

http://www.elearnsecurity.com/

http://www.coliseumlab.com/

4 09/2011

09/2011 (45)

4

 team

Editor in Chief: Ewa Dudzic
ewa.dudzic@hakin9.org

Managing Editor: Patrycja Przybylowicz
patrycja.przybylowicz@hakin9.org

Editorial Advisory Board: Rebecca Wynn, Matt Jonkman,
Donald Iverson, Michael Munt, Gary S. Milefsky, Julian Evans,
Aby Rao

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Marketing Manager: Małgorzata Bocian
m.bocian@hakin9.org

Proofreaders: Donald Iverson, Michael Munt, Elliott Bujan, Bob
Folden, Steve Hodge, Jonathan Edwards, Steven Atcheson

Top Betatesters: Ivan Burke, John Webb, Nick Baronian, Felipe
Martins, Alexandre Lacan, Rodrigo Rubira Branco

Special Thanks to the Beta testers and Proofreaders who helped
us with this issue. Without their assistance there would not be a
Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@software.com.pl

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Publisher: Software Press Sp. z o.o. SK
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.hakin9.org/en

Whilst every effort has been made to ensure the high quality of
the magazine, the editors make no warranty, express or implied,
concerning the results of content usage.
All trade marks presented in the magazine were used only for
informative purposes.

All rights to trade marks presented in the magazine are
reserved by the companies which own them.
To create graphs and diagrams we used program
by

The editors use automatic system
Mathematical formulas created by Design Science MathType™

DISCLAIMER!
The techniques described in our articles may only
be used in private, local networks. The editors
hold no responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,
This issue we dedicate to secure coding as it should be a
starting point of every discussion about IT Security. A hacker
existance is maintained by vulnerabilities in systems and
applications, which are nothing else than human mistakes.
There is a vital truth in the sentence that security starts with the
code. For some this topic might not be as interesting as reading
about attack methods and breaking systems down. It is indeed
the most exciting thing to feel that the power of destruction lies
in your hands. However, it’s always good to learn something
about the power of creation and defence methods. The best
anwer for attacki is... to attack. But you need to first endure the
attack. The better the code, the less demages and loses are
caused by the presumptive attacker. So, this time I encourage
you to learn something useful, which may not impress your
friends, but will definitly satisfy your bosses.

I recomend to begin your reading with Secure Coding: Hits and
Misses aticle written by Jorge Luis Alvares Medina. In this text
you will find a concrete real-life examples of common software
vulnerabilities, and will learn the best programming practices
to avoid their occurrence. In For My Eyes Only Israel Torres
demonstrates how to protect yourself against your data in your
programs and scripts. If you want to know how to write a secure
code in PHP and validate user input, you should get your
attention to Secure Coding PHP by Rich Hoggan. From this
text you will also learn some encryption techniques and other
countermeasures. In Secure Coding in Database Steve Hodge
will give you the knowledge about creating automatic audit
trails for critical database tables and about creating processes
to guard against and recover from bad data. An interesting
piece for you might be also the article by Julian Evans: An
Brief Overview of Mobile and Tablet App Coding Security. As
usual Julian discusses different and broad views on secutity
issues, this time concentraining on secure coding topic. Read
this text and find out why code signing and sandboxing are two
app security principles that should be proactively incorporated
into the mobile coding development cycle.

This time quite a bit of learning, but I hope it will help you
to improve your defence skills. For dedactive entertaiment I
suggest you to have a little fun with Ali Hadi Bug Story. Don’t
miss also Drake and Mervyn columns!

Enjoy the reading!
Patrycja Przybyłowicz

& Hakin9 team

PRACTICAL PROTECTION IT SECURITY MAGAZINE

5

��������������

���

���
���������������

���������������

��

��
����������������������������

����������������������������������

���

http://www.id-theftprotect.com/

6 09/2011 www.hakin9.org/en 7

CONTENTS

IN BRIEF
08 Latest News From the IT Security World
By Armando Romeo, eLearnSecurity and ID Theft
Protect

STORIES
10 The Bug Story
By Ali Hadi
Despite the fact that our Networks gardens are full of
beautiful/gorgeous things, at same time they’re full
of bugs. The problem is that the Internet serves as
connection between these gardens, which makes it
easy for bugs to travel from one garden to another. A
bug may be found in my neighbours’ garden across the
street, but in a matter of time, I will be seeing it creeping
in my garden too... This time Ali tales us a quick history
of the most vicious bugs in software till today. From his
amusing article we will find out why software Bugs exist
today and how to avoid them. He will also present us the
analysis one of the most popular bug in the IT Security
history and learn us on this example a quick analysis of a
bug. Read the column which is as well for entertaiment as
for gathering some basic knowledge.

BASICS
12 Secure Coding: Hits and Misses
By Jorge Luis Alvares Medina
This article expose the basics of most of the common
software vulnerabilities, and explore the best
programming practices to avoid their occurrence. The
analysis will be made from a general perspective, but
providing concrete examples and walkthroughs to clarify
the concepts discussed. The examples included in each
point will range from academic to real vulnerabilities
found while performing different source code audits.
From this article you will learn best practices that
architects and developers should be aware of in order
to develop applications with a proper sense of security.
After the reading you will also start to think of the security
analysis in terms of the actors involved, to enhance and
better adapt different attack vectors the common roots of
many security issues.

DEFENCE
22 For My Eyes Only
By Israel Torres
Data is a marvelous thing; so easy to create but so
difficult to keep track of and maintain. This marvelous
thing is the very thing that can take companies down to
their knees. All without anyone knowing until it is too

late... A silent killer... Data at rest and company drive
shares spell disaster. Learn how to protect yourself
against your data be it your programs, scripts and
allow automation to occur non-interactively without
you having to type your password in because you
don’t want to save them within the execution file. This
demonstration focuses on the Apple Mac platform but
can be easily geared otherwise.

26 Secure Coding PHP
By Rich Hoggan
It can be said that software is only as good as its code or
as good as the developer who wrote that code. Yet if we
used this adage to compare current web based software,
we are in need of some major retrofits to the software we
entrust our personal data to. The recent cyber attacks on
BART – the San Francisco Bay Area’s rapid transit system
– only demonstrates the need for better and more secure
software especially when personal and private information
is at stake. As cyber attacks only seem to be growing in
number, we have to start to focus more on secure coding
as we try to walk the thinning line that is security and
usability. With this in mind, we will discuss some of the
techniques one can use to write more secure PHP code
including user input verification and data encryption...
In this article author shows how to write secure code in
PHP and validate user input. You will also learn some
encryption techniques and other counter measures.

32 Secure Coding in Database
By Steve Hodge
Information systems are not islands. Either data is
manually entered, or, as is more commonly the case,
interchanged with other systems. Some systems are
very tightly integrated: a database transaction committed
in one system becomes available in another almost
immediately. Other systems are more loosely coupled and
synchronize data on a scheduled basis. Some partners in
the interchange do an outstanding job of vetting their data
and making sure that the data feeds are clean. But what do
you do when a data supplier comes under attack, the data
becomes vandalized, or it is rendered unavailable? This
text will give you the knowledge about creating automatic
audit trails for critical database tables and also about
creating processes to guard against and recover from
bad data. You will learn building a lightweight process
for rapid data recovery that avoids using complex, time-
consuming database backup tools.

ID EXPERTS SAY...
42 Mobile and Tablet Application Coding
Security
By Julian Evans

6 09/2011 www.hakin9.org/en 7

CONTENTS

There are practical techniques to securing app code – the first involves
limiting privileges to a set of operations – this is known as sandboxing.
The second technique involves identifying executables as they enter the
trusted domain – aka firewall approach – do you want the app to run and
how will it run are important queries. The third technique involves code
trust – is the executable trustworthy? In this article author will attempt to
discuss briefly some of the main mobile app security issues of today and
consider what developers have to do to maintain and improve their coding
security practices. Read and find out why code signing and sandboxing are
two app security principles that should be proactively incorporated into the
mobile coding development cycle.

TOOL TIME
48 Virustotal
By Mervyn Heng
Hispasec Sistemas has managed the service, VirusTotal, since 1st June
2004. The VirusTotal website offers the public access to multiple Antivirus
(AV) engines hosted by them to provision online scanning of individual files
to uncover malware by harnessing a combination of signature-based and
heuristic detection. This is the short column where you will find description
of this very popular tool. If you haven’t come accross the VirusTotal yet this
text should encourage you to pay more interest in it.

(IL)LEGAL
50 What’s Wrong With the Bible?
By Drake
Corporate IT security policies are often described by security professionals
as „the Bible”. This comparison always makes my skin crawl, since it
suggests a certain lack of imagination. But in reality, the comparison
makes sense. Both interpretations were probably written a long time ago
by people who hadn’t met you, or by employees that faced precisely the
same issues, technologies, and situations you face in your job today. More
than that, both were probably written by different groups of people over
time... Read the essay column in which the author deals with different legal
curiosities and IT security cliches.

REVIEW
52 Review of Passware Kit 11.0
By Israel Torres
Passware Password Recovery Kit Forensic 11.0 is a handy all-in-one
package for recovering different types of passwords quickly and with ease.
Be it from a Windows laptop, Mac VM, or USB stick this software raises the
bar for password cracking. Read the program review and check is it worth
it’s price and buying.

http://www.elearnsecurity.com/

09/20118

In brief

www.hakin9.org/en 9

In brief

APPLE SAFARI 5.1 TO FEATURE SANDBOX
TECHNOLOGY
Apple has announced that Safari 5.1 will feature sandbox
technology which they claim will protect Mac OS X Lion
users from web exploits. Sandboxing is something we at
ID Theft Protect continue to promote, primarily because
all processes remain isolated from core Mac and PC
system files, but more importantly for us, we believe it
should be installed as part of an operating system install.
Safari 5.1 along with Google Chrome (as does Adobe
Reader X) now both feature sandboxing technology,
although unlike Chrome, Safari 5.1 sandboxing is
limited to Mac OS X Lion only. For those of you who
use Mac OS X, there is already a kernel-based sandbox
for core processes, but sandboxing features have been
significantly improved with the Safari 5.1 release.

Source: ID Theft Protect

FACEBOOK TO INTRODUCE PASSWORD
RESET
Facebook is planning to add a new security feature
that allows users to reset their password so they can
regain access to their accounts. The mobile password
reset, will provide mobile users with the ability to identify
their accounts and choose which email address should
receive the password recovery URL. Facebook also
indicated that they will offer additional ways for users to
confirm their identity.

Source: ID Theft Protect

FAKE GOOGLE+ APP IN CIRCULATION
A fake Google+ app has been circulating on Facebook
which claims it is inviting you to join the beta Google+
project. Liking the app, called Google Plus Direct
Access, will let scammers send you emails post content
in your name and access your personal information.

Source: ID Theft Protect

UK IDENTITY FRAUD UP 11 PER CENT IN
2011
A recent report (Fraudscape Bulletin) from the UK fraud
prevention agency CIFAS, claims that identity fraud
has increased by 11 per cent between January and the
end of June this year. CIFAS recorded 46,609 cases of
identity fraud in the last six months of 2010, compared to
51,796 in the first half of this year (2011). This increase is
possibly linked to the current economic situation. People
have lost their jobs, seen pay cuts, pensions frozen and
more and more people are struggling to make ends
meet with the ever growing cost of living – some people
are also turning to mortgage fraud – desperate times

require desperate measures. There is also the small
matter of over 1m 18-24 year olds who are yet to find
work, which will no doubt drive some youngsters to
crime and identity fraud. The banks are not lending, so
this adds yet more opportunity for budding fraudsters to
look to misuse other people’s personal details to commit
fraud.

Source: ID Theft Protect

WINDOWS SOCIAL ENGINEERING
MALWARE IN THE WILD
A recent report (Fraudscape Bulletin) from the UK fraud
prevention agency CIFAS, claims that identity fraud
has increased by 11 per cent between January and the
end of June this year. CIFAS recorded 46,609 cases of
identity fraud in the last six months of 2010, compared to
51,796 in the first half of this year (2011). This increase is
possibly linked to the current economic situation. People
have lost their jobs, seen pay cuts, pensions frozen and
more and more people are struggling to make ends
meet with the ever growing cost of living – some people
are also turning to mortgage fraud – desperate times
require desperate measures. There is also the small
matter of over 1m 18-24 year olds who are yet to find
work, which will no doubt drive some youngsters to
crime and identity fraud. The banks are not lending, so
this adds yet more opportunity for budding fraudsters to
look to misuse other people’s personal details to commit
fraud.

Source: ID Theft Protect

Microsoft release 13 security bulletins
Today (August 9th) Microsoft released 13 security
bulletins, two rated Critical, nine Important and two
Moderate. These bulletins address 22 unique vulner-
abilities in Internet Explorer, Microsoft .NET Frame-
work, Microsoft Developer Tools, Microsoft Office,
Microsoft Windows.

Particular attention should be given to the following
Microsoft security updates:

• MS11-057 (Internet Explorer). This security update
resolves five privately reported vulnerabilities and
two publicly disclosed vulnerabilities in Internet
Explorer. The most severe of these vulnerabilities
could allow remote code execution if a user views
a specially crafted webpage using Internet Explorer.
Microsoft is not aware of any attacks leveraging the
vulnerabilities addressed in this bulletin.

• MS11-058 (DNS Server). This security update
resolves two privately reported vulnerabilities in
Windows DNS server. The more severe of these
vulnerabilities could allow remote code execution

09/20118

In brief

www.hakin9.org/en 9

In brief

if an attacker sends a specially crafted Naming
Authority Pointer (NAPTR) query to a DNS server.
Servers that do not have the DNS role enabled are
not at risk.

Specific priority should be given to the ‘critical’ bulletins
that affect IE 6 through to IE9 on Windows 7, Vista, XP,
2003 and 2009.

Source: ID Theft Protect

BANK OF AMERICA DATA OWNED BY
WIKILEAKS? DELETED
Late last year, news about an upcoming groundbreaking
release from WikiLeaks appeared all over the web.
Julian Assange’s organization was about to make
tons of embarassing documents belonging to Bank of
America.

The release, that should have proved an ecosystem
of corruption was due on January 2011 and announced
by Assange in November of the same year. The same
interview that begun the hunt of the WikiLeaks founder,
culminated with his arrest on December 7.

So where are those documents now? According to
WikiLeaks, through Twitter, Daniel Domscheit-Berg,
former member and spokesman of WikiLeaks has
irrevocably deleted the only copy of documents available
regarding Bank of America (over 5 gigabytes), the
entire US no fly list and 20 neo-nazi groups. The news
appeared on the Spiegel Online, a german magazine.

According to WikiLeaks, the man had tried to extort
money from the organization and for this reason was
suspended in August 2010.

Source: Armando Romeo,
www.elearnsecurity.com

BOTNETS ON THE HUNT
Imperva’s latest monthly trend report shows a massive
growth in Google Hacking. Botnets are now being used
to automate searches for vulnerable websites. These
botnets use specific search strings to isolate websites
with vulnerable code and the botnets can generate
more than 80,000 queries per day. This allows
attackers to draft a larger map of possible targets
and puts their information gathering on a whole new
level. Due to the distributed nature of the botnets, it is
extremely difficult for search engine providers to block
these searches as each is generated from a different
IP address.

Imperva’s Application and Defense Center followed
a specific botnet and tracked its searches over a
period of time. The botnet was discovered to conduct
very wide searches for vulnerable websites and
distribute the results over the botnet. The attackers

then modified the botnet to launch crafted scripts
against the web sites allowing them to infect victims,
compromise data or farm sensitive information on a
massive scale.

Source: Armando Romeo,
www.elearnsecurity.com

LATEST NEWS FROM THE WAR TO SPAM
TRENCHES
There have been many surges in spam as it hit a two
year high in the past couple weeks. Researchers at
M86 Security have tracked the spam and suggested
it is attackers seeking to rebuilt their botnet armies.
The main botnet at work is the Cutwail botnet which
accounted for 13% of all spam at the beginning of their
monitoring period and ending accounting for 24%.

Over two years ago, the Rustock botnet was taken
down and spam fell to 72.9% of total internet traffic.
Through botnet takedowns and arrests, spam traffic
dropped over the next two years. Recent surges
suggest that attackers are preparing to fight back and
rebuild their armies for malicious uses.

Most of the spam delivers the malware via attachments
to the email. The attachments claim to be a note or in
voice within a ZIP file but also contain additional fake
antivirus programs and spyware.

Source: Armando Romeo,
www.elearnsecurity.com

SECURE OPEN WIRELESS BY IBM
IBM is pushing for a new secure open wireless method.
This new method can protect all network users from
sniffing, sidejacking and man-in-the-middle attacks.
It behaves much like HTTPS and uses certificates to
insure the integrity and confidentiality of the data. The
certificate is tied to the SSID of the network and verifies
the user is connected to a trusted wireless access
point.

The client doesn’t need any authentication or
certificate prior to connecting; the process simply
verifies the SSID of the network and then creates an
encrypted session between the client and access point.
The network provider only has to purchase a digital
certificate and incorporate a RADIUS server such as
Free RADIUS. Cross of IBM states Once people learn
that they can create a secure open wireless network,
I think that it’s going to become an expectation. When
users go to connect to a wireless network, they’re going
to want that wireless network to be secure.

Source: Armando Romeo,
www.elearnsecurity.com

09/2011 10

STORIES The Bug Story

www.hakin9.org/en 11

They are spreading so fast that sometimes it’s
very hard for us to confront them. These bugs
are causing security flaws to our gardens and, for

sure, to the whole Internet.
Companies with big names and government agencies

are being hacked because of different security bugs that
exist in one of their systems. Also, if you follow any news
groups such as Bugtraq, or Full Disclosure, you will be
shocked with the amount of bugs that are reported on
a daily basis. Bugs are everywhere, there is literarily no
corner in our garden without some of them. While some
of them walk like a tortoise and can be crushed by our
hands easily, some move so fast that it really makes
you lose your brains trying to catch or confront them.

Throughout the history, our Internet gardens suffered
lots of problems because of bugs. I still remember a
couple of worms and viruses that did huge damage such
as Melissa back in 1999, the ILOVEYOU email in 2000,
Nimda in 2001, Slammer in 2003, and I don’t think the
world will forget Confiker 2008 for sure! These are the
most vicious worms and viruses that have attacked our
gardens because of a bug in our applications, systems,
or even protocols.

Are They From Outer Space?
Looking back at the attacks we mentioned, we will
realise that they were not from outer space. We don’t
need to believe in flying sorcerers because they simply
were not from Mars, Jupiter, or some other hidden

planet in the galaxy! They all came from the same place
HUMAN. Yes, that’s the truth about them, and believe
it or not, it’s us who make these bugs, and we are the
ones paying their bills! The human mistakes can be
classified into two categories:
Development: Requirements, Specifications, Analysis,
Features, Design, Programming, Testing, etc.
Execution or Operation: Software Installation, Software
Configuration, Software Usage, etc.

Imagine a public service that requires authentication
and has a hardcoded username and password, or with
no password at all? When I say a public service I talk
about a bench in a public garden that can be used by
anybody. That’s an example of a bug in the development
of that service. Imagine an ftp server configured to allow
anonymous logins, which even allows anonymous
uploads of files. That’s an example of an executional
or operational bug. Both types of bugs are alive due to
mistakes made by us, the humans, not the Terminators!

Once Upon A Time, There Was A Bug Called...
Confiker is really an interesting Bug Story to tell, not
only because of its impact and its infection spread, but
because it gives us some good clues and ideas how
human programming mistakes lead to this worm crawling
in our gardens. Plus, there is another interesting thing in
Confiker that I will leave to be discussed at the end of
story (maybe you will be already asleep and won’t know
anything about its ending!).

The Bug Story

Despite the fact that our Networks gardens are full of beautiful/gorgeous
things, at same time they’re full of bugs. The problem is that the Internet
serves as connection between these gardens, which makes it easy for
bugs to travel from one garden to another. A bug may be found in my
neighbours’ garden across the street, but in a matter of time, I will be
seeing it creeping in my garden too.

What you will learn…
• Quick history of the most vicious bugs in software till today,
• Why software Bugs exist today,
• Quick analysis of a bug,
• How to avoid computer bugs

What you should know…
• Basic computer software installation or implementation,
• Acronyms such as CIFS, NetBIOS, DCE, RPC, NDR format, Stack.

09/2011 10

STORIES The Bug Story

www.hakin9.org/en 11

cure for them. These bugs are found because of humans,
and humans will in one way or another make a mistake.
But to develop a secure code and reduce the amount of
bugs in it, I think the medical pprescription below will help:

• Choose a programming language that will assist
you, not make your life harder. That’s why I
basically like python over any other programming
language.

• Reducing the functionality to the minimum required
is a very important point to keep in mind. The more
functionality you provide, the more doors you open
for a bug. And this is basically what Michel Angelo
defined as a perfect back in the days when he had
a stone and removed everything not required, and
after he was done it was a sculpture!

• Make your software specifications clear enough for
implementation. The resulting implementation can
only be as good as the specification.

• Never hardcode usernames and passwords
specially for a service that will be accessed through
the network.

• Always read the software’s configuration manual
before installing it. Lots of bugs were found and
exploited because of a wrong software configuration.

• Finally, never rely on your antivirus status.

Summary
Bugs in our gardens will always be a problem, because
of our human mistakes. You must be convinced that
there is no system or application that is 100% bug
free, and that you have to really do good testing before
releasing your software. So unfortunately we will
continue to see attacks and infections because of these
bugs. This leads us to the conclusion that the most
secure code is code which never gets written.

Once upon a time, there was this feature called
NetPathCompare, which is a DCE RPC call that can be run
over the CIFS protocol for the Windows Operating System’s
NetBIOS. CIFS is used in different network sharing (files,
printers, serial ports, etc.) plus, it can be used to execute
commands remotely! To use this feature and run a command
via this DCE RPC, the arguments have to be encoded
in NDR format. NetPathCompare allows a client to compare
two paths, some serialization/marshalling thing. All that is
needed is to log into the server and call the API to compare
the two paths and the server will return the results if the path
matches. Nice feature, right? Just can’t imagine why people
would want to use it! Now, to compare the paths, the server
would use NetPathCanonicalize to get rid of ../../ things.
NetPathCanonicalize is exported by the server too, so clients
can even have their paths canonicalized by a server. It turned
out that NetPathCanonicalize has a bug if you specify a path
which gets over / like foo/bar/../../../ you write over the
stack! And this bug is what is known as MS08-067, with the
name conficker.

A Story With No End!
So for conficker, you had everything. Sloppy specifications,
sloppy implementation, a feature which was not really used
or tested, and this is why this bug is still a problem after 3
years. Sorry, what did you say? You’re saying that this bug
story is not over? Sorry, no happy ending? Unfortunately
no! There is still around 6 million nodes infected (you
can always check the Confiker Working Group and their
statistics for Infection Tracking, check the On the ‘Net
section for the URL). Wow. Even though Microsoft has
released patches to solve this bug, the problem against
these patching solution relies that conficker disables
automatic patching, manual patching and antivirus
scanners too. Not just that, confiker is a worm that has
evolved many times. That’s why researchers gave it
names: Confiker A, Confiker B, Confiker C, Confiker
D, and Confiker E. This bug is using different advance
infection techniques which make eradicating it very hard
and complicated. No, this time a big WOOOW!

I’d Love To Have One Running In My Backyard.
How?
If you want to check out this whole bug you can install
the Dionaea Honeypot system implemented by Markus
Kotter. Markus implemented the CIFS NDR and the DCE
RPC to get Dionaea capture this bug (worm). So Dionaea
comes out of the box, capable of capturing confiker. All you
need to do is wait for a hit on your Dionaea honeypot. I will
dedicate an article in the future on installation and usage of
the Dionaea honeypot, so just keep tuned with Hakin9.

Any Electronic Pif Paf To Use?
Unfortunetaly there is no pif paf for these bugs. Yes, I know
they live in our gardens, but as I told you, there is no 100%

On the ‘Net
• Symantec Top Computer Viruses and Worms in Internet

History,
• Dionaea Honeypot System by Markus Koetter,
• Con�ker Infection Tracking,
• Know Your Enemy: Containing Con�cker To Tame A Malware,
• An Analysis of Con�cker’s Logic and Rendezvous Points.

ALI HADI
The author has been working as a network security officer for
different large companies for more than �ve years. His day-
to-day activity is related to �rewall auditing, IDS/IPS, and
policy enforcement. He holds a Ph.D. degree and MS.c. degree
in Computer Information Systems (CIS), and a BS.c. degree in
Computer Science. Throughout his working career he managed to
gain a couple of well-known technical certi�cates such as: OSCP,
ECSA, CEH, CNI, CLP10, CLA10, CLDA, IBM Certi�ed Specialist –
System Administration, Novell Linux Specialist, and RHCE.

http://abcnews.go.com/Technology/top-computer-viruses-worms-internet-history/story?id=8480794
http://abcnews.go.com/Technology/top-computer-viruses-worms-internet-history/story?id=8480794
http://dionaea.carnivore.it/
http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/InfectionTracking
http://www.honeynet.org/papers/conficker
http://mtc.sri.com/Conficker/

09/2011 12

BASICS Secure Coding: Hits and Misses

www.hakin9.org/en 13

The analysis will be made from a general
perspective, but providing concrete examples and
walkthroughs to clarify the concepts discussed.

The examples included in each point will range from
academic (textbook cases) to real vulnerabilities found
while performing different source code audits.

Following is a list of the topics the article will cover:

• Basic principles of secure programming (including
real-life examples and references)
• Implement Security-In-Depth

• Fail in safe mode
• Follow the less-privilege principle
• Compartmentalize
• Promote privacy

• Basic failures in secure programming
• Buffer Overflows (the basics, as this topic was

already covered by Hakin9)
• Cross Site Scripting (includes a real-life

walkthrough)
• SQL injections (includes a real-life walk-

through)

Secure Coding
Hits and Misses
This article will expose the basics of most of the common software
vulnerabilities, and explore the best programming practices to avoid their
occurrence.

What you will learn…
• best practices that architects and developers should be aware

of in order to develop applications with a proper sense of
security

• think of the security analysis in terms of the actors involved, to
enhance and better adapt different attack vectors

• the common roots of many security issues

What you should know…
• a general knowledge in application design and development
• basics on web based languages (Javascript) and protocols

(HTTP), and SQL essentials.

Figure 1. An application running dissected in terms of the components involved

�����
������ �������

������
�����

�������������

���� ������ �������

����������������

�����������
������� �����������

����������������

�����������������

����

��������

09/2011 12

BASICS Secure Coding: Hits and Misses

www.hakin9.org/en 13

fault it was. Thinking in those terms, it makes sense
to design applications considering potential incidents
sourced elsewhere.

In this article we will analyze the security in terms of
the actors described above, discussing the risks each of
them is subject to and how failures in the defence of a
given component may affect the others, while discussing
how these risks can be mitigated from the code itself.
This approach will result into merging security principles
that are usually treated independently when discussed
in textbooks.

Implement Security In Depth
The basic idea is that, if a security barrier fails in
stopping an attack, the next layer should be able to do
it. Imagine that a user enters a value into a textbox, then
clicks on a button and the value is appended to a HTML
select containing more values that, later, will be stored
in a database.

The textbox should validate the data entered when
the onBlur() event occurs. The button onClick() event
will append the data to the select list. At that point you
should implement code for controlling the data that,
allegedly, was verified before. This redundant protection
is what we meant by security in depth.

Fail In Safe Mode
Any system beyond a given level of complexity should
be expected to fail. And, when error conditions occur
and they are not controlled, information could get
damaged, altered or leaked – stack traces, directory
and file names disclosures, or opened references to
resources – depending on the exception’s nature.
For example, if a routine needs to gain administrative
privileges to execute a function, here is a good sample
on how not to code it: see Listing 1.

As can be seen, the unreliableCode() function could
throw an exception and the isAdmin flag would remain
true despite the user not being a real Administrator. A

Basic Principles Of Secure Programming
Application security is a complex world. Every single
link in the chain – the code, the application environment,
the communication channel, the user environment and
the user itself – poses risks that developers should be
aware of while, by the contrary, reality shows that most
of these security concepts are ignored.

It is a common mistake to leave the security analysis
for auditors. Not only is it inefficient – sometimes it
is necessary to rewrite entire blocks of code due to
security issues – but also ineffective – auditors might
miss bugs in their analysis, especially when there is
plenty.

And contrary to popular belief, it is not necessary to
be a hacker to write secure code. You just need to be
aware of the threats that you can find in the wild, and
develop applications with that broader sense of security
in mind.

We will make our analysis in terms of the different
actors involved and their interaction. For example, a
web-based banking application involves several different
actors: the code itself, the framework executing the
code, the underlying operating system of the webserver
holding all of it, the Internet, the operating system of the
client computer, the web browser application, and the
user itself – and that is just for a start.

Every component involved can be attacked, and
result in a user account being compromised. And
despite developers only having control over the code
they write – and they should not clean other peoples’
mess – the problem goes beyond responsibility or
scope: if a customer of Bank of America lost his money,
he will probably put their money somewhere else and
encourage others to do the same, no matter whose

Figure 2. A page with HTML controls implementing security in
depth

Listing 1. An insecure privilege elevation

isAdmin = true;

…

try {

 unreliableCode();

 isAdmin = isUserInRole("Administrator");

}

catch (Exception ex) {

 log.write(ex.toString());

}

09/2011 14

BASICS Secure Coding: Hits and Misses

www.hakin9.org/en 15

more proper way to code it would be as follows: see
Listing 2.

The code below ensures the isAdmin flag is set true
when strictly necessary, and will have the corresponding
value otherwise.

You must have these potential failures in mind when
writing your code, and include routines for leaving the
system in the safest state possible. Pay attention to
error handlers as you do your code, and step your
debugger through it several times ensuring that you hit
every error handler. Also, make sure your test suites
force your functions to fail, exercising every line of
code. And, if detailed error messages are required for
debugging purposes, ensure they are disabled in the
production environment.

Follow The Least Privilege Principle
It is all about allowing what is needed whenit is
needed, and nothing more. If an object only needs
read permissions, do not grant write access to it. If a
certain task requires h igh privileges to be executed,
remove these privileges after the task is complete.
This advice can be extended to any component in the
system, experience shows that it is usually ignored
by both administrators and developers at many
levels: it is quite common to find file upload servlets
allowed to read and write all over the file system that
do not check if the file name passed contains path
traversals.

Always define the security context required for
your code, and grant access only to the resources
it needs to work. If any part of the code requires
higher privileges than usual, consider factoring that
code out and running just that code with the higher
privileges. For example, when a function requires
higher privileges than the rest of the functions on
the same application page – usually implemented
as impersonation of different operating system users

– the best approach is to split the code into separate
assemblies and run only the privileged code inside
that privileged security context. And if any of these
assemblies works with files or other resources, close
their references as soon as possible because they
could leak from this security context to the other.
This will involve interprocess communication such as
COM or Microsoft .NET remoting, and you will need to
design the interface to that code to keep round-trips to
a minimum, but that is a small price to pay for keeping
your assets safe.

Compartmentalize
It refers to allowing access to a given element only to
people that needs to access it, and nobody else. The
Unix file DAC model is a good example on how not
to compartmentalize, as it lacks key features required
in modern and collaborative systems, where it is not
enough allowing just a set of permissions to the owner,
the group the owner belongs to, and the rest of the
world. Something more versatile, more granular, is
needed when working with complex business rules and
permissions.

The Brewer and Nash model (also known as the
Chinese Wall model) is a robust security model used for
both privacy and integrity for data. It defines subjects
as any entity accessing (by the means of read or write
rules) protected objects that can be in the following
hierarchy: object, dataset (DS), and conflict of interest
(COI) classes.

A given user can access an object O as long as he has
never accessed an object O’ such that:

• COI(O) = COI(O’)

• DS(O) ? DS(O’)

A subject associated with a given user may read the
object O only if the user may read it, and may write the
same object only if:

Listing 2. A secure way for implementing the same privilege
elevation

isAdmin = false;

…

try {

 isAdmin = true;

 unreliableCode();

 isAdmin = isUserInRole("Administrator");

}

catch (Exception ex) {

 isAdmin = isUserInRole("Administrator");

 log.write(ex.toString());

}

Figure 3. The Brewer and Nash model

���������������

�������
���

���������������

�����

�������
���

����

����

09/2011 14

BASICS Secure Coding: Hits and Misses

www.hakin9.org/en 15

a set of rights is established. When this user changes
job functions, some rights should be deleted, some
maintained, and some added.

RBAC addresses this problem by changing the
underlying subject-object model. A role is a job
function or title – a set of actions and responsibilities
associated with a particular activity – Now, instead of
an access control policy being a relation on subjects,
objects, and rights, a policy is a relation on roles,
objects, and rights; this is called right assignment.
Further, subjects are now assigned to roles; this is
called role assignment. Each subject may be assigned
many roles, and each role may be assigned many
subjects. Finally, roles are hierarchical. For example,
the role AB1 should have all the rights the role AB2
does, and more.

Roles can be compared to groups in Unix file system
DAC, with two major improvements. First, a group is a
set of users, whereas a role is a set of rights. Second, a
user is always a member of a group, whereas a subject
may activate or deactivate the rights associated with
any of the subject’s roles. This enables fine-grained
implementation of the principle of Least Privilege.
Subjects may login with most of their roles deactivated,
and activate a role only when the rights associated with
the role are necessary.

Nearly all real-world systems (including most operating
systems and database systems) implement some form
of RBAC. Either discretionary or mandatory policies can
be built using RBAC as the underlying model.

• The subject may read O
• The subject has never read an object O’ such that

DS(O) ? DS(O’)(1)

The first two conditions guarantee that a single user
never breaches the wall by reading information from
two different datasets within the same COI. The third
condition guarantees that two or more users never
cooperatively breach the wall by performing a series of
read and write operations. Suppose that a subject S1
has previously read from DS1, and S2 has previously
read from DS2. Consider the following sequence of
operations:

• S1 reads information from an object in DS1
• S1 writes that information to an object O” in a DS

from a different COI
• S2 reads that information from the same object

At the end of this sequence, S2 would have read
information pertaining to both DS1 and DS2, which
would violate the policies since both DS are in the
same COI. But, according to the rules(1), the write
operation is blocked: once a subject reads two objects
from different DS, that subject may never write any
object. So for read and write access, a user must
create distinct subjects for each DS. For read-only
access, a user can create a single subject to read from
several COI.

Another approach is the Role Based Access Control
(RBAC) model, designed for scenarios with a high
number of subjects and objects where the number of
authorizations becomes extremely large and, if the user
population is dynamic, the number of grant and revoke
operations to be performed becomes very difficult to
handle.

In the real world, security policies are dynamic:
access rights need to change as the responsibilities of
users change. When a user is authorized for a system,

Figure 4. The RBAC model

����� ����� �����������

���������� �������

���

���

���

Listing 3. A sample HTTP response disclosing excessive
information in the Server header

% telnet 123.123.123.123 80

Trying 123.123.123.123...

Connected to 123.123.123.123.

Escape character is '^]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Mon, 30 Jun 2008 15:59:40 GMT

Server: Apache/2.2.3 (Debian) mod_python/3.2.10

Python/2.4.4

mod_perl/2.0.2 Perl/v5.8.8

Last-Modified: Mon, 07 Jan 2008 08:00:35 GMT

ETag: "445a5-26-41450ec0"

Accept-Ranges: bytes

Content-Length: 38

Connection: close

Content-Type: text/html; charset=UTF-8

09/2011 16

BASICS

Promote Privacy
The idea of encouraging privacy between users
and your application goes both ways. On one hand,
applications should not ask for sensitive information
about their users unless strictly necessary. Reasons
are quite obvious: the more of it you store, the more
attackers will be tempted to target you. And whenever
delicate data needs to be stored, it is recommended
to keep it in a separate computer and also to store it
ciphered.

On the other hand, applications should not
provide more information that necessary to their
users. While not a solution, the concept of security
through obscurity at least might help. A simple HTTP
connection to a server could be quite revealing: see
Listing 3.

Considering that plenty of vulnerabilities become
public every day, along with the techniques to exploit
them, you should keep in mind that nobody – but
occasional attackers – needs to know that you are using
Apache 2.2.3 in your Debian server, running Python
2.2.4 and Perl 5.8.8.

Basic Failures In Secure Programming
In the application security field, there is a golden rule
that supersedes every other: the world outside your
code should be treated as hostile and bent upon your
destruction. From there, it is possible to analyze it
from two different standpoints: vulnerability-based and
language-based security best practices.

Here we will take the first approach, which I consider
more appropriate – as this is extendable to any other
programming language with the same characteristics
– and then season these vulnerability descriptions
by adding specific examples from the real world – for
obvious reasons, real company names will not be
disclosed.

While not comprehensive (it would take books to
cover all of the well-known security threats) this article

will discuss some of the most common security issues
found in the wild, as long as the workarounds to mitigate
them.

Buffer Overflows
This magazine has invested lots of pages into
explaining buffer overflows. However, an article in
secure coding would be incomplete without covering
this type of attacks. Just to be fair, we will make a quick
review.

Buffer overflows have been the main software
security issue for decades, as it becomes easy to
make these type of mistakes with programming
languages that do not have implicit protections
against them. The basic idea goes as follows: in your
routine, you allocate memory for different purposes,
and then write data in there without checking if the
memory allocated is big enough. If it is not, the
payload passed will overwrite other information, such
as the return address for the function. Then, different
things can happen: programs may act strange, keep
running, or crash.

If the execution flow can be controlled you can also
include arbitrary code chunks in that oversized payload,
overwrite the return address so it points within that code
chunk, and voila! You have an exploit.

There are two major types of buffer overflows: stack-
based and heap-based overflows. Exploitation of
the second type is technically more complicated, as
you need to know which variables are critical, find a
memory block that – if properly altered – changes those
variables, and even so those changes will probably
crash the application. Nevertheless, in some scenarios
– like the heap spraying technique so famous nowadays
– successful exploitation can be achieved with a higher
success rate.

The first line of defence is to validate every single
data used as input, allowing nothing but the length and
type of data needed, and considering potential ways of

Figure 5. A function causing a stack over�ow before & after it occurs

���������������� �������������
�������������������������

���������������

��������������������

�������������������������

�������������
������������������������

�����������
�
�������������������������
����������

�������������������������������
��������������������������

����������������������������
�
����������������������������
�
��������������������
�������������������������

������

���������������

��������������������

�������������������������

������

��������������������

�������������������������

������

����������

http://buguroo.com/

09/2011 18

BASICS

Cross-Site Scripting
Introduced as a result of not having adopted encoding
practices at the time of displaying data retrieved from
insecure data containers – user-supplied, XML files,
and etcetera – the risk associated with cross-site
scripting (XSS) vulnerabilities varies according to how
realistic it is for an attacker to gain control of the data
being used in output.

There are two types of XSS: persistent and non-
persistent: exploitation of the persistent type involves
a two-step process, where the first step requires the
attacker to store a malicious payload in the application’s
database and the second consist of having the victim
access a page that displays the malicious payload un-
encoded. The non-persistent version involves a single-
step process where all the attacker has to do is to lure
the victim into accessing a specially crafted URL.

subverting the intended behavior of the function. Just
on top of that, there are certain functions for string
handling – the biggest source of buffer overflows – that
should be avoided (see Table 1). And beyond the code
itself, there are many other resources: non-executable
stack, boundary checks at compiler level, StackGuard,
ASLR, and etcetera.

The chances for a buffer overflow to occur are strongly
bound to the programming language. For example, if
you are using Java, you can stop worrying about this
(and start worrying about other things). But if you are
using as C++, there are many things that you should
have in mind.

Table 1: C++ functions considered insecure

String functions strcpy()

strcat()

sprintf()

vsprintf()

gets()

Scanning functions scanf()

sscanf()

fscanf()

vfscanf()

vscanf()

vsscanf()

MS functions wcscpy()

_ tcscpy()

_ mbscpy()

wcscat()

_ tcscat()

_ mbscat()

CopyMemory()

Other functions realpath()

getopt()

getpass()

streadd()

strecpy()

strtrns()

Figure 6. A real web-based chat application

Listing 4. Code snippet from the affected .jsp �le

public void messageReceived(String msg) {

 String s = " "

 + friendUser.getUsername() + ":" +

 msg + "
";

 out.setHTML(out.getHTML() + scanSmile(s));

 scroller.scrollToBottom();

 //startBlink();

 sound.play();

 focus();

}

Figure 7. The same application rendering the HTML/Javascript
code in the messages received

Secure Coding: Hits and Misses

www.hakin9.org/en 19

To better explain the concept, we will analyze a
real-life example of a web-based chat application –
concealing the company identity – as can be seen in
the Figure 6.

The following code belongs to the .jsp page in the
URL, which handles the messages sent and received:
see Listing 4.

The function messageReceived() takes the messages
the msg variable, and then updates the HTML in the
conversation window with the contents of that variable
performing no sanitization at all. Thus, if any of the
participants includes HTML code, it will be appended to
the conversation and executed.

The idea behind most cross-site scripting attacks
is to insert scripting code, not just plain HTML tags
and therefore be able to execute JavaScript in the
security domain of the vulnerable webpage. One of
the advantages of belonging to the security domain of
the website is having access to the website cookies,
which would allow the attacker impersonating the
victim.

A Word On Fixing XSS Vulnerabilities
Encoding must be performed on every single piece
of the code that displays the content of a dynamic
variable whose contents were retrieved from an
insecure container (user-supplied data, database,
and etcetera). It will only change the internal

representation of the data so that it does not harm
the context where it is being used and they will also
let the data serve its original purpose at the time of
displaying the contents to the user. Even though it
may sound like a simple task, encoding has a catch.
It is not recommended to blindly use a generic
encoding method at the time of encoding variable
contents. The context where the data is used is
very important and given the fact that encoding will
change the data, if used incorrectly not only could it
open the door to other ways of exploiting the bug but
also break functionality.

We highly recommend not using any kind of generic
filter to prevent Cross-Site Scripting vulnerabilities. On
the one hand, filters are easier to implement as they
provide a generic way of treating multiple problems but
Cross-Site Scripting vulnerabilities can take place in
different contexts and therefore require different types
of measures. On the other hand, filters can easily be
bypassed unless strict filtering rules are imposed which,
in most cases, end up affecting the original intended
behavior of the application.

Cross-Site Scripting attacks have evolved in the past
few years and so have the techniques used to disguise
them. That is why creating a regular expression aimed
at preventing all possible disguised attacks will definitely
end up filtering non-malicious data and creating false-
positives.

SQL Injections
SQL injections occur whenever input is used in the
construction of a SQL query without being adequately
constrained or sanitized. The use of dynamic SQL (the
construction of SQL queries by string concatenation)
opens the door to these vulnerabilities. SQL injections
allow an attacker to access the database servers,
by allowing for the execution of SQL code under
the privileges of the user used to connect to the
database.

Figure 8. A SQL injection used to obtain the MS SQL version

Figure 9. A failed login attempt using wrong credentials Figure 10. A successful login abusing a SQL injection

09/2011 20

BASICS

Conclusion
Throughout this article we discussed a set of principles
for secure application design and development, defined
around the idea of thinking about the actors involved
– users, devices, other applications, and etcetera–
their roles and capabilities, and their interaction with
the application itself. Then we introduced different
vulnerabilities commonly found in real-life applications
that might end up affecting different components: the
server operating system in the case of buffer overflows,
the user browser for Cross-Site Scripting, and the
database in SQL injection attacks. While covering
all of the know vectors would take several books –
even this short analysis was based on many – it is a
clever approach to analyze security in terms of which
component is affected and who or what is affecting it.
The knowledge of security threats can help preventing
those specific threats from occur, whereas this way of
thinking will lead architects and developers to be more
cautious when building applications, and prevent most
of the potential issues beforehand.

There are two types of SQL injection vulnerabilities:
error-based and blind. In error-based SQL injections
the error message reported by the database – under an
invalid query – is displayed to the user, allowing him to
leverage information based on this output.

In the case of blind SQL injections no error information
is returned to the user, increasing the difficulty of detection
– and exploitation – of the vulnerability. Instead, the
application response differs based on a SQL condition
provided by the user.

In both cases, the underlying cause is the same: the
application builds the query on the fly using parameters
provided by the user with little or no sanitization. Let us
take another example from real life to clarify the concept:
the login functionality implemented in view_account.cgi
takes two input parameters to authenticate users: a user
ID (num) and password. If these values do not match
any record in the database, the application will retrieve a
message indicating such condition.

Inspection of the code in view_account.cgi shows that
the SQL query authenticating the user goes as follows:
…

 cu = mysql.prepareStatement(„SELECT FROM users WHERE

 num=\’” + (String)request.getParameter(„num”) + „\’

 AND password LIKE \’” + (String)request.getParameter(„p

assword”) + „\’”);

…

As can be seen, the aforementioned variables –
provided by the user– are being used dynamically to
construct the SQL statement. Thus, a malicious user
could send a userID value such as ‘ OR ‘A’ LIKE ‘A
and a password like 123456. That query should match
every user having that password and authenticate the
first of them: see Figure 10.

A Word On Fixing SQL Injection
Vulnerabilities
Most SQL injection vulnerabilities can be easily fixed
by avoiding the use of dynamically constructed SQL
queries and using parameterized queries instead. If it
is not possible to use parameterized queries because
the string appended is not a data type (for example, the
name of the table in a CREATE SQL statement) it is still
possible to sanitize the string to ensure that it cannot be
used to trigger SQL injection vulnerabilities.

One option is to only allow alphanumeric characters.
There are other characters that can be allowed (such
as the underscore), but try to specifically avoid the
following characters: double quotes, single quotes,
semicolon, colon and dash. And remember that best
practice is always restricting the allowed characters
rather than filtering out specific bad ones – allow
alphanumeric characters and discard everything else,
rather than just filtering out single quotes.

JORGE LUIS ALVAREZ MEDINA
Is an experienced security consultant and researcher. He
works with leading �rms in the security industry such as
Buguroo, providing security services for several Fortune 500
companies. Some of his work as researcher was included in his
presentation at Black Hat DC 2010, and in different security
advisories for well-known applications.

References
Here is a list on some textbooks that will give the grounds for
this article

• Secure coding: principles & practices (Team LiB – O’Reilly)
• Writing Secure Code (Michael Howard – Microsoft Press)
• http://www.springerlink.com/content/80wrewj7j1a716wb/
• The .NET developers guide to Windows security
• The Databases hackers’ handbook
• http://www.databasesecurity.com/oracle/twp_security_db_

vpd_10gr2.pdf

http://www.springerlink.com/content/80wrewj7j1a716wb/
http://www.databasesecurity.com/oracle/twp_security_db_vpd_10gr2.pdf
http://www.databasesecurity.com/oracle/twp_security_db_vpd_10gr2.pdf

� � � � � � � � � � � � � � � � ���������
����������������������

���������������������� �����������������������

������������������������

http://www.crcpress.com/

09/2011 22

DEFENCE For My Eyes Only

www.hakin9.org/en 23

Data is a marvelous thing; so easy to create but
so difficult to keep track of and maintain. This
marvelous thing is the very thing that can take

companies down to their knees. All without anyone
knowing until it is too late... A silent killer.

File shares are rampant with data, obsoleted,
stagnated, and then... then sometimes useful. Most
file shares be it on a filer, netapp or just a plain old
windows xp admin share (c$) over time accumulates
access creep and where folks no longer maintain their
data in a sane fashion; but more so just dump it there
without regard for who has access to it or happens
to come across it. Some folks even drag their entire
My Documents folder directly into a public file share

without thinking about the nasty consequences to
follow.

IT administrators (the so-called professionals) are
often the worst of the bunch (ala do as I say not as I do).
Usually overworked staff kept so busy they have no time
to reflect, maintain or perform due attrition on lingering
permissions and data those permissions allow. The
best pieces of data are the ones they decided at one
point or in another to store passwords to key systems
in plaintext (ala Notepad/Word/Excel). Who has the time to

For My Eyes Only
Data at rest and company drive shares spell disaster. Learn how to
protect yourself against your data be it your programs, scripts and
allow automation to occur non-interactively without you having to
type your password in because you don’t want to save them within
the execution file. This demonstration focuses on the Apple Mac
platform but can be easily geared otherwise.

What you will learn…
• You will learn to securely store your passwords at rest because

they are uniquely bound to your machine.

What you should know…
• You should know basic programming approaches for bash

scripting.

Figure 1. Apple Hardware UUID Figure 2. UUIDgenkey main

09/2011 22

DEFENCE For My Eyes Only

www.hakin9.org/en 23

your will until they are ready for the real UUID. It is
certainly recommended not to use the DEMO UUID
unless you specifically are testing something. Below
we’ll be testing the DEMO UUID against the real UUID
to display what occurs when a password encrypted
with a different UUID is encountered. This would be
the case where someone found your UUID enabled
script and tried to run it as-is.

UUIDgenkey.sh is a bash script created and tested
on Mac OS X 10.7 Lion, however it works in other
variations as well. The first function in the script
checks to make sure the system is using Mac OS X
as not to come up with platform compatibility issues
without being tested first on an alternate platform. This
function gets invoked as part of the validation process
to proceed into the conditional workflow of the main
script itself (Figure 2).

There are a total of five parameters it is built to
recognize (Figure 3). 4 operational parameters and
one string variable. Generally it could have used
two operational parameters (encrypt,decrypt) but
two more were added for the DEMO mode. They (-r
& -f) are the same respectively (-e & -d) for the one
exception that -r and -f are encrypting and decrypting
against the DEMO UUID: 01234567-ABCD-0123-ABCD-

0123456789AB. The real UUID is captured via the
getUniqueID function where it makes a call to system_
profiler and carves out the result into the variable
$myUUID (Figure 4).

Below is how UUIDgenkey can be used in terminal or
from another script:

./UUIDkey -e ‘string’ # use UUID to encrypt password

./UUIDkey -d ‘string’ # use UUID to decrypt password

./UUIDkey -r ‘string’ # use DEMO UUID to encrypt password

./UUIDkey -f ‘string’ # use DEMO UUID to decrypt password

incorporate a password mechanism to maintain when
it is far easier to copy and paste in a moment’s notice?
Even better are the scheduled maintenance scripts
that are set to do things like reboot key systems when
tolerances have been met... set in the fashion that
within the script the passwords are plain as day – ripe
for the picking.

This article will demonstrate how to simply and
securely store your scripts so only you (the operator)
can use them from your system no matter where you
store the files. So even if someone finds your dirty
laundry sheets swaying in the open wind, there is really
nothing that can be done with them in a timely or useful
manner (challenge accepted).

Apple machines such as a Macbook Air all have
something called a Hardware UUID. UUID is short for
Universally Unique IDentifier. In theory it is accepted
that no two machines will have the same UUID or be in
a situation where they will be confused with one another
(even across the vast reaches of the Internet).

Using the System Information App you get defaulted
to immediately see the Hardware UUID on the lower
right pane (Figure 1). Although pixelated in the figure
a representation of this appears underneath in red. It
is 36 characters in length and contains alphanumerics
separated by dashes.

The Hardware UUID is also accessible using the
system_profiler CLI tool (man system_profier). The
specific command to view what you see in System
Information is :

system_profiler SPHardwareDataType

For demonstrative purposes we’ll be using a static
DEMO UUID and storing in the variable labeled aptly
$myUUID. This is done for two reasons; not to expose
the true UUID of the test machine in question; but also
to allow you to play with the scripts and bend them to

Figure 3. UUIDgenkey usage and examples Figure 4. UUIDgenkey functions

09/2011 24

DEFENCE

www.hakin9.org/en

For the actual encryption/decryption functions we
are using openssl’s version of a salted AES-256
result using the UUID as the password which is then
converted to a hexadecimal string for portability.

UUIDgenkey.sh is then used to both encrypt and
decrypt the generated string. If the UUID is not the
same as expected there will be a returned error of
a bad decryption (Figure 5); and the action will not
succeed (as it would have on a system that just had
the password in the clear). The return data can also be
further modified not to display this but still understand
the failure.

UUIDgenkey.sh is written to be used both standalone
as well as from other scripts. See the example script
labeled example_shutdown.sh (Figure 6) which is written
to use the credentials stored and calls UUIDgenkey to
decrypt the password temporarily to execute a call. All
from the operators system transparently.

example_shutdown.sh stores the UUID bound password
53616C7465645F5FF464E08BDACB80D3BD313863EF569ED588

9A6B681808C52B98C521B28564099BB59FCFBE8D589B5DC30F62EF0A

EEB45ABB388FD2FEB0D756 in a variable labeled $SECRETBIND
and at rest has no real issue of being found as
discovery. Only when using the UUID (DEMO in this
case) can we expose the variable called to store
the decrypted value My voice is my passport. Verify

Me. labeled $ACCTPASS. After executing the net rpc
shutdown command using the decrypted authorized
credentials we then again quickly modify $ACCTPASS (for
the paranoid folks out there) using a large buffer from
a chain of $RANDOM values.

As demonstrated the script example_shutdown.sh
executes transparently on your specific system; but
does not execute correctly on a different system. The
only real burden is to use UUIDgenkey to generate
different UUID keys for each of your machines if you
need to run the script from all machines. This is simply
done with a script if you have all the UUIDs saved in a
text file and just loop UUIDgenkey through. Naturally
keeping a list of UUIDs isn’t recommended with this
approach as an attacker may be able to put together
what is happening and recreate and come to learn the
decrypted passphrase from the UUID.

Note
Both source files UUIDgenkey.sh and example_
shutdown.sh have been made available for you to
download and modify. If you cannot locate them please
do not hesitate to contact me for a download link
(information below).

From what you’ve learned you can now create
various bash files/AppleScripts that perhaps you
would have hesitated in adding password information.
(FTP scripts, curl scripts) Again, I stress that only do
so if you feel it is adequate and valid for the situation
at hand. Most importantly keep track and change
your authentication values on a regular basis and
synchronize accordingly. Scripts nowadays are so
versatile that it is a shame not to take advantage of
them especially when it involves having to interact with
a running script (before it times out) to run something
you could have alternatively used UUIDgenkey to
safely automate the process entirely.

Using alternative serialization may also make due
as long as you stay consistent and the data is readily
available without too much tweaking. For example you
can also incorporate your username with the UUID and
the password by concatenating your username to the
UUID prior to the encryption as long as you match it

upon the decryption (read
queried system variables
that are unique to your
machine in one way or
another – even checking
the serial number of a USB
key you just inserted).

The key points to
validate this type of system
is to make sure whichever
data you are using UUID,
Serial Number, Username, Figure 6. example_shutdown bash script

Figure 5. bad decrypt

09/2011 24

DEFENCE

www.hakin9.org/en

specialized token that you keep as many components
secret else fall victim to someone that takes this
information and recreates it to imminently gain the
reversed password you are trying to protect. This isn’t
the same as the concept of security through obscurity
as you are using hooked values (hard and soft tokens)
that naturally only you know/have and the attacker either
needs to make effort to know them (and spoof them) or
even more considerable effort to brute force them.

Conclusion
Data at rest is a most dangerous target because whilst
it is at rest it is vulnerable to being copied without
anyone the wiser. Further security would be to have
the hard disk (or SSD) set to be wholly encrypted. So,
even if the drive is pulled out temporarily without your
knowing, the attacker doesn’t have anything of value
(well unless they know what you know, and then well
you are doomed).

This is why it is so important to not put your data on
file shares. You don’t know who is watching them and if
they are even being maintained. When is the last time
you’ve had your document sharing system audited for
access creep and folder sprawl? If you don’t know who
does?

If you are going to put them on these open shares
you can sleep peacefully knowing that no matter where
they are they will only work on your system from your
system.

Web Links and References
• http://en.wikipedia.org/wiki/Universally_unique_identi�er
• http://developer.apple.com/library/mac/#documentation/

Darwin/Reference/Manpages/man3/uuid.3.html
• http://en.wikipedia.org/wiki/Encryption

Notes
All source code created and tested on:
Mac OS X 10.7.1 11B26
Intel Core 2 Duo 2.13 GHz 4 GB
Darwin Kernel Version 11.1.0
GNU bash, version 3.2.48(1)-release

Got More Time Than Money?
Try this month’s crypto challenge:
http://hakin9.israeltorres.org

ISRAEL TORRES
Israel Torres is a hacker at large with interests in
the hacking realm.
hakin9@israeltorres.org
http://twitter.com/israel_torres
https://plus.google.com/102921309581624765133/posts

http://en.wikipedia.org/wiki/Universally_unique_identifier
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man3/uuid.3.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/Manpages/man3/uuid.3.html
http://en.wikipedia.org/wiki/Encryption
http://hakin9.israeltorres.org
mailto:hakin9@israeltorres.org
http://twitter.com/israel_torres
http://www.uat.edu/

09/2011 26

DEFENCE Secure Coding PHP

www.hakin9.org/en 27

The recent cyber attacks on BART – the San
Francisco Bay Area’s rapid transit system – only
demonstrates the need for better and more

secure software especially when personal and private
information is at stake. As cyber attacks only seem to
be growing in number, we have to start to focus more
on secure coding as we try to walk the thinning line
that is security and usability. With this in mind, we will
discuss some of the techniques one can use to write
more secure PHP code including user input verification
and data encryption. And as we move through these
techniques, we will see that building a more robust and
secure web application will not only increase the user’s
confidence in their information staying secure, but it will
also avoid the software becoming the target of a cyber
attack.

Securing Web Forms And Checking User Data
Web forms are one of the primary ways in which we
interact with web based applications. As a result, we are
entrusting our personal data to the security put in place
by the web developer – if they even added anything in
the first place. For example, if we were to have a web
form through which users could add comments to a web
site or the like, this would be a prime opportunity for a
cross-site scripting vulnerability mainly because such
pages allow for the inclusion of HTML tags.

Looking at Listing 1B, we notice that there are no
controls in place to prevent the inclusion of HTML code

Secure
Coding PHP
It can be said that software is only as good as its code or as good as the
developer who wrote that code. Yet if we used this adage to compare
current web based software, we are in need of some major retrofits to the
software we entrust our personal data to.

What you will learn…
• How to write secure code in PHP
• How to validate user input
• Encryption techniques
• Other counter measures

What you should know…
• How to write code using PHP

Listing 1A. Commenting page – HTMLlang=python

<html>

 <head>

 <title>Comment Page</title>

 </head>

 <body>

 <form action="comment_action.php"

method="POST">

 <table borders="0">

 <tr>

 <td>Add a comment:<textarea

name="comment" cols="55"

rows="5"></textarea></td>

 </tr>

 <tr><td><input type="submit"

name="submitBtn" value="Post"

/></tr>

 <tr><td><input type="reset"

name="clearBtn" value="Clear"

/></tr>

 </table>

 </form>

 </body>

</html>

09/2011 26

DEFENCE Secure Coding PHP

www.hakin9.org/en 27

commands can’t be passed through and subsequently
executed using another function such as exec() or
system(), though they don’t prevent cross-site scripting.
The other two functions – htmlentities() and strip_tags()
ensure that HTML can’t be passed through a web form
unless acceptable tags are specified.

Because not many applications are executing
system level commands that often on the web,
we won’t delve into that detail,however, we will
offer an overview as to how the escapeshellarg()

and escapeshellcmd() functions work. As was just
mentioned, the exec() and system() functions would
allow an user user to execute system level commands
from a PHP application. If this is the case and there
is no security in place, the user could quite literally
erase all of the files within a directory for example.
While this is not really a hack, such functions such as
escapeshellarg() and escapeshellcmd() could create a a
potential problem within an.

Using the escapeshellarg() function in a web form,
it would essentially ensure that appending extra
arguments to the end of an expected command would
not be possible. Essentially the function creates a single
argument rather than allowing multiple arguments to
be passed through. The escapeshellcmd() is similar in
functionality to the escapeshellarg() command except
that it escapes the meta-characters that a shell might

through the web form – as it can be seen in Figure 1A.
Finally, looking at Figure 1B it’s quite obvious that our
HTML made it through and at this point we would know
that we could pass more malicious code through the
form.

Having seen how easy it is to create but also search for
a cross-site scripting vulnerability, there are a number of
methods to avoid such problems from even occurring.
Specifically within the PHP language, there are multiple
functions which can help us, these are:escapeshellarg(),
escapeshellcmd(), htmlentities(), and strip_tags(). As a
quick overview, the first two functions ensure that shell

Listing 1B. Commenting page – PHP

<?php

//Variable declarations

$commentPassthrough = "";

$commentHE = "";

$commentST = "";

//Get values from form

$commentPassthrough = $_POST["comment"];

$commentHE = htmlentities($_POST["comment"]);

$commentST = strip_tags($_POST["comment"]);

$commentAcceptedTags = strip_tags($_

POST["comment"],"<i></

i>
");

//Print to the screen

echo "---No security measures---
";

echo $commentPassthrough . "
";

echo "
";

echo "---htmlentities()---
";

echo $commentHE . "
";

echo "
";

echo "---strip_tags()---
";

echo $commentST . "
";

echo "---strip_tags() with acceptable tags---
";

echo $commentAcceptedTags . "
";

echo "
";

?>

Figure 1B. The results

Figure 1A. Passing HTML through form

09/2011 28

DEFENCE Secure Coding PHP

www.hakin9.org/en 29

be expecting. In this case, it essentially escapes
program names rather than erroneous arguments.

Let’s now have a closer look at the htmlentities()
and strip_tags() functions. Depending on what your
purpose is, you can either remove the meaning of
the HTML tags to the browser or you can eliminate
them from the user’s input completely. Looking to
Listing 1B once more, you will notice that we use
the htmlentities() and strip_tags() functions when we
are getting the form data using the POST method. As
such, the htmlentites() function is the one to use if you
want to remove the meaning of all HTML tags to the
browser. Doing so ensures that a cross-site scripting
vulnerability doesn’t exist within your web form and
also ensures that while an attacker can pass HTML
tags through a web form, the browser doesn’t interpret
what it sees as an HTML tag.

Similarly, the strip_tags() function offers up the
similar functionality in what it accepts form data and
instead of removing the meaning of the tags from the
attacker’s input it simply removes the tags. This way
if you happen to be storing input from the form in a
database, the tags won’t be present. Something to
keep in mind though is the fact that the strip_tags()
function allows you to specify acceptable tags to be
passed through the web form. For example if the user
wished to add his or her own HTML tags to the input
– usually in a blog entry or the like – they are able to
do so. Looking at Listing 1B you will notice that we
have another variable that allows us to pass accepted
HTML tags. In order to specify acceptable tags we list
each of the tags as the second argument to the strip_

Figure 2A. Entering an email address

Listing 2A. Email page – HTML

<html>

 <head>

 <title>Email Page</title>

 </head>

 <body>

 <form action="email_action.php"

method="POST">

 <table borders="0">

 <tr><td>Email: <input type="text"

name="email" size="35" /></td></

tr>

 <tr><td><input type="submit"

name="submitBtn" value="Post"

/></tr>

 <tr><td><input type="reset"

name="clearBtn" value="Clear"

/></tr>

 </table>

 </form>

 </body>

</html>

Listing 2B. Email page – PHP

<?php

//Variable declarations

$emailPassThrough = "";

$emailFiltered = "";

//Get values from form

$emailPassThrough = $_POST["email"];

$emailFiletered = strip_tags($_POST["email"]);

//Print to the screen

echo "---No security measures---
";

echo $emailPassThrough . "
";

echo "
";

echo "---email filter_var()---
";

{

 echo "Valid email.
";

 echo "
";

}

else

{

 echo "Invalid email.
";

 echo "
";

}

?>

Figure 2B. The results

09/2011 28

DEFENCE Secure Coding PHP

www.hakin9.org/en 29

Data Encryption:
Keeping Private Data Private
So far we have covered the process of validating and
sanitizing user input. Another technique for creating
secure code is data encryption. By using encryption, we
are able to ensure that even if an attacker were able to
access login data through a cross-site scripting attack,
they would end up with an encrypted hash value rather
than the actual password. Specifically, within PHP, there
are a couple of options available to us. The first is to
use hashing algorithms such as md5() and sha1() and the
second is to use MCrypt.

What makes using hashing algorithms worthwhile,
such as the ones we just listed, is the fact that they are
considered one-time pads in that the algorithms can’t
be decrypted. This means that it will end up being a
little more difficult for an attacker to figure out what was
originally encrypted.

tags() function. In this case, we are accepting bold,
italics, and break – three of the more commonly used
tags.

We now move into a different type of validation where
we are checking the user’s input rather than escaping
or stripping it. As a simple example, we are validating
the user’s email address using the filter_var() function.
This function offers up a lot of validation options, all
using one function and different validation flags.

You will notice in Listing 2B that we are still using the
strip_tags() function because the user could still attempt
malicious actions with any of the form’s elements. But
once we have stripped away any potential HTML tags
from the input we then check that the email matches
a typical email address. As can be seen in Figure 2B,
when we aren’t validating the email address, the user
could enter pretty much anything they want but with the
filter_var() function we are able to ensure the email
address is valid.

Aside from simply validating user input, it’s also
possible to sanitize user input using the filter_var()
function’s sanitization flags. Doing so gives us the
ability to sanitize things such as integer values, floating
point values, and strings amongst others.

Listing 3A. Login page – HTML

<html>

 <head>

 <title>Login Page</title>

 </head>

 <body>

 <form action="login_action.php"

method="POST">

 <table borders="0">

 <tr><td>Username: <input type="text"

name="username" size="35" /></

td></tr>

 <tr><td>Password: <input

type="password" name="password"

size="35" /></td></tr>

 <tr><td><input type="submit"

name="submitBtn" value="Login"

/></tr>

 <tr><td><input type="reset"

name="clearBtn" value="Clear"

/></tr>

 </table>

 </form>

 </body>

</html>

Listing 3B. Login page – PHP

<?php

//Variable declarations

$username = "";

$passwordPassThrough = "";

$passwordEncryptedMD5 = "";

$passwordEncryptedSHA1 = "";

//Get values from form

$passwordPassThrough = strip_tags($_

POST["password"]);

$passwordEncryptedMD5 = strip_tags(md5($_

POST["password"]));

$passwordEncryptedSHA1 = strip_tags(sha1($_

POST["password"]));

echo "---No Security Measures---
";

echo $passwordPassThrough . "
";

echo "
";

echo "---Encrypted using md5()---
";

echo $passwordEncryptedMD5 . "
";

echo "
";

echo "---Encrypted using sha1()---
";

echo $passwordEncryptedSHA1 . "
";

echo "
";

?>

09/2011 30

DEFENCE

Before we get into how to use these functions, it
should first be pointed out that using such algorithms
does you no good unless you are using a server that is
SSL capable. This is because the data we are sending
to the server is obviously clear text prior to it being
encrypted.

Looking at Listing 3B and Figure 3B, we have
implemented the md5() as well as the sha1() hashing
algorithms. You will also notice that once the password
is encrypted it ends up looking like a string of characters
and numbers – otherwise known as a hash value.

As was just clarified, the encryption algorithms we just
discussed don’t allow for the decryption of cipher text.
If you wish to secure your PHP scripts using encryption
but want the ability to decrypt encrypted data, the
MCrypt package (http://mcrypt.sourceforge.net)
is your best bet. Using this package, you are able
encrypt and decrypt using a multitude of encryption/
decryption ciphers – Blowfish, DES, and 3DES for
example. It should be noted though, that you can’t
use this package until it has been downloaded and
installed – obviously.

Other Options
Some of the less technical options we have to help
secure our code are to keep our technical details out of
view of a potential attacker. This means not displaying
information about the version of Apache or PHP you are
using. To do this for Apache, we use the ServerSignature
and ServerTokens configuration directives. Because so
much information is displayed including the version
number, server, and port number, the ServerSignature

should be turned off completely. In doing so the server’s
entire signature won’t be displayed, but if you must
display this information, the ServerTokens configuration
directive allows you to specify certain levels of display
all the way from the entire signature to simply Apache
Server. Other display options include Major, Minimal,
Minor, and OS.

When it comes to hiding PHP details, the expose_
php configuration directive allows you to determine
whether or not the version number is displayed in the
server signature. Something to keep in mind is that this
configuration directive works with the ServerSignature
and ServerTokens directives. For example, if the
ServerSignature directive is enabled and the expose_
php directive is enabled, PHP’s version number will
be displayed in the server signature. However, if the
expose_php directive is not enabled, PHP’s version
number will not be displayed in the server signature.
Another important detail to remove is any calls to the
phpinfo() function. Not allowing this function to be
called means that an armada of information will not
be available to a potential attacker – thus avoiding a
potential cyber attack or displaying any vulnerabilities
that might have been ascertained by the provided
information.

Conclusions
Secure coding in PHP can be likened to a tool in the
toolbox. This is one option in combating the problem
of cyber attacks and private data being accessed.
Similarly, ensuring users to change their passwords on
an annual basis as well as choosing strong passwords
from the get go also helps in minimizingthe risk to
sensitive systems and data. For the most part, secure
coding comes down to understanding your development
platformand the application you wish to create. Once
you have an idea of what needs to be created you
can then use secure coding principles as you write the
software’s code. Doing so will not only create a more
robust and secure web application, but will also keep
the attackers at bay.

Figure 3A. Login page – Passing input

Figure 3B. Login page – The results

RICH HOGGAN
Rich Hoggan is currently a third year Computer Science major
at the University of San Francisco and plans to specialize
in Cyber Security and Information Assurance. When not
writing he is involved in the electronic music scene and
creates photographic art using the Processing programming
language.

http://mcrypt.sourceforge.net

http://www.infosecurityworld.net/
http://www.infosecurityworld.net/SC-Data.php
http://www.infosecurityworld.net/SC-Cloud.php
http://www.infosecurityworld.net/SC-SoftDev.php
http://www.infosecurityworld.net/Conf-InfoSec.php

09/2011 32

DEFENCE Secure Coding in the Database

www.hakin9.org/en 33

Some systems are very tightly integrated:
a database transaction committed in one
system becomes available in another almost

immediately. Other systems are more loosely coupled
and synchronize data on a scheduled basis. Some
partners in the interchange do an outstanding job of
vetting their data and making sure that the data feeds

are clean. But what do you do when a data supplier
comes under attack, the data becomes vandalized, or
it is rendered unavailable? There are techniques to
secure data, to make sure it isn’t contaminated with
errors, and to land on your feet without resorting to
lengthy database recoveries even if corrupted data is
loaded.

Secure Coding
in the Database
Information systems are not islands. Either data is manually entered, or, as
is more commonly the case, interchanged with other systems.

What you will learn…
• Creating automatic audit trails for critical database tables
• Creating processes to guard against and recover from bad

data
• Building a lightweight process for rapid data recovery that

avoids using complex, time-consuming database backup
tools

What you should know…
• Basic understanding of creating tables in a database

Table 1. Column information on the staging table for employee data, including name, data type, null value behavior, and the column
sequence order

COLUMN_NAME DATA_TYPE NULL ALLOWED DATA DEFAULT COL_NO
DIVISION VARCHAR2(60 CHAR) Yes null 1

EMPLOYEENAME VARCHAR2(60 CHAR) Yes null 2

DISPLAYNAME VARCHAR2(150 CHAR) Yes null 3

TITLE VARCHAR2(60 CHAR) Yes null 4

DEPARTMENT VARCHAR2(60 CHAR) Yes null 5

PHYSICALADDRESS VARCHAR2(60 CHAR) Yes null 6

MAILINGADDRESS VARCHAR2(200 CHAR) Yes null 7

POSTALCODE VARCHAR2(60 CHAR) Yes null 8

EMPLOYEEID VARCHAR2(60 CHAR) Yes null 9

EMPLOYEENUMBER VARCHAR2(60 CHAR) Yes null 10

NICKNAME VARCHAR2(60 CHAR) Yes null 11

TELEPHONENUMBER VARCHAR2(60 CHAR) Yes null 12

ROOMNUMBER VARCHAR2(60 CHAR) Yes null 13

STATEPROVINCENAME VARCHAR2(60 CHAR) Yes null 14

MAIL VARCHAR2(150 CHAR) Yes null 15

FACSIMILETELEPHONENUMBER VARCHAR2(60 CHAR) Yes null 16

09/2011 32

DEFENCE Secure Coding in the Database

www.hakin9.org/en 33

A primary strategy, therefore, is to isolate incoming
data from the main data in the system until certain
validation requirements have been met. This strategy
works well with loosely coupled systems that
rendezvous on a daily basis.

When interacting with systems that provide a flat file
output, storing the file in a staging area prior to uploading
it into the database provides the opportunity to scan it
for defects. Any problems found in the incoming data
may provide sufficient cause to reject its submission
without affecting the database.

Sanitizing Data In Staging Tables
Similarly, staging tables in the database provide an
area to load data and perform additional data checks
that relate to business rules in the database. A staging
table is either identical to or a close match with the main

Many good software engineering techniques also
happen to ensure secure coding by anticipating events
that might never come to pass. In this article, techniques
for 1) dealing with data submission from untrusted
sources, 2) sanitizing data, 3) keeping an audit trail,
4) comprehending differences, and 5) programmatic
reversion of unwanted changes will help protect your
system from compromise.

Dealing With Data Submission From
Untrusted Sources
Given the internetworking of database systems and the
rise of computing power to quickly break authentication
systems, all data suppliers are subject to compromise.
They can suddenly turn from trusted to untrusted
sources. To regard all data sources as potentially
untrustworthy promotes the most secure approach.

Listing 1. Cursor code in Oracle PL/SQL

1. CURSOR changing_records_cur IS

2. SELECT MIN(tablename) as tablename, division, employeename, displayname, title,

3. department, physicaladdress, mailingaddress, postalcode,

4. employeeid, employeenumber, givenname, telephonenumber, roomnumber,

5. stateprovincename, mail, facsimiletelephonenumber

6. FROM

7. (/* DISTINCT operator eliminates any chance of duplicates in external table */

8. SELECT DISTINCT 'NEWROW' AS tablename, division, employeename, displayname,

10. department, physicaladdress, mailingaddress, postalcode,

11. employeeid, employeenumber, givenname, telephonenumber, roomnumber,

12. stateprovincename, mail, facsimiletelephonenumber

13. FROM shared.fda_maildir_ext

14. UNION ALL

15. SELECT 'OLDROW' AS tablename, division, employeename, displayname, title,

16. department, physicaladdress, mailingaddress, postalcode,

17. employeeid, employeenumber, givenname, telephonenumber, roomnumber,

18. stateprovincename, mail, facsimiletelephonenumber

19. FROM shared.fda_maildir

20.) tmp

21. GROUP BY

22. division, employeename, displayname, title,

23. department, physicaladdress, mailingaddress, postalcode,

24. employeeid, employeenumber, givenname, telephonenumber, roomnumber,

25. stateprovincename, mail, facsimiletelephonenumber

26. /* COUNT = 1 means record exists in either old or new tables-- but not both */

27. /* COUNT = 2 means record is found in both old and new tables */

28. HAVING COUNT(*) = 1

29. ORDER BY

30. division, employeename, displayname, title,

31. department, physicaladdress, mailingaddress, postalcode,

32. employeeid, employeenumber, givenname, telephonenumber, roomnumber,

33. stateprovincename, mail, facsimiletelephonenumber ;

09/2011 34

DEFENCE

Listing 2. Code fragment of procedure to update changes in the Employee_Main table

1. BEGIN

2. --

3. -- initialize counters

4. -- interrogate environment and set global variables in package

5. --

6. i:=0;

7. iold:=0;

8. inew:=0;

9. g_updating_user := SYS_CONTEXT ('USERENV', 'SESSION_USER');

10. g_updating_time := SYSDATE;

11. g_employee_state := 'UPDATING';

12.

13. dbms_output.enable(NULL);

14. FOR rec IN changing_records_cur LOOP

15.

16. CASE WHEN rec.tablename = 'OLDROW' THEN

17. DELETE FROM employee_main

18. WHERE

19. division = rec.division AND

20. employeename = rec.employeename AND

21. displayname = rec.displayname AND

23. department = rec.department AND

24. physicaladdress = rec.physicaladdress AND

25. mailingaddress= rec.mailingaddress AND

26. postalcode = rec.postalcode AND

27. employeeid = rec.employeeid AND

28. employeenumber = rec.employeenumber AND

29. givenname = rec.givenname AND

30. telephonenumber = rec.telephonenumber AND

31. roomnumber = rec.roomnumber AND

32. stateprovincename = rec.stateprovincename AND

33. mail = rec.mail AND

34. facsimiletelephonenumber = rec.facsimiletelephonenumber ;

35. /*

36. ** For each row deleted, a trigger creates a record in the history table.

37. ** See DEL_EMPLOYEE_MAIN_TRG for details.

38. */

39. iold :=iold +1;

40. ELSE -- case 'NEWROW'

41. INSERT INTO employee_main VALUES (

42. rec.division, rec.employeename, rec.displayname, rec.title, rec.department, rec.physicaladdress,

43. rec.mailingaddress, rec.postalcode, rec.employeeid, rec.employeenumber, rec.givenname, rec.telephonenumber,

44. rec.roomnumber, rec.stateprovincename, rec.mail, rec.facsimiletelephonenumber,

45. -- audit columns

46. g_updating_time, g_updating_user);

47. inew :=inew +1;

48. END CASE;

49. i:=i+1;

50. dbms_output.put_line(TO_CHAR(i)||':'||TRIM(rec.tablename)||':'||TRIM(rec.displayname)||':'|| rec.mailingaddress);

51. END LOOP;

For more details on participation, kindly contact: Ali Rana, Email: register@cyberdefencesummit.com | Tel: +971 4 367 1376

�������������������� ��������������

���������������� ���������������

��
���

��������������������������
��������������

��������������������������

�������������

http://www.cyberdefencesummit.com/EventContent/Home.aspx?id=147&new=1

09/2011 36

DEFENCE

A data supplier might have problems producing
an output file, particularly if there were an attack on
the data supplier’s operation center. For example, if
the data content had been compromised, or the ETL
process had failed (producing a zero byte file for
example), then the data center might experience a
denial of service until the last good state was retrieved
from a backup.

A denial of service situation can be corrected
by keeping a history of recently changed records,
whether by update, insert, or deletion of records, and
building tools to re-create the last known good state.
What’s simple and powerful about this approach is
that constructing a history table is easy. Adding fields
such as UPDATED_DATE or UPDATED_BY to the tables helps in
tracking the persistence and change of the information
in the system. Complacency and the lack of awareness
of good data vs. bad data and being unable to identify a
point in time when something goes wrong is the kind of
policy that a hacker could exploit. This kind of metadata
is important to data management even if the database
administrator is not examining computational forensics
post-attack.

Secure Versus Insecure Database Coding
In the following scenario, the business rule calls for
dropping all the rows in the main table and replacing it
with the data in the flat file.

table in the database that holds incoming data prior to
merging valid rows into the main table.

Consider the following staging table’s columns in
Table 1.

This data structure can accept almost any character
input. There’s no attempt to convert character input
into numeric values nor require a column to have any
value: it can have any kind of data as long as it does not
overflow its generous allotment of characters.

Some database vendors make the load process
easier with an external tables interface that combines
data movement tools with an instantiated view of
the flat file as if it were a table. (Refer to Oracle’s
online technical documentation to see how to create
an external table having DataPump or SQL*Loader
semantics with read or write capabilities. http://
download.oracle.com/docs/cd/B19306_01/server.102/
b14215/et_concepts.htm)

Even without fancy external table components in the
database, the ability to further manipulate the staging
tables greatly helps in assessing and sanitizing data.

Understanding Change With Audit Trails
Another good software engineering practice that
promotes secure coding is building audit trails into
applications. With careful preservation of former values
in history tables, it’s possible to revert unintended or
unwanted changes.

Listing 3. Trigger code on the Employee_Main table that executes before deleting a row

TRIGGER CODE

1. TRIGGER DEL_EMPLOYEE_MAIN_TRG

2. BEFORE DELETE

3. ON EMPLOYEE_MAIN_TRG

4. FOR EACH ROW

5. BEGIN

6. IF (utl_employee_main.g_employee_state='UPDATING') THEN

7. INSERT INTO employee_main_hist VALUES (

8.

9. :old.division, :old.employeename, :old.displayname, :old.title, :old.department,

10. :old.physicaladdress, :old.mailingaddress, :old.postalcode, :old.employeeid,

11. :old.employeenumber, :old.nickname, :old.telephonenumber,

12. :old.roomnumber, :old.stateprovincename, :old.mail, :old.facsimiletelephonenumber,

14. utl_employee_main.g_updating_time,

15. utl_employee_main.g_updating_user);

16. ELSIF

17. NOT (utl_employee_main.g_employee_state='REVERTING') THEN

18. RAISE_APPLICATION_ERROR(-20333,'Sorry -- no deletes allowed to this table.');

19. END IF;

20. END;

http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/et_concepts.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/et_concepts.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/et_concepts.htm

Secure Coding in the Database

www.hakin9.org/en 37

Listing 4a. PL/SQL code to delete records from main table as �rst step of undo procedure

52. PROCEDURE UNDO_CHANGES (p_sqlcode OUT NUMBER, p_sqlerrm OUT VARCHAR2)

53. IS

54. /* Algorithm:

55. ** Use the most recent updated_date from the history table

56. */

57. undo_user EMPLOYEE_MAIN.UPDATED_BY%TYPE

58. := SYS_CONTEXT ('USERENV', 'SESSION_USER');

59. undo_time EMPLOYEE_MAIN.UPDATED_DATE%TYPE ;

60. i PLS_INTEGER;

61. /*

62. ** define collection to hold restored records

63. */

64. TYPE emain_tabl_type IS TABLE OF EMPLOYEE_MAIN%ROWTYPE;

65. restored_emain emain_tabl_type;

66. v_module_name VARCHAR2(30) :='REVERT_CHANGES';

67. v_code NUMBER :=0;

68. v_errm VARCHAR2(4000) := 'OK';

69. BEGIN

70. -- set initial parameters

71. i:=0;

72. --

73. -- global package variable to indicate type of change to EMPLOYEE_MAIN

74. --

75. g_employee_state := 'REVERTING';

76.

77. i:=0;

78. undo_time := get_last_change_dt; -- call to function inside this package.

79. IF undo_time IS NOT NULL THEN

80. dbms_output.enable(NULL);

81. BEGIN

82. DELETE FROM employee_main

83. WHERE updated_date = undo_time;

84.

85. /*

86. ** For each row deleted, a trigger fires, however it does not create

87. ** a record in the history table while g_employee_state = 'REVERTING'.

88. ** See delete trigger for details.

89. */

91. EXCEPTION

92. WHEN NO_DATA_FOUND THEN

93. v_code := 0;

94. v_errm := v_module_name||' - NO DATA FOUND to delete. Continuing ';

95. WHEN OTHERS THEN

96. v_code := sqlcode;

97. v_errm := sqlerrm;

98. g_employee_state := NULL;

99. RAISE;

100. END;

09/2011 38

DEFENCE

that compares the staging table and the main table for
differences in any column. This cursor can be used to
preview the differences as well as applying the changes
to the database. All records having a count of 2 are
identical in both staging table and the main table. When
the count is 1, then a change has been detected.

The database cursor can be a global variable in a
package implementation. Other control variables can
be placed in the package to prevent manipulation of
the table outside the package by someone footprinting
the system or by someone who has broken into the
database.

The procedure to update changes uses this cursor to
decide what has changed and reconcile the incoming
data with the rows in the employee_main table. The major
thrust of the code is relatively simple and is shown in
Listing 2.

The setting of global variables helps determine the
identity of the user running the update procedure.

• Interrogating the SYS _ CONTEXT function provides
the true user name and cuts down on spoofed
identities. The user name invoking the package
may not be the same as the schema that owns the
package.

• The FOR … LOOP opens up the cursor previously
defined in Listing 1 and plows through it a row at
a time. When the value OLDROW appears first,
it means that the corresponding row in Employee _

Main is deleted. Behind the scenes, a trigger named
DEL _ EMPLOYEE _ MAIN _ TRG takes care of the other
housekeeping on each row.

Insecure Coding Approach

• Determine that flat file exists.
• Determine that database table exists.
• Delete all rows in main table.
• Read and insert all rows from the flat file an insert

them into the main table.

Secure Coding Approach

• Load data into staging table.
• Perform security checks on data.
• Screen out duplicates.
• Whenever there is a difference between existing

content and new content read from the staging
tables, then the correct action is to move the
existing record to an audit or history table and
permit the new record to be added.

• Prevent table manipulation unless through
packages and stored procedures.

• Build process to remove the application of bad data
in a single call.

• Build process to preview changes before
committing them to the database.

Detecting Differences
And Handling With Secure Coding
Database cursors, a feature of PostgresSQL, SQL Server,
DB2, Oracle database management systems (DBMS),
help build and compile into code queries that can be
used to process data programmatically. In Listing 1,
a sample cursor shows the construction of such a cursor

Listing 4b. PL/SQL code to retrieve records from the history table

101. --

102. -- Next part: Put records from history into collection

103. --

104. BEGIN

105. SELECT * BULK COLLECT INTO restored_emain

106. FROM employee_main_hist

107. WHERE updated_date = undo_time;

108. EXCEPTION

109. WHEN NO_DATA_FOUND THEN

110. v_code := 0;

111. v_errm := v_module_name||' - NO DATA FOUND to restore. Continuing ';

112. WHEN OTHERS THEN

113. v_code := sqlcode;

114. v_errm := sqlerrm;

115. g_employee_state := NULL;

116. RAISE;

117. END;

Secure Coding in the Database

www.hakin9.org/en 39

• The only other case is that a NEWROW is in the
incoming data. The insert statement places it in
the main table along with audit columns showing
what user caused the insert statement and when it
occurred.

• Along the way, counters are updated (iold and inew)
when changes occur.

The outright deletion of an employee record may make
data managers nervous, but a closely bound database
trigger on the employee _ main table carefully controls
what takes place, as illustrated in Listing 3.

• First, at line 7, before any deletions take place, a
copy of the record ships off to the employee _ main _

hist table. This event becomes part of the audit

trail, and all the values are stored along with a
timestamp and a user name tied to the change.

• Second, additional protections are in place on
lines 17-18. The deletion is not permitted unless
the packaged global variable state is either
UPDATING (the usual case) or REVERTING. A
user attempting to sabotage the data center by
trashing the Employee_Main table would not be
able to do it by deleting the records. An error
message would come up. An even better response
for secure coding would be to send an urgent
notification to the DBAs that an unauthorized
deletion was attempted.

Similar triggers to prevent insert, update, and delete
operations placed on the staging table, main table,

Listing 4c. PL/SQL code to reinsert previously removed records into the main table

118. --

119. -- Last part: Put records from collection back to employee main table

120. --

121. BEGIN

122. FORALL rec IN 1 .. restored_emain.count

123. INSERT INTO employee_main VALUES restored_emain(rec);

124. COMMIT;

125. EXCEPTION

126. WHEN NO_DATA_FOUND THEN

127. v_code := 0;

128. v_errm := v_module_name||' - NO DATA FOUND to restore. Continuing ';

129. WHEN OTHERS THEN

130. v_code := sqlcode;

131. v_errm := sqlerrm;

132. g_employee_state := NULL;

134. END;

135. ELSE

136. v_code := 0;

137. v_errm := v_module_name||' - Could not revert data. If history table is not empty, contact DBA.';

138. g_employee_state := NULL;

139. END IF;

140. p_sqlcode := v_code;

141. p_sqlerrm := v_errm;

142. EXCEPTION

143. WHEN OTHERS THEN

144. v_code := SQLCODE;

145. v_errm := SQLERRM;

146. dbms_output.put_line('Error encountered - ' || v_code || ': ' || v_errm);

147. p_sqlcode := v_code;

148. p_sqlerrm := v_errm;

149. g_employee_state := NULL;

150. END;

09/2011 40

DEFENCE

• The rest of the code in Listing 4c consists of
exception handling and resetting the package state
for the database session in case other packaged
procedures are called upon to manipulate the
employee staging, main, or history tables.

Final Thoughts
On Securing Coding Processes
Code must be ready and tested to remove changes
that were mistakenly applied and made to return to the
previous uncorrupted state, whether the changes are
the result of an incomplete data transmission, power
outage, running out of space on storage devices, or
an oops! on the part of the data supplier or data center
staff.

Other handy tools include the ability to preview
changes before allowing them into the database. The
code to preview changes can re-use the cursor code
from Listing 1.

Additionally, being able to view differences is a plus to
ascertain whether to edit or transform a faulty data file to
eliminate errors prior to reloading. These may become
necessary as it’s important to rectify data errors quickly
before the next scheduled data feed arrives.

Author’s note
These procedures assure greater data security when taken
together to shield the original uncorrupted state from
purposeful or unintentional data compromise. Creating this
protocol ahead of the possible incursions insures better
outcomes and recovery, diminishes the risk of data loss, and
avoids lengthy untried manual intervention to gain command
of the database. These protocols have been created as the
result of a real situation at the workplace requiring great
rending of breast and tearing of hair, far into the night.

and history table will rollback and prevent operations
from taking place unless the package variables are
set exactly. This forces all operations to be handled
through the database package alone.

Programmatic Reversion
Of Last Good State
Finally, being prepared with counter-measures when
the black hats do invade is essential. It’s better to
develop responses ahead of time rather than doing so
under pressure and sweating at three in the morning.

Incoming data sometimes needs to be backed out or
rolled back even after all updates have been completed
and committed. Sadly, this is where many software
engineers and database administrators fail to plan;
however, it is easy to recover without having to turn to
time-consuming database restorations.

An undo procedure is not complicated to add,
provided all the necessary ingredients are present:
main table, history table, and package variables to
signal and control the operations. Listings 4a, 4b, and
4c show how to revert to the previous database state.

Back to our scenario – briefly, to restore the previous
state, the most recent updates to the main table must
be discarded, then the last previous state must be
restored from the history tables. The first part, including
important definitions is shown in Listing 4a.

At lines 13 and 14, a data structure to hold a collection
of the history records is initialized.

• At line 24, an important package variable is set to
REVERTING. Working in concert with the DEL _

EMPLOYEE _ MAIN _ TRG database trigger this makes sure
that the deletions don’t go straight to the history table.

• Line 27 calls a function to determine the last
transaction date. This undo _ time identifies the set
of last updated, inserted, or modified that to purge
from the main table. By design, the timestamp is
the same one applied to the records changed and
stored away in the history table.

• Line 56 uses the undo _ time to identify records
to restore from the history table. These records
are stored in-memory into the collection called
restored _ emain.

• An exception handler, coded between lines 57-
66, executes in situations where no data could be
found to restore or other error conditions arise.

Finally, we restore the records in the history table back
to the main table, effecting a full recovery as seen in
Listing 4c.

• Lines 71-72 in Listing 4c take the in-memory
collection of values from the history table and put
them back into the main table.

STEVE HODGE
Steve Hodge is a database professional living in the United
States. His background spans software engineering, data
architecture, practical performance analysis and operating
systems. In his spare time, he enjoys skateboarding and being
around people with good senses of humor.

http://eng.infosecurityrussia.ru/

09/2011 42

ID FRAUD EXPERT SAYS... Mobile and Tablet Application Coding Security

www.hakin9.org/en 43

Mobile applications (apps) are being downloaded
billions of times each year through a huge
array of mobile stores, the most popular being;

Apple’s App Store, Windows Marketplace for Mobile
and Android Marketplace. As with the traditional pc
environment, mobile app publishers and developers
have an endless job in securing their source code from
malicious code. Those of us that write code know the
difficulties we face just keeping up with the exploits
 – ask Microsoft and Apple!

Traditional security applications that ensure mobile
code security include techniques such as cryptography,
code instrumentation and the use of the system kernel
as a reference monitor. More recent approaches
combine some of the traditional ideas with new, more
sophisticated ideas to enhance mobile code security.
These new approaches include the techniques of
sandboxing, code-signing, firewalling and proof carrying
code (PCC).

Malicious code will look to exploit weaknesses by
changing the way the code binds between coding
fragments and the location of where the code is to be
executed. The ability to relocate code – for example a
virus attaching itself to an existing code is very evident
in today’s coding world.

Secure app Coding Techniques
There are practical techniques to securing app code
– the first involves limiting privileges to a set of
operations – this is known as sandboxing (more on
this later). The second technique involves identifying
executables as they enter the trusted domain – aka
firewall approach – do you want the app to run and how
will it run are important queries. The third technique
involves code trust – is the executable trustworthy?

– This is what we called code signing. Lastly, the code
needs proof that properties have been met. All are
equally important techniques when looking to secure
the app code.

Unfortunately, as with most apps, performance is
sacrificed for increased security. This field is attracting
research as I write, but in the current economic climate,
investment into this potentially highly profitable USP
remains elusive. One can only hope that this will
improve over time.

So what about cryptography? Most readers will know
what cryptography is, so I will not explain here. What we
can say is that cryptographic methods can be used to
encipher data exchanges and identify and authenticate
users, agents and platforms.

Now let’s take a look at some other coding protection
techniques i.e. kernel; coding instrumentation etc. More
will be discussed on cryptography in the code signing
below. The kernel acts as a proxy between processes
and system critical operations which means the kernel
can monitor all access, enforce safety security policies
and prevent un-trusted code from corrupting the
system (this is what the NovaShield project has been
developing aka – anti-malware behavior detection).
There is performance degradation here though, mostly
to do with the overhead of passing parameters.

So what about coding instrumentation? This basically
means modifying un-trusted code so that it can be
monitored at runtime. Code that runs normally and that
does not violate a security policy will run normally with
no changes to its behavior. If a violation does occur then
the system will be notified and the app will be terminated
or contained, so that it doesn’t affect another part of the
system i.e. sandboxing. The major advantage of code
instrumentation is that is can be executed in isolation

Mobile and Tablet
Application Coding
Security
In this article we will attempt to discuss briefly some
of the main mobile app security issues of today and
consider what developers have to do to maintain
and improve their coding security practices.

http://bit.ly/i077s

09/2011 42

ID FRAUD EXPERT SAYS... Mobile and Tablet Application Coding Security

www.hakin9.org/en 43

code has not been modified. Code signing by its very
nature uses a public cryptographic key. A developer
or software house will use the private key to add a
digital signature to a piece of software code. Windows
7 for example will use the public key to validate the
signature during the app download process and
compare the hash used to sign the app against the
hash of the download app. This is a very simple code
signing process.

Mobile code signing should actually feature two
digital certificates .One for identifying the publisher
and the other to identify the app content. The
publisher could user the publisher ID to sign the
code and then uploads to the network for validation
to a Certificate Authority (CA) for code signing. The
signature is then validated and a unique content ID
would be generated with the validated publisher ID
and the code can be then be trusted or not trusted for
app store inclusion.

Another headache is the API’s, especially given
Windows Phone 7 uses Windows Privileged access for
Marketplace – so in this instance a third-party validation
would be required to validate the content ID. The major
problem right now is that some app store providers
allow only signed apps while others require code
signing in order for apps to have access to a sensitive
API. In this instance, if an app doesn’t recognize an
apps digital signature as being valid, then the app will
not run. This re-signing process is something that all
app stores should consider – Apple does something
similar with their App Store.

Windows Mobile – Code Obfuscation
Microsoft recommends the use of a technique called
code obfuscation, which uses a variety of techniques
to make it harder for a hacker to decipher and recover
the underlying source code. Opinions on its usefulness
vary widely and sometimes wildly. In general, many
programmers who use obfuscation see it as just one
of the steps they can and should take to protect their
applications, data, and intellectual property where
protection is needed.

Obfuscation does indeed help, but it really does
not present an obstacle for hackers. Most security
experts (including the author of this article) agree
that the most reliable way to make sure that your app
doesn’t leak important information is not to have that
important information in your app in the first place.
Should a mobile device store, codes, digital keys etc
– some security experts believe this should reside in
the cloud, not on the mobile device. Any app that has
sensitive data locally stored should be encrypted. It’s
that simple.

It’s not so much a case of what defensive wall you
have but making sure that the data that a hacker wants

and no extra information about the code is required.
The major issue with this is the performance – there
is a substantial runtime overhead because a runtime
check is required for every critical operation. This trust
model places the runtime monitoring inside the trusted
code base, while the mobile code is placed outside of
the trust zone.

Sandboxing Code and app Privileges
Sandboxing is used in software to quarantine module
faults, in effect placing them into isolation. This allows
un-trusted apps written in say an unsafe language
to be executed safely within a single virtual address
space of app. Un-trusted systems interpretable code
modules are transformed, so that all the memory
accesses are confined to code and data segments
with their system fault domain. Access to the system
resources can then be controlled through a unique
identifier associated with each domain – this is what is
called sandboxing.

Sandboxing will allow foreign code to execute within
the sandbox in the host operating system. The code can
be controlled by allowing monitored access to local host
resources i.e. RAM, CPU etc which by its very nature
will stop malicious code from delivering its payload
(overflowing system resources i.e. DoS attack). In my
opinion this technique should be considered when
building mobile apps.

App Code Signing
Nokia were the first (through Symbian) and now
Windows Mobile 7 and popular app stores such as
Windows Marketplace for Mobile have implemented
code signing technology to address the obvious security
concerns. The idea is that a platform (i.e. Windows) use
code signing to control an app that is allowed on a
network, taking specific measures to ensure the safety
of a mobile app for users and the networks upon which
they rely.

Code signing is done by the developer of the code
with an example being a developer obtains assurance
that the source code is trusted and that the code
hasn’t been tampered with (think Symbian or Windows
Marketplace). The code signing affectively verifies
authenticity and integrity (security layer protocols).
This model is based on trust, so as what happened
with Symbian, some rogue apps did get through the
code signing process. However it’s worth noting that
any rogue apps were pulled from the Nokia store very
quickly.

Windows Marketplace is now requiring code signing
technology (Google – anyone listening from Android?)
that essentially signs the mobile app code with a
digital signature, creating a digital wrapper that both
validates the source code and confirms that the source

09/2011 44

ID FRAUD EXPERT SAYS...

is limited or not useful. So what about the unavailable
data? Hackers will always attempt to find a way to
extract unavailable data, so this route isn’t an option.
Developers need to consider this when coding their
apps.

Android – Open Source Equals Open Season
Google’s open policies on app approval and the
availability of third-party app markets have left lots of
gaping holes which malicious apps can install on a
user’s device. Google’s Android is open source which
allows for developers to create apps and share them
with us. Android is developed on a Linux kernel, so
developers do get to see the deep internals of the
Android operating system. There seems to be a lack of
centralized documentation on Android too.

Start searching the Web and you will not find one
centric location where you can find the source of an
error or crash. There seems to be endless forums
and posts (some very out of date) containing articles
that don’t provide the answers. Has anyone tried to
find documentation on Android on how to adapt it
to a particular device? Exactly, it’s very hard to find.
How does a developer submit an issue or ask a
question when there is no central location – the license
agreement clearly states that you use Android at your
own risk (hence open source).

Developers look to hack the Android system (mainly
because it consumer focused unlike BlackBerry which
is security focused) to resolve their coding issues, rather
than follow any formal coding process. This leaves
Android open to performance and security related
issues. There is some evidence that some Android apps
have led to Android devices to reboot several times a
day, either because they crashed the OS or didn’t close
properly.

Then there is the issue of fake Android markets
appearing in China and other countries promoting
unique, pirated and redistributed apps. There are fake
Apple App Stores but you can only use these stores if
you have a jailbroken iPhone for example. Most users
will not have jailbroken their handsets. Some security
experts believe that Android should consider blocking
access to fake Android markets and only allow access
to the official Android market.

Did you know?
iPhone users don’t know what data is accessed (except
location) – RSA, 2011

QNX tablet (RIM) Following in iOS Footsteps
RIM continues to be very strong in mobile secure
computing. The PlayBook tablet launched earlier this
year runs on the QNX Real Time operating system
(RTOS). With a little research you can identify that

this operating system has yielded only about 75
vulnerabilities. However, most of these are over
five years old. The vulnerabilities were linked to
QNX Neutrino 6.5 which is the old codebase – RIM
developed 6.6 and with no documentation available
on this (let alone potential vulnerabilities) it’s hard to
speculate what the codebase changes might have
been.

A recent report (August 2011) from NGS Secure
stated RIM has built a robust system on top of the
existing QNX microkernel. They have restricted file and
user permissions at the operating system level, leaving
a reduced attack surface. The fact that some of their
other technologies (such as PPS) are implemented
as an abstraction on top of the file system certainly
contributes to ensuring that the attack surface is
minimized and that the general controls implemented to
protect the file system are also effective to protect these
other layers. The BlackBerry PlayBook for example, is
the first tablet to earn FIPS 140-2 certification in the
US.

Playbook apps are not allowed to communicate
with each other. Apps only have direct access to
the direct file system which resides in a sandboxed
folder. If an app needs device-related functions, it will
go through the BlackBerry API for the PlayBook (but
API restrictions will still be applied). Apps which are
loaded via a developer mode are owned and run by
the user. Each installed app is assigned their own user
and group when installed. This forces each app to
operate in a sandboxing mode. This coding principle
(sandboxing mode) isn’t unique to RIM as Apple with
iOS for example, employs similar user permission
and API access models. Apple’s App store uses DRM
and all apps that are present in the App store are
encrypted.

Patch Process – Android Case Study
Android has been making the news recently, mainly
due to its open source nature. This makes Android
a very interesting case study when it comes to
Android vulnerabilities. Lookout Security conducted
some interesting research which is worth referencing
here. Lookout looked at the time it takes for a device
to reach its vulnerability half-life (the time it takes
from a public announcement of the vulnerability to
having 50% of devices in market patched) varies
significantly.

While the Exploid exploit took 42 weeks to reach its
half life, CVE-2010-1807 (WebKit NaN) was patched
on 50% of devices in 30 weeks. There are a handful
of vulnerabilities that have yet to reach their half-life,
for example RageAgainstTheCage has gone 40 weeks and
counting, and 55% of devices remain vulnerable as of
July 2011.

http://bbc.in/nS4fkr
http://bit.ly/oQTJV5

www.hakin9.org/en

Factors that affect the length of patch cycles include:

• Time it takes Google to release the patch to the
Android Open Source Project repository.

• The level of commitment by OEM manufacturers
and carriers to update devices with the latest
release.

• The number of customizations on devices and
time it takes to flash each firmware build with the
updated OS release.

While great strides have been made in patching
vulnerable devices, we see opportunities to continue
to improve the patching cycle.

• Manufacturers should take advantage of the
Compatibility Test Suites to cherry pick fixes for
their builds.

• The industry should continue to build tools to
track and manage patch levels (particularly in the
enterprise).

• Carriers and OEMs should make security a first
class-feature in releases, ensuring that the latest
patches are always included.

• Players in the ecosystem should agree to unlock
bootloaders, thus eliminating the conflict of interest
between vulnerability disclosure and the ability for
users to control their own devices.

While the patch cycles for mobile operating systems
are typically longer than that of the PC, there are signs
that it is getting better. Android CTS has proven to
help drive adoption of critical updates. For example,
several prominent devices shipped in the last few
months have been shipped with critical security fixes.
Until everyone in the mobile ecosystem considers
security a top priority by accelerating patch cycles
and removing the conflict of interest for vulnerability
disclosure, longer patch cycles, and thus vulnerable
devices, will continue to persist. We’re hopeful that
mobile device patching will continue to improve and
eventually even improve on the PC status quo.

Reference: Lookout Mobile Security, August 4th, 2011
blog post

JavaScript and ActiveX Mobile Security
Readers will know that there is an ever increasing
number of mobile websites that are using/and
considering using JavaScript and ActiveX. Incorrectly
designed or poorly written ActiveX controls can
cause serious security problems (XSS attacks) in
two container types, Web (mobile) browsers and e-
mail clients, because Web pages can invoke ActiveX
controls by using HTML or a scripting language and
e-mail applications can often display HTML-formatted

http://bit.ly/noVGg5
http://bit.ly/hM9ex8
http://bit.ly/m309Wi
http://hakin9.org

09/2011 46

ID FRAUD EXPERT SAYS...

text, which means that e-mail messages can also
invoke ActiveX controls.

ActiveX controls how web pages display animation,
audio and video – the ActiveX control is stored in
the browser cache or on the hard drive. Other apps
can have access to this Active X control. The Active
documents allow users to view for example Microsoft
Office 365 (cloud-based service) documents within a
web browser. ActiveX scripting resides in the browser
so that the browser (IE for example) can run Java
Applets.

Using JavaScript and ActiveX allows websites to
provide additional functionality that cannot be handled
by HTML (although HTML 5 does handle this).
JavaScript, ActiveX, Macromedia Flash and Shockwave
can be accessed across a private or public network and
executed remotely – this is what we call mobile code.
Unfortunately, it is entirely possible to (mis)use Java,
especially in its applet form, as a vehicle for attacking
systems. Language-based security controls like those
found in JavaScript make writing a hostile applet more
difficult than it might be otherwise, but they don’t make
it impossible.

Did you know?
If you mark a control for scripting, you might want to
allow the control to be scripted only when invoked from
a specific restricted domain.

There are two approaches to securing JavaScript
– these are called Sandboxing and Code Signing.
The sandbox model (described earlier) restricts
access to a limited amount of resources or files on
a users system. The code signing model is based
upon a third-party company who will sign the code
with a digital signature. One of the most popular uses
of code signing is the use of secure SSL (secure
socket layer) – you will see this on websites and
with some web based apps. Within an SSL session,
the network connection will ensure the code has not
been tampered with. Users can view (most don’t know
where to look or what to look for) the certificate (by
clicking the padlock icon in the browser) which will
display the details of the code signing.

The main issues developers have found with the Java
sandbox is that it is a little too restrictive, though some
developers do decide on developing their app code
outside of the Java sandbox. Java applets by their
very nature can scan a user’s file system, modify files,
access memory and open other apps.

Readers will know that malware writers have
created hostile Java applets which will modify system
and app files – this in itself continues to pose a
security threat. In the final section we will look at the
emergence of HTML5 and whether it is as secure as
some say it is.

Further reading: Secure coding guidelines for Java
programming: http://www.oracle.com/technetwork/java/
javase/tech/seccodeguide-139067.html.

HTML5 Mobile app Security – the ENISA View
of HTML5
This month (August), the European Union’s computer
security agency (ENISA) warned that HTML5 coding
implementation standards under development as part
of HTML5 were undergoing a rewrite that may omit
important security issues. ENISA looked at thirteen
specifications (in a 61 page document) within HTML5
and found 51 security issues. Some of the issues appear
that they can be fixed by tweaking the specifications,
while others are more risk based on the features that
users should be alerted to. One particular part of the
HTML5 specification involves the submit button which
allows for a web-based form to be placed anywhere
on a Web page. This means an attacker could inject
other HTML onto the page, such as a different form
button, and then cause the information in the form to be
sent to the attacker rather than the legitimate website.
HTML5 mobile app developers should read the ENISA
document above.

Final Thoughts on the Development Cycle
Code signing and sandboxing are two app security
principles that should be proactively incorporated into
the mobile coding development cycle. It provides users
and network providers with significant confidence that
apps are safe to download, install and run. Empowering
developers to protect end users should be first and
foremost as this has significant links to brand reputation
and market value. Protecting and securing your app
code both at the network (this also includes within the
browser) and client level has to be the priority.

JULIAN EVANS
Julian Evans is an internet security entrepreneur and
Managing Director of education and awareness company
ID Theft Protect. IDTP leads the way in providing identity
protection solutions to consumers and also works with large
corporate companies on business strategy within the sector
on a worldwide basis. Julian is a leading global information
security and identity fraud expert who is referenced by many
leading industry publications.

http://bit.ly/jjrDJV
http://www.oracle.com/technetwork/java/javase/tech/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/javase/tech/seccodeguide-139067.html
http://bit.ly/kSIpyQ
http://bit.ly/qZvnmg

In the next issue of
magazine:

If you would like to contact Hakin9 team, just send an email to
en@hakin9.org. We will reply a.s.a.p.

Hacking Apple

Available to download
on September 30th

Soon in Hakin9!

TOR Project, Botnets, Social Network Security, Hacking Apple, Biometrics, Rootkits, Debugging/
Fuzzing, SQL Injection, Stuxnet, Hacking Facebook, Port scanner, IP scanners, ISMS, Security
Policy, Data Recovery, Data Protection Act, Single Sign On, Standards and Certificates, Biometrics,
E-discovery, Identity Management, SSL Certificate, Data Loss Prevention, Sharepoint Security,
Wordpress Security

mailto:en@hakin9.org

09/2011 48

TOOL TIME VirusTotal

www.hakin9.org/en 49

V irusTotal has since evolved from its humble
beginnings to also offer analysis of website
content with malicious intent (ie. Phishing,

Spam, malware).
Their online Analysis tool is available to any Operating

System (OS) with a browser and Javascript enabled.
Uploading an Eicar test file to the website triggers

warnings as expected. In situations where a specific file
uploaded has been tested before, it may be advisable to
click Reanalyse to rescan it.

Hot Toys is a toy manufacturer from Hong Kong
that has had its website (http://www.hottoys.com.hk)
compromised previously. Its website is used as a test
case of the web analysis engines hosted with VirusTotal.
Two engines flagged the website as malicious whilst
one was inconclusive. This warrants caution to avoid
visiting the website and having one’s system infected.

Harnessing the search power of Google, the search
engine also marks the website as risky to confirm the
warnings from the VirusTotal scan.

VTzilla is a Firefox plugin that can be engaged to
scan URLs. It can be downloaded (http://virustotal.hi
spasecsistemas.netdna-cdn.com/progs/vtzilla.xpi) and
installed to any OS with Firefox and Java available.
The caveat of this plugin is that other tools can affect its
effectiveness in detecting disputable websites. Another
Firefox plugin, HTTPS-Everywhere, encrypts all my
Google search results and thus influences the scanning
of the Hot Toys URL displayed in my Google search.

Phishing sites do not escape the examination of
VirusTotal.

Windows users have the option of installing the
VirusTotal Uploader tool. This software allows them
to select a file residing on their system directly to the

VirusTotal
Hispasec Sistemas has managed the service, VirusTotal, since 1st
June 2004. The website (http://www.virustotal.com) offers the
public access to multiple Antivirus (AV) engines hosted by them to
provision online scanning of individual files to uncover malware
by harnessing a combination of signature-based and heuristic
detection.

Figure 1. Analysis section

http://www.hottoys.com.hk
http://virustotal.hispasecsistemas.netdna-cdn.com/progs/vtzilla.xpi
http://virustotal.hispasecsistemas.netdna-cdn.com/progs/vtzilla.xpi
http://www.virustotal.com

09/2011 48

TOOL TIME VirusTotal

www.hakin9.org/en 49

public. Spread the word and start exploring VirusTotal
today.

website for scrutiny and is also capable of sending
running processes to the website to identity insideous
processes.

Email submissions of files for inspection is also
supported.

VirusTotal reports that reveal 2 or more alerts can
be sufficient warning to avoid opening a file or visiting
a URL. A single warning can be attributed as a false
positive.

Hackers are determined and will use any means
to take over our systems for their profit. VirusTotal is
one tool that can hint of any mischief and is free to the

Figure 2. Malware alerts

Figure 3. Result

Figure 4. Google search

MERVYN HENG
Mervyn Heng is embarking on a new stage of his life where he
is stressing over renovating his new apartment and moving
into it. His curiosity in the arena of Information Security drives
him to contribute regularly to this publication as a columnist
instead of an ad-hoc contributor. If you have any comments or
queries, please contact him at commandrine@gmail.com.

mailto:commandrine@gmail.com

09/2011 50

ILLEGAL What’s wrong with the Bible?

The Bible doesn’t talk about social media – there is no
mention of Facebook in the book of Leviticus while
there is a good chance an organisation’s security

policy doesn’t address social media precisely either.
In a 2010 poll, conducted by a security consultancy,

including twenty one organisations, asked one simple
question:does your organisation have a social media
policy? The results were illuminating: more than half of the
organisations did not have such policy in place, and only
one third had their organisation’s policy crystallized into a
single document, and 14% of respondents had references
to social media scattered through a range of sources.

In particular, very few people have really read, understood
and retained the entirety of either text and in the absence
of a commonly agreement, authoritative understanding,
an array of interpretations are possible, many of them
definitely not what the authors intended, and quite possibly
the cause of what is, objectively, wrongdoing.

None of this, however, should be interpreted that
security policy is not relevant. It is the one repository that
lays out an important framework for the organisation’s
security posture. It is vital for demonstrating compliance
with regulation and legislation. For example the set
of requirements under PCI-DSS (which affects all
organisations which handle or process card data).
It is also important for handling difficult questions
from external auditors. Most importantly, it is the one
document that tells you, the organisation’s employee,
customer, or partner, what is expected of you, and what

can be expected of them. So why are security policies
so often badly written, to the point of being unusable?

So then, how can such a critical document go so badly
wrong in so many organisations? There are a number
of things to consider. Many organisations, particularly
in Western Europe and Japan, base their security
policies on best practice industry standards, such as ISO
27000. These are great standards, in that they provide
an internationally recognised baseline. However, few
people would argue that the International Standards
Organisations produces documents that are fun and easy
to read. Additionally, the roots of the ISO 27000 series lie
in the old British Standard, BS7799. Although published
in 1995, this standard was derived from 1980s trends in
the UK government. In other words, the best practice
standards were in essence written twenty five years ago:
the meaning of best practices was very different then.best practices was very different then.best practices

Another consideration is that security policies are often
written by multiple stakeholders. There is the old saying
that a camel is a horse designed by a committee. Perhaps
more aptly, we should consider the old parlor game
Consequences, where a story is written line by line by
a succession of people unable to see what was written
before or after them. An acceptable security policy will
cover a lot of ground; after all, it is meant to be the definitive
documentation of the organisation’s security stance.

So, in any given organisation, which department will not
want to have some input? After all, they will all be affected.
The Human Resources department feels it needs to have

What’s Wrong With
The Bible?
Corporate IT security policies are often described by security
professionals as “the Bible”. This comparison always makes my
skin crawl, since it suggests a certain lack of imagination. But
in reality, the comparison makes sense. Both interpretations
were probably written a long time ago by people who hadn’t
met you, or by employees that faced precisely the same issues,
technologies, and situations you face in your job today. More
than that, both were probably written by different groups of
people over time.

What’s wrong with the Bible?

www.hakin9.org/en 51

and provide a baseline for any situation. In other words, it
should communicate to employees what the company’s
baseline is. This tends to point towards a simpler document,
rather than the three hundred page magnum opus typical
of, say, a large European or American bank. Anything which
is conditional (what if..? type questions), technical (which
ports are allowed, technical builds, etc.), or transitory (won’t
apply in the foreseeable future) doesn’t belong in a policy
document. A lower level document, perhaps a technical
standard or procedure is the most appropriate document to
include such details; but not in the policy because it clouds
and muddles the purpose of the document.

Staying Hip With The Kids
Many things are often not specifically considered in a
security policy. Ignoring a social media policy rather
suggests some confused thinking. An organisation may
block access from the desktop, but what about the phones
and mobile devices that your staff carry? And if the
organisation’s leadership have a desire to limit staff from
posting negative comments online about the organization,
how will you control what people do when they get home?
In the absence of a clearly articulated policy, how will your
staff know what is expected of them?

GreyReview estimates that, taking into consideration
unique Twitter accounts and all the users of all the various
Twitter APIs, the total number of users in the Twitter eco-
system is aproximately 240 million. It is estimated that the system is aproximately 240 million. It is estimated that the system
UK alone has upwards of 27 million Facebook users – a
number that continues to grow. You might not like it or use
it, but what about your staff? What about your customers?
Deliberate or inadvertent sharing of information
which organisations would rather keep confidential, is
considerably easier by using any king of social media. To
this effect, certain branches of the US military, for example
the US Marine Corps, have developed and published very
specific guidelines for unofficial social media postings.unofficial social media postings.unofficial

How To Cope With Change
To paraphrase Douglas Adams, what was invented before
we were fifteen, we tend to think of as simply the state
of nature. What is invented between when we are fifteen
and in mid thirties, we think of it as new and exciting. And
what is invented after our thirties we tend to think of it as
dangerous and bad, something that should be stopped.
How could anyone write a rule book to cope with all
situations across all three stages? Lots of things are bound
to change. But a simple, easily understandable guide is a
possibility, just think about the Ten Commandments.

some input about personnel and disciplinary issues. The
Legal department will need to make sure the wording is
appropriate. And of course, the IT department will have
a lot to say; there will always be a million reasons why
best practices cannot sensibly apply to each one of them. best practices cannot sensibly apply to each one of them. best practices
Perhaps a particular issue has caught the attention of the
organisation’s executives and would eventually be reflected
in a given policy At some point in time, the organisation will
encounter a situation where complying at the its own policy,
would be technically unfeasible, too prohibitely costly
or inneficient. So having gone through all this elaborate
excercise, to produce a policy that is based on best practice
(even if it is out-dated) including an exceptional amount
of expert input, what is the organisation left with? The
balance is something that doesn’t really mean very much
to precisely the people who needs it most: the ordinary
employees. Most people, most of the time, want to do the
right thing. However, what happens if they don’t know what
the right thing is? After all, information security is a fairly
complex and broad field – but the policy has been written
by a committee of technical experts, not with an ordinary
person in mind. After all this effort, what should be a highly
valuable resource for everyone to use rests , unused and
ignored on the metaphorical shelf – and security problems
occur again and again, because someone, somewhere
in the organisation is not doing what was committed to in
the policy. So how can organisations break free from this
dismal situation? Three simple things would make a huge
difference:

• Real thought about how the purpose and scope is
presented

• Keeping out what is not policy
• Keeping current

It’s A Policy, But Not As We Know It
Test the policy. Can ordinary people understand it? If
they don’t, that is a big problem. An organisation needs
to make sure its policy is fit-for-purpose; if the readership
can’t understand or interpret it, it’s fallen at the first hurdle.
Is it a language prpblem? Or is it the format? This a tricky
problem; if a security policy is written in the traditional
format, like a technical document, it is not searchable
and hard to read by a business-minded audience. So
who really wants to wade through fifty or a hundred
pages of something that is irrelevant to their needs to find
the two sentences that matter to them for the particular
question they have? Death to the policy document, I say.
What people need is a searchable database.

Brutal Simplicity
Some things just don’t belong in an organisation’s
information security policy, however most of the IT groups
want it to be there. The policy should be technology
agnostic, so as technology changes, the policy stays sound

DRAKE
Drake has worked on information security and strategy with
government agencies, the military, � nancial institutions and
other blue chip organisations in Europe, the Middle East, and
Africa since Boris Yeltsin was President.

09/2011 52

REVIEW Passware Password Recovery Kit Forensic 11.0 Review

www.hakin9.org/en 53

Homepage
http://www.lostpassword.com

Review Version
Passware Password Recovery Kit Forensic 11.0 Build
3631 2011/08/08 (Figure 1).

Installation
The MSI is a simple standard 8-screen installer (Figure
2) with standard EULA acceptance, Destination Folder
and Product Key fields. During installation it verifies that
it will need 219MB to install. Once the install is complete
the user is prompted whether to start the application
right away and also to subscribe to the free Password
Recovery newsletter.

Post Installation
After the install has completed the user can click on the
Passware Kit icon (Figure 3) to start the application.
Also the Start Menu is populated with a Passware
folder which contains the Passware Kit 11.0 sub-folder
containing the main application, help, and the Search
Index Examiner 3.0 (out of scope for this review).

General Settings and Configuration
The file menu contains 4 sub-menus, File, View, Tools
and Help.

File contains the gamut of options available via buttons
on the main pane as well as the shortcut keys for these
functions. The unique entry is Create Portable Version
to create a portable version of the installed application

Passware Password
Recovery Kit Forensic 11.0
Passware Password Recovery Kit Forensic 11.0 is a handy all-in-one
package for recovering different types of passwords quickly and
with ease. Be it from a Windows laptop, Mac VM, or USB stick this
software raises the bar for password cracking.

Figure 2. Installer

Figure 1. About The Program

Figure 4. Options

Figure 3. Passware Kit Icon

http://www.lostpassword.com

09/2011 52

REVIEW Passware Password Recovery Kit Forensic 11.0 Review

www.hakin9.org/en 53

Features that are covered in this review are described
below.

Recover File Password
Pick a protected file to start password recovery.

Initiating this prompts the user to browse to a protected
file (single file, no batches). A few samples are available
in the default directory (Figure 5) in the example pictured
here (Figure 6) the mentioned tabbed information is
available (extrapolated for readability). This application
supports over 200 file types of encrypted files including
vanilla zip and pgp zip archive. Naturally based on what
type of password/passphrase was used in conjunction
with hardware and distributed agents it could take a
matter of seconds to days.

(on a USB key). View contains one selectable option;
the Status Bar. Tools contains additional options.
Options (Figure 4) for enabling GPU acceleration,
Distributed Password Recovery. The product License
Manager. (This is where the user can add additional
agents for distributed and cloud computing).

Help contains standard information such as contextual,
searchable help and index information. Links to the
lostpassword website for additional support, updates
and version information.

Features
Due to time constraints some features that this product
offers are not covered in this review. They are as follows:

• Recover Internet and Network Passwords.
 Recover passwords for websites, network

connections, and email accounts.
• Reset Windows Administrator Password.
 Create a bootable CD-ROM that instantly resets

Windows Admin password.
• Search for Protected Files.
 Scan computer for protected files. Additionally

Distributed Password Recovery and Bitlocker
portions are not covered.

Figure 6. Recover File Password

Figure 5. Samples

Figure 8. Unmounted Brute Force Attack

Figure 7. Recover File Password Con�guration

Figure 9. Mounted Attack (win64dd)

09/2011 54

REVIEW Passware Password Recovery Kit Forensic 11.0 Review

www.hakin9.org/en 55

Going through the configuration wizard allows the user
to refine the target options such as estimated length,
language, alphanumerics, symbols, patterns. Something
quite familiar in attack tools that could have nearly infinite
parameters. The more you know about the target files the
better chance have at cracking it (Figure 7).

The tests performed here were all under 10 minutes
and aside from the samples most passwords were
as simple as 123. In all cases the passwords were
recovered successfully.

Recover Hard Disk Password
Recover encryption keys or passwords to unlock
Bitlocker and TrueCrypt drives.

TrueCrypt Volume Password Recovery was performed
on a few test volumes. Both mounted and unmounted.
The Unmounted brute force attack (Figure 8) took
only a matter of minutes for a 3 character password.
The mounted attack was a bit tricker and usage of a
memory imaging tool for windows win64dd (Figure 9)

from the MoonSols Windows Memory Toolkit
Community Edition was used to create a 5GB image
from the system and then load it into the application.
In under 3 minutes the 5MB TrueCrypt volume was
decrypted (Figure 10)

Recover Mac Password
Recover passwords for Mac users from a memory
image.

Note
During this review issues were encountered with
Passware FireWire Memory Imager (Figure 11) on
the Macbook Pro and alternate means were used to
capture the image with Mac Memory Reader instead.
The Macbook had bootcamp 4 loaded with Windows 7
and since it has a Firewire 800 port as does the Mac
Mini that it was being tested against naturally it was
believed that this could work. Unfortunately Mac, Lion,
Bootcamp can’t boot up using the USB key created
(PFMI). At first it was thought it was the USB key
model but several were tried (Kingston, Verbatim; all
4GB/8GB), then it was thought that formatting of the

Figure 10. TrueCrypt Volume Decrypted

Figure 11. Passware FireWire Memory Imager

Figure 12. Mac Memory Reader

Figure 13. Mac Memory Attack Running

Figure 14. Mac Memory Successful

Figure 15. Portable

09/2011 54

REVIEW Passware Password Recovery Kit Forensic 11.0 Review

www.hakin9.org/en 55

key had something to do with it. It appears that this
type of configuration doesn’t work. Trying from an
older Dell also gave erroneous errors about the kernel
support. It would be great to see a workaround for this
using Mac versus Mac; instead of what seems PC
versus Mac.

MacMemoryReader (Figure 12) was used to capture
the memory image of the target Mac. Once the ~2GB
image was captured it was transported via USB to the
Win7 system running Passware Password Recovery Kit
Forensic 11.0. Browsing to the image on the desktop
the Mac Memory Attack began quickly (Figure 13) ...
and resulted in the correct password (Figure 14).

Portable Version
USB version created from installed version.

Creating the portable version is a simple 2 step
process. In the File menu select Create Portable
Version. Browser for a folder or select a USB key. The
whole idea is to have this on something portable and
the USB key suits fine. If you have enough space you
can copy it onto your PFMI created USB key, but to be
more portable it is best to keep those two features on
separate keys (Figure 15).

Uninstallation
Passware Kit Forensic 11.0 it requires to be uninstalled
from the Windows Control Panel (Control Panel->
Programs->Uninstall a program). The uninstall process
runs pretty smooth and only leaves a few residual
artifacts in the Program Files -> Passware subdirectory
(more residual if you saved your work in additional
subdirectories within).

GUI
The Graphical User Interface for Passware Kit Forensic
11.0 (Figure 16) is quite intuitively modern to a Windows
7 environment. The sub-applications, features and
functions are available redundantly allowing users to
adapt accordingly. Passware offers great documentation
and a traditional Windows help system. Most of the sub-
applications contained within the single pane of glass

use sheet style tabs (i.e. Passwords found, Attacks,
Log, Agents, Activity) and the overall functionality
makes easy to move around. Resultant data offers a
copy to clipboard function and URI data is a click away.
Any time the scope is changed and where data could
be lost the user is presented whether they want to clear
results and return to the start page (which is the default
page when the application opens).

Support FAQ
Passware Kit Forensic 11.0 comes with a 1 Year
subscription and $395 to renew (where updates and
upgrades are available). On their support page they
have an FAQ, videos. For further involved technical
support the user needs to fill and submit a web form to
be added to the ticket queue. The knowledge base itself
has three items listed as of this review.

Price
Passware Kit Forensic $995 with 1 Year Subscription
Free and $395 to renew: http://www.lostpassword.com/
support/updates-and-upgrades.htm.

Rating
4/5 – Really aside from not being able to use the
Passware FireWire Memory Imager on a Macbook Pro
to attack another Macbook via Firewire the product itself
has a great feature set and is quite functional both for
the office and the field.

Figure 16. Graphical User Interface for Passware Kit Forensic 11.0

ISRAEL TORRES
Israel Torres is a hacker at large with interests in the hacking
realm.
hakin9@israeltorres.org http://twitter.com/israel_torres
https://plus.google.com/102921309581624765133/posts
Got More Time Than Money?
Try this month’s crypto challenge: http://hakin9.israeltorres.org

Web Links and References
http://www.lostpassword.com/kit-forensic.htm
http://www.lostpassword.com/support/faq.htm

Passware FireWire Memory Imager
http://www.youtube.com/watch?v=l2hYIkc6_Pg
...additional tools used mentioned in the review:
Mac Memory Reader (2.0.4 [released July 2011])
http://download.atc-nycorp.com/utilities/MacMemor y
Reader_2.0.4.tar.gz
Homepage: http://www.cybermarshal.com/index.php/cyber-
marshal-utilities/mac-memory-reader
Win32dd -> MoonSols Windows Memory Toolkit
Community Edition
(win64dd.exe 1.3.1.20100417)
Homepage: http://www.moonsols.com/windows-memory-toolkit/

http://www.lostpassword.com/support/updates-and-upgrades.htm
http://www.lostpassword.com/support/updates-and-upgrades.htm
mailto:hakin9@israeltorres.org
http://twitter.com/israel_torres
http://hakin9.israeltorres.org
http://www.lostpassword.com/kit-forensic.htm
http://www.lostpassword.com/support/faq.htm
http://www.youtube.com/watch?v=l2hYIkc6_Pg
http://download.atc-nycorp.com/utilities/MacMemoryReader_2.0.4.tar.gz
http://download.atc-nycorp.com/utilities/MacMemoryReader_2.0.4.tar.gz
http://www.cybermarshal.com/index.php/cyber-marshal-utilities/mac-memory-reader
http://www.cybermarshal.com/index.php/cyber-marshal-utilities/mac-memory-reader
http://www.moonsols.com/windows-memory-toolkit/

http://lostpassword.com/kit-forensic.htm

http://www.astalavista.com/

	Cover

	Dear Readers
	CONTENTS
	In brief
	The Bug Story
	Secure Coding:
Hits and Misses
	For My Eyes Only
	Secure
Coding PHP
	Secure Codingin the Database
	Mobile and Tablet Application Coding
Security
	Virus
Total
	What’s Wrong With
The Bible?
	Passware Password
Recovery Kit Forensic 11.0

