

http://www.joesecurity.org

http://www.joesecurity.org

06/2013 4

PRACTICAL PROTECTION IT SECURITY MAGAZINE

 team
Editor in Chief:
Radoslaw Sawicki
radoslaw.sawicki@hakin9.org

Editorial Advisory Board: Peter Harmsen, Dan
Smith, Hans van Beek, Leighton Johnson, Gareth
Watters, Sushil Verma, Jose Ruiz, Casey Parman,
Wendy Bennington, Liew Edwin.

Proofreaders: Radoslaw Sawicki, Krzysztof
Samborski

Special thanks to our Beta testers and Proofreaders
who helped us with this issue. Our magazine would
not exist without your assistance and expertise.

Publisher: Paweł Marciniak

CEO: Ewa Dudzic
ewa.dudzic@hakin9.org

Product Manager:
Krzysztof Samborski
krzysztof.samborski@hakin9.org

Production Director:
Andrzej Kuca
andrzej.kuca@hakin9.org

Marketing Director:
Radoslaw Sawicki
radoslaw.sawicki@hakin9.org

Art Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@software.com.pl
DTP: Ireneusz Pogroszewski

Publisher: Hakin9 Media sp. z o.o. SK
02-676 Warszawa, ul. Postępu 17D
Phone: 1 917 338 3631
www.hakin9.org

Whilst every effort has been made to ensure the
highest quality of the magazine, the editors make no
warranty, expressed or implied, concerning the results
of the content’s usage. All trademarks presented in the
magazine were used for informative purposes only.

All rights to trade marks presented in the magazine
are reserved by the companies which own them.

DISCLAIMER!
The techniques described in our
articles may only be used in private,
local networks. The editors hold no
responsibility for misuse of the presented
techniques or consequent data loss.

Dear Readers,

We are pleased that the new edition of Hakin9 Magazine
just hit upon your computers, tablets, smartphones and e-

book readers. This brand new issue will focus on, interesting for
all, theme which is the Advanced Malware Analysis. We have
decided to make the publication on this area because, as you
know, at present you can find more and more aggressive and
sophisticated malware.

We will start with basic, but important article 'How To Set Up
Your Own Malware lab'. Monnappa KA shows how to configure
everything you need to perform basic analysis and gives you a
sample of it.

‘The Techniques’ section opens with the article written by
Mudit Sethia. After this introduction to the Evidence Analysis
series, which is going to be published in subsequent issues of
Hakin9, you will find great articles written by real experts. Ali A.
AlHasan will glimpse at static analysis. Jan Miller will give you
recipe of how to perform Hybrid Code Analysis in case of An-
droid backdoors. Tomasz Pietrzyk will show you next genera-
tion of automated malware analysis and detection. Then you
will learn about advanced malware detection using memory fo-
rensics in the article written by Monnappa KA. Next you will
read about android obfuscation tactics in Nathan Collier’s ar-
ticle. Afterwards Kris Kaspersky will explain the process of Op-
eration Mayhem.

Last, but not least, article written by Prof. John Walker con-
cerns attacker’s toolkit. But what is important, he focuses on
hardware, not software toolkit. Quite a new look on the hacking
in our Magazine, isn’t it?

I want also to mention quite important event for Hakin9 Mag-
azine. As you probably know, we have won Pwnie for most epic
fail. Most of you will say that there is nothing to brag about. But
for us, this "victory" is a source of humility. After this defeat, al-
most a year ago, we try to become better and better. And what
is more, even though it may not be easy, in spite of everything,
we are succeeding in it.

As always Hakin9's Editorial Team would like to give very
special thanks to the authors, betatesters and proofreaders –
without these great people our Magazine would not exist.

We hope the effort of Hakin9 Team was worthwhile and the
Advanced Malware Analysis issue will appeal to you. Enjoy the
magazine!

Radoslaw Sawicki
Editor of Hakin9

and the Hakin9 Team

mailto:mailto:radoslaw.sawicki%40hakin9.org?subject=
mailto:mailto:ewa.dudzic%40hakin9.org?subject=
mailto:mailto:krzysztof.samborski%40hakin9.org?subject=
mailto:mailto:radoslaw.sawicki%40hakin9.org?subject=

www.hakin9.org/en 5

CONTENTS

BASICS
Setting Up Your Own Malware Analysis
Lab 06
By Monnappa KA
GREM, CEH; Information Security Investigator – Cisco
CSIRT at Cisco Systems
With new malware attacks making news everyday and
compromising company’s network and critical infra-
structures around the world, malware analysis is critical
for anyone who responds to such incidents. In this arti-
cle you will learn to setup a safe environment to analyze
malicious software and understand its behaviour.

THE TECHNIQUES
Evidence Analysis:
The Novice Approach 14
By Mudit Sethia
Digital Evidence Analyst
Technology as it takes a leap with every next second,
also calls for a leap in the security concern. The lack of
awareness and the lack of legal infrastructure involved,
calls in turn, for a breach of security, though unsolicited.

Glimpse of Static Malware Analysis 16
By Ali A. AlHasan
MCSE, CCNA, CEH, CHFI,CISA, ISO 27001 Lead auditor
Internet has become an essential part on our day-to-
day life. We are using it to communicate, exchange in-
formation, perform bank transaction, etc. Researchers
are working around the clock to expand this service and
optimize it.

Hybrid Code Analysis Versus State
of the Art Android Backdoors 20
By Jan Miller
Reverse Engineering, Static Binary Analysis and
Malware Signature algorithms specialist at Joe
Security LLC
Mobile Malware is evolving… can the good guys beat
the new challenges? Mainstream usage of handheld de-
vices running the popular Android OS is the main stimu-
lation for mobile malware evolution. The rapid growth
of malware and infected Android application package
(APK) files found on the many app stores is an impor-
tant new challenge for mobile IT security.

Next Generation of Automated
Malware Analysis and Detection 30
By Tomasz Pietrzyk
Systems Engineer at FireEye

In the last ten years, malicious software – malware – has
become increasingly sophisticated, both in terms of how
it is used and what it can do. This rapid evolution of mal-
ware is essentially a cyber “arms race” run by organiza-
tions with geopolitical agendas and profit motives.

Advanced Malware Detection using
Memory Forensics 38
By Monnappa KA
GREM, CEH; Information Security Investigator – Cisco
CSIRT at Cisco Systems
Memory Forensics is the analysis of the memory im-
age taken from the running computer. In this article, we
will learn how to use Memory Forensic Toolkits such as
Volatility to analyze the memory artifacts with practical
real life forensics scenarios. Memory forensics plays an
important role in investigations and incident response.

Android.Bankun And Other Android
Obfuscation Tactics:
A new Malware Era 42
By Nathan Collier
Senior Threat Research Analyst w Webroot Software
There's one variant of Android.Bankun that is particularly
interesting to me. When you look at the manifest it doesn't
have even one permission. Even the most simple apps
have at least internet permissions. Having no permissions
isn't a red flag for being malicious though. In fact, it may
even make you lean towards it being legitimate.

Operation Mayhem
a.k.a. Obama's Attack 46
By Kris Kaspersky
Reverse Engineering Expert, International Author
In March of 2013 hackers dropped the biggest cyber-bomb,
posting the credit reports of highprofile people such as Mi-
chele Obama, Robert Miller (FBI Director) and many others.

EXTRA
Cyber Terror – Take-Down
(The Attackers Toolkit) 50
By Prof. John Walker
FBCS CITP CISM MFSoc ITPC MIoD; CTO at Ascot
Barclay Cyber Security Group
Within the last decade society has embraced computing,
but one could go as far to say, they have also become
overfamiliar with technology to both support, and drive
their personal, and business lives – but one may also fur-
ther suggest, this has actually led to over-dependency on
the underpinning protocols, wires, airways which support
the multiple layers of technological infrastructures.

06/2013 6

BASICS

Malware is a piece of software which
causes harm to a computer system with-
out the owner’s consent. Viruses, Trojans,

worms, backdoors, rootkits, scareware and spy-
ware can all be considered as malwares.

Malware Analysis
Malware analysis is the process of understanding
the behaviour and characteristics of malware, how
to detect and eliminate it.

Why Malware Analysis?
There are many reasons why we would want to
analyze a malware, below to name just a few:

• 	 Determine the nature and purpose of the mal-
ware i.e whether the malware is an information
stealing malware, http bot, spam bot, rootkit,
keylogger, RAT etc.

• 	 Interaction with the Operating System i.e to un-
derstand the filesystem, registry, network and
process activities.

• 	 Detect identifiable patterns to cure and prevent
future infections.

Types of Malware Analysis
In order to understand the characteristics of the
malware three types of analysis can be performed
they are:

• 	 Static Analysis
• 	 Dynamic Analysis
• 	 Memory Analysis

In most cases static and dynamic analysis will
yield sufficient results however Memory analy-
sis helps in determining hidden artifacts, helps in
rootkit detection and unpacking, thus giving more
detailed and interesting results.

In this article we will focus on setting up a mal-
ware analysis lab to perform Static and Dynam-
ic analysis. Before setting up the malware analy-
sis lab, let us understand the concepts, tools and
techniques required to perform Static and Dynam-
ic analysis.

Static Analysis
Static Analysis involves analyzing the malware
without actually executing it. Following are some
of the steps:

Determining the File Type
This is necessary because the file’s extension can-
not be used as a sole indicator to determine its type.
Malware author could change the extension of an
executable (.exe) file with any extension for exam-
ple with .pdf to make the user think its a pdf file. De-
termining the file type can also help you understand
the type of environment the malware is targeted to-

Setting Up Your Own
Malware Analysis Lab
With new malware attacks making news everyday
and compromising company’s network and critical
infrastructures around the world, malware analysis is
critical for anyone who responds to such incidents. In this
article you will learn to setup a safe environment to analyze
malicious software and understand its behaviour.

www.hakin9.org/en 7

Setting Up Your Own Malware Analysis Lab

wards, for example if the file type is PE (portable
executable) it can be concluded that the malware is
targeted towards a Windows system. Some of the
tools that can be used to determine file type are file
utility on linux and File utility for Windows.

Determining the Cryptographic Hash
Cryptographic Hash values like MD5 and SHA1
can serve as unique identifier for the file through-
out the course of analysis. Malware, after execut-
ing can copy itself to a different location or drop
another piece of malware, cryptographic hash can
help you determine whether the newly copied/
dropped sample is same as the original sample or
a different one. With this information we can deter-
mine if malware analysis need to be performed on
a single sample or multiple samples. Cryptograph-
ic hash can also be submitted to online antivirus
scanners like VirusTotal to determine if it has been
previously detected by any of the AV vendors.

Utilities like md5sum on linux and md5deep on
windows can be used to determine the crypto-
graphic hash

Strings search
Strings are plain text ASCII and UNICODE charac-
ters embedded within a file. Strings search give clues
about the functionality and commands associated
with a malicious file. Although strings do not provide
complete picture of the function and capability of a
file, they can yield information like file names, URL,
domain names, ip address, registry keys etc.

strings utility on linux and BinText on Windows
can be used to find the embedded strings in an
executable.

File obfuscation (packers, cryptors) detection
Malware authors often use softwares like packers
and cryptors to obfuscate the contents of the file in
order to evade detection from anti-virus softwares
and intrusion detection systems. This technique
slows down the malware analysts from reverse en-
gineering the code. Packers can be quite tricky in
identifying and more importantly unpacking. Once
the packer is identified hopefully finding the un-
packer or resources for manual unpacking will be
easier to find.

PEiD or RDG packer detector can be used for
packer detection in an executable.

Submission to online Antivirus scanning
services
This will help you determine if the malicious code
signatures exist for the suspect file. The signature
name for the specific file provides an excellent way

to gain additional information about the file and ca-
pabilities. By visiting the respective antivirus ven-
dor web sites or searching for the signature in
search engines can yield additional details about
the suspect file. Such information may help in fur-
ther investigation and reduce the analysis time of
the malware specimen.

VirusTotal (http://www.virustotal.com) and Jotti
(http://virusscan.jotti.org) are some of the popular
web based malware scanning services.

Examining File Dependencies
Windows executable loads multiple DLL’s (Dynam-
ic Linked Library) and call API functions to perform
certain actions like resolving domain names, add-
ing registry value, establishing an http connection
etc. Determining the type of DLL and list of api calls
imported by an executable can give an idea on the
functionality of the malware. Dependency Walker
and PEview are some of the tools that can be used
to inspect the file dependencies.

Disassembling the File
Examining the suspect program in a disassembler
allows the investigator to explore the instructions
that will be executed by the malware. Disassembly
can help in tracing the paths that are not usually
determined during dynamic analysis.

IDA Pro is a popular disassembler that can be
used to disassemble a file, it supports multiple
file formats.

Dynamic Analysis
Dynamic Analysis involves executing the malware
sample in a controlled environment. It can involve
monitoring malware as it runs or examining the
system after the malware has executed. Some-
times static analysis will not reveal much informa-
tion due to obfuscation or packing, in such cases
dynamic analysis is the best way to identify mal-
ware functionality. Following are the steps involved
in dynamic analysis:

Monitoring Process Activity
This involves executing the malicious program and
examining the properties of the resulting process
and other processes running on the infected sys-
tem. This technique can reveal information about
the process like process name, process id, system
path of the executable program, modules loaded
by the suspect program.

Tool for gathering process information is Process
Explorer. CaptureBAT and ProcMon can also be
used to monitor the process activity as the mal-
ware is running.

http://www.virustotal.com
http://virusscan.jotti.org

06/2013 8

BASICS

Monitoring File System Activity
This involves examining the real time file system
activity while the malware is running; this tech-
nique reveals information about the opened files,
newly created files and deleted files as a result of
executing the malware sample.

Procmon and CaptureBAT are powerful monitor-
ing utilities that can be used to examine the File
System activities.

Monitoring Registry Activity
Windows registry is used to store OS and program
configuration information. Malware often uses reg-
istry for persistence or to store configuration data.
Monitoring the registry changes can yield informa-
tion about which process are accessing the host
system’s registry keys and the registry data that
is being read or written. This technique can also
reveal the malware component that will run auto-
matically when the computer boots.

Regshot, ProcMon and CaptureBAT are some of
the tools which give the ability to trace the interac-
tion of the malware with the registry.

Monitoring Network Activity
In addition to monitoring the activity on the infect-
ed host system, monitoring the network traffic to
and from the system during the course of running
the malware sample is also important. This helps
to identify the network capabilities of the malware
specimen and will also allow us to determine the
network based indicator which can then be used to
create signatures on security devices like Intrusion
Detection System.

Some of the network monitoring tools to consider
are tcpdump and Wireshark, tcpdump captures real
time network traffic to a a command console where-
as Wireshark is a GUI based packet capture utility,
that provides user with powerful filtering options.

Setting Up Your Own Malware Analysis Lab
Before performing malware analysis, we need to
setup a safe analysis environment; we want to
make sure that these systems do not have access
to any live production systems or the internet. It is
a good idea to always start with a fresh install of
the OS of your choice for the analysis. You have
several options when creating a malware analy-
sis environment. If you have the hardware lying
around you can always build your lab using the
physical machines. I prefer to use Virtualized Op-
erating systems for the following reasons:

• 	 Ability to take multiple snapshots
• 	 Restoring to the pristine state is easy.

• 	 No extra hardware is required
• 	 Switching between Operating systems is faster

There are also some disadvantages of using Vir-
tualized environments, some malwares change its
characteristics or refuse to run when it is detected
to be running within a virtual environment. In such
cases you may have to analyze the malware on
physical machines or reverse engineer and patch
the code that is checking for the Virtualized envi-
ronments using debuggers like OllyDBG or Immu-
nity Debugger.

Figure 2. Network configuration on Windows machine

Figure 1. INetsim Emulating Services

www.hakin9.org/en 9

Setting Up Your Own Malware Analysis Lab

Building the Environment
Our environment consists of a physical machine
running Backtrack 5 Linux (which is called Host
machine) with Wireshark installed. The IP ad-
dress of this host machine is set to 192.168.1.2
This machine also runs INetSim which is a free,
Linux-based software suite for simulating common
internet services. This tool can fake services, al-
lowing you to analyze the network behaviour of
malware samples by emulating services such as
DNS, HTTP, HTTPS, FTP, IRC, SMTP and others
(Figure 1). INetsim is also configured to emulate
the services on the network interface with ip ad-
dress 192.168.1.2.

The Linux machine also runs VMware Worksta-
tion in host only mode with Window XP SP3 in-
stalled on it (which is called as Analysis machine).
Windows operating system is installed with Static
Analysis tools (as mentioned in the Static Analysis
section) and CaptureBAT to monitor the File Sys-
tem, Registry and Network activities (as mentioned
in the Dynamic Analysis section). The IP address
of the Windows machine is set to 192.168.1.100
with the default gateway as 192.168.1.2 (Figure 2)
which is the IP address of the Linux machine, this
is to make sure that all the traffic will be routed
through the Linux machine where we will be moni-
toring for the network traffic (using Wireshark) and
also emulating the internet services using INetSim.
The Windows machine is our analysis machine
where we will be executing the malware sample.

The screenshot (Figure 3) illustrates the mal-
ware analysis environment.

Analysis of a Malware Sample (edd94.exe)
Now that we have a malware analysis lab setup,
lets begin our analysis in the lab environment to see

what we can learn about this sample edd94.exe. we
will first start with the Static Analysis techniques.

• 	 Determine the File Type: Running the File utility
on the malware sample shows that it is a PE32
Executable file (Figure 4)

• 	 Taking the Cryptographic Hash: MD5sum util-
ity shows the md5sum of the malware sample
(edd94.exe) (Figure 5). Other algorithms such
as Secure Hash Algorithm version 1.0 (SHA1)
can also used for the same purpose.

• 	 Determine the Packer: PEiD is a tool that can
be used to detect most common packers,
cryptors and compilers for PE files. It can cur-

Figure 3. Malware Analysis Environment

Figure 5. md5sum of the the malware sample

Figure 4. file utility showing executable file

06/2013 10

BASICS

rently detect more than 600 different signa-
tures in the PE files. In this case the sample
is not packed (Figure 6). Another alternative to
PEiD is RDG Packer Detector.

• 	 Examining the File Dependencies: Dependen-
cy Walker is a great tool for viewing file depen-
dencies. Dependency Walker shows four DLLs
loaded and the list of api calls imported by the
executable (edd94.exe) and it also shows the
malware specimen importing an api call “Cre-
ateRemoteThread” (Figure 7) which is an api
call used by the malware to inject code into an-
other process.

• 	 Submission to Online Web Based Malware
Scanning Service: Submitting the sample to
VirusTotal shows that malware is a ZeuS bot
(zbot) (Figure 8). Zeus is a Trojan horse that
steals banking information by Man-in-the-
browser keystroke logging and Form Grabbing.
Zeus is spread mainly through drive-by down-
loads and phishing schemes.

Now that we got some information using Static
Analysis, let us try to determine the characteris-
tics of the malware using Dynamic Analysis, be-
fore executing the malware the monitoring tool
Wireshark is run on the linux machine to capture
the network traffic (Figure 9) generated as a result
of malware execution. INetSim is run to emulate

Figure 6. PEiD output

Figure 7. Examining dependencies using Dependency Walker

Figure 9. Running Wireshark to capture the network traffic

Figure 8. VirusTotal results for edd94.exe shows that it is ZeuS
bot (zbot)

www.hakin9.org/en 11

Setting Up Your Own Malware Analysis Lab

network services and to provide fake responses
to the malware (Figure 1). On Windows, Capture-
BAT is run to capture the process, registry and file
system activity.

The malware sample (edd94.exe) was run in the
analysis machine for few seconds. Following are
some of activities caught by our monitoring tools
after the malware execution.

The below screenshot (Figure 10) shows the pro-
cess, registry and fileystem activity after executing the
malware (edd94.exe), also explorer.exe (which is OS
process) performs lot of activity (setting registry value
and creating various files) just after executing the mal-
ware indicating code injection into explorer.exe.

The malware also drops a new file (raruo.exe)
into “C:\Documents and Settings\Administrator\
Appcation Data\Lyolxi” directory, after which it ex-
ecutes it and creates a new process (Figure 11).
Now this is where the cryptographic hash will help
us determine if the dropped file (raruo.exe) is
same as the original file (edd94.exe), we will come
to that later.

Another interesting activity is explorer.exe setting
a registry value {F561587E-37AB-9701-D0081175F61B}
under the sub key “HKCU\Software\Microsoft\Win-
dows\CurrentVersion\Run” (Figure 12). Malwares
usually adds values to this registry key to survive the
reboot (persistence mechanism). Also explorer.exe

Figure 12. explorer.exe creating setting the registry value to survive the reboot

Figure 11. edd94.exe dropping a new file raruo.exe

Figure 10. CaptureBAT output showing process, file and registry activity

06/2013 12

BASICS

Figure 15. ZeuS Tracker results for the domain

Figure 14. Malware trying to download configuration file

Figure 13. Wireshark showing DNS query made by the malware

www.hakin9.org/en

creating this registry key is suspicious and could be
the result of malware injecting code into explorer.exe.

Wireshark also captured the malware performing
a dns look to resolve the domain “users9.nofee-
host.com” also the domain resolved to the IP ad-
dress 192.168.1.2 which is our linux machine (Fig-
ure 13), this is because INetSim which was running
on the linux machine responded to the dns query
by giving a fake response. Now we have tricked
the malware to think that users9.nofeehost.com is at
IP address 192.168.1.2 which is our host machine
(Linux), that way we have not allowed the malware
to connect to the internet and also have control
over our analysis.

Then the malware tries to establish an http con-
nection trying to download a configuration file (all.
bin) from the domain users9.nofeehost.com (Figure
14), also the INetSim gave a fake response page,
we can also configure INetSim to respond with
whatever custom page we want to.

ZeuS Tracker (project that keeps track of ZeuS
command and control servers around the world)
shows that this domain (users9.nofeehost.com) was
previously listed as ZeuS command and control
server also the pattern that we captured is same
as mentioned in the ZeuS tracker (Figure 15). This
confirms that we are dealing with ZeuS bot (zbot).

Conclusion
By setting up a safe malware analysis lab we were
able to perform basic static and dynamic analysis
to uncover the characteristics of the malware with-
out actually infecting any of the production systems.
The patterns identified after analysis can now be
used to create signatures for the security devices.

Monnappa K A
Monnappa K A is based out of Banga-
lore, India. He has an experience of 7
years in the security domain. He works
with Cisco Systems as Information
Security Investigator. He is also the
member of a security research com-
munity SecurityXploded (SX). Besides

his job routine he does reasearch on malware analy-
sis and reverse engineering, he has presented on vari-
ous topics like “Memory Forensics”, “Advanced Malware
Analysis”, “Rootkit Analysis”, “Detection and Removal
of Malwares” and “Sandbox Analysis” in the Bangalore
security community meetings. His article on “Malware
Analysis” was also published in the Hakin9 ebook “Mal-
ware – From Basic Cleaning To Analyzing”. You can view
the video demo’s of all his presentations by subscribing
to his youtube channel: http://www.youtube.com/user/
hackycracky22.

http://www.youtube.com/user/hackycracky22
http://www.youtube.com/user/hackycracky22
http://wwww.uat.edu

06/2013 14

THE TECHNIQUES

The result is a committed cyber crime which
results in an evidence of digital nature that
needs to be collected,analyzed and then be

documented to be produced in the court of law as
an accepted evidence.

In the following paragraphs we look into the over-
view of the whole process and then we will have an
in-depth look into each step of the Evidence Analy-
sis process, in the future issues.

But before we enter our discussion, there are few
basic concepts of security,that I would like to start
off with.

The ABC Of Digital Security
The basic triangle of security
This is the basic triangle of security (as I call it)
of any nature and the three vertices are what we
can call as the “guidance factors” of all security
measures,designs etc.

Now, this a triangle where the three vertices of the
triangle tells about three important pillars of secu-
rity. Now, we by default, sit somewhere at a point ,
geometrically known as the centroid the triangle. In
simple words, it is the point which is equidistant to
all the three vertices, that in our case means that we
are at equal distance with each of our three pillars.

It is very clear that the moment we close to a ver-
tice, we implicitly get away from the other 2 vertices.
That means, a trade-off has been done to achieve
more of one of the three fundamental pillars and
hence less of the other two pillars. Let us under-
stand this better with a couple of real life examples:

More Security: Less Functionality; Less Ease of use
Say, you stay at your house that has a main door
for someone to enter your house. Now, you want to
increase the security measures to safeguard you
and your family. What you do is add additional lev-
els of security by adding a big iron gate before the
main gate. This has no doubt, made the system
more secure but has reduced your ease of use and
the functionality of the already existing door.

Evidence Analysis:
The Novice Approach
Technology as it takes a leap with every next second, also
calls for a leap in the security concern. The lack of awareness
and the lack of legal infrastructure involved, calls in turn, for
a breach of security, though unsolicited. And then there are
all those black hat guys – intruders, hackers, cyber criminals
wanting to enter into systems, hack databases,create
backdoors and gain access.

Evidence Analysis: The Novice Approach

[+] The 2-step verification process of logging-in in
Gmail,Youtube etc.

More Ease of Use: Less Security; Less
Functionality
Let us take a very common scene in this. There is
a function at your home and you need a couple of
people for the regular household work, for a peri-
od of say, 2 days. Now, it is most unlikely that you
will remember the name of all who come in for the
purpose (but obviously brought in by someone you
trust and know well). Now what you will do is call
them by a generalized term, let us say, Bro. Now
this “bro” has brought you more ease of use of the
people, but also has somewhat less security as if
say one of them has some ill-idea floating in his
mind, he can get a view of your security inside. Al-
so we landed in less functionality as since you do
not know who “Bro A” is and what he is expert at.
Obviously,you have to call your HR manager and
give the task to him, but the fact remains.

[+] Easy and guessable passwords.
[+] Less Validation checks at your website data-
base access.

Obviously, these are theoretical assumptions but
the fundamental always lives.

The Core Principles Of Information Security
There are basically 3 core principles of Information
Security:

These are sometimes also collectively,known as
the “CIA triad.”

In addition to these, 2 more principles also form
the backbone of Information Security.

These are: Authenticity and Non- Repudiation.
We will see how practically they come into the

scene and help in the process of evidence analy-
sis and other information security mechanisms, in
the next issue.

Below is the list of topics that will be covered in
the coming months:

• 	 The Data Acquisition Process
• 	 Evidence Collection
• 	 Analysis Of Evidence:	 A Brief Look At E.A.

Tools
• 	 Documentation
• 	 Some Other Relevant Information

Mudit Sethia
Mudit is a young tech-security enthu-
siast with special interest in technical
as well as the legal aspects of Informa-
tion Security . He has a certification in
Digital Evidence Analysis and Cyber
Laws. He loves everything that is relat-
ed to technology. Also, he loves music,
travelling, adventure and cell phones.

You can connect him at: write2mudit@outlook.com.

a d v e r t i s e m e n t

mailto:mailto:write2mudit%40outlook.com?subject=
http://www.it-securityguard.com/
http://www.it-securityguard.com/

06/2013 16

THE TECHNIQUES

Over the past few years talented and geek
computer users were exploiting and iden-
tifying applications and operating systems’

vulnerabilities for fun. However, the game has
changed and shifted from a fun activity towards a
profit-oriented business. Several researches [3] in-
dicate that the average global economy lost due to
cybercrime and espionage is $500 billion annually.

Hackers use malicious software (malware) e.g.
virus, worm, rootkit to perform their activities.
Therefore, understanding and analyzing the mal-
ware is very impartment to protect the end us-
ers. Moreover, it will help to detect similar type of
malware and help in cleaning up the infected ma-
chines and network.

Malware can be classified into different types
such as virus, worm or rootkit based on how it
spreads, its functionality and dependency on host
i.e. whether it requires a host to run or can run in-
dependently. Nowadays, a malware can fit under
more than one category.

Malware can also be classified based on victim:
targeted or mass malware. The former, is very dif-
ficult to detect since it is developed to hit a spe-
cific organization. For such type of attacks, secu-
rity controls will not be able to detect or prevent
the malware. The later type is crafted to hit any
machine with specific vulnerability without tak-
ing into consideration the organization or country.

This type of malware is usually easy to detect and
prevent if you keep your security control and sys-
tems up-to-date.

Before spending too much time analyzing a mal-
ware that might be already analyzed by anti-virus
vendors, it is highly recommended to scan it using
several antivirus solutions. To do that, you could,
for example, use VirusTotal website (http://www.vi-
rustotal.com/) to scan the file. Figure 1 shows the
result of scanning a virus using VirusTotla service.
The result shows that the detection ratio is 42/47.
This means that the virus was not recognized and
detected by all antiviruses. This is because antivi-
rus solutions use different signatures to detect the

Glimpse of Static
Malware Analysis
Internet has become an essential part on our day-to-day
life. We are using it to communicate, exchange information,
perform bank transaction, etc. Researchers are working
around the clock to expand this service and optimize it.
Hackers on the other hand are leveraging this crucial service
to perform cybercrime activities such as stealing credit cards.

Figure 1. Virus scanned by several antivirus solution via
VirusTotal website

http://www.virustotal.com/
http://www.virustotal.com/

www.hakin9.org/en 17

Glimpse of Static Malware Analysis

malware. This example illustrates how important it
is to use more than one antivirus solution to check
the suspected malware (Figure 1).

If antivirus solutions did not detect the malware,
then you should start analyzing it. There are two
major approaches and methodologies to analyze a
malware: dynamic and static analysis. To perform
the dynamic analysis, malware analysts need to
run and execute the malware. This type of analy-
sis should be performed in an isolated lab envi-
ronment. On the other hand, conducting the stat-
ic analysis does not require running the malicious
code or file.

This article focuses on statically analyzing exe-
cutable windows operating system files since they
are widely utilized by hackers to perform cyber-
crimes.

Static Analysis
There are several tools and techniques that could
be used to analyze malware statically. First, we
will start by identifying the file type. Then, extract-
ing the Strings in the code. After that I will give a
glimpse of using advanced tools to fully under-
stand how malware works.

File Type
First start by identifying what type of file this is.
Do not depend on the file extension in windows
to identify file type. The file command in *NIX can
help you identify the file type.

File
The file command is a *NIX standard utility. It would
examine the specific field in the file to identify its
type or extension. I used file command in CYGIN
to examine malware.ex_ file and the result shows
that it is a Portable Executable (PE) 32 bits file for
MS Windows as shown in Figure 2.

Figure 2. Using file command in *NIX to examine a file

Extract Strings
Next, start by extracting and reading meaningful
information in the malware. This can be done by
extracting strings inside the malware using several
tools such as Strings [4] and IDA [5].

Strings
Strings is Microsoft windows tool used to scan a file
to recognize UNICODE (or ASCI) strings. Figure 3
shows part of the result for processing malware1.
exe file looking for strings with length greater than 10.

Very useful information might be discovered by us-
ing such simple tool, for example URL that the mal-
ware uses to communicate with.

IDA
IDA is available on several platforms including
Linux, Windows, and Mac OS X. IDA is a very pow-
erful software that disassembles, debugs file, and
has more features. To use IDA to extract strings in
the file you need first to ensure that the string sub-
view is open. To do so, go to View – > open sub-
views -> Strings as shown in Figure 4. By selecting
String view as depicted in Figure 5 you will see the
extracted strings in the file passed to IDA.

Figure 3. Usage of String to process malware01.exe looking
for strings length greater than 10

Figure 4. Open strings view in IDA

06/2013 18

THE TECHNIQUES

Linked libraries
The next step would be identifying the functions or
libraries that the malware imports and file header
information. This would help us identify what librar-
ies this malware is using and what it is doing. Pro-
grammers import libraries and link them to their
code statically or dynamically. Static linking is used
widely in *NIX programs. Using this method to link
libraries would generate a large file because the im-
ported libraries are copied in the code. In the dy-

namic linking approach, the operating system would
search for the imported libraries when the program
is loaded. A couple of tools are available to identify
the imported libraries. Dependency Walker [7] and
PE Explorer [8] are used to identify the dynamically
linked functions and PE header information.

Note: Malware developers start using packing
and obfuscation to complicate malware analysis.
The original malware code is hidden/encrypted in
the code and it will be decrypted/unpacked during
run time by a routine in the malware. There are
several tools used to unpack the malware code
through different techniques. PE explorer will do it
automatically for you.

PE Explorer
PE Explorer is a commercially available tool used
to open and edit PE 32 bits files to perform static
analysis. It provides several feature such as auto-
matically un-packing file. Figure 6 shows header
information for malware.exe. It shows a lot of infor-
mation such as machine that you can run this file
on and time stamp and more. To see the imported
libraries and function by this files select view – >
import as shown in Figure 7. To understand what
this malware will do you have to understand what
libraries and functions this malware is importing
and using.

File section header (file format)
This part of the file contains metadata about the
file. PE file has several sections. The most impor-
tant sections are:

Figure 5. Strings extracted by IDA

Figure 6. Viewing file header
information using PE Explorer

Figure 7. Viewing imported libraries and function for
malware.exe using PE Explorer

Figure 8. View file sections using PE Explorer

Figure 9. View .rsrc sections using PE Explorer/resources
viewer

www.hakin9.org/en

Table 1. Description of the PE FIle sections

Section Description

.text (code): Contains the code or instaurations
executed by the CPU.

.data: Includes the global data of the program.

.edata and .idata: indicate the export and import tables

.rsrc: Contains resources for the file such
as images and icons.

To get the file sections you can use PE Explor-
er to view and delete them. Figure 8 shows file
sections using PE Explorer. You can use the re-
source viewer to see the icons and images includ-
ed in the .rsrc section as shown in Figure 9 for
notepad application.

Conclusion
This article explains how to use several tools to
perform static analysis to obtain certain information
about malware. More in-depth static analysis is re-
quired (e.g. disassembly) to gain more information
about the functions. Moreover, dynamic analysis is
needed to monitor the malware behavior.

Ali A AlHasan
Ali AlHasan has more than six years
of experience in Information Tech-
nology and Information Security that
includes Application Development,
Penetration Testing, Information Se-
curity Compliance Management, In-

formation Security Risk Management, and Project Man-
agement. He is MCSE, CCNA, CEH, CHFI, ISO 27001 Lead
auditor and CISA certified.

References
• 	 Sikorski, Michael, and Andrew Honig. Practical mal-

ware analysis the hands-on guide to dissecting
malicious software. San Francisco: No Starch Press,
2012. Print.

• 	 Symantec Report on the Underground Economy
July 07–June 2008

• 	 Jerin Mathew. “Cyber Crime Costs Global Economy
$500bn Annually.“ International Business Time. July
2013. http://au.ibtimes.com/articles/493506/20130723/
cybercrime-csic-mcafee-hacking.htm

• 	 http://technet.microsoft.com/en-us/sysinternals/
bb897439

• 	 https://www.hex-rays.com
• 	 Eagle, Chris. The IDA pro book the unofficial guide

to the world’s most popular disassembler. San
Francisco, CA: No Starch Press, 2011. Print.

• 	 http://www.dependencywalker.com/
• 	 http://www.heaventools.com/
• 	 M. Egele, T. Scholte, E. Kirda, and C. Kruegel. “A sur-

vey on automated dynamic malware-analysis tech-
niques and tools.” ACM Computing Survey, 2008

http://au.ibtimes.com/archives/articles/reporters/jerin-mathew/
http://au.ibtimes.com/articles/493506/20130723/cybercrime-csic-mcafee-hacking.htm
http://au.ibtimes.com/articles/493506/20130723/cybercrime-csic-mcafee-hacking.htm
http://technet.microsoft.com/en-us/sysinternals/bb897439
http://technet.microsoft.com/en-us/sysinternals/bb897439
http://www.dependencywalker.com/
http://www.heaventools.com/

06/2013 20

THE TECHNIQUES

Sophisticated anti-reverse engineering tech-
niques, such as encryption and heavy ob-
fuscation, are becoming malware industry

standard. In June, an unofficial, but popular app
store released more than 50.000 new applications
(AppBrain, 2013).

The Figure 1 outlines the rising trend of new ap-
plication releases on AppBrain with a growing por-
tion of low quality applications. About 13 billion
APK file download have been registered world-
wide up until today, while this is counting only the
official app stores (AndroLib, 2013).

The problem we face today is that signature/
pattern based detection methods that rely purely

on static analysis, as implemented by most mo-
bile anti-virus solutions, will fail in the long run,
as heavy usage of java reflective invokes and en-
crypted data nullifies pure static analysis. Latest
research is backing up this claim. Even the ten
most common anti-virus applications are not re-
sistant against simple transformation techniques,
as has been shown by Rastogi et al. and their
DroidChameleon framework (Rastogi, Chen, &
Jiang, 2013). Of course, now one could assume
that every application using heavy obfuscation is
malicious, as it is obviously a clear indicator that
something is trying to be hidden, but collective
punishment is usually not a good idea. The rea-
son for this being a weak criterion is the follow-
ing: more and more legitimate commercial apps
are implementing obfuscation techniques today
to protect their intellectual property. Tools such as
ProGuard obfuscate class names, method names;
wrap all API calls in reflective invoke delegates to
hide the real API name, et cetera. These tools are
very easy to use, integrate seamlessly into the
development process and popularity is growing,
so it is necessary to develop stronger detection
algorithms, in other words: new technology is re-
quired – and the end goal has to be malicious be-
havior detection, not pattern detection.

In this article we will first outline Android obfusca-
tion techniques on real-world samples and outline

Hybrid Code Analysis
versus State of the Art
Android Backdoors
Mobile Malware is evolving… can the good guys
beat the new challenges?
Mainstream usage of handheld devices running the popular
Android OS is the main stimulation for mobile malware
evolution. The rapid growth of malware and infected Android
application package (APK) files found on the many app stores
is an important new challenge for mobile IT security.

Figure 1. AppBrain New Applications Per Month Trend

www.hakin9.org/en 21

Hybrid Code Analysis versus State of the Art Android Backdoors

why pure static analysis fails. Then, we will pres-
ent a new technology called Hybrid Code Analysis
(HCA) and show how HCA overcomes all known
obfuscation techniques and enables extraction of
valuable analysis behavior data.

Terms and Definitions
In order to make the article as comprehensive as
possible, the most important terms are outlined here.

Java Reflective Invokes
The Java Reflection API is originally intended to
help programmers read “metadata” (like annota-
tions or class/method names) or even change the
state of objects not under direct control by setting
fields or invoking even private methods. The “Uses
of Reflection” is describes as the following:

“Reflection is commonly used by programs
which require the ability to examine or

modify the runtime behavior of applications
running in the Java virtual machine. This is
a relatively advanced feature and should be
used only by developers who have a strong
grasp of the fundamentals of the language.”

(Oracle, 2013)

First of all, as all Android Applications are based
on Java code, the Java Reflection API can be used
by developers in its full dimension. For malware
authors and obfuscators in general, the most in-
teresting API is the reflective invoke, because it
is possible to wrap any API call in a sequence of
calls from the Reflection API. First, an object of
the target class is obtained using java.lang.Class.
forName(), which in turn is used to obtain the cor-
rect method object with java.lang.Class.getMethod()
followed by execution of the API using java.lang.
reflect.Method.invoke(). Tools that take source
code as input and transform every API call into
an equivalent instruction call sequence exist to-
day. The effect is that the transformed code ends
up calling only Reflection APIs and no other APIs,
making static analysis difficult, as it requires analy-
sis of the parameters and linking the method object
lookup calls with the final invoke (could be spread
across multiple classes). Obviously, this is not the
intended use of the Reflection API.

DalvikVM
Dalvik Virtual Machine (DalvikVM) is a register ma-
chine developed to execute code in a virtual en-
vironment on mobile devices. It is a core compo-
nent of the Android platform. Dalvik takes Java
byte code (.class files) as an input and transforms
it to its own byte code format (.dex files). As Dalvik
is implemented as a pure register machine (com-
pared to a stack machine, such as the JVM, al-
though in the JVM each operation happens at a
fixed location on the stack and can be mapped to a
register with JIT should java byte code be execut-
ed on register based architectures), it uses fewer
resources and has a good performance. This is an
important aspect, as every APK runs in its own vir-
tual machine.

Application Package File
Android Application Package (APK) files are actu-
ally very similar to JAR files, as it uses the same
“container” concept. An APK file is a ZIP file con-
tainer including a single classes.dex file (multiple
.class files merged by the dx optimizer), resources
and a special binary XML manifest file that defines
permissions, program entry points, event handlers
and other metadata.

Android Obfuscation Techniques
In this chapter we will briefly outline the most com-
mon Android Obfuscation techniques that make stat-
ic analysis and reverse engineering more difficult.

Random Symbol Names
One of the most typical obfuscation techniques is
obfuscation of the class names, method names,
field names, member variable names, and so on.
As it is very easy to extract symbol information
from Java byte code, symbol names are always
included and not stripped as it is possible in other
languages like C. If all symbols would be stripped,
things like the Java Reflection API wouldn’t work.
In practice that means very random package/
class/method names, as can be seen in the follow-
ing Figure 2.

As we can see, it is quite difficult to tell the meth-
ods apart, because the same method name is be-
ing used in different classes. Looking at anoth-
er sample, we can see that the method naming

Figure 2. Random Symbol Names Distinguishable (Sample MD5
001a42a555b4bd39bf6ecd8b11441870)

06/2013 22

THE TECHNIQUES

convention was evolved even further into enhanc-
ing obfuscation: Figure 3.

Here, the random character set consists only
of three characters “C”, “I” and “O” in their differ-
ent cases, the method names differ by their class
name only, essentially not only making the meth-
ods non-distinguishable, but potentially mislead-
ing analysts through mix-ups. Understandably,
reverse engineering the sample becomes quite
difficult and one could describe this technique as
“symbol stripping”, as all useful descriptive symbol
names are unreadable character-junk.

String Encryption
Encrypted strings make it very difficult to under-
stand disassembly code, for example, as reflec-
tive invokes use strings as parameters in the
class/method/field lookup code. Without that in-
formation it is not possible to know by static anal-
ysis on what class/method a reflective invoke is
operating. In other words, analysis without ex-
ecution becomes extremely difficult. The above
figure demonstrates how important it is to have

live data when understanding execution flow.
Using pure static analysis, it would require re-
verse engineering the decryption routine, in or-
der to obtain the decrypted payload (in this case
the call to “mkfkejkpu.mkfkejkpu->mkfkejkpu” on
line 19, Figure 4). Should the decryption routine
furthermore require live data (data retrieved dur-
ing execution), for example, loading a secret key
stored on some web page, it becomes nearly im-
possible to understand execution flow with static
tools alone. Crucial parts of the program behavior
rely on strings, be it for reflective invokes, Web
URLs or C&C server commands. This becomes
extremely important, if all API calls are wrapped
by reflective invokes (heavy obfuscation). That
is why dynamic runtime analysis is becoming a
very important tool to work against obfuscation,
as string encryption is a widespread common
technique today.

Wrapping API calls with reflective invokes
As mentioned already, reflective invokes allow “mas-
querading” the real API call when using encrypted

Figure 3. Random Symbol Names Non-Distinguishable (Sample MD5 e1064bfd836e4c895b569b2de4700284)

Figure 4. Retrieving TelephonyManager and getDeviceId strings through decryption

www.hakin9.org/en 23

Hybrid Code Analysis versus State of the Art Android Backdoors

strings in the lookup code. In the following figure we
can see a very good example of how static analysis
fails producing anything useful for an analyst or au-
tomatic detection algorithm: Figure 5.

In the disassembly excerpt above, the local meth-
od invokes at line 18 and line 27 return encrypted
strings that are used for the lookup calls to java.lang.
Class.forName() and java.lang.Class.getMethod().
It is not deductible without execution what the actual
API call at line 35 really is. Technology that com-
bines static with dynamic analysis is needed.

Hybrid Code Analysis
Hybrid Code Analysis (HCA) is the new analysis
technology that was briefly mentioned in article’s
introduction. In general, HCA means using static
code analysis (analysis of disassembly code with-
out execution) and dynamic code analysis (logging
executed behavior through instrumentation, vari-
ous implementations) in an intelligent way so that
code coverage and dormant code detection is opti-
mized. An important part is linking dynamic runtime
data with the according disassembly code, there-
by revealing hidden API calls in full context and
all input/output data at parameter level (e.g. a de-
crypted string). For example, static analysis might
retrieve interesting event handlers from the Mani-
fest file prior execution, forward that information to
the Sandbox and thereby help generate simulation
events to maximize code coverage and trigger as
much payload as possible during runtime. In other

words, HCA takes the best of both worlds to im-
prove overall malware analysis in a way superior
to the techniques if they were used alone.

Using HCA to decrypt strings
Let us take a look at a good example to under-
stand what this means: Opfake.C (Sample MD5
001a42a555b4bd39bf6ecd8b11441870) is a SMS
based Trojan for Android that uses String encryp-
tion heavily. Often, string decryption routines fol-
low the same scheme and their function signature
looks as following:

static String DecryptRoutine(String encryptedString)

In order to extract dynamic data from the target
This function signature translates into the follow-

ing HCA directive:

__STATIC____ANYLOCALCLASS__;->__ANYFUNC__(Ljava/
lang/String;)Ljava/lang/String;

The above configuration option will tell HCA to
log all method calls for methods that are static
(see _ _ STATIC _ _ keyword), located in any class
(see _ _ ANYLOCALCLASS _ _ keyword, which means
any class declared in the classes.dex file), of any
name (see _ _ ANYFUNC _ _ keyword, as the exact
method name is not known ahead of time) and
with the requirement of taking a java.lang.String
object as single parameter and returning a ja-
va.lang.String object. This special configuration
is quite specific, but flexible enough to intercept
most String decryption routines without spamming
the engine with too much logging data.

Running Opfake.C with the engine configured
as above, a lot of strings are suddenly decrypted.
Here, the String 3F.so3ss.]j-3s translates to “open-
Connection” and the DecryptString routine that is
used at hundreds of code locations is the static
function “mkfkejkpu” at package “mkfkejkpu”, class
“mkfkejkpu” (The referenced report is available on-
line at www.joesecurity.org if you navigate to the
sample reports) (Figure 6).

The decrypted string is information that would
have been hidden, if analyzed without HCA and
without such flexible configuration options, such
as the template-style logging directives. Of course,
should one discover an interesting function call

Figure 5. Reflective invoke masquerades real API call

Figure 6. Decrypted String “openConnection”

http://www.joesecurity.org

06/2013 24

THE TECHNIQUES

during analysis that is not being instrumented, it
is possible to update the configuration and rerun
the sample for more live data extraction. Direct-
ly following the string decryption, the decrypted
string is used as a parameter for java.lang.Class.
getMethod(): Figure 7.

As the default configuration instruments all impor-
tant java reflective API functions, the runtime data is
available at this point and reveals the real API call.
Reflective invokes are not that bad after all.

Using HCA to de-mask reflective invokes
As already mentioned, using reflection it is possi-
ble to masquerade the real API calls. As HCA re-
members all java objects returned by invokes, it
is easily possible to make a full association for all
reflective invokes using known objects, thereby re-
vealing the real API being called: Figure 8.

As we can see in the figure above, the otherwise
useless reflective invoke becomes valuable infor-
mation when connecting dynamic data back to the
disassembly. Suddenly it becomes a lot easier to
understand the entire function (this is a good ex-
ample of what Hybrid Code Analysis is all about).

Using HCA to analyze a State of the Art
Android Backdoor
Let us take a look if HCA is useful on a real world,
state of the art malware sample. Recently we came

across a blogpost by Kaspersky (Unuchek, 2013)
that introduces its readers to a new Android Back-
door Trojan as “The most sophisticated Android
Trojan” with the name Obad.a, so we got curious
to see whether or not HCA would be able to handle
the APK (Sample MD5 e1064bfd836e4c895b569b
2de4700284) with the same techniques outlined in
the previous chapters. Here is just a small portion
of the analysis results (full details available at our
company page) that shows one interesting aspect:
Figure 9.

In the figure above we see the “DecryptString”
function call (instrumented generically in the same
way as outlined earlier) returning “su -c ‘id’” and
passing the string to Runtime.exec(). It is an attempt
to create a superuser shell.

Of course, in order for dynamic analysis to work,
it is crucial that the target sample executes inter-
esting payload. That is why the Sandbox is able to
simulate predefined events, like incoming phone
calls or an incoming SMS, in order to trigger as
much payload as possible. Analyzing Pincer.A
(Sample MD5 f05839eb7156b434a893bbedd-
b68ad85), another SMS based Trojan, showed
that the malware is able to receive JSON object
commands via SMS text and then executes the
associated command handler accordingly. Using
a custom “cookbook” (sequence of commands to
execute during runtime) we were able to emulate a

Figure 7. Decrypted String used for “getMethod” call

Figure 8. Reflective invoke resolved

Figure 9. Superuser Shell Invoke

www.hakin9.org/en 25

Hybrid Code Analysis versus State of the Art Android Backdoors

C&C server instructing our APK to execute a spe-
cific command handler. The full command table in-
cludes: Table 1.

Using the following commands

_JBSimulateIncomingSMS(‘0123456789’,’{“”re
sult””:””true””,””command””:””start_call_
blocking””,””phone_number””:””+41987654321”}’)
_JBSimulateIncomingCall(‘+41987654321’)

we were able to trigger the phone call blocking
code that in turned revealed a nice trick: Figure 10.

In the figure above, we see how the call block-
ing works. The call blocking is implemented by re-
trieving the private ITelephony interface and then
using a private method of the TelephonyManager
getITelephony, which in turn allows execution of
ITelephony.endCall() silently. If any sample is found
retrieving the ITelephony interface in a masquerad-
ing way (using reflection), one of the configurable
HCA signatures will trigger and mark the sample
as malicious: Figure 11.

The figure above shows a signature that indi-
cates malicious behavior by the red color and con-
veniently references the source code location, as
well. The package, class, method and line number
is available and links the user directly to the disas-
sembly code through an URI.

Using HCA to reveal emulator detection
The Reflection API can not only be used to mas-
querade reflective invokes, but also field access-
es. In an analysis of the Obad.a sample men-
tioned previously, we found an interesting code
location: Figure 12.

As we can see in the figure above, a field value (in
this case “android_id”) is retrieved via reflection and
then a reflective invoke to android.provider.Settings.
Secure.getString() is used to get a unique device
identifier that is valid for the lifetime of a device.
This could be used to detect the execution environ-
ment, as the “android_id” is usually null on emula-
tors and might cause the sample to skip executing
the real payload. An otherwise common technique
to detect an emulator is querying the IMEI using
TelephonyManager.getDeviceId. Again, only technol-
ogy such as HCA allows us to detect this trick and
react accordingly by spoofing the “android_id” with
a random value at startup, for example.

Using HCA to improve Code Coverage
Using static and dynamic analysis results, most
often receivers and their intent filters defined in
the AndroidManifest.xml file statically and reg-
istered receivers during runtime dynamically, it
is possible to simulate targeted events to trig-
ger as much as payload as possible. The more

Figure 11. Accessing private ITelephony interface Signature

Figure 10. Accessing the ITelephony private interface

Table 1. Commands
start _ sms _ forwarding start _ call _ blocking stop _ sms _ forwarding stop _ call _ blocking

send _ sms execute _ ussd ussd _ query simple _ execute _ ussd

stop _ program show _ message delay _ change ping

06/2013 26

THE TECHNIQUES

code is executed, the more dynamic data can be
combined with disassembly code and the stron-
ger HCA effects analysis results in a positive
way. API call chains, parameter data, object in-
formation is combined and evaluated by behav-

ior signatures and help analysts or machine pro-
grams obtain a deep understanding of the target
sample. Let us take a look at a malware sam-
ple to demonstrate the power of HCA. Analyzing
Opfake.C (report available on our company web-

Figure 12. Reflective field access to lookup unique device identifier

www.hakin9.org/en 27

Hybrid Code Analysis versus State of the Art Android Backdoors

page) we can see the following data in the report
(an excerpt): Figure 13.

As we can see in the above figure, six simulated
events were sent to the device (“boot completed”
event, an “incoming SMS”, an “outgoing SMS”, et
cetera) during execution. Every simulated event will
be consumed by the application if an appropriate re-
ceiver exists. In this case, a receiver was installed
during runtime (the “register receiver” APIs are be-

ing hooked by the engine) and the simulated “boot
completed” event caused execution of the onRe-
ceive method in the class mhejoqkihc.gourea.lvsjyg-
dbv. The real API call is wrapped in a java reflective
invoke, but the dynamic runtime data easily reveals
what is happening. In this case, we see that the ap-
plication is trying to read the battery changed value.
This could be a sandbox system/emulator detection
method, as the battery value on an emulator is usu-

Figure 13. Sample Report with Simulated Events

06/2013 28

THE TECHNIQUES

ally the same on a default installation. Usually, APK
emulation within a malware detection system would
only execute for a short period of time, so that the
battery level will always be the same initial value set
by a preconfigured snapshot/default initial state. Only
on a real native device would the battery value fluctu-
ate strongly between shutdown and power up. Again,
these conclusions could only be drawn using tech-
nology such as HCA.

Conclusion
We learned that heavy string obfuscation and re-
flective invokes are a major challenge for static
analysis. In order to overcome obfuscation and the
restrictions of static analysis, a Sandbox system for
dynamic analysis is required. In the best case, static
analysis helps dynamic analysis achieve even bet-
ter results and vice versa. The requirements are:

• 	 Fine-Grained data logging: A sandboxing sys-
tem that gathers parameter data and return val-
ues of instrumented methods at a very low level.

• 	 Logging flexibility: A powerful, generic instru-
mentation engine, i.e. the ability to instrument/

log even user-defined methods to observe not
only API calls, but get a hold of data generated
by interesting local methods as well.

• 	 Context sensitivity: Intelligent algorithms that
link java objects and other dynamic data to-
gether to better understand the context of API
calls and resolve reflective invokes.

• 	 Optimized code coverage: In order to improve
code coverage overall, results of static analysis
prior execution should influence targeted event
simulation (for example, generating events that
are known to be consumed by a service).

A modern and successful Sandbox system should
fulfill at least these requirements.

Summary
In this article we started out by outlining the chal-
lenges of Android Malware analysis in an envi-
ronment that is evolving rapidly. We showed that
heavy obfuscation is becoming a mainstream phe-
nomenon and new technology is necessary to
overcome the challenges present. String encryp-
tion and reflective invokes are very effective tools
against pure static analysis and pattern detection.
We introduced a new technology called Hybrid
Code Analysis (HCA) that combines dynamic and
static analysis in a very fine-grained, flexible and
context-sensitive manner. Using HCA, all known
common obfuscation techniques are overcome
and using code coverage optimizing algorithms
even more interesting behavior is revealed as oth-
erwise possible. The effectiveness of HCA was
demonstrated on a variety of use-cases and sam-
ples. Furthermore, HCA results are evaluated at a
high level using generic behavior signatures that
abstract from specific malware variants and ob-
fuscation techniques. Thereby, malicious behavior
can be detected in a very general way making reli-
able, long-term malicious code detection possible
that is immune to obfuscation techniques. Be it in
the wild or not.

Jan Miller
Jan Miller is a specialist for Reverse
Engineering, Static Binary Analysis
and Malware Signature algorithms
working at Joe Security LLC, which is
a globally operating, well positioned
software company based in the cen-
ter of Europe – Switzerland. Currently,

he is researching new trends, such as dynamic and static
analysis of Android based malware.

About the Sandbox
The analysis system used in this article is Joe Sandbox
Mobile (Joe Security LLC, 2013), which analyzes APK
files in a controlled environment and monitors the
runtime behavior for suspicious activities. All activities
are compiled to comprehensive and detailed analysis
reports. These reports contain key information about
potential threats and enable cyber-security profes-
sionals to deploy, implement and develop appropriate
defense and protection strategies. Hybrid Code Analy-
sis technology and its framework is a core part of Joe
Sandbox Mobile.

On the Web
Android malware analysis with Joe Sandbox Mobile is
also available as a free service at www.apk-analyzer.net.

Citations
• 	 AndroLib. (2013, June). Android Market statistics from

AndroLib, Androlib, Android Applications and Games.
Retrieved from http://de.androlib.com/appstats.aspx

• 	 AppBrain. (2013, June). Number of available An-
droid applications. Retrieved from http://www.ap-
pbrain.com/stats/number-of-android-apps

• 	 Joe Security LLC. (2013, July). JOE SANDBOX MO-
BILE – The most advanced analysis tool for Mo-
bile Applications is now at your disposal! Retrieved
from http://www.joesecurity.org/joe-sandbox-mobile

• 	 Oracle. (2013, July). Trail: The Reflection API. Re-
trieved July 2013, from The Java Tutorials: http://
docs.oracle.com/javase/tutorial/reflect/

• 	 Rastogi, V., Chen, Y., & Jiang, X. (2013). Evaluating
Android Anti-malware against. Northwestern Uni-
versity, North Carolina State University.

• 	 Unuchek, R. (. (2013, June). The most sophisticated An-
droid Trojan. Retrieved from http://www.securelist.com/
en/blog/8106/The_most_sophisticated_Android_Trojan

http://www.apk-analyzer.net/
http://de.androlib.com/appstats.aspx
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://www.joesecurity.org/joe-sandbox-mobile
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan
http://www.securelist.com/en/blog/8106/The_most_sophisticated_Android_Trojan

IN SOME CASES

nipper studio
HAS VIRTUALLY

REMOVED

MANUAL AUDIT
CISCO SYSTEMS INC.

theNEED FOR a

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organizations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 45 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

www.titania.com

U P D A T E
NOW WITH
S T I G
AUDITING

06/2013 30

THE TECHNIQUES

The global move to digitize personal and sensi-
tive information as well as to computerize and
interconnect critical infrastructure has far out-

paced the capabilities of the security measures that
have been put into place. As a result, cyber criminals
can act with near impunity as they break into net-
works to steal data and hijack resources. It is difficult
to stop their criminal malware and nearly impossible
to track them down after an attack has been perpe-
trated. What we see is that today’s network defens-
es are aggressively evaded by malware that is even
moderately advanced. Why is this? In order to an-
swer this question, we first have to define advanced
malware. The table below describes four key charac-
teristics to explore in classifying malware.

Table 1. Four key characteristics to explore in classifying malware

Stealth level Ranges from high to low. Does the
malware actively hide or cloak itself
using techniques like polymorphism or
code obfuscation?

Targeted
vulnerability

Malware can range from code that targets
known, unpatched vulnerabilities to
those that target unknown vulnerabilities,
known as “zero-hour” attacks

Intended
victim(s)

Malware can attack indiscriminately, or it
can target specific victims

Objectives Malware can be used to cause mischief
or as a tool for organized theft and
cybercrime.

Based on these characteristics, we can now pro-
file specific malware. The following chart illustrates
the characteristics that separate today’s advanced
malware from conventional malware (Figure 1).

If we look at an example like Operation Au-
rora, we see stealthy malware attacking a previ-
ously unknown vulnerability in Internet Explorer.

Overview of
Automated Advanced
Malware Analysis
In the last ten years, malicious software – malware – has
become increasingly sophisticated, both in terms of how it
is used and what it can do. This rapid evolution of malware
is essentially a cyber “arms race” run by organizations with
geopolitical agendas and profit motives. The resulting losses
for victims have run to billions of dollars.

Figure 1. The characteristics to separate today's advanced
malware from conventional malware

www.hakin9.org/en 31

Overview of Automated Advanced Malware Analysis

Further, the criminals behind Aurora targeted a
well- defined set of organizations and had a clear
goal: the theft of email archives and other informa-
tion. When it comes to the definitions of advanced
malware, Aurora clearly meets all the criteria.

The scary part is that Aurora is not the most ad-
vanced example of today’s malware. Stuxnet and
Zeus showcase the continued refinement of mal-
ware tactics, leveraging multiple zero-day vulner-
abilities and evolving over time.

For many organizations, IT security is made up
of layers of firewalls, intrusion prevention systems
(IPS) and antivirus software, deployed both in net-
work gateways and desktops. Today, there are
many variations of these technologies, including
cloud-based alternatives. So why do today’s de-
fenses fail when confronted with advanced mal-
ware, zero-day, and targeted APT attacks? The
short answer for this question is “because they le-
verage insufficient malware analysis methods”.

Automated malware analysis – various
approaches
Every protection solution present in our networks us-
es some methods of automated malware analysis.

They are designed to detect, classify and some-
time to prevent malware. Of course one can ask
about role of malware researchers. For the sake of
this article I focus on automated systems while not
forgetting about role of malware researchers and
their difficult, strenuous work!

The very common categorization of automat-
ed malware analysis technologies is depicted in
the Figure 2.

The most important differentiator between static
and dynamic approaches is knowledge about par-
ticular threat.

Static methods base on previous knowledge
about attack while dynamic approach tries to find
out whether the protected resources are under at-
tack without previous experience.

Here are some examples of specific counter-
measure products which leverage various mal-
ware analysis methods (Table 2).

Signatures and heuristics
The most popular method of malware detection is
static analysis based on signatures. By signatures
one should understand patterns like: hashes of
files, regex definitions, SNORT rules, proprietary

Figure 2. Categorization of automated malware analysis techologies

Table 2. Methods of malware analysis and examples of security products with use of these methods

Method of malware analysis Examples of security products

Signatures Endpoint anti-virus, Network IPS/IDS, Email and Web Gateways, Next Generation
Firewalls, UTMs

Heuristics Web Filters, Endpoint Anti-virus, Email and Web Gateways

Discrete Objects Analysis “Sandbox” based products and cloud services

Contextual Analysis Next Generation Threat Protection products

06/2013 32

THE TECHNIQUES

formats developed by security vendors. But not
only those. Definition of signatures consists also
of all types of lists – whitelists, blacklists, URL cat-
egories as well as static policies which define what
has to be blocked and what is allowed based on
specific parameters of traffic, processes, applica-
tions, etc. It is really broad scope of definitions of
describing what exactly we are looking for.

Popularity of signatures results from:

• 	 their simplicity – it is rather not big effort to cre-
ate SHA-1 hash of known malware, of course
after maybe hours or days of discovering the
malware. It is also relatively easy to accelerate
speed of analysis by implementing patterns in
hardware

• 	 accuracy – we get detailed description of what
we are looking for

• 	 long history of the technology development
• 	 broad range of implementations in various

types of security solutions.

Signatures are present in network protection lay-
ers, in the clouds as well as at endpoints. Signs of
limitations of signatures were observed some lon-
ger time ago, though. The exponential growth of
number of threats and their evolving nature using
more sophisticated evasions techniques created a
huge challenge for signature-based only products.

Some vendors have tried to close the cover-
age gap outlined above by layering on heuristics-
based filtering. Heuristics are essentially “educated
guesses” based on behaviors or statistical correla-

tions. They require fine-tuning to account for spe-
cific circumstances and to reduce error rates (or to
increase confidence levels, statistically speaking).

Examples of the heuristics are reputation servic-
es, host intrusion prevention based on vulnerabil-
ity description, static analysis of suspicious file, net-
work anomaly detection, etc. Even if heuristics tend
to be a good approach it has multiple limitations and
usually causes high probability of false positives.

Let’s forget the limitations of heuristics for a while
– even now we have to admit that heuristic in its
nature is still very close to signature’s approach.
Both technologies assume previous knowledge of
the attacks or vulnerability... Without that knowledge
we cannot describe rules for heuristics engine. It is
important to get a sample of malware and details
of vulnerability, analyse them (usually manually by
malware researcher) and produce “description” of
the threat which has to be distributed among secu-
rity products finally. Less knowledge means more
guessing and this approach leads us quickly to dead
end of unacceptable number of false positives.

The following chart depicts the categories and
interrelationships between various static analysis
methods used by today’s malware network de-
fense alternatives (Figure 3).

Heuristics it is not enough by itself, or even when
layered with signature-based or list-based tech-
niques. Because advanced malware shares some
characteristics common to all modern software,
heuristic developers are faced with a fundamental
trade-off. To trigger on (or positively identify) the
growing types of malware code, developers cre-
ate broader sets of heuristics that will, by defini-
tion, increasingly encompass benign “good” soft-
ware code.

Discrete objects analysis
It is by comparing the malware characteristics and
the available malware defense mechanisms that
the shortcomings become clear. As shown in the
chart below advanced malware operates at the top
of the malware chart, while the current generation
of defenses operates at the bottom. Signature-
based mechanisms react to known attacks and
fail against unknown and stealthy attacks. Further,
reputation, heuristics, and other correlating tech-
niques cannot guard against targeted attacks, be-
cause, given the nature of these attacks, there is
no existing data to correlate (Figure 4).

Quite simply, we are using outdated, convention-
al defenses to guard against cutting-edge, innova-
tive malware. In order to respond to growth of at-
tacks and their complexity another approach came
to the play some time ago. Figure 3. Network malware protection techniques

www.hakin9.org/en 33

Overview of Automated Advanced Malware Analysis

It is known as sandboxing and for the sake of this
article it is called “discrete objects analysis”.

The challenge addressed by this technique is as
follow: let’s assume we don’t have any details about
particular malware sample, so how can we deter-
mine if it is malicious or not in automated way? Dis-
crete object analysis responds by running the sam-
ple in controlled environment to observe and detect
its behavior. Based on the output from the sam-
ple’s behavior system is able to classify the object
as malicious or not. It looks promising and in fact it
is. However one should be aware of various con-
straints and challenges of this technique:

• 	 problem of getting the right, most interesting
sample to analyze – yes, we have to deter-
mine first what is more suspicious and what is
less at least in order to balance resources of
our system and allow as much as possible re-
al-time response. Second – how to obtain the
sample from the real network connections and
put it properly for analysis? It requires at least
some network awareness and real-time traf-
fic filtering in place. Sandboxes usually lack an
efficient and automated way of obtaining sam-
ples from the real network

• 	 virtualization of the analysis environment – is
it really a constraint of the system or rather
advantage? Both. Virtualization allows more
efficient usage of hardware platform. It simpli-

fies management of analysis processes – vir-
tual machine can be quickly and easily cre-
ated, run and stopped. However as sandbox-
es leverage usually of-the-shelf hypervisors, it
is impossible to incorporate malware analysis
into them and look at the malware behavior
from the “hardware” perspective. And it really
matters! Especially as we are facing malware
which does everything to hide itself from be-
ing analyzed and detected by any other pro-
cess running in the operating system. We are
also losing control over malware’s attempts
to recognize the type of environment and to
evade detection by using system dependant
functions. We observe many advanced at-
tacks doing this nowadays. If the sample rec-
ognizes known virtual environment it changes
its behavior and hides the real nature of the
attack thus is not detected as malicious.

• 	 it cannot analyze ANY file type – and the prob-
lem is not only related to missing appropriate
application which is needed to open the file.
The most important concern is related to well
known file types but obfuscated to avoid their
recognition and opening. From the discrete ob-
ject analysis perspective they cannot be de-
termined as malicious or not in reliable way. It
causes false negatives – malware is not de-
tected. Unfortunately obfuscation of malware
files is broadly used technique by advanced
threats nowadays and it really impacts usabili-
ty of such detection methods.

So how to address the challenges of discrete
objects analysis and allow efficient method of
protection against modern malware? To answer
this question let’s return to the roots of the ad-
vanced malware.

Operation Aurora
– father of advanced threats
I guess most of the readers of the article are
aware of the Operation Aurora attack. It is one
of the most famous attacks detected in last few
years. Detailed descriptions of the Aurora attack
are available in the Internet. Aurora was detect-
ed in the end of 2009 and its details were dis-
closed in the beginning of 2010. Since that time
public awareness of so called Advanced Persis-
tent Threats (APT) or Targeted Persistent Threats
(TPT) raises.

Surprisingly or not but variations of the original
Aurora attacks are still in use, are very popular and
are still very challenging to discover. Characteris-
tics of Aurora attack, including the attack stages

Figure 4. Conventional defenses don't address modern
malware

06/2013 34

THE TECHNIQUES

and exploitation through obfuscated Java Script,
define advanced malware nowadays.

Anatomy of the attack
The anatomy of advanced persistent threats varies
just as widely as the victims they target. However,
cybersecurity experts researching APTs over the
past five years have unveiled a fairly consistent at-
tack life cycle consisting of five distinct stages:

• 	 Stage 1: Initial intrusion through system exploi-
tation

• 	 Stage 2: Malware is installed on compromised
system

• 	 Stage 3: Outbound connection (callback) is ini-
tiated

• 	 Stage 4: Attacker spreads laterally
• 	 Stage 5: Compromised data is extracted

The most effective methods to discover and pre-
vent attack focus on stages 1-3. Later stages
could lead to another challenges like encryption
of extracted data, scale of investigation needed
when malware exists on multiple hosts, etc.

Exploitation
System exploitation is the first stage of an APT at-
tack to compromise a system in the targeted orga-

nization. By successfully detecting when a system
exploitation attempt is underway, identification and
mitigation of the APT attack is much more straight-
forward. If your malware analysis system cannot
detect the initial system exploitation, mitigating the
APT attack becomes more complicated because
the attacker has now successfully compromised the
endpoint, can disrupt endpoint security measures,
and hide his actions as malware spreads within the
network and calls back out of the network. System
exploits are typically delivered through the Web (re-
mote exploit) or through email (local exploit) as an
attachment. The exploit code compromises the vul-
nerable OS or application enabling an attacker to
run code, such as connect-back shellcode to call
back to CnC servers and download more malware
which moves the attack to second stage. In case of
Aurora attack the exploit was based on obfuscated
Java Script which leveraged IE 6 vulnerability.

Malware installation
Once a victim system is exploited, arbitrary code is
executed enabling malware to be installed on the
compromised system. In case of Aurora attack and
many nowadays attacks the downloaded malware
is obfuscated. Even if they use just XOR function,
the deobfuscation requires knowledge about an al-
gorithm and keys used to evade file recognition.

Figure 5. Details of behavior analysis of Aurora attack in automated malware analysis system

www.hakin9.org/en 35

Overview of Automated Advanced Malware Analysis

In real attack scenario the deobfuscation is typical-
ly initiated by the exploit which emphasizes even
more the importance of exploit detection.

Callbacks
The malware installed during the prior stage of-
ten contains a remote administration tool, or RAT.
Once up and running, the RAT “phones home” by
initiating an outbound connection (callback) be-
tween the infected computer and a CnC server
operated by the APT threat actor. Such callbacks
are made often over widely allowed protocols like
HTTP thus bypassing firewalls. Once the RAT has
successfully connected to the CnC server, the at-
tacker has full control over the compromised host.
Future instructions from the attacker are conveyed
to the RAT through one of two means – either
the CnC server connects to the RAT or vice versa.
The latter is usually preferred as a host initiating an
external connection from within the network is far
less suspicious. The Figure 5 and Figure 6 depict
details of behavior analysis of Aurora attack in au-
tomated malware analysis system.

Following the output from automated analysis
system we can identify stages of the attack since
initial exploitation. How is it possible that the sys-
tem is able to detect and correlate information from
various stages of attack? The answer is related
to Next Generation Threat Protection tools which

bring automated malware analysis to higher level
of efficiency and accuracy.

Next generation of automated malware
analysis and detection
Next generation of automated malware analysis
(so called Next Generation Threat Protection –
NGTP) was developed to overcome discrete ob-
ject analysis problems. It targets modern malware
without using signatures. The key differentiators of
NGTP are described in Figure 7.

Aggressive packet capturing
Direct access to network traffic for automated analy-
sis system allows aggressive packet capturing, deep
packet inspection and traffic recognition. Based on
the collected packets system combines sessions
and provide them to further steps of analysis.

Figure 6. Details of behavior analysis of Aurora attack in automated malware analysis system

Figure 7. The key differentiators of NGTP

06/2013 36

THE TECHNIQUES

Proprietary virtual environment
Multiple virtual machines run over proprietary hy-
pervisor designed to analyze malware behavior
from “hardware” perspective in real time. This so-
lution minimizes the risk of “abnormal” malware’s
behavior when virtual environment is discovered
but also increases accuracy of “zero-day” attack
recognition which can use new methods of hiding
its presence in breached system.

Analysis of attack stages in opposite to
discrete object analysis
The sessions collected during aggressive packet
capturing phase are replayed in the virtual environ-
ment. As a result the analysis engine can control all
stages of the attacks – from exploit detection, through
malware payload download and start up to callback
attempts recognition. In short the attack not only dis-
crete object is executed in an instrumented environ-
ment allowing analysis from the same perspective as
a “real user” openning connection and downloading
content. It becomes possible now to analyse obfus-
cated malicious file as it is unhidden by exploit phase
in the same way as it would happen on real host.

Discovery of callbacks
In addition to analysis of attack attempts the sys-
tem leverages aggressive packet capturing and

deep inspection to filter out outbound communica-
tions across multiple protocols. It complements the
attacks analysis by discovering hosts which are
already infected. Callbacks are identified as ma-
licious based on the unique characteristics of the
communication protocols employed, rather than
just the destination IP or domain name.

Offer a Cohesive View of Protocols
and Threat Vectors
To effectively combat next-generation threats,
NGTP has the intelligence to assess threats across
vectors, including Web and email. It is possible
through real-time analysis of URLs, email attach-
ments, binaries transiting over multiple protocols,
and Web objects. This is a critical requirement for
guarding against spear phishing.

Yield Timely, Actionable Malware Intelligence
and Threat Forensics
Once malicious code has been analyzed in de-
tail, the information gathered can be fully lev-
eraged in order to identify infection of particu-
lar hosts and shared the knowledge about new
threat (Figure 8).

The above diagram depicts main components of
Next Generation malware analysis system. One can
find out quickly that the new approach extends dis-

Figure 8. Main components of Next Generation malware analysis system

Overview of Automated Advanced Malware Analysis

crete object analysis by adding sessions replaying,
direct collection of the traffic from protected network
and leveraging instrumented environment based on
proprietary hypervisor. It should be pointed here that
almost all kinds of Dynamic Malware Analysis are fo-
cused on specific incidents related to advanced mal-
ware technologies. They complements existing lega-
cy protection systems instead of replacing them. We
all are aware of static analysis limitations however
signature-based solutions play still their role of filter-
ing out volume-based, already-known attacks.

Conclusion
The common approach of malware detection sys-
tems based on static analysis leveraging signa-
tures has led to their collective collapse under-
neath the avalanche of vulnerabilities and exploit
techniques. It is clear that the threat landscape
will continue to change at a rapid pace, in ways
we cannot dream of, just as we cannot dream of
all the ways technology will be used in the future.
Malware analysis and protection against attacks is
a never-ending game of cat and mouse. Thanks
to the evolution of malware analysis systems and
better understanding of modern threats we are
much better equipped for successfully chasing the
mouse. Next Generation Threat Protection sys-

a d v e r t i s e m e n t

tems are available in the market already bringing
sophisticated tools of malware detection and pre-
vention to every organization. I treat deployment of
NGTP solutions as a next step in evolution of secu-
rity systems like other important extensions which
happened in the past.

And this is really important step to take in order
to be prepared for modern attacks and avoid be-
coming next victim.

Tomasz Pietrzyk
Tomasz Pietrzyk has more than ten years of profession-
al experience pursuing his passion in all areas of in-
formation security. He is currently a Systems Engineer
at FireEye, in charge of advising solutions against ad-
vanced threats for company’s customers. His interests of
late are various solutions to prevent advanced attacks
from network perspective. He takes every opportunity
to share and obtain knowledge from this area. He holds
a Master of Electronics degree from Academy of Mining
and Metallurgy in Krakow. In case of having some free
time he supports local volleyball team and rides bicycle.
Email: Tomasz.Pietrzyk@FireEye.com

http://workbooks.com
mailto:mailto:Tomasz.Pietrzyk%40FireEye.com?subject=

06/2013 38

THE TECHNIQUES

It can help in extracting forensics artifacts from
a computer’s memory like running process, net-
work connections, loaded modules etc. It can

also help in unpacking, rootkit detection and re-
verse engineering.

Steps in memory Forensics
Below are the list of steps involved in memory forensics.

Memory Acquisition
This step involves dumping the memory of the tar-
get machine. On the physical machine you can use
tools like Win32dd/Win64dd, Memoryze, DumpIt,
FastDump. Whereas on the virtual machine, ac-
quiring the memory image is easy, you can do it by
suspending the VM and grabbing the “.vmem” file.

Memory Analysis
Once a memory image is acquired, the next step is
to analyze the grabbed memory dump for forensic
artifacts, tools like Volatility and others like Memo-
ryze can be used to analyze the memory.

Volatility quick overview
Volatility is an advanced memory forensic frame-
work written in python. Once the memory image has
been acquired Volatility framework can be used to
perform memory forensics on the acquired memory
image. Volatility can be installed on multiple operat-

ing systems (Windows, Linux, Mac OS X), Installa-
tion details of volatility can be found at http://code.
google.com/p/volatility/wiki/FullInstallation.

Volatility Syntax

• 	 Using -h or --help option will display help op-
tions and list of a available plugins

 	 Example: python vol.py -h
• 	 Use -f <filename> and --profile to indicate the

memory dump you are analyzing
	 Example: python vol.py -f mem.dmp

--profile=WinXPSP3x86

• 	 To know the --profile info use below command:
	 Example: python vol.py -f mem.dmp imageinfo

Demo
In order to understand memory forensics and the
steps involved. Let’s look at a scenario, our analy-
sis and flow will be based on the below scenario.

Demo Scenario
Your security device alerts on malicious http con-
nection to the domain “web3inst.com” which re-
solves to 192.168.1.2, communication is detected
from a source ip 192.168.1.100 (as shown in the
below screenshot).you are asked to investigate
and perform memory forensics on the machine
192.168.1.100.

Advanced Malware
Detection using
Memory Forensics
Memory Forensics is the analysis of the memory image
taken from the running computer. In this article, we will
learn how to use Memory Forensic Toolkits such as Volatility
to analyze the memory artifacts with practical real life
forensics scenarios. Memory forensics plays an important
role in investigations and incident response.

http://code.google.com/p/volatility/wiki/FullInstallation
http://code.google.com/p/volatility/wiki/FullInstallation

www.hakin9.org/en 39

Advanced Malware Detection using Memory Forensics

Memory Acquisition
To start with, acquire the memory image from
192.168.1.100, using memory acquisition tools.
For the sake of demo, the memory dump file is
named as “infected.vmem”.

Analysis
Now that we have acquired “infected.vmem”, let’s
start our analysis using Volatility advanced memo-
ry analysis framework

Step 1: Start with what you know
We know from the security device alert that the host
was making an http connection to web3inst.com
(192.168.1.2). So let’s look at the network connections.

Volatility’s connscan module, shows connection
to the malicious ip made by process (with pid 888).

Step 2: Info about web3inst.com
Google search shows this domain(web3inst.com)
is known to be associated with malware, proba-
bly “Rustock or TDSS rootkit”. This indicates that
source ip 192.168.1.100 could be infected by any
of these malwares, we need to confirm that with
further analysis.

Step 3: what is Pid 888?
Since the network connection to the ip 192.168.1.2
was made by pid 888, we need to determine which
process is associated with pid 888. “psscan” shows
pid 888 belongs to svchost.exe.

Step 4: YARA scan
Running the YARA scan on the memory dump for
the string “web3inst” confirms that this domain
(web3inst.com) is present in the address space of
svchost.exe (pid 888). This confirms that svchost.
exe was making connections to the malicious do-
main “web3inst.com”.

Step 5: Suspicious mutex in svchost.exe
Now we know that svchost.exe process (pid 888)
was making connections to the domain “web3inst.
com”, lets focus on this process. Checking for the
mutex created by svchost.exe shows a suspicious
mutex “TdlStartMutex”.

Step 6: Info about the mutex
Google search shows that this suspicious mutex is
associated with TDSS rootkit. This indicates that
the mutex “TdlStartMutex” is malicious.

06/2013 40

THE TECHNIQUES

Step 7: File handles of svchost.exe
Examining file handles in svchost.exe (pid 888)
shows handles to two suspicious files (DLL and
driver file). As you can see in the below screenshot
both these files start with “TDSS”.

Step 8: Detecting Hidden DLL
Volatility’s dlllist module couldn’t find the DLL
starting with “TDSS” whereas ldrmodules plu-
gin was able to find it. This confirms that the DLL
(TDSSoiqh.dll) was hidden. malware hides the
DLL by unlinking from the 3 PEB lists (operating
sytem keeps track of the DLL’s in these lists).

Step 9: Dumping the hidden DLL
In the previous step hidden DLL was detected. This
hidden DLL can be dumped from the memory to disk
using Volatility’s dlldump module as shown below.

Step 10: VirusTotal submission of dumped DLL
Submitting the dumped dll to VirusTotal confirms
that it is malicious.

Step 11: Looking for other malicious DLL’s
Looking for the modules in all the processes that
start with “TDSS” shows that msiexec.exe process
(pid 1236) has reference to a temp file (which is
starting with TDSS) which is suspicous.

Step 12: Suspicious DLL loaded by msiexec
Examining the DLL’s loaded by the process msiex-
ec (pid 1236) using dlllist module, shows a suspi-
cious dll (dll.dll) loaded by msiexec process.

Step 13: Dumping DLL and VT submission
Dumping the suspicious DLL (dll.dll) and submit-
ting to VirusTotal confirms that this is associated
with TDSS (Alueron) rootkit.

Step 14: Hidden Kernel driver
In step 7 we also saw reference to a driver file (start-
ing with “TDSS”). Searching for the driver file using
Volatility’s modules plugin couldn’t find the driver that
starts with “TDSS” whereas Volatility’s driverscan

www.hakin9.org/en 41

Advanced Malware Detection using Memory Forensics

plugin was able to find it. This confirms that the ker-
nel driver (TDSSserv.sys) was hidden. The below
screenshot also shows that the base address of the
driver is 0xb838b000 and the size is 0x11000.

Step 15: Kernel Callbacks
Examining the callbacks shows the callback (at ad-
dress starting with 0xb38) set by an unknown driver.

Step 16:
Examining the unknown kernel driver
The below screenshot shows that this unknown
driver falls under the address range of TDSSserv.
sys. This confirms that unknown driver is
“TDSSserv.sys”.

Step 17: Kernel api hooks
Malware hooks the Kernel API and the hook ad-
dress falls under the address range of TDSSserv.
sys (as shown in the below screenshots).

Step 18: Dumping the kernel driver
Dumping the kernel driver and submitting it to Vi-
rusTotal confirms that it is TDSS (Alureon) rootkit.

Conclusion
Memory forensics is a powerful technique and with
a tool like Volatility it is possible to find and ex-
tract the forensic artifacts from the memory which
helps in incident response, malware analysis and
reverse engineering. As you saw, starting with little
information we were able to detect the advanced
malware and its components.

Monnappa K A
Monnappa K A is based out of Banga-
lore, India. He has an experience of 7
years in the security domain. He works
with Cisco Systems as Information Se-
curity Investigator. He is also the mem-
ber of a security research communi-
ty SecurityXploded (SX). Besides his

job routine he does reasearch on malware analysis and
reverse engineering, he has presented on various top-
ics like “Memory Forensics”, “Advanced Malware Analy-
sis”, “Rootkit Analysis”, “Detection and Removal of Mal-
wares” and “Sandbox Analysis” in the Bangalore security
community meetings. His article on “Malware Analysis”
was also published in the Hakin9 ebook “Malware – From
Basic Cleaning To Analyzing”. You can view the video de-
mo’s of all his presentations by subscribing to his youtube
channel: http://www.youtube.com/user/hackycracky22.

References
• 	 Video link of this article: http://www.youtube.com/

watch?v=A_8y9f0RHmA
• 	 http://code.google.com/p/volatility/wiki/FullInstalla-

tion
• 	 http://nagareshwar.securityxploded.com/2013/07/15/

advanced-malware-analysis-training-session-7-mal-
ware-memory-forensics/

http://www.youtube.com/user/hackycracky22
http://www.youtube.com/watch?v=A_8y9f0RHmA
http://www.youtube.com/watch?v=A_8y9f0RHmA
http://code.google.com/p/volatility/wiki/FullInstallation
http://code.google.com/p/volatility/wiki/FullInstallation
http://nagareshwar.securityxploded.com/2013/07/15/advanced-malware-analysis-training-session-7-malware-memory-forensics/
http://nagareshwar.securityxploded.com/2013/07/15/advanced-malware-analysis-training-session-7-malware-memory-forensics/
http://nagareshwar.securityxploded.com/2013/07/15/advanced-malware-analysis-training-session-7-malware-memory-forensics/

06/2013 42

THE TECHNIQUES

There’s one variant of Android.Bankun that
is particularly interesting to me. When you
look at the manifest it doesn’t have even

one permission. Even the most simple apps have
at least internet permissions. Having no permis-
sions isn’t a red flag for being malicious though. In
fact, it may even make you lean towards it being
legitimate. However, there is one thing that gives
Android.Bankun a red flag though. The package
name of com.google.bankun instantly makes me
think something is fishy.

To the average user the word ‚Google’ is seen
as a word to be trusted. This is especially true
when it comes to the Android operating system
which is of course created by the search engine
giant. Malware authors know this and heavily use
it to disguise their malicious intent. Mobile threat
researchers like myself also know this and end
up looking twice whenever we see ‚Google’ be-
ing used. Diving into the code, we see a simple
application whose code all resides in one plainly
named default class, MainActivity. A great place
to start is on the “onCreate” function which is run

whenever the app is opened. Let’s take a look
(Figure 1). Looking at the code, we can see that
it calls “isAvilible” with parameters of different
package names. The “isAvilible” function looks

Android.Bankun
And Other Android
Obfuscation Tactics:
A New Malware Era
There's one variant of Android.Bankun that is particularly
interesting to me. When you look at the manifest it doesn't
have even one permission. Even the most simple apps have
at least internet permissions. Having no permissions isn't
a red flag for being malicious though. In fact, it may even
make you lean towards it being legitimate. However, there is
one thing that gives Android.Bankun a red flag though. The
package name of com.google.bankun instantly makes me
think something is fishy.

Figure 1. The MainActivity class’ onCreate function

www.hakin9.org/en 43

Android.Bankun And Other Android Obfuscation Tactics: A New Malware Era

to see if that package name is installed and re-
turns ‘true’ if it is installed which triggers the “if...
else” statement to be ran. Let’s look at the first
“if...else” statement with “com.kbcard.kbkook-
mincard”. If you look in the Google Play market
you’ll see that “com.kbcard.kbkookmincard” is an
app called “KB Kookmin Card Mobile Home”. It
appears to be a Korean banking app. Whenever
“KB Kookmin Card Mobile Home” exists, the ma-
licious app will uninstall the app using the “unin-
stallApk” function after getting root access from
the “getRootAhth” function. It then calls “install-
ZxingApk” with the value of ‘i’ which is ‘1’ for this
“if...else” statement. Let’s look at the “installZxin-
gApk” function (Figure 2).

Under the “installZxingApk” function, it appears
to be grabbing a file in the assets folder. The name
of the file is the parameter variable that was used
to call “installZxingApk”. For our example, we know
that the value is ‘1’ from the “if...else” statement in
class “MainActivity”. In other words, a file named
“1.apk” located in the assets folder is being called
and then installed. So, let’s see if there is an APK
in the assets folder of the malicious app named
“1.apk” (Figure 3).

There it is! Along with several other APKs for oth-
er “if...else” statements to use.

Figure 2. The “installZxingApk” function, responsible for grabbing and installing a package from the assets folder

Figure 3. A listing of the package files under “assets” inside
the malicious package

Figure 4. The list of apps running on my test phone, after
installing the legitimate app

06/2013 44

THE TECHNIQUES

To test this malicious app out, I grabbed the le-
gitimate “KB Kookmin Card Mobile Home” and in-
stalled it. Here it is sitting in my test phone’s mem-
ory (Figure 4).

I then ran the malicious app and this popped up
(Figure 5).

There’s the app getting root access. Now, you
should probably say “what in the...” and click ‘De-
ny’, but that’s no fun so let’s click ‘Allow’. We then
get this (Figure 6).

What’s this? Maybe an update of my banking
app “KB Kookmin Card Mobile Home?” Lets click
‘Install’. Looking at the icon for this app nothing
looks different:

The “new” icon just installed.

Now let’s look in the phone’s memory again (Fig-
ure 7). The APK “com.kbcard.kbkookmincard-1.
apk” has been replaced with “com.googles.sms-
servicesone-1.apk”, or better known as “1.apk”
from our malicious apps asset folder. So what does
“1.apk” do? It’s another malicious app that pretends
to be “KB Kookmin Card Mobile Home” (Figure 8).
Not only does this nasty app steal sensitive banking
info, it also does several other malicious activities.

Figure 5. The Superuser prompt,
originating from the malicious app

Figure 6. A new install prompt for the
package the parent app is attempting to
install

Figure 7. The package that was just installed now appears in
the memory, with a different name as well

Figure 8. What the fake “KB Kookmin Card
Mobile Home” app, or “1.apk”, looks like

www.hakin9.org/en

It listens for any incoming SMS and phone calls and
when one comes in, it gathers information such as
time of call/SMS, telephone number, SMS message
body, call length time, etc. It also steals your contact
list and adds contact entries, sends SMS messages
in the background, steals email through gmail and
who knows what else. All of this from an APK that
has no permissions.

Android.Bankun is just one example of how mal-
ware authors evade detection. A typical user may
not think twice when they see something start-
ing with the name “com.google”, even if it asking
for superuser permissions. Malware authors are
‘banking’ on this (pun intended). The most common
evasion tactic is using the same package name as
a legitimate app. In many cases, the app will run
just like the legitimate version, but do something
malicious in the background. Turning function and
class names into something generic like “a”, “b”,
“c” and so forth, also makes it tougher to track
down malicious code. Using encoding/decoding
tactics within the code also makes it harder to see
what the true intent may be. Android.Bankun didn’t
use any obfuscation to hide the APKs in the assets
folder, but other malware authors will part the APK
files out into multiple files in the assets folder with
generic file types. The malicious app then puts the
files back together into a malicious APK before in-
stalling it.

Mobile malware is evolving rapidly. We are com-
ing into a new era where the typical user may not
own a laptop anymore, but instead several Android
devices like a tablet and mobile phone. You better
believe that malware authors see this trend. They
are only getting started with new ways to attempt
to evade us all.

Nathan Collier, Threat Research
Analyst at Webroot

Nathan has been a Threat Research
Analyst for Webroot since October
2009. He started his career working
on PC malware, but now spends most
of his time in the mobile landscape re-
searching malware on Android devic-
es. Because of his early adaptation to
mobile security, Nathan has seen the

exponential growth of mobile malware and is highly ex-
perienced in protecting Webroot customers from mo-
bile threats. He also enjoys frequently traveling with his
flight attendant wife, Megan, and is a competitive en-
durance mountain bike racer in Colorado.

06/2013 46

THE TECHNIQUES

I n March of 2013 hackers dropped the biggest
cyber-bomb, posting the credit reports of high-
profile people such as Michele Obama, Robert

Miller (FBI Director) and many others.
Hackers claimed that they hacked the databases

of FBI and White House, but they didn’t. Howev-
er, when they said, “it’s only a small piece of data
we have got” they were right. In the next following
weeks the hackers posted more and more reports.
Finally, they disclosed personal data of Barak
Obama and said goodbye farewell.

According to the press, FBI suspected that
CloudFare (traffic delivering company) was com-
promised, because it caches the data and does
not encrypt it. In fact, CloudFare was involved, but
only as a hosting platform to keep hacker’s server
up (it has got more than 700,000 visitors less than
a week, so they needed a good hosting), so FBI
got a wrong lead or, at least, made people (includ-
ing the hackers) think that they got a wrong lead.
Nobody knows for sure that FBI guys really did.

Then FBI got another wrong turn, assuming that
TransUnion Company got hacked. As the mat-
ter of fact, TransUnion fixed a minor vulnerability on
March-15, but it was not compromised and it’s not the
only credit company who was involved into the attack.
Credit reports were pulled off from Equifax, CreditKar-
ma, ScoreSense, YourScoreAndMore and FreeCre-
ditReport. None of them have been compromised,
though. In meantime, the attack was in the progress.
Hackers attacked Charlie Beck (LAPD Chief), Mitt
Romney, John Brennan (CIA Director) and many oth-
ers, thus people started asking the question: “if CIA,
FBI, LAPD are unable to protect themselves from on-
going attack – how they are going to protect normal
people? Are credit companies and the national data-
bases secured? Should we trust them?”

Kris Kaspersky analyzed the attack and came to
conclusion – it was not a single act of attack. There
were two waves of client-side attacks. Low-profile
hackers used a botnet to attack end-user’s boxes,
collecting SSN, DOB, addresses and credit card
numbers for fraud purposes. In December of 2012
the hackers realized that one of infected boxes be-
longs to Barak Obama and decided to pull more in-
fo, using APT attacks to request credit reports from
victim’s “zombie” machines. At the same time on
private underground forums an anonymous hack-
er asked a question: “how to sell, says, a nucle-
ar bomb? How to find a buyer?” The answer was:
“Well, it depends… You have to tell us exactly what
you’re trying to sell”. The anonymous said: “Ac-
cess to high-profile people laptops, APT based”.

Operation Mayhem
a.k.a. Obama’s Attack
– …the plan is to blow up the headquarters of these credit
card companies.
– Why these buildings? Why credit card companies?
– If you erase the debt records, then we all go back to zero.
It'll create total chaos.

(c) Fight Club

Definition of MAYHEM
may·hem noun \'mā-,hem, 'mā-əm\

1.	 willful and permanent deprivation of a bodily
member resulting in the impairment of a person’s
fighting ability;

2.	 willful and permanent crippling, mutilation, or dis-
figurement of any part of the body;

3.	 needless or willful damage or violence;

(c) Merriam-Webster dictionary

www.hakin9.org/en 47

Operation Mayhem
a.k.a. Obama’s Attack

Then the anonymous disappeared and never ap-
peared again. Did he or she find a buyer?

Hacker’s harvester was not designed for request-
ing credit reports, thus they updated it and waited
for new zero days, which came in early February
2013 – Oracle Java (CVE-2013-1493), Adobe Ac-
robat Reader (CVE-2013-0640, CVE-2013-0641).
The hackers upgraded the botnet and stroke again.

It was not a targeted attack. Hackers infected thou-
sands of victims, using different devices (Windows
XP/7, Mac OS X). Some victims accidentally ap-
peared to be high-profile people. The timeline of the
attack and random selection of the victims makes
Kris Kaspersky to believe that it’s a classic client-side
APT attack. The national databases are intact, credit
companies have been not compromised.

The attack drowned when security companies pro-
vided the cure against the new exploits, thus the
hackers said ‘goodbye’ and posted information on
Barak Obama who was attacked in December of
2012, but hackers kept him as their Trump Ace till
the very last moment. They tried to re-attack him with
their newer harvester, but the attack failed, probably
because the old APT malware had been removed.

At 3:50 PM of March-16 the hacker’s site finally
went down and the NS records have been gone.
Hackers ‘colleagues’ quickly created a mirror, but
it has never been updated since that.

Unfortunately, the threat is has been not eliminat-
ed. It’s not over. Many high-profile people are still
infected and only god knows what the hackers stole
from FBI/CIA boxes. It’s extremely important to in-
vestigate these laptops, because the risk on leaking
classified information is very high (we all know that
people violate security policies and keep very sensi-
tive information on their personal laptops).

Kris Kaspersky analyzed the samples, associated
with the attack (some of them have hardcoded names
of credit companies such as creditcarma.com). The
exploits, associated with the attacks, fall into two buck-
ets: a) well-written very professional exploits; b) poor-
designed amateur’s crap. One possible explanation
is that attackers needed a distraction. As soon as the
amateur hackers will be caught – FBI will celebrate
the ‘success’ and close the case, don’t even thinking
that it’s not the end, it’s only the beginning.

Timeline of the attack
Name Credit Agency Last attack

Donald Trump none 20121100

Joseph R Biden Jr none 20121100

Hillary Clinton none 20121100

Thomas Cruise none 20121100

Barack Obama none 20121100

Kanye West none 20121200

Christopher J Christie none 20121200

Eldrick Tiger Woods scoresense 20121212

William Gates ScoreSense 20121212

Sarah Palin yourscoreandmore 20130226

Britney J Spears creditkarma 20130300

Robert S Mueller TransUnion 20130307

Kimberly Noel
Kardashian

creditkarma 20130307

Eric Holder Equifax 20130308

Mel Gibson TransUnion 20130308

Charles L Beck Equifax 20130309

Christopher Ashton
Kutcher

TransUnion 20130309

Shawn C Carter Equifax 20130309

Beyonce G Knowles TransUnion 20130309

Paris Hilton freeCreditReport 20130310

Michelle Obama TransUnion 20130311

Terry G Bollea TransUnion 20130311

Arnold
Schwarzenegger

Equifax 20130311

Albert A Gore Equifax 20130312

Kristen Jenner-
Kardashian

Equifax 20130312

Stacia A Hylton creditkarma 20130312

Willard Mitt Romney TransUnion 20130312

Robert Kelly TransUnion 20130313

Gerald‚ Jerry’
Sandusky

TransUnion 20130313

Nadya Suleman-
Gutierrez

Equifax 20130315

John O Brennan TransUnion 20130315

NOTES

• 	 ‘NONE’ (credit agency section) means that
there is no evidences of un-authorizing re-
questing the credit report of the person;

• 	 DATA FORMAT:
• 	 YYYYMMDD,
• 	 00 means that the day/month is unknown;

Q/A section
Q: Why CloudFare name was popped up?
Answer: All HTML credit reports contains Cloud-
Fare’s JavaScript followed by the actual content,
but the main page of the hacker’s site also has the
same script and it’s related only to the hacker’s site
hosted the disclosed credit reports and CloudFare
has nothing to do with stealing the info.

http://creditcarma.com

06/2013 48

THE TECHNIQUES

<script type=”text/javascript”>
//<![CDATA[
 try
{
	 if (!window.CloudFlare)
	 {
		 var CloudFlare = [
		 {
			 verbose: 0,
			 p: 1363306477,
			 byc: 0,
			 owlid: “cf”,
			 mirage: { responsive: 0, lazy: 0 },
			 oracle: 0,
			 paths:{cloudflare:”/cdn-cgi/nexp/abv=1870252173/”},
			 atok: “a08e14787fd13de5b1801adf2e8518d5”,
			 zone: “e*x#p*o#s*e#d.su”, rocket: “a”,
			 apps: {}
		 }];
		 document.write(‘<script type=”text/javascript”\
 		 src=”//ajax.cloudflare.com/cdn-cgi/nexp/\
		 abv=4114775854/cloudflare.min.js “>\
		 <’ + ‘\/script>’)
	 }
} //]]>
</script>

Q: Why TransUnion name was popped up?
Answer: Because Robert Miller (FBI Director)
said so. His box was attacked and in his particu-
lar case the hackers sent unauthorized request to
TransUnion company to pull his credit report. At
that moment Bill Gates, Britney Spears and oth-
er celebrities were attacked by sending requests
to CreditKarma, ScoreSense and YourScoreAnd-
More. Obviously, FBI was not very well informed
and basically served only itself.

Q: is that true that Michelle’s iPhone was hacked?
Answer: Kris Kaspersky analyzed the credit re-
port, which was pulled by hacker’s un-authorized
requests and came to conclusion that it was not
a mobile device, because it that case the HTML
page would look differently, being optimized for
mobile version, but it’s not.

Q: Who these people are?
Answer: Kris Kaspersky has an intel – accord-
ing to a source, a group of people from the Unit-
ed States, who are native Arabic speakers, hired
hackers from Russia, Ukraine, Belarus and Chi-
na. The hacker’s site was on Russian domain (SU
– Soviet Union), acquired by a person, associated
with Zeus botnet.

Update: There were some speculations about
the attack was ordered by Barack Obama in order
to prove incapability of the existing agencies (such
as FBI and CIA). They failed to prevent the ongo-
ing attack, so the United States needs to create a
special division, focusing on cyber security.

Q: How the victims were attacked?
Answer: There was a suggestion that hackers col-
lected personal info (such as SSN, DOB) from the
different sources and then made un-authorized re-
quests, pulling the credit reports, but credit compa-
nies ask too many questions to verify your identify,
so it’s almost impossible to find all information on
the victim.

Kris Kaspersky analyzed the samples, associ-
ated with the attack, and came to conclusion that
hackers used victim’s browsers and existing ac-
counts. This is why the reports were obtained from
different credit companies.

There are a number of attack vectors of how the
victims were infected. For instance, hackers at-
tacked trusted commercial sites, uploading ma-
licious content there to exploit vulnerabilities of
browsers/browser’s plugins (Java, Acrobat Read-
er, Flash Player). Some exploits (MS Word/Excel/
PowerPoint) were sent as email attachments.

Some of the victims are still infected and the hack-
ers control victim’s machines almost completely.

Q: how to detect and disinfect the
compromised machines?
ANSWER: as far as we’re dealing with APT attack,
it’s very hard to detect and disinfect the disease on
the client side. HIPS are very limited. The best so-
lution is a combination of HIPS and IPS systems.

Q: are the stolen information accurate?
Answer: some of it – yes, but it’s not 100% accu-
rate, which reveals the way how it was obtained.

Kris Kaspersky
Kris Kaspersky is a reverse engineering
expert at the top of his field of endeav-
or. He possesses extraordinary abili-
ty and is internationally recognized as
one of the top specialists in the field of
Reverse Engineering. His exception-
al research, rare analytical skills, and

extraordinary reverse engineering experience have en-
abled him to excel and succeed while gaining internation-
al acclaim among top industry leaders in the world.

A BZ Media Event

Big Data TechCon™ is a trademark of BZ Media LLC.

“Big Data TechCon is loaded with great networking
opportunities and has a good mix of classes with technical
depth, as well as overviews. It’s a good, technically-focused
conference for developers.”

—Kim Palko, Principal Product Manager, Red Hat

“Big Data TechCon is great for beginners as well as
advanced Big Data practitioners. It’s a great conference!”

—Ryan Wood, Software Systems Analyst, Government of Canada

“If you’re in or about to get into Big Data, this is the
conference to go to.”

—Jimmy Chung, Manager, Reports Development, Avectra

Discover how to master Big Data from real-world practitioners – instructors
who work in the trenches and can teach you from real-world experience!

Big Data gets real
at Big Data TechCon!

San Francisco
October 15-17, 2013
www.BigDataTechCon.com

• Collect, sort and store massive quantities
of structured and unstructured data

• Process real-time data pouring into
your organization

• Master Big Data tools and technologies
like Hadoop, Map/Reduce, NoSQL
databases, and more

• Learn HOW TO integrate data-collection
technologies with analysis and

business-analysis tools to produce
the kind of workable information
and reports your organization needs

• Understand HOW TO leverage Big Data
to help your organization today

Over 60
how-to

practical classes

and tutorials
to choose

from!

The HOW-TO conference for Big Data and IT professionals

Come to Big Data TechCon to learn the best ways to:

FlashNFlex_Layout 1 7/30/13 9:28 AM Page 1

http://www.bigdatatechcon.com

06/2013 50

EXTRA

However, as if the undertone implications
of this were not enough, businesses have
also embraced Commercial-Of-The-Shelf

[COTS] Operating Systems, and applications to
operate critical subsystems, such as those within
the Oil-and-Gas Industry – and when you add all
of this up, you can be at a place which is shouting
out Beware!

But not only are we suffering from the imposi-
tion of techno-overindulgence, and what may be
at times, less-than-fit-for-purpose technology, but
there are also concerns around what is considered
to be exposure to a skills-crisis within the Cyber
Security Industry, suffering from over-reliance on
Dashboard driven Governance and Compliance,
at the expense of real-time Operational Security.

And then there is the final coup de etat to assure
some will suffer a sleepless night, arriving in the
form of external providers, and services from the
world of Outsourcing, and Cloud – who when en-
gaged correctly can bring security benefits to the
organisation. However, when engaged without the
rigour of necessary care, and orchestrated gov-
ernance, they can equally represent a cavernous
exposure to the organisation. In fact it is here by
example I recall a conversation with a ‘Senior Se-
curity Professional’ who, when asked about his or-
ganisations approach to assuring Cloud Security
stated, that ‘we as a company can’t be too rigid

with the governance and controls around Cloud
based environments, as we know the company
does not always employ fit-for-purpose environ-
ments’. However, when asked ‘does this mean
that you take an approach that will service best fir
to the business notwithstanding you are aware the
providers are not fit for purpose, or secure’ – he
failed to respond!

Thus, when we bring together the factors of:

• 	 Over Familiarity,
• 	 Dependency,
• 	 COTS,
• 	 Skills, and
• 	 The Third Party Factor, be they one, or aggre-

gated, you can be assured of one fact, Hack-
tivists, Cyber-Criminals, Organised, and State-
Sponsored Crime are very much aware of the
beneficial exposures hosted intermingled vul-
nerabilities.

So let’s consider a scenario of real-life implica-
tions for a multi-partite terrorist attack mounted
against a million/billion dollar Oil-and-Gas instal-
lation located within an hostile, and unstable geo-
graphic landscape – an attack which will extrapo-
late the benefits of poor-security, which will lever-
age their associated foibles to culminate in a suc-
cessful outcome.

Cyber Terror – Take-
Down (The Attackers
Toolkit)
Within the last decade society has embraced computing,
but one could go as far to say, they have also become over-
familiar with technology to both support, and drive their
personal, and business lives – but one may also further
suggest, this has actually led to over-dependency on the
underpinning protocols, wires, airways which support the
multiple layers of technological infrastructures.

www.hakin9.org/en 51

Cyber Terror – Take-Down (The Attackers Toolkit)

Footprinting
Our Mission commences with a Footprinting exer-
cise, looking to see what snippets of intelligence
can be acquired from the multiples of Social-Net-
working Sites – tit-bits of information which, in iso-
lation have no value, but when they are placed into
the context of aggregated intelligence, their value
can be high. Who is going where, and when? And
if you get lucky, what site are they being deployed
to, and for how long.

Our Footprinting activity may then place focus on
the companies TLD [web site], and related sub-do-
mains with a view to acquiring documents in the
form of Microsoft Office Word, Excel, PowerPoint,
or maybe Adobe PDF. This all done with the objec-
tive of extracting the hidden, embedded MetaData,
which may then lead to the discovery of names,
user id’s, associated passwords, IP addresses,
printer names and types, document paths, appli-
cation of O/S versions & patch levels, related url’s,
and other such Intel – which again can prove to
be equally attractive, and telling about the selected
target – with the content discovery element all con-
ducted off-line, in true Cuckoos Egg Style. Howev-
er, that all said, in my experience, this is an expo-
sure that most organisations suffer from, but who
are equally happy to collocate with, notwithstand-
ing the obvious implications.

Advanced Evasions (Techniques)
Notwithstanding the fact that many within the Cy-
ber Security Industry did not accept that Advanced
Evasions were real threats. However, in a nutshell,
the AE[T] has the ability to break through a fully up-
to-date Firewall, IDS, or IPS, by manipulating the
presented IP Stack. Upon establishing incursion,
may then enable the possibility of one-of-many ad-
verse conditions, one example of which is to open a
‘Shall’ condition on the compromised host (the DOS
Prompt). In this case our attacker having penetrated
the security perimeter, he/she will wish to see what
excessive applications are located on the exploited
host – one of which could be ‘which’. See Figure 1.

Figure 1. wmic

‘wmic’ is the ‘windows management instrumenta-
tion command-line’, which provisions the interfac-
ing user with the ability to say, run local and remote
interrogations, and may even be leveraged to de-
liver applications to extract cross-network informa-
tion gathering and attacks.

Another such tool which may be located lingering
on most Windows systems is the SED [Self Extrac-
tion Directive (File Packager) ‘Iexpress.exe’ which,
for the intended user groups may be of use. How-
ever in the hands of a miscreant insider or attack-
er, can prove to be ideal application to, say launch
an attack, hide data, secrete Malicious code or
Malware, or to just do one-of-many acts which
are only limited by the imagination of the assailant
– see Figure 2.

Figure 2. Iexpress.exe

DNS
Another potential area which can host exposure
is DNS, which again can tell the attacker much
about the profile of the selected target. I am sure
some of you know what Zone Transfer it, but just
to confirm, if enabled, Zone Transfer allows the
interested party to extract the information about
the network, such as IP addresses, and serv-
er names – and again, this can then allow our
would be attacker to take a nibble, looking for
valuable servers, or stores of information – and
does this happen, you bet. Some years ago I lo-
cated a company in the Financial Services Sec-
tor, who had misconfigured their DNS to allow a
Zone Transfer, and that provisioned onward ac-
cess to files containing hard-coded user id’s and
associated passwords. In another located expo-
sure, some very sensitive US agencies had com-
missioned development by a Third Party, which
were exposing some very sensitive agency as-
sets. However, unlike company number one who
could not locate or correct the misconfiguration

06/2013 52

EXTRA

for about three weeks – with this latter case, it
was secured within 24 hours!

WiFi and Promiscuous Activity
When it comes to protocols like 802.11x or Blue-
tooth, we enter another world of potential insecu-
rity. First of all, even when WiFi is secured, it may
still be open to compromise or password cracking,
with tools like the SecPoint Penetrator – see Figure
3. And even when such protocols have been dis-
missed because they are not authorised by Corpo-
rate Policy, or deployed on your site, this does not
mean that aren’t actually present.

And again, just because there are no authorised
WiFi deployment on site, does not mean they are
not being employed in some discreet situation, si-
phoning off data from the very heart of the network.

For instance, consider the highly effective PWNIE
Express Pwn Plug Elite (See Figure 5). By setting
this small-footprint logical intruder up on a Net-
work, our attacker will then have the ability to tun-
nel in via selected protocols, including WiFi, provi-
sioning potentially significant levels of unfettered,
out-of-band access to the compromised LAN.

DDoS
This brings us to one of the most common vec-
tors of serious attack in use today – the Distrib-
uted Denial-of-Service [DDoS] which carries sig-
nificant payload for the unprotected, and even
protected environments. For example, the un-
protected deployment could become focus of a
DDoS, and to some extent it will be game over,
caused by the flooding of logical connections to

Figure 3. SecPoint Penetrator with WiFi Attachment Figure 4. EagleFleet Jammer

www.hakin9.org/en 53

Cyber Terror – Take-Down (The Attackers Toolkit)

overwhelm the system(s). However, protection
against DDoS comes at a price, and thus, even
on occasions where logical mitigations are de-
ployed, this is no guarantee that it will be suffi-
cient to protect against being taken out, as the
limitations of logical defence may be exceeded,
and again, availability of the site may suffer part,
or full outage. However, it’s not just about hav-
ing costly defences in place, as one well known
UK Government institution found during an Anon-
ymous attack on the 5th of November 2012. On
that occasion, granted there was no real defence
in place, other than a dedicated team of respond-
ers who were manually engaging. However, on
this occasion, with pure technical prowess, and
manual intervention they did counter the attack
and kept their site up, even when the attackers
were throwing everything they had at the deploy-
ment – well done them.

But such Denial-of-Service attacks are not just
about the wired elements – consider that Oil-and-
Gas deployment who have decided the element of
WiFi is not a security risk – but what about the ele-
ment of on-site communications, and the stability
of operations which are very much dependent of
cross-site-conversations relating to movement of
say staff, equipment, or even transportation.

It is in this space where we must consider the im-
plications of jamming air-bound communications in
the form of WiFi (802.11x), Cell Phones, and oth-
er such high dependency, essential services. It is
here where the aggressive deployment of multiple
devices such as the EagleFleet Jammer (Figure 4)
can have such a devastating impact on, and cross

Figure 5. PWNIE Express – Pwn Plug Elite

site communications. Employ one at a strategic
position relative to the target, and the attack can
flood the overall spatial local-footprint of the envi-
ronment with noise covering the spectrums of WiFi
and Cells Phones – (CDMA /GSM /DCS /PHS /
GPS /3G). However, with an attack using multiple
strategic devices the consequences of impact can
be extreme, causing not only a denial-of-service,
but also, with the obvious impact on the operations
of the business, no matter, based on either crimi-
nal intent, or the objectives of a group of Hacktiv-
ists to cause mayhem.

Conclusion
It may be that most readers will recognize one
or more of the profiles of adversity as introduced
above; or it may be they are familiar with all the
aforementioned observations relative to the use
of technology, and the identified shortfalls within
operational deployments supporting company as-
sets. However, when they are considered in the
Macro, one can soon start to appreciate the Modus
Operandi of the Criminal, State-Sponsored, Hack-
tivists, or Terrorist mindset when it comes to lever-
aging such opportunities of adversity. By looking
at the various areas of intertwined risk, one can
get a glimpse the miscreant joined-up-thinking of
the attacker who may seek to align the state of Ki-
netic Attack, in association with Logical vulnera-
bilities and exposure – and one can see how the
proposition of Cyber Warfare, and CyberConflict
have just stepped out from the pages of Science
Fiction, right into the limelight of real world expo-
sures. In fact one may conclude that, if technology
is deployed without robust 360 security thinking,
the proposition of Take-Down is a matter of not if,
but when!

PROF. JOHN WALKER FBCS CITP CISM
MFSoc ITPC MIoD

John is a Wolrd-Class Expert in the
arena of IT Security and Forensics. He
is a Visiting Professor of Science and
Technology at the School of Comput-
ing and Informatics at Nottingham
Trent University. John has delivered
over 90 Global Presentations, and has
originated over 100 Papers and Arti-
cles on Cyber-Security.

*

*Based on FireEye end-user data

http://www.fireeye.com/

https://www.threatintelligence.com/

	Cover
	Dear Readers,
	CONTENTS
	Setting Up Your Own Malware Analysis Lab
	Evidence Analysis: The Novice Approach
	Glimpse of Static Malware Analysis
	Hybrid Code Analysis versus State of the Art Android Backdoors
	Overview of Automated Advanced Malware Analysis
	Advanced Malware Detection using Memory Forensics
	Android.Bankun And Other Android Obfuscation Tactics: A New Malware Era
	Operation Mayhem a.k.a. Obama’s Attack
	Cyber Terror - Take-Down (The Attackers Toolkit)

	Previouse Page 2:
	Page 4: Off
	Page 50:
	Page 52:

	Go To Next Page 2:
	Page 4: Off
	Page 50:
	Page 52:

	Previouse Page 3:
	Page 5: Off
	Page 51:
	Page 53:

	Go To Next Page 3:
	Page 5: Off
	Page 51:
	Page 53:

	Previouse Page 20:
	Page 6: Off
	Page 8:
	Page 10:
	Page 12:

	Go To Next Page 20:
	Page 6: Off
	Page 8:
	Page 10:
	Page 12:

	Previouse Page 21:
	Page 7: Off
	Page 9:
	Page 11:
	Page 13:

	Go To Next Page 21:
	Page 7: Off
	Page 9:
	Page 11:

	uat:
	edu 5: Off

	Previouse Page 14:
	Page 14: Off
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:

	Go To Next Page 14:
	Page 14: Off
	Page 16:
	Page 18:
	Page 20:
	Page 22:
	Page 24:
	Page 26:
	Page 28:
	Page 30:
	Page 32:
	Page 34:
	Page 36:
	Page 38:
	Page 40:
	Page 42:
	Page 44:
	Page 46:
	Page 48:

	Previouse Page 15:
	Page 17: Off
	Page 19:
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 31:
	Page 33:
	Page 35:
	Page 39:
	Page 41:
	Page 43:
	Page 47:

	Go To Next Page 15:
	Page 17: Off
	Page 21:
	Page 23:
	Page 25:
	Page 27:
	Page 31:
	Page 33:
	Page 35:
	Page 39:
	Page 41:
	Page 43:
	Page 47:

	Previouse Page 22:

