
www.hakin9.org/enhakin9 4/200756

Defence

Some of these risks could be prevented
by adding Advanced Security features to
an already existent database. This does

not mean that you would open the box and a
perfect unique shield will protect your database.
It does not work like this. All these features must
be carefully planned and velvety implemented.
In the event of a system crash/ configuration
error your data may never be recovered other-
wise. However if the implementation is carefully
planned, and you have an experienced DBA
there is way to better defend your database.

Authentication
Authentication means verifying the identity of
subject who wants to access database objects.
When authentication is successfully passed,
authorization processes comes into play. Au-
thorization is the process that controls access
to database objects. There are different meth-
ods of authentication. The most commonly
used are authentication by the Operating Sys-
tem, Network, Database, Multi-Tier System, or
Secure Socket Layer. When OS Authentica-
tion is used there is no need for any further
validation. Users can connect to database just
by running the database client (e.g. sqlplus). In

the OS Authentication case, security is traded
for comfort resulting in a less secure environ-
ment. Network authentication is implemented
using Secure Socket Layer or the help of
Third-Party Services. These could for exam-
ple be Kerberos or PKI-based authentications.
In my opinion the most commonly used meth-
od of authentication is the Oracle Database is
the text password. Thus far it achieves decent
security, and ease of use. However this is all
governed by the complexity of the password
as well as it's resistance to social engineering.
There is no need to install any other system
authentication. Nor is it a simple walk around
a poorly secured operating system. Database

Defending the Oracle
Database with Advanced
Security Features
Mikoláš Panský

Difficulty

There are some actual issues with Oracle Security. There is a new
book The Oracle Hacker’s Handbook written by David Litchfield. It
covers possible methods to attack the Oracle server. Some of the
examples shown in that book are based on traffic sniffing, direct
access to Oracle's Shared Global Memory, or just accessing the
raw data files.

What you will learn...
• What is Oracle Wallet,
• What is Transparent Data Encryption,
• What is Oracle Advanced Security.

What you should know...
• Basic knowledge of SSL,
• Basic knowledge of computer Cryptography

Oracle Wallet, Transparent Data Encryption, Network data encryption and integrity

57hakin9 4/2007www.hakin9.org/en

authentication is based on the
comparison of a given username/
password combination. As well as
information encrypted and stored in
a data dictionary. Users can change
their passwords at any time. One
of the basic tasks in securing the
database should be enabling pass-
word encryption while connecting,
account locking, password lifetime
and expiration, password history
and password complexity verifica-
tion. These requests are explained
in detail in the Oracle Database
Security Guide. This was my prior
reference source for this article. My
intentions were not to rewrite the
entire manual. I wanted to give you
short overview and save you sev-
eral hours of reading. Other ways
to control access to the database is
to create Multi-Tier Application. This
provides access to database with a

layer that handles queries and user
controls. Multiple users can access
a data server without separate con-
nections for each of them. For these
purposes an Oracle Call Interface
could be used. It has some advan-
tages but generally it is not recom-
mended due to poor security. Once
an account has been compromised
the attacker gains full access to the
application, and may seek higher
account privileges.

Authorization
Post-authentication tasks (that
verifies user identity) have to control
user's access to database objects.
At first we used profiles and iden-
tification methods to complete the
first task. Now we need to manipu-
late privileges, roles, profiles and
resource limitations. The authori-
zation consists of two main proc-

esses. First is to ensure that only
certain users can access, process,
or alter data. The second is to ap-
ply limitations on user access or
actions (e.g. limitations of objects
and /or resources). When speaking
of authorization – One of the first
questions to ask is what privileges
a particular user has? A privilege is
a right to execute a particular type
of SQL statement or to access an-
other user’s object. Privileges could
be granted to a user one by one or
in groups through roles. Roles are
incorporated into the database to
simplify the process of adminis-
trating users and their rights to do
something in the database. There
are two main categories of privi-
leges. System privileges should be
granted with care. They should
never be given to common database
users. They should be granted only
to administrators and application
developers. The SQL statements to
use with privileges are GRANT and
REVOKE. There is one unique fac-
tor about privileges in Oracle. It is
possible to grant privileges with the
admin option. This option allows the
target user to grant or revoke such
privileges to/from another person.
Object privileges control user’s ac-
cess to tables, views, procedures,
functions or packages.

Concept
I must begin at the starting point for
exploring the Oracle Database. This
is a Conceptual Guide. The basic
idea of Security is to deny or allow
users actions. The ideal model of
security implementation in Oracle
is discretionary access control. This
means that privileges are granted to
users at the discretion of other us-
ers. The database itself stores a list
of users. When a user is trying to ac-
cess a database application a valid
username and password must be
provided. A security domain exists
for each user. A security domain
is set of privileges and roles, table
space quotas and system resources
limits. A privilege is an implemen-
tation of access control. Oracle
is very flexible and offers precise

Security Related Views
VIEWS RELATED TO PROFILES:

DBA_PROFILES, DBA_SQL_PROFILES.

VIEWS RELATED TO ROLES:

DBA_APPLICATION_ROLES, DAB_CONNECT_ROLE_GRANTEES, DBA_ROLE_PRIVS, DBA_ROLES,

PROXY_ROLES, PROXY_USER_AND_ROLES.

VIEWS RELATED TO PRIVILEGES:

DAB_COL_PRIVS, DBA_ROLE_PRIVS, DBA_SYS_PRIVS, DAB_TAB_PRIVS.

VIEWS RELATED TO USERS:

DBA_USERS.

Tables that are Used to Build the Views
• user$ – table of users identified by name, type and number.
• defrole$ – default roles (columns are user# and role#).
• objauth$ – table of authorization.
• sysauth$ – system authorization (system privileges, grantee, options).
• ts$ – tablespaces.
• obj$ – Objects. Identifies objects by name, type and owner number.
• cols$ – Columns.
• profile$ – Connects profiles and resource privileges.
• resource _ map – description of resources.
• system _ privilege _ map – description of system privileges.
• table _ privilege _ map – description of auditing privileges.
• user _ astatus _ map – status of password and account status.

Defence

58 hakin9 4/2007 www.hakin9.org/en

control of user’s privileges. We
could divide system privileges into
two categories. One of its privileges
that is applicable to whole database
system. This privilege has a name
word ANY. These privileges are
very powerful. It gives access rights
to all objects that are not in the SYS
scheme (data dictionary). Access to
the data dictionary could be regu-
lated by the system initial parameter
07 _ DICTIONARY _ ACCESSIBILITY. If this
parameter is set to false no privilege
could access the data dictionary.
The rest of system privileges af-
fect the state of the database. For
example these could be privileges
to CREATE TABLESPACE, AUDIT
SYSTEM, CREATE LIBRARY etc.
Most of the system privileges could
be found in the SYSTEM_PRIVI-
LEGE_MAP view. We could allow
standard access to this table by is-
suing a query to explore its contents.
To view system privileges granted to
users and roles we could use the
DBA _ SYS _ PRIVS view. In terminology
the system privileges view grantee
is the person who has the privilege
granted to. These views could serve
for easy database administration,
but it is not recommended that one
rely on it 100%. As stated in one of

the previous issues of Hakin9 maga-
zine these views could be modified
with full access to the database to
hide users, processes etc. There
are many view used for security
purposes.

Some of this views also has ALL
and USER versions. It differs in
scope from objects that display. The
difference could be obtained from
view name prefix. We have ALL,
which displays all objects, USER
displays objects that are owned by
user and DBA corresponds to the
database administrator's objects.
These views are in the database to
show their user-friendly way follow-
ing database tables:

As I mentioned above there is
another group of privileges. These
privileges are object privileges.
These are relevant to a specific
object. For example when a user
wants to view the content of the
employee table, he has to issue the
SELECT command. However it’s
not allowed by default for the user
to view their privileges. If the admin-
istrator would like to allow users to
see what access level they have,
access could be granted to the view
user _ objects _ privs or user _ sys _

privs by making the access to these

tables to PUBLIC. However I would
definitely not recommend this. The
only usage that comes to my mind
is database access level debugging.
Yet another way to use this view
would be to check to see who has
the grantable right.

Supervisors
To administer the database, there
are two predefined accounts in the
system – SYS and SYSTEM. In pre-
vious versions (10g and less) there
was a default password associated
with these accounts. SYS had default
password CHANGE_ON_INSTALL
and SYSTEM had default password
MANAGER. One of the very impor-
tant tasks during database crea-
tion CREATE DATABASE is to use
commands USER SYS IDENTIFIED
BY password and USER SYSTEM
IDENTIFIED BY password to change
default passwords for these accounts.
There are many hacking tools to
reveal default password association.
These accounts are really powerful!
It is a good idea to create another ac-
count to perform daily administration
tasks and avoid using these types of
accounts. To help simplify adminis-
tration of privileges associated with
each user a group of privileges called
Role exists for this purpose. These
could be granted with the GRANT
clause. Imagine there is inquiry to
manage access control for a hundred

Oracle Wallet
Registry Keys
DEFAULT:

\HKEY_CURRENT_USER\SOFTWARE\

ORACLE\WALLETS\DEFAULT

ENCRYPTED WALLET:

\HKEY_CURRENT_USER\SOFTWARE\

ORACLE\WALLETS\DEFAULT\

EWALLET.P12

OBFUSCATED ORACLE WALLET:

\HKEY_CURRENT_USER\SOFTWARE\

ORACLE\WALLETS\DEFAULT \

CWALLET.SSO

Listing 1. Creating TDE column with and without salt

CREATE TABLE gold_partner (

 partnerID NUMBER ENCRYPT NO SALT,

 name VARCHAR2(128),

 surname VARCHAR2(128),

 ccno NUMBER(16) ENCRYPT USING ‘M4g1cW0rD’

);

CREATE INDEX partnerID_idx ON god_partner (partnerID);

Listing 2. Sample sqlnet.ora for server

sqlnet.ora Network Configuration (Server)

Example configuration for server to use Oracle Advanced Features

SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (MD5)

SQLNET.ENCRYPTION_TYPES_SERVER= (3DES168, 3DES112, DES40)

Listing 3. Sample sqlnet.ora for client

sqlnet.ora Network Configuration (Client)

Example configuration for client to use Oracle Advanced Features

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT= (MD5)

SQLNET.ENCRYPTION_TYPES_CLIENT= (3DES112, 3DES168, DES40)

Oracle Wallet, Transparent Data Encryption, Network data encryption and integrity

59hakin9 4/2007www.hakin9.org/en

users from ten different departments.
This could become very frustrating
without having to associate each
user with at least five different privi-
leges. Things would become even
worse if you had to change privileges
for all users in the department. This
is where user roles come into play.
For each department a role could be
created. Then changing privileges for
all departments would be as easy
as grant /revoke privilege from role.

Another case of using roles would be
necessary when there is need to use
several different applications. It’s the
same principle, however it differs a bit
in the reason to create role. Imagine
applications that use a table of offers.
With the use of roles in the game it’s
much easier to change the access
depending on the user that is logged
into the application. For example
when regular user is logged into an
application there could be a role cre-

ated for this purpose. However this
principle allows the implementation
element that changes the access
privileges during runtime just by us-
ing the SET ROLE clause on the fly.
The most powerful role in the system
is DBA (stands for Database Admin-
istrator). This role is implicitly asso-
ciated with the SYS and SYSTEM
account. However I must again note
that access control to these accounts
is a critical task. In obsolete versions
of Oracle (8i and older) there was a
special user named INTERNAL that
could access the database whether
it was in a MOUNT or NOMOUNT
state. This account had the default
password set to oracle. This account
wasn’t maintained in the database
data dictionary, but in an Oracle
password file. In past versions the
INTERNAL mechanism has been re-
place by the SYSDBA and SYSOPER
privilege. SYSDBA privileges allows
user to startup, shutdown, backup,
recover and create databases. The
list of all users who has SYSDBA or
SYSOPER privileges could be found
in v$defile users. There is a limitation
for the SYSDBA role – it cannot be
granted to the public. Another is-
sue when creating databases is the
default action of creating the role
PUBLIC. This role is often used in
hacking methods. There are two
main reasons. The first is that some
people don’t even know that it exists.
That’s because it cannot be seen in
dab_roles. Another and even more
important reason is because chang-
ing the privileges in this role applies
to other users as well. This role is cre-
ated when a new database is created
(to create new database Oracle uses
the script sql.bsq). To determine the
type of account the user is connected
to database with could be shown with
SHOW USER (SQL*Plus). There is
one more thing in using these ac-
counts. The objects owned by user
SYS cannot be exported via standard
tools (exp, imp). Another rule tells
us that No objects may be created
in SYS schema. The SYS schema
has the job of storing data dictionary
objects and it is fully managed by the
database itself.Figure 2. ORACLE.NETWORK.MANAGER

Figure 1. ORACLE.WALLET.SCREENSHOT

Defence

60 hakin9 4/2007 www.hakin9.org/en

Application
Security Roles
Application security roles could be
enabled only by authorized PL/SQL
packages. To ensure higher level of
security it is better not to embed pass-
words in the source code or the table.
In order to achieve this it is necessary
to create a secure application role
that could define which PL/SQL pack-
age has sufficient privileges to enable
this role. This concept could be en-
hanced by adding additional checks
of conditions for authorization by the
application. However implementing
authorization on the client side of the
application is always tricky. The main
reason for this is the fact, that an ap-
plication could be skipped by using
sqlplus client or any other tool to con-
nect to the database. Another reason
to use security mechanisms on the
server side is re-usability. There is
no need to implement the security ac-
cess control twice when we change
the application. It is enough to store it
once on the server and then reuse it
with different applications. Also when
using database server side security
we could use all the security features
that Oracle offers (fine-grained ac-
cess control with application context),
roles, stored procedures and auditing.
For this reasons Use of Ad Hoc Tools
is a potential security problem.

It is recommended by Oracle to
equal application users to database
users. This would give us the potential
to use all security features that Oracle
has to offer. However this is not true
for many applications. Most of these
applications use one user to connect
to the database with higher privileges.
It is the so-called One Big Application
User model. There are some disad-
vantages while using this model to
access the database. For example
there is no way to audit the actions
of each user using this application.
The database doesn’t recognize each
user. If we would like to use auditing in
the One User Model we must imple-
ment our own auditing mechanisms.
The second disadvantage of using
the one user model is the possible
inability to use Advanced Security
Authentication. These include SSL,

tokens etc. The third reason against
this is user access to the database
is less effective than with the usage
of roles. This restriction could be
overcome by using a set role dy-
namically. And last but not least is to
disable the Oracle Identity Manager.
The fundamentals in implementing a
Secure Application Role are based
validating the identity by looking into
the context. Application roles could
be also used for controlling the value
of IP an address, where is the user
connecting from? Application roles
could be implemented in separate
packages. The basic principle of us-
ing a secure application role is to as-
sociate privileges with User Database
Roles. Let’s focus on some of the
details of using roles. Roles are used
to simplify the process of granting
and revoking user privileges. A role is
a set of privileges that allows a user
to access objects (see SQL code).
Another interesting query to view
could provide information about the
default privileges assignment. This
could be done by querying the list of
all privileges with restrictions only to
the PUBLIC grantee. It is highly rec-
ommended that privileges be revoked
from the PUBLIC. So from this we
could derive the most popular method
used to hack the database. This is to
obtain the highest privileges or the
most powerful role in the system.

Oracle Advanced
Security
OAS is a collection of security fea-
tures related to Oracle Net Services,
Oracle Database, Oracle Application
Server and Oracle Identity Man-
agement infrastructure. It provides
defenses against most common
security threats. Eavesdropping,
data theft, data tempering, falsifying
user identities and password-related
threats. Eavesdropping is the illegal
interception of conversations by unin-
tended recipients. This is the method
used by an intruder once data is sent
over an insecure network (de facto
whole Internet). However even in a
de-militarized zone network sniffers
could be used to capture secret com-
munications. Data Tempering means

to compromise data integrity as it is
moved between sites. User identify
falsifying is an attack vector based
on the premise that an attacker can
pretend that he/she is someone else.
Another type of attack in this group is
to hijack the connection of the user.

Oracle Advanced
Security Secure
Sockets Layer
Authentication
Oracle Advanced security supports
both Secure Sockets Layer (SSL)
and Transport Layer Security (TLS)
protocols. The SSL protocol is au-
thentication and encryption method
that enhances TCP clients with secure
services. This protocol was originally
developed by Netscape Communica-
tion Company to secure the HTTP
protocol communication between
client and server. This still remains
its primary usage. The SSL protocol
is on based on IETF standard RFC-
2246 under name TLS (Transport
Layer Security). Each side in the com-
munication gives proof of identity with
a digital certificate (encrypted block of
data). A certificate is validated by a
trusted third-party which then verifies
the communication between identity
and a given encrypted key. This third-
party is called Certification Authority
(see http://www.openssl.org) for more
details. Using this feature ensures
encrypted connections between cli-
ents and servers, and it could also be
used to validate a secure client/server
database connection. This feature

Frequently Used Terms
in Cryptography
• Encrypt – Scrambling data to make

it unrecognizable.
• Decrypt – Unscrambling data to its

original format.
• Cipher – Another word for algo-

rithm.
• Certificate Authority (CA) – third-

party, e.g. Verisign, CyberTrust or
RSA.

• Digital Certificates – Consists of
private key and public key the pri-
vate key has to be verified by CA.

Oracle Wallet, Transparent Data Encryption, Network data encryption and integrity

61hakin9 4/2007www.hakin9.org/en

is great in case of fraud attempts by
sniffing the network communication. It
also improves the reliability of the au-
thentication process. There are some
basic steps in Oracle SSL communi-
cation. There are two main parts of
SSL communication. The first is SSL
handshake, and second is the ac-
tual authentication process. The SSL
handshake consists of following steps.
The client and the server establish a
set of authentication, encryption and
data integrity algorithms used for ex-
changing messages between network
nodes. During an SSL handshake, for

example, the two nodes negotiate to
see which cipher suite they will use
when transmitting messages back
and forth. The server sends its cer-
tificate to the client and the client veri-
fies that the server’s certificate was
signed by a trusted CA. This ensures
proof of the server’s identity. If client
authentication is required, the client
sends its own certificate and server
verifies that the client’s certificate was
signed by a trusted CA. Next client
and server exchange key information
using public key cryptography. Based
on this information, each generates a

Public-Key Cryptography Standards (PKCS) Support
Author of this standard is RSA Data Security Inc. [8] RSA is part of EMC Corporation
[9] – American manufacturer of software and security management and storage sys-
tems. RSA has the patent for RSA asymmetric key algorithm. RSA research resulted
in PKCS standard. This defines the industry standard for promoting and facilitating the
use of public-key techniques. Today there are fifteen PKCS standards. For our pur-
poses the most relevant are PKCS #15, #12 and #10. PKCS #15 is the standard that
enables users to use cryptographic tokens to identify themselves to multiple, standard-
aware applications regardless of the application’s cryptoki (or other token interface)
provider. PKCS #12 is standard of format to store X.509 certificates and private keys.
Finally there is PKCS #10 to generate certificate requests. The hardware storage of
credentials is conforming to PKCS #11 specification.

session key. A session key is shared
by at least two parties. It is used for
the duration of that particular com-
munication session. This improves
the security via cracking the session
key due to frequency of session key
change. The next part is the authen-
tication process. At first the user initi-
ates an Oracle Net connection to the
server by using SSL. SSL performs
a handshake between client and the
server and if the handshake is suc-
cessful, the server verifies that the
user has the appropriate authoriza-
tion to access the database. To make
this things work there is a Public Key
infrastructure (Also Known As PKI) in
the Oracle Environment. PKI ensures
trusted relations for the entire organi-
zation. The PKI that used by Oracle is
based on RSA Security, Inc., Public-
Key Cryptography Standards. [10]
PKI is a robust public key system that
was designed to utilize single-sign-on
feature and provide digital ID. In con-
trast to private-key or symmetric-key
cryptography that requires a single,
secret key that is shared by two or
more parties public-key cryptography

A D V E R T I S E M E N T

Defence

62 hakin9 4/2007 www.hakin9.org/en

makes the public key freely available.
The public key is used to encrypt mes-
sages that can only be decrypted by
the holder of the associated private
key. The private key is securely stored
together with other security creden-
tials in an encrypted container called a
wallet. A wallet is a data structure used
to store and manage security creden-
tials for an individual entity. A Wallet
Resource Locator (WRL) provides all
the necessary information to locate
the wallet. Public-key algorithm has
a weakness that could be exploited
in the absence of the communicating
party’s identity verification. This type
of attack is called the man-in-the-
middle. It’s based on the idea that an
intruder captures the public key of the
sender. Then uses his/her own public
key to send messages to the receiver.
When the receiver responds, the
intruder is able to re-encrypt the mes-
sage with public key of sender and
forwards the message to the sender.
It gives the intruder the possibility to
read the message (eavesdropping).
To prevent this type of attack, it is nec-
essary to verity the owner of the public
key through authentication. This is the
point where CA comes to play. The
CA issues public key certificate that
contains information about the prin-
cipal entity’s security credentials and
encrypts a message with private key.
This provides an opportunity to verify
that the key was issued by the CA. In
an Oracle Environment the PKI com-
ponents include Certificate Authority,
Certificates, Certificate Revocation
Lists, Wallets and Hardware Secu-
rity Modules. CA issues the certificate
signed with its own private key. To
verify the certificate was in fact issued
by the CA its public key is used. The
certificate is created only in the event
that the entity’s public key is signed by
a trusted CA. Certification Revocation
(CLR) lists is a list where CA stores ex-
pired or invalid certificates. The server
searches for CLRs in the following
locations: local file system, Oracle
Internet Directory and CRL Distribu-
tion Point. Oracle Wallet is used for
generating a public-private key pair
and create certificate request, store
a user certificate that matches with

the private key and configure trusted
certificates. And finally Hardware Se-
curity Modules are devices that stores
cryptographic information, such as pri-
vate keys or to perform cryptographic
operations to off load RSA operations
from server. There are two types of
this device: server-side (stores keys)
and client-side (smart card readers).
To improve the security, it is possible
to use additional authentication meth-
ods (RADIUS, Kerberos). SSL brings
some issues with using Firewalls.
Firewalls that perform packet inspec-
tions must have this feature disabled
otherwise they are unable to read
the packet. In this case Oracle Net
Firewall Proxy kit can provide some
specific support for database network
traffic. U.S. government regulations
prohibit double encryption. This is the
reason why this will not work concur-
rently with SSL encryption or another
encryption method.

OAS SSL
Authentication Practice
When implementing advanced secu-
rity features there are some options.
You can utilize third-party software
like Kerberos or RADIUS; it is pos-
sible to use Secure Socket Layer
(SSL). Oracle has a specific set of
tools used to manage certificates,
wallets and certificate revocation
lists. Oracle’s Wallet Manager is an
application that stores security cre-
dentials in the users Oracle wallets.
This Manager can be used to create
public and private key pairs, store and
manage user credentials, generate
certificate requests, store and man-
age certificate authority certificates,
upload and download wallets to and
from an LDAP directory and create
wallets to store hardware security
module credentials. OWM could be
found on UNIX in $ORACLE _ HOME/bin/

owm. See Figure 1. Another important
tool is Oracle’s Net Manager. It is
well known common database ad-
ministration however when oracle’s
advanced security is installed Oracle
Net Manager allows one to configure
strong authentication, network en-
cryption and check summing for data
integrity. See Figure 2.

Oracle Wallet Manager
Is used as place to store, manage
and edit authentication and signing
credentials. This includes private
keys, certificates and trusted certifi-
cated needed by SSL. It could also
be used as storage for credentials
for a hardware security module.
To protect the content a password
must be chooses that complies with
the Password Management Policy
guidelines (min. 8 chars, alphanu-
meric required). It could be used
to store certificates (X.509) under
Triple-DES encryption. For optimum
wallet access and administration
Oracle provides an option to store
your user profile in the registry. [6]

OWM enables one to store
multiple certificates in each wal-
let supporting SSL authentica-
tion, S/MIME signature, S/MIME
encryption, Code-Signing and CA
Certificate Signing. The process of
obtaining a new certificate consists
of several steps. First is to gener-
ate a unique private/public key pair.
The private key stays in the wallet
and the public key is sent with the
request to a certificate authority.
Once the certificate authority gen-
erates and signs the certificate it
could then be imported into the
wallet that has the corresponding
private key. There is X.509 Version
3 Key Usage extension to define
Oracle PKI certificate usage. Ora-
cle’s Wallet also supports LDAP.
This feature allows users to retrieve
their wallets from LDAP directory.
This allows users to access wallets
from multiple locations or devices.
Only functional wallets could be up-
loaded to LDAP. To protect access
Oracle’s wallets are stored in LDAP
there are passwords to access
Wallets from LDAP and another to
open the Wallet itself. It is recom-
mended that separate password
be used where neither one can
logically be derived from the other.
The description of creating a new
wallet could be found in [9 Chap-
ter 9.3]. Here is a short overview
of possible actions: Create wallet
(standard or stored on a hardware
security module [PKCS #11]), Open,

Oracle Wallet, Transparent Data Encryption, Network data encryption and integrity

63hakin9 4/2007www.hakin9.org/en

Close, Upload /Download to /from
LDAP Directory, Save, Save As,
Delete, Change password, Use
Auto-Login, Manage Certificates.
Let’s have a quick look at the last
action. There are two types of cer-
tificates to manage. There are User
certificates and trusted certificates.
The first step will be to Request
a certificate (there is difference in
key length 512b-4096b). After the
Certification Authority processes
and approves your request for cer-
tificate it is possible to import the
certificate into the wallet. =

Transparent
Data Encryption
Transparent Data Encryption works
to enhance database security at the
Operating System Level. This fea-
ture can protect the Virtual Private
Database [4]. This type of attack is
based on raw access to data files.
Data encrypted using Transparent
Data Encryption could be helpful
in a regulatory issue. Also there is
no need to request users to store
encryption keys. It also simplifies
the development process because
it is not necessary to make any
deep changes in applications that
access data. There are some cases
where TDE it is not recommended
(indexes, BLOB and utilities with
raw access to data). While TDE is
good it is not the ultimate solution.
The master key is stored unen-
crypted in the SGA [5]. This should

serve as a warning that even the
most complex security defense is
useless when there is someone
who has a bright idea and a genius
brain. Let’s have a look what we
already know. The usage of Wallet
is to store the master keys. There
are specific commands to work with
Wallets. For the sake of this article
let’s assume say there is only one
key that opens and allows access
to our wallet. There is also a feature
to enable auto-login into the wallet.
The mkwallet is a command line util-
ity that allows wallet management
without a GUI. Just after the wallet
is setup and it is opened with master
key we can start to create and use
the transparent data encryption.
To set a new master key issues
this command: ALTER SYSTEM
SET ENCRYPTION KEY IDENTI-
FIED BY password. To make the
encrypted data accessible just is-
sue ALTER SYSTEM SET WALLET
OPEN IDENTIFIED BY password.
Right after opening the wallet TDE
uses standard DDL e.g. CREATE
TABLE table_name (column _ name
column _ type ENCRYPT, …), AL-
TER TABLE table_name MODIFY
(column _ name column _ type EN-
CRYPT,…). Access to all encrypted
columns in the database could be
done by statement ALTER SYSTEM
SET WALLET CLOSE. To get infor-
mation of what columns in database
are encrypted just use following
views: DBA _ ENCRYPTED _ COLUMNS,

ALL _ ENCRYPTED _ COLUMNS and USER _

ENCRYPTED _ COLUMNS.

Network
Data Encryption
and Integrity
Let’s recap what we have learned
in this article. Some time ago when
Oracle was in version 8.1.7 there
was restrictions on the exporta-
tion of cryptosystems from the US.
That’s why there are several ver-
sions (in 8.1.7) these are Domestic,
Upgrade and Export. Each version
is different in the key length that is
uses. There is well known post-at-
tack on Oracle action. This con-
sists of Rootkit deployment upon
successful infiltration. Another is
just to distract data integrity in two
possible ways data modification
attack (this mean to alter in some
manner values stored in database)
and replay attack (multiple usage
of normally disallowed transaction).
Oracle offers defenses against
these types of attack by using
checksumming packages. I mean
the usage of MD5 (Message Di-
gest 5) or SHA-1 (Secure Hash
Algorithm) SHA-1 to prevent and
discover this type of attack. The
principle is to use hash algorithms
to create a checksum. On the base
of this checksum there is possibility
to discover if the data integrity has
been altered on its way between
server and client. This could pre-
vent man-in-the-middle attack).
The principle is based on session
key by Diffie-Hellman negotiation
algorithm. Then OAS combines
the shared secret and the Diffie-
Helman session key to generate
a stronger session key designed to
defeat a man-in-the-middle attack.
To activate Encryption and Integrity
the server selects which algorithm
to use from those specified in the
sqlnet.ora files. There are four
levels of security between client
and server. These are REJECTED
(minimum amount), ACCEPTED
(default), REQUESTED and RE-
QUIRED (maximum amount). As
an option the encryption seed can
be set. l

References
• [1] Oracle Database Advanced Security Administrator’s Guide 10gR2.
• [2] SSH (O’Reilly) – cap. 1.6.6 Secure Socket Layer SSL.
• [3] Chey Cobb, CISSP – Cryptography for Dummies (Wiley) 2004.
• [4] The Oracle Hacker’s Handbook.
• [5] Transparent Data Encryption stores key unencrypted in the SGA,
 http://www.red-database-security.com/advisory/oracle_tde_unencrypted_sga.html.
• [6] Oracle Database Platform Guide 10gR2 for MS Windows (32-bit).
• [7] Public Key Cryptography Standard, http://en.wikipedia.org/wiki/PKCS.
• [8] RSA Security, http://en.wikipedia.org/wiki/RSA_Security.
• [9] EMC Corporation, http://en.wikipedia.org/wiki/EMC_Corporation.
• [10] Oracle’s special users: SYS, SYSTEM, INTERNAL and PUBLIC,
 http://www.adp-gmbh.ch/ora/misc/sys_system_internal.html.
• [11] Oracle password file (orapwd utility),
 http://www.adp-gmbh.ch/ora/admin/password_file.html.

