
www.hakin9.orghakin9 1/200658

In practice

Cryptography not only makes your In-
ternet communication more secure by
giving you the opportunity to encrypt

and/or sign messages, it also guarantees your
own privacy. You may for example be aware of
the fact that the European Union now regulated
the retention of connection data by Internet Serv-
ice Providers and Mobile Phone Companies for
at least 6 months. Together with credit and bonus
card data and all the information that lies around,
this allows the generation of complete personal
profiles not only from the primary data but also
from data derived from data mining algorithms.
They may already have gathered quite a lot of in-
formation about you and your habits but you now
could start doing something about it.

Symmetric
and asymmetric ciphers
The term cryptography originates from the
Greek words kryptós for hidden and gráphein
for writing. In general, we distinguish symmetric
and asymmetric cryptographic ciphers. The
terms symmetric or asymmetric relate to the
structure of the key. To encrypt data, or a mes-
sage respectively, you need the information
of how to encrypt or decrypt data (the cipher)

and a key, which is the secret parameter in the
cipher. The knowledge of that key enables you
to encrypt or decrypt information. The key can
be used for a a longer period of time or you
may use one key for every single message you
send.

Symmetric cryptographic keys are charac-
terized by the fact that the keys for encrypting
and decrypting data are identical (or the key
for encrypting and decrypting messages can
be calculated from each other). In other words,
sender and receiver of the message to be ex-
changed have to have the same key. And they
have to exchange that key prior to sending mes-
sages around. This has always been the major

Cryptography for Mail and
Data

Lars Packschies

Difficulty

Would you put confidential information on a postcard and send it
to your friends, colleagues, or business partners? Well, no. But
why would you put confidential information in an e-mail and send
it around the world?

What you will learn...
• how you set up and use your keys Gnu PG,
• how you can encrypt data on the filesystem

level.

What you should know...
• symmetric and asymmetric cryptography basics,
• algorithm basics.

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 59

drawback of symmetric methods: The
so-called key exchange problem.

One of the first ciphers is called
the caesar cipher. Julius Caesar
used to encrypt messages by ex-
changing each letter of the original
message by its third successor in the
alphabet. A becomes D, B becomes
E and Z becomes C. The algorithm is
to exchange every clear text letter by
the letter of a shifted alphabet, and
the key is 3 ; Shift the alphabet by 3.

The methods of substituting and
transposing letters to generate more
sophisticated ciphers have of course
evolved over the years, some of
which have involved the use of me-
chanical devices. One very promi-
nent example is the ENIGMA used
by the german troops in the second
world war (there is a very good ar-
ticle on that machine and its cryp-
toanalysis in the Wikipedia). There
were more than 200,000 of these
machines in use, and every opera-
tor had to be equipped with a list of
keys called codebooks every month.
By the way: it was successfully cryp-
toanalysed (cracked, so to say) by
a group of researchers around the
Polish mathematician Marian Rajew-
ski and Alan Turing in Bletchley Park,
Milton Keynes, England, already in
the mid 1930s. The public was in-
formed about that in the 1970s (they
called it the ultra secret).

Used with the help of modern
computers, there is quite a number of
symmetric ciphers available that are
considered as secure, for example
AES (Advanced Encryption Stand-
ard or Rijndael by Joan Daemen and
Vincent Rijmen), 3DES (triple-DES,
Data Encryption Standard, based
on works by Horst Feistel) or IDEA
(International Data Encryption Algo-
rithm), only to name a few. All these
modern symmetric ciphers have been
developed roughly after the 1950s. Ci-
phers developed before that are more
generally referred to as classical.

But it took until the 1970s be-
fore cryptographers solved that key
exchange problem (by Whitfield
Diffie, Martin Hellman and Ralph
Merkle) and by developing the
idea of asymmetric keys by Ron
Rivest, Adi Shamir and Leonard
Adleman in 1977, based on that key
exchange idea.

Asymmetric cryptographic meth-
ods or algorithms use different keys
for encrypting and decrypting data
or messages. Both keys together are
called the Key Pair (often referred sim-
ply to as key or asymmetric key). One
of the two parts is always kept secret
after the generation of the key pair.
This is called the private key, while
the corresponding counterpart is
made available to the public, therefore
called public key. One key is used to

decrypt the message, and due to the
underlying mathematical construct,
only the other key can be used to
reconstruct the original message. It is
practically impossible to calculate the
secret key from the public key (an vice
versa). Moreover, it is also impossible
to try to decrypt a message by trying
every possible key. The latter attempt
is called brute force attack. It would,
by common knowledge, take a couple
of billions of years.

Secret and Public Keys
The concept of secret and public
keys generally allows two modes of
operation: (1) Encryption/Decryption
and (2) the generation and verifica-
tion of electronic signatures.

Encryption/Decryption
Imagine two people, Alice and Bob.
Alice generates a key pair (she does
this only once, it can be reused) and
makes the public key available to the
public, and Bob can pick up that key.
This public key can then be used by
Bob to encrypt a message destined
to Alice. However, only Alice's pri-
vate key is able to decrypt Bobs mes-
sage. Only the owner of that private
key, Alice, can read it. Every person
who has access to Alice's public key
can write a message to her only she
can read. When Alice intends to write
a secret message to Bob, she could
use a public key generated by Bob.

Signature
The second mode of operation uses
the same keys of Alice in reverse or-
der. Imagine Alice writing a message
and encrypting it with her private key.
Then, everybody with access to the
matching public key can read the
message after decrypting it. In that
case, the reader can be sure that
the message has been encrypted by
Alice's private key, and, therefore, Al-
ice must have written that message.
Only Alice, by definition, is the only
person to have that private key. We
call this electronic signature.

Generally, there are two ma-
jor asymmetric methods available
today that you will have to do with
and that are considered as secure:

Figure 1. Enigmail adds the OpenPGP button that allows you to sign and/or
encrypt your messages

hakin9 1/2006 www.hakin9.org

In practice

60

RSA (Rivest, Shamir, Adleman, was
patented) and ElGamal (by Taher
ElGamal). Furthermore, there is the
Digital Signature Algorithm (DSA).

PGP, OpenPGP,
S/MIME
To put that together: RSA, ElGamal
and DSA are asymmetric algorithms
or ciphers. AES, 3DES or IDEA (IDEA
was patented as well) are symmetric
ciphers. You can simply use them to
encrypt or decrypt or even electroni-
cally sign data. But to really be able
to use these algorithms in real world
applications, you need to know quite
a lot of other things like how to handle
data, what algorithms to use for the
generation of key pairs, what to do
when a message has to be encrypted
or decrypted and so on.

To make it quite a bit more com-
plex, there are not only asymmetric
ciphers involved in the encryption of
a message in modern applications.
It takes a lot of time to encrypt large
lumps of data using an asymmetric
cipher. Much longer than it would
take to use a symmetric cipher.

Therefore, for practical reasons,
a symmetric session key is gener-
ated for each message to encrypt the
data. After that, the symmetric key is
encrypted using the actual key from
the asymmetric key pair. You end up
with two things: the symmetrically
encrypted data block, and the asym-
metrically encrypted symmetric key.
The receiver then just uses the cor-
responding asymmetric key to dissect
the symmetric key which in turn is then
used to encrypt the data block.

After all these algorithms had been
available to the public, the first appli-
cation implementing these algorithms
was PGP (Pretty Good Privacy) by
Phil Zimmerman, released on an bul-
letin board in 1991. It became very
popular but also more and more
commercial. Not every PGP program
version was released in source code.
Furthermore, PGP was not allowed
to be exported from the US in form of
a computer program (there were some
international Version (e.g. 5.0i). In fact,
they were printed on paper and could
be exported legally as a book. The

code was then scanned an OCR'ed
outside the US), and it contained
patented algorithms. Since the com-
munity was therefore not always able
to review the source code, those ver-
sions could not be completely trusted.
There could for example have been
backdoors or master key algorithms
implemented without telling the public;
Using cryptographic codes is a matter
of trust. To avoid patent and license is-
sues, the development of GnuPG (by
Werner Koch) was started. GnuPG
implements the so called OpenPGP
Standard (RFC 2440, often referred to
as PGP/MIME) that is based on PGP
(the way Phil Zimmerman did it).

But it would be too easy if there
was only one standard: there is
also S/MIME (Secure MIME, RFC
2822). S/MIME uses (some) ciphers
that are also used in OpenPGP, but
both standards have different key
and message formats and therefore
are incompatible. Moreover, both
standards use different trust models.
While OpenPGP allows you to set up
a large web of trust (we come back to
that??) whereas S/MIME uses X.509
v3 (X.509 specifies, amongst other
things, standard formats for public
key certificates and a certification
path validation algorithm – see Wiki-
pedia) based certificates that are
strongly hierarchical.

Hash algorithms
Cryptographic protocols make use of
algorithms, that generate so-called
finger prints or hash values of data.
Such a hash is very short, you can
not reconstruct the data from that
hash value (otherwise this would be
the best compression algorithm ever)
and that hash value should be definite.
Furthermore, it must be impossible (or
at least nearly impossible) to gener-
ate two different documents with the
same hash value. This is called the
generation of collisions.

You may have seen hashes be-
fore when you tested the integrity of
downloaded software packages (for
example using md5sum or sha1sum).
In cryptography, especially in elec-
tronic signatures, the MD5 and SHA1
algorithms are widely used. However,

researchers have found ways to re-
duce the number of tests to find colli-
sions by some numbers of magnitude.
There is one example for MD5 where
researchers have generated two dif-
ferent postscript files with the same
MD5 hash value. The first is a letter of
recommendation of Alice's Boss while
the second document is an order of
the roman emperor Gaius Caesar.

Thus, MD5 should be considered
insecure, the same is true for SHA1.
However, MD5 and SHA1 are still in
use since they are part of the DSS
algorithm. As long this is the case,
MD5 and SHA1 will still be used in
the program GnuPG, for example.
There are better algorithms imple-
mented in GnuPG, but SHA256 for
instance uses RSA and not DSS
keys. Unfortunately, one seems to
have to live with this until an official
NIST standard allows to circumvent
that problem. However, it's possible
to setup GnuPG keys so that they
avoid the use of MD5. SHA-1 instead
is obligatory with the OpenPGP
standard, but one can reduce the
probability of use by changing priori-
ties for different hash algorithms. We
come back to this later.

Key Generation
GnuPG may already be installed on
your Linux box. Try gpg --version. If
GnuPG is available, you should get
the version number and the crypto-
graphic and compression algorithms
implemented in the actual version of
GnuPG (shortened)

......> gpg (GnuPG) 1.4.2.2

[..]

Home: ~/.gnupg

Supported algorithms:

Pubkey: RSA, RSA-E,

 RSA-S, ELG-E, DSA

Cipher: 3DES, CAST5, BLOWFISH,

 AES, AES192, AES256, TWOFISH

Hash: MD5, SHA1, RIPEMD160,

SHA256, SHA384, SHA512

Compression:

 Uncompressed, ZIP, ZLIB, BZIP2

You are now ready for the generation
of you first GnuPG keypair. To start
the key generation process type

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 61

............> gpg --gen-key

Please select

what kind of key you want:

 (1) DSA and Elgamal (default)

 (2) DSA (sign only)

 (5) RSA (sign only)

Your selection?

Use the default here. The DSA keypair
(used for signatures) will have 1024
bits in length, but you can change the
key size of the ElGamal keypair. Nor-
mally, 2048 is enough. At some point it
does not make sense to make the key
longer and longer, because it's easier
to torture you get the private key than
to try to crack it. Unfortunately, the
user is the weakest link of the chain.

DSA keypair will have 1024 bits.

ELG-E keys may be

between 1024 and 4096 bits long.

What keysize do you want? (2048)

So just press Enter.

Requested keysize is 2048 bits

Please specify how long the key

should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n months

 <n>y = key expires in n years

Key is valid for? (0)

Normally you would enter 0 here. If
you want to change the key every
year, feel free to change that. But if
you use so-called keyservers for the
distribution of your key(s), you are
accumulating expired keys on that
servers. You can not delete keys from
servers; You can only revoke them.

The next step then is to put some
personal information into that key if
you want. If you are about to take
part in a web of trust and let others
sign your public key and thereby stat-
ing they trust you, it makes sense to
put in your e-mail address and your
real name. Generally, you are free to
put in there whatever you want.

You need a user ID to identify your

 key;

 the software constructs the user ID

from the Real Name,

 Comment and Email Address in this

 form:

 "Heinrich Heine (Der Dichter)

 <heinrichh@duesseldorf.de>"

Real name: Alice C

mail address: alice@example.com

Comment:

You selected this USER-ID:

 "Alice C <alice@example.com>"

Change (N)ame, (C)omment,

 (E)mail or (O)kay/(Q)uit?

Type (O). Now you enter a passphrase
or mantra, as it is called. It should be
as long as possible but you should be
able to memorize it. 30-40 characters
should be o.k., but do not use words
from a dictionary or phrases out of
books if possible. The mantra is the
last bastion between the secret key
and the world outside, so take a good
one. If you want to write it down, place
the piece of paper in a safe. You have
to put in the mantra twice before the
key generation process starts. Gn-
uPG tells you that it may be a good

idea to move the mouse around or do
some other actions with the keyboard
and so on. GnuPG needs random
numbers to generate the key. The
quality of these numbers is crucial.
Modern Linux systems use random
number generators that are suitable
for your purpose.

This finishes the key generation
process. GnuPG shows a summary of
the key's features and the key identifi-
cation information, for example:

pub 1024D/E7318B79 2006-03-17

 Key fingerprint

 = 6DB6 3657 EE80 E74D 164B

 C978 6500 F1EF E731 8B79

uid Alice C <alice@example.com>

sub 2048g/2B381D4B 2006-03-17

The line starting with pub 1024D gives
you information about the primary key
of length 1024 bit (DSA keys always
are 1024 bits long), it's a DSA key
(marked D) and it has the key-ID
E7318B79. This number will identify
your key on the world's key servers.

Table 1. The codes list
Code Algorithm
Symmetric Ciphers
S1 IDEA
S2 3DES
S3 CAST5
S4 BLOWFISH
S7 AES128
S8 AES192
S9 AES256
S10 TWOFISH

Hash Algorithms
H1 MD5
H2 SHA1
H3 RipeMD160
H8 SHA256
H9 SHA384
H10 SHA512

Compression Algorithms
Z1 ZIP
Z2 ZLIB
Z3 BZIP2

hakin9 1/2006 www.hakin9.org

In practice

62

The next line shows the fingerprint
of your key. When you let your key
signed by other users, this fingerprint
is used for identification (note that the
key ID resembles the last four Bytes
of the fingerprint). The line with sub
2048g tells you the subkey is an ElGa-
mal (g) of length 2048 bit. The whole
construct, which can hold additional
subkeys or user identities (e.g. e-mail
address information etc.), will always
be identified as key-ID E7318B79.

Generating a key
revocation certificate
It is really important to generate
a so-called revocation certificate as
the next step. It allows you to revoke
your key, which means to put a tag
on it like expired or do not use it any
more. If your key gets compromised
somehow or stolen, revoking is the
only way to tell the world that this key
should not be used again. But you
have to be careful with this certifi-
cate. If this certificate gets stolen, the
thief can revoke your key, upload it to
a keyserver and make it unusable for
you. And he does not even need your
private key to do this, and he does
not need your mantra either. And
you can not remove this revocation
certificate from you key once it is up-
loaded and distributed. To generate
your personal revocation certificate,
issue the command:

...> gpg --gen-revoke <your key-ID>

and give the information requested.
Normally, you will generate a revoca-
tion certificate that revokes the key
with no specific reason given, so the
key is not used anymore will be o.k.
After entering your mantra, GnuPG
writes the certificate to stdout. The
best thing is to write that down on a
piece of paper and place it in a safe. If
you want to print it, be aware of the fact
that this document may run through
print servers that may store data. You
can write the certificate to a disk and
place it in the safe as well, but disks
may lose the data over the years.

In case that you have problems
with your key (you lost it, or it got
stolen or you just don't want to use it

anymore), just import the certificate
into your public key chain and upload
it to a key server. There is more
about im- and exporting keys below.
The revocation certificate can just be
handled like a public keyfile (but do
not do this now).

 > gpg --import

<rev_certificate_filename>

Keyservers
Now your key is ready to use. The
public part of that key can be export-
ed into a file to be passed around to
your friends or can be exported to in-
ternational key servers. It is however
strongly recommended not to upload
your public key unless you have
some working experience with your
new key pair. To upload the public
key issue the following command:

 > gpg --send-keys <key-ID>

To import a key from a key server
use:

 > gpg --recv-keys <key-ID>

It may be necessary to specify a key
server. Werner Koch recommends to
use so-called SKS key servers since
they can cope with all the information
a keyfile can contain. A key server
can be specified with the option --
keyserver. In Poland for example you
can use sks.keyserver.penguin.pl, in
Germany there is sks.keyserver.pen
guin.de. Keyservers exchange their
information, so keys are distributed
automatically.

Key chains
The secret and public key rings or
key chains can be found in the direc-
tory ~/.gnupg. Make sure no other
users can access the files in this
directory.

Importing and exporting keys
To export your public key into a file
named mykey.txt issue the com-
mand:

 > gpg --export --armor

 <your key-ID> > mykey.txt

The option --armor makes sure the
key file is human readable. The key-
ID may be replaced by any user in-
formation stored in the key, like your
name or e-mail address.

To import the key of another user
just take the file you got and import it
into your public keyring. Here it is done
with a key Alice got from Bob (the file
bobpublic.txt contains the key):

 > gpg --import bobpublic.txt

gpg: key 20ACB216:

 public key "Bob B <bob@example.com>"

 imported

gpg: Total number processed: 1

gpg: imported: 1

Editing, trusting
and signing keys
There is only one tiny flaw: Alice should
not just use Bob's key, but to express
her trust first. To do so, GnuPG has
a key editor. It is started with gpg --
edit-key <key-ID>. Again, the key-ID
may be replaced for example with the
Name Bob or his e-mail-address.

At the prompt, you get an overview
of the editor commands with help. For
trusting Bobs key, Alice starts the edi-
tor and opens Bobs key. The key infor-
mation is listed and contains unknown
trust and validity levels:

pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: unknown

 validity: unknown

sub 2048g/6B99CC08

created: 2006-03-17

expires: never usage: E

[unknown] (1). Bob B <bob@example.com>

It is really important to check whether
this key really belongs to the person
Alice thinks of as Bob. And, one step
further, if Bob is really the person Al-
ice thinks he is. It may as well be, that
a third person, lets traditionally name
him Mallory, who poses as Bob, of-
fers Alice a wrong key. If Alice now
would trust that key and encrypt mes-
sages for Bob, then Mallory instead
of Bob could read these messages.
To avoid this attack, Alice could ask
Bob to show his ID-card and to hand

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 63

over the key personally or she could
check the fingerprint and ask Bob if
the fingerprint is o.k.:

 > gpg --fingerprint bob

[..]

 Key fingerprint

 = 6871 3E47 AEEE 7424 10EF

 B544 3EC0 383B 20AC B216

When she has clarified the identity of
Bob and his key, she issues the com-
mand trust.

Please decide how far you trust
this user to correctly verify other us-
ers' keys (by looking at passports,
checking fingerprints from different
sources, etc.).

 1 = I don't know or won't say

 2 = I do NOT trust

 3 = I trust marginally

 4 = I trust fully

 5 = I trust ultimately

 m = back to the main menu

GnuPG expects Alice to decide how
she rates Bobs experience with the
handling of keys and if she thinks he
is trustworthy personally. The value
5 is reserved for personal keys, not
for those of other users. Alice trusts
him fully.

pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: full

 validity: unknown

sub 2048g/6B99CC08

created: 2006-03-17

expires: never usage: E

[unknown] (1). Bob B <bob@example.com>

Please note that the shown key validity

 is not necessarily correct

unless you restart the program.

Still, the key is not valid. To make it
a valid, Alice has the opportunity to
sign it with her own private key. This
can be done within the key editor using
the command sign. The key can then
be exported into a file (see above) and
sent back to Bob who can then import
it into his public key chain. The sign-
ing of other user's keys is used to set
up trust networks better known as the

web of trust. If Alice does not want to
hand over the signed key to Bob and
just wants it to be valid in her own key-
chain, she can just sign it locally using
the command lsign.

 > lsign pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: full

 validity: unknown

 Primary key fingerprint:

 6871 3E47 AEEE 7424 10EF

 B544 3EC0 383B 20AC B216

 Bob B <bob@example.com>

Are you sure that you want to sign

 this key with your

key "Alice C <alice@example.com>"

 (E7318B79)

The signature will be marked

 as non-exportable.

Really sign? (Y/N)

The last information is due to the
local signature. Alice types Y to sign
it and she has to type in her mantra
because her private key has to be
unlocked.

You need a passphrase

to unlock the secret key for

user: "Alice C <alice@example.com>"

1024-bit DSA key,

 ID E7318B79, created 2006-03-17

Enter passphrase:

After entering the correct passphrase
or mantra, Bobs key is valid for Alice.
It may be that the key editor has to
be restarted (use quit) to update the
internal trust database of GnuPG.

pub 1024D/20ACB216

created: 2006-03-17

expires: never usage: CS

 trust: full

 validity: full

sub 2048g/6B99CC08 created:

 2006-03-17

expires: never usage: E

[full] (1). Bob B <bob@example.com>

If Bob imports and signs Alice's key
using a scheme as above (maybe
with a non-local signature), they
can start sending secret messages
to each other. In general, sending
secret messages is just writing the
message and encrypting it with
the receiver's public key. If you use
GnuPG-enabled Mail clients (like
Mozilla Thunderbird with the Enig-
mail plugin), the Mail client does this
for you. But first, we will use the com-
mand line interface to GnuPG.

The Web of Trust
Signing and trusting other user's
keys builds up a web of trust. Imag-
ine, you want to write a secret mes-
sage to a recipient, and you received
his key from a public keyserver. You
have never met him personally and
you want to know, if the key really
belongs to him. You have not gone
through this process of checking
the key fingerprint and sending test
mails etc., but someone else may
have done so. And if you really trust
that person, the unknown key is au-
tomatically valid for you.

The web of trust has some easy
rules. You can tune these rules a lit-

Figure 2. The green line shows the signature status. The message was
encrypted and signed, as shown by the key and pen icons on the right hand
side. You can click on these to get additional information about the keys
used

hakin9 1/2006 www.hakin9.org

In practice

64

tle, but generally speaking they are
like this. A key is valid for you, if:

• you signed it or,
• it was signed by a key you trust

fully or,
• it was signed by three keys you

trust marginally,
• and the path between your key

and the recipient's key is not
longer than five steps.

Editing your key
preferences
As stated above, you can set up your
key in a way that the use of special
algorithms like SHA-1 or MD5 are
avoided, or at least other algorithms
are more highly prioritized: if you
want to use blowfish as your pre-
ferred symmetric cipher, and switch
off DES, this is also possible.

These settings are also made us-
ing the key editor. Alice, for example,
would fire up the editor using the
command:

 > gpg --edit-key alice

Secret key is available.

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

sub 2048g/2B381D4B

created: 2006-03-17

expires: never usage: E

[ultimate] (1).

Alice C <alice@example.com>

Which algorithms are used in this
key can be displayed using the edi-
tor command showpref or pref. The
former displays the key settings in
a more verbose way, the latter re-
places algorithms by their code. Al-
ice’s key has the following setup:

Command> showpref

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

[ultimate] (1).

Alice C <alice@example.com>

 Cipher: AES256, AES192,

 AES, CAST5, 3DES

 Digest: SHA1, RIPEMD160,

 SHA256, MD5

 Compression: ZLIB, BZIP2, ZIP,

 Uncompressed

 Features: MDC, Keyserver no-modify

You can easily see that SHA1 is the
first hash algorithm in the Digest
line, but you cannot set preferences
naming the algorithms, you have to
replace them by their identification
code. The command pref lists the
code line of the actual key:

Command> pref

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

[ultimate] (1).

Alice C <alice@example.com>

 S9 S8 S7 S3 S2 H2 H3

 H8 H1 Z2 Z3 Z1

 [mdc] [no-ks-modify]

S names the symmetric cipher algo-
rithms, H are hash algorithms and
Z names compression algorithms.

To set preferences, you can use
the command setpref. This command
uses a line of codes as input. If Alice
wants to get rid of MD5, but wants to
keep the other settings unchanged,
she would copy and paste the code
line from the pref-output above but
would just leave away H1 and put H2
to the end of the hash algorithms.

Command> setpref S9 S8 S7 S3 S2

H3 H8 H2 Z2 Z3 Z1

Set preference list to:

 Cipher: AES256, AES192,

 AES, CAST5, 3DES

 Digest: RIPEMD160, SHA256, SHA1

 Compression: ZLIB, BZIP2, ZIP,

 Uncompressed

 Features: MDC, Keyserver no-modify

Really update the preferences? (Y/N)

Say Yes here:

You need a passphrase to unlock

 the secret key for user:

"Alice C <alice@example.com>"

1024-bit DSA key,

 ID E7318B79, created 2006-03-17

Enter passphrase:

After you entered the correct pass-
phrase, the key attributes are updat-
ed. The command showpref shows
the result:

Command> showpref

pub 1024D/E7318B79

created: 2006-03-17

expires: never usage: CS

 trust: ultimate

 validity: ultimate

[ultimate] (1).

Alice C <alice@example.com>

 Cipher: AES256, AES192,

AES, CAST5, 3DES

 Digest: RIPEMD160,

SHA256, SHA1

 Compression: ZLIB, BZIP2, ZIP,

 Uncompressed

 Features: MDC, Keyserver no-modify

You can see that MD5 is switched
off, and SHA1 is set to the end of
the line, but you can't switch it off
completely. This shows the user of
Alice's key, that she prefers to use
RIPEMD160 or SHA256 over SHA1.
This already avoids the use of SHA1
in the most cases.

The settings of preferences can
also important when you happen to
import a PGP key into GnuPG or vice
versa. To export a GnuPG key to use
it with PGP for example (note that you
can not use ElGamal keys with PGP),
the preference settings have to be set
to S9 S8 S7 S3 S2 S10 H2 H3 Z1 Z0.

Note: some versions of GnuPG
use the command updpref to activate
the settings made with setpref. Have
a look at the editor help command
output. To end the session, leave the
editor with quit.

Encrypting
and decrypting data
Imagine that Alice wants to write
a message to Bob containing con-
fidential information. She can write
that in a file (secret.txt) and encrypt
it using the command:

. > gpg --recipient bob

 --encrypt --armor secret.txt

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 65

This generates a file secret.txt.asc.
Not even Alice can now decrypt
that file again, but she still has the
original. However it is possible to
generate an encrypted file that can
be decrypted by two or more users.
It has then to be encrypted using two
or more recipients. Alice could as
well do this:

 > gpg --recipient bob

 --encrypt --recipient alice --armor

secret.txt

Or, in short form,

 > gpg -r bob -r alice -e -a secret.txt

What happens there, is that the
original message is encrypted with
a session key and this session key
is then encrypted, one at a time, with
both public keys of Alice and Bob. All
information together is then stored in
the file secret.txt.asc.

Alice can send this file to Bob
who is then able to decrypt the
message with the decrypt option.
His private key is then automatically
used but Bob has to enter his mantra
to unlock it.

 > gpg --decrypt secret.txt.asc

You need a passphrase to unlock

 the secret key for

user: "Bob B <bob@example.com>"

2048-bit ELG-E key, ID 6B99CC08,

 created 2006-03-17

(main key ID 20ACB216)

Enter passphrase:

Bob enters his passphrase here.

gpg: encrypted with 2048-bit ELG-E key,

 ID 2B381D4B, created 2006-03-17

 "Alice C <alice@example.com>"

gpg: encrypted with 2048-bit ELG-E key,

 ID 6B99CC08, created 2006-03-17

 "Bob B <bob@example.com>"

Hi Bob, come to the willow tree tonight

 at 8. we have to talk, Alice.

In this special case the last line is the
original message of Alice.

Additionally, you can use GnuPG
to encrypt data using symmetric ci-
phers. GnuPG uses the option con-

ventional to do this. You can choose
the cipher algorithm as well. To en-
crypt the file mail.tgz using AES256,
just type

 > gpg --cipher-algo aes256

 -c mail.tgz

Enter passphrase:

Repeat passphrase:

You have to type the passphrase
twice to avoid typos. If you do not
provide an output filename with the
-o option, GnuPG uses the input
filename with the appendix .gpg. To
decrypt the data, just type

 > gpg -o mail2.tgz mail.tgz.gpg

gpg: AES256 encrypted data

Enter passphrase:

The file mail2.tgz contains the origi-
nal data.

Signature and
signature validation
Bob can read the message now and
he knows for sure that the message
is meant to be for him (it has been
encrypted with his public key) but
he cannot be sure that it has been
written and sent from Alice since
the message has no signature at-
tached. To do this, Alice can encrypt
the message with an additional sign
option. Here Alice uses the --sign
option. It puts the signature and
the signed text in one file named
secret.txt.asc. Assumed that Bob
trusted and signed Alice's key, he will
get the following output from gpg --
decrypt secret.txt.asc:

2048-bit ELG-E key,

ID 6B99CC08,

created 2006-03-17

(main key ID 20ACB216)

gpg: encrypted with 2048-bit ELG-E key,

 ID 2B381D4B, created 2006-03-17

 "Alice C <alice@example.com>"

gpg: encrypted with 2048-bit ELG-E key,

 ID 6B99CC08, created 2006-03-17

 "Bob B <bob@example.com>"

Hi Bob, come to the willow

tree tonight at 8. we have to talk,

 Alice.

gpg: Signature made

Fri 17 Mar 2006 04:05:26 PM CET

 using DSA key ID E7318B79

gpg: Good signature from

 "Alice C <alice@example.com>"

Now, Bob can be sure that Alice
wrote the message because the sig-
nature could be verified.

Encrypt your mails:
Thunderbird and
Enigmail
Using GnuPG as described above
can be annoying, especially when
you are willing to use cryptographic
functions like signing or encrypting
your mail messages on a regular
basis. In that case every message
has to be saved to the file system,
processed by GnuPG and then re-
opened in your mail client software
to be sent.

To make life easier and more
comfortable, nearly all mail user
agents (mail client programs) have
cryptographic functions implement-
ed or give access to cryptography
programs by special plugins, e.g.
KMail, Mutt, Pine, Sylpheed, Emacs
and Balsa, only to name a few.

One of the most powerful and
reliable combinations is Thunder-
bird (the standalone mail client
from the Mozilla project) together
with the GnuPG plugin Enigmail.
Enigmail adds an OpenPGP menu
to your mail client. It is available
for Linux, Mac OS X and Windows,
you have to have GnuPG installed.
You find GnuPG for your platform
on http://www.gnupg.org/download.
If you want to use GnuPG with
Windows, have a look at the
GnuPG.README.Windows file in
your GnuPG Start menu entry; you
can access gpg from the Windows
command line or using the Windows
Privacy Tray WinPT.

Enigmail can be downloaded from
this web http://enigmail.mozdev.org/.
To install the plugin, go to the Tools
menu and select Extensions and
then Install. Point the file browser
to the Enigmail plugin file you just
downloaded and select Install. Enig-
mail will be available after a restart of
Thunderbird.

hakin9 1/2006 www.hakin9.org

In practice

66

Enigmail has to be activated for
every e-mail Identity you want to
use. This is done in the Edit Menu,
Account settings (Tools Menu in
Windows). You have to check the
box Enable OpenPGP support
(Enigmail) with this identity. This
window allows you to set your de-
fault Key ID manually if the Enigmail
plugin cannot derive the ID from your
e-mail address. The Advanced button
opens the OpenPGP Preferences
dialog, which can be accessed from
the OpenPGP menu (entry Prefer-
ences) as well. You may have to enter
the path to the gpg binary in the Basic
tab if it was not set automatically.
Furthermore, it's important to check
if Encrypt to self is set in the Send-
ing tab, otherwise you would not be
able to read mail you sent encrypted.
Another setting you should check
is Always use PGP/MIME in the
PGP/MIME tab. If PGP/MIME is not
activated, Enigmail uses the so called
inline PGP format where attachments
are not encrypted.

To encrpyt or sign mail, use the
OpenPGP button in the compose
window. You can select Sign Mes-
sage, Encrypt Message or both. If
you want sign a message, Enigmail
pops up the passphrase entry dialog
to get access to your private key.
GnuPG then processes the data
before it is sent by your mail client.
If you want to encrypt a message,
GnuPG has to know the public key of
the recipient.

When you receive a message
that is encrypted to you, you are
prompted to enter you passphrase.
Thunderbird also tests the signature
if provided and informs you if it is
valid.

Encrypted File
Containers and
Filesystems
Cryptography is not only about
GnuPG and encrypting files or mes-
sages. Beside many other things
you can do with it like securing your
Internet communication (SSH, SCP),
securing mail and web servers etc.
(not shown here), it is fairly easy to
encrypt file containers and file sys-

tems under Linux as well. LoopAES
and DM-Crypt are shortly introduced
here, but there are more, of course,
and it is possible to do similar things
under other operating systems. Here
are two examples.

Encrypt a partition with
LoopAES
LoopAES uses the Linux cryptogra-
phy enabled loopback device to set
up a file system within a container or
a partition as a device. I want to show
a quick and easy scenario where
you use a free disk partiton (here it
is /dev/sdc3) to set up a file system
within a loopback encrypted device.
This file system is going to be en- and
de-crypted on the fly, but you will need
a key to get access to it. This actual
key will be stored in a symmetrically
encrypted keyfile. This sounds a bit
complicated, but you will see how it
works as we go through that example.

It may possibly not work on all
systems, but it was successfully
tested on Fedora Core 4. Some sys-
tems need a patched version of the
loopback device. Some hints about
this can be found on http://loop-
aes.sourceforge.net/.

Firstly, choose a partition. It may
be on an USB stick, an external
harddrive or just a partition on your
built-in hard drive, but it has to be
empty.

Secondly, create the random key.
In this example, we take 2925 bytes
of /dev/random, convert them to
base64 (with uuencode, usually in the
sharutils package) and use head and
tail to take 65 lines of that random
block. Finally, we encrypt these num-
bers with AES256 using GnuPG:

 > head -c 2925 /dev/random |

 uuencode -m | head -n 66 |

 tail -n 65 | gpg --symmetric

 –cipher-algo aes256

 -a > keyfile.gpg

This may take a time, depending on
the entropy content available on your
system (you need a lot entropy to
create random numbers with /dev/
random!). The keyfile now can be
stored on an USB stick or a smart

card, for example. Your encrypted
file system will then only be available
if you plug in that physical device.

The next step is to initialize
the data partition. It will filled with
pseudo random numbers once, us-
ing /dev/zero to produce a stream
of zeros that are encrypted by the
encrypting loopback device. This is
done only once:

 > head -c 15 /dev/urandom |

 uuencode -m - | head -n 2 |

 tail -n 1 |

 losetup -p 0 -e aes256

 /dev/loop3 /dev/sdc3

This sets up a loopback device /dev/
loop3 using the partition /dev/sdc3,
which is initialized with some random
numbers and AES256. Everything
that is now put to /dev/loop3 will be
encrypted. A stream of zeros so be-
comes a long list of pseudo random
numbers. It's just a lot faster than
generating random numbers, that’s
why we do it this way. This has been
done once only.

 > dd if=/dev/zero of=/dev/loop3

 bs=4k conv=notrunc 2>/dev/null

The initialization is finished when the
loopback device is released:

 > losetup -d /dev/loop3

We now have to initialize the file sys-
tem on our parition:

 > losetup -K /path/to/your/keyfile.gpg

 -e AES256 /dev/loop3 /dev/sdc3

and

 > mkfs -t ext2 /dev/loop3

To release the device again, use

 > losetup -d /dev/loop3

Every time you want to use that parti-
tion, set up a loopback device and
mount it into your file system. This
becomes fairly easy, if you append
the following line into your /etc/fstab
(all in one line):

Cryptography for Mail and Data

hakin9 1/2006www.hakin9.org 67

/dev/sdc3 /mnt/loopdev ext2

 defaults,noauto,loop=/dev/loop3,

 encryption=AES256,

 gpgkey=yourkeyfile 0 0

Then it's just:

 > mount /mnt/loopdev

Password: keyfile passphrase

Data Container Encrypted
With DM-Crypt
Another example I want to show here
is how you use a container file (just
a block of random data on your hard
disk) to put in encrypted data. We
use DM-Crypt here, which should
be available on your system provided
you use a kernel 2.6 architecture. If
this does not work on your system,
have a look at http://www.saout.de/
misc/dm-crypt.

DM-Crypt is the Device Map-
per Target for the encryption of
data from Christophe Saout. Since
kernel 2.6.4, DM-Crypt replaces
Cryptoloop. The Device Mapper ad-
ministers virtual block devices which
in turn can access physical devices
like hard disks or partitions. There
are quite a number of Device Mapper
Targets introducing striping to sev-
eral block devices for instance. This
intermediate layer so to say may as
well be equipped with cryptographic
features: DM-Crypt.

Make sure that both Device
mapper support and Crypt target
support are switched on in your
kernel (you find them under Device
Drivers/Multi-Device-Support(RAID
and LVM)). Furthermore, Device
Drivers/Block Devices/Loopback
device support and Cryptographic
Options/AES cipher algorithms have
to be switched on as well.

If you are using Fedora Core,
install the device-mapper package,
Debian users need dmcrypt and
cryptsetup packages. Additionally,
some kernel modules have to be
loaded. Red Hat or Fedora users
can add these three lines to /etc/
rc.local:

modprobe aes

modprobe dm_mod

modprobe dm_crypt

When you are using Debian, use
modconf and choose kernel/drivers/
md and kernel/crypto.

We will use a 200 MB Data con-
tainer. It is set up like this:

 > dd if=/dev/urandom

 of=container bs=1024k count=200

The superuser can now connect
the container via DM-Crypt to the
device mapper. We use /dev/loop4
here.

 > losetup /dev/loop4 container

 > cryptsetup -y create

 secret /dev/loop4

You are asked for a passphrase
twice (option -y) to avoid accidental
mistyping. Container is the name of
the container file, you may have to
enter a full path, and secret is the
name of the device mapper file (feel
free to choose different names). You
will then find it under /dev/mapper/
secret. The device does not yet
contain a file system, it is set up like
this:

 > mkfs.ext2 /dev/mapper/secret

Now you can mount it:

 > mount /dev/mapper/secret /mnt/secret

When you are finished using it, type

 > umount /mnt/secret

 > cryptsetup remove secret

 > losetup -d /dev/loop4

DM-Crypt can not only handle data
containers but also whole partitions,
and you can encrypt your swap
partition easily. This example just
showed the data container encryp-
tion, you find more information on
the DM-Crypt homepage http://www.
saout.de/misc/dm-crypt/.

Conclusion
In the beginning of the nineties of
the last Millennium, the first pro-
gram for cryptographic purposes
was released to the public by Phil
R. Zimmerman. This program, PGP,
was later referred to as crpytogra-
phy for the masses. The free and
Open Source alternative GnuPG
allows you to easily encrypt and
decrypt your data and e-mail, sign
data or both. This article explains
the basics of symmetric and asym-
metric cryptography and shows you
in practice how you set up your keys
and how you use them. The second
part of the article introduces you
to the art of data encryption on
the filesystem level in a few easy
steps. l

On the Net
• http://downlode.org/Etext/alicebob.html
• http://www.gnupg.org
• http://rfc2440.x42.com – OpenPGP, RFC 2440
• http://rfc2822.x42.com – RFC 2822, S/MIME
• http://www.cits.rub.de/MD5Collisions – The Story of Alice and her Boss
• http://www.heise.de/newsticker/meldung/56624 – Werner Kochs comment in

German
• http://www.gnupg.org/(de)/documentation/faqs.html
• http://www.stud.uni-hannover.de/~twoaday/winpt.html

About the author
Dr. Lars Packschies works as a research associate at the regional computer center of
the University of Cologne and is the contact person for chemistry related software and
databases as well as for cryptographic applications. He administrates the software and
takes care of the privacy protection under Linux, SunOS/Solaris, IRX and AIX. He is
the author of Praktische Kyptografie unter Linux (Practical cryptography under Linux).
Contact with the author: packschies@rrz.uni-koeln.de.

