
Applying the AN10E40
Magnetic Stripe Read Head Amplifier
Introduction
Every now and then a technology comes along that’s easy to use, robust and adapts to many applications. Magnetic
data stripes are one such technology. The obvious example is the credit card. But there are many other examples
including: paper airline tickets, shopping club cards, video rental store ID cards, driver licenses, vending machine debit
cards, and the list goes on.

This application note briefly describes how an Anadigm Field Programmable Analog Array (FPAA) can be used to
construct a complete magnetic stripe read amplifier / decoder and how it can be easily interfaced to a host processor.
The note also describes the benefits of programmable analog verses fixed function in such an application.

The Standard Card
"The beautiful thing about standards is that there are so many to choose from." How true. There are loads of
standards to choose from when discussing magnetic stripe technologies, and I shall not endeavor to enumerate them
all here. Suffice it to say that the most often referenced specification is ISO/IEC-7811. I'll just capture the highlights
here with the understanding that we are using a read head and housing intended for plastic card magnetic stripe read
applications. There are many quality suppliers of such, in this instance Magtek products were utilized.

For this discussion, the figure to the left represents the back of a
typical plastic credit card. With the magnetic stripe on top as
shown, the first (top) track is encoded in a format established by
the International Air Transport Association, this track usually has
your name encoded on it.

The second track (and this the real workhorse of the bunch) is in a
format defined by the American Bankers Association. It contains
your credit card number. The third track format is called THRIFT,
and was originally intended for use with Automatic Teller Machines
(ATMs). Unlike the read-only tracks 1 and 2, the THRIFT track was
intended for read and write applications. This never really caught

on and the track is not often used, except in those applications where the requirement to write back data is part of the
design. Typical examples include copy machine and vending machine debit cards.

Viewing the card as shown above, data is encoded from right to left. The encoding always starts with the least
significant bit. (The right most bit is the LSB of the first character for the stripe.) The definition for each track is different
and is summarized in the table below.

Bits per Character Bits Per Inch
Track 1 - IATA Alpha - 6 Data + 1 Parity (odd) 210
Track 2 - ABA BCD - 4 Data + 1 Parity (odd) 75
Track 3 - Thrift BCD - 4 Data + 1 Parity (odd) 210

From Mag Stripe to ASCII Type…
There are a number of steps required to get from the magnetic read head signal to ASCII data digestible by most
processors. The following diagram shows these translation steps as we move from top to bottom.

App Note 006

Track 1 - IATA
Track 2 - ABA
 Track 3 - THRIFT

The Magnetic Stripe
Understanding the conversion process begins with knowing how data is stored on the card. Imagine a long chain of
bar magnets, some are one unit in length (and always found in pairs) all the rest are two units long. Further, each of
these bar magnets is arranged contrary to the state they would prefer, such that North always touches North, and
South always touches South. In these areas where like poles are abutted, there are large concentrations of magnetic
flux lines.

The Read Head Signal
The magnetic stripe is swiped passed the read head. A current will be induced as each of these regions of high flux
concentration passes. N-N will induce a current in one direction, and S-S will induce a current in the opposite direction.
As it turns out, the polarity of the read head signal doesn't matter. It is only the spacing in time of the transitions that is
relevant to converting to an F2F waveform.

F2F or Aiken Biphase
For now, we'll put off the discussion of just how to create the F2F waveform from the read head signal and instead
focus only on what F2F encoding is. Also known as Aiken Biphase, F2F encoding uses the space between flux
transitions to encode a bit. A two unit bar magnet represents a Zero, and a pair of one unit bars represents a One.

To put it another way, each bit occupies the same physical length on the stripe. A bit with an 'extra' flux transition in the
middle of its length is called a One. Again, the polarity of these transitions is arbitrary, it is the relative space between
transitions that signifies a One or a Zero.

Converting from Card Data to ASCII
Each track begins and ends with "clocking bits". Clocking bits are nothing more than a string of Zeros. As it turns out, a
manual card swipe is a fairly constant speed event. Thus, a bit period from the beginning of a swipe is very close to a
bit period at the end of a swipe. The "clocking bits" are examined for length (the bit period) and set the pace of the
particular swipe. A Zero is recognized if the time elapsed between flux transitions is close to a bit period. A One is
recognized if the time elapsed between flux transitions is close to half a bit period.

For processors equipped with a timer peripheral, it is possible to connect the FPAA output (which will be toggling
between 0 and 5 V during a card swipe) to the timer port's input pin. Interrupts will be generated with each transition
and storing the timer values into an array is all that is required of the interrupt service routine. A quick bit of post
processing on the array of values easily deciphers the Ones and Zeros.

For lower cost processors, you'll have to instead connect the FPAA output to a general purpose input pin on the
processor. Once a first transition is detected (usually as an interrupt), the processor then has to completely devote
itself to keeping track of time, polling the input pin at regular intervals, and recording when the transitions occur. Here
again, post processing of the array of time stamps will decipher the Ones and Zeros.

Magnetic Stripe
N SS NN S N SS N S NS N N SS N N SN SS N

Read Head Signal

Converting to F2F

B1=10 B2=1 B3=0 B4=1 P=0000

Decoding from F2F to Binary Card Data

4 Clocking Bits (leading Zeros) Start Sentinal ";"

Read head passes over the stripe in this direction.

Keep in mind that the card may have been swiped backwards. Flipping the data around is easily handled in software.

Now that you have a string of Ones and Zeros, you need to recognize where the data started, and how to interpret it.
For an introduction to this part of the process, please see this note's Addendum.

Applying the AN10E40 as a Magnetic Read Head Amplifier and F2F Generator
Only G01 gain stages and C02 comparators are required. The circuit demonstrated here is a sort of an "analog S-R
flip-flop". The comparators and their feedback paths form a bi-stable circuit. The circuit will stabilize in only two states.

Looking at the circuit diagram on the left. Voltages are shown bold, and amplifier gains are shown in square brackets.
The amplifiers are shown with a bubble on their outputs just to serve as a visual reminder that these are all inverting
amplifiers. Assume there is no card present and that all node voltages are as shown. (A reminder: All analog signal
processing within the FPAA is done with respect to Voltage Mid-Rail (VMR), and by convention this is labeled as 0 V.
VMR is actually 2.5 V above the chip's ground… so for the above left diagram, a processor would see the output of
+2.5 V as +5 volts (logic high) and an output of -2.5 V as 0 volts (logic low).)

Examine the node voltages for a moment and you'll see that the circuit is in a stable state. The output is a logic high.

Now consider what happens when a card is swiped passed the read head. For the example shown above right, a S-S
flux field passed over gap in the read head. This induced a small signal negative going spike. The high gain input
stages convert this small spike into a full rail signal. (Any input signal with an amplitude of greater than 25 mV will
simply result in a clipped signal as shown.) This positive pulse presented to the negative terminal of the top
comparator will cause it to change state as shown by the falling output waveform. Just the opposite is happening on
the lower comparator as the entire circuit transitions to its other stable state. The output is now a logic low.

The figure above is a scope shot of the circuit in action. In this particular case, a read head was interfaced directly to
an AN10E40. The top trace shows the raw read head input… noise and all. The bottom trace shows the circuit's output
signal (a 0 - 5V F2F logic waveform). No other components were used. Nothing to it; its that easy with programmable
analog.

0 V
(VMR)

IO Cell

IO Cell
IO Cell

[-100]

[-10] [-10]

[-0.5]

[-0.5]

-25 mV

 N

 S

 S

 N

0 V
(VMR)

IO Cell

IO Cell
IO Cell

[-100]

[-10] [-10]

[-0.5]

[-0.5]
Read
Head

0 V 0 V
+2.5 V

+1.25 V

-1.25 V

-2.5 V
0 V

+2.5 V Logic High

Logic Low

The circuit as shown above consumed only 9 of the 20 CAB's available within an AN10E40. In point of fact, the two
series amplifiers in the bottom leg of the circuit really aren't required, provided that the bottom comparator's negative
terminal is instead connected to VMR, and this reduces the CAB consumption by two. There is plenty of room in an
AN10E40 for a second read channel with room to spare.

Benefits of Using Programmable Analog
The circuit described is simple enough and can of course be constructed using twenty or so standard components. So
why programmable analog?

The obvious answer is component count. There were no extra components of any kind used in this application. The
read head was interfaced directly to the FPAA. However, the real advantages don't become obvious until you take the
circuit out of the lab and into the harsh light of the real world.

In the real world credit card stripe readers constructed without programmable analog aren't all they should be. You've
seen evidence of this so many times that you have probably become numb to it. Take a moment and recall all the
cashier "swipe" techniques you have witnessed. The "slow and deliberate" swipe. The "fast swipe". The "run it
backwards" swipe. The "run it back and forth and back and forth" technique (one of my personal favorites). The "clean
the card and try it again swipe". The "wrap the card in a plastic bag and try it again swipe". The "try the other card
reader " technique. And then of course there it the ultimate contingency plan where the cashier holds the card up to the
light just right so the badly worn raised numbers can be recognized and typed in by hand (usually while sharing a
disgusted look with you).

Dirt, wear, temperature, and exposure to unintentional magnetic fields all conspire to render magnetic stripe cards
difficult to read. Likewise, dirt, wear and corrosion work to render the read heads less and less efficient. So how can
programmable analog fix the situation? The host processor can download a complete new circuit configuration to an
AN10E40 in under 125 microseconds. So when a swipe fails, you can adjust the gain of the input amplifiers in just a
fraction of a second. In fact, in a carefully designed system, you can adjust the read amplifiers during the leading
clocking bits! A second swipe will not be necessary.

The circuit can also be adjusted for reading cards with differing magnetic stripe coercivity. While usually not important
for read heads, adjusting write head drive signals is essential to accommodate such coercivity differences.

These are some the advantages of applying programmable analog just in standard card applications. In custom
applications, there are even more advantages to using programmable analog. For high security applications, the FPAA
can be configured to handle different data encoding techniques including tone generation and decoding. Read and
write functions and more.

Addendum - Credit Card Track Encoding and Data Standards

There are a lot of steps involved in recovering data off a simple magnetic stripe. So far we have covered read head
amplification, generation of an F2F waveform and its interpretation into a string of ones and zeros. The next step in the
recovery process is to convert the binary data into character data, usually ASCII. The rules for interpreting the data
vary with which track you are reading.

Track Data Encoding and Parameters

Track Standard BPI
Character

Type
Number of
Characters

Encoding
Scheme Comments

1 IATA 210 Alphanumeric 79 6 Bits + Odd Parity Read Only
2 ABA 75 BCD 40 4 Bits + Odd Parity Read Only
3 Thrift 210 BCD 107 4 Bits + Odd Parity Read & Write (uncommon usage)

Common Track Layouts
Common to every track are the "clocking bits". Clocking bits are found at both ends of every track. Clocking bits are
short string of zeros intended to give self clocking card readers a chance to establish the swipe speed and set a bit cell
time duration. In our application, the microprocessor will examine the clocking bit periods as a first step in decoding the
binary data.

Also common to every track are the Start Sentinel (SS), End Sentinel (ES) and Logitudnal Redundancy Check (LRC)
characters. On Track 1, the SS and ES characters are % and ?, respectively. On Tracks 2 and 3, the SS and ES
characters are ; and ?, respectively. Field Separators (FS) are common to Tracks 1 and 2.

If at first you don't recognize a Start Sentinel, then chances are the card was swiped backwards. You will have to
adjust your decoding algorithm accordingly.

The LRC is the sum of all previous Bn bits for all the previous characters on the stripe (overflow is ignored). The odd
Parity bit associated with each character will only flag a problem an odd number of bits (like 1) were in error for that
character. It is unlikely that there will be 2 bit errors in a single character, but if there is, the odd parity checking will not
recognize the event. The job of the LRC then is to add one more layer of error checking for the data stream associated
with the entire track.

Track 1 Specific Layout

zeros | SS | FC | Primary Acct (19 characters max) | Name (26 characters max) | FS | other data | ES | LRC | zeros

Track 2 Specific Layout

zeros | SS | Primary Acct (19 characters max) | FS | other data | ES | LRC | zeros

Track 3
There are too many non-standard uses of Track 3 to enumerate here. Suffice it to say, it is largely an abandoned track
and consequently is where most specialized or custom systems will encode data. The original intent was to use this
track as a Read/Write track and actually carry encrypted information about your bank account balance here. This
allowed non-networked automated teller machines to dispense money without really knowing for sure what your actual
balance was at the moment of the withdrawal. It didn't take the banking industry very long to realize that it is far better
to instead network together ATMs and abandon the idea of dynamic data on your ATM card. Track 3 is now an orphan.

Track 1 Character Set - 6 Bit Alpha with Odd Parity
Character P B6 B5 B4 B3 B2 B1 ASCII Character P B6 B5 B4 B3 B2 B1 ASCII
Space 1 0 0 0 0 0 0 20 40

(undefined) 21 A 1 1 0 0 0 0 1 41

22 B 1 1 0 0 0 1 0 42

(OG) 1 0 0 0 0 1 1 23 C 0 1 0 0 0 1 1 43

$ 0 0 0 0 1 0 0 24 D 1 1 0 0 1 0 0 44

%(SS) 1 0 0 0 1 0 1 25 E 0 1 0 0 1 0 1 45

26 F 0 1 0 0 1 1 0 46

27 G 1 1 0 0 1 1 1 47

(0 0 0 1 0 0 0 28 H 1 1 0 1 0 0 0 48

) 1 0 0 1 0 0 1 29 I 0 1 0 1 0 0 1 49

2A J 0 1 0 1 0 1 0 4A

2B K 1 1 0 1 0 1 1 4B

2C L 0 1 0 1 1 0 0 4C

- 0 0 0 1 1 0 1 2D M 1 1 0 1 1 0 1 4D

. 0 0 0 1 1 1 0 2E N 1 1 0 1 1 1 0 4E

/ 1 0 0 1 1 1 1 2F O 0 1 0 1 1 1 1 4F

0 0 0 1 0 0 0 0 30 P 1 1 1 0 0 0 0 50

1 1 0 1 0 0 0 1 31 Q 0 1 1 0 0 0 1 51

2 1 0 1 0 0 1 0 32 R 0 1 1 0 0 1 0 52

3 0 0 1 0 0 1 1 33 S 1 1 1 0 0 1 1 53

4 1 0 1 0 1 0 0 34 T 0 1 1 0 1 0 0 54

5 0 0 1 0 1 0 1 35 U 1 1 1 0 1 0 1 55

6 0 0 1 0 1 1 0 36 V 1 1 1 0 1 1 0 56

7 1 0 1 0 1 1 1 37 W 0 1 1 0 1 1 1 57

8 1 0 1 1 0 0 0 38 X 0 1 1 1 0 0 0 58

9 0 0 1 1 0 0 1 39 Y 1 1 1 1 0 0 1 59

3A Z 1 1 1 1 0 1 0 5A

3B 5B

3C 5C

= 1 0 1 1 1 0 1 3D 5D

3E ^(FS) 0 1 1 1 1 1 0 5E

?(ES) 0 0 1 1 1 1 1 3F 5F

To convert to the ASCII value, ignore the P (parity bit) and add the hex value of B[6:0] to 20 hex.
For example for the / character, 0F + 20 = 2F

Tracks 2 & 3 Character Set - 4 Bit BCD with Odd Parity
Character P B4 B3 B2 B1 ASCII Character P B4 B3 B2 B1 ASCII

0 1 0 0 0 0 30 8 0 1 0 0 0 38

1 0 0 0 0 1 31 9 1 1 0 0 1 39

2 0 0 0 1 0 32 :(AS) 1 1 0 1 0 3A

3 1 0 0 1 1 33 ;(SS) 0 1 0 1 1 3B

4 0 0 1 0 0 34 < 1 1 1 0 0 3C

5 1 0 1 0 1 35 =(FS) 0 1 1 0 1 3D

6 1 0 1 1 0 36 > 0 1 1 1 0 3E

7 0 0 1 1 1 37 ?(ES) 1 1 1 1 1 3F

To convert to the ASCII value, ignore the P (parity bit) and add the hex value of B[4:0] to 30 hex.
For example for the ; character, B + 30 = 3B

P = Parity Bit, usually odd FS = Field Separator
SS = Start Sentinel AS = Account Separator (Track 3 Only)
ES = End Sentinel OG = Option Graphic

Contact Information 1.00

Anadigm is pleased to offer our
customers direct access to the following offices:

WEB
http://www.anadigm.com/

USA
Anadigm Inc.
21615 Stevens Creek Blvd
Cupertino
CA 95014

Anadigm Inc.
155 East Chilton Drive
Suite 201
Chandler
AZ 85225-1115

Tel: +1 408 996 2091
Fax: +1 408 996 2093

Tel: +1 480 545 6730
Fax: +1 480 545 2915

UK
Anadigm Ltd.
Scott House
Westmere Drive
Crewe
CW1 6ZG

Tel: +44 (0) 1270 531990
Fax: +44 (0) 1270 531999

GERMANY
Anadigm Ltd.
Gottlieb-Daimler Str. 6
82140 Olching

Tel: +49 (0) 8142 4485830
Fax: +49 (0) 8142 4485840

