
www.hakin9.orghakin9 1/200628

Focus

When it comes to the security of the
IT system, event logs play a crucial
role. Today, many applications, op-

erating systems, network devices and other
system components are capable of writing se-
curity related event messages to log files. The
BSD syslog protocol is an event logging stand-
ard supported by majority of OS and network
equipment vendors, which allows one to set
up a central log server for receiving and stor-
ing event messages from the whole IT system.
There also exist several flexible and powerful
syslog server implementations that are suitable
for use at the central log server, most notably
Syslog-ng. Since event logging is a widely ac-
cepted and well-standardized practice, there is
a high chance that after a security incident has
occurred in an IT system, there is (are) also
event log message(s) for it in some log file(s).

Because in most cases event messages
are appended to event logs in real-time as
they are emitted by system components,
event logs are an excellent source of infor-
mation for monitoring the system, including
security conditions that arise in it. Over the
past 10-15 years, a number of open-source
tools have been developed for monitoring

event logs in real-time, e.g., Swatch and Log-
surfer. However, majority of these tools can
accomplish simple tasks only, e.g., raise an
alarm immediately after a certain message
has been appended to a log file. On the other
hand, many essential event processing tasks
involve event correlation – a conceptual inter-
pretation procedure where new meaning is
assigned to a set of events that happen within

Simple Event Correlator
for real-time security log
monitoring
Risto Vaarandi

Difficulty

Over the past decade, event correlation has become a prominent
event processing technique in many domains (network and
security management, intrusion detection, etc.). However,
existing open-source log monitoring tools don't support it well. In
this paper, we will discuss how to employ SEC for monitoring and
correlating events from security logs.

What you will learn...
• what event correlation is and what are the com-

mon approaches for event correlation,
• what was the motivation for developing SEC

and what are its main features,
• how to employ SEC for real-time monitoring of

security event logs.

What you should know...
• it is assumed that the reader is familiar with the

regular expression language,
• the basic knowledge of Perl is helpful when

reading the section Integrating custom Perl
code with SEC rules.

Simple Event Correlator

hakin9 1/2006www.hakin9.org 29

a predefined time interval [Jakob-
son and Weissman, 1995]. A soft-
ware application that implements
event correlation is called event
correlator, and during the interpreta-
tion procedure, the correlator might
create new events and hide original
events from the end user.

As an example of the importance
of event correlation for security man-
agement, consider the processing
of login failure events. Although an
individual login failure event might be
a symptom of a password cracking
attempt, it could also indicate that
the user accidentally typed a wrong
password. Therefore, one can’t sim-
ply configure the log file monitoring
tool to send an immediate alert on
the occurrence of login failure log
message, since this could result in
a high number of false positives. In
order to reduce the number of false
alarms, one or both of the following
event correlation schemes can be
used:

• once N login failure for user X
events have been observed dur-
ing the last T seconds, generate
the excessive number of login
failures for user X event and send
it as an alarm to the security ad-
ministrator,

• if the login failure for user X event
appears and during the next T
seconds no successful login for
user X event will appear, gener-
ate the login failure not followed
by success for user X event and
send it as an alarm to the security
administrator.

Over the past decade, a number of
approaches have been proposed
for event correlation, including rule-
based [Froehlich et al., 2002], code-
book based [Yemini et al., 1996],
graph based [Gruschke 1998],
neural network based [Wietgrefe
et al., 1997; Wietgrefe 2002], and
probabilistic [Meira 1997; Steinder
and Sethi, 2002] methods. There
are also a number of event correlator
products available on the market, like
HP ECS, SMARTS, NetCool, Nerve-
Center, LOGEC, and RuleCore.

The codebook based method
(used by SMARTS) works as follows
– if a set of events e1, …, ek must be
interpreted as event A, then e1, …, ek
are stored to the codebook as a bit
vector pointing to A. If the correlator
needs to correlate a set of events,
it finds the most closely matching
vector(s) from the codebook and
reports the interpretation(s) corre-
sponding to the vector(s). With the
graph based method, the human an-
alyst identifies all dependencies be-
tween system components (services,
hosts, network devices, etc.) and
constructs a graph with each node
representing a system component
and each edge a dependency be-
tween two components. When a set
of events occurs, the graph is used
for finding the root cause of events
(e.g. HTTP server not responding
events were caused by the failure of
a single network link). With the neural
network based method, a neural net-
work is trained for the identification
of anomalies in the event stream, for
root cause detection, etc.

Rule-based approach is com-
mon for event correlation and has
been employed in several products
like HP ECS and RuleCore. In the
case of this approach, events are
correlated according to the rules
condition → action specified by the
human analyst. One of the main
advantages of the rule-based event
correlation is the fact that humans
find it usually natural to express their
knowledge in terms of rules. For
example, it is easy to describe tem-
poral relations between events with
rules, while it could be cumbersome
with other methods. Furthermore,
unlike some other event correlation
methods (e.g. neural network based
correlation), the rule-based event
correlation is clear and transparent
to the end user. As argued in [Rich
and Knight, 1991], if end users do
not understand why and how the
application reached its output, they
tend to ignore the results computed
by that application.

Although event correlation has
become a prominent event process-
ing technique in many domains
(including network and security
management, intrusion detection,
etc.), existing open-source log file
monitoring tools don’t support it well.
Despite the fact that event correlation
systems that are currently available
on the market have been highly suc-
cessful and are used worldwide by
many larger companies, they suffer
from a number of drawbacks. Firstly,
existing systems are often heavy-
weight solutions that have a compli-
cated design and user interface. This
means that their deployment and
maintenance is time-consuming, and
they require extensive user training.
Also, their complexity and resource
requirements often make them un-
suitable for employment in smaller
IT systems and for event correlation
on nodes with limited computing
resources. Secondly, since existing
systems are mostly commercial, they
are platform-dependent-customers
supplied with program binaries that
run on a limited number of operating
systems. Furthermore, several com-
mercial systems have been designed

Listing 1. SEC rule for correlating SNMP public access udp messages
from Snort IDS

Sample matching input line:

Mar 1 00:36:32 snorthost.mydomain [auth.alert] snort[17725]: [1:1411:10]

SNMP public access udp [Classification: Attempted Information Leak]

[Priority: 2]: {UDP} 192.168.115.34:54206 -> 192.168.52.179:161

type=SingleWithSuppress

ptype=RegExp

pattern=snort\[\d+\]: \[[\d:]+\] SNMP public access udp.*\{UDP\} \
([\d\.]+):\d+ -> ([\d\.]+):\d+

desc=SNMP public access from $1 to $2
action=pipe '%s' mail -s 'Snort alert' root

window=300

hakin9 1/2006 www.hakin9.org

Focus

30

for one particular network manage-
ment platform only (e.g., HP Open-
View). Some systems also suffer
from the fact that they have been de-
signed specifically for network fault
management, and their application
in other domains (including event log
monitoring) is cumbersome. Thirdly,
existing systems tend to be quite ex-
pensive, and therefore, many institu-
tions with a more limited budget are
unable to use them for daily security
and system management tasks.

In this paper, we will discuss
SEC (Simple Event Correlator) – an
open-source tool developed by the
author for lightweight and platform-
independent event correlation – and
we will analyze several real-life ex-
amples of how to employ SEC for
monitoring and correlating events
from security logs.

SEC basics
SEC is an open-source event cor-
relation tool that uses rule-based
approach for processing events.
This approach was chosen because
of its naturalness of knowledge rep-
resentation and transparency of the
event correlation process. The main
design objectives for SEC were plat-
form independence, lightweight build
and ease of configuration, applicabil-
ity for a wide variety of event correla-
tion tasks, and low consumption of
system resources.

In order to achieve independence
from operating system platforms,
the author decided to write SEC
in Perl. Since Perl runs on almost
every operating system flavor and
has become a standard part of many
OS distributions, Perl applications
are able to run on a wide range of
operating systems. In addition, well-
written Perl programs are fast and
memory-efficient.

SEC does not need much disk
space and is very easy to install,
since its current size is only about
250KB, and its configuration is
stored in regular text files (the size of
each file is typically a few kilobytes).
Also, since SEC is written entirely in
Perl and does not depend on other
software packages, it can be used

instantly after its source distribution
has been unpacked, without any
additional preparations (such as
compiling and linking the source or
installing other software).

SEC receives its input events
from file streams. Regular files,
named pipes, and standard input
are currently supported as input,
allowing one to use SEC as an
event log monitoring solution and to
integrate it with any application that
is able to write its output events to
a file stream. Applications that have
an event management API can also
be integrated through simple plu-
gins that employ API calls to read
the application’s event stream, and
copy it to the standard output or file
(a sample plugin for HP OpenView
Operations is a part of the SEC
package).

SEC can produce output events
by executing user-specified shell
commands, by writing messages
to files or named pipes, by calling
precompiled Perl subroutines, etc.
Note that output events can be sent
over the network to another instance
of SEC, allowing one to configure dis-
tributed event correlation schemes.
Also, although SEC does not have
a GUI for viewing and managing
output events, it is straightforward
to direct output events to a system
management application/framework
that has such a GUI (e.g. HP Open-
View Operations).

SEC configuration is stored in
text files which can be created and
modified with any text editor. Each
configuration file contains one or
more rules, and rulesets from dif-
ferent files are applied virtually in

Listing 2. SEC ruleset for correlating sshd authentication failure and
success messages on Solaris

Sample matching input lines:

Apr 3 14:20:19 myhost sshd[25888]: [ID 800047 auth.error] error:

PAM: Authentication failed for risto from myhost2

Apr 3 14:20:23 myhost sshd[25888]: [ID 800047 auth.info] Accepted

keyboard-interactive/pam for risto from 192.168.27.69 port 9729 ssh2

type=PairWithWindow

ptype=RegExp

pattern=sshd\[\d+\]: \[ID \d+ auth\.error\]\

 error: PAM: Authentication failed for (\S+) from \S+

desc=PAM authentication failed for $1

action=event PAM_AUTHENTICATION_FAILED_FOR_$1

ptype2=RegExp

pattern2=sshd\[\d+\]: \[ID \d+ auth\.info\]\

Accepted keyboard-interactive/pam for ($1) from \S+ port \d+ ssh2

desc2=PAM authentication successful for $1

action2=none

window=30

type=SingleWithThreshold

ptype=RegExp

pattern=PAM_AUTHENTICATION_FAILED_FOR_(\S+)

context=!USER_$1_ALREADY_COUNTED && !COUNTING_OFF

continue=TakeNext

desc=Ten authentication failures for distinct users have been observed

action=pipe '%s' mail -s 'PAM alert' root; create COUNTING_OFF 3600

window=600

thresh=10

type=Single

ptype=RegExp

pattern=PAM_AUTHENTICATION_FAILED_FOR_(\S+)

context=!USER_$1_ALREADY_COUNTED && !COUNTING_OFF

desc=Set up the "count once" context for user $1

action=create USER_$1_ALREADY_COUNTED 600

hakin9 1/2006 www.hakin9.org

Focus

32

parallel. SEC reads data from input
sources line by line, and each time
a new line has been read, it will be
matched against rules in configura-
tion file(s).

An important part of the SEC
rule is the event matching pattern.
SEC supports regular expressions,
substrings, Perl subroutines, and
truth values as patterns. Support for
regular expressions eases the con-
figuration of SEC, since many UNIX
tools (like grep, sed, find, etc.) rely
on regular expressions, and therefore
most security, system and network
administrators are already familiar
with the regular expression language.
Also, since majority of event log moni-
toring tools use regular expression
language for matching events, SEC
can be deployed as a log monitoring
replacement with much less effort.
Starting from the 2.3.0 version, events
can be passed to precompiled Perl
subroutines for recognition which
allows the user to configure custom
event matching schemes.

In addition to event matching
pattern, most rule definitions spec-
ify a list of actions, and optionally
a Boolean expression of contexts.
The SEC contexts are logical enti-
ties created during the event cor-
relation process, with each context
having a certain lifetime (either finite
or infinite). Contexts can be used
for activating and deactivating rules
dynamically at runtime, e.g., if a rule
definition has (X OR Y) specified for
its context expression and neither the
context X nor the context Y exist at
a given moment, the rule will not be
applied. Another important function
of the SEC contexts is to act as event
stores – events of interest can be as-
sociated with a context, and all the
collected events supplied for an ex-
ternal processing at a later time (this
idea was borrowed from Logsurfer).

Currently, SEC supports nine
rule types that implement a number
of common event correlation sce-
narios:

• Single – execute an action list
when matching event is ob-
served,

• SingleWithScript – like Single,
but also use an external script for
matching,

• SingleWithSuppress – like Sin-
gle, but ignore following matching
events for t seconds,

• Pair – execute an action list on
event A and ignore following
instances of A until event B ar-
rives; on the arrival of B execute
another action list,

• PairWithWindow – after observ-
ing event A, wait for t seconds
for event B to arrive; if B does not
arrive on time, execute an action
list, otherwise execute another
action list,

• SingleWithThreshold – count
matching input events during t
seconds and if a given threshold
is exceeded, execute an action
list,

• SingleWith2Thresholds – like
SingleWithThreshold, but with
additional second round of count-
ing with a falling threshold,

• Suppress – suppress matching
input events,

• Calendar – execute an action list
at specific times.

Most SEC rule definitions have
a parameter called event description
string that is employed for defining
the scope of event correlation (see
SEC rules and event correlation
operations for a detailed discussion).
When an event matches the rule,
SEC calculates the event correlation
key by concatenating the rule file
name, rule ID, and event descrip-
tion string. If an event correlation
operation with the same key exists,
event is correlated by that operation.
If there is no such operation and the
rule specifies a correlation of events
over time, SEC starts a new opera-
tion with the calculated key. It should
be noted that there is no one-to-one
correspondence between rules and
event correlation operations – SEC
could start several operations for one
rule, and rules of type Single, Single-
WithScript, Suppress, and Calendar
will never trigger operations, be-
cause they don’t define event cor-
relation over a time window.

SEC actions were not only de-
signed for generating output events,
but also for making rules to interact, for
managing contexts and storing events,
for connecting external event analysis
modules to SEC, for executing custom
Perl code without forking a separate
process, etc. By combining several
rules with appropriate action lists and
context expressions, more complex
event correlation schemes can be de-
fined. The following section provides
detailed examples and discussion
on building SEC rulesets for security
event log monitoring.

Security log
monitoring with SEC
– ruleset examples
and discussion
In this section, we will discuss sev-
eral ruleset examples and event
processing capabilities of SEC. The
example rulesets have been written
for monitoring real-life event logs
– the Snort IDS event log, the Solaris
/var/adm/messages system log, and
the Apache web server error log. The
rulesets have been tested with SEC
version 2.3.3.

For experimenting with the rule-
sets presented in this section, one
can download SEC from its home
page. For installing SEC from the
source package, unpack the distribu-
tion (e.g., tar –xzvf sec-2.3.3.tar.gz)
and copy the sec.pl file from the dis-
tribution to the appropriate directory
(e.g., cp sec-2.3.3/sec.pl /usr/local/
bin). SEC home page also contains
links to binary packages of SEC for
several OS platforms.

In order to start SEC in interac-
tive mode for monitoring the /var/
log/messages log file with rules from
my.conf, use the following command
line:

sec.pl –conf=my.conf –input=/var/log/

messages

In order to configure SEC to monitor
its standard input (useful for testing
purposes), use the following com-
mand line:

sec.pl –conf=my.conf –input=–

Simple Event Correlator

hakin9 1/2006www.hakin9.org 33

Note that one can specify several
–input and –conf options in the com-
mand line. Other commonly used
options include –log (sets the log file
for SEC), –syslog (configures SEC
to log through syslog), –debug (sets
the logging level for SEC), –pid (sets
the process ID file for SEC), –detach
(forces SEC to disassociate itself
from the controlling terminal and to
become a daemon), and –testonly
(tests the validity of rules without
starting SEC).

SEC rules and event
correlation operations
Suppose we have a rule file called
my.conf containing one rule pre-
sented in Listing 1.

The SingleWithSuppress rule
from Listing 1 has been designed
for matching SNMP public access

udp messages from the Snort IDS
log. Each time the Snort daemon
observes an SNMP query packet
with the public community field in
the network, it logs such a mes-
sage – however, since a number of
network management tools poll the
same host repeatedly during a short
time interval, the message could also
be logged repeatedly for the same
source and destination IP address-
es. The rule implements an event
correlation scenario called com-
pression – repeated occurrences of
identical events are reduced into a
single event. The ptype parameter of
the rule definition specifies that the
event matching pattern is a regular
expression, and the pattern param-
eter specifies the regular expression.
The desc parameter defines the
event description string, the action

parameter the action list of sending
an e-mail alert to the local root user,
and the window parameter the corre-
lation window of 300 seconds.

When the regular expression
matches an input line, the special
variables $1 and $2 will be set to the
source and destination IP address
fields of the input line, since the
regular expression contains bracket-
ing constructs for these fields. SEC
will then calculate the event correla-
tion key by concatenating the rule file
name, rule ID and event description
string – e.g., if $1 is 192.168.115.34
and $2 is 192.168.52.179, then the re-
sulting key will be my.conf | 0 | SNMP
public access from 192.168.115.34

to 192.168.52.179 (rule IDs start from
zero and the bar symbol is used as
a separator). If the operation with the
key exists, SEC will hand over the
input event to the operation. If the
operation with the key does not exist,
SEC will start a new operation with
the lifetime of 300 seconds. The op-
eration immediately sends an e-mail
alert to the local root user with the
pipe action – the event description
string denoted by %s will be piped
to the standard input of the mail –s
'Snort alert' root command – and
after that, the operation will ignore
the following events received from
SEC for correlation. In other words,
the rule will reduce repeated ‘SNMP
public access udp’ messages for
the same source and destination IP
address into a single message (the
first one).

The inclusion of the rule file name
and rule ID in the event correlation
key guarantees that event correla-
tion operations triggered by different
rules will never clash. Also, by choos-
ing appropriate value for the desc
parameter, the end user can change
the scope of event correlation. E.g.,
if the value for the desc parameter is
SNMP public access from $1, SEC will
reduce all messages with the same
source IP address field into a single
message, disregarding destination
IP addresses completely.

As a final note, one should be
careful when using $1, $2, … special
variables as a part of a command

Listing 3. SEC ruleset for consolidating priority 1 alert messages from
Snort IDS

Matching input line:

Apr 4 10:10:55 snorthost.mydomain [auth.alert] snort[18800]:

[1:2528:14] SMTP PCT Client_Hello overflow attempt

[Classification: Attempted Administrator Privilege Gain]

[Priority: 1]: {TCP} 192.168.5.43:28813 -> 192.168.250.44:25

type=Single

ptype=RegExp

pattern=snort\[\d+\]: \[[\d:]+\].*\[Priority: 1\]: \S+ \

([\d\.]+):?\d* -> [\d\.]+:?\d*

context=!ATTACK_FROM_$1

continue=TakeNext

desc=Priority 1 attack started from $1

action=create ATTACK_FROM_$1; \

 pipe '%s' mail -s 'Snort: priority 1 attack from $1 (alert)' root

type=Single

ptype=RegExp

pattern=snort\[\d+\]: \[[\d:]+\].*\[Priority: 1\]: \S+

([\d\.]+):?\d* -> [\d\.]+:?\d*

context=ATTACK_FROM_$1

desc=Priority 1 incident from $1

action=add ATTACK_FROM_$1 $0; \

 set ATTACK_FROM_$1 300 (report ATTACK_FROM_$1 \

 mail -s 'Snort: priority 1 attack from $1 (report)' root)

Listing 4. SEC rule for passing lines that come from /var/log/messages
only

type=Suppress

ptype=TValue

pattern=TRUE

context=!_FILE_EVENT_/var/log/messages

desc=Pass only those lines that come from /var/log/messages

hakin9 1/2006 www.hakin9.org

Focus

34

line definition, since the content of
the special variables will be inter-
preted by the shell like the rest of the
command line. E.g., if the pattern pa-
rameter is sshd\[\d+\]: (.+) and the
action parameter is shellcmd echo

$1 >> myfile, then a malicious user
can fork an arbitrary command from
SEC by logging a fake line sshd[0]:
`mycommand` with the logger utility. In
order to avoid such situations, SEC
patterns that set special variables for
command lines should be written in
a way that shell metacharacters and
other unexpected data would not be
assigned to the variables.

Building SEC rulesets from
individual rules
The ruleset presented in Listing 2
for processing authentication failure
and success messages is a more
complex example that illustrates how
rules can be set to interact through
the use of synthetic events and con-
texts. The purpose of the ruleset is to
weed out accidental authentication
failures that are shortly followed by
success, and then count non-ac-
cidental failures, in order to detect
attempts to hack a larger number
of different accounts in a short time
period and to distinguish those at-
tempts from an activity against
a single (or a few) account(s).

The first rule of type PairWith-
Window has been designed for
matching sshd authentication failure
and success messages from the So-
laris /var/adm/messages system log.
After the regular expression given
with the pattern parameter matches
an authentication failure message for
a user, the $1 variable will be set to
the user name. SEC then starts an
event correlation operation which
will wait for the authentication suc-
cess message for the same user
name during the next 30 seconds.
If the authentication success mes-
sage arrives on time, no action will
be taken (because the action2 pa-
rameter is set to none). It should be
noted that with Pair* rules one can
use $1, $2, … special variables in
the pattern2 parameter, i.e., the pat-
tern for the second half of the Pair*

rule can have a dynamic nature. If
the authentication success message
does not appear, the operation will
generate a synthetic event called
PAM _ AUTHENTICATION _ FAILED _ FOR _

<username> with the event action.
SEC synthetic events are treated
like regular input events read from
log files – they are appended to the
input queue and matched against all
rules.

The second rule of type Sin-
gleWithThreshold starts an event
correlation operation that matches
and counts PAM _ AUTHENTICATION _

FAILED _ FOR _ <username> messages.
If 10 messages have been observed
in the window of 600 seconds, the
operation sends an e-mail alert to
the local root user, and also, creates
the context COUNTING _ OFF with the
lifetime of 1 hour, in order to avoid
sending alerts to root once per each
10 minute period if the account scan
is long-lasting. The expression given
with the context parameter of the rule
definition reads: the context USER_
<username>_ALREADY_COUNT-
ED does not exist and the context
COUNTING_OFF does not exist (in
SEC context expressions, ! means
logical negation, && logical AND,
and || logical OR). Therefore, in the
presence of the COUNTING _ OFF con-
text the expression evaluates false,
and the rule will not match any event.
After the PAM _ AUTHENTICATION _

FAILED _ FOR _ <username> event has
been counted, it will be passed to
the third rule, because the continue
parameter of the second rule has the
value TakeNext. The third rule cre-
ates the context USER _ <username> _

ALREADY _ COUNTED, and since the
lifetime of the context and the count-
ing window are equal (600 seconds),
this ensures that each distinct user
name increases the counter value
only once during the counting (after
the context has been created for
a user name, the context expression
of the second rule for the user name
will evaluate false). In other words,
the interaction between the second
and third rule means that e-mail
alerts will be sent only for incidents
involving ten distinct user accounts.

Using SEC contexts for event
consolidation
SEC contexts cannot only be used
for rule activation and deactivation,
but they can also be employed as
event stores. SEC has the add action
for appending an event to the event
store of the context, the report action
for piping all events from the store
to the standard input of an external
command, plus a number of actions
for other context operations (e.g.,
moving data between contexts and
SEC special variables). In this sec-
tion, we will look at a simple scenario
how to employ contexts for Snort
IDS alert message aggregation and
reporting.

Alert messages that Snort dae-
mon logs have a priority from 1 to
3 (with 1 being the highest and 3
the lowest), and each message has
a source and destination IP address
field that reflect the source and des-
tination of the suspicious network
traffic. It is quite common that after
Snort has observed an event for
a certain source IP, the event will be
shortly followed by other events for
the same IP address (this is particu-
larly true for attacks carried out with
a toolkit that attempts to find as many
vulnerabilities as possible in the des-
tination network). Therefore, it is
often not wise to generate an alert
on every event, but to consolidate
events into fewer reports.

The ruleset presented in Listing 3
was designed for processing Snort
priority 1 alert messages with the
same source IP address field (in the
rest of this subsection, the network
activity triggering such messages
is called an attack). When the first
priority 1 message is observed for
a certain source IP address, SEC will
send an e-mail alert about the start
of an attack. If no priority 1 messag-
es have been seen during 5 minutes
for that source IP, SEC considers it to
be the end of the attack, and sends
an e-mail report containing all log
messages relevant to the attack.

For storing log messages for
a certain IP address <ipaddress>, the
ruleset creates the context ATTACK _

FROM _ <ipaddress>. The first rule

Simple Event Correlator

hakin9 1/2006www.hakin9.org 35

detects the first event of an attack
– the rule matches a priority 1 event
for the source IP address only if the
context for that IP address has not
been created yet. After matching the
event, the rule creates the context
and sends an e-mail alert to the local
root user that an attack has begun.
The second rule matches a priority
1 log message and appends it to the
event store of the relevant context
with the add action (the $0 special
variable holds the entire matching
log message line). After that, the
rule uses the set action for extend-
ing the context lifetime for the next
300 seconds, and for setting the ac-
tion-on-delete for the context (report
ATTACK _ FROM _ $1 mail -s 'Snort:

priority 1 attack from $1 (report)'

root). The action-on-delete will be
executed immediately before the
context’s lifetime ends and the con-
text is deleted, i.e., when no priority 1
events for a given IP have been ob-
served during the last 300 seconds.
The action-on-delete uses the report
action for piping the event store of

the context to the mail -s 'Snort:

priority 1 attack from $1 (report)'

root command which sends col-
lected events to the local root user.
In that way, attacks that comprise
many events will be reported with
a single e-mail, and on the other
hand, even if the attack is long-last-
ing, the end user will still get a timely
e-mail alert about its start.

Monitoring multiple files
Apart from advanced event correla-
tion and consolidation capabilities,
SEC has another important advan-
tage over several other well-known
log monitoring solutions – it is the
ability to monitor several log files
simultaneously which allows SEC
to cross-correlate events from dif-
ferent sources. Also, when there are
a larger number of log files on the
system, they can be monitored by
a single SEC process that not only
saves space in the process table, but
also eases the maintenance of SEC
itself (e.g., SEC will have just one
process ID file and log file). Config-

uring SEC to monitor more than one
input source is easy – one just has
to give more than one –input option
in the command line or specify a file
name containing wildcard(s) for the
–input option (or both).

However, when there are many
rules, having more than one input
source could introduce perform-
ance and transparency problems. If
there are many rules that have been
designed for one input source only,
the matching of lines from other input
sources with such rules could involve
a considerable runtime overhead.
Also, if input lines coincidentally
match the rule they were not sup-
posed to match, unexpected side-
effects might make the behavior of
the ruleset incomprehensible for the
end user.

In order to address these prob-
lems, SEC has the –intcontexts
command line option that tells SEC to
create an internal context after a line
has been read from an input source,
and to delete the context after the line
has been matched against all rules.
E.g., if the name of the input source
is /var/log/messages, the name of
the corresponding internal context
is _ FILE _ EVENT _ /var/log/messages.
Since the names of internal contexts
can be used in context expressions
of rule definitions, the user can write
rules that match events from certain
input sources only. If the user wishes
to have custom names for internal
contexts or a single name for mul-
tiple input sources, the names can
be specified with the –input option.
E.g., –input=/var/log/syslog=SYSLOG

–input=/var/adm/messages=SYSLOG
options instruct SEC to employ the
internal context SYSLOG for both /var/
log/syslog and /var/adm/messages.

As an example of the use of inter-
nal contexts, consider the Suppress
rule from Listing 4 in the beginning of
the rule file.

The SEC Suppress rule sup-
presses matching events – it acts
as a filter that does not pass the
events to later rules in the rule file.
In the rule definition from Listing 4,
the ptype and pattern parameters
specify that the pattern is a truth

Listing 5. SEC ruleset for monitoring the local Apache web server log
with a dynamic list of regular expressions and for forwarding matching
lines to the remote syslog server

type=Single

ptype=SubStr

pattern=SEC_STARTUP

context=SEC_INTERNAL_EVENT

continue=TakeNext

desc=Load the Sys::Syslog module

action=assign %a 0; eval %a (require Sys::Syslog); \

eval %a (exit(1) unless %a)

type=Single

ptype=RegExp

pattern=(SEC_STARTUP|SEC_RESTART)

context=SEC_INTERNAL_EVENT

desc=Compile the logging routine and initialize the list of patterns

action=eval %syslog (sub { Sys::Syslog::syslog('err', $_[0]); }); \

 eval %a (@regexp = ('192\.168\.1\.1', 'File does not exist:'); \

 Sys::Syslog::openlog('SEC', 'cons,pid', 'daemon'))

Matching input line:

[Fri Mar 24 09:19:50 2006] [error] [client 192.168.1.1]

File does not exist: /var/apache/htdocs/robots.txt

type=Single

ptype=PerlFunc

pattern=sub { foreach my $pat (@regexp) {\

 if ($_[0] =~ /$pat/) { return 1; } } return 0; }
desc=Forward the suspicious message line to remote syslog server

action=call %o %syslog $0

hakin9 1/2006 www.hakin9.org

Focus

36

value TRUE that matches any line.
However, the context expression
! _ FILE _ EVENT _ /var/log/messages
evaluates true only for lines not com-
ing from /var/log/messages. There-
fore, the rule can be used in the
beginning of the rule file designed for
monitoring /var/log/messages, since
it only passes relevant lines.

If the –intcontexts command line
option has been given, SEC employs
the internal context _ INTERNAL _

EVENT for synthetic events gener-
ated with the event action. However,
sometimes the end user would like
to have another internal context for
a synthetic event. As a workaround,
one can create a named pipe with
the mkfifo tool, let SEC to moni-
tor the named pipe with the –input
option, and use the write action
instead of event in rule definitions.
E.g., if the named pipe /var/log/
pipe has been created with mkfifo
/var/log/pipe and SEC has been
started with the command line option
–input=/var/log/pipe=SYSLOG, then
using action=write /var/log/pipe

MY _ SYNTHETIC _ EVENT (it tells SEC to
write the line MY _ SYNTHETIC _ EVENT
to /var/log/pipe) makes the MY _

SYNTHETIC _ EVENT event appear with
the SYSLOG internal context set.

Integrating custom Perl code
with SEC rules
Although the features of SEC we
have discussed so far allow one to
write rulesets for a wide variety of
event correlation scenarios, there
are still cases that can’t be covered
by combining these features. E.g.,
RegExp patterns can’t be used for
specifying a dynamic list of regular
expressions. Also, the pipe action
from previous ruleset examples in-
volves creating a separate process
for an external command, but when
pipe is called hundreds of times per
second, considerable amount of
CPU time would be spent for forking
new processes. Although SEC sup-
ports special variables that the user
can employ for storing values, these
variables are similar to Perl scalars
and more complex data structures
(like Perl lists and hashes) can’t be

set up with them. In order to address
these problems, SEC supports Per-
lFunc patterns (user-defined Perl
functions for matching input lines)
and Perl context expressions, but
also eval and call actions for compil-
ing and running custom Perl code
from SEC.

The ruleset from Listing 5 illus-
trates how to employ eval and call
actions and PerlFunc patterns, but
also how to use Perl modules with
SEC and how to set up and access
Perl data structures with custom
code. The ruleset was designed for
monitoring the local Apache web
server error log with a dynamic
list of regular expressions, and for
forwarding matching lines to the
remote syslog server where they
could be correlated by another SEC
instance. In order to save CPU time,
the ruleset does not call the logger
utility for forwarding lines as syslog
messages, but rather relies on the
openlog() and syslog() functions of
the Perl Sys::Syslog module.

In order to take advantage of the
Sys::Syslog module, it must be load-
ed at SEC startup. If SEC has been
started with the –intevents command
line option, it generates a synthetic
event called SEC _ STARTUP as its very
first event at startup, sets the internal
context SEC _ INTERNAL _ EVENT for the
event, and processes it before any
other input event. This allows the
user to write rules for executing vari-
ous startup procedures. The first rule
is such a rule which attempts to load
the Sys::Syslog module with the help
of assign and eval actions. It first sets
the special variable %a to 0 with the
assign action, and then evaluates
the Perl code require Sys::Syslog
with the eval action (internally, the
eval action calls the Perl eval()
function). If eval succeeds and the
module is loaded, 1 will be assigned
to %a (since this value is returned by
the successful require Sys::Syslog),
if eval fails, %a will retain its original
value (0). Then the eval action is
used again for checking the value
of %a, and if it is 0 (i.e., the module
couldn’t be loaded), exit(1) is called
from the Perl code executed by eval.

Since the execution takes place
within the SEC process, exit(1) will
terminate SEC with the exit code 1.

The second rule has been
designed for matching both SEC _

STARTUP and SEC _ RESTART internal
events (when SEC has been started
with the –intevents option and
it receives the SIGHUP signal –
a request for resetting internal state
and reloading configuration –, then
SEC generates a synthetic event
SEC _ RESTART with the internal con-
text SEC _ INTERNAL _ EVENT). After
observing a matching event, the rule
first uses the eval action for evaluat-
ing the Perl code sub { Sys::Syslog:
:syslog('err', $ _ [0]); }. Since the
code is a function definition, eval will
compile the function and return the
pointer to the compiled code that will
be saved to the %syslog special vari-
able. The function itself expects one
input parameter and employs the
syslog() function from the Sys::Sys-
log module for sending the input pa-
rameter as an err-level message to
the syslog server. The rule will then
initialize the @regexp list which is a
Perl list for holding regular expres-
sions. Since @regexp is a global list,
it can be accessed and modified with
subsequent calls to eval. (In order to
avoid clashes with variable names
in the SEC code, a separate name-
space called main::SEC is defined in
the SEC code, and the eval action al-
ways evaluates custom Perl code in
that namespace.) As a final step, the
rule will open the syslog connection
with the openlog() function, setting
the program name to SEC, the logging
facility to daemon, and logging options
to cons,pid (log to console if regular
logging fails and include process ID
with each message).

The third rule was designed for
matching input lines with regular ex-
pressions from the @regexp list that
was initialized by the second rule
(and can be changed by other rules
at runtime). The rule employs the
PerlFunc pattern for matching – the
value for the pattern parameter must
be a valid Perl function definition that
is compiled when rules are loaded.
In the case of the third rule, the func-

hakin9 1/2006 www.hakin9.org

Focus

38

tion takes the input line (passed to
the function as the input parameter
$_[0]) and scans the @regexp list
for a matching regular expression. If
such a regular expression is found,
the function returns 1 which is an
indication that the PerlFunc pattern
matches the input line, otherwise it
returns 0 which indicates no match.
In the former case, the rule will call
a precompiled Perl function for sys-
log logging with the call action. The
%o special variable is used for stor-
ing the return value from the function
call, the %syslog special variable
holds a pointer to the function, and
$0 (that holds the entire matching
input line) is the input parameter for
the function.

In that way, the ruleset efficiently
implements the dynamic regular ex-
pression matching for a web server
error log which can’t be expressed
in terms of RegExp patterns, and
the forwarding of matching lines to
remote syslog server without forking
a separate process for an external
command. Since all Perl code frag-
ments employed by the third rule are
compiled at SEC startup, executing
them at runtime is as efficient as ex-
ecuting the SEC code itself.

SEC performance and
application experience
Although SEC is written in an in-
terpreted language (and is thus not
as fast and memory-efficient as
a compiled C program), it can handle
hundreds of events per second and
still have relatively modest resource
requirements. In a recently con-
ducted experiment that lasted 49.8
days, two instances of SEC were set
to run on a Linux syslog server with
two 3 GHz Intel P4 Xeon processors.
The first instance was monitoring
20 log files simultaneously with
a configuration of 243 rules from 22
rule files, while the second instance
was reading input from a named pipe
with a configuration of 67 rules from
5 rule files. The first instance proc-
essed 107,059,511 input lines (24.9
lines per second as an average), and
consumed 3.0% of CPU time and 8.1
MB of memory. The second instance

References
• Jim Brown. 2003. Working with SEC – the Simple Event Correlator. http://sixshoot

er.v6.thrupoint.net/SEC-examples/article.html,
• P. Froehlich, W. Nejdl, M. Schroeder, C. V. Damasio, L. M. Pereira. 2002. Using

Extended Logic Programming for Alarm-Correlation in Cellular Phone Networks.
Applied Intelligence 17(2), pp. 187-202,

• Boris Gruschke. 1998. Integrated Event Management: Event Correlation using
Dependency Graphs. Proceedings of the 9th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management, pp. 130-141,

• G. Jakobson and M. Weissman. 1995. Real-time telecommunication network
management: Extending event correlation with temporal constraints. Proceedings
of the 4th International Symposium on Integrated Network Management, pp. 290-
301,

• Dilmar Malheiros Meira. 1997. A Model For Alarm Correlation in Telecommunica-
tion Networks. PhD thesis, Federal University of Minas Gerais, Brazil,

• Elaine Rich and Kevin Knight. 1991. Artificial Intelligence, 2nd edition, McGraw-
Hill, ISBN 0-07-052263-4,

• John P. Rouillard. 2004. Real-time Logfile Analysis Using the Simple Event Cor-
relator (SEC). Proceedings of USENIX 18th System Administration Conference,
pp. 133-149,

• M. Steinder and A. S. Sethi. 2002. End-to-end Service Failure Diagnosis Using
Belief Networks. Proceedings of the 8th IEEE/IFIP Network Operations and Man-
agement Symposium, pp. 375-390,

• James Turnbull. 2005. Hardening Linux, Apress, ISBN: 1-59059-444-4.
• Risto Vaarandi. 2005. Tools and Techniques for Event Log Analysis. PhD thesis,

Tallinn University of Technology, Estonia,
• Hermann Wietgrefe. 2002. Investigation and Practical Assessment of Alarm Cor-

relation Methods for the Use in GSM Access Networks. Proceedings of the 8th
IEEE/IFIP Network Operations and Management Symposium, pp. 391-404,

• Hermann Wietgrefe, Klaus-Dieter Tuchs, Klaus Jobmann, Guido Carls, Peter
Froehlich, Wolfgang Nejdl, Sebastian Steinfeld. 1997. Using Neural Networks for
Alarm Correlation in Cellular Phone Networks. Proceedings of the International
Workshop on Applications of Neural Networks in Telecommunications, pp. 248-
255,

• S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. 1996. High speed and
robust event correlation. IEEE Communications Magazine 34(5), pp. 82-90.

On the Net
• http://www.bmc.com/ – BMC Patrol,
• http://www.cisco.com/ – CiscoWorks,
• http://www.managementsoftware.hp.com/products/ecs/index.html – HP ECS,
• http://www.openview.hp.com/ – HP OpenView,
• http://www.netfilter.org/ – Iptables,
• http://www.logec.com/ – LOGEC,
• http://www.cert.dfn.de/eng/logsurf/ – Logsurfer,
• http://www.mysql.com/ – MySQL,
• http://www.nagios.org/ – Nagios,
• http://www.openservice.com/products/nervecenter.jsp – NerveCenter,
• http://www.micromuse.com/ – NetCool,
• http://www.prelude-ids.org/ – Prelude IDS,
• http://www.rulecore.com/ – RuleCore,
• http://simple-evcorr.sourceforge.net/ – Simple Event Correlator,
• http://www.smarts.com/ – SMARTS,
• http://snmptt.sourceforge.net/ – SNMPTT,
• http://www.snort.org/ – Snort IDS,
• http://swatch.sourceforge.net/ – Swatch,
• http://www.balabit.com/products/syslog_ng/ – Syslog-ng.

processed 364,534,428 input lines
(84.7 lines per second as an aver-
age), and consumed 8.8% of CPU
time and 6.1 MB of memory.

SEC event processing speed
depends heavily on how the rules
are arranged, and there are several
ways for improving the perform-
ance. Since input lines are com-
pared with rules in the order they
are defined in the rule file, moving
most frequently matching rules to
the beginning of the file saves CPU
time. Also, if many input lines don’t
match any rules, having a Suppress
rule for such lines in the beginning
of the rule file saves CPU time as
well. If SEC has been configured to
monitor several input sources, one
can employ internal contexts (as de-
scribed in Monitoring multiple files)
for increasing SEC event process-
ing speed. Other suggestions for
improving SEC performance include
writing efficient regular expressions
and replacing RegExp patterns with
SubStr patterns where possible (the
latter are faster).

Over the past few years, SEC
has been adopted by many institu-
tions with various sizes and has
been employed in a number of do-
mains, including event log monitor-
ing, firewall management, intrusion
detection, and network management
(please see [Vaarandi 2005] for
some detailed case studies). SEC
has been successfully used with
Snort IDS, Prelude IDS, the iptables
firewall, HP OpenView (both NNM
and Operations), Nagios, CiscoW-
orks, BMC patrol, SNMPTT, etc.
SEC has been employed on a wide

variety of OS platforms, including
Linux, FreeBSD, OpenBSD, Solaris,
HP-UX, AIX, Tru64 Unix, Mac OS X,
and Windows 2000.

Conclusion
This paper has discussed SEC
(Simple Event Correlator) – an open-
source tool for lightweight and plat-
form-independent event correlation
– and has presented several real-
life examples how to employ SEC
for real-time monitoring of security
event logs. However, due to space
limitations, many features of SEC
were not mentioned in this paper.
For a thorough description, the
interested reader is referred to the
SEC online documentation. There
are also several other sources of
information available about SEC.
SEC rule repository at BleedingSnort
(http://www.bleedingsnort.com/sec/)
contains a number of example rule-
sets for various scenarios (e.g. event
correlation for Snort and manage-
ment of the iptables firewall). Work-
ing with SEC – the Simple Event
Correlator [Brown 2003] is an online
tutorial that not only provides a good
introduction to SEC but also covers
a number of advanced issues like in-
tegrating SEC with MySQL. Chapter
5 of Hardening Linux [Turnbull 2005]
discusses how to employ SEC for
monitoring syslog log files. Also,
recently a paper with a useful rule-
set library has been published that
describes the application of SEC at
the University of Massachusetts at
Boston [Rouillard 2004]. l

About the author
Risto Vaarandi received his PhD in Computer Engineering from the Tallinn University
of Technology, Estonia, in June 2005. For the past eight years, he has been working
in SEB Eesti Ühispank as an IT development engineer, and currently he is also a part-
time researcher at the Institute of Computer Science, University of Tartu, Estonia. You
can contact Risto through his home page at http://kodu.neti.ee/~risto.

Acknowledgements
This work is supported by SEB Eesti Ühispank, and also, the work has received finan-
cial support from Estonian national grant no. SF0182712s06.

www.hakin9.org

