i] << ™ v;
* oxr2/0xr3. Repne/Rep ... the repeat instruc- }
tion for string operations cout << “\n\n”;
* ox66. Operand Override ... for 16 bits oper- cout << “Disassembling the same Instruction
ands like: mov ax,4556 Again\n\n”;
* ox67. Address Override ... used for 16-bits cout << Asm->Disassemble (buff, InsLength) << “
ModRM ... could be ignored ... and the instruction length : << Ins-
* oxe4: Segment Override For FS ... like: mov Length << “\n\n”;
eax, FS:[18]
. Opcodes: Listing 10. The Output
* Opcode encodes information about
» operation type, The Length: 6
. operands, Assembling mov eax,dword ptr [ecx+ 00401000h]
» size of each operand, including the size FFFFFF8B FFFFFF81 00000000 00000010 00000040
of an immediate operand 00000000
* Like Add RM/R, Reg (8 bitS) - Opcode: Disassembling the same Instruction Again
0x00 mov eax ,dword ptr [ecx + 401000h] ... and the
* Opcode Could be 1 byte,2 or 3 bytes instruction length : 6

* Opcode could use the “Reg” in ModRM as o
an opcode extenstion ... and this named Listing 11. “DISASM_INSTRUCTION”
“Opcode Groups”

* modrm: Describes the Operands (Destination struct DISASM INSTRUCTION
and Source). And it describes if the destination {
or the source is register, memory address (ex: hde32sexport hde;
dword ptr [eax+ 1000]) or immediate (humber). int entry;
* s1e: extension for Modrm ... used for scaling string* opcode;
in memory address like: dword ptr [eax™4 + int ndest;
ecx + 50] int nsrc;
* Dpisplacement. The value inside the brackets int other;
[] ... like dword ptr [eax+0x1000], so the dis- struct
placement is 0x1000 ... and it could be one {
byte, 2 bytes or 4 bytes int length;
* Immediate: it's value of the source or destination int items[3];
if any of them is a number like (move ax,1000) int flags[3];
... so the immediate is 1000 } modrm;
int (*emu func) (Thread&, DISASM INSTRUC-
That’s the x86 instruction Format in brief ... you TION*) ;
can find more details in Intel Reference Manual. int flags;
To use PokasAsm class in SRDF for assembling i

and disassembling ... you will create a new class
and use it like this:
The Output: Listing 10.

wwhakind org/en @ @ HaHIN9 .

REVERSE IT YOURSELF

Also, we add an effective way to retrieve the in-
struction information. We created a disassemble
function that returns a struct describes the instruc-
tion prsasm_1nstrucrron @nd it looks like: Listing 11.

The Disassemble Function looks like:

DISASM INSTRUCTION* Disassemble (char*
Buffer, DISASM INSTRUCTION* ins);

It takes the Address of the buffer to disassem-
ble and the buffer that the function will return the
struct inside

Let’s explain this structure:

1. nae! it’s a struct created by Hacker Disassem-
bler Engine and describes the opcode ... The
important Fields are:

2. 1en: The length of the instruction

3. opcode: the opcode byte ... if the opcode is 2

bytes so see also opcode2

4. r1ags: This is the flags and it has some im-

portant flags like ¥ moprv and r ERrROR
xxxx (XXXX means anything here)

Entry: Unused

opcode: the opcode string ... with class “string”
not “cString”

7. otner: used for mul to save the imm ...

than that ... it's unused

8. modrm! it’s a structure describes what’s inside

the RM (if there’s) like “[eax*2 + ecx + 6] for

example ... and it looks like:

9. rength: the number of items inside
“[eax+ 2000]” contains 2 items

10. r1ags(31: this describes each item in the RM
and its maximum is 3 ... it’s flags is:
11. v _rec: the item is a register like “[eax

oo

other

... like

12. rm _wmur2: this register is multiplied by 2
13. rm _wmur4: by 4
14. rm _wmuLs: by 8
15. ru _p1sp: it’'s a displacement like [ox401000
+ ..
16. ru p1sps: comes with RM_DISP ... and
it means that the displacement is 8-bits
17. ru_pr1spi6: the displacement is 16 bits
18. rv _ p1se32: the displacement is 32-bits
19. ru _appri6: this means that ... the mo-
drm is in 16-bits Addressing Mode
20. rtems(31: this gives the value of the item in
the modrm ... like if the Item is a register
. so it contains the number of this regis-
ter (ex: ecx — item = 1) and if the item is a
displacement ... so it contains the displace-
ment value like ox401000 and so on.
21. emu _ func: unused

w HAaRIMNSG

<))

22. r1ags: this flags describes the instruction ...
some describes the instruction shape, some
describes destination and some describes the
source ... let’'s see
23. 1nstruction shape: there are some flags de-

scribe the instruction like:

24. no srepest: this instruction doesn’'t have
source or destination like “nop”

25. src_wosrc: this instruction has only des-
tination like “push dest”

26. tns _unpoerinep: this instruction is unde-
fined in the disassembler ... but you still
can get the length of it from hde.len

27. o _rru: this instruction is an FPU in-
struction

28. reu _nurn: means this instruction doesn’t
have any destination or source

29.rru_pEST _onry: this means that this in-
struction has only a destination

30. rru _ srepest: this means that this instruc-
tion has a source and destination

31. reu_mBrTs32: the FPU instruction is in
32-bits

32. reu_BITS16: MEans that the FPU Instruc-
tion is in 16-bits

33.reu_MoprM: Mmeans that the instruction
contains the ModRM byte

34. pestination Shape.

35. pest _rEG: means that the destination is
a register

36.pest rM: means that the destination is
an RM like “dword ptr [xxxx]”

37. pest _1mm: the destination is an immedi-
ate (only with enter instruction”

38. pest _ BITs32: the destination is 32-bits

39. pest _ BITS16: the destination is 16-bits

40. pest _ BTTs8: the destination is 8-bits

41. reu_pesT _ sT: means that the destination
is “STO0” in FPU only instructions

42. rpu_pesT _sti: means that the destina-
tion is “STx” like “ST1”

43.rpu _pesT rM: Means that the destina-
tion is RM

44. source shape: Similar to destination ... read
the description in Destination flags above

45. src REG

46. src _RrRM

47. src 1MM

48. src _ BITS32

49. src _BITSI16

50. src BITSS

51. FPU_src st

52.rpu_src sTi

53. ndest: this includes the value of the destination
related to its type ... if it's a register ... so it

TBO 04/2013

will contains the index of this register if it's an
immediate ... so it will have the immediate val-
ue if it's an RM ... so it will be null

54. nsrc: this includes the value of the source re-
lated to the type ... see the ndest above

That’'s simply the disassembler. We discussed
all the items of our debugger. We discussed the
Process Analyzer, the Debugger, the PE Parser
and the Disassembler. We now should put all to-
gether.

To write a good debugger and simple also, we de-
cided to create an interactive console application
(like msfconsole in Metasploit) which takes com-
mands like run or bp (to set a breakpoint) and so on.

To create an interactive console application, we
will use cConsoleApp class to create our Console
App. We will inherit a class from it and begin the
modification of its commands (Listing 12).

And the Code: Listing 13.

As you see in the previous code, we implement-
ed 3 functions (virtual functions) and they are:

1. setcustomsettings: this function is used for mod-
ifying the setting for your application ... like
modify the intro for the application, include a
log file, include a registry entry for the appli-
cation or to include a database for the applica-
tion to save data ... as you can see, it's used
to write the intro.

2. run: this function is called to run the applica-
tion. You should call to StartConsole to begin
the interactive console

3. exit: this function is called when the user write
“quit” command to the console.

The cConsoleApp implements 2 commands for
you “quit” and “help”. Quit exit the application and
help show the command list with their description.
To add a new command you should call to this
function:

AddCommand (char* Name,char* Description,char*
Format, DWORD nArgs, PCmdFunc CommandFunc)

The command Func is the function which will be
called when the user inputs this command ... and
it should be with this format:

void CmdFunc (cConsoleApp* App,int argc,char*
argv(])

it’s similar to the main function added to it the App

www.hakin9.org/en

class. The argyv is the list of the arguments for this
function and the argc is the number of arguments
(always equal to nArgs that you enter in add com-
mands .. could be ignored as it’s reserved).

To use AddCommand ... you can use it like this:

AddCommand (“dump”, ”"Dump a place in memory in

Listing 12. Use cConsoleApp Class to Create our Console
App

class cDebuggerApp :

{
public:

public cConsoleApp

cDebuggerApp (cString AppName) ;
~cDebuggerApp () ;

virtual void SetCustomSettings();
virtual int Run();

virtual int Exit();

hE

Listing 13. The Code

cDebuggerApp: : cDebuggerApp (cString AppName)
cConsoleApp (AppName)

}
cDebuggerApp: : ~cDebuggerApp ()
{

((cApp*) this) ->~cApp () ;

void cDebuggerApp::SetCustomSettings ()
{

//Modify the intro of the application
Intro = “\

***********************************\n\

**\n\

******‘k**********************‘k‘k**‘k‘k*\n”;

il Win32 Debugger

}
int cDebuggerApp: :Run ()
{
//write your code here for run
StartConsole();
return 0;
}
int cDebuggerApp: :Exit ()
{
//write your code here for exit

return 0;

<)

HaHIN9 /.

REVERSE IT YOURSELF

hex”,”dump [address] [size]”,2,&DumpFunc);

The DumpFunc is like that:

void DumpFunc (cConsoleApp* App,int argc,char*
argv(])

((cDebuggerApp*) App) —>Dump (argc, argv) ;
}i

As it calls to Dump function in the cDebuggerApp
class which inherited from cConsoleApp class.

We added these commands for the application:
Listing 14.

For Run Function: Listing 15.

As you can see, we make the application start

the console while the user enters a valid filename,
otherwise, return error and close the application.

We will not describe all commands but com-
mands that are the hard to implement (Listing 16).

This function at the beginning converts the ar-
guments from string (as the user entered) to a
hexadecimal value. And then, it reads in the de-
bugee process the memory that you need to dis-
assemble. As you can see, we added 16 bytes to
be sure that all instructions will be disassembled
correctly even if one of them exceed the limits of
the buffer.

Then, we begin looping on the disassembling
process and increment the address by the length
of each instruction until we reach the limited
size.

Listing 14. AddCommand

W

AddCommand
AddCommand (“bp”, ”Set an Int3 Breakpoint”, ”"bp

access .. 1 = write .. 2 =

write]”, 3, &MembpFunc) ;

"o

AddCommand (“removebp”,

"o

AddCommand (“removehardbp”,

Listing 15. For Run Function

int cDebuggerApp: :Run ()
{

Debugger =
Asm = new CPokasAsm();
if (Debugger->IsDebugging)
{
Debugger->Run () ;
Prefix =
if (Debugger->IsDebugging)StartConsole();
}
else
{
cout << Intro << “\n\n”;
cout << “Error: File not Found”;

}

return 0;

AddCommand (“step”, “one Step through code”,”step”, 0, &StepFunc) ;

(“run”,”Run the application until the first breakpoint”,”run”, 0, &RunFunc) ;
AddCommand (“regs”, ”Show Registers”,”regs”,0, &RegsFunc) ;

([address]”, 1, &BpFunc) ;
AddCommand (“hardbp”,”Set a Hardware Breakpoint”,”hardbp
execute]”, 3, &HardbpFunc) ;
AddCommand (“membp”, “Set Memory Breakpoint”,”membp

AddCommand (“dump”, “Dump a place in memory in hex”,”dump
AddCommand (“disasm”,”Disassemble a place in memory”,”disasm [address]
AddCommand (“string”,”Print string at a specific address”,

(Remove an Int3 Breakpoint”,”removebp
Remove a Hardware Breakpoint”,”removehardbp [address]”,l, &RemovehardbpFunc) ;
AddCommand (“removemembp”, “"Remove Memory Breakpoint”,”removemembp

new cDebugger (Request.GetValue (“default”));

Debugger->DebuggeeProcess->processName;

[address] [size (1,2,4)] [type .. 0 =
[address] [size] [type .. 0 = access .. 1 =
[address] [size]”, 2, &DumpFunc) ;

[size]”,2,&DisasmFunc) ;

"o

string [address] [max size]”,2,&StringFunc);

[address]”, 1, &RemovebpFunc) ;

[address]”, 1, &RemovemembpFunc) ;

w HAaRIMSG

<))

TBO 04/2013

The main function will call to some functions to
start the application and run it: Listing 17.

Conclusion

In this article we described how to write a debug-
ger using SRDF ... and how easy to use SRDF.
And we described how to analyze a PE File and
how disassembling an instruction works.

AMRTHABET

- I'm a Malware Researcher with 5+ years
experience in reversing malware and re-
searching and I'm now a Malware Re-
searcher in Q-CERT. I'm the Author of ma-
ny open-source tools like Pokas Emulator
and Security Research and Development
Framework (SRDF). | was a Speaker in Cai-
ro Security Camp 2010 and University of Sydney. | wrote nam-
erous aticles in malware and programming in Hakin9 Maga-
zine, SecurityKaizen Magazine and Code Project.

Listing 16. Commands H to Implement

void cDebuggerApp: :Disassemble (int argc,char* argv(])
{

DWORD Address = 0;

DWORD Size = 0;

sscanf (argv[0], “%x”, &Address);

sscanf (argv[1l], “%x”, &Size);
DWORD Buffer = Debugger->DebuggeeProcess-

>Read (Address, Size+16) ;

DWORD InsLength = 0;

for (DWORD InsBuff = Buffer;InsBuff < Buffer+
Size ;InsBuff+=InsLength)

cout << (int*)Address << “: “ << Asm-
>Disassemble ((char*)
InsBuff, InsLength) << “\n”;
Address+=InsLength;

}

Listing 17. Start the Application and Run It

int tmain(int argc, char* argv([])
{
cDebuggerApp* Debugger = new
cDebuggerApp (“Win32Debugger”) ;
Debugger->SetCustomSettings () ;
Debugger->Initialize (argc,argv) ;
Debugger->Run () ;
return 0;

www.hakin9.org/en @

	Cover
	Dear Readers,
	CONTENTS

	Previouse Page 2:
	Page 4: Off
	Page 6:

	Go To Next Page 2:
	Page 4: Off
	Page 6:

	Previouse Page 3:
	Page 5: Off

	Go To Next Page 3:
	Page 5: Off

	Previouse Page 8:
	Page 8: Off
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:

	Go To Next Page 8:
	Page 8: Off
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:

	Previouse Page 9:
	Page 9: Off
	Page 11:
	Page 13:
	Page 15:
	Page 17:
	Page 21:
	Page 23:
	Page 27:
	Page 31:
	Page 33:
	Page 35:

	Go To Next Page 9:
	Page 9: Off
	Page 11:
	Page 13:
	Page 15:
	Page 17:
	Page 21:
	Page 27:
	Page 31:
	Page 33:
	Page 35:

	Previouse Page 12:
	Page 38: Off
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:

	Go To Next Page 12:
	Page 38: Off
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:

	Previouse Page 13:
	Page 39: Off
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 51:

	Go To Next Page 13:
	Page 39: Off
	Page 41:
	Page 43:
	Page 45:
	Page 47:
	Page 51:

	Previouse Page 14:
	Page 54: Off
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:
	Page 78:
	Page 80:
	Page 82:
	Page 84:
	Page 86:
	Page 88:
	Page 90:
	Page 92:
	Page 94:
	Page 96:
	Page 98:
	Page 100:
	Page 102:
	Page 104:
	Page 106:
	Page 108:
	Page 110:
	Page 112:
	Page 114:
	Page 116:
	Page 118:

	Go To Next Page 14:
	Page 54: Off
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:
	Page 66:
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:
	Page 78:
	Page 80:
	Page 82:
	Page 84:
	Page 86:
	Page 88:
	Page 90:
	Page 92:
	Page 94:
	Page 96:
	Page 98:
	Page 100:
	Page 102:
	Page 104:
	Page 106:
	Page 108:
	Page 110:
	Page 112:
	Page 114:
	Page 116:
	Page 118:

	Previouse Page 15:
	Page 55: Off
	Page 57:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 69:
	Page 73:
	Page 77:
	Page 79:
	Page 81:
	Page 83:
	Page 85:
	Page 87:
	Page 89:
	Page 91:
	Page 93:
	Page 95:
	Page 99:
	Page 101:
	Page 103:
	Page 105:
	Page 109:
	Page 111:
	Page 113:
	Page 115:
	Page 117:
	Page 119:

	Go To Next Page 15:
	Page 55: Off
	Page 57:
	Page 59:
	Page 61:
	Page 63:
	Page 65:
	Page 67:
	Page 69:
	Page 73:
	Page 77:
	Page 79:
	Page 81:
	Page 83:
	Page 85:
	Page 87:
	Page 89:
	Page 91:
	Page 93:
	Page 99:
	Page 101:
	Page 105:
	Page 109:
	Page 111:
	Page 113:
	Page 115:
	Page 117:

	uat:
	edu 6: Off

