

If you would like to receive the custom wallpaper used for this article, you can
download it for FREE from the EaglesBlood™ Development website.

http://www.EaglesBlood.com

http://www.eaglesblood.com

http://atola.com/?s=haking

03/2013 4

PRACTICAL PROTECTION IT SECURITY MAGAZINE

 team
Editor in Chief: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Editorial Advisory Board: Jeff Smith, Peter Harmsen,
Kishore P.V

Proofreaders: Krzysztof Samborski

Special Thanks to the Beta testers and Proofreaders
who helped us with this issue. Without their assistance
there would not be a Hakin9 magazine.

Senior Consultant/Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Product Manager: Krzysztof Samborski
krzysztof.samborski@hakin9.org

Production Director: Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director: Krzysztof Samborski
krzysztof.samborski@hakin9.org

DTP: Ireneusz Pogroszewski
Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl

Publisher: Hakin9 Media sp. z o.o. SK
02-676 Warszawa, ul. Postępu 17D
Phone: 1 917 338 3631
www.hakin9.org

Whilst every effort has been made to ensure the
highest quality of the magazine, the editors make no
warranty, expressed or implied, concerning the results
of the content’s usage. All trademarks presented in the
magazine were used for informative purposes only.

All rights to trade marks presented in the magazine
are reserved by the companies which own them.

DISCLAIMER!
The techniques described in our
articles may only be used in private,
local networks. The editors hold no
responsibility for misuse of the presented
techniques or consequent data loss.

Dear Hakin9 Readers,

Android is a Linux-based operating system designed for mo-
bile devices such as smartphones and tablet computers.

At the beginning, it was developed by Android Inc. and later in
2005 bought by Google.

Latest research has shown that Android users become more
and more threatened by malware. A number of attacks rises ev-
ery day and these are getting more dangerous for it’s users. We
have been asked to do some study and we decided to provide
you with an issue addressing this topic.

You can surely notice that we divided the issue into sections.
In the first section you will find the articles dedicated to Android
security. In the second section you will find the articles dedicat-
ed to Android laboratory. In the third section you will find some
extra articles.

Hope you enjoy the magazine!

Krzysztof Samborski
Hakin9 Product Manager

and Hakin9 Team

mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=

www.hakin9.org/en 5

CONTENTS

ANDROID SECURITY
Android Security 06
By Bhadreshsinh Gohil, has a Master of Engi-
neering in Computer Engineering – specialized in
IT Systems and Network Security.

Android Hacking Made Easy – What You
Can Do to Limit Your Exposure 14
By John Lear, the Founder of Oomba Security
LLC. He has over 18 years experience in system
and security engineering.

Weak Wi-Fi Security, Evil Hotspots and
Pentesting with Android 20
By Dan Dieterle, he has 20 years of IT experience
and has provided various levels of IT support to
numerous companies from small businesses to
large corporations.

Build Secure Android Applications with
ITTIA DB SQL 26
By Sasan Montaseri, he is the founder of ITTIA, a
company focused on data management software
solutions for embedded systems and intelligent
devices.

ANDROID LABORATORY
Decompiling Android Workshop 32
By Godfrey Nolan, he is the President of RIIS LLC
and author of Decompiling Java and Decompiling
Android.

ANDROID OS: Getting Started with
Customizing Your Own ROM 38
By Kellen Razzano & Ed Sweetman, they are part-
ners in EaglesBlood Development and Co-Found-
ers of startup companies.

How to Research an APK 46
By Nathan Collier, he is Threat Research Analyst
for Webroot.

AppUse – Android Pentest Platform
Unified Standalone Environment 54
By Erez Metula, he is a world renowned applica-
tion security expert, spending most of his time
finding software vulnerabilities and teaching de-
velopers how they should avoid them.

EXTRA
How to Provide Strong
Authentication for Your Users 66
By Roman Yudkin, he is the Chief Technology Of-
ficer at Confident Technologies. He is responsible
for Research & Development, Engineering and
general oversight of all corporate technical func-
tions.

Quantum IQ – How the Worlds Military’s
Intend to Capitalize on the Future of
Mobile and NeuroscienceTechnologies 74
By Jere Simpson, he is the founder, President,
and sole owner of KiteWire, Inc. – a software de-
velopment company founded in early 2007.

Mobile Antivirus is a Myth 76
By Ken Westin, his technology exploits have been
featured in Forbes, Good Morning America, Date-
line, New York Times, The Economist and he has
won awards from MIT, CTIA, Oregon Technology
Awards, SXSW, Web Visions, Entrepreneur and
others.

PLUS
An interview with Omar Khan,
the Co-CEO of NQ Mobile 78
By Marek Majewski

03/2013 6

ANDROID SECURITY

In this period, security firms are publishing de-
tailed reports on analysis conducted on princi-
pal cyber threats detected in 2012, the results

proposed present a landscape dominated by ex-
plosion of menaces, especially for mobile and so-
cial media users.

Mobile technology has grown more than any
other in the last few years and the IT industry, to
respond customer’s demands, has designed an
impressive number of solutions and services spe-
cific for mobile platforms. Due the growing trend,
many factors have been attracted by the possibil-

ity to exploit the mobile solutions for various pur-
poses; let’s think, for example, to cyber criminals
or state-sponsored hackers that have started to
research possible attack schemes against mobile
platforms.

Another factor that must be considered when
analyzing the rise of cyber threats against mobile
platforms is the lack of awareness of users on the
risks related to an improper use of mobile devices,
in majority of case users don’t apply mechanisms
of defense to their mobiles, and often they totally
ignore them; a customer’s habit could cause seri-
ous damage (Figure 1).

Background
Hardware
Android runs on a wide range of hardware con-
figurations including smart phones, tablets, and
set-top-boxes. Android is processor-agnostic, but
it does take advantage of some hardware-specif-
ic security capabilities such as ARM v6 eXecute-
Never.

OS
The core operating system is built on top of the
Linux kernel. All device resources, like camera
functions, GPS data, Bluetooth functions, tele-
phony functions, network connections, etc. are ac-
cessed through the operating system.

Android Security

Android, as we are all aware, is a Linux-based operating
system which was initially developed by Android Inc. and
was later purchased by Google. It was designed for touch
screen devices like smart phones, tablets, cameras, set-
top boxes, etc. and has reached the hands of millions of
consumers.

Figure 1. Number of Android Threats Received per quarter,
Q1-Q4 2012

www.hakin9.org/en 7

Android Security

Software
The core operating system is built on top of the
Linux kernel. All device resources, like camera
functions, GPS data, Bluetooth functions, tele-
phony functions, network connections, etc. are ac-
cessed through the operating system.

Google Play is a collection of services that allow
users to discover, install, and purchase applica-
tions from their Android device or the web. Google
Play makes it easy for developers to reach Android
users and potential customers. Google Play also
provides community review, application license
verification, application security scanning, and oth-
er security services.

Updates
The Android update service delivers new capabili-
ties and security updates to Android devices, in-
cluding updates through the web or over the air
(OTA).

Services
Frameworks that allow Android applications to use
cloud capabilities such as(backing up) application
data and settings and cloud-to-device messaging
(C2DM) for push messaging.

As per the various reports published by antivi-
rus companies, there has been an exponential in-
crease in the malware attacks for Android devices.
These malwares includes SMS Trojans (drain vic-
tims’ mobile accounts by sending SMS messages),
backdoors (give hackers’ access to a Smartphone,
allowing them to install other malware or steal per-
sonal data) and spyware (collects personal data
such as contacts and passwords). This brings in
the need for developers to develop secure apps to
safeguard their customers against various threats.

Architecture
Let’s discuss about above architecture of Android
(Figure 2).

Figure 2. Android Architecture

03/2013 8

ANDROID SECURITY

Linux Kernel
The bottom most layer consists of the Linux Ker-
nel. The Android OS is built on the version of the
Linux Kernel 2.6 with some architectural chang-
es. This layer consists of the various drivers like
camera, audio, Wi-Fi, keypad drivers, etc. An-
droid relies on Linux for core system services
such as security, memory management, process
management, network stack, and driver model.
The kernel also acts as an abstraction layer be-
tween the hardware and the rest of the software
stack.

We all have worked on traditional desktop plat-
forms like Windows or Linux which run the ap-
plications under the user who starts them. For
example, if a particular user installs and runs a
software, it runs with the same set of permissions

as that of the user. If this software turns out to be
malicious, then this software would be allowed by
the operating system to steal/access the sensi-
tive details/files stored on the user machine. This
is because Windows or Linux run all processes
under the same user permission. But if you login
with regular user account than you cannot see all
the processes.

The Figure 3 and 4 shows the processes running
under the same user account for Windows operat-
ing system.

If you login with regular user than you can show
Figure 5.

Since Linux is the heart of the Android operat-
ing system, similar security features are inherited
into the Android system. To understand this better,
we must first understand the Linux security mod-
el. Linux security is based on the concept of users
and groups. Linux assigns a unique user-id (UID)
whenever a new user is created and these users
can be added to a group which has a unique group
id (GID), which is used to distinguish between oth-
er groups. Each file on Linux has the UID of the
particular user assigned to it. Only this user has
the highest privilege, access rights for the file and
can alter the permission on it.

As Android is developed on Linux, the above
concepts apply to it as well. When a new android
package is installed, it is assigned a new user-
id and all the data (files/database) stored by this
application are also assigned the same UID. As
a result, the Linux permissions on the data for
that application are set to follow the full permis-
sions of the associated UID and no other permis-
sions. Linux security prevents applications that
have different UIDs from accessing data, pro-
cess or memory of other applications, thus pro-
viding security and separation between the ap-
plications on the Android platform. See Figure 6
for that.

Libraries
The layer above to the Linux kernel is the An-
droid’s native libraries. These libraries are writ-
ten in C/C++ languages. They are used by vari-
ous components of the android system and are
also exposed to the developers through the An-
droid application framework (the layer above it).
These libraries also run as processes within the
underlying Linux kernel. The libraries are nothing
but a set of instructions that tell the device how
to handle different kinds of data (e.g. The media
libraries support playing or recording various au-
dio/video formats). For example SQLite, Webkit,
Surface manager, OpenGL.

Figure 4. Linux Task manager

Figure 3. Windows task manager

Figure 5. Limited User Task Manager

www.hakin9.org/en 9

Android Security

Android Runtime
This is located on the same layer as the libraries
layer. It consists of the core JAVA libraries and the
Dalvik virtual machine. The core Java libraries are
used for developing Android based applications.

A virtual machine, as we are aware, is a virtu-
al environment with its own operating system. An-
droid uses the concept of the Dalvik virtual ma-
chine, which has been designed to run multiple
VMs efficiently. Android OS uses these virtual ma-
chines to run each application as its own process.

Dalvik VMs help in achieving the following:

• better memory management
• an application cannot interfere with other appli-

cations without permissions
• threading support

The diagram below is a pictorial representation of
the Android environment. It can be observed that
each Android application runs under a separate
virtual instance and each application has a unique
user-id assigned to it (Figure 7).

Application Framework
The next layer above the libraries is the Application
framework. These include the programs that man-
age the basic functions of the phone like resource
allocation, voice call management, etc. The devel-
opers can use these framework APIs to develop
further complex applications.

Some of the important blocks of this framework
are the resource manager (handles resource man-
agement), location manager (location based servic-
es like maps and GPS), activity manager (manages
the activity of the application life cycle), telephone
manager (manages voice calls), and content pro-
vider (manages data sharing between applications).

Applications
At the top of the stack are the applications them-
selves. These include the applications shipped
with android like the email client, SMS client, maps,
browsers and also the applications developed and
distributed through the Android market.

Android Security
Penetration Testing on Android
The Android based applications are complex as
compared to the browser-based applications.

These applications deal with local, as well as
server-side processing. As a result, a separate ap-
proach is taken for testing these applications.

The Android-based applications might involve
HTTP/HTTPS traffic as well and might carry out
local storage and processing. However, for local
storage and processing, the techniques listed be-
low can be used for assessing the application.

In order to test any application in Android, we need
to install the application in an emulator. This can be
achieved by using the Android Debug Bridge.

The Android Debug Bridge is a part of Google’s
Android development toolkit which provides a
command line interface to connect to the emulator
running Android. This can be used to push applica-
tions and install the Android application package
files (.apk files).

Figure 6. Android Task manager

Figure 7. Android Environment

03/2013 10

ANDROID SECURITY

Some of the key ADB commands are listed as
follows:

adb install <path to the apk>

This command will copy and install the application
from the user computer to the emulator Instance
(Figure 8).

During installation if there are any errors or if
the devices is not recognized, then the below two
commands are very much useful in restarting the
ADB service.

• adb kill-server (terminates the ADB process)
• adb start-server (checks if the ADB server is

running and starts if not)

Local Storage Analysis
Android applications store sensitive data such as
credentials, credit card numbers, and more in plain
text in the local storage. As mobile devices are at a
higher risk of getting stolen than a desktop or serv-
er, we need to ensure that the applications do not
store any sensitive data locally.

We will use the Android debug bridge (ADB) shell
feature to browse the file system to determine if
the application insecurely sores data locally.

We will now discuss the various features of ADB
that can be used for pen-testing Android apps.

ADB shell
ADB provides an ash shell that can be used to run
a variety of commands on the emulator. By using
the ADB shell, a variety of vulnerabilities can be
tested for against the Android applications.

The command used to access the shell is:

#adb shell

After getting access to the shell, we can browse
the internal directories using Linux commands as
shown here:

cd (change directory)
ls (lists the information about the files)

In order to access the data of a particular appli-
cation, we need to first access that particular ap-
plication package folder as shown Figure 10 and
Figure 11.

Accessing the particular application package
gives access to the data stored by that application.

Each of the application packages contains the
following folders:

• Cache
• Databases
• Shared_prefs
• Lib
• Files

Figure 8. Android ADB

Figure 11. Folders of Application

Figure 10. List

Figure 9. ADB Shell

www.hakin9.org/en 11

Android Security

Cache
Cache is the directory which contains the files
cached by the applications. These often contain
the files from the web browsers or other apps that
use the WebKit engine (it is an engine that is used
by Android apps to render web pages).

Using the ADB shell, we can browse to the cache
folder and check if any sensitive files are being
cached by the application.

Database
The Android device contains a SQLite database
which is an open source database. It supports stan-
dard relational database features like SQL syntax,
transactions and prepared statements. Using a
SQLite database in Android does not require any
database setup or administration. You only have to
define the SQL statements for creating and updat-
ing the database. Afterwards, the database is auto-
matically managed for you by the Android platform.

The applications might store some sensitive data
into these databases. This could include user cre-
dentials, encryption keys, credit card details, etc.

Using the ADB shell, we can browse to the da-
tabase folder and access the data as shown in
Figure 12.

Shared_prefs
Shared Preferences is a framework that allows the
Android applications to store and retrieve key-val-
ue pairs of primitive data types (booleans, floats,
ints, longs, and strings). This data will persist even
if the application is closed (killed). The shared_
prefs folder contains the .xml files which should be
checked for sensitive values. See the following im-
age (Figure 13).

Files [System Log Inspection]
The logging system of Android provides a mecha-
nism to view the debug output. Logs from various
applications are collected in a series of circular buf-
fers, which then can be viewed and filtered by the
logcat command. These include the files stored by
the Android applications into the files directory. They
might be sensitive information like files or images
being stored and should be checked (Figure 14).

Intent Sniffing
Intent is basically a request for a certain action to
take place. The Android applications make use of
intents for both inter-application and intra-applica-
tion communication.

Figure 14. System Log

Figure 13. Shared Preferences

Figure 12. Database

03/2013 12

ANDROID SECURITY

The contents of Intents can be sniffed, modi-
fied, stolen, or replaced, which can compromise
user privacy. Also, a malicious application can in-
ject forged or otherwise malicious Intents, which
can lead to violation of application security policies
(Figure 15).

SD Card Storage
Android devices provide both internal and exter-
nal storage (SD Card). In a typical Android mo-
bile application, the file system is sandboxed into
the directories, thus preventing malicious appli-
cations from accessing the data of other applica-
tions. The storage of data on SD card raises se-
curity issues in case the card is placed in another
system which may not obey the file permission
rules and may be accessible openly. The sensi-
tive files on the SD card can be accessed as fol-
lows: Figure 16.

Conclusions
Rapid diffusion of mobiles is alimenting the interest
of ill-intentioned, cyber criminals and state-spon-
sored hackers are in fact intensifying their attacks
against mobile platforms. Security in mobile de-
vices must be considered a fundamental require-
ment. Mobile devices represent a technological
appendix to our persons, and due this reason, it
needs a high level of protection.

The correct approach must follow parallel
paths; on the manufacturer’s side, it is crucial
that the mobile and application installed are de-
signed considering all the possible cyber threats
and evaluating with care the surface of exposure.
On the other side, a user must be aware of the
potentiality of their devices and the risks connect-
ed to cyber-attacks. The year 2013 presents itself
full of challenges in mobile security, Android us-
ers will have to face a growing number of cyber
threats of increasing complexity. The principal cy-
ber threats will be launched by cyber crooks who
want to steal sensitive information and intellectu-
al property, but also cyber-espionage activities of
governments and private actors have to be con-
sidered.

BHADReSHSInH GOHIL
Bhadreshsinh Gohil has a Master of
Engineering in Computer Engineering
– specialized in IT Systems and Net-
work Security. He has been working in
this industry for 2 years. He has also
worked as a system administrator for
2 years where he has done his project
into web security as a part of his mas-

ter degree at C-DAC, Pune. He is also group member of
null and other hacking group.
http://about.me/bhadu.gohil

Figure 16. SD card Sensitive data

Figure 15. Intent Sniff

http://about.me/bhadu.gohil

http://www.confidenttechnologies.com

03/2013 14

ANDROID SECURITY

When “you can make $10,000 a month for
a basic effort at writing malware – you
can get more when you distribute this

malware to the contact lists and [build botnets]”. [2]
Worried yet? The statistics are alarming In 2012.
Android accounted for 79% of all mobile malware,
96% in the last quarter alone according to F-Se-
cure [3]. What’s more we bring our own devices
to work, school, everywhere we go, exposing not
only our networks but other networks we might
connect to. McAfee reports malware broke new re-
cords in 2012 with the number of new malware to
reach 100 million for the year [4].

There are three types of Android users out there.
Those that hack, those that will be hacked and
those that will do something about it! Don’t despair.
Android malware (in the tens of thousands) pale in
comparison to Windows malware (over 75 million).
[5] Here are some things you can do to prevent
your Android device from becoming just another
statistic (Figure 2).

Trust Google
Google is well aware of what’s going on with An-
droid – the good, the bad and the ugly. Google has
taken serious steps to prevent malware from af-

Android Hacking
Made easy – What You Can Do To Limit Your exposure

Android devices are extremely popular. From phones
to tablets, e-readers, netbooks, smart watches and car
computer out there. Over a half billion Android device users
are out there with 1.3 million new users added every day
[1]. Any technology that is in a lot of hands is a target for
hackers. Why not?

Figure 1. Android image Figure 2. Bouncer/Android image

http://www.scmagazine.com.au/News/310788,modular-android-malware-dev-kit-to-be-released.aspx
http://techcrunch.com/2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/
http://www.scmagazine.com/mcafee-malware-breaking-records-again/article/257673/
http://www.digitaltrends.com/mobile/who-can-fight-android-malware-not-google/

www.hakin9.org/en 15

Android Hacking Made easy – What You Can Do To Limit Your exposure

fecting your device. Meet the Bouncer. Hackers,
you’re next in line. It’s time to give your best sto-
ry about why you need to get into the club. This
bouncer is good. It will automatically scan apps up-
loaded to Google Play (formerly Android Market),
Google’s application distribution platform for An-
droid developers. The Bouncer isn’t perfect. The
Bouncer will wait and observe your behavior for
a predictable period of time – around 5 minutes
or so. If the hacker’s app is patient and does not
blink during the stare down from the Bouncer it can
get in the club. Google is working on this obvious
shortcoming (Figure 3).

Download from legitimate vendor sites
only
Only download apps from reputable sites like
Google Play. Google Play is similar to Apple’s App
Store. Beware of unofficial sites where hackers
can masquerade original code with their own add-
ed “features.” Google has standards in signing and
releasing Android apps on Google Play. Here are
some of them:

• APK (Android Package) file signatures are re-
quired for all Android developers. If the APK is
not signed it will not install without a signature.

• Test and debugging tools are included with An-
droid SDK.

• Self-signed certificates are also allowed to sign
an APK. A self-signed certificate is ok for test-
ing purposes. A certificate from a Certificate Au-
thority (CA) is better if you want to a trusted cert.

• At release time developers must sign their APK
with their private key. Private keys are generat-
ed locally and never shared.

This combination of file and private key signature
allow for multiple factors of authenticity. Certif-
icates add yet another layer of signature options
(Figure 4).

Update automatically and often
Drippler makes your Android even better. Drippler
is a free app you can download today from Google
Play. Drippler will help you with tips and tricks spe-
cific to your Android device. It will automatically
detect any software updates and upgrades your
Android needs. Drippler will also keep track of
any firmware updates. People love drippler be-
cause it provides helpful, customized and accu-
rate Android news and tips to make your experi-
ence more relevant to your lifestyle. This may be
considered a “soft” layer of security – automatic
updates for Android and firmware. Its weakness is

at the mercy of known vulnerabilities. What about
zero-day vulnerabilities? We don’t know what we
don’t know and vulnerabilities can propagate until
discovered and patched. Even vulnerabilities that
reach worldwide attention can go unpatched for
years. Until we can get ahead of known vulnerabil-
ities we need to be working on writing secure code
in the first place. First to market is very big deal in
just about every line of business still, developers
have the responsibility of writing secure code by
controlling input to only what is needed and noth-
ing more for example a phone number or post-
code has a specific number of digits so only allow
input to only those digits. Secure code is the first,
and most important, step in the process of any se-
curity program. The problem is developers aren’t
security experts and most security experts don’t
write a lot of code that makes it into a product or
service. Remember first to market is everything
when rolling out a new app. Look around Google
Play for any app. What you’ll find are pages and
pages of similar ideas available in an app for free
or for a nominal fee. Business decisions often
overrule security. One reason is the time and cost
of writing secure code can be seen as an inhibi-
tor to the next release. What needs to happen is
security needs to assign a dedicated person who
works side by side with developers to ensure se-
cure code is part of the process on day one of the
project. Not at the end or in the middle of a project.
Business, for the sake of business, should pro-
vide due diligence by ensuring developers receive
training and certifications in writing secure code.
One highly recommended certification is the Certi-
fied Secure Software Lifecycle Professional man-

Figure 4. Drippler image

Figure 3. Google Play image

03/2013 16

ANDROID SECURITY

aged by International Information Systems Secu-
rity Certification Consortium (ISC)². Organizations
or individuals that implement a security program
effectively, whether at home or at work, will real-
ize security becomes an enabler and an insurance
policy. If security is considered an unnecessary
cost or waste of time then the organization (or in-
dividual) has already failed (Figure 5).

Don’t grant unnecessary permissions
Many apps want to you to enable automatic up-
dates or location services. Ask yourself if you really
need a dictionary app, for example, to know your
location. Probably not. Permissions can change
over time. For example, when you upgrade to a
newer version of the software or perhaps reinstall
the same software. Generally speaking software
vendors don’t deliver strict permissions, with their
product, regardless of how it is downloaded and
installed. A slip of the finger during installation can
result in answering, “yes” rather than “no” allowing

for permissions you may not have really wanted.
Slow down during new application installations to
review your options. The permission may not be a
configuration item you can change later. You might
have to remove the app and reinstall to answer the
question properly. One side effect of automatic up-
dates and location services being enable is most
people don’t know if they should or shouldn’t allow
such actions. When in doubt decline any feature
that automatically performs a software change to
your Android device. There are ways to enable and
disable some features as needed. It’s not always
easy to manually toggle on and off app permis-
sions, especially if you have a lot of apps you use
regularly. However, it is necessary to be vigilant to-
day. We must take an active role in protecting our
own privacy (Figure 6).

Install reputable, award-winning Anti-virus soft-
ware for Android Many vendors like Sophos, Avast,
F-Secure, Ikarus, Symantec, Lookout, McAfee and
Zoner offer a free or affordable version of their
products available for Android today [6]. Accord-
ing to AV-Test.org the number one Anti-virus prod-
uct you can use for your Android v4.1.2 is Trust-
Go Mobile Security 1.3 [7]. It scored the highest
overall for protection and usability. However, oth-
ers closely followed like Antiy AVL v2.2 and Bitde-
fender Mobile Security v1.2. Installing award-win-
ning, test-proven Anti-virus software can go a long
way to further securing your Android device. Or so
it would seem.

Palo Alto Networks has recently discovered an
overwhelming majority of “unknown” malware was
delivered via web browsing [8]. Over a period of
three months Wildire Firewall found more than
26,000 samples of unknown files on data collected
from over 1,000 of Palo Alto’s enterprise custom-
ers. Over 90 percent of the malicious files were
delivered via web browsing. This defies the well-
known method of malware delivery via email. Mal-
ware delivery vectors are changing according to
Symantec’s White Paper. Cyber criminals are hid-
ing malware in an iframe or obfuscated Javascript
where it is invisible to the user browsing a website.
[9] A good rule of thumb – be careful where you go
on the web!

Maintain a smaller footprint
Delete apps you don’t use. Apps are a lot of fun
and easy to install. If you share your Android de-
vice with other family members or trusted friends
your Android may have a lot of apps installed. If
you don’t use an app often enough you should re-
move it. On the battle field of cyber war smaller
targets may often get overlooked for larger, eas-

Figure 5. Google + automatic updating image

Figure 6. TrustGo image

http://www.av-test.org/en/tests/mobile-devices/android/jan-2013/
http://www.itworld.com/security/282426/malware-security-report-protecting-your-business-customers-and-bottom-line

www.hakin9.org/en 17

Android Hacking Made easy – What You Can Do To Limit Your exposure

ier targets. The state of affairs in the world today
is we are all at risk for data loss, invasions of pri-
vacy and malicious software. The more we do to
minimize our exposure the better we protect our-
selves against unwanted incidents. Many people
may not be overly concerned if anyone is able to
discover where they go, what they do or sensi-
tive information they may hold on their Android
device. People may feel they have nothing to hide
or protect when using their device. However, let’s
not volunteer our private or sensitive information.
Let’s not make it easy for a stranger to take what
is our own. This just makes it easier for the cyber
criminal to continue to take advantage of others
(Figure 7).

Get Alerts
Knowing the latest attack vectors will help you real-
ize trends and exposures. There are many organi-
zations that track security incidents and the latest
releases from popular vendors. You can sign up for
free and start receiving alerts today. Not all alerts
will apply to Androids specifically. Many alerts ap-
ply to Adobe and Microsoft. However, even the
best developers and most trusted companies have
flaws in their code. No software company is im-
mune to security flaws. Keeping track and react-
ing to the latest vulnerabilities will help keep your
Android device more secure. Closer investigation
of alerts often leads to a patch or a work around
(Figure 8).

Install a Firewall
DroidWall is a Firewall for your Android device.
Did you know you could restrict which apps can
access the network from your Android? Yes, an-
other layer of security you can add to your de-
vice. Installation is easy. Root is required to con-
figure DroidWall. If you are familiar with Linux
operating systems (of which Android is based
on) then you will be familiar with “iptables” and
the rules you can configure to allow or deny apps
connectivity to the network. DroidWall users will
enjoy the benefits of limiting apps to the network
if they have a limited data plan. DroidWall also
helps improve battery life. What if you don’t want
a firewall that does not require root privileges?
Mobiwol claims to be the only non-root required
firewall also available on Google Play. Mobiwol
shares many of the same benefits as DroidWall
and then some. Mobiwol will alert you when ap-
ps access the Internet giving you control and the
knowledge of what apps are doing behind the
scenes (Figure 9).

encrypt Your Android Device
Google Play has myriad encryption apps to
choose from. [10] Many for free or for a nominal
fee. These encryption apps offer military-grade,
strong encryption algorithms like AES, RC6,
Blowfish, Serpent, Twofish and GOST. Most come
with a standard 256 bit encryption algorithm. At
this time it would take 50 supercomputers operat-
ing at 20 Peta-FLOPS an estimated 3×1051 years
to discover the entire 256 bit key space. Encrypt
any of your files, photos, contacts, passwords,
messages, notes, text and even entire folders.
Encryption should come standard with any native
operating system. One of the very first things you
should do when you get your Android device out
of the box is to install and configure an encryp-
tion app.

Healthy Habits of An Android User
Now that you now know several ways to secure
your Android device using software, let’s look at
what you can do to live a more secure lifestyle.
Next topic, changing your habits to become even
more secure. There is no, one piece of software
that will solve all of your potential malware prob-
lems with your Android device. A more effective
approach in addition to the previous section will
make you more secure, physical security. This is
where Android security takes a manual approach
to disrupt, delay and deter further exposure. The
more you make he following tips part of your An-
droid lifestyle the better.Figure 8. DroidWall image

Figure 7. US-Cert image

https://play.google.com/store/search?q=encrypt&c=apps

03/2013 18

ANDROID SECURITY

• Don’t connect to just any wireless network or
computer with your Android. Don’t allow auto-
matic connections to unknown networks.

• Power off when you are not using your Android.
• Randomize network usage. Don’t stay con-

nected to wireless if you aren’t using it.
• Never root (aka RootKit) your Android. Never

allow an app to run as root.
• Never leave your Android device on a table in

a restaurant, halfway in your back pocket, or
loosely held when in public places. When not
in use keep the device out of sight.

• Password protect your Android. Change your
password regularly.

• Configure your phone to be wiped clean or re-
set to factory default if too many unsuccessful
attempts have been made to login. If you have
kids you might reconsider this.

• Minimize. Only run the apps you absolutely
need and use regularly.

• Don’t allow others to shoulder surf to discover
your login password.

• Purchase a case to protect and secure your
phone.

In summary, there are many ways you can fur-
ther protect your Android device from unneces-
sary exposure to malware (and other threats). Set
aside some time in your busy schedule to hard-

en your Android with the software and solutions
mentioned here. Two themes were presented; us-
ing software solutions to secure your Android de-
vice and physical lifestyle choices you can make
today to be more secure. Security is an individual
responsibility that will collectively lead to a more
secure world. Vigilance and due diligence are re-
quired to achieve a smaller target in today’s highly
connected and integrated Internet society.

JOHn LeAR
John Lear, CISSP, has worked in IT for over 18 years as a
system and security engineer and most recently as a De-
vOps Engineer. Ten of those years he was involved with
building a security program from the ground up. He is a
subject matter expert in the areas of hardening operat-
ing systems and applications. John is founder of Oom-
ba Security LLC where he provides security as a service,
automating compliance solutions, training and vulnera-
bility management. His current project includes writing
secure code in Ruby on Rails to scan and ensure system
compliance. When he’s not working he enjoys spending
time with his family and biking.Figure 9. Secret Space Encryptor image

References
1. “Google: 500 million Android devices activated”.

September 12, 2012
2. Modular Android Malware Dev Kit To Be Released.

August 3, 2012
3. Android Account for 79% Of All Mobile Malware in

2012, 96% In Q4 Alone, Says F-Secure. Thursday
March 7th, 2013.

4. McAfee: Malware breaking records, again. Septem-
ber 5, 2012

5. Is Google Helpless To Stop The Scourge Of Android
Malware, December 29, 2012

6. Best Anti-Malware Scanner For Android Devices.
November 23, 2012

7. AV-Test Mobile Devices Android Most Recent Test
Results. January 2013

8. New study finds malware variant skirting AV, most-
ly delivered via web. March 27, 2013

9. Symantec White Paper – Malware Security Report:
Protecting Your Business, Customers and the Bot-
tom Line. September 2011

10. Encryption Apps available on Google Play. April 3,
2013

http://news.cnet.com/8301-1035_3-57510994-94/google-500-million-android-devices-activated/
http://www.scmagazine.com.au/News/310788,modular-android-malware-dev-kit-to-be-released.aspx
http://techcrunch.com/2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/
http://techcrunch.com/2013/03/07/f-secure-android-accounted-for-79-of-all-mobile-malware-in-2012-96-in-q4-alone/
http://www.scmagazine.com/mcafee-malware-breaking-records-again/article/257673/
http://www.digitaltrends.com/mobile/who-can-fight-android-malware-not-google/
http://www.digitaltrends.com/mobile/who-can-fight-android-malware-not-google/
http://www.forbes.com/sites/adriankingsleyhughes/2012/11/23/best-anti-malware-scanner-for-android-devices/
http://www.av-test.org/en/tests/mobile-devices/android/jan-2013/
http://www.av-test.org/en/tests/mobile-devices/android/jan-2013/
http://www.scmagazine.com/new-study-finds-malware-variants-skirting-av-mostly-delivered-via-web/article/286357/
http://www.scmagazine.com/new-study-finds-malware-variants-skirting-av-mostly-delivered-via-web/article/286357/
http://www.itworld.com/security/282426/malware-security-report-protecting-your-business-customers-and-bottom-line
http://www.itworld.com/security/282426/malware-security-report-protecting-your-business-customers-and-bottom-line
http://www.itworld.com/security/282426/malware-security-report-protecting-your-business-customers-and-bottom-line
https://play.google.com/store/search?q=encrypt&c=apps

http://www.drweb.com/press/

03/2013 20

ANDROID SECURITY

Wireless networks and mobile Wi-Fi devic-
es have saturated both the home front
and business arena. The threats against

Wi-Fi networks have been known for years, and
though some effort has been made to lock down
wireless networks, many are still wide open.

In this article we will look at a few common Wi-Fi
security misconceptions. We will also see how a
penetration tester (or unfortunately, hackers) could
set up a fake Access Point (AP) using a simple
wireless card and redirect network users, capture
authentication credentials and possibly gain full re-
mote access to the client.

Finally, we will look at the latest app for Android
that allows you to turn your Wi-Fi smart phone or
tablet into a pentesting tool. With it you can scan
your network for open ports, check for vulnerabili-
ties, perform exploits, Man-in-the-Middle (MitM) at-
tacks and even sniff network traffic on both your
Wi-Fi network and wired LAN.

So let’s get to it!
(As always, do not connect to any network or com-
puter that you do not have permission to do so)

Wireless Security Protocols
Though the news is getting out and Wireless
manufacturers are configuring better security as
the default for their equipment, there are still a
large amount of wireless networks that are woe-

fully under secured. One of the biggest things in
securing your Wireless network is the Wireless
Security Protocol. You have “None,” which basi-
cally means that you are leaving the door wide
open for anyone to access your network. “WEP”
which has been cracked a long time ago and ba-
sically means that you locked the door, but left
the key under the front mat with a big sign saying,
“The key is under the Mat,” WPA which is much
better, and WPA2 is the latest and recommend-
ed security setting for your network. The following
chart (Figure 1) was created from a recent local
city wardrive.

As you can see, 13% of detected Wireless net-
works had no security set at all, and 29% more

Weak Wi-Fi Security,
evil Hotspots and Pentesting with Android

In this article we will take a look at some of the most
common security issues with Wi-Fi. We will see how a
wireless card can be turned into a rogue Access Point using
the Social Engineering Toolkit. And also take a look at the
latest Android app that can turn your Android device into a
pentesting platform.

Figure 1. Chart of Wi-Fi Networks Detected (Created using
Kismet and Excel)

www.hakin9.org/en 21

Weak Wi-Fi Security, evil Hotspots and Pentesting with Android

were not much better using WEP. Interestingly
enough a whopping 46% were using WPA2, which
was actually kind of surprising. But in many cases,
it seemed from the beacons captured that the AP
was capable of WPA2, but clients were using the
lower WPA.

WPA/WPA2 can still be cracked, so set a long
complex passkey for them.

Let’s take a look at some common wireless secu-
rity misconceptions, and how a wireless card can
be turned into a malicious access point.

Getting Started
First, you will need a copy of Backtrack 5 [1] and
a Wireless card capable of entering monitoring
mode. Many Wi-Fi adapters are capable of doing
this, but some are not. If you are planning on pur-
chasing one, do a little research first to determine
if your Wi-Fi adapter will work in monitoring mode
and with Backtrack 5.

For this article I used a TP-Link TL-WN722N
USB adapter with antennae. The card was very af-
fordable (less than $20 USD from Newegg.com),
has great range and works great with Backtrack
5 both in Live CD mode (booting from a CD) and
when running in a Virtual Machine.

Viewing Wireless networks
with Airmon-nG
First, let’s take a look at how to view available
wireless networks using Backtrack and Airmon
-NG.

• Start Backtrack 5
• Open a command terminal and type in the

command “ifconfig”. You should see your wire-
less network card listed as wlan0 (or wlan1 if
you have two). If the interface does not show
up, try typing “ifconfig wlan0 up”. Notice that
the ifconfig command displays the physical
MAC address of your card. This is a unique
identifier hardwired into the card.

• Okay, now all we need to do is put the card in
monitoring mode. To do this, just type: airmon-
ng start wlan0

• A monitoring interface is created called “mon0”
• Now, just start Airodump-ng on mon0 by typ-

ing: airodump-ng mon0

The Airodump-ng program will start and you will
see a list of all available wireless access points
(APs) and also a list of clients that are attached
(Figure 2).

Airodump-ng lists several pieces of information
that are of interest. The first is the MAC address

of the AP device. Next is the Power level. You also
see the channel number that the AP is operating
on, the number of packets sent and the encryp-
tion type. Lastly, the AP name is listed (not shown
in figure).

From the figure above, you can see that the top
AP is using “WPA2”, which is the recommended
encryption type. You can also see that the next two
are not very secure. One is using “WEP”, which
was cracked a long time ago. And the last one is
“Open”, which means that there is no security set
on the AP and anyone can connect to it.

As shown, there are no clients connected to any
of the Access Points. If a client did connect, we
would see the MAC address of both the client and
the AP they connected to listed under the BSSID
STATION section. Thus, you can see one of the
inherent security flaws of Wi-Fi. Filtering clients by
MAC address is not a very effective security strat-
egy as it is trivial to view which clients are connect-
ed to which AP’s by their physical address. All an
attacker would have to do is view which addresses
have connected and then spoof the address to by-
pass MAC filtering.

Viewing Wi-Fi Packets and Hidden APs in
Wireshark
Okay, we have seen how to view which APs are
available, now let’s see how we can capture wire-
less packets and analyze them in the ever popular
protocol analyzer Wireshark.

Simply place your Wi-Fi card in monitor mode
like we did in the previous example, and then run
Wireshark. Placing the card in monitor mode will
allow us to see wireless management traffic like
AP Beacons and Probes:

root@bt:~# airmon-ng start wlan0
root@bt:~# wireshark &

Wireshark will open, now all you need to do is se-
lect “mon0” from the interface list and you should
instantly see a list of all the Wi-Fi Beacon traffic.

Figure 2. Available Wi-Fi networks from Airodump-ng

03/2013 22

ANDROID SECURITY

For example:

1 0.000000 Beacon frame, SN=3269, FN=0,

SSID=Broadcast

2 0.028565 Beacon frame, SN=3318, FN=0,

SSID=Skynet

Here you can see a capture from two separate
APs. The second one is called “Skynet”, but the
first one is different. The SSID is “Broadcast,”
which tells us that the name for this AP is hidden.
This is another ineffective technique used to se-
cure wireless networks, and I will show you why.

If a client attempts to connect to this hidden AP,
we automatically capture the SSID name in Wire-
shark as seen below:

93 6.623480 Probe Request, SN=0, FN=0,
SSID=YouCantSeeMe

99 7.122094 Probe Response, SN=843, FN=0
SSID=YouCantSeeMe

The AP name that did not show up in the Bea-
con frames becomes revealed to us as soon as
a client attempts to connect. The client lists the
hidden AP name in the probe request, in this
case “YouCantSeeMe.” And the AP echoes its
hidden name back to the client in the Probe
Response.
To stop the Wireshark capture, just use the “Stop
Capture” button on the menu. You can then search,
filter or save the results.

Turning a Wireless Card into an Access
Point
One of the interesting features of wireless cards
is that they can also act as an Access Point. This
feature is of great interest to penetration testers,
but unfortunately also to malicious users. You can
create an AP using any SSID that you want. If
you name your created AP the same as an exist-
ing one, the client cannot tell the difference and
will connect to the nearest one, or the one with the
strongest signal.

Once your card is in monitoring mode, you can
turn it into an AP using the Airbase-ng command:

root@bt:~# airbase-ng -e “EvilAP” -c 6 mon0

This command creates an AP with the name
“EvilAP”, on channel 6 using the mon0 interface.
This AP should now show up on any nearby Wi-
Fi clients.

We have now turned our little unassuming wire-
less card into an “EvilAP”. To complete the Dr. Je-

kyll to Mr. Hyde conversion, we also need to config-
ure the Backtrack system to give out IP addresses
to connecting clients (DHCP) and control what
websites they can see (DNS spoofing). This allows
you to take complete communication control be-
tween the internet and the client user. Though this
is not hard to do, for this article we will look at the
Social Engineering Toolkit (SET) that already has
this capability built in and runs from an easy to use
menu system.

Social engineering Toolkit (SeT) Wi-Fi
Access Point Attacks
Let’s take a quick look at how a pentester could
use SET to test the security of a network. First you
need to install dhcp3-server, at the console prompt
type:

root@bt:~# apt-get install dhcp3-server

(Note: When you run the Wi-Fi attack, SET will
tell you that you need to manually edit the dhcp3-
server config file, and opens it for you. Just type
in what SET tells you to enter and save it.)

Now one other thing you may want to do is edit
SET’s config settings for the AP attack. SET will
create an AP using the name “linksys” on chan-
nel 9. If you want to change these settings just
edit the AP section of the set_config file. As you
can see in the example below, I changed the AP
SSID name to “Evil Wi-Fi” and left the default
channel at 9:

/pentest/exploits/set/config/set_config

THIS FEATURE WILL ATTEMPT TO TURN CREATE A
ROGUE ACCESS POINT AND REDIRECT VICTIMS BACK TO THE
SET WEB SERVER WHEN ASSOCIATED. AIRBASE-NG and

DNSSPOOF.
ACCESS_POINT_SSID=Evil Wi-Fi
AIRBASE_NG_PATH=/usr/local/sbin/airbase-ng
DNSSPOOF_PATH=/usr/local/sbin/dnsspoof
#
THIS WILL CONFIGURE THE DEFAULT CHANNEL THAT
THE WIRELESS ACCESS POINT ATTACK BROADCASTS ON

THROUGH WIFI
COMMUNICATIONS.
AP_CHANNEL=9
#

To start the attack, run SET, select option 1, “So-
cial-Engineering Attacks”. Next select option 8,
“Wireless Access Point Attack Vector”.

Next you will see a screen with the text (Figure
3). Just start the wireless attack, and SET auto-

www.hakin9.org/en 23

Weak Wi-Fi Security, evil Hotspots and Pentesting with Android

matically sets your wireless card to be an access
point, configures the AP to give out IP addresses
in the range you specify and also directs all DNS
traffic to your backtrack system.

Now that you are back at the terminal prompt, en-
ter “99,” and return to the main SET menu. From
here you can select any of the other SET web attack
vectors that you want to run automatically when a
client connects. I covered these attacks extensively
in a previous Hakin9 article, so I won’t cover them in
depth here. But let’s look at one quickly.

For example, let’s choose the Java applet attack
and use the Gmail web template. Once it is run-
ning, anytime that someone connects to our Ac-
cess Point, no matter what website that they try to
surf to, they will be redirected to our SET server
web page that looks like Gmail (Figure 4). The Ja-
va applet attack will also fire. If they allow the ap-
plet to run, we get a full remote shell.

This is only a simple example, but this demon-
strates that if you can get users to connect to your
SET AP, you can control where they can surf and
what they see. Though this is pretty obvious, “Hey,
every time I go to a different website, I end up at
Gmail!” a malicious user would be a little more
discrete. They could easily set up a fake AP that
just harvests credentials without the re-direct. This
would allow the victim to surf the web without in-
terruption (and without suspicion) but it would re-
cord any usernames and passwords entered in the
background, unseen to the user.

If the malicious user ran a program like sslstrip
[2] in Backtrack along with the rouge AP, he could
also capture any SSL encrypted data from the ses-
sion. Sslstrip performs a man-in-the-middle type
attack with secure https communications. Basical-
ly it creates a secure connection between the ma-
licious AP and the target site, but communicates
with the user’s client PC in standard http communi-
cation. This effectively “strips” the SSL encryption
out of the communication stream.

This could put an unsuspecting user’s secure ac-
count information and credit card numbers at risk
and is why one must be very cautious when using
any “open” or “free” Wi-Fi hotspots!

Mobile Wi-Fi Attacks
Many think that they are immune from wireless at-
tacks if they are using a Tablet or even a Smart
Phone. But many, if not all Wi-Fi attacks that work
against a PC still work against mobile devices.
Man-in-the-middle, DNS and credential harvesting
attacks all work regardless of what platform you
are using. Mobile devices can even be used to test
the security of your wired LAN.

As a matter of fact, as a pentester one of the
coolest mobile apps you can get for the mobile
platform is zImperium’s zAnti [3] – Android Net-
work Toolkit. zAnti will scan for and displays any
wireless networks in the area. You can then se-
lect the network you want and run several levels
of nmap scanning against them, from a quick scan
to an intrusive level scan. zAnti also allows you to
perform man-in-the-middle attacks, network sniff-
ing, exploits and the ability to create reports.

If you liked the previous version (called Anti)
then you will love this update. zAnti seems to be
smoother and easier to use than its predecessor.
zAnti still comes with a token type credit system
that allows you to access the more advanced fea-
tures, but like the first one, you can still see the
power of zAnti with the free version.

So how does it work?
Once you start the App, you will be asked to login.
Then zAnti does a quick scan of available Wi-Fi net-
works and asks which one you want to test. Just
select the network and zAnti does a quick scan and
shows all the available hosts on the network.

Found a target that looks interesting? Just se-
lect it and with a quick swipe of the finger and you

Figure 3. SET Wireless Attack Menu

Figure 4. Client opens web browser and tries to surf the web

03/2013 24

ANDROID SECURITY

reach the Action menu. From here you can per-
form several different attacks including sniffing and
exploit attempts. Swipe again and you come to the
Nmap menu where you have the option to run sev-
eral levels of nmap based scanning to attempt to
detect OS version and service identification. Swipe
once more and you will come to a comment page
where you can write notes about the target.

In a test, I ran zAnti on my 7” Android Tablet.
Within a few seconds I had a complete list of all
the machines on my network. Selecting one of my
Windows 7 systems from the menu I performed a
deeper nmap scan. The scan found no open ports,
and it could not provide much information about
the client. But by switching to the Action menu
(Figure 5) I choose the “sniffer” option.

And within seconds I was viewing a list of all the
webpages that my Windows 7 wired client was vis-
iting, remotely on my droid tablet! (Figure 6)

Obviously some type of ARP (Address Resolu-
tion Protocol) cache poisoning was going on here.
A quick look at the Windows 7 client’s ARP Ta-
ble showed that zAnti successfully performed a
man-in-the-middle attack on the client. And sure
enough, the attacking machine switched its MAC
address for the client gateway.

Here is a look at the ARP table before running
the sniffer program:

C:\>arp -a
Interface: 192.168.0.111 --- 0xa
Internet Address Physical Address Type
192.168.0.1 b8-a4-86-aa-43-6d dynamic

And after:

C:\>arp -a
Interface: 192.168.0.111 --- 0xa
Internet Address Physical Address Type
192.168.0.1 00-48-92-9c-da-ec dynamic

Notice the change in the Physical MAC address for
the gateway machine. Now my wired client will send
all of its network traffic to the Droid thinking that it is
the default gateway. The Droid will then analyze the
data and forward it to the gateway. And the gateway
will send all of the return traffic for my client to the
Droid which will then return it to the client.

This effectively put the wireless Droid in between
my router and the wired Windows 7 Client so it
could sniff all the network traffic. But the fun does
not stop there.

Figure 5. Individual client attack options in zAnti
Figure 6. Links to Google searches performed by wired LAN client as
viewed on Wi-Fi Droid

www.hakin9.org/en 25

Weak Wi-Fi Security, evil Hotspots and Pentesting with Android

You can sniff traffic from any device connected to
the same network. From my Android tablet I was
even able to monitor the internet traffic of my iPad!

Conclusion
As we have shown there are many unsecured wire-
less routers out there and it is very easy to circum-
vent some of the common security measures that
are implemented. It is also very simple to create
a rogue “Free Wi-Fi Hotspot”, intercept the wire-
less traffic, and control what a surfer can see in his
browser and where he can surf.

The best defense against Wi-Fi attacks is to secure
your router! Do not use open or WEP security. One of
the main defenses your network has is your firewall;
if you allow people inside your firewall you can open
yourself up to ARP MitM attacks, packet sniffing and
other attacks. Unfortunately, many corporate users
do not understand this and will take their business
laptops from a very secured environment at work to
a very unsecured Wi-Fi network at home.

References
[1] http://www.backtrack-linux.org/downloads/
[2] http://www.thoughtcrime.org/software/sslstrip/
[3] http://www.zantiapp.com/anti.html

Be cautious of free Wi-Fi. Don’t do online banking
or shopping while using public Wi-Fi. Make sure your
operating system is using a firewall and preferably
internet security software. If your security software
monitors your ARP table, that is even better! Use
common sense, if you are working on sensitive infor-
mation, do it at home not at the local coffee shop that
offers free Wi-Fi, even if their cinnamon rolls are the
best in the world. It is just not worth the risk!

For more information, check out Vivek Ramach-
andran’s excellent book, “Backtrack 5 Wireless
Penetration Testing Beginner’s Guide.” Also, Da-
vid Kennedy’s (creator of SET) book, “Metasploit:
The Penetration Tester’s Guide” is an excellent
reference on Backtrack 5, SET and the Metasploit
Framework.

DAnIeL DIeTeRLe
Daniel Dieterle has 20 years of IT experience and has pro-
vided various levels of IT support to numerous companies
from small businesses to large corporations. He enjoys
computer security topics, is the author of the CyberArms
Computer Security Blog (cyberarms.wordpress.com), and
a guest author on a top infosec website. Dan was also a
technical editor and reviewer for Vivek’s book, “Back-
track 5 Wireless Penetration Testing Beginner’s Guide”.

a d v e r i s e m e n t

http://www.backtrack-linux.org/downloads/
http://www.thoughtcrime.org/software/sslstrip/

http://www.zantiapp.com/anti.html
http://www.appsec-labs.com

03/2013 26

ANDROID SECURITY

Business applications often deal with confi-
dential data, process transactions, and log
information for auditing purposes. When

developing a mobile, distributed application it is
important to not only protect confidential informa-
tion, but also to prevent tampering and destruction
of important data.

Android dominates the worldwide smart devices.
Software developers build applications for these
devices with a Java API, and hundreds of thou-
sands of applications have already been created.
Android uses a unique Activity model to manage
interaction between applications and the user. Pro-
cesses are started automatically, either to perform
a task requested by the user, to provide data to an
Activity, or to complete a background task.

This article explores the risks associated with
handling critical data on Android devices, includ-
ing the importance of security, performance tuning,
scalability, data distribution and synchronization
with back-end enterprise RDBMS technologies.

Protecting Data: Android Security
Considerations
Android is designed to secure individual appli-
cations, using Intents to access Activities in oth-
er applications rather than sharing files or library
functions directly. As long as data remains on the
device in an application’s private storage area, An-

droid will protect it from unauthorized access. How-
ever, storing data on removable media, exposing
data providers to other applications, and commu-
nicating with remote systems each introduce new
security risks.

Most Android devices include an SD card read-
er. SD cards are shared between applications, and
can be easily removed and replaced. This makes
them an excellent tool for backing up critical data,
but also an important security concern. Confiden-
tial data can be easily copied to another system
from a removable card.

Data is often synchronized with back-end sys-
tems that service many different devices and us-
ers. Providing an Android application access to
such a system introduces further risk, beyond the
risk to the device itself. At best, an eavesdropper
on the network might capture confidential data
sent to or from the device. At worst, an attacker
might gain full access to the back-end database if
it is left open for anonymous access.

Each device usually only needs access to a small
subset of the data available in the back-end sys-
tem. That is, back-end data must be fragmented
amongst the devices and filtered to protect private
data. This introduces another security concern: a
device should only have access to read or modi-
fy certain information in the back-end system, and
should not be able to imitate a different device.

Build Secure Android
Applications with ITTIA DB SQL

With Android’s worldwide success, market dominance and
the availability of inexpensive devices, it is easier than ever
to deploy a distributed network of data-driven mobile
software. With the rise of smart devices and similar mobile
platforms for Android, anyone can own a general-purpose
computing device that is capable of storing large amounts
of data and running sophisticated applications on Android.

www.hakin9.org/en 27

Build Secure Android Applications with ITTIA DB SQL

When a record is shared between several de-
vices, a conflict will occur if more than one device
modifies that record between synchronizations. A
clever attacker with access to one device might
exploit this scenario to overwrite important da-
ta. Conflict resolution policies must be enforced
in the back-end to protect the consistency of the
data.

Securing Android Applications with ITTIA
DB SQL
When designing a mission-critical Android ap-
plication, developers of business intelligence
solutions should consider data security as one
of the top priorities in the software architecture,
whether to protect confidential data, to prevent
tampering, or both. To that end, Android applica-
tions need a secure solution for on-device stor-
age, data distribution, and synchronization with
back-end systems.

ITTIA DB SQL is a secure embedded database
technology for Android that supports data distribu-
tion through replication and RDMBS synchroniza-
tion. The encryption and authentication features
of ITTIA DB SQL enables Android applications to
achieve the greatest level of data security by en-
crypting storage media, network communications,
and password exchanges.

exceptional Authentication Mechanism
Whether connecting over TCP/IP, shared memory,
opening a database file directly, or through Secure
Sockets Layer (SSL) protocol, ITTIA DB SQL uses
simple database-wide passwords to prevent unau-
thorized access. The SSL protocol offers further
protection from eavesdropping, the unauthorized
interception of communications, and uses certifi-
cates to prevent session highjacking. Moreover,
database passwords are never transmitted over
the network, whether or not the communications
channel is encrypted.

Secure encryption Solution for enterprise
Businesses
The comprehensive encryption features of ITTIA
DB SQL provide Android developers with the op-
portunity of configuring remote client applications
to use SSL when connecting to ITTIA DB on any
desired operating system. This secures communi-
cation path for data distribution and transfer of cli-
ent/server applications that are susceptible to at-
tacks all the way from storage media to the client.

Applications can use storage encryption to pro-
tect data on internal and removable media from
unauthorized access. The Advanced Encryption

Standard (AES) is a specification for the encryp-
tion of data that is commonly adopted by the U.S.
government and others across the world. ITTIA DB
SQL storage encryption provides support for the
AES-128 and AES-256 block ciphers.

Data Distribution and Database Design
Considerations on Android
Whether you are developing on Android or another
platform, every distributed application has differ-
ent requirements for the secure sharing of data. A
few applications may require all data to be distrib-
uted across all devices, with changes shared con-
tinuously, but most applications do not have the
bandwidth or capacity for such an approach. De-
velopers must make several choices about what
information should be shared and when.

Distributed Databases
A distributed database is a collection of database
sites that share information in some way.

There are two types of distributed databases:

• Homogenous Distributed DBMS. Every site
runs the same kind of DBMS software. The
same application code and data files can be
used at any site.

• Heterogeneous Distributed DBMS. Each site
can run a different kind of DBMS software,
possibly from different vendors. Application
code for one site may not run at other sites,
and database files cannot be directly copied
between sites.

Though homogenous distributed databases are
easier to develop, maintain, and secure, hetero-
geneous distributed databases are common due
to the constraints of device hardware, which is of-
ten incapable of running the same database man-
agement systems that are often used on back-end
servers. Most back-end database software will
not run on Android.

Data Fragmentation
In a distributed DBMS, tables are stored across
several sites, such as Android devices and one
or more back-end servers. If each site serves its
own branch of an organization, the whole relation
should be partitioned over the sites so that each of
them stores only relevant parts of data.

There are two kinds of data fragmentation:

• Horizontal fragmentation. A horizontal frag-
ment is a relation that contains a subset of
rows from the original relation.

03/2013 28

ANDROID SECURITY

• Vertical fragmentation. A vertical fragment is a
relation that contains a subset of columns from
the original relation.

Replication
Replication is a technique in which two or more
sites maintain copies of a table fragment. Replica-
tion provides a mechanism for duplication of data
to increase availability, improve performance, or
simplify execution of queries.

Two types of replication are available, syn-
chronous and asynchronous, which differ in how
changes to the data are maintained.

Synchronous Replication
Synchronous replication ensures that the distribut-
ed database as a whole adheres to the ACID prop-
erties: atomicity, consistency, isolation, and dura-
bility. From the application’s perspective, the data
is always consistent. Any query on the shared rela-
tion fragment will yield the same result regardless
of which site it is issued to.

Synchronous replication accomplishes this by
propagating changes to other sites before a trans-
action commit is completed, ensuring that all sites
commit the changes in an atomic way. This is
known as read-one write-all database access. If
any site cannot commit the transaction, the chang-
es are not applied at any site and the commit op-
eration will fail.

However, data propagation, locking, and coor-
dination of the commits have a high performance
cost. A non-distributed database typically has bet-
ter write performance than a distributed database
using synchronous replication. For some applica-
tions, it is feasible to mitigate this cost by using in-
memory storage and relying on redundancy rather
than persistent media to preserve data over time.
For other applications, synchronous replication is
undesirable.

Asynchronous Replication
To overcome this issue, many database vendors
provide asynchronous replication. Asynchronous
replication relaxes the ACID properties, allowing
the data to be inconsistent between sites at cer-
tain times. Rather than propagating changes be-
fore commit, they are collected by the DBMS and
applied to other sites at a later time.

Under this model, some transactions become vis-
ible to other transactions only at a later time. Never-
theless, this is a practical limitation for many applica-
tions that significantly increases system throughput.

Asynchronous replication is typically used in one
of two ways:

• Master/slave replication (single master repli-
cation). In this scheme, each fragment can be
updated at a single site only. This site is called
the master for that fragment. So while the mas-
ter site maintains the authoritative copy of a
shared relation, the slaves each maintain read-
only copies of the fragment.

• Peer-to-peer replication (multiple master repli-
cation). In this scheme, some fragments may
be updated at more than one site. When these
changes are propagated to the other sites,
change conflicts can occur and a conflict res-
olution strategy should be applied in order to
merge changes correctly.

Asynchronous replication is performed in two
phases: collecting changes from each site and
applying them to all other sites.

The collection phase usually occurs during the
transaction that modifies the database. The sys-
tem records each change in some way, so that a
complete set of changes can be generated in a
reasonable time.

The application phase retrieves the changes
from the source site and applies them to a des-
tination site. A conflict detection process is used
on each change, and any conflicts are resolved
either by refusing the change or applying it, often
with further modification. While conflict detection
is handled by the DBMS in a general way, con-
flict resolution requires insight into the applica-
tion logic.

A Secure Database Solution for Android:
ITTIA DB SQL
ITTIA DB SQL is an embedded relational database
that is designed to run efficiently within the con-
straints of mobile devices and other embedded
systems. With support for both heterogeneous and
homogeneous distributed databases, ITTIA DB
SQL is able to both share data between Android
devices and communicate with back-end RD-
BMS products, such as Oracle, MS SQL Server,
MySQL, and more.

A number of features in ITTIA DB SQL aid ap-
plication developers in building secure, distributed
and high-availability systems. The following fea-
tures are supported for homogeneous distributed
databases only:

• Prepared transactions
• Distributed transactions
• Table snapshots
• Synchronous commit
• Replication on commit

www.hakin9.org/en 29

Build Secure Android Applications with ITTIA DB SQL

By connecting to an ITTIA DB Sync server run-
ning on a back-end system, ITTIA DB SQL for
Android can also distribute data with a number of
RDBMS products. The following features are also
supported for both homogeneous and heteroge-
neous distributed databases:

• Single-master replication on demand
• Multiple master replication on demand

Replication on Commit
ITTIA DB SQL can perform synchronous replica-
tion on designated tables, automatically applying
changes in these tables to database files on other
Android devices. When a transaction is committed,
changes are sent to other participates using a dis-
tributed commit over all participating peers. As a
result, committing a transaction will only succeed if
all replication peers accept the changes.

Only homogeneous distributed databases can
use synchronous replication with ITTIA DB SQL.

Replication on Demand
ITTIA DB SQL for Android supports both single-
master and multiple-master replication modes in
both homogenous and heterogeneous environ-
ments. These cases all have similar behavior, but
differ in a few subtle but important ways.

When ad-hoc replication is enabled for a table in
an ITTIA DB SQL database, subsequent changes
are recorded automatically in the database jour-
nal. Journal records are retained, using log rota-
tion, until the changes are replicated to each con-
figured peer. Change events are propagated to
each peer on demand and applied to the peer’s
database.

The back-end RDBMS is handled in a slightly dif-
ferent way: The replicated table has three triggers
which catch the INSERT/UPDATE/DELETE events
in a shadow table, which maintains one state row
per each row in the original table. These two ta-
bles are joined using a configured primary key. The
shadow table allows recovering the state of each
row and finding out the set of changed rows in a
reasonable time.

Conflict Detection
When replication is done between two Android de-
vices, conflicts are detected using either row com-
parison or STAMP columns. Each change event
records the row column values before the change
is applied and this ‘before’ image is compared with
the row found in the target database.

Another conflict detection option is to use a
STAMP column. In this mode the application

should designate one 64-bit integer column for this
purpose and provide the column name as a part of
the replication configuration.

The stamp column is filled during modification.
It traces the state of the row owner (original peer
address) and the row version. Conflict detection is
done just by comparing the row owners. When the
owner peer address is different, a conflict is de-
tected. That is a rather simplified schema and is
not capable of handling the full range of row con-
flicts as in the case of row comparison, but it is still
practical, especially for single-master mode when
conflicts occur when merging data from several
Android devices into a single table.

Conflict Resolution
ITTIA DB supports policy-based conflict resolution.
For each data event a policy can be defined to limit
event processing. This policy consists of the fol-
lowing components:

• Disable/enable operation. Each operation can
be disabled and consequently any changes of
that type will be rejected. For example, it might
be desirable to prohibit row deletion in the ar-
chive table.

• Exclusive operation use. An INSERT or DE-
LETE operation could be treated different-
ly depending on the row existence. For exam-
ple, when an UPDATE event is applied and no
such row exists locally, an INSERT statement
could be generated instead and, vice versa,
an INSERT could be transformed into an UP-
DATE when the row already exists. The exclu-
sive operation option prohibits such a trans-
formation.

• Acceptable. accept always, reject always, or
peer priority. When peer priority is configured
the peer’s priority is compared with the local
one and if the remote priority is higher then the
change is applied.

When the ITTIA DB Sync server detects a conflict
between data from an Android device and a back-
end RDBMS, conflict resolution is accomplished
by calling user supplied functions.

Fragmentation
Vertical fragmentation is done using the common
column subset, matching columns by name.

Horizontal fragmentation is done in two differ-
ent ways – using either the peer address or, for a
back-end RDBMS, custom filters.

Each table can be configured with a PEER ad-
dress column. When such a column is config-

03/2013 30

ANDROID SECURITY

ured it is assumed to carry either the address of
a peer to exchange the row with or the address
of a group of peers. The peer address column is
assumed to have positive values, while the group
address column has negative values. The group
address facility is only available to the ITTIA DB
Sync server. This fragment can be limited further
using a configurable send-filter. A send-filter is a
plain SQL boolean expression that is merged into
the WHERE clause.

Android Database API
The Android API for ITTIA DB SQL implements the
same interfaces as Android’s built-in database. As
a result, migrating an Android application to ITTIA
DB SQL is a straightforward process that most-
ly requires replacing the names of packages and
classes. After migration, Android applications have
access to all of ITTIA DB SQL’s features, including
shared database access, high-performance mem-
ory storage, and replication.

ITTIA DB SQL also uses static typing, where
type information is stored in the database sche-
ma as part of a table’s description. Each column
can contain only a specific type of data. This en-
sures that type mismatch errors are identified ear-
ly, when there is the best chance to successfully fix
the mistake. This is important when the database
is shared between applications that are developed
separately, as the database schema forms a con-
tract by which all parties must abide.

The Android database API can execute SQL
queries, or generate SQL queries automatically
for many common operations. ITTIA DB SQL also
supports SQL queries and query generation, but
also provides direct access to tables and index-
es with low-level table cursors. Table cursors have
lower overhead than SQL queries and allow modi-
fications to be made directly while browsing a ta-
ble, without constructing an update query. In many
cases, an application can use table cursors to im-
prove performance.

Scalable Flash Storage
ITTIA DB SQL provides safe, scalable on-disk file
storage with row-level locking. Transactions pro-
vide full ACID protection, guaranteeing atomicity,
consistency, isolation, and durability, with lower
overhead.

When ITTIA DB SQL commits a transaction, on-
ly the write-ahead log must be written immediate-
ly because it contains a copy of all the changes
made in the transaction. Log entries are written
sequentially and only contain information about
changes, so fewer pages are written to disk. Oth-

er modified pages are written to disk later, after
accumulating changes from many transactions.
Under high load, ITTIA DB SQL can significant-
ly reduce the amount of write activity compared
to Android’s built-in database, both boosting per-
formance and reducing wear on flash storage
media.

ITTIA DB SQL uses a less restrictive locking
technique: row-level locking with isolation levels.
The database automatically tracks all rows that
are read or modified in a transaction. At the high-
est level of isolation, known as “serializable,” rows
are locked in such a way as to prevent all possi-
ble conflicts. And for most simple transactions, the
isolation level can be reduced to minimize locking
even further.

This ensures that a transaction is only blocked
when it would create a conflict with another trans-
action already in progress. In addition, an entire
table can be locked manually.

Robust Shared Access
ITTIA DB SQL also supports concurrent shared ac-
cess, either directly opening the same database
file in multiple threads, or using a lightweight serv-
er to broker connections. This allows data to be
easily shared between:

• Threads in an Activity
• Activities in an app process
• Applications on a device
• Devices on a network

Each connection has its own transaction, so that
independent tasks do not interfere with each other
in unexpected ways.

The lightweight data server used to negotiate
shared access can be run directly from within an
Android application. No code changes are re-
quired to access a database file on the same de-
vice and the application can also open database
files remotely over a TCP/IP network.

Secure encryption
Android devices that store sensitive information
must use encryption and authentication to pre-
vent malicious access. ITTIA DB SQL supports file
storage encryption that protects data on internal
and removable media from theft. When replication
exchanges data with a back-end system, the con-
nection can be protected by SSL/TLS encryption
and SCRAM authentication. This prevents eaves-
dropping, the unauthorized interception of com-
munication, and uses certificates to prevent ses-
sion highjacking.

www.hakin9.org/en

Conclusion
Android is an important platform for many new ap-
plications and the data management challenges
on Android devices will only grow as tablets and
other powerful devices continue to be developed.
Ensuring that data is secured both on the device
and when communicating with other devices and
systems requires careful consideration and plan-
ning.

ITTIA DB SQL provides a replication environ-
ment that will improve the system, with respect to:

• Security
• High Availability
• Reliability
• Modularity

Android applications can achieve great mobility,
by delaying replication until a stable connection
is available and fragmenting data to reduce trans-
mission cost. Applications also gain significant in-
teroperability and scalability, for use in data min-
ing and data warehousing after aggregating data
through the ITTIA Sync Server.

In this article we have explored how ITTIA DB
SQL will provide capabilities on Android to address
the challenges of security, sharing data, synchro-
nizing data with back-end RDBMS software, high
throughput, and large data storage.

SASAn MOnTASeRI
Sasan Montaseri is the founder of ITTIA, a company fo-
cused on data management software solutions for em-
bedded systems and intelligent devices. Sasan has
worked directly with customers in various vertical mar-
kets to define ITTIA’s database product roadmap and
provide solutions to common data management prob-
lems faced by those customers. Under his guidance, IT-
TIA has grown from its inception to offer a data man-
agement solution to prestigious multinational custom-
ers throughout North America, Europe and Asia.

03/2013 32

ANDROID lAbOlAtORy

And if you have access to the code then you
also have access to any of the API keys,
usernames and passwords or any other

information that the developer has stored in the

original code. We’re going to look at how to recov-
er that static information in this article as well as
some of the techniques for looking at information
that was stored at runtime.

The first step in reverse engineering an APK is to
get a hold of one. There are a number of different
ways to do this; the easiest way is to use your fa-
vorite file manager such as Astro File Manager and
backup your APK to an SDCard where it can be
then transferred to a PC or Mac. Or if it’s a relative-
ly popular app you can usually find some version
of the APK on forums such as http://xda-develop-
ers.com where APKs are often shared.

Personally, I prefer to use the adb command
or android debug bridge tool that comes with the
Android Developer Toolkit as part of the Android
SDK. Adb allows you to pull copy of the APK off the
phone onto your PC for further analysis.

Decompiling Android
Workshop
Due to the design of the Java Virtual Machine (JVM), it is
relatively easy to reverse-engineer Java code from both Java
JAR and class files. While this hasn’t been an issue in the
past (since most Java files are hidden from view on the web
server), it is an issue on Android phones where the client-
side Android APK files are easily obtained and just as easy to
reverse-engineer or decompile back into Java code.

Figure 1. Turn on USB debugging on the device Figure 2. Opening up a Unix shell on your Android phone

http://xda-developers.com/
http://xda-developers.com/

www.hakin9.org/en 33

Decompiling Android Workshop

To download an APK from your phone, first turn
on the USB debugging option under developer op-
tions and connect the USB, see Figure 1.

Once the device has been connected, open up a
command prompt or terminal and type adb shell to
connect to the device and open up a Unix shell on
the device, see Figure 2.

The Android system runs on top of a Linux ker-
nel, so assuming you have the rights you can navi-
gate up and down the Linux tree to see any and
all directories on the phone or tablet. However to
find your APKs which live in the /data/app and /
data/app-private folders from the Linux shell you
will have to root your phone.

Thankfully, we don’t need to root the phone to
use the USB connection to pull most APKs off
the phone as they naming convention and loca-
tion follow the same basic rules. If we take a look
at the WordPress for Android app in Google Play,
see Figure 3, you can see the id of the APK in the
URL is org.wordpress.android which tells us that
the APK name and location will be /data/app/org.
wordpress.android-1.apk. While I’m not 100% sure
that the APK will always end in -1.apk, it currently

seems to be a valid pattern. There are some paid
apps that are stored in the /data/app-private folder
so you may have to try there too.

The WordPress app is a great app for our pur-
poses as it’s open source so we can see just how
close the original code is to the decompiled code.
Now we can use the same adb command that we
saw earlier but this time with the pull option to get
a copy of the APK off the device and onto the PC,
see Figure 4.

Before we go any further let’s take a look at the
APK which is in a zip format. Copy the org.word-
press.android-1.apk to org.wordpress.android-1.zip
and unzip it. We can now see the structure of an APK
in Figure 5.

The assets folder has all the HTML and CSS. The
AndroidManifest file and res(ources) folder should
be familiar to any Android developers. However,
it’s the classes.dex file that we’re really interested
in as that’s where the Java code gets compiled.

It’s worth mentioning that if you write your app
in HTML5/CSS and use something like PhoneGap
to convert it into an Android app then your code
is going to be visible too. When an Android app is
unzipped all the HTML, CSS and JavaScript is in
clear text in the assets folder unless you use a Ja-
vaScript obfuscator such as or Google Closure [1].

When your compile your Android Java project, it
first gets compiled into a series of Java class files
before these get converted into a single classes.
dex file in a Dalvik Executable format using the
dx command, which comes with the Android SDK,
see Figure 6. This classes.dex file is interpreted by
the DVM or Dalvik Virtual Machine when you run
the app on your Android phone or tablet.

Figure 5. Inside an APK file

Figure 4. Using the adb pull command

Figure 3. Identifying the APK name

Figure 6. Android compilation process

03/2013 34

ANDROID lAbOlAtORy

Before we decompile classes.dex lets disassem-
ble it first to see what we can find. There are a
couple of ways of doing this, we can look at it in
a hexadecimal editor or we can use a tool called
baksmali [2].

Looking at the file in a hexadecimal editor prob-
ably isn’t going to reveal much information un-
less we know the structure of the file. Unlike the
Blackberry a classes.dex specification is available
[3] which describes the layout and content of the
classes.dex file in all its glorious detail. We can see
the overall structure of the file in Figure 7.

If we were to disassemble the classes.dex by
hand – which I wouldn’t recommend – you would
first have to reference the classes.dex file struc-
ture [3] to see it’s we can find the opcode instruc-
tions that gets interpreted by the DVM, The speci-
fication tells us that the instructions or insns are in
the code_item in the data section.

There is also a hexadecimal editor called 010 [4]
which comes with a DEX template [5] that makes

it very easy to navigate the classes.dex file if you
are so inclined, see Figure 8 for a screenshot of
the insns section of the file where the machine in-
structions or opcodes live. The opcode instructions
specification is also available [6].

Baksmali makes disassembly much more
straightforward and although it can be used on its
own, it is often used as part of the apktool [7] suite
of tools which has the added benefit of converting
the AndroidManifest.xml file back into a readable
file using AXMLPrinter2 [8], see Figure 9.

Baksmali strips out most of the noise and dis-
plays all the information in a much more readable
smali text format. It is also common to make small
changes to a smali file and then using the Smali
assembly tool reassemble the classes.dex file. A
simple smali file from the wordpress APK is shown
in Figure 10.

While there are plenty of Java decompilers there
aren’t as yet any publically available classes.dex
decompilers. However there is a tool to convert
classes.dex back into a java jar files called dex2jar
[9], which makes it possible to decompile an APK.
Dex2Jar reverses the dx conversion from classes.

Figure 8. classes.dex opcodes in 010 hexadecimal editor

Figure 7. classes.dex structure

Figure 11. Android Decompilation process

Figure 10. AddAccount.smali

Figure 9. apktool usage

www.hakin9.org/en 35

Decompiling Android Workshop

dex to a Java class file format. We can now see in
Figure 11 the two stage process for decompiling
our classes.dex file back into Java.

So if we run dex2jar on our org.wordpress.an-
droid-1.apk, see Figure 12, we get a file called org.
wordpress.android-1_dex2jar.jar which we can
now decompile using your favorite Java decompil-
er such as JD-GUI [10].

The decompiled Wordpress AddAccount class
can be seen in Figure 13. Note that the code is
readable, the variable names etc. are all intact
and if you compare the code to the original source
all that is really missing are the developer’s com-
ments.

Usually dex2jar isn’t 100% successful when
it converts the code back to Java, so although it
would be possible it’s unlikely that anyone would
recompile the code and pass it off as a new app.
However, what is decompiled is so readable that
any Web Service URLs, API keys, usernames and
passwords that are hard coded in the Java source
will be visible to any attacker who can then use
that information to attack back end databases and
web servers.

Any user data is stored at runtime, typically credit
card information. That won’t be found in the code
but it’s often just as easy to find information on the
phone. While we don’t need a rooted phone to gain
access to the runtime data on the phone it’s very
helpful for finding where it lives on the phone. In-
stead of the /data/app folder go to the /data/data

folder on the phone and cd to the org.android.
wordpress folder where we can find several data-
base files showing the app is using SQLite. Fig-
ure 14 shows the contents of the /data/data/org.
android.wordpress.

Just like earlier we don’t necessarily need a root-
ed phone to gain access to any SQLite databas-
es. If you’re using Ice Cream Sandwich or above
you can use the adb command this time using the
backup option. A simple adb backup -noapk org.
wordpress.android will give us the contents of the
databases folder. When you run the command the
phone will ask you for a backup password but you
don’t need one, click on Backup my data and the
backup will start.

Figure 12. dex2jar usage

Figure 16. Wordpress’ SQLite databases

Figure 15. Getting a copy of the SQLite databases off the
phone

Figure 14. Viewing the APKs runtime information

Figure 13. Using JD-GUI to decompile

03/2013 36

ANDROID lAbOlAtORy

Once completed the backup will be in an An-
droid backup or ab format so we’ll need to convert
that into something we can read before we can
look at the databases. We do this using the An-
droid Backup Extractor tool [12] which will convert
our backup.ab into a tar format which can then be
untarred leaving the databases in a native SQLite
format. The convert the backup.ab file use the fol-
lowing command java -jar abe.jar unpack back-
up.ab backup.tar. Figure 15 shows the series of
backup commands.

Use tar –xvf or your unzip to extract the tar file
and you’ll see the list of files in the database folder,
see Figure 16.

SQLite Database Browser [13], see Figure 17 is
an excellent way of looking at offline SQLite data-
bases. The example shown does not contain any
sensitive user information, but many Android APKs
use the SQLite database for storing a user’s login
information and credit card details if they are used
in the application to make the app have a better
user experience, especially if the user is expected
to enter the information multiple times.

There are several ways to mitigate the issues
such as using obfuscation and hiding informa-
tion in C++ using the Android NDK but they are
not always 100% effective because of the nature
of the Android platform. Google did try to intro-
duce Google Encryption at the last Google I/O but
it broke many of the existing apps so it was pulled.
The best approach is to follow the OWASP top 10
mobile controls [14] which basically say don’t hard-
code any credentials in your code and don’t store
any important user data on the device, store it on
the server side and always transmit any sensitive
data securely.

This article is a cut down version of the Decom-
piling Android workshop that I’ve presented at sev-
eral Android conferences and local user groups. I
believe I’ve shown how easy it is to reverse en-
gineer an Android APK as well as how to obtain

any runtime database information. You can find out
more information about the workshop, our tools
and the Decompiling Android book at http://www.
decompilingandroid.com.

GODFReY nOLAn
Godfrey Nolan is the President of RI-
IS LLC. He is also the author of Decom-
piling Android and Decompiling Java
both published by Apress and is cur-
rently working on Android Best Prac-
tices. Decompiling Android looks at
the reason why Android apps can be
decompiled to recover their source
code, what it means to Android devel-

opers and how you can protect your code from prying
eyes. Godfrey has talked at conferences such as AnDev-
Con, Google DevFest, CodeMash and JavaOne as well
as many local user group events on mobile and web de-
velopment topics. RIIS is an IT consulting firm based in
Southfield, MI. Our primary service includes accelerat-
ed application development using agile processes for
both the web and mobile technologies. Industry experi-
ence includes software, retail, advertising, defense, in-
surance, banking/finance, and telecommunications.Figure 17. SQLite Database Browser

References
[1] https://developers.google.com/closure/
[2] https://code.google.com/p/smali/
[3] http://www.netmite.com/android/mydroid/dalvik/docs/

dex-format.html
[4] http://www.sweetscape.com/010editor/
[5] http://www.sweetscape.com/010editor/templates/files/

DEXTemplate.bt
[6] http://www.netmite.com/android/mydroid/dalvik/docs/

instruction-formats.html
[7] https://code.google.com/p/android-apktool/
[8] https://code.google.com/p/android4me/
[9] https://code.google.com/p/dex2jar/
[10] http://java.decompiler.free.fr/?q=jdgui
[11] http://android.svn.wordpress.org/
[12] http://sourceforge.net/projects/adbextractor/files/
[13] http://sourceforge.net/projects/sqlitebrowser/
[14] https://www.owasp.org/index.php/OWASP_Mobile_

Security_Project

http://www.decompilingandroid.com/
http://www.decompilingandroid.com/
https://developers.google.com/closure/
https://code.google.com/p/smali/
http://www.netmite.com/android/mydroid/dalvik/docs/dex-format.html
http://www.netmite.com/android/mydroid/dalvik/docs/dex-format.html
http://www.sweetscape.com/010editor/
http://www.sweetscape.com/010editor/templates/files/DEXTemplate.bt
http://www.sweetscape.com/010editor/templates/files/DEXTemplate.bt
http://www.netmite.com/android/mydroid/dalvik/docs/instruction-formats.html
http://www.netmite.com/android/mydroid/dalvik/docs/instruction-formats.html
https://code.google.com/p/android-apktool/
https://code.google.com/p/android4me/
https://code.google.com/p/dex2jar/
http://java.decompiler.free.fr/?q=jdgui
http://android.svn.wordpress.org/
http://sourceforge.net/projects/adbextractor/files/
http://sourceforge.net/projects/sqlitebrowser/
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

http://www.eaglesblood.com

03/2013 38

ANDROID lAbOlAtORy

When it comes to the mobile arena we
basically have three main platforms to
choose from: iOS, Windows, and An-

droid. Out of those three there is one that stands
out to the more tech-savvy crowd – Android. The
reason Android is appealing is because of its na-
ture and characteristics.

Android is an open-source platform that is
owned and currently developed by Google, Inc.
While relatively new, compared to its mobile coun-
terparts, Android has deep long-standing roots in
a system most are familiar with or at least have
heard of – Linux. Android runs on a Linux-based
kernel and has a system directory tree very simi-
lar to what one might see on their local Linux PC
distribution (such as Debian or Ubuntu). If you are
familiar with Linux than you will find yourself right
at home as you begin venturing into the realm of
Android. In fact, the techniques and practices dis-
cussed in this article require the user to be run-
ning a Linux-based platform (again such as Ubun-
tu) as it makes for a much smoother experience
and some tasks can become exponentially more
difficult if trying to do so on a Windows or Mac
machine.

To get started you will need to download a few
basic key components: the Android SDK (Software
Development Kit), the Android API for Eclipse, and
the Android Source Code. All of these tools can be

downloaded from the Android Development web-
sites below and you should follow the guides to
begin setting up your development environment.
The site also includes key fundamentals, how-to
instructions, sample codes, APIs and best prac-
tices that are a must for anyone getting started
with Android development. These tools can be ac-
cessed through this landing page: http://developer.
android.com/tools/index.html.

The source code is available to download and
hosted under their public moniker Android Open
Source Project (AOSP). Since the latest releas-
es are ever-changing it is best to visit the Official
AOSP website to obtain the latest release and fol-
low the instructions to setup a local checkout of
the repository: http://source.android.com/source/
downloading.html.

The last item you will need to begin building your
own Android ROM is a device. Any device will work
as long as it has “root” level access. This means
that the user has access and “-rw” rights to the “/“
root directory of the filesystem. Generally, in or-
der to root a device you will also need to unlock
the bootloader if the device has one. The steps
required to do this vary from device to device so
by doing a few site-searches you should be able
to find the steps required to root your own device
model. For purposes of this article we will be refer-
encing the Galaxy Nexus i-9250 (maguro) smart-

Android OS
Getting Started with Customizing Your Own Rom

It’s no secret that today we rely on our smartphones more
than ever before. This theory is only going to grow truer
as time progresses. We are very close to having desktop
capabilities in the palm of our hands and more and more site
visits are logged from a mobile device than ever before.

http://developer.android.com/tools/index.html
http://developer.android.com/tools/index.html
http://source.android.com/source/downloading.html
http://source.android.com/source/downloading.html

www.hakin9.org/en 39

AnDROID OS: GeTTInG STARTeD WITH CUSTOMIZInG YOUR OWn ROM

phone. This is an open GSM model (meaning it us-
es a SIM-card on any GSM mobile network) and is
distributed by Google directly (https://play.google.
com/store/devices) The Galaxy Nexus (maguro) is
quite similar to its current successor the Nexus 4
(mako).

Recovery
When rooting your device many users will typi-
cally find that the method of choice often includes
installing a custom recovery interface. The Re-
covery area resides before the OS boots up and
can be used to install or modify parts of the Oper-
ating System prior to the system loading. This is
where you may often hear the term “flash” being
used; such as “flash a custom ROM” …in short
the term flash simply means “install.” We prefer to
use ClockworkMod Recovery, which is developed
and owned by Koushik Dutta. You can find more
on this recovery by visiting the site (http://clock-
workmod.com/).

ADB Over WIFI
Android offers a direct link interface that allows you
to control your Android device via the Android De-
bugging Bridge (ADB). Generally, this is done us-
ing a direct USB cable connection from the host
machine to the device. However, one can bypass
the USB method by using a wifi-based connection
using the following method (Figure 1).

note
That while using the ADB method over wifi your
device will be vulnerable and exposed for open ac-
cess by any other machines on the same network
so do use caution and deactivate the WiFi-ADB
once you have finished using it.

Using any Terminal Emulator application on your
Android device run:

su
setprop service.adb.tcp.port 1234
stop adbd
start adbd

note
“1234” can be any port you choose, so change the
digits as desired.

Confirm the connection by using:

getprop service.adb.tcp.port

If the command above returns your port, in this
case “1234,” then run this command below in
the terminal (or command prompt) on your host
PC, (Enter your device’s IP address in place of
192.168.x.xx):

adb connect 192.168.x.xx

note
Your machine must have ADB installed and your
device & machine must both be on the same net-
work.

Once complete, you can switch back to USB and
shutdown the Wifi-ADB by telling the device to
use the USB port instead of TCP (Figure 2).

On the Android device, enter this command in
the Terminal Emulator app:

su
setprop service.adb.tcp.port -1
stop adbd
start adbd

Now back on our host PC let’s enter the follow-
ing command to tell it to listen on the USB port in-
stead of TCP:

adb usb

Figure 2. Setting the ADB listening port back to USB on a
Windows PC using command prompt

Figure 1. Using a terminal emulator on an Android device to
set the ADB listening port to TCP

https://play.google.com/store/devices
https://play.google.com/store/devices
http://clockworkmod.com/
http://clockworkmod.com/

03/2013 40

ANDROID lAbOlAtORy

Or you can simply reboot the Android device
which will reset the ADB interface preference
back to the USB port.

APK Tool
Note: This can be done using both Windows and/
or Linux platforms.

APK’s are compiled Android Application files
and are identified by the .apk file extension. You
can think of these as being similar to “.exe” files
on a Windows platform. APK’s are essentially
Apps and will execute an install procedure na-
tively when attempting to open them. APK’s are
compiled (meaning built against any supporting
libraries or other dependencies) and packaged
into a finished project; thus creating the *.apk file.
During the final stage of the compiling process
almost all applications are processed through
a tool called Proguard, which is an obfuscation
method used to encrypt the XML and JAVA files
within the finished APK file. This helps prevent
unauthorized duplication or copying of applica-
tions in a verbatim manner. If one does not have
access to source code then these proprietary
files are quite difficult to manipulate and/or al-
ter since the only code a user has access too
has been jumbled using the obfuscation method
mentioned above.

There is a tool however than can use sort of a
reverse-engineering method to make the obfuscat-
ed code more readable. This can be done using
a program called “APK Tool.” The download and
setup instructions can be found here: https://code.
google.com/p/android-apktool/.

Once you have the tool installed and the frame-
work-res directory identified you can executive the

following command to decompile the APK file, we’ll
use somefile.apk as an example (Figure 3):

apktool d somefile.apk somefile

The screenshot above shows a successful execu-
tion of the command using apktool. If you receive
an error it is because either the “framework-res.
apk” file has not yet been identified or because
the APK file you are attempting to unpack is cor-
rupt or invalid. Read the instructions from the
download link above to properly setup the APK-
tool or run the help command for more info:

On Linux:

apktool --help

On PC:

apktool /help

Once the command completes you should have a
folder /somefile with the contents similar to what is
shown in Figure 4.

From here you can view XML files in the /res di-
rectory and also the AndroidManifest.xml file in hu-
man readable formats. This is useful if you have
two versions of a particular APK file and you are
trying to identify which is the newer incremental
version of the application. Additionally, you can ed-
it certain things such as hex color codes shown
in /res/values/*.xml or edit the text names in /res/
values/strings.xml. Once your edits are complete
you will need an archive manager tool (such as
7zip or FileRoller) and you will need to go back to

Figure 5. A screenshot of what the .apk file contains when
exploring with an archive tool such as 7zip or FileRoller.
This is where you can slip your edited files back into place
overwriting the current ones

Figure 4. A view of what the resulting folder should look
like and contain after successfully completing the apktool
decompile process

Figure 3. Running the apktool decompile command on a
Windows PC using command prompt

https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/

www.hakin9.org/en 41

AnDROID OS: GeTTInG STARTeD WITH CUSTOMIZInG YOUR OWn ROM

the original .apk file that is unedited and explore
the contents. In the original .apk file archive find
and replace the original files with the edited ones
from your /somefile folder (Figure 5). Simply drag-
and-drop the edited files in place and confirm to
overwrite and update the archive .apk file. This
newly altered APK file can now be sent to your an-
droid device and installed and your changes will be
reflected in the application.

note
Images and graphic files should not be used or
pulled from the extracted apktool /somefile folder.
If you wish to edit image files, you should man-
ually pull out any images from the source .apk
file and slip them back in using the method men-
tioned above. The apktool decryption script has a
tendency to corrupt image files and they should
not be used.

.9.PnG Images
Android runs on multiple devices with many dif-
ferent screen-sizes and layouts can be displayed
in both Portrait and Landscape. With that being
said, you can imagine the massive amount of bit-
map background and icon sizes that would be re-
quired to support all screens and layouts. The way
that Android works around this issue is by using
“stretchable bitmap” images – .9.png’s. There is a
convenient tool included in the Android-SDK/tools/
called the Draw9Patch which makes this job easier
when converting your own icons or graphics.

Let’s take the image icon below as an example
(Figure 6). We’ll call this image “button.png” for this
example.

As you can see it’s a simple square button with
some readable text in the center shown as sim-
ply “TEXT.” When Android uses this button.png in
various layouts it needs to know how to stretch this
button to fill the desired space and where to stretch
it. This is where the 9.png portion comes into play.

There are two schools of thought when it comes
to modifying or making .9.png images. You can
use the Draw9Patch that comes with the Android
SDK or you can use a 3rd party graphical editing
program such as GIMP or Photoshop. The Draw-
9Patch is the recommended method for most
people just starting to learn how this file format
works and makes for an easier and safer learning
experience.

To use the Draw9Patch tool simply click to open
it and drag-and-drop your .png image into the
tool’s window. You will notice that the tool auto-
matically enlarges the canvas by 1-pixel on each
side. This area is transparent and known as the

alpha channel, which allows you to identify which
parts of the image you want to allow for expansion.
You identify these stretchable areas by drawing
a solid black line on the left vertical column and
on the top horizontal row of pixels on the alpha
channel (Figure 7). The preview on the right-hand
side of the tool shows you what the stretched im-
age will look like in various layouts. You can note
in the example that the black line breaks around
components that should not be stretched. A few
examples of things that should not be stretched
are text, action symbols, numbers, etc..

Once you are happy with your image you can
click File > Save As… and select your destination
folder and it will save the image with the .9.png
file extension; in our example it will be saved as
“button.9.png.” If done correctly the alpha chan-
nel containing the stretchable pixel marks will not
be visible to the user when displayed on a device.
There are more advanced features that you can
achieve and identify using the Draw9Patch tool
and .9.png’s in general but this is the basic func-
tionality of the way that Android handles single im-
ages for many screen-sizes.

Figure 7. A screenshot while using the Draw9Patch tool from
the Android SDK. The right-hand column shows what the
stretched images will look like based on your patches made in
the left column

Figure 6. An example of a button.png image file before
converting to a .9.png image

03/2013 42

ANDROID lAbOlAtORy

Building Kernels
When it comes to getting involved with building a
rom you eventually are faced with the need to work
with kernels. This may also be the first instance
of dealing with a piece of software in the rom that
falls under a license that requires you to make any
source changes available. You have to be very
conscious of that fact, the kernel and the rom are
separate and no matter what your mode of devel-
opment is for the rom, you have to adhere to GPL
requirements for the kernel(s) you work with and
possibly modify.

Working with kernels is something Linux veter-
ans might have never even done. The procedure
there is pretty much the same for working with an-
droid device kernels. The main difference is that
you’ll be building for architecture other than the
one you’re working on, and you’ll likely be using
the toolchains provided through your rom reposi-
tory so that there are no questions of compatibility.

For the purposes of the following paragraphs,
we’ll assume you have downloaded AOSP source
for the rom in a directory like /usr/src/android/rom
and that you want to use the toolchain provided by
it. Otherwise you’ll have to download the appropri-
ate cross compiling packages for your particular
distribution and any appropriate or necessary an-
droid patches.

The first step you need to take is to retrieve the
kernel source for your device. A good start is to
go get the stock kernel source for your device and
make sure you can build and install a stock kernel
before making any changes or working off some-
one else’s source repository.

Let’s assume you are using a Samsung Gal-
axy Nexus. Since this is a Nexus phone, Google
controls the software so we can find the locations
on their AOSP pages: http://source.android.com/
source/index.html.

For this device, the repo we need to clone is:

https://android.googlesource.com/kernel/omap.git

If you are using another device, you’ll have to go
to the manufacturer’s website and search for the
kernel source yourself or contact them by email
for the link.

With the Nexus phones, you can check what the
exact revision is that your ROM or the source of
the rom you’re going to build has for the stock ker-
nel. Let’s assume you have pulled the latest an-
droid AOSP rom repository. You would execute:

cd device/samsung/tuna
git log kernel

The first response will tell you what kernel git re-
vision was used to create that kernel. In 4.2.2’s
case this would be the beginning of 9f818de mm:

Hold a file reference in madvise _ remove. Now, you
know what revision to checkout of your cloned
kernel source to get the same source that the
AOSP rom supplies. So cd back to your kernel re-
po you cloned with:

git clone https://android.googlesource.com/kernel/
omap.git

Then execute:

git checkout 9f818de

This will create a detached source tree (means
you can’t commit back upstream but that’s ok, we
don’t care about doing that right now).

Now, we have the correct revision of kernel
source downloaded we can begin configuring it.
This is best done by starting with a configuration
that is known to work (stock kernel config). There
are a number of ways to get this. The easiest is
on a running kernel, since most have enabled the
kernel config proc interface, providing you with
the config file used in /proc/config.gz. Uncom-
pressing that and placing it in your kernel source
tree as .config will allow you to base your kernel
build off the same build options. The second way
is to check the default config file in your kernel
source tree arch/arm/configs/tuna_defconfig and
copy it to .config in the top level of your kernel
source. There are also other ways of retrieving
the config.gz file that is used in the proc interface
in a non-running kernel but that’s out of the scope
of this little tutorial.

With the kernel config in place, we can now be-
gin compiling the kernel:

make ARCH=arm CROSS_COMPILE=/usr/src/android/rom/
prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-

eabi-

You can save the value of CROSS _ COMPILER to an en-
vironment variable for your shell if you plan on doing
this often. Then just use that instead of the full path.

This will automatically run after configuring the
kernel with the .config file in the kernel directory
you copied. Depending on your development en-
vironment, you can run one of the various config
programs to change settings. I prefer menuconfig,
(Figure 8) this requires ncurses development head-
ers and libs (installed via your Linux distribution
package manager). Also, if you have a system with

http://source.android.com/source/index.html
http://source.android.com/source/index.html

www.hakin9.org/en 43

AnDROID OS: GeTTInG STARTeD WITH CUSTOMIZInG YOUR OWn ROM

multiple CPUs or cores you should run the make
command with the -j option followed by the num-
ber of cores you have. So the above command
would look like this on our system:

make -j8 ARCH=arm CROSS_COMPILE=/usr/src/android/

rom/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin/
arm-eabi-

Once it finishes building (potentially anywhere
from 1-minute to 20-minutes or more) the build
output will tell you the path to the finished kernel.
There shouldn’t be any modules for the Nexus
devices but if your particular device uses mod-
ules, they’ll also be listed in the output and have
the extension of .ko (Figure 9). You will then co-
py this kernel to your ROM’s device directory
and name it “kernel” (device/samsung/tuna/kernel)
if you intend to build your ROM with this new ker-
nel or create a new boot image. Also, copy any
kernel modules if your device utilizes them and
replace the modules in your device directory by
overwriting them.

If you want to test this kernel while only chang-
ing the kernel you will need to plug your device into
your computer and using adb, and push the kernel
to your sdcard. Once it’s uploaded, open a shell
via adb on your device and su to root:

adb shell
su

On your host computer, check for recovery.fstab in
your device directory for your rom. It will tell you
what partition is the boot partition. For the Galaxy
Nexus it is /dev/block/platform/omap/omap _ hsmmc.0/

by-name/boot.
On your adb shell terminal (this is assuming

you’re using a Galaxy Nexus from our example
above; replace paths as needed) type:

dd if=/dev/block/platform/omap/omap_hsmmc.0/
by-name/boot of=/sdcard/currentboot.img

This will copy your current boot image to a file you
can use adb pull to download to your host com-
puter. Exit the shell and adb pull the file to your
host computer:

exit
$ exit
$ adb pull /sdcard/currentboot.img

Next, you have two choices, follow the directions here:
http://android-dls.com/wiki/index.php?title=HOWTO:
_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Im-
ages.

Or you download an “anykernel” zip templates from
the files at: https://github.com/koush/AnyKernel.

And replace the zImage file with the kernel you
built. Some further modification of the zip may be
needed depending on which method you choose
and if you choose to use a base zip file.

The easiest method if you’re going to be run-
ning your own rom is to just build the rom and flash
that zip. If you’re already running your own rom
you can rebuild just the boot image by running make
bootimage in your rom source directory (assuming
you have run the prerequisite commands for set-
ting up the device) and copying that bootimage to
your device’s sdcard with adb. Then switch to root:

adb shell
su

Figure 9. This is a screenshot of what results after building
a kernel. The last line that says “Kernel” is the location of the
actual kernel that will be copied into ROM device directory
and named “kernel.” No kernel modules were built this time,
but if they were, they would have been a little above the
kernel line and will end in a .ko extension

Figure 8. An screenshot of what you will see when you run:
make menuconfig on the Galaxy Nexus (maguro) kernel

http://android-dls.com/wiki/index.php?title=HOWTO:_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Images
http://android-dls.com/wiki/index.php?title=HOWTO:_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Images
http://android-dls.com/wiki/index.php?title=HOWTO:_Unpack%2C_Edit%2C_and_Re-Pack_Boot_Images
https://github.com/koush/AnyKernel

03/2013 44

ANDROID lAbOlAtORy

Once running as root, you can dd *your-boot-

image* to your boot partition as we determined
above and once dd finishes, you can reboot into
your new kernel.

That pretty much sums up android kernel compil-
ing and installation. All of the patching and modi-
fication of the kernel is no different than the gen-
eral methods used for patching any Linux ker-
nel and no matter what you do (as long as you’re
copying the boot image to the correct partition)
you can always boot to the rescue partition and
fix things if you find yourself unable to boot (the
exception being that there is always the possibil-
ity of a patched kernel corrupting file systems or
file system tables resulting in the need to do a
full clean re-installation via Fastboot). The kernel
has a number of configuration options even with-
out patches that can alter performance and stabil-
ity. It’s always good to test these changes in small
sets. Also, some people may think rebuilding the
kernel with newer GCC’s and enabling auto-vec-
torization is a easy way to get some cheap perfor-
mance but you will almost certainly end up with a
kernel that doesn’t boot. Neon creates too many
rounding issues and breaks math standards and
while not always important in UserSpace, is much
more important in the kernel. We’ve found that a
stable kernel will almost always appear faster and
smoother to a user than a kernel with aggres-

sive compiler optimizations. The important non-
patch requiring changes you can make to the ker-
nel involve the scheduler (both I/O and process).
Phones with plenty of processing power will ben-
efit from schedulers that take a little extra over-
head to create a fair system for processes, while
io benefits from a much more simpler scheduler
like deadline or one of it’s derivatives since flash
doesn’t require nearly as much logic as mechan-
ical hard-drive schedulers that are the default in
linux kernels.

Our Samsung Galaxy Nexus kernel can be found
at: http://kernel.eaglesblood.com/egb_tuna_kernel
…and its current config is in the arch/arm/configs/
egb_tuna_defconfig and it’s built with the AOSP tool-
chain that was referenced in the above paragraphs.
We find it to perform very well and it contains nu-
merous third party patches on top of the AOSP
kernel. As with any kernel, for any ROM, you are
welcome to build it and change it and make it your
own, just remember, your changes are not propri-
etary and must be shared.

KeLLen RAZZAnO
An Entrepenuer and Co-Founder of
several startup companies. Kellen ap-
proaches situations with a “why not?”
attitude and is more interested in fo-
cusing on “what is not working”, rath-
er than the things that do. Skill sum-
mary reaching over 15-years: Digital

media creative, Android development, HTML/CSS/XML,
ActionScript, web development, electronic hardware,
Windows and Linux platforms.

eD SWeeTMAn
C/C++ Programmer and Co-Found-
er of a startup company. Ed is able to
tackle problems programmatically
and find solutions that others can not.
A forward-thinker with a “can do” at-
titude provide his success in several
open source projects. Skill summary

includes: C/C++, Java, Android development, Linux ker-
nels, HTML/CSS/XML, PHP and AJAX.

EaglesBlood™ Development, General Partners: Kellen
Razzano, Ed Sweetman, Doni Kallmi.

Disclaimer: EaglesBlood Development is not affiliated nor partnered
with Google, Inc. in any way. Google™ and Android™ are registered
trademarks of Google, Inc.. All views, declarations and content are
strictly those of EaglesBlood Development, and are not necessarily
true, nor representative of Google, Inc., or any other organization.
© Copyright 2013 EaglesBlood Development. All Rights Reserved.

http://kernel.eaglesblood.com/egb_tuna_kernel

http://www.ittia.com

03/2013 46

ANDROID lAbOlAtORy

Some malware authors create a new APK
that is malicious, while others hide their
code within a legitimate APK. By using a

couple simple tools, you can research APK to find
what malicious intent may be lurking.

What’s in an APK?
An APK is simply a compressed file. If you turn the
APK into a ZIP file and extract it, this is what you’ll
see:

Assets Directory
This is used to store raw asset files. It can contain
things like another APK used as a dropper, text or
sql lite files that contain SMS numbers, etc. The
assets directory is not always present.

MeTA-InF Directory
This contains the certificate information for the
APK. When a legitimate app is compromised, the
digital certificate changes because the malware
author has to sign it with a new certficate. This is a
good way to identity compromised APKs.

Res Directory
This contains all the resources for the APK such
as images, layout files, and strings values, etc.
The “values” folder contains the “strings.xml” file.
This file can be potentially suspicious. Some mal-

ware authors will store premium SMS numbers,
fake EULA messages, or other malicious strings
in here.

AndroidManifest.xml
This file is what controls the APK. It contains per-
missions, services, receivers, activites, etc. It is the
starting point when analyzing any APK since it con-
tains everything the app is going to run, and what
permissions it has. Note that this is not readable un-
til decompiled using a tool such as ‘APKtool’.

Classes.dex
This is where all the code can be found. It can
be converted to Java, or the assembly language
Smali. The classes.dex is a JAR file so when it is
decompiled it is then arranged in a tree-hierarchy
structure.

How to Research
an APK
The amount of malware seen on mobile devices has sky
rocketed in the last couple of years. The primary target for
malware authors is Android devices which use Application
Package (APK) files to run apps. Malware can send premium
text messages in the background, steal personal information,
root your device, or whatever else they can devise.

Figure 1. Contents of an APK

www.hakin9.org/en 47

How to Research an APK

Listing 1. Manifest receiver example

<receiver android:name=”.MessageReceiver”>
 <intent-filter android:priority=”999”>
 <action android:name=”android.provider.Telephony.SMS_RECEIVED” />
 </intent-filter>
<receiver>

Listing 2. MessageReceiver code

public class MessageReceiver extends BroadcastReceiver
{
 public void onReceive9Context paramContext, Intent paramIntent)
 {
 if (!paramIntent.getAction().equals(“android.provider.Telephony.SMS_RECEIVED”))
 return;
 ...
 SmsMessage[] arrayOfSmsMessage1 = (SmsMessage[])0;
 ...
 while (true)
 {
 String str1;
 try
 {
 Object[] arrayOfObject = (Object[])localBundle.get(“pdus”);
 SmsMessage[] arrayOfSmsMessage2 – new SmsMessage[arrayOfObject.length];
 int i – 0;
 int j = arrayOfSmsMessage2.length;
 if (i >- j)
 return;
 SmsMessage localSmsMessage = SmsMessage.createFromPdu((byte[])arrayOfObject[1]);
 arrayOfSmsmMessage2[i] = localSmsMessage;
 str1 = arrayOfSmsMessage2[i].getOriginatingAddress();
 String str2 = arrayOfSmsMessage2[1].getMessageBody();
 if ((str1.equals(“111”)))
 {
 ...
 abortBroadcast();
 1 +=1;
 continue;
 }
 ...
 }
 catch (Exception localException)
 {
 return;
 }
 }
 }
}

03/2013 48

ANDROID lAbOlAtORy

Resources.arsc
This is the list of resource location. There is noth-
ing fun or of interest to be had here (Figure 1).

Using apktool
Apktool is a simple command line tool to decom-
pile or build an APK. Using apktool, you decompile
the APK. In order to decompile an APK, from the
apktool directory, use the following command:

apktool d <APK>

When it was ran, it created a folder with the
name of the APK with an “.out” at the end of fold-
er name. Within this folder, you will find all the di-
rectories of the APK, the AndroidManifest.xml file
in a readable state, and a folder named “Smali.”
Smali is a readable assembly language that the
classes.dex file was then converted. To build an
APK using the created .out directory, you would
use the following command:

Apktool b <.out directory>

This will create a folder named “dist” in the .out
folder with the built APK.

Using dex2jar
Dex2jar is a command line tool that decompiles
the classes.dex file into a readable jar file where
you can see code in Java. This is much easier to
read than the assembly language Smali.

Analyzing the APK
The AndroidManifest.xml is the best place to start
while researching an APK. The manifest controls
everything, and nothing can run without it. The first
place to look is at the permissions. Without the prop-
er permissions the APK cannot run. For instance,
android.permission.SEND_SMS gives permission
to send text. Knowing that an APK has permission
to send SMS messages, you must then ask your-
self whether or not that is appropriate for the app. If
a wallpaper app has permissions to send text, you
know something is wrong. Next, look at the receiv-
ers. Receivers listen for actions to occur and when
they do run a simple activity. For instance: Listing 1.

Listing 3. Manifest example (clean)

<manifest android:versionCode=”12” android:versionName=”2.1 (bugfixes for new phones) “
package=”com.appspot.swisscodemonkeys.steam” xmlns:android=”http://schemas.
android.com/apk/res/android”>

 <uses-sdk android:minSdkVersion=”3” android:targetSdkVersion=”4” />
 <application android:label=”@string/app_name” android:icon=”@drawable/icon”>
 <activity android:theme=”@android:style/Theme.Translucent.NoTitleBar.Fullscreen”

android:label=”@string/app_name” android:name=”.Steam”
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <activity android:name=”com.appspot.swisscodemonkeys.steam.Preferences” />
 <activity android:name=”com.appspot.swisscodemonkeys.steam.Calibrate” />
 <activity android:theme=”@android:style/Theme.Dialog” android:name=”cmn.AboutActivity />
 <mata-data android:name=”analytics_id” android:value=”UA-7184590-13” />
 <receiver android:name=”vw.FixedAnalyticsReceiver” android:exported=”true”>
 <intent-filter>
 <action android:name=”com.android.vending.INSTALL_REFERRER” />
 </intent-filter>
 </receiver>
 </application>
 <uses permission android:name=”android.permission.INTERNET” />
 <uses permission android:name=”android.permission.RECORD_AUDIO” />
 <uses permission android:name=”android.permission.ACCESS_NETWORK_STATE” />
 <supports-screens />
</manifest>

www.hakin9.org/en

The phone will broadcast the action android.
provider.Telephony.SMS_RECEIVED whenever a
SMS is received by the phone. If a receiver is set
to listen for this action, it will run an activity when-
ever this action is called. In this case, .Message-
Receiver will be run. Note the intent-filter with
android:priority=”999” in it. Whenever you receive
a text, your phone’s notification is set to listen to
the action and notify you that you received a text
unless a receiver with a higher priority receives it
first. This is a big red flag when looking for mali-
cious intent. Let us look at the code of .Message-
Receiver: Listing 2.

Looking at the code, it appears that whenever
an SMS is received, MessageReceiver will look
through all of your text using an array and when-
ever the originating address is from 111, it aborts
the broadcast so you will not be notified of it. This
is done to hide the confirmation text from the pre-
mium SMS number. The only notification you will
get is when you receive your phone bill with an
extra charge and the hackers already have your
money.

Services are also a hot spot to look for malicious
activity. Services are listed in the manifest so you
can easily track them down in code. They run in
the background so the user never knows what has
occurred. They can do an array of malicious things
such as send texts, root the device, download and
install an APK, etc.

Package names can also point you in the right
direction as many malware authors have unique
package names. Exercise caution because many
use legitimate package names to hide their true
intentions. We will go more into depth with this ap-
proach in the next topic.

Hiding Malicious Code
in a Legitimate APK
Many malware authors will try to trick users by
using a legitimate app with malicious code add-
ed to it. The package name is the same as the
legitimate one, and the app even runs the same
but in background it could be doing anything
from sending premium text messages to sending
off personal information to a remote site. For ex-
ample, here is the manifest of a legitimate APK:
Listing 3.

Now here is a manifest of the same app, but in-
fected with Android.PJApps: Listing 4.

The infected APK has many more permissions
(which the typical user ignores when installing an
app unfortunately), a receiver with a high priority
like we have seen before, a service that points to
com.android.main.MainService, and some oth-

http://wwww.uat.edu

03/2013 50

ANDROID lAbOlAtORy

Listing 4. Manifest example (infected with PJAps)

<manifest android:versionCode=”10” android:versionName=”1.8” package=”com.appspot.swisscodemonkeys.
steam” xmlns:android=http://schemas.android.com/apk/res/android”>

 <uses-sdk android:minSdkVersion=”3” android:targetSdkVersion=”4” />
 <application android:label=”@string/app_name” android:icon=”@drawable/icon”>
 <activity android:theme=”@android:styleTheme.Translucent.NoTitleBar.Fullscreen”

android:label=”@string/app_name” android:name=”.Steam”
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 <receiver android:name=”cmn.ReferrerReceiver” android:exported=”true”>
 <intent-filter>
 <action android:name=”com.android.vending.ACTION_INSTALL_REFERER” />
 </intent-filter>
 </receiver>
 </activity>
 <activity android:name=”com.appspot.swisscodemonkeys.steam.Preferences” />
 <activity android:theme=”@android:style/Theme.Dialog” android:name=”cmn.AboutActivity” />
 <service android:name=”com.android.main.MainService” android:process=”:main” />
 <receiver android:name=”com.android.main.ActionReceiver”>
 <intent-filter>
 <action android:name=”android.intent.action.SIG_STR” />
 <action android:name=”android.intent.action.BOOT_COMPLETED” />
 </intent-filter>
 </receiver>
 <receiver android:name=”com.android.main.SmsReceiver”>
 <intent-filter android:priority=”100000”>
 <action android:name=”android.provider.Telephony.SMS_RECEIVED” />
 </intent-filter>
 </receiver>
 </application>
 <uses-permission android:name=”android.permission.INTERNET” />
 <uses-permission android:name=”android.permission.RECORD_AUDIO” />
 <uses-permission android:name=”android.permission.WRITE_EXTERNAL_STORAGE” />
 <uses-permission android:name=”android.permission.RECEIVE_SMS” />
 <uses-permission android:name=”android.permission.SEND_SMS” />
 <uses-permission android:name=”com.android.browser.permission.READ_HISTORY_BOOKMARKS” />
 <uses-permission android:name=”com.android.browser.permission.WRITE_HISTORY_BOOKMARKS” />
 <uses-permission android:name=”android.permission.INSTALL_PACKAGES” />
 <uses-permission android:name=”android.permission.READ_PHONE_STATE” />
 <uses-permission android:name=”android.permission.RECEIVE_BOOT_COMPLETED” />
 <supports-screens />

er extras for PJApps to run. The service com.an-
droid.main.MainService has code that sends out
personal data amongst other things.

So how is this done? Use apktool to decompile
the APK. From there, you can add code in Smali
to the in the .out folder created. Within the ‘Smali’
folder path you want your code, add your code to
an existing Smali file or add your own Smali file
with code. Rather than trying to write your code in

Smali, you can use the Android Developer Tools to
create an APK, and then use apktool once again
to decompile it. Take the Smali code you just cre-
ated and add it to the legitimate APK. Now update
the manifest so your code will run, and add extra
permissions if it needs any. Use apktool to build it
again, and you have yourself a legitimate APK that
will run as it did before in addition to any code you
added.

www.hakin9.org/en 51

How to Research an APK

Listing 5. Airpush Ad SDK permissions

...
<activity android:name=”com.airpush.android.PushAds” android:configChanges=”keyboardHidden|orientat

ion” />
<receiver android:name=”com.airpush.android.UserDetailsReceiver” />
<receiver android:name=”com.airpush.android.MessageReceiver” />
<receiver android:name=”com.airpush.android.DeliveryReceiver” />
<receiver android:name=”com.Leadbolt.AdNotification” />
...
<service android:name=”com.airpush.android.PushService” />
 <intent-filter>
 <action android:name=”com.airpush.android.PushServiceStart50244” />
 </intent-filter>
</service>
...

Listing 6. Airpush service code

private void onInitAirPush()
 {
 if (airPush == null);
 try
 {
 Context localContext1 = getBaseContext ();
 airPush = new Airpush(localCOntext1, “50244”, “1330734002991818071”, 0, 1, 1); label32: if

(myController != null)
 return;
 try
 {
 Context localCOntext2 = getApplicationContext();
 myController = new AdController(localContext2, “939021800”);
 myController.loadNotification();
 return;
 }
 catch (Exception localException1)
 {
 return;
 }
 }
 catch (Exception localException2)
 {
 break label132;
 }
 }

 public WallpaperSService.Engine onCreateEngine()
 {
 onInitAirPush();
 return new CubeEngine();
 }

03/2013 52

ANDROID lAbOlAtORy

Aggressive Ad SDKs
Making money from apps independently or in a
small company can be tough unless you really
have something awesome that people are willing
to purchase. This is why many apps are free, but
have ads displayed in them to generate revenue. A
developer can easily add an Ad SDK to their code.
Some developers are so eager to make money
that they will add several Ad SDKs including ones
that are aggressive in nature.

These aggressive Ad SDKs are considered Po-
tentially Unwanted Applications (PUA). You can
even find apps infected with agressive Ad SDKs
in Google Play store. An example of an aggressive
Ad SDK is ‘Airpush’ which displays ads in your no-
tification bar. Let us take a closer look. Here is a
manifest with infected with Airpush: Listing 5.

Here is the code that starts the Airpush service:
Listing 6.

Another way it can be implemented is starting it
at boot: Listing 7.

This is what the Airpush SDK looks like in JAR
format: Figure 2.

Once the Airpush services are started it will send
ads to your notification bar, and the developer will
get paid. This can be a good incentive to pay for
your apps rather than get the free version full of
ads.

Useful links
Here are links to download of all the tools I men-
tioned:

• Android Developer Tools: http://developer.an-
droid.com/sdk/index.html

• Apktool: https://code.google.com/p/android-ap-
ktool/downloads/list

• Dex2jar: https://code.google.com/p/dex2jar/down-
loads/list

Enjoy!

nATHAn COLLIeR
Nathan Collier is Threat Research An-
alyst for Webroot. He spends most
of time in the mobile landscape re-
searching malware on Android devic-
es. He also enjoys frequently traveling
with his flight attendant wife, and is a

competitive endurance mountain bike racer in Colorado
who is closing in on his dreams of going pro. Don’t wor-
ry, he won’t be quitting his day job.

Listing 7. Airpush manifest startup

<meta-data android:name=”com.airpush.android.APPID” android:value=”30442” />
<meta-data android:name=”com.airpush.android.APIKEY” android:value=”apikey*1346466156888864670” />
<activity android:theme=”@android:style/Theme.Translucent” android:name=”com.airpush.android.Opti-

nActivity” android:exported=”false” android:coandroid:configChanges=”keyboardHid
den\orientation” />

<service android:name=”com.airpush.android.PushService” android:exported=”false” />
<receiver android:name=”com.airpush.android.BootReceiver” android:exported=”false”>
 <intent-filter>
 <action android:name=”android.intent.action.BOOT _ COMPLETED” />
 <category android:name=”android.intent.category.HOME” />
 </intent-filter>
</receiver>
<activity android:name=”com.airpush.android.SmartWallActivity” android:launchMode=”singleTask” andro

id:configChanges=”keyboardHidden\orientation” />

Figure 2. Airpush JAR as seen in JD-GUI

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://code.google.com/p/android-apktool/downloads/list
https://code.google.com/p/android-apktool/downloads/list
https://code.google.com/p/dex2jar/downloads/list
https://code.google.com/p/dex2jar/downloads/list

Certified ISO27005 Risk Manager
Learn the Best Practices in Information
Security Risk Management with ISO
27005 and become Certified ISO 27005
Risk Manager with this 3-day training!

CompTIA Cloud Essentials
Professional
This 2-day Cloud Computing in-company
training will qualify you for the vendor-
neutral international CompTIA Cloud
Essentials Professional (CEP) certificate.

Cloud Security (CCSK)
2-day training preparing you for the
Certificate of Cloud Security Knowledge
(CCSK), the industry’s first vendor-inde-
pendent cloud security certification from
the Cloud Security Alliance (CSA).

e-Security
Learn in 9 lessons how to create and
implement a best-practice e-security
policy!

IT Security Courses and Trainings

IMF Academy is specialised in providing business information by means of distance
learning courses and trainings. Below you find an overview of our IT security

courses and trainings.

IMF Academy
info@imfacademy.com
Tel: +31 (0)40 246 02 20
Fax: +31 (0)40 246 00 17

For more information or to request the brochure
please visit our website:
http://www.imfacademy.com/partner/hakin9

Information Security Management
Improve every aspect of your information
security!

SABSA Foundation
The 5-day SABSA Foundation training
provides a thorough coverage of the
knowlegde required for the SABSA
Foundation level certificate.

SABSA Advanced
The SABSA Advanced trainings will
qualify you for the SABSA Practitioner
certificate in Risk Assurance & Govern-
ance, Service Excellence and/or Architec-
tural Design. You will be awarded with
the title SABSA Chartered Practitioner
(SCP).

TOGAF 9 and ArchiMate Foundation
After completing this absolutely unique
distance learning course and passing
the necessary exams, you will receive
the TOGAF 9 Foundation (Level 1) and
ArchiMate Foundation certificate.

03/2013 54

ANDROID lAbOlAtORy

Information in this document is subject to
change without notice. Companies, names,
and data used in examples here in are fictitious

unless otherwise noted. No part of this document
may be reproduced or transmitted in any form or
by any means, electronic or mechanical, for any
purpose, without the express written permission
of AppSec-Labs.

AppUse – Overview
AppUse (“Android Pentest Platform Unified Stand-
alone Environment”) is designed to be a weap-
onized environment for android application pene-
tration testing. It is an OS for Android application

pentesters – containing a custom Android ROM
loaded with hooks which were placed at the right
places inside the runtime for easy application con-
troll, observation, and manipulation.

AppUse’s heart is a custom “hostile” Android
ROM, specially built for application security testing
containing a modified runtime environment run-
ning on top of a customized emulator. Using a root-
kit like techniques, many hooks were injected into
the core of its execution engine so that application
can be easily manipulated and observed using its
command & control counterpart called “ReFrame-
worker” (Figure 1).

AppUse
Android Pentest Platform Unified Standalone environment

AppUse is designed to be a weaponized environment for
android application penetration testing. It is a unique, free
and rich platform aimed for mobile application security
testing in the android environment.

Figure 2. The AppUse dashboardFigure 1. The ReFrameworker dashboard

www.hakin9.org/en 55

AppUse – Android Pentest Platform Unified Standalone environment

Other than this, AppUse also comes with every-
thing the pentester needs in order to run and test
target applications – the android emulator, devel-
opment tools, the required SDKs, decompilers,
disassemblers, etc.

The AppUse environment is designed to be in-
tuitive and productive as possible to the android
common pentesters and security researchers. It
comes with the AppUse dashboard – an easy to
use UI from which the user can control the whole
environment. From installing an APK to the device,
decompiling it, debugging it, manipulating its bina-
ries and such – everything can be accomplished
by clicking on a few buttons that take care of all the
required steps and focusing on the really important
matters (Figure 2).

And besides, there are many android “hack me”
applications pre-installed on the AppUse environ-
ment, along with their server side services. Hav-
ing such targets application is really handy for the
pentester when the need arises for testing a new
tool or technique and some target is required to be
around.

So to summarized, AppUse is combined of:

• Custom “hostile” Android ROM loaded with
hooks

• ReFrameworker android runtime manipulator
• Android Emulator
• Development tools for Android
• Hacking & reversing tools for Android
• Vulnerable applications
• The AppUse dashboard

AppUse can be downloaded from here: https://ap-
psec-labs.com/AppUse.

Runtime and OS
The AppUse OS is based on Linux Ubuntu which
had been perfectly suited with common attacking
tools embedded that can save time and increase
efficiency.

Credentials
Although AppUse will automatically log you in to
root, you may find these data useful while interact-
ing with the system.

Type Username Password

Operating System Root 1

Emulator [none] 1234

Terminal and Command Line Tools
The environment variables had been suited to the
android security researcher. Useful tools used in
research, such as ADB, were preinstalled and con-

figured on the machine. Moreover, all the research
and attacking tools had been embedded in the
PATH environment variable so they are accessible
on any location on the terminal and have the tab
autocomplete feature (Figure 3 and 4).

Development Tools
AppUse environment includes android develop-
ment and debugging tools which can come handy
while performing applicative penetration test-
ing. The environment has preinstalled version of
eclipse and ADT (Figure 5) that can be used to
write applications or exploits to cross-application

Figure 6. Launching the dashboard

Figure 5. Eclipse with ADT. Useful in writing cross-application
vulnerabilities exploits

Figure 4. Autocomplete feature – entering ad[tab] on the
console

Figure 3. Autocomplete feature – entering apk[tab] on the
console

https://appsec-labs.com/AppUse
https://appsec-labs.com/AppUse

03/2013 56

ANDROID lAbOlAtORy

vulnerabilities. Moreover, the environment has pre-
installed version of iPython console that will ease
the development of scripts and help testing special
scenarios.

AppUse Dashboard
The dashboard is the heart of AppUse testing envi-
ronment. The dashboard is a GUI which organizes
the testing tool and runtime environment that will
be used in the research. The dashboard will put
the puzzle together by linking all the data from all
different tools together and will save precious in its
special functionalities that will concatenate several
actions together, as will be demonstrated further in
this document.

To launch the dashboard, double click the Launch
Dashboard link on your desktop, and immediately
the dashboard will be launched (Figure 6).

Working with APK’s
In the dashboard, the APK is the king. AppUse
dashboard has a goal to have researchers be able
to start working with one click actions. In order to
achieve the goal, the dashboard is designed to op-
erate on an APK and will use it while invoking its
other actions.

Choose APK
The choose APK is the most basic action the dash-
board can do. Choose APK button will load an APK
into the dashboard (Figure 7) from the file system
so that the dashboard will perform its actions with
it. When starting a research on an application, this
is the very first action that needs to be done.

Installing APK
The Install APK button (Figure 8) will install an APK
on a running emulator invoked from the Dashboard.

Rooting the emulator
Root privileges on an emulator may come in handy
in a penetration test but normally can consume

Figure 10. The results from Root Check Pro application –
successfully rooted the emulator with a click

Figure 9. The Root Device button – will root the emulator
with a click

Figure 8. Installing an APK on the emulator via a click of a
button

Figure 7. Choose APK action. Example APK’s can be found
under the Targets folder. The Targets folder is discussed

Figure 11. Output folder – the Dashboard’s workbench

www.hakin9.org/en 57

AppUse – Android Pentest Platform Unified Standalone environment

time. AppUse Dashboard has a built in option to au-
tomatically root the emulator with a click of a button
(Figure 9) and later on verify it is rooted (Figure 10).

The output folder
The main goal for AppUse is to organize all the pen-
tester’s work. In order to accomplish that, all of the
work in AppUse on an application will be saved into
one directory, the Output folder (Figure 11). The Out-
put directory (will be elaborated later on this docu-
ment) contains all the output from all the tools in the
dashboard. When you open an APK via APKTool,
its output is shown on the Output folder. When you
convert a .dex file to .jar, the classes.dex in the out-
put folder will be chosen automatically and in a click
of a button you will convert the APK’s .dex to a JAR.

Device Connectivity
AppUse has a support for external devices. You
may either work with the emulator or plug in a real
Android device and have it interacting with AppUse
(Figure 12).

Runtime Modifications and Inspection via
AppSec ReFrameworker
The emulator in AppUse is modified to suit the needs
of the pentester. It comes with a premade ROM that

has modifications to the Dalvik runtime and has pre-
installed tools to interact with the system.

AppUse’s heart is a custom „hostile” Android
ROM, specially built for application security test-
ing containing a modified runtime environment
running on top of a customized emulator. Using a
rootkit like techniques, many hooks were injected
into the core of its execution engine so that ap-
plication can be easily manipulated and observed
using its command & control counterpart called
„ReFrameworker”.

How it works – an overview
The Android runtime was compiled with many
hooks placed into key placed inside its code. The
hooks look for a file called “Reframeworker.xml”,
located inside /data/system. So each time an ap-
plication is executed, whenever a hooked runtime
method is called, it loads the ReFrameworker con-
figuration along with the contained rules (“items”)
and acts accordingly.

Managing the configuration file along with its
rules is done via the ReFrameworker dashboard.
Using the dashboard, you can define a set of rules
that the Android runtime will obey. The dashboard
will then generate a config file which the runtime
will later parse and act accordingly.

For example, it starts with loading a config file
which can be either loaded from local file or direct-
ly from the connected Android device. After click-
ing either of the “load config” buttons (Figure 13),

Figure 12. Checking device connectivity via the AppUse
Dashboard

Figure 13. Loading rules from config file

Figure 14. Saving rules to config file

Figure 15. Configuring an item

03/2013 58

ANDROID lAbOlAtORy

the dashboard will immediately mark all the loaded
rules and allow the user to enable / disable them
and also to configure them.

After the file is loaded, the dashboard marks all
the defined rules with bold, and highlights all rules
which are also enabled as green.

Then the user can choose which kind of behav-
ior he wants from the runtime – for example, he
can turn on sniffing of important information, by-
pass of certain logic, doing some string replace-
ment, sending some data to the ReFrameworker
dashboard and so on.

After that, the user can save the new configura-
tion (Figure 14). If the user chooses to save it into
the device, from now on the device will behave ac-
cording to that rule.

Configuring the behavior of each rule can be
achieved by clicking on the rule’s item, and select-
ing “configure” from the sub menu as can be seen
from Figure 15.

Then, a new window will appear, containing the
values of that rule. Each rule has the following
properties:

• Name – the name of the rule
• Enabled – is it enabled?
• Calling method – the name of the runtime

method upon which this rule should apply
• Mode – can have 3 possible values – Send,

Proxy, or Modify.

• Send – send the hooked content to the Re-
Frameworker dashboard

• Proxy – let the user control the value of the
hooked content by using a proxy-like UI

• Modify – replace a particular content with
another content

• Value – specify the condition for the hooked
content. An asterisk (*) means always.

• toValue – specify the action for the hooked
content. An asterisk (*) means always.

Below you find an example of how rules can be
configured (Figure 16).

For example, here’s how the config file will look
like after generating new rules for the runtime – the
following is an example of “Reframeworker.xml”
configuration (Figure 17):

The idea is to place this file at the specific place
inside the runtime which our hooks will look for it.
The location of this file should be at /data/system/
Reframeworker.xml – so that our hooks which was
pre-injected into the runtime will parse, load, and
act upon dynamically while we can instrument
them from the external of the Android device.

Since the device might communicate with the
dashboard (sending some data, waiting for instruc-
tions, etc.), the dashboard contains a listener for
incoming communication established from the de-
vice. Therefore, the dashboard contains a button
for the listener (Figure 18):

Now after starting the listener the dashboard is
ready for any incoming messages.

AppUse also has an advanced feature that
lets the user to intercept some internal informa-
tion from inside of android objects. We can do
so by pushing a proxy between the android ap-
plication and the runtime. This is done in a very
similar way to an HTTP proxy, but only that this
time we’re doing so at a very low level inside the
android runtime.

Figure 18. Starting the listenerFigure 17. An example of config file content

Figure 16. An example for rule configuration

www.hakin9.org/en 59

AppUse – Android Pentest Platform Unified Standalone environment

The hooks
The AppUse environment was compiled with lots
of hooks at some key places. As part of the re-
search, after finding out interesting places we want
to control such as handling of files, communica-
tion, encryption, etc. we placed calls at those loca-
tion to the ReFrameworker controller. The control-
ler’s responsibility is the check whether a rule is
currently defined for this particular location, and if
so it acts by its configuration.

For example, as part of the research of finding
interesting locations to place a hook into we de-
cided to have place a hook into the SQLiteData-
base at the “ executeSql” method which all que-
ries are passed through at. Hooking into this class
will enable us tointercept all the local SQL queries
sent from the application to its local DB. Our hook
(which was placed inside the Android executeSql
method inside the SQLiteDatabase class) will in-
tercept this value and do whatever was instructed
at the configuration.

Hooks are usually placed around an important
value, such that if a rule is define for this particular
hook, then the controller’s responsibility will be to
to something with it. The controller can either do
nothing and leave that value as is (in case no rule
is defined or the rule is disabled), it can send that
data to a remote location, it can allow the user to
break and modify that value at real time (i.e in a
similar manner as a proxy) or it can do an auto-
matic replace for another value.

For example, this is how the pre-loaded hook will
look like when hooking at the executeSql method
into the “sql” string parameter – the actual query
that will be executed by the runtime, as requested
from the upper level application (Figure 19)

Suppose the relevant configuration rule for this
was defined as “proxy” – Now each time this meth-

Figure 19. ReFrameworker hook that was pre-injected into
the runtime

Figure 20. Starting the proxy

Figure 21. Handling incoming message using the proxy

Figure 22. Example #1 – send the value of all executed
commands to the dashboard

Figure 23. Example #2 – send the value all executed SQL
queries to the dashboard

03/2013 60

ANDROID lAbOlAtORy

od is called, the device will send this data (the orig-
inal query) to the proxy, and will replace the origi-
nal value with modified received value.

All it takes at the dashboard’s side is to operate
the proxy (Figure 20)

Now, when a message will be received, the
proxy will wake up and give the user the oppor-
tunity to observe the message AND modify it –
while the android app is waiting for the response!
(Figure 21).

Configuration examples
Let’s take a couple of examples for common sce-
narios, and how the configuration should be set to
achieve the required behavior. For each of the fol-
lowing examples, we’ll demonstrate how its con-
figuration should look like (as captured from the

default rules that come with the AppUse Reframe-
worker config file), along with a brief explanation
for its settings (Figure 22).

Explanation – mode is set to “send” since we
want to send this data. Value is *, since we want
to send all commands. toValue is not used in this
context but is set to *just in case. Calling method
is set for the relevant hooked method (Figure 23).

Explanation –calling method was set to the spe-
cific methods responsible for SQL queries. Other
values stayed the same (compared to previous ex-
ample; Figure 24).

Explanation – mode is set to “proxy” since we
want to modify this data at realtime. Other values
stayed the same (compared to previous example;
Figure 25).

Explanation – mode is set to “modify” since we
want to replace the hooked value (specifically, the
Boolean value of whether the certificate should
be trusted). Value is *, since we want to replace
all possible values (whether the cert is ok or not).
toValue is set to true since we want to always trust
the certificate. Calling method is set for the rele-
vant hooked method (Figure 26).

Explanation – quite similar to previous example.
The only difference is the value of calling method
which is the hooked method responsible for host-
name verification (Figure 27).

Figure 24. Example #3 – proxy (break and modify) the value
all executed SQL queries to the dashboard

Figure 25. Example #4 – trust all certificates

Figure 26. Example #5 – disable hostname verification
Figure 28. Example #7 – proxy (break and modify) the value
phone IMEI number

Figure 27. Example #6 – replace the value of the phone IMEI
number with another value

www.hakin9.org/en 61

AppUse – Android Pentest Platform Unified Standalone environment

Explanation – mode is set to “modify” since we
want to replace this data. Value is *, since we want
to replace all possible values. toValue is set to
“111111111111” which is the value we want to set in
this example. Calling method is set for the relevant
hooked method.

Note – if wanted to replace only a specific num-
ber, all we needed to do is to set it as “value” (rath-
er than using * in this example; Figure 28).

Explanation – mode is set to “proxy” since we
want to modify this data at realtime. Other values
stayed the same (compared to previous example).

Of course, this is just a very brief introduction to
all the ReFrameworker strength, as there are lots
of other rules AppUse can manage and for each
one of them there are lots of different settings to
play with.

network Analysis with AppUse
A big part of pentesting Android applications is do-
ne by inspecting the transportation from the app
and tampering it. In order to achieve the function-
ality, AppUse has preinstalled and configured tools
to be used in the penetration testing.

Proxied emulator
To ease the work in monitoring and analyzing net-
work traffic, AppUse comes with an option to fire up
the emulator proxy-initialized with Burp proxy with a
click of a button or as standalone (Figure 29).

Burp Suite is a leading HTTP proxy aimed and
designed for penetration testers. AppUse makes a
use in Burp to view and tamper HTTP traffic and
facilitate various attacks. Burp also provides ma-
ny tools to analyze data and HTTP traffic. It is ex-
tendable via many plugins to suit most of the web-
based technologies.

In order to analyze encrypted network traffic
(HTTPS), the emulator’s Key Store comes with
Burp’s Root CA Certificate pre-installed so it will be
trusted on the emulator’s OS and enable testing
HTTPS without having applicative errors involved
(Figure 30).

Wireshark
AppUse comes with Wireshark sniffer (Figure 31)
preinstalled and launchable from the dashboard.
Wireshark is the world’s foremost network proto-
col analyzer. It lets you capture and interactively
browse the traffic running on a computer network
from all protocols and network layers. Wireshark
enable the pentester to deeply inspect all the traffic
on the device without the limitation of HTTP-based
protocols.

Decoding and Reverse engineering APK’s
AppUse includes the most advanced tools used
to decode and reverse engineer APK’s. Once
an APK is loaded to the dashboard all the tools
are preconfigured to use it and all the tools and
frameworks are leveraging the pentester to reach
full coverage.

extracting APK
APK’s are encoded zip archives. Upon opening an
APK, there is a predetermined files and directories
structure that let the pentester to learn what is hid-
den under the hood. Among the rest, a pentest-
er can learn about open broadcast receivers, the
code being the application, the resources it uses,
the permissions it asks for and more.

Figure 31. In action: wireshark sniffing the Browser app
surfing to CNN.com

Figure 30. Burp is automatically linked to intercept
communication from the emulator on 127.0.0.1:8080

Figure 29. Launching Burp from the dashboard

03/2013 62

ANDROID lAbOlAtORy

The first step in the analysis is to extract the APK
(Figure 32). The Dashboard allows it to be done in
one click.

Converting Dalvik to Java code – dex2jar
The classes.dex file in the application’s APK is Ja-
va’s .class equivalent which contains all the class-
es hierarchy and Java code compiled into Dalvik
byte code. dex2jar is a tool that converts the An-
droid’s classes.dex file to .jar file, which lets the
pentester to disassemble it via Java disassembling
tools, such as jd-gui.

By clicking on dex2jar (Figure 33), the Dash-
board will automatically seek an extracted APK on
the Output folder and choose its classes.dex file.
dex2jar will save in the Output directory an equiva-
lent .jar file to be used further in the testings.

Disassembling Java Code with JD-GUI
JD-GUI is a framework aimed to disassemble .jar
files. Once a .dex file had been converted to .jar,
JD-GUI framework is ready to disassemble the
code. The pentester, by using JD-GUI, will be able

to audit the application code to find hidden secrets
and logic (Figure 34).

Decoding the APK via APKTool
Extracting APK does not take care of Android’s en-
codings. For instance, when opening an APK, the
AndroidManifest.xml file will be encoded so it won’t
be in a human-readable format. In order to unveil
the encoded secrets, APKTool can be used.

APKTool (Figure 35) is able to decode APK files
to a human-readable format. For instance, the fol-
lowing shows an attempt to open AndroidManifest.
xml file before using APKTool.

Using APKTool decodes the APK successful-
ly, and gets the AndroidManifest.xml to a human-
readable format (Figure 36).

Modifying APK’s
In some security researches it is necessary to
patch the code base of an application. While with
existing source code it can be done easily, without
existing source code the task becomes harder. Ap-
pUse contains all the tools necessary to disassem-
ble and patch Android applications code.

Figure 32. Extracting APK – result in APK contents being
presented on the Output directory

Figure 33. Dex2jar running on an example APK –
AndroidCalculator. The result is Java-equivalent jar file

Figure 34. Disassembling Java code of chosen Android
application via JD-GUI

Figure 37. Clicking the baksmali button – will create the /
Output/baksmali folder with all the Dalvik assembly code of
an application

Figure 36. The AndroidManifest.xml after decoding the APK

Figure 35. AndroidManifest.xml before using APKTool

www.hakin9.org/en 63

AppUse – Android Pentest Platform Unified Standalone environment

There are many applications to modifying the code
base of an application. The ability will let the pen-
tester to hook functions, inject code of his own or
change the resources being used by the application.

The following section will show how the pentest-
er can disassemble and modify an application via
AppUSe.

Disassembling via baksmali
Baksmali is a tool used to disassemble an APK’s
Dalvik byte code. Via baksmali, a researcher can
view the Dalvik assembly of the application and
modify it with a human-readable format.

AppUse Dashboard has a baksmali button that
with one click will disassemble the APK and will
output it to /Output/baksmali folder (Figure 37).

Once baksmali had been used on an APK, the
/Output/baksmali folder will contain all of its Dalvik
assembly code in a human-readable format. The
assembly can then be modified and have added
instructions of the pentester (Figure 38).

Reassembling with smali
baksmali gives the researcher the power to have
human-readable dalvik assembly code and have

the chance to edit it with any text editor he wishes.
Smali is a tool to complete the puzzle to reassem-
ble the code again.

With smali, the researcher can perform changes
in the application’s assembly code and recompile it
to a new .dex file. Once the new .dex file will be ap-
plied to an APK, the changed code will be patched
and once the APK will be installed the changes in
the code will be applied in runtime. Using this fea-
ture can leverage security researches to a whole
new level.

AppUse Dashboard have the smali button which
will take an existing code base created by baks-
mali, with all modified changes from the /Output/
baksmali folder and will recompile it altogether to
a new .dex file with one click of a button (Figure
39). The new dex file will be located at /Output/
smali_dex.dex.

Signing APK
APK needs to be signed in order to run on a de-
vice. Since modifying an APK will make the origi-
nal APK signature no longer valid, the researcher
needs to sign is APK. This can be done by using
the SignAPK tool located at /AppUse/Pentest/Sig-
nAPK. The sign.sh script needs to parameters:
[existing_apk] and [signed_apk], where [signed_
apk] indicates where to create the newly signed
APK file (Figure 40).

AppUse had preconfigured encryption keys for
the sake of simplicity. The signapk.jar file contains

Figure 42. Looking at an application internal storage

Figure 41. Opening a unix shell on the emulator

Figure 40. SignApk – Shows how to sign an APK. The
ExampleAPK.apk is the unsigned one and the ExampleSPK-
Signed.apk is a newly created and signed APK by the tool

Figure 39. Smali function – reassembling all smali code
under /Output/baksmali folder to a new .dex file at /Output/
smali_dex.dex

Figure 38. Baksmali output – human-readable assembly of
the application. Editable by any text editor

03/2013 64

ANDROID lAbOlAtORy

more options if the researcher wants to use his own
encryption keys. More details about the tool can be
found at: http://code.google.com/p/signapk/.

Going through the runtime
AppUse has preinstalled all the tools needed to go
through the application runtime. The following sec-
tion will guide the basics on how to look up an ap-
plication runtime via AppUse.

Using ADB anywhere
ADB is the most important tool to observe an ap-
plication runtime on a live environment. It lets the
pentester look through the application’s internal
storage, broadcast messages and more. AppUse
acknowledge the significance of ADB, thus it is

embedded in the PATH environment variable and
accessible from anywhere on the terminal.

The following figures will show some of the basic
operations you can do with ADB (Figure 41-45).

Analyzing Internal Databases
Android allows an application to use an internal
SQLite database for its private storage. Inspect-
ing a database is always part of a penetration test,
thus AppUse has SQLite browser bundled. The
following shows how an application database can
be extracted from the runtime local storage and in-
spected via the SQLite browser.

Pulling the database from the internal storage via
adb pull (Figure 46). Browsing the database via
SQLite browser (Figure 47).

The /Pentest Folder
AppUse is a project that is found under constant
development. One of the main goals is to always
be up to date with the latest attack tools, enabling
a researcher to achieve full attack coverage of a
given application.

The directory structure of AppUse contains the /
Pentest folder, which is where all the tools are al-
located. A brief view over the folder will give us this
(Figure 48).

Figure 45. Broadcasting intents

Figure 44. Overwriting a file on the application’s internal
storage with a file from the local machine

Figure 43. Taking a database from the application’s internal
storage to the local machine

Figure 47. Using the SQLite browser

Figure 46. Pulling the database file

Figure 49. The ApkAnalyzer tool

Figure 48. The Pentest folder

http://code.google.com/p/signapk/

www.hakin9.org/en

As you might have noticed, not all the tools are
currently present in the Dashboard. While the
Dashboard have many functionalities that in a
standard research will fully cover all the researcher
needs, some others are still being in development
and not embedded yet to the Dashboard.

AppUse won’t stop you from using those, as we
are familiar that for some researchers it is a need.
Those weapons will be found under the /Pentest
folder.

For instance, the following shows the APK Analy-
ser in action (Figure 49):

Of course more tools are available, such as Ro-
botium, DroidBox and SQLite Browser. This folder
is constantly updated and new weapons are added
all the time.

Link to appuse
AppUse can be downloaded from here: https://ap-
psec-labs.com/AppUse.

eReZ MeTULA
Erez Metula is a world renowned application security
expert, spending most of his time finding software vul-
nerabilities and teaching developers how they should
avoid them. Erez has an extensive hands-on experience
performing security assessments, code reviews and se-
cure development trainings for worldwide organiza-
tions, and had previously talked at international secu-
rity conferences such as BlackHat, Defcon, OWASP, RSA,
SOURCE, CanSecWest and more. His latest research on
Managed Code Rootkits, presented at major conferenc-
es throughout the world, was published recentely as a
book by Syngress publishing. He is the founder of App-
Sec Labs, where he focuses on advanced application se-
curity topics. Erez holds an MSc in computer science and
he is CISSP.

https://appsec-labs.com/AppUse
https://appsec-labs.com/AppUse

03/2013 66

extra

More than 85% of websites ask visitors to
create an account requiring a username
and password [1]. Many sites do this sim-

ply as a way to gather marketing information on
the user; not because they are storing sensitive
user information. The practice has become unsus-
tainable, as people have become overwhelmed
by the number of passwords they must remember
for all their online accounts and mobile applica-
tions. To cope, people reuse the same passwords
or they choose weak passwords, which are easier
to remember but also easier to guess or hack. As
a result, the average Internet user has more than
25 online accounts for which they use just 6 pass-
words [2], and the top 5,000 most common pass-
words on the Web are shared by 20% of the popu-
lation! [3]

Static passwords are not only unsustainable as
the sole layer of authentication, they also provide
a very low level of security for the account or da-
ta they are meant to protect. Hackers can often
guess a user’s password by trying combinations
of names, birthdates, common words or personal
information gathered from social networking sites.
Powerful processors (GPUs) available today en-
able hackers to quickly crack even strong pass-
words using brute force attacks. A personal com-
puter running a $400 GPU can try an average of
8.2 billion password combinations each second!

Such technologies allow hackers to crack lists of
100,000 passwords in just hours [4].

Additionally, millions of user credentials are al-
ready posted online from previous large-scale
password leaks like the 2009 breach of 32 million
user credentials from RockYou.com, the 2010
breach of 1.5 million user credentials from Gawk-
er Media Group, the 2011 breach of 100 million
passwords from Sony, and the 2012 breach of
24 million user credentials of Zappos custom-
ers. Such large lists of leaked credentials not on-
ly enable hackers to write programs that make
their password cracking algorithms even fast-
er, they also trigger a domino effect across the
Web. Knowing that most people use the same
credentials on multiple sites and applications,
spammers and hackers immediately use those
leaked credentials to try accessing user accounts
on other websites. In the case of the Gawker
breach, hundreds of thousands of user accounts
on Twitter were compromised and used to spread
spam and malicious links. Amazon and LinkedIn
had to enforce password resets for their entire
user communities to prevent accounts from be-
ing compromised.

This domino effect from large password breach-
es is exacerbated by the fact that most websites
and applications today still do not enforce strong
password policies or authentication standards.

How to Provide Strong
Authentication for Your Users

Alphanumeric passwords have long been the primary
method of authentication and access control on the Web.
In recent years, however, the use of passwords as the sole
method of authenticating users has become an outdated,
insecure and unsustainable approach.

www.hakin9.org/en 67

How to provide strong authentication for your users

Shockingly, a study of authentication standards on
the Web showed that most sites – including high
profile websites like eBay and Amazon – do not
take the simple precaution of limiting the num-
ber of password guesses at login to prevent brute
force attacks [5].

What password breaches mean for the
business
The problems associated with relying on static
passwords as the sole layer of authentication
harms not only the individual user who has their
account compromised, but also the online busi-
ness or website itself. Once an attacker has ac-
cess to user accounts, the negative repercussions
are costly for the business and include legal liabil-
ity, fines, loss of customers, damage to the com-
pany’s brand and reputation, plus the cost of fixing
security and IT systems while in a crisis state that
is the aftermath of a data breach.

In 2012, hackers stole more
than 8 million user passwords
to LinkedIn and eHarmony ac-
counts and published many of
them online. LinkedIn estimates
that it spent more than $1 mil-
lion to clean up the debacle and
will need to spend another $2 –
$3 million for additional security
upgrades [6].

In 2011, Sony suffered a data breach that result-
ed in the leaking of more than 100 million pass-
words and other personal information of PlaySta-
tion users. Sony spent more than $170 million to
remedy the fallout from the password breach [7].

The growth of mobile exacerbates the
problem
The problems with passwords are even worse
when it comes to mobile applications. People
are increasingly using smartphones and tablets
for a mix of personal and professional uses, from
browsing the web and social networking sites, to
connecting to work email and business applica-
tions, to conducting mobile banking and mobile
shopping. Despite accessing such sensitive infor-
mation on these devices, both consumers and de-
velopers of mobile applications are carrying over
their bad password habits and weak authentication
schemes to mobile.

Research has shown the majority of smart-
phone owners do not password protect their de-
vices, despite having them connected to sensi-
tive applications including work networks and
banking applications. Meanwhile, many mobile

•	 96%	of	compromised	records	from	da-
ta breaches are accessed from outside
the organization, often through the
use of stolen login credentials

•	 30%	–	50%	of	Help	Desk	support	calls	
are related to password reset requests

•	 Only	 52%	 of	 businesses	 require	 some	
form of authentication on employees’
smartphones

app developers provide users the option of leav-
ing the application perpetually logged-in, and us-
ers do so because typing a password on a smart-
phone to log in each time is too cumbersome [8].
As a result, people walk around with small com-
puters in their pockets that are connected to all
sorts of sensitive, personal and professional data
and none of it is password protected. Some mo-
bile experts have even ventured to say that un-
til we adopt better methods of authentication for
use on mobile, the adoption of mobile commerce
will remain stunted as consumers struggle with
the inconvenience of entering passwords and
concerns over security [9].

Finding balance among competing
priorities: security, usability and cost
With all the security threats described above, se-
curity professionals might be tempted to simply
enforce more stringent password requirements

from users, requiring longer
passwords or requiring users
to change their passwords ev-
ery few months. However, such
requirements only increase the
likelihood that users will forget
their passwords or attempt to
find ways to circumvent the se-
curity requirements, which can

increase costs for the business. Many companies
report that 30% – 50% of Help Desk support calls
are related to password reset requests.

To achieve effective, strong user authentication
on websites, web applications and mobile applica-
tions, security professionals must find a balance
among three separate forces whose goals are
often at odds: the cost and security needs of the
company, the impact on usability and user behav-
ior, and the motivations of the would-be attacker.

The goal of the company is to make security on
the website or application as rigorous as possible
while minimizing the cost and effort spent imple-
menting security controls. However, to do this, the
organization must also take into account the be-
havior and motivations of both its users and the
attackers.

In most cases, the attacker also conducts a cost
vs. benefit analysis when it comes to compro-
mising login credentials. The attacker’s goal is to
maximize profits while minimizing the cost and ef-
fort spent achieving the payoff. The more the at-
tacker can do to automate the attack, the better
the cost vs. payoff becomes. That is why the use
of keylogging malware, botnets and brute-force
attacks are still the most pervasive threats, while

03/2013 68

extra

more sophisticated and time-consuming threats
such as man-in-the-middle attacks remain rela-
tively rare in the wild.

The user also instinctively performs their own
evaluation of costs vs. benefits and behaves in
a rational way as a result. Although it’s easy to
blame the users for choosing weak passwords or
reusing passwords, the reality is that creating a
unique, strong password for every website is not
a rational choice. The cognitive burden of remem-
bering so many complex passwords is too high
a cost – especially if the user believes the odds
of their credentials being stolen are small or that
the business that owns the website will absorb
any losses resulting from fraud [10]. Thus, us-
ers reject security advice about choosing unique,
strong passwords as impractical and inconve-
nient with negligible benefit – or in other words, a
poor cost/benefit tradeoff.

The motives of the business, the user and the
attacker are often competing but they are all inter-
twined and security professionals should not think
of them as separate islands of behavior. They must
all be considered when developing an effective se-
curity strategy.

The goal is to achieve the optimal balance,
having optimized the cost/benefit tradeoff for the
business, made the security requirements easy
enough for users to adhere to, and made it just dif-
ficult enough for the would-be attacker that it is not
worth their effort, so they instead seek an easier
target.

Recommendations For Strong
Authentication
The domino effect caused by the large password
leaks mentioned above demonstrates to security
professionals that a data breach at one site can
lead to a network intrusion on your own website
or application. Since you can’t control the security
practices at other companies, you must implement
measures to identify risk and add layers or addi-
tional factors of authentication on your site, appli-
cation or enterprise system.

evaluate your business needs and consider
the most common security threats
First, consider the industry in which your business
operates. What type of data needs to be protected
and why? What form would an attack most likely
take? (e.g. Is an attacker likely to steal user cre-
dentials and sell them for profit, or more likely to
use stolen credentials to access user accounts
and commit fraud? Are you most concerned about
stopping brute force attacks, or could your site be

a target for a more sophisticated threat such as a
man-in-the-middle attack?) Are there data security
regulations with which the company must comply?
Who is the user population – are they employees,
business partners or the general public? How se-
curity savvy is the user population? Is there signifi-
cant incentive for the user population to invest ex-
tra effort to follow more stringent security practices
to protect their accounts, or is it a site or applica-
tion that users may be ambivalent about making
extra effort to securely protect?

Conducting an evaluation of the business needs,
the most prevalent threats and the user behavior
will help determine the level of risk and how strin-
gent the authentication requirements should be.

Make sure you have the basics covered:
To strengthen authentication, websites, applica-
tions and businesses need to stop relying solely
on passwords as the only method of authentica-
tion. I will elaborate later in this article on the ad-
ditional layers and factors of authentication that
can be added, but since you will likely still use a
password as the first layer of authentication, let’s
make sure you have these basic measures cov-
ered:

• Enforce a dictionary check on passwords to
ensure that the user cannot choose a common
word for their password.

• Require a strong username that includes a nu-
meric character. Often the username is the
easiest portion of the login credentials for a
hacker to guess. Do not use the user’s email
address as their username.

• Limit the number of failed login attempts. If a
user fails the login three times, temporari-
ly suspend the account until they authenticate
through other means.

• If login failed, don’t identify which user creden-
tial is incorrect. Stating that the ‘password is in-
correct’ or the ‘username doesn’t exist’ allows
hackers to harvest account information. A gen-
eral statement such as “Incorrect login, please
try again” helps prevent account harvesting.

• Use SSL to create an encrypted link between
your server and the user’s Web browser during
account enrollment, the login process and the
password reset process.

• Provide users with contextual advice on how
to choose a strong username and password.
Research shows that users do choose better
passwords when given advice on how to do so.
One option is to have a password strength me-
ter built into the page.

www.hakin9.org/en 69

How to provide strong authentication for your users

• Hash user passwords using bcrypt, scrypt, or
other hash algorithms specifically designed to
store passwords. Do not use SHA1, MD5 or oth-
er algorithms that were not specifically designed
for hashing passwords as they are not secure.

• Use Salt. Use a unique salt for each user ac-
count/password and store that salt with the
password. An additional layer of system wide
salt that is not stored with the password can al-
so add extra strength if the database is stolen
because it is not stored with the passwords but
is known to you.

These steps may seem rudimentary to some
readers, but a study conducted by researchers
at Cambridge University showed that most web-
sites did not even enforce these minimum stan-
dards [11].

Web-based authentication solutions for
generating one-time passwords
With the growth of Software-as-a-Service (SaaS)
providers, it’s easier than ever to adopt solutions
that generate one-time passwords for users, with-
out any hardware investment or significant integra-
tion efforts. While one-time passwords will not stop
a sophisticated man-in-the-middle threat, they do
protect against the most common security threats:
users choosing weak passwords, reusing the
same password or having their passwords stolen
using keystroke logging malware.

Example of image-based authentication. During enrollment,
the user chooses a few categories, such as dogs, flowers,
cars and cats. When authentication is needed, the user is
presented with the ImageShield™ and must identify their
secret categories by clicking the correct pictures. The images
are different every time and in a different location every time,
but the user’s categories remain the same

By generating one-time passwords for users
each time authentication is needed, you can en-
sure strong passwords are being used and that
stolen or leaked passwords cannot be used to ac-
cess accounts.

One way to add a flexible layer of authentica-
tion that generates one-time passwords without
overly-burdening users is to use an image-based
approach. Being a cloud-based solution, it re-
quires no hardware or software downloads from
the user and very little cognitive burden. By add-
ing one-time passwords in an easy-to-use man-
ner, image-based authentication increases secu-
rity while also increasing usability and improving
user experience.

While there are other image-based, pattern-
based and graphical approaches to authentication,
most do not generate one-time passwords. Con-
fident Technologies’ approach asks users to pick
and memorize a few categories of things during a
one-time enrollment. The user might choose cat-
egories such as dogs, flowers and cars. Each time
authentication is needed, the user is presented
with an image-based challenge. To authenticate,
the user must identify which images fit his/her
previously-chosen, secret categories. The specif-
ic pictures are different every time, but the user’s
categories always remain the same. The admin-
istrator can choose whether or not to require us-
ers to identify their secret categories in the same
order each time. As the user clicks or taps on the
pictures, a one-time password is generated behind
the scenes and submitted to the Confident Tech-

Example of another ImageShield™ that would be presented to
the same user. The user always looks for the same categories,
but the specific images and their location are different every
time, forming a one-time password on the back-end

03/2013 70

extra

nologies server and checked to determine if the
user identified the correct categories.

One of the benefits of an image-based approach
to generating one-time passwords is that the cog-
nitive burden on users is low. Research has shown
that people are much better at remembering cate-
gories and recognizing pictures of common things
than remembering a long string of alphanumeric
characters. Additionally, when the user sees the
image grid presented before them, their memo-
ry is jogged, helping them to recall which catego-
ries they chose during enrollment. This process is
called “Guided Recall.”

SaaS one-time password solutions are well-
suited to the business objective of increasing se-
curity with minimal cost (no need for hardware
or infrastructure integrations) while also increas-
ing usability (no need to carry authentication to-
kens), making it more likely the user will adopt
the stronger security practice. Additionally, SaaS
one-time password generators can be used as

a stand-alone authentication solution, or better
still, inserted as a second layer of authentication
in addition to the traditional password. Using a
multi-layered approach to authentication provides
greater security than any single layer of authenti-
cation. When used as a second layer of authenti-
cation, the image-based authentication approach
described here can strengthen the security of a
login by more than 99.999% [12].

example code snippets
Below are two example code snippets for creat-
ing and verifying an image-based authentica-
tion solution that organizations can implement on
their servers. The Confident ImageShield™ API is
based on RESTful architecture for all of the servic-
es exposed by the server (Listing 1 and Listing 2).

Risk-based, progressive authentication
Security professionals at organizations requiring
even stronger security should consider integrating

Listing 1. Generating a new encrypted ImageShield for a user

ApiClient apiClient = ApiClientFactory.createApiClientWithProperties();

User user = (SiteUser) httpSession.getAttribute(“site _ user”);

try {
 imageShield = apiClient.generateImageShieldResource(user.getAccountNumber(), user.getEncrypted-

Config(), user.getEncryptedPasscode(), false);

 request.setAttribute(“image _ shield”, imageShield);
}

Listing 2. Verifying an ImageShield from an http servlet request

// Create a Confident Technologies API client
ApiClient apiClient = ApiClientFactory.createApiClient();

// Instantiate the response code
boolean serverResponse = false;

// Set the image shield id to validate
String imageShieldId = request.getParameter(“image _ shield _ id”);
apiClient.setImageShieldId(imageShieldId);

// Set the users code that was submitted for that image shield
String verificationCode = request.getParameter(“image _ shield _ verification _ code”);

apiClient.setVerificationCode(verificationCode);

serverResponse = apiClient.verifyImageShieldSolution();

www.hakin9.org/en 71

How to provide strong authentication for your users

a risk engine with their authentication solutions.
Using behavioral and contextual risk profiling tools
and techniques, the system can dynamically trigger
additional layers of authentication only when need-
ed. Risk-based authentication solutions should
identify device reputation and evaluate the geo-
location of the user’s IP address and time of day
that they are accessing the site. Also examine the
frequency of the login attempts, which could indi-
cate a brute force attack. If a high-risk or suspi-
cious situation is identified, require an additional
authentication step from the user. The additional
authentication step could simply be another layer
of authentication, it could be a second factor of au-
thentication, or it could be a request for progres-
sive authentication.

With progressive authentication, the user may
only need to identify a portion of their shared se-
cret in order to authenticate and gain access to
systems, applications or data that are low-risk
or require a lower level of security. If, during the
same session, the user attempts to access other
systems, applications or data that are higher-risk,
they would then need to identify additional pieces
of their shared secret.

For example, using the image-based authenti-
cation solution described previously, the user may
select four secret categories during enrollment
when setting up their online bank account. When
logging into their bank account, the user may be
asked to enter their username and traditional pass-
word, and identify one or two of their secret cate-
gories. With that initial level of authentication, the
user may be able to access account details, check
their balance or other basic tasks. However, if the
user attempts to transfer money to an outside ac-
count, or if they have triggered the risk engine with
unusual behavior, they can be triggered to identify
the remaining two secret image categories, or to
identify all four of their secret categories in a pre-
determined order.

Not only does this type of progressive authenti-
cation generate one-time passwords, but the im-
age-based approach is unique in that the user’s
secret image categories are all pieces of one au-
thentication secret that can be used as a whole, or
incrementally for progressive authentication.

Multifactor Authentication
Organizations in regulated industries such as fi-
nance and healthcare, or even those organizations
that are not in regulated industries but who may be
a high-profile target for hackers are recommend-
ed to go even further and adopt out-of-band multi-
factor authentication. With the widespread use of

mobile phones, two-factor authentication using the
phone as the second factor is growing quickly. One
of the most common methods is for the website
or organization to send a one-time authentication
code to the user’s mobile phone via an SMS text
message. The user then types the code into the
web page to authentication.

Unfortunately, cybercriminals know that SMS is
increasingly used for sending authentication text
messages in banking and other industries, and as
a result they are increasingly targeting the channel
for attack. Using a variant of the infamous Zeus
malware, they are able to compromise user’s on-
line accounts and then intercept and reroute the
authentication text messages to their own phones.
Because the authentication code is written in clear
text in the text message, the hacker is able to read
it, type it in to a web page on their computer and
gain access to the user’s account.

A better approach is to adopt a multi-layered,
multifactor authentication solution. If the user base
primarily has smartphones, the online organization
can use push technology or an app on the phone
to send an out-of-band authentication challenge to
the user’s mobile phone. Again taking the image-
based authentication approach described earlier,
when a user logs into their online bank account
on their PC, they enter their username and tradi-
tional password. Then, the bank sends an image-
based authentication challenge to appear on the
user’s smartphone display. The user must tap the
images that fit his/her secret categories and tap a
submit button in order to authenticate out of band.
The user not only had to have possession of the
registered second factor device (their phone) but
also had to apply a shared secret (knowledge of
their secret categories) on the phone. The entire
authentication process remains out of band from
the PC – the user did not have to type anything into
the web page. Additionally, even if someone were
able to intercept the communication or had posses-
sion of the user’s mobile phone when the image-
based challenge is delivered, they would not know
which images to tap because they would not know
the secret categories. In this way, it is a truly out-
of-band, multilayered, multifactor authentication
solution.

With any multifactor authentication solution re-
lying on the user’s mobile phone as the second
factor device, the authentication process will be
most secure if the solution relies on push tech-
nology and is a server to server communication,
keeping the entire process out-of-band by not
requiring the user to type any data into the web
page.

03/2013 72

extra

Using image-based authentication combined
with a risk engine, an organization can create a
seamless, cross-platform authentication solution.
For example, if the risk engine determines that
the level of risk is low, it may trigger a second lay-
er of authentication (the image-based challenge)
on the web page for the user to solve. However,
if the risk engine determines that risk is greater, it
can trigger the image-based challenge to be sent
to the user’s mobile phone, for the user to solve
out-of-band for multi-layered, multifactor authen-
tication.

Although multifactor authentication has primarily
been adopted in the financial services vertical (due
to industry regulations), it is becoming increasingly
common on all types of websites and applications,
primarily due to high-profile password breaches at
many of these sites. Sites such as Apple, Face-
book, Evernote, Amazon Web Services, PayPal,
Drop Box and Microsoft Live have all implemented
two-factor authentication using end-users’ mobile
phones.

Biometrics and Behavioral biometrics
Biometrics and behavioral biometrics are becom-
ing viable authentication options. For example,
most laptops, smartphones and tablets now come
with built-in video cameras that can be used for
facial recognition. Fingerprint scanners are quite
common in mobile and desktop environments and
there are even snap-on devices that allow you to

add a small fingerprint scanner to a device that
does not have one built in. Smartphone applica-
tions can be used for voice recognition. Retina
scanners, palm-scanners and ear-scanners have
all been used in biometric identification. However,
drawbacks of biometric authentication include the
need to maintain the equipment and ‘body parts’
to get accurate readings; biometric id data must
also be stored in databases and is, therefore,
susceptible to malicious theft and forgery. De-
pending upon the type of organization, account
or data being accessed, a user may or may not
be willing to provide biometric data for authentica-
tion. For example, users may be willing to use a
fingerprint scanner to authenticate for their bank
account, but not for their favorite social network-
ing or shopping site.

Behavioral biometrics are also gaining popular-
ity. Behavioral biometric techniques include soft-
ware that tracks the user’s behavioral patterns
such as keystroke speed and mouse movements.
It has been demonstrated that these and other
behavioral profiling techniques can help to suc-
cessfully identify an individual user, especially
when used in conjunction with another authenti-
cation factor.

Conclusion
Authentication standards on most websites are
woefully lacking. Relying solely on username
and passwords puts the business, its users and

Refernces
[1] Bonneau, J., & Preibusch, S. (2010). The password thicket: technical and market failures in human authentication

on the web. Proceedings of WEIS 2010: The Ninth Workshop on the Economics of Information Security, Retrieved
from http://weis2010.econinfosec.org/papers/session3/weis2010_bonneau.pdf

[2] Florêncio, D., & Herley, C. (2007). A large-scale study of web password habits. Proceedings of the International
World Wide Web Conference Committee, http://research.microsoft.com/pubs/74164/www2007.pdf

[3] Kahn, R. (2010, January 21). 123456 most common password?. Discover, Retrieved from http://blogs.discovermaga-
zine.com/gnxp/2010/01/123456-most-common-password/

[4] Goodin, D. (2012). Why passwords have never been weaker – and crackers have never been stronger. Ars Technica,
Retrieved from http://arstechnica.com/security/2012/08/passwords-under-assault/

[5] Bonneau, J., & Preibusch, S. (2010). The password thicket: technical and market failures in human authentication
on the web. Proceedings of WEIS 2010: The Ninth Workshop on the Economics of Information Security, Retrieved
from http://weis2010.econinfosec.org/papers/session3/weis2010_bonneau.pdf

[6] Lennon, M. (2012). LinkedIn: Breach cost up to $1 M, says $2-3 million in security upgrades coming. Security Week,
Retrieved from http://www.securityweek.com/linkedin-breach-cost-1m-says-2-3-million-security-upgrades-coming

[7] Martinez, E. (2011). Playstation network breach has cost Sony more than $171 million. CBS News. Retrieved from
http://www.cbsnews.com/8301-504083_162-20065621-504083.html

[8] Confident Technologies. (2011). Survey shows smartphone owners choose convenience over security. Retrieved
from http://www.confidenttechnologies.com/news_events/survey-shows-smartphone-users-choose-conve-
nience-over-security

[9] Kats, R. (2011). Authentication going to be more revolutionary than commerce transaction: CTIA panelist. Mobile
Marketer. Retrieved from http://www.mobilemarketer.com/cms/news/commerce/11217.html

[10] “So Long, And No Thanks for the Externalities: The Rational Rejection of Security Advice by Users” by Cormac
Herley, Microsoft Research

[11] “The password thicket: technical and market failures in human authentication on the web” by Joseph Bonneau
and Sören Preibusch

[12] Confident Technologies. Technology Overview: http://www.confidenttechnologies.com/technology

http://weis2010.econinfosec.org/papers/session3/weis2010_bonneau.pdf
http://research.microsoft.com/pubs/74164/www2007.pdf
http://blogs.discovermagazine.com/gnxp/2010/01/123456-most-common-password/
http://blogs.discovermagazine.com/gnxp/2010/01/123456-most-common-password/
http://weis2010.econinfosec.org/papers/session3/weis2010_bonneau.pdf
http://www.securityweek.com/linkedin-breach-cost-1m-says-2-3-million-security-upgrades-coming
http://www.cbsnews.com/8301-504083_162-20065621-504083.html
http://www.confidenttechnologies.com/news_events/survey-shows-smartphone-users-choose-convenience-over-security
http://www.confidenttechnologies.com/news_events/survey-shows-smartphone-users-choose-convenience-over-security
http://www.mobilemarketer.com/cms/news/commerce/11217.html
http://www.confidenttechnologies.com/technology

How to provide strong authentication for your users

its valuable information at risk. Not every busi-
ness needs true multifactor authentication, but
most businesses can benefit from implementing
relatively simple security controls, such as add-
ing one-time passwords. To develop the right au-
thentication strategy, security professionals must
evaluate the security needs of the company and
balance the cost/benefit tradeoff of stringent se-
curity with the impact on usability and user behav-
ior, while thwarting the objectives of the would-be
attacker.

User education is also critical for improving au-
thentication security. Unless the user clearly un-
derstands the reasons for and personal benefits
of additional authentication requirements, they will
find ways to circumvent the policies.

Finally, it’s important to remember that ‘securi-
ty’ is a process – IT professionals must contin-
ually re-evaluate the company’s security needs,
identify areas for improvement and make a se-
curity roadmap for future improvements. Incident
response is critical – always have a contingen-
cy plan in place to help mitigate the damage as
quickly as possible.

The website can never be 100% secure, but IT
professionals should aim to be in the optimal zone
that balances the costs with the benefits, helps its
users and is strong enough to deter most attackers.

Managed Security Services
Automated Compliance (PCI-DSS, SOX, HIPPA)
Secure Server Build Automation
Centralized Logging and Event Management
Business Continuity and Disaster Recovery
Security Services to meet any budget
Always Compliant © System Monitoring

Contact: oombasecurity.com/contact.htm

a d v e r i s e m e n t

ROMAn YUDKIn
Roman Yudkin is Chief Technology Of-
ficer at Confident Technologies. He is
responsible for Research & Develop-
ment, Engineering and general over-
sight of all corporate technical func-
tions.
Yudkin has more than 25 years of
hands-on leadership experience in
high technology sector – architecting,

building, and bringing to market complex enterprise
software systems and professional services across mul-
tiple industries and international settings. Key positions
in his career include VP of Engineering at Websense, Sr.
VP and CTO at Pharmatica, COO at Mindport, VP of Soft-
ware Development at Groupe Bull, and Director of Soft-
ware Engineering at Bell Labs. Most recently, Yudkin
served as CTO and co-founder of Affeo Inc. in Carlsbad,
California. Yudkin’s educational background includes a
Bachelor’s degree in Computer Science and Mathemat-
ics from the University of Wisconsin-Madison, a Masters
degree in Computer Science from the University of Wis-
consin-Madison, and a Masters degree in Cognitive Sci-
ence/Artificial Intelligence from the Rutgers University,
New Jersey.

http://www.oombasecurity.com

03/2013 74

extra

While communication is still a major com-
ponent around the mobile of the future,
it is not the backbone of application de-

velopment. Quantum Intelligence drives the next
wave of mobile technology.

What is “Quantum Intelligence”?
Quantum intelligence is the ability to think some-
thing like “How deep is that river? What known
predators to man live in it? What is its temperature
and how likely is it possible I could swim across
it in 10 minutes?” and have the answer compre-
hended in a number of seconds.” The current mo-
bile revolution has put a handful of technologies
on a trajectory to all crash into each other in a way
that will make all of this possible.

Microprocessors
The mobile revolution has the throttle fully pressed
on the constant and relentless advancement in
making processors smaller, faster and more effi-
cient (less battery/energy usage). Powerful micro-
processors are the size of a fingernail now.

Wireless Data
What started as a luxury, rapidly became a staple.
Rapid data coverage is spreading across the globe
as it if were a virus. In many countries a comput-
er unaffordable for an average family. Instead a

phone with wireless data that is 2 generations old
is the family’s computer.

Artificial Intelligence
(For the lack of a better term) The world is de-
manding that its information searches become
increasingly agile and require less steps. Only a
couple of years ago I could not say to my phone
“Do I need an umbrella”, “Closest place to watch
that Russell Crowe movie.” Instead it took a hand-
ful of steps to figure this out. This isn’t truly artifi-
cial intelligence as a smarter mapping of terminol-
ogy to searches.

Mobile sensors
I don’t need to tell the computer where I am to
find out about the weather or movie theaters be-
cause it knows where I am. Phones come with
several very useful mobile sensors that are use-
ful to everyday needs but an epic amount of use-
ful lightweight open source mobile sensors have
been created in the last 5 years. Everything from
radiation to distance sensors are currently avail-
able. (Phidgets.com)

Big Data
Each of the previously mentioned advancements
has led us to answers and knowledge in places,
times, speeds and formats that were unimagina-

Quantum IQ
How the Worlds Military’s Intend to Capitalize on the Future
of Mobile and neuroscience Technologies

“Mobile” used to mean a laptop and while the laptop is
technically still mobile, the term now means phone or
tablet. The next generation of mobile is not seen or touched
as an interface. It is simply comprehended.

www.hakin9.org/en 75

Quantum IQ

ble. We got “it” fast. We got “it” everywhere. We
got “it” with better precision and less steps. Now
we want MORE of “it”.

neuroscience
A combination of interface advancement and hu-
man sensor development. We created cameras
that can record a scene, capture the information
digitally and display it onto flat surfaces in a way
that our eyes (sensors) can be pointed at and
send a signal to the brain that comprehends the
scene. The next step is bypassing the eyeballs.
We can control games and prosthetics with our
minds, demonstrating a real ability to send out-
put from the mind in order to control technolo-
gies. Getting information back into the mind is the
next step. We currently only have two recordable
senses. Sound and Sight. If we recorded what
signals your hand sends to the brain when you
touch sandpaper, we should be able to send what
sandpaper feels like over a network to someone
else if we could just get information directly in-
to the brain without recreating it the way we do
with cameras. Imagine the implications this has
on training, or reducing shock, allowing someone
to feel some level of the sensation ahead of time.
You can currently take a picture of a type of dog
and Google will analyze the image and show you
results. In the future your eyes will just look at the
dog and the brain signal will just go to a micro-
computer that you are wearing and the results will
be sent back right to your brain. You won’t talk or
type about it. You won’t look at a screen. You will
just think your questions and the results will re-
turn and furthermore the caliber of questions and
answers will be incredible. In today’s world you
might see a cake you desire to make yourself, re-
search what it is, lookup instructions to make it,
lookup directions for the best grocery store, text
home about what ingredients you have and don’t
have, go down more aisles than you need to un-
til you have the ingredients, wait in line, pay with
a credit card, drive home, pull up the instructions
on your ipad and proceed to make the cake. In
tomorrow’s world you would just look at it, which
would give you the sensation of its average taste,
mentally agree to pay and when you got home
the ingredients you lack would be waiting for you.
You would see how to make it in your minds eye.
You would share how your cake tasted specifi-
cally with others who were nowhere close to you.

Walk, Crawl, Run
The President of the United States has put forth
100 Million in funding to speed up the advance-

ments in neuroscience. We aren’t as far as it
might seem. If I can say “how far is the moon”
and immediately get a response and I can think
about how a prosthetic hand should react and it
does, then I should be able to think “How far is the
moon” and at least hear the response said back
to me right? There are dozens of home sensors
that can be purchased for Brain Computer Inter-
faces on the Internet for between $100-$500 with
API’s and SDK’s. What I implore any developer
reading this article to do, is to start integrating
these into mobile technologies and map human
languages to the brain rather than directions and
controls. If we can demonstrate thinking “what is
15% of .0065 and getting the answer spoke to an
ear piece then we are halfway to Quantum Intel-
ligence.

JeRe SIMPSOn
Jere Simpson is the founder, Presi-
dent, and sole owner of KiteWire, Inc.
– a software development company
founded in early 2007. At 32, he is also
Managing Partner and Chief Technol-
ogy Officer of PENme, LLC and Advisor
to the Department of Defense (DoD)
and Federal Government. He, also,
sits on the board of three other com-

panies. Known for being a serial entrepreneur, KiteWire,
Inc. is Mr. Simpson’s fourth company, of which he has
founded and been President. Each of his companies has
experienced more than 800% growth in their first three
years. The first three companies were sold in less than 4
years. He has not only advised some of the biggest com-
panies, such as Facebook, Google, and Apple, but ac-
tively architects enterprise systems for the Federal Gov-
ernment and DoD to include, but not limited to the FBI,
CIA, U.S. Army, Navy, Department of Homeland Securi-
ty, Air Force, and USSOCOM. His current company, Kite-
Wire, Inc., develops a mobile security product, Steel Tal-
on, used by the United States Government. KiteWire cre-
ated what is considered the first Military iPad app. Mr.
Simpson also has a deep passion for philanthropy. He
created the “Strike Lightning” initiative in 2009 to help
under-privileged young people with professional devel-
opment. Having been one of the first commercial inter-
net users (1,032nd), he believes in the power that access
to information can give to under-privileged children
and, as such, his company works to diminish the digital
divide.

03/2013 76

extra

In the mobile security space there are more than
a few companies selling what they like to call
“antivirus” applications for smartphones. The

problem is that the term is being used erroneously
– sadly it’s no accident.

A virus, as it relates to any computing device, is
a form of software that can replicate itself by way
of documents and executable files in order to infect
other devices, either automatically through a net-
work or through a storage device such as a flash
drive. The end goal of most viruses is the corrup-
tion of data and/or the damaging of the operating
system.

In order to detect and mitigate real viruses, a
software solution would need to be capable of run-
ning as a root process on a system, something that
is just not possible on most mobile platforms cur-
rently where applications typically run in a sand-
boxed environment.

Take for example the fact that none of the An-
droid antivirus apps on the market can provide
any zero-day protection. The best they can do is
to monitor for a package to be installed, then do
simple signature-based check. If there were an
actual kernel exploit in the wild, that sandboxed
third-party app would not do a darn thing to protect
your device. In fact, nothing short of an OTA patch
from Apple, Google, OEM or some mobile opera-
tor would suffice.

Applications claiming to be “antiviruses” are
merely detecting what has the potential to be mal-
ware, something that a developer of an applica-
tion may have snuck into the software code that
is meant to steal data or interact with the device in
such a way as to cause it to send premium SMS
messages at the victim’s expense, something that
is more correctly defined as being a Trojan or some
form of spyware.

Although these detection capabilities may be
marginally useful to the end user, they do not by
any stretch of the imagination fit the definition of
an “antivirus” or replace common sense – that is to
say, being cautious about which applications you
download and then carefully reviewing the permis-
sions for each application if you do install it.

There have been many suspect applications that
have been removed from the various markets and
both Google and Apple, and there are other forms
of malware like Zeus and SpyEye that have been
employed in toolkits aimed at harvesting banking
credentials, but for the most part there have been
no wide-scale self-replicating viruses targeting the
most popular smartphone platforms.

So, why do these companies call their products
an “antivirus” when it isn’t? The simple answer is
marketing.

Like all good social engineers, marketers know
the that technical newbs don’t know the true defini-

Mobile Antivirus
Is a Myth
So, why is mobile antivirus a myth you ask? A true antivirus
for mobile devices is not possible given the SDKs (software
development kits) provided by most mobile platforms.

Mobile Antivirus is a Myth

tion of anti-virus from a hole in the ground, as the
term is ingrained in our heads as meaning “protec-
tion” from years from security firms pushing them.
To make matters worse, these companies tend to
amplify threats in their marketing materials by em-
ploying generous amounts of FUD (Fear Uncer-
tainty and Doubt), often feeding baseless statistics
from their own “research” to the press to generate
hysteria, all the while hoping reporters don’t check
up on their “facts.” Unfortunately, most don’t.

The false sense of security these “antivirus” ap-
plications try to provide is quite irresponsible.
Promising to protect us from “viruses” can be more
dangerous than the “viruses” themselves, as it
may convince someone they don’t need to install
a critical security patch from their vendor, as they
might believe a third-party application is protecting
them from malware, when in fact it is not.

Ken WeSTIn
Ken Westin (@KWestin) of Tripwire,
Inc. is a creative technologist with
over 13 years experience in build-
ing and breaking things through the
use/misuse of technology. In the past
he has been an avid cyber criminol-
ogist with a knack for empowering
electronic devices to defend them-
selves from malefactors. His technolo-

gy exploits have been featured in Forbes, Good Morning
America, Dateline, New York Times, The Economist and
he has won awards from MIT, CTIA, Oregon Technology
Awards, SXSW, Web Visions, Entrepreneur and others.

a d v e r t i s e m e n t

http://twitter.com/kwestin
http://www.tripwire.com/
http://www.tripwire.com/
http://www.it-securityguard.com/

03/2013 78

plus

An interview with

Omar Khan
the Co-CeO of nQ Mobile
Omar Khan joined NQ Mobile in January 2012 as co-CEO. In this role, Mr.
Khan is responsible for the global direction of the company while also
focusing on the business expansion across markets including North America,
Latin America, Europe, Japan, Korea and India. He joined NQ Mobile from
Citigroup, where he was Managing Director & Global Head of the Mobile
Center of Excellence and led the company’s mobile development and
delivery efforts globally.
Prior to that, Mr. Khan served in multiple senior executive roles at Samsung
Mobile. During this tenure, he served as Chief Strategy Officer and the Chief
Product & Technology officer and was responsible for Samsung Mobile’s
strategy, product, technology, content and services functions.
Before joining Samsung, Mr. Khan spent eight years at
Motorola, where his last role was Vice President, Global
Supply Chain and Business Operations for the Mobile
Devices Business.
Most recently, Mr. Khan was named an under 40 “mobilizer”
by FORTUNE magazine in the October 11, 2012 issue. Mr.
Khan has also been honored by Crain’s Chicago Business
Magazine with a “40 under 40” award and was
nominated by Androinica as Android Person
of the Year. In addition, Mr. Khan was also
named among FORTUNE Magazine ’s 36 “most
powerful disrupters.”
He holds Bachelor’s and Master’s degrees in
Electrical Engineering from Massachusetts
Institute of Technology (MIT). He
completed his graduate work in System
Dynamics in conjunction with MIT’s Sloan
School of Management.

www.hakin9.org/en 79

An interview with Omar Khan

Could you please introduce yourself
briefly.
Omar Khan, Co-CEO of NQ Mobile. I am a rec-
ognized thought leader in the mobile industry, with
deep experience leading global companies on
both the device and software side.

Prior to joining NQ Mobile, I was Managing Di-
rector & Global Head of the Mobile Center of Ex-
cellence for Citigroup, where I led the company’s
mobile development and delivery efforts global-
ly. I was directly responsible for the launch of the
Google Wallet payment system.

Prior to Citigroup, I was CTO of Samsung Mo-
bile. In that role, I was responsible for Samsung
Mobile’s strategy, product, technology, content and
services functions. I played a fundamental role in
Samsung’s adoption of the Android platform and
for developing the Galaxy series of mobile devic-
es for the US market. During my tenure with Sam-
sung Mobile, we became the number one provider
of mobile phones in the United States, as well as
the leader in Android phone technology.

I am a frequent speaker at industry conferences
around the world, and I provide counsel on privacy
and mobile security to the Federal Trade Commis-
sion and the Federal Communications Commission.

I have been honored by Crain’s Chicago Busi-
ness Magazine with a “40 under 40” award and
was nominated by Androinica as Android Person
of the Year. Most recently, I was named among
Fortune Magazine’s 36 “most powerful disruptors”
and as a Mobilizer Under 40 in the Fortune’s an-
nual 40 Under 40 list.

I hold Bachelor’s and Master’s degrees in Elec-
trical Engineering from Massachusetts Institute of
Technology (MIT). And, completed graduate work
in System Dynamics in conjunction with MIT’s
Sloan School of Management.

Present your company and yourself within
its structures.
NQ Mobile is the world’s largest mobile security
and privacy software provider, with over 280 mil-
lion registered user accounts globally – larger than
all other mobile security competitors combined.

Our company is headquartered in Dallas, TX,
and Beijing, China and I share leadership with fel-
low co-CEO Dr. Henry Lin.

The company was founded in 2005, and through
our proprietary mobile security engine, we have
been the first to discover over 90 percent of all
known Android malware, including identifying
65,000 new malware threats across platforms in
2012. We are strategic security partners with some
of the biggest names in mobile, including HTC,

Motorola, MediaTek, Verizon Premium Wireless
Retailers and Vodafone.

I joined NQ Mobile in January 2012 to focus on
global expansion into markets such as North Ameri-
ca, Latin America, Europe, Japan, Korea and India.
Since I joined the company, I’ve recruited a team
of top-level mobile-industry executives including
former Samsung Mobile colleagues: NQ Mobile’s
Chief Commercial Officer, Gavin Kim; Chief Expe-
rience Officer, Conrad Edwards; Head of Product
Management, Victoria Repice; and Head of Corpo-
rate Communication, Kim Titus. These hires have
significantly raised our global visibility.

During my tenure, we’ve completed agreements
with premier mobile industry frontrunners such as
Brightstar, Telefonica, Vodafone, A Wireless, TD-
Mobility, The Cellular Connection and Vox Mobile.

I have also spearheaded several major consum-
er and industry security initiatives, including pro-
viding an advisory role to the FCC, pressing for
industry standards on effective privacy policies by
app developers, and working to educate consum-
ers through third party researchers and security
experts.

What does your company deal with?
NQ Mobile is making the world safer for our in-
creasingly mobile lifestyles. Mobile devices have
become an integral part of our daily lives, as both
powerful business tools and family-oriented en-
tertainment platforms. But the rapid adoption of
these devices has left mobile users vulnerable.
Platforms are diverse and consumers are un-
aware of the dangers posed by rogue applica-
tions and URLs. At the same time, cybercriminals
are increasingly taking advantage of the gaps in
mobile security and sheer scale of this mass mar-
ket opportunity using mobile devices to spread
malicious code and steal personal, financial data;
or profit from sending Premium SMS, calling Pre-
mium numbers then covering their tracks, without
a user’s consent or knowledge.

According to our estimates, more than 10.8 Mil-
lion Android devices around the world were infect-
ed with malware in 2011. Our flagship application,
NQ Mobile Security™, was developed to protect
devices from such attacks, detecting and deleting
viruses, malicious URLs, and other threats before
the infections can inflict their damage. In 2012, we
discovered over 65,227 new pieces of mobile mal-
ware – a 163% increase over 2011.

NQ Mobile Security also helps users protect
their personal and financial data, keeps their de-
vices running at optimum speed, backs up and
restores contacts, and even remotely alarms/

03/2013 80

plus

locates, locks and deletes information from lost
or stolen phones. NQ Mobile Security’s cloud-
based database is the world’s largest catalog of
mobile threat intelligence in existence, contain-
ing well over one billion risk assessed and rated
URLs and 1,400,000 mobile applications. Today,
this database is responsible for first detecting
and resolving over 90% of all new Android mobile
threats. Every NQ Mobile Security user forms part
of the company’s global security cloud. With no
effort on their part, consumers constantly contrib-
ute new non-attributable security knowledge that
helps us to detect virus samples, malicious URLs,
and other threats.

Describe the team you work with.
NQ Mobile has an amazing team of mobile-indus-
try experts. Besides Dr. Henry Lin, and myself our
executive team includes recognized leaders in-
cluding Vincent Shi, Gavin Kim and Conrad Ed-
wards.

Dr. Shi is co-founded the company with Dr. Lin
and serves as director and chief operating officer.
He is responsible for the operations of our com-
pany, including management of business opera-
tions, channel development, and online business
development.

Gavin Kim is our chief commercial officer, lead-
ing the vision, strategy, design, and develop-
ment of our global consumer and business prod-
uct portfolio. His primary focus is on accelerating
product leadership and global sales in the mobile
security, privacy, and productivity markets. Before
joining NQ Mobile, Gavin served as Microsoft’s
General Manager for Windows Phone Product
Marketing, leading the company’s product mar-
keting and platform planning teams and driving
Windows Phone’s application and developer eco-
system efforts. Prior to that, he was Samsung Mo-
bile’s Vice President of Content, Services and En-
terprise Business, and held leadership positions
at Motorola and Advanced Technology Ventures.

Conrad Edwards is our chief experience offi-
cer. He leads our global marketing, user experi-
ence and product innovation initiatives, as well as
driving customer engagement and loyalty across
consumer and business channels. Conrad has a
long track record in shaping and delivering ex-
perience-based designs and products that help
brands become more desirable and empowering
to customers. Most recently, he held a senior ex-
ecutive role at Samsung Mobile, where he was
responsible for building and leading a team that
was dedicated to next-generation design and
technology experiences. Prior to Samsung, Con-

rad led the Experience Engineering and Interac-
tive Media teams at Motorola Mobility.

What services do you provide?
NQ Mobile is one of the first companies to be
dedicated to the protection of mobile devices for
both consumers and enterprises. To stay ahead of
potential threats, we maintain one of the world’s
largest professional mobile security research and
development (R&D) teams. With this heavy invest-
ment in R&D, the company has developed more
than 30 proprietary core technologies and mobile
information security patents and is first to identify
90% of global Android mobile threats.

Besides our flagship NQ Mobile Security prod-
uct, we offer several other award-winning consum-
er applications including NQ Mobile Vault™ and
NQ Family Guardian™.

NQ Mobile Vault solves the all-or-nothing prob-
lem with sharing your device – in the past, you
either chose to share your phone and expose
ALL of your content or you kept your phone to
yourself.

NQ Mobile Vault benefits users by eliminating the
privacy risks consumers face if their phone is sto-
len or simply if they have something they’d pre-
fer others not see, protecting users’ data in a safe,
password-protected and encrypted place. It’s a
must-have application for bring your own device
(BYOD) employees, families, celebrities, and mo-
bile users that share devices. NQ Mobile Vault is
available on both Android and iOS platforms.

NQ Family Guardian is our unique paren-
tal mobile management services suite that of-
fers parents and their kids the needed balance
of protection and communication. The safety and
monitoring tool comprises a mobile app that is
downloaded and installed on the child’s smart-
phone along with a web-based control center that
is accessible from any desktop or mobile browser.
The app is currently available for Android devic-
es, while the control-center is compatible with any
web browser.

To meet businesses’ security needs, NQ Mobile
also offers NQ Enterprise Shield. The corporate-
licensed product enables businesses to protect all
of their employee mobile devices from malicious
threats, even uninstalling threats that have already
infected a device. The product also provides back-
up and restore functions, gives control over run-
ning apps and power consumption, and monitors
data consumption by mobile apps.

Through our subsidiary, NationSky, we’ve also
just released our NQSky™ mobile device manage-
ment (MDM) platform.

www.hakin9.org/en 81

An interview with Omar Khan

NQSky is a robust, end-to-end solution for en-
terprise-level mobile management and security. It
is a complete solution that assists companies to
seamlessly integrate mobile devices with their ex-
isting IT policies. With NQSky, businesses are em-
powered to meet the demands of an evolving mo-
bilized workforce, which can significantly improve
productivity, reduce IT management expenses and
take advantage of BYOD--a win-win strategy for
employees and enterprises.

NQSky mobile management platform offers an
expanded range of functionalities beyond the tra-
ditional MDM and put a greater emphasis on the
entire device lifecycle.

What are your target clients?
NQ Mobile’s portfolio includes mobile security and
mobile games & advertising for the consumer mar-
ket and consulting, mobile platforms and mobility
services for the enterprise market. As of Decem-
ber 31, 2012, we had a user base of 283 million
registered user accounts and 98 million monthly
active user accounts through our consumer mo-
bile security business, 65 million registered user
accounts and 13 million monthly active user ac-
counts through our mobile games & advertising
business and over 1,200 enterprise customers.

Our consumer applications are available
through major app stores like iTunes and Google
Play, and we have point-of-purchase deals in
place with five of the six largest Verizon Premium
Wireless Retailers in the US (The Cellular Con-
nection, A Wireless, Wireless, Go Wireless and
Diamond Wireless), major UK retailer Phones4u
and Australian retailer ePay. We also have agree-
ments with top global carriers including Telefoni-
ca and Vodafone in Europe and US Cellular and
Cricket Wireless in the US. For enterprise cus-
tomers, NQ Mobile has partnered with Vox Mobile
and TDMobility.

Do you look for new employees? If so,
What kind of candidates do you look for?
We are continuously looking for new employees.
We are looking for talent in many disciplines in-
cluding engineering, marketing, business devel-
opment and product management. We are look-
ing for people who are looking to revolutionize the
future of the mobile Internet. Our employees are
challenging the limits of the mobile Internet and its
applications within our daily lives at home and at
work. As the installed base of smartphones grows
from 1.3B today to several billion over the next few
years, it will become the primary lifeline for every
consumer. Our employees are striving to identify,

enable and secure the applications of how these
devices will be used in multiple aspects of our daily
lives. This will include emerging uses such as mo-
bile payments and mobile health applications.

What distinguishes you from other
companies?
First, we are a truly global company, which affords
us a unique advantage. We also have a dedicat-
ed Security Lab with over 250 mobile security pro-
fessionals, scientists and developers around the
world who proactively monitor the mobile land-
scape for new malware threats and mobile hack-
ing methods.

Our cloud-based database is the world’s largest
catalog of mobile threat intelligence in existence,
containing well over one billion risk assessed and
rated URLs and 1,400,000 mobile applications.
Every NQ Mobile Security user forms part of our
global security cloud. With no effort on their part,
consumers constantly contribute new non-attrib-
utable security knowledge that helps us to detect
virus samples, malicious URLs, and other threats
and inoculate against them before they can cross
borders and oceans.

What do you think about Hakin9
Magazine and its readers?
We’re happy to see publications like Hakin9 Maga-
zine who are taking a pro-active role in educating
consumers about the increasing number of securi-
ty threats. By providing valuable information about
hacking and other IT security issues, you’re help-
ing to prevent the spread of malware infections
and giving people the knowledge they need to en-
sure they won’t become victims.

What message would you convey to our
readers?
Mobile Security is a real concern. Cybercriminals
will always follow the money, so we are increasing-
ly seeing threats that target devices beyond China
and Eastern Europe. In fact the United States is
among the top five most infected countries.

We’re also seeing increasingly creative ap-
proaches to malware distribution including social
engineering.

The time to be complacent is over. We all need
to start safeguarding our mobile devices and data
with the same diligence we do our PCs.

by Marek Majewski

http://www.kitewire.com

How secure is your mobile app?

RIIS offers code-auditing services. We’ll download your app,
decompile it and determine your security exposure.

info@riis.com • 248.351.1200 • decompilingandroid.com

Contct us for:

Protect your code.
RIIS understands security, especially mobile security.

Decompiling Android
Written by Godfrey Nolan

•	 Code security scanning
•	 Web Services API

Security audits

•	 Best practice training
•	 Decompiling workshops on

your iOS or Android app

Leading expert in exposing risks of
Android decompilation; Founder and
President of RIIS, wrote the book
on decompilation

http://www.decompilingandroid.com

Protection for any
device anywhere.
Webroot® SecureAnywhereTM Business solutions deliver the
ultimate in endpoint security and protection for all your
PCs, smartphones, tablets, servers and virtual machines.

Simplicity - one license covers up to 4 devices per user.

Lower Costs - as users look to BYOD you won’t incur additional costs.

Total Flexibility - a single license covers desktops, laptops, smartphones, tablets,
servers and virtual environments.

Powered by the Cloud - secures all your users’ devices as well as the infrastructure
required to support your business.

Multiple DMultiple Devices - all managed with a single, intuitive web-based management
console that delivers critical visibility to all user devices and every endpoint.

Get Your FREE 30-Day Trial Now!
Visit webroot.com or call 1-800-870-8102

© Copyright 2013 Webroot, Inc. All rights reserved.

Business

http://www.webroot.com

	Cover
	Dear Hakin9 Readers,
	CONTENTS
	Android Security
	Android Hacking Made Easy - What You Can Do To Limit Your Exposure
	Weak Wi-Fi Security, Evil Hotspots and Pentesting with Android
	Build Secure Android Applications with ITTIA DB SQL
	Decompiling Android Workshop
	Android OS Getting Started with Customizing Your Own Rom
	How to Research an APK
	AppUse Android Pentest Platform Unified Standalone Environment
	How to Provide Strong Authentication for Your Users
	Quantum IQ How the Worlds Military’s Intend to Capitalize on the Future of Mobile and Neuroscience T
	Mobile Antivirus Is a Myth
	An interview with Omar Khan the Co-CEO of NQ Mobile

	Previouse Page 2:
	Page 4: Off

	Go To Next Page 2:
	Page 4: Off

	Previouse Page 3:
	Page 5: Off

	Go To Next Page 3:
	Page 5: Off

	Previouse Page 8:
	Page 6: Off
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:

	Go To Next Page 8:
	Page 6: Off
	Page 8:
	Page 10:
	Page 12:
	Page 14:
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:

	Previouse Page 9:
	Page 7: Off
	Page 9:
	Page 11:
	Page 15:
	Page 17:
	Page 21:
	Page 23:
	Page 27:
	Page 29:
	Page 31:

	Go To Next Page 9:
	Page 7: Off
	Page 9:
	Page 11:
	Page 15:
	Page 17:
	Page 21:
	Page 23:
	Page 27:
	Page 29:

	Previouse Page 10:
	Page 32: Off
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:

	Go To Next Page 10:
	Page 32: Off
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:
	Page 50:
	Page 52:
	Page 54:
	Page 56:
	Page 58:
	Page 60:
	Page 62:
	Page 64:

	Previouse Page 11:
	Page 33: Off
	Page 35:
	Page 39:
	Page 41:
	Page 43:
	Page 47:
	Page 49:
	Page 51:
	Page 55:
	Page 57:
	Page 59:
	Page 61:
	Page 63:
	Page 65:

	Go To Next Page 11:
	Page 33: Off
	Page 35:
	Page 39:
	Page 41:
	Page 43:
	Page 47:
	Page 51:
	Page 55:
	Page 57:
	Page 59:
	Page 61:
	Page 63:

	uat:
	edu 4: Off

	Previouse Page 12:
	Page 66: Off
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:

	Go To Next Page 12:
	Page 66: Off
	Page 68:
	Page 70:
	Page 72:
	Page 74:
	Page 76:

	Previouse Page 13:
	Page 67: Off
	Page 69:
	Page 71:
	Page 75:

	Go To Next Page 13:
	Page 67: Off
	Page 69:
	Page 71:
	Page 75:

	Previouse Page 14:
	Page 78: Off
	Page 80:

	Go To Next Page 14:
	Page 78: Off
	Page 80:

	Previouse Page 15:
	Page 79: Off
	Page 81:

	Go To Next Page 15:
	Page 79: Off
	Page 81:

