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ABSTRACT
We introduce a system-level Simulation and Analysis Engine
(SAE) framework based on dynamic binary instrumentation
for fine-grained and customizable instruction-level introspec-
tion of everything that executes on the processor. SAE can
instrument the BIOS, kernel, drivers, and user processes.
It can also instrument multiple systems simultaneously us-
ing a single instrumentation interface, which is essential for
studying scale-out applications. SAE is an x86 instruction
set simulator designed specifically to enable rapid prototyp-
ing, evaluation, and validation of architectural extensions
and program analysis tools using its flexible APIs. It is fast
enough to execute full platform workloads—a modern oper-
ating system can boot in a few minutes—thus enabling re-
search, evaluation, and validation of complex functionalities
related to multicore configurations, virtualization, security,
and more. To reach high speeds, SAE couples tightly with a
virtual platform and employs both a just-in-time (JIT) com-
piler that helps simulate simple instructions e�ciently and a
fast interpreter for simulating new or complex instructions.
We describe SAE’s architecture and instrumentation engine
design and show the framework’s usefulness for single- and
multi-system architectural and program analysis studies.

CCS Concepts
•Computing methodologies ! Simulation environ-
ments; Simulation tools; Interactive simulation;
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1. INTRODUCTION
The landscape of computing continues to evolve rapidly

as do the workloads. Computing workloads have evolved
from being simply single- or multithreaded to running across
distributed systems, mostly driven by large-scale program-
ming frameworks, such as Spark and Hadoop, that support
scale-out applications and analytics. With the emergence
and proliferation of these workloads, there is a need for new
and robust instrumentation tools that can facilitate deep
program introspection without compromising transparency.
Characterizing and analyzing scale-out workloads has been
challenging, if not impossible, due to the lack of industry-
strength tools that can enable fine-grained, transparent pro-
gram introspection both within and across nodes.

We identify three fundamental requirements for tools to
study scale-out workloads. (1) Instrumentation: Researchers
must be able to build a centralized and comprehensive view
of distributed execution. This requires that they be able to
write arbitrary tools and control them from a centralized in-
terface. (2) Full-system: Datacenter workloads rely on ker-
nel services and inter-process interactions. A tool to study
these workloads must capture everything that executes on
a processor, both in kernel- and user-space and across pro-
cesses and nodes. (3) Transparency : In a scale-out workload,
the instrumentation tool must be transparent not only to the
process under study, but also to its interactions with the rest
of the system and the rest of the network. A single instru-
mented system running slower than the rest of the nodes, for
example, could compromise transparency because the node
interactions would be altered by the changed speed.

We introduce the Intel Simulation and Analysis Engine
(SAE)—a system-level dynamic binary instrumentation en-
gine that meets all three requirements. (1) SAE supports
fine-grained distributed workload instrumentation with a
simple API to create arbitrary analysis tools. It instruments
all systems from a single interface, enabling a coherent view
of distributed execution. (2) At its heart, SAE is a processor
model that simulates instruction execution in the context of
a full or distributed system. Hence, it is not limited to user-
space exploration, instead capturing literally all activity on
a CPU, including even kernel, driver, and BIOS operations.
(3) SAE is unique in being built atop a mature virtual sys-
tem platform: Wind River Simics. Consequently, SAE re-
sides entirely in the host machine’s space: it uses none of
the virtual machines’ memory space, nor does it change the
progress of time within a virtual machine. And because all
the systems are controlled from within SAE, there is no rel-
ative slowdown between any two machines.

https://software.intel.com/en-us/intel-sae-sdk
http://dx.doi.org/10.1145/2925426.2926293
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Simulating unmodified scale-out workloads demands high
speed. In order to achieve good performance, SAE com-
bines a lightweight just-in-time (JIT) compiler—for simu-
lating simple, frequent instructions e�ciently—with a fast
interpreter—used for infrequent and complex instructions.
It incorporates numerous optimizations and manages su�-
cient speed to boot unmodified operating systems and exe-
cute large distributed workloads (e.g. Hadoop).

To enable powerful and flexible instrumentation, SAE’s in-
strumentation interface allows for plug-in tools which can be
loaded and unloaded dynamically while simulation is active.
Tools are developed in C/C++ and they programmatically
describe what to instrument and the analysis actions to per-
form during execution. The instrumentation API strongly
decouples the tool implementation from SAE’s internal im-
plementation, allowing the developers to focus on their task.

The vast majority of scale-out workload studies rely on
hardware performance counters [11, 16, 26, 20, 14]. While
the insights gathered from performance counters can be in-
formative, they are typically limited to existing platforms.
Hardware performance counters do not facilitate architec-
ture design space exploration (e.g. better cache designs,
prefetch engines, interconnects) and software program anal-
ysis (e.g., information flow, memory alias analysis, program
slicing), as both of these tasks require instruction-level pro-
gram tracing coupled with the flexibility to develop cus-
tomizable tools. While tools such as Pin and derivatives
of DynamoRIO support fine-grained instrumentation, they
fall short on transparency and full-system instrumentation.

In summary, SAE o↵ers capabilities that no other single
tool can o↵er. It enables easy but powerful instrumentation
(like Pin) for the entire software stack (like gem5 [4]) while
maintaining perfect transparency (like QEMU [1]). SAE
combines these attributes and not only allows for hardware
and software exploration within a system but extends that
capability to workloads distributed across systems.

The paper is organized as follows. Section 2 motivates the
need for SAE. Section 3 presents an overview of SAE. Sec-
tion 4 gives details about the instrumentation system and
describes the CPU- and OS-related instrumentation inter-
faces that users can use to build custom program analysis
tools. Section 5 describes the underlying hybrid interpreter
and JIT compiler technology that enables fast and e�cient
instrumented simulation. Section 6 evaluates the perfor-
mance of SAE from a multitude of dimensions and presents
our best e↵ort to compare SAE against existing technology.
Section 7 presents prior work and summarizes SAE’s distin-
guishing features. Section 8 concludes the paper.

2. REQUIREMENTS
Scale-out workloads present several unique challenges for

researchers. The fact that they represent a single workload
executing concurrently across multiple machines means that
no single part of the execution can be studied in isolation.
We posit that a research tool must provide instrumenta-
tion capabilities, support full-system analysis, and guaran-
tee transparency to study these applications (see Figure 1).

Instrumentation Providing instrumentation APIs is
not a new concept—Pin, Valgrind, and DynamoRIO all pro-
vide this capability—but in providing instrumentation to
support a scale-out workload, we refine the definition of in-
strumentation: a framework must provide a single unified
point of instrumentation control. This would allow for cap-

A B

C

D E

SAE

Transparency Instrumentation

Full-System

Group Examples

A Performance counters

B Pin, Valgrind,
DynamoRIO

C gem5 FS

D QEMU, SimFlex,
BOCHS, QTrace,

DECAF

E PinOS, DrK

Figure 1: SAE satisfies all three fundamental require-
ments (transparency, programmable instrumentation,
and full-system view) for studying scale-out workloads.

turing a single coherent picture of the distributed execution.
This definition means, for example, that simply launching
multiple instances of Pin on each of the nodes in a data-
center does not qualify. Such an approach lacks the sin-
gle coherent picture of distributed execution, instead forcing
post-processing to precisely align distributed events.

Full-System A research platform must also support full-
system analysis. Gone are the days when virtually all code of
interest was restricted to user-space execution; modern pro-
grams, especially in datacenters, rely heavily on kernel-space
services. Ignoring that aspect of program execution could
miss as much as 60% of the committed instructions [11, 14].
Hence, these workloads must be studied in their entirety,
using a tool that can capture the full execution stack.

Transparency We define transparency to be the prop-
erty that a framework has zero impact on the system under
study; this precludes, among other things, sharing a tar-
get application’s memory space, slowing the application’s
execution relative to the operating system and other pro-
cesses, and changing the timing of the target application
relative to other systems on the network. Our definition of
transparency expands upon that used by previous projects.
Pin and Valgrind, for example, claim transparent operation
because the application under study requires no modifica-
tions to operate under each tool. With our expanded def-
inition, however, we see where transparency breaks down:
these tools commandeer a portion of the application’s mem-
ory space and, more importantly, they alter the progress of
the application relative to the rest of the system (operat-
ing system interrupts, for example, are not slowed to match
the slowdown in application progress) and relative to other
systems on the network.

As Figure 1 and the table associated with it show, there
are a number of “open source” research tools. But we believe
that no single existing tool fully satisfies all three require-
ments for faithfully studying scale-out workloads. In Sec-
tion 7, we explore these more fully and discuss the various
shortcomings of prior work, particularly relating to trans-
parently introspecting scale-out workloads.

3. ENTER SAE
SAE lies at the intersection of the three requirements for

a system to analyze scale-out applications. It is an instru-
mentation engine. SAE allows users to easily create custom
tools capable of everything from ISA extensions to security
analyses. SAE is e↵ectively a CPU simulator for Simics, en-
abling instrumentation of everything that executes on the
processor, regardless of OS (or even lack of an OS). SAE
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Virtual Platform
(e.g. Simics)

Instrumentation engine

Interpreter JIT Compiler

XED (x86 Encoder/Decoder)

Instr.
Tool 1 … Instr.

Tool N

Instrumentation API

CP
U 

AP
I

Guest OS
(Linux, Windows, 

Android etc.) SAE

CPUI/O

Peripherals

CPU

Figure 2: Overview of the system and how the SAE CPU
model interfaces with a virtual platform to support full-
system instrumentation via an instrumentation interface.

is perfectly transparent: because it resides fully in the host
machine’s memory space, SAE and its instrumentation tools
cannot encroach on the system under study. Furthermore—
and very importantly—because SAE is a system simulator,
any slowdown it imposes is reflected only on the host and not
in the guest. Because SAE is even a multi-system simulator,
time progresses at the same rate across all the systems so
that even if one system is slow (because of instrumentation),
that slowdown is invisible to the simulated datacenter.

SAE is a functional x86 CPU, fitted with instrumentation
capabilities that achieve high-performance using an intel-
ligent combination of an interpreter and just-in-time com-
piler. Figure 2 shows how it provides a high-level instru-
mentation interface that is implemented using an interpreter
and compiler, using the x86 XED [9] encoder/decoder. In
addition to serving as the computation engine of the vir-
tual platform (i.e., simulating instructions), SAE modifies
the execution’s behavior according to user-defined instru-
mentation tools. SAE has a powerful set of APIs that allow
users to have full architecture and program state access at
instruction granularity. It can also provide information at a
coarser grained per-core and per-system level. Moreover, it
supports multiple concurrent instrumentation tools, and it
is also capable of instrumenting multiple systems.

The SAE instrumentation engine is designed specifically
to address an important problem present in instrumenting
scale-out workloads: how to observe and modify a program’s
behavior with an external instrumentation agent without
using the observed system’s memory or other resources [6].
The widely used Pin [19] and DynamoRIO [5] tools share
vital resources with the instrumented target application and
hence could compromise system robustness and transparency.
For instance, Pin’s compiler and code cache is injected into
the instrumented application’s virtual address space. Often,
this can result in virtual memory conflicts between the appli-
cation and the instrumentation system. In practice, we ob-
serve large applications, such as the Oracle database engine,
using hard-coded virtual addresses for caching and shared
global memory (across multiple threads and processes). Pin
and DynamoRIO’s solutions to this problem are OS-specific,
requiring custom e↵ort and solutions across di↵erent OSs.

The instrumentation engine solves the shared resource
problem using two approaches. First, the system uses the
virtual platform to enable accurate execution of the pro-
gram. Second, the system enables instrumentation as an
external agent. To enable full-system instrumentation, SAE

is integrated into a virtual platform (e.g., Simics) and can
boot an unmodified guest OS. The external agent communi-
cates with SAE and introduces no modifications to the guest
OS’s behavior—there is no need to share resources between
the guest program and the external instrumentation agent
as they reside in completely isolated and di↵erent spaces.

As an example use case, Figure 3 shows the source code
for a simple instruction counting tool that collects the dis-
tribution of instructions executed across di↵erent cores on
multiple systems. We focus our discussion here on the ba-
sic instrumentation interface and delay the explanation of
the multicore and multisystem instrumentation until later.
Lines 46-56 register a runtime callback function. The reg-
istered function (before_ins_exe) is set to be called before
each instruction’s execution (line 48) and increments a run-
ning instruction count (line 20). It is tracking instruction
execution at a per-system and core-level. Lines 58-67 regis-
ter a finalization callback function to be called when simu-
lation terminates. The function (ztool_fini) concludes the
tool’s work by printing the final instruction count (line 30).

For each callback, SAE exposes a handle as well as getter
and setter functions. It does not expose its internal data
structures, thus decoupling the internals from the tool in-
terface. For example, the ztool_state_handle_t (line 15)
can be used to observe and modify current register state
and current memory state. In addition to memory and in-
struction notifications, SAE can be notified upon interrupts
and exceptions. Users can analyze interrupt and exception
triggers as well as service routines, which we discuss later.

4. SAE INSTRUMENTATION ENGINE
SAE provides a rich set of instrumentation capabilities at

the CPU level for studying large and complex real-world
scale-out workloads. We summarize the instrumentation
events that the engine provides to tool writers, starting with
event notification types (Section 4.1). Because SAE sup-
ports multiple active instrumentation tools, challenges arise
that must be solved to ease the programming burden (Sec-
tions 4.2 and 4.3). The engine also provides OS-level in-
strumentation interfaces for tracking OS-level activity (Sec-
tion 4.4). The engine supports multicore and multisystem
instrumentation (Section 4.5), which is useful for studying
multithreaded and distributed large-scale applications (e.g.
MapReduce), and we explain how that is enabled in SAE.

4.1 Instrumentation Events
To study the workloads with varying levels of granularity

and flexibility, the instrumentation engine can deliver di↵er-
ent event notification types to the tools during execution.
Broadly, these are categorized into (1) configuration events,
(2) runtime events, and (3) finalization events.

Configuration events These events are triggered when
there is a change in the simulated machine’s state. When
a new tool is loaded into the simulation the ztool_init()
function is invoked in the tool (line 34 in Figure 3), provid-
ing notification that the tool has been loaded. Within the
scope of this function, a tool can register to receive other
configuration, runtime, or finalization event callbacks.

A key and novel feature of the configuration event type
is the dynamic configuration mechanism, which can enable
or disable callbacks dynamically using a special configura-
tion key—for example, entering a new phase that requires
switching from lightweight to heavyweight instrumentation.
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1 #include <iostream >
2 #include "ztool -api.h"
3 using namespace std;
4
5 struct system_data_t {
6 ztool_handle_t zhandle;
7 unsigned int num_cores;
8 unsigned long *icount_before;
9 };

10
11 ztool_system_data_key_handle_t ztool_key =
12 ZTOOL_SYSTEM_DATA_KEY_HANDLE_STATIC_INITIALIZER;
13
14 // Analysis function. Called before instruction execution
15 void before_ins_exe(ztool_state_handle_t handle , void* data)
16 {
17 void* v2 = ztool_state_get_system_data(handle , ztool_key );
18 system_data_t* sd = reinterpret_cast <system_data_t*>(v2);
19 unsigned int core_num = ztool_state_get_core_num(handle );
20 sd->icount_before[core_num ]++;
21 }
22
23 // Fini function. Call at program termination or shutdown
24 void ztool_fini(ztool_fini_handle_t handle , void* data)
25 {
26 void* v = ztool_fini_get_system_data(handle , ztool_key );
27 system_data_t* sd = reinterpret_cast <system_data_t*>(v);
28
29 for (unsigned num = 0; num < sd->num_cores; num++)
30 cout << "INST COUNT = " << sd->icount_before[num] << endl;
31 }
32
33 // Init function. Called by SAE when tool is first loaded
34 extern "C" void ztool_init(ztool_init_handle_t handle)
35 {
36 system_data_t* sd = new system_data_t ();
37 ztool_handle_t zhandle = ztool_init_get_tool_handle(handle );
38 sd->zhandle = zhandle;
39 sd->num_cores = ztool_init_get_core_count(handle );
40 sd->icount_before = (unsigned long *)
41 calloc(sd->num_cores , sizeof(unsigned long ));
42
43 ztool_system_alloc_data_key(zhandle , &ztool_key );
44 ztool_system_set_data(zhandle , ztool_key , sd);
45
46 { // Instruction execution callback registration
47 ztool_instruction_exe_desc_t desc;
48 desc.when = ZTOOL_INSTRUCTION_WHEN_BEFORE;
49 desc.fn = before_ins_exe;
50 desc.data = NULL;
51 desc.order = ZTOOL_CB_ORDER_DEFAULT;
52 desc.config_key = ztool_init_get_default_config_key(handle );
53 desc.zhandle = ztool_init_get_tool_handle(handle );
54
55 ztool_instruction_exe_register_cb (&desc);
56 }
57
58 { // Simulation fini callback registration
59 ztool_fini_desc_t desc;
60 desc.fn = ztool_fini;
61 desc.data = NULL;
62 desc.order = ZTOOL_CB_ORDER_DEFAULT;
63 desc.config_key = ztool_init_get_default_config_key(handle );
64 desc.zhandle = ztool_init_get_tool_handle(handle );
65
66 ztool_fini_register_cb (&desc);
67 }
68 }

Figure 3: Instrumentation tool code for counting the
total number of instructions executed. The tool tracks
the total instructions executed by each core and system.

A tool can control its callbacks dynamically by allocating a
new configuration key and setting its initial state—enabled
or disabled—during callback registration. Whenever the
tool determines it has to toggle the callbacks’ state, it issues
a dynamic configuration event that enables or disables the
configuration keys accordingly. Dynamic reconfiguration is
controlled using APIs, such as ztool_config_enable_key()
and ztool_config_disable_key(). All instrumentation call-
backs require a key (lines 52 and 63 in Figure 3). The system
provides a default key for convenience.

Runtime events These events are delivered to the
tool when execution encounters a specific architectural event
such as instruction execution, memory access, interrupts,
and exceptions. Upon event delivery, the tool can query
per-event data. For example, on a memory access, the tool

Finalization events

Per event data

Tool unloaded Simulation termination Instruction deletion

Runtime events

Architectural state (register, memory, active core) + per event data

Instructions Memory State-change Architectural

All instructions

By format

By opcode + addr

By instruction

By interrupt/
exception/
page-walk

Exception 
(synchronous)

Interrupt 
(asynchronous)

(e.g. ring 
transition, cr3 
modification, 

machine code)

Configuration events

Per event data

Tool loaded Instruction discovery Dynamic 
reconfiguration

Figure 4: Tool developers can register for three event no-
tification types. Configuration events allow developers to
request notifications when SAE detects new state (e.g.,
instruction discovery). Runtime events allow developers
to request notifications about the simulation’s runtime
activity (e.g., memory accesses). Finalization events al-
low developers to request notifications when anything is
invalidated from the simulation (e.g., termination).

can query the virtual, linear, and physical addresses of the
memory access. It can also query the root cause of the mem-
ory access, i.e. whether the access was caused by a program
instruction or on behalf of an instruction—such as a page
walk while accessing the instruction. The tool can also query
architectural register state during the event, including gen-
eral purpose registers, vector registers, control registers, etc.

Finalization events These are the simplest of events
and they are delivered to the instrumentation tool to enable
the tool to deallocate memory or summarize its analysis.
Finalization events are delivered when the tool is unloaded
from the simulation or when the simulation terminates.

4.2 Precise Event Callback Delivery
SAE can be used for microarchitectural analysis and ar-

chitectural exploration of complex workloads that exercise
the full system stack, including the user space and kernel
space code, and as such it is important that SAE faithfully
mimic and inform the users about the underlying proces-
sor activity at the instrumentation interface level. Existing
tools, such as Pin, fail to faithfully trace full system activity.
Memory accesses, for instance, caused by page walks are not
observed by Pin because it does not instrument the kernel,
and also because it does not simulate the CPU behavior.

Many di↵erent events might be associated with a single
instruction. For example, a user might request callback no-
tifications for before and after an instruction’s execution, for
memory accesses performed by the instruction, and for ex-
ceptions triggered by the instruction. Table 1 shows exam-
ples of event delivery order. We use five commonly executed
x86 instruction types to illustrate the ordering of the event
notifications. Within a SAE tool, it is possible to uniquely
attribute the root cause of events. We can trace when a
hardware interrupt event triggers a memory access (e.g.,
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Instruction #2
(e.g. mov rax, [r8+r9*8])

◦ Before instruction
◦ After instruction

Instruction #1
(e.g. mov r11, rdx)

Instruction #3
(e.g. div ecx)

◦ Before instruction
   ☒ Interrupt start
        □ Before memory access
        □ After memory access
   ☒ Interrupt ready

◦ Before instruction
   □ Before memory access
   □ After memory access
◦ After instruction

◦ Before instruction
◦ After instruction

Hardware
Interrupt

Instruction #4
(e.g. inc r9)

◦ Before instruction
   □ Before memory access
   □ After memory access
◦ After instruction

Instruction #5
(e.g. sub [rcx+r9*8], r11)

☒ Interrupt start
   □ Before memory access
   □ After memory access
☒ Interrupt ready

Table 1: Example order in which event notifications are
delivered. Nesting of events within one another shows
that other event types may be triggered due to an on-
going event. Depending on the tool’s instrumentation
objective, faithful event-order delivery can be essential,
especially if the tool is extending the ISA functionality.

page walks). The tool developer has the power to decide
whether these nested event notifications should be delivered
or masked away (i.e., ignored). The order in which the noti-
fications are delivered is enforced for all the instructions to
faithfully represent program execution on a real CPU.

4.3 Multiple Event Callbacks and Tools
In a production environment, when doing complex anal-

ysis on scale-out programs, it is useful to break down the
instrumentation analysis into separate event callbacks and
tools. Developing in such a way allows for the instrumenta-
tion to be composable and software to be manageable. How-
ever, it introduces correctness issues that SAE addresses.

When a tool is loaded, SAE flushes its instruction code
cache to allow the tool to register its own runtime callback
events. Otherwise, the old instrumented code will be exe-
cuted. SAE flushes the caches again when the tool is un-
loaded to remove all previously registered callbacks notifica-
tions. Tool loading and unloading is expected to be rare, so
the performance penalty for flushing the caches is minimal.

Support for multiple event callbacks and tools becomes a
challenge when one or more callback(s) modify the simulated
CPU state—for example, a callback that implements a new
ISA extension as part of architectural exploration. There
are two important mechanisms that SAE uses to provide
robust support for multiple event callbacks and tools: (1)
control of callback notification order and (2) propagation of
architectural memory accesses generated by tool callbacks.

Callback notification order When multiple instru-
mentation tools are loaded, the tools must be able to notify
one another. For example, a tool may modify a register
value, and this change must be made visible to the other
tools to ensure all tools see consistent machine and program
state. Though it is not usually the case, the notifications
may need to be delivered to the tool(s) based on the order
in which they were registered at configuration time.

SAE supports callback ordering both across tools as well
as in the same tool (where multiple callback notifications

are registered for same event) by exposing a new data struc-
ture. Using the ztool_cb_order_enum_t enumerated type
(provided in the callback descriptor of runtime events), a
tool developer can control the relative order of di↵erent call-
backs. A tool that does not modify any CPU state values—
and most do not—would be provided with a default value
(ZTOOL_CB_ORDER_DEFAULT on lines 51 and 62 in Figure 3).

Propagation of memory accesses When a callback
implements new CPU functionality, such as one that per-
forms architectural memory accesses (recall that SAE allows
the developer to extend the capabilities of the CPU for ar-
chitectural studies), other memory access callbacks should
be notified. For instance, one tool could implement a new in-
structions set architecture (ISA) extension that a↵ects mem-
ory accesses, while another tool implements a cache simu-
lator. Any of the memory accesses performed by the ISA
extension tool must be closely reflected in the cache tool.

To support such scenarios, SAE provides special instru-
mentation interfaces for architectural read, write, and read-
modify-write memory accesses. The memory access inter-
faces first verify that the memory address is accessible (and
issue an exception if not) and provide a memory access bu↵er
to the user. For a read operation, the bu↵er is filled with
the required data and provided to the caller. For a write
operation, the bu↵er is filled by the tool and committed to
memory. For a read-modify-write operation, the tool gets
the required data, modifies the data, and commits it. In
this way, the specialized interfaces for architectural memory
accesses automatically notify other registered memory access
callbacks about the memory accesses performed by the tool.

4.4 Operating System Events
Scale-out workloads tend to exercise the operating system

heavily, as much as 20% to 50% of their execution time in the
kernel [14, 16]. Context switches involving threads and pro-
cesses, thread creation and destruction etc. occur frequently
and put pressure on the OS that can have significant impact
on the architecture [26]. Therefore, it is important to study
the OS behavior of scale-out workloads. A key challenge lies
in understanding the idiosyncrasies of each OS to know how
to track process and thread interactions with the OS.

To ease the burden on programmers, SAE’s instrumenta-
tion engine provides high-level abstraction APIs for OS-level
notifications. For example, a tool can register for context-
switch notifications. These OS-level notifications are pro-
vided by the “OS awareness” instrumentation system that is
built on top of the CPU notifications described thus far.

OS awareness obviates the need for a user to hold inti-
mate platform- and OS-specific knowledge. For example,
using only CPU-level notifications to track context switches
would require understanding the cr3 page table register. A
change in the cr3 register indicates a context switch in the
hardware. However, tracking such low-level changes requires
intimate domain knowledge. OS awareness hides these low-
level idiosyncrasies and automatically calculates the context-
switch address based on symbolic information and registers
an instruction execution callback notification. When the in-
struction execution notification is delivered to the OS aware-
ness tool, it triggers the context-switch event in the tool.

The OS awareness module exposes a set of core OS-level
events that hook directly into the underlying kernel func-
tions. Direct hooking enables accurate interceptions. OS-
level events include tracking process creation, thread switch-
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Process OS-level Event

Start
Process creation
Thread creation

Active

After task switch (from another process to this process)
Program load (i.e., exec() like behavior)
Image load (e.g., libc)
Function entry (e.g., malloc())
Function exit (e.g., malloc())
Before task switch (from this process to another process)
... another process is running
After task switch (from another process to this process)
Thread creation (i.e., multi-threaded process)
Thread destruction (i.e., multi-threaded process)
Before task switch (from this process to another process)

End
Thread destruction
Process destruction

Table 2: The OS awareness module supports various OS-
level event notifications to ease programmer burden, and
the table shows the runtime event delivery order for the
various OS-level events. Some events, such as thread
destruction and task switch, may trigger more than once
during execution depending upon program behavior.

ing, and more. The module also facilitates querying OS-level
data structures, providing access to, for example, process ID
and thread ID in the scope of a context switch.

The OS awareness module supports three di↵erent task-
related event types and they are as follows: (1) process-
start-related events, (2) process-active-related events, and
(3) process-end-related events. Table 2 summarizes the var-
ious OS event types and captures the event delivery order.
Process-start events can track, for example, process creation
in the OS. Process-active events monitor changes in a pro-
cess’s behavior, such as library loading, context switching,
and thread creation and destruction. Process-end events can
track process termination. Beyond these three main event
types, there are additional symbolically oriented events that
allow users to query symbols in an image and register func-
tion execution events at those symbols’ addresses.

Since the OS awareness subsystem is OS-specific, we cur-
rently only support the Linux kernel. OS and instrumenta-
tion tool developers can extend support to include additional
operating systems, including Windows, using SAE APIs.

4.5 Multiple Cores and Multiple Systems
Scale-out applications almost always rely on some form of

parallelism, be it multi-threaded or multi-process execution,
and moreover they leverage multiple systems to do their pro-
cessing [18]. Studying such workloads requires an instru-
mentation engine that can capture all of that behavior in
a unified fashion. SAE is designed specifically for studying
such workloads. It can capture fine-grained instruction level
instrumentation for a distributed workload, running across
multiple systems and on multiple cores (within each of those
systems), using a single unified instrumentation interface.

Virtual platforms enable support for multiple cores that
are part of the same system. SAE leverages this feature
to support multicore-aware instrumentation. During initial-
ization, the instrumentation engine informs the user of the
active core count to enable allocating per-core data struc-

Simulated 
Machine 1

Simulated 
Machine 2

Simulated 
Machine …

SAE

C
P

U
 A

P
I

Data Container 1

Data Container 2

Data Container …

Logfile 1
Logfile 2

Logfile
Instrumentation + 

XED API

Virtual platform

Figure 5: Multisystem instrumentation capability using
SAE, as shown previously in Figure 3. Users can use one
(or more) instrumentation tool(s) to monitor and collect
instrumentation data from all the simulated machines.

tures (line 39 in Figure 3). During runtime, for each runtime
event, the tool can query the initiating core and perform the
appropriate instrumentation analyses (lines 19-20).

SAE also supports multisystem instrumentation, which
suits scale-out applications like Hadoop and MapReduce.
Figure 5 shows how this works. The feature rests on the vir-
tual platform’s ability to simulate multiple systems concur-
rently. The instrumentation engine is designed to support
the concurrent systems, but it is up to the tool developer
to ensure thread safety; that is, since each system is sim-
ulated on a separate host thread, the tool developer must
ensure, for example, that data structures are private to each
system or, if shared, properly protected during access. This
is no di↵erent than the thread safety guarantees in current
user-level production systems such as Pin. During tool ini-
tialization, the instrumentation engine allows the developer
to allocate system-specific data (labeled as “Data Contain-
ers” in Figure 5) that can be filled with any data structures
that are needed (e.g., counters to hold system-specific data).

Leveraging the Wind River Simics platform, SAE simu-
lates multiple systems using concurrent threads on the host
machine. Hence, multisystem simulation can easily scale up
to the number of cores on the host. It can continue to scale
even beyond the resources of the host, though it may be
subject to performance penalties (Section 6.2). Even when
exceeding its core count, simulation on a single host works
quite well because Simics can collapse idle time, only spend-
ing simulation cycles on active work. As the load factor for
distributed systems is often rather low, the overhead for sim-
ulating such large systems is surprisingly low. In addition,
the Simics/SAE combination allows for di↵erent simulation
modes at core granularity so only the actual system under
study will incur more overhead compared to the fastest exe-
cution mode. Multicore simulation within a single SAE sim-
ulated system is limited to one host thread. The simulated
cores are time-multiplexed on the host thread corresponding
to that system. Similar to the multisystem case, Simics can
collapse idle time even within a system for idle cores.

Referring back to Figure 3, we show how the instruction
counting example supports multicore and multisystem sim-
ulation. Lines 11-12 and 36-44 configure the tool for multi-
system instrumentation. Lines 17-18 provide access to the
system-specific data containers, and, similarly, lines 26-27
extract the statistics gathered from each system at the end
of the program. Within each system, (line 19), the tool can
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query the originating core for each instruction. In summary,
the tool requires only 13 lines of new code to support and
capture fine-grained multicore and multisystem information.

5. DESIGN AND IMPLEMENTATION
SAE’s instrumentation interfaces are enabled by an inter-

preter and just-in-time (JIT) compiler. We describe and mo-
tivate the design of and interaction between the interpreter
and the compiler (Section 5.1). We present our interpreter
design and optimizations (Section 5.2). We also present the
compiler’s design and implementation (Section 5.3).

5.1 Overview
The interpreter is a complete functional simulator. The

SAE interpreter provides high performance and can simu-
late on the order of tens of million of instructions per sec-
ond (MIPS). When the JIT compiler is active, performance
improves to hundreds of MIPS. The JIT compiler acceler-
ates execution by generating x86 code at runtime to simu-
late instructions. The generated code improves performance
by reducing the overhead of simulated instruction dispatch,
maintaining a one-to-one relationship between simulated in-
structions and host instructions, and keeping simulated reg-
isters in host registers.

The compiler only compiles the frequently executed in-
structions, and falls back to the interpreter for complex,
less-frequent events, such as interrupts and exception han-
dling. Moreover, in SAE we introduce a hybrid mode to
deal with the case that frequently executed code cannot be
JITed. A hot piece of code might, for example, rely on in-
structions that are not supported by the physical hardware.
In this case, the JIT compiler drops into the hybrid mode,
producing code that jumps directly into the appropriate in-
terpreter routines without the overhead of leaving the code
cache and fully invoking the full interpreter. In this unique
manner, the JIT can support instructions that are not sup-
ported physically on the hardware. For example, the JIT
compiler can support AVX2 instructions on a machine that
does not physically have AVX2.

The hybrid mode provides significant improvements for
some workloads since it obviates the need for costly switches
back and forth between the interpreter and JIT compiler and
confines execution to the code cache for as long as possible.

5.2 Interpreter Design and Implementation
The interpreter’s structure closely mirrors the implemen-

tation of a non-pipelined, single-issue CPU. It is broken
down into two parts: the front-end and back-end. The front-
end fetches and decodes instructions then advances the in-
struction pointer for the following instruction. The decoded
output is called SIIS (static instruction information struc-
ture) and is analogous to microcode; it is an orthogonal
representation of the instruction that is straightforward to
execute. An x86 instruction operand size depends on mode
and prefixes. The SIIS contains the e↵ective operand size.
The size and signed-ness of immediates can vary. The SIIS
contains the immediates sign/zero extended to 64 bits. The
addressing modes of x86 are expressed in a canonical form:

displacement + base + index * scale.

Operands can come from a register, memory, or immedi-
ate. A simulation function specific to the instruction op-
eration and operands is selected. The back-end dispatches

0x7704a: mov rax, 0x3
0x7704d: inc ecx
0x77050: jz 0x8aa50
0x77054: add [rax], 1
0x77058: ret
0x7705c: cmp [rax], rcx

0x77050: add [rax], 1
0x77054: ret

0x7704a: mov rax, 0x3
0x7704d: inc ecx
0x77050: jz 0x8aa50

0x7705c: cmp [rax], rcx

Fetch 
Instruction

Simulate 
Instruction

Fetch 
Instruction

Simulate 
Instruction

No trace optimization With trace cache optimization

Figure 6: Trace-cache optimization reduces fetch count
by about 40%. The instruction fetch count in the above
example is reduced from five to two fetch sequences.

execution to the simulation function. It reads operands from
registers or memory and writes back the updated register or
memory values according to instruction semantics. Most
simulation functions are simple because the irregularity of
x86 is factored out by the SIIS. After execution, control
passes back to the front-end to fetch the next instruction.

In addition to implementing conventional optimizations,
such as lazy flags [23], we implement new optimizations that
are unique to accelerating full-system simulation. The prin-
cipal rule is to make the common path fast. The interpreter
optimizations are categorized into front-end optimizations,
which focus on fetching and decoding instructions, and back-
end optimizations, which focus on acquiring values from reg-
isters or memory and executing the instructions.

5.2.1 Front-end optimizations

The front-end of the interpreter is responsible for fetch-
ing and decoding the x86 instruction byte stream. As we
described earlier, its input is an instruction pointer and its
output is a handle to the SIIS, which is passed to the back-
end of the interpreter. A naive and straightforward imple-
mentation takes approximately 1000 cycles, with most of the
overhead coming from decoding an instruction and the rest
coming from address translation and copying the instruc-
tions from memory. Such a naive interpreter implementation
would limit our peak simulation speed to a 1000⇥ slowdown
over native execution, which is in the order of 3 MIPS.

To reduce its overhead, SAE’s interpreter exploits locality
in the executed code stream and caches address translations.
It exploits both temporal and spatial locality. Temporal lo-
cality comes from executing the same instruction multiple
times. Spatial locality comes from executing the same se-
quence of instructions repeatedly. Both are exploited by
our trace caching optimization, as shown in Figure 6, which
reduces the overhead of the frequently performed task.

Temporal locality Trace caching improves the inter-
preter’s performance by storing the result of previous map-
pings from the physical address to the SIIS in a hash ta-
ble. The optimization works especially well if there is strong
temporal execution locality in the code because a miss in the
physical cache requires an expensive decode. We determined
that it is worthwhile to use a complex lookup mechanism in
order to reduce any hash table misses caused by conflicts.

We implemented the hash table with physical indexing.
The major benefit of using a physically indexed trace cache
is that it does not need to be invalidated when there is an
address space change, something that occurs frequently in
a full-system simulation environment. Moreover, the trace
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cache can be shared across cores. We heuristically deter-
mined that a 4-way set associative cache with 64K entries
combined with the least recently used (LRU) replacement
policy performs best and implemented that configuration.

Spatial locality The trace caching optimization also ex-
ploits spatial locality by retrieving a sequence of SIIS with
a single lookup. The physical cache entries contain a trace
instead of a single SIIS. Fetching an entire instruction trace
amortizes the overhead of the cache lookup over the execu-
tion of several instructions. For instance, in Figure 6 the
number of interpreter fetch, decode, and dispatch lookups is
reduced by 40%. Lookups drop from five (one per instruc-
tion) to two (one per trace). Traces are terminated whenever
an instruction modifies the RIP (the x86 register holding the
instruction pointer): when it is modified, we cannot safely
determine the next instruction. Traces are also terminated
when they become long (>10 instructions).

5.2.2 Back-end optimizations

After an instruction is fetched and decoded, the inter-
preter’s back-end performs the heavy-lifting tasks of fetch-
ing the operands from registers or memory, performing the
actual operation, updating condition code flags, and storing
the result to memory or registers. Because each instruction
has di↵erent logic, it is hard to optimize each instruction
manually. Moreover, optimizing for every instruction will
usually yield little benefit. We instead focus on operations
that are common to all instructions—the interface to mem-
ory, address translation, and condition code evaluation—
where performance is key.

Direct memory interface When a simulated instruc-
tion references memory, SAE may need to invoke the vir-
tual platform to complete the operation—a costly operation.
The address may be for system memory or to a peripheral
device for memory-mapped I/O. To improve performance,
SAE asks the platform for a pointer to the simulated mem-
ory (called a host pointer or direct memory interface). If
the address corresponds to system memory, the platform re-
turns a pointer to the simulated memory and SAE uses it to
directly access the memory. As a further optimization, we
cache the host pointers in SAE for future references to the
same memory page. For a request to memory-mapped I/O,
the platform returns an error, forcing SAE to call out to the
platform for every memory operation, passing the address
and data pointer—a highly costly operation.

Translation lookaside bu↵er (TLB) Address trans-
lation is the most common operation performed by the CPU.
Besides translating the linear instruction pointer to a phys-
ical address before fetching each instruction, many instruc-
tions operate on data from memory, requiring another ad-
dress translation. The trace cache described in Section 5.2.1
eliminates most translations for instruction fetch, leaving
data access references to be translated by the back-end.

Although a hardware TLB translates linear addresses to
physical addresses, SAE’s interpreter TLB must translate to
both physical addresses and host pointers. We implement a
software TLB to e�ciently translate addresses from linear
to both physical and host addresses. While the x86 ISA sup-
ports multiple page sizes, a software TLB implementation of
variable page sizes would require an expensive lookup func-
tion. Instead, SAE TLB entries only map 4K pages in the
address space. The number of SAE TLB entries used for a
large page depends on how much of the page is referenced.

Enter 
JIT

Trace
available?

Hot
code?

Link
traces

Enter code 
cache

Execute
trace

Compile
trace

Supported
scenario?

Yes

Yes

Yes

No

No

No

Exit
JIT

to 
interpreter

C
od

e 
ca

ch
e

Figure 7: Overview of the SAE’s JIT compiler. It is
an optimizing compiler designed to improve the perfor-
mance of frequently excuted code under steady state.

Although the address translation algorithm itself is typi-
cally straightforward, caching the results e�ciently to allow
fast translations is important. Several checks must be per-
formed for every access: (1) check if a cached translation
exists, (2) validate permissions, and (3) detect page cross-
ings that require cross-page memory accesses. SAE performs
all three checks in a single operation to minimize overhead.

The physical instruction code cache must be invalidated
whenever any x86 code is overwritten in system memory. We
use SAE’s TLB to detect when that occurs. When an entry
is filled in the code cache, the write permission for the page
containing that code is removed from the TLB. Any subse-
quent write access that fails the above check causes SAE to
invalidate entries in the code cache that correspond to that
particular page, thus guaranteeing that the instruction code
cache is alway consistent with the system’s memory.

5.3 JIT Compiler Design and Implementation
The second part of SAE is the JIT compiler. The JIT com-

piler performs binary translation of guest x86 instructions
to host x86 instructions. Its purpose is to enable e�cient ex-
ecution of the (instrumented) x86 guest instructions on the
host with minimal overhead. The compiler assumes that the
original guest code is already optimized and therefore does
not perform heavyweight compiler optimizations.

The JIT compiler does not provide full instruction cover-
age. Since the JIT compiler is performance oriented, it does
not cover complex and rarely executed scenarios, such as the
handling of exceptions or the execution of privileged instruc-
tions. Whenever such a scenario occurs, the JIT compiler
aborts and lets the interpreter complete the operation.

Code generation Figure 7 shows the internal work-
ings of the JIT compiler. It is a typical industry-strength
hot-code optimizing JIT compiler. When invoked on not-
yet compiled “hot” (frequently executed) code, the compiler
starts by fetching an instruction stream until it finds an
instruction that triggers it to stop. Trigger instructions
could be branch or unsupported instructions. While fetch-
ing the stream, the compiler decodes the instructions and
keeps their Intermediate Representations (IR) in an inter-
nal trace data structure. To support execution on the host,
some additional instructions are inserted. For example, each
region embeds a call to a function that checks if the simu-
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Win 7 boot Fedora 5 boot bzip2 mcf
JIT+Interpreter 1.0⇥ 1.0⇥ 1.0⇥ 1.0⇥

JIT only 1.4⇥ 1.2⇥ 1.0⇥ 1.1⇥
Interpreter only 2.1⇥ 2.6⇥ 6.6⇥ 6.7⇥

Table 3: Slowdown of isolated SAE components, as com-
pared to running SAE with the interpreter and the JIT.

lated instruction count has exceeded the platform quota.
Another example is a call to a TLB function that trans-
lates guest address to host address. These frequent functions
are tuned and optimized. Once the compiler has embedded
the additional instructions into the trace, it performs linear
scan register allocation [22]. The compiler generates code
to fill guest registers into the physical host registers before
guest execution starts; before transitioning from guest back
to host instructions, the updated guest registers are spilled
into an in-memory spill area. The register management code
is added directly into the (unbounded) code cache [8] to
improve performance, rather than performing costly world
switches in and out of the code cache. The compiler per-
forms direct linking/chaining [23] in the code cache to avoid
unnecessary transitions from the code cache to the compiler
and vice versa. Indirect branches are handled using a typical
fast and e�cient lookup table [13], which is updated based
on previous target resolution. The lookup table maps from
the guest linear address to the host address; it is flushed on
any kind of guest address space modification.

Optimizations To strike the right balance between in-
terpretation and compilation, SAE employs a hot-spot de-
tector that predicts when a guest code trace will have fre-
quent subsequent execution. If a hot spot is not detected,
the compiler is not invoked. We use heuristics to determine a
predefined threshold to decide when we invoke the compiler.

The compiler implements optimizations to reduce instru-
mentation overheads. For instance, advanced instrumenta-
tion capabilities, such as dynamic reconfiguration (described
earlier in Section 4.1), is based on trace coloring in the code
cache. In trace coloring, each trace in the code cache is
marked as the combination of all active keys (remember that
multiple configuration keys can be active for the same call-
back, and that any combination between active keys is legal).
Whenever a trace is being looked up in the code cache, it
will be compared against the currently active key combina-
tion. If the key combination matches, the trace will be used.
Otherwise, a new trace will be generated, allowing the right
callbacks to be registered. Whenever a key is disabled, the
generated traces remain in the code cache, and whenever the
key is enabled again, they can be reused.

The alternative to trace coloring for supporting dynamic
reconfiguration is to flush the entire code cache whenever
the instrumentation needs to change. This can impose sig-
nificant performance degradation, especially for workloads
with large working footprints. The compiler would have
to re-interpret the code to detect hot spots, and then re-
instrument and re-compile the code.

6. EVALUATION
We start by evaluating SAE’s JIT compiler and interpreter

performance (Section 6.1). Next, we study SAE’s overheads
to conduct detailed full- and multi-system instrumentation
(Section 6.2). We present three use cases on how SAE en-

ables studies that could not be easily performed by existing
tools—one from an architecture perspective, another from a
program analysis standpoint, and the final one from a scale-
out perspective (Section 6.3).

The use cases and evaluation are largely centered on show-
ing what SAE enables, rather than on developing and show-
casing new insights—we defer that to our future SAE users.
We show that SAE can enable new hardware and software
analyses. Although it is di�cult to predict precisely how the
tool will be used by the community, we expect that some new
applications might include multi-system program analysis,
fine-grained visibility into operating system services (I/O,
disk, etc.) with perfect transparency, and ISA exploration
before silicon tapeout. Already it has been used within Intel
to develop fast performance simulators, multi-system work-
load analysis, and simulation of new ISA features.

6.1 Component Effectiveness
Though not all the performance enhancements of SAE can

be easily isolated for study, we are able to evaluate the in-
dividual contributions of the JIT compiler and interpreter.
Table 3 shows the relative (to default SAE operation) ex-
ecution times of booting Windows 7 (32-bit) and Fedora 5
(64-bit) and of executing bzip2 and mcf from SPEC CPU
2006 when either the JIT compiler or interpreter operates
in isolation. Here, we pick bzip2 and mcf because they
are representative stress test cases for SAE’s two core func-
tionalities: code generation and address translation. bzip2
stresses the generated code because it is a compute-bound
workload; mcf stresses address translation because it is a
memory-bound workload. Later, we discuss all of CPU 2006.

Disabling the interpreter forces the compiler to compile
everything it can (some instructions must still be interpreted)
without waiting for hotspot detection. Both operating sys-
tems boot quickly in both limited modes. Importantly, boot
sequences execute a lot of varied (non-repetitive) code; as
such, the interpreter performs well, reflecting its importance.
The JIT is faster than the interpreter, and it shows tolerable
slowdown compared to the native code. On the other hand,
bzip2 and mcf, which heavily reuse code, show virtually no
di↵erence between the JIT and baseline operation, while the
interpreter incurs a major blow to performance. Together,
the JIT and interpreter provide the best performance.

6.2 Overheads
For all its instrumentation capabilities, SAE must operate

at reasonable speeds if it is to prove useful. Though SAE is
slower than native execution and its instrumentation intro-
duces further overheads, we demonstrate that, without in-
strumentation, it is less than 1.3⇥ slower than QEMU+BT
(using binary translation) and, with instrumentation, be-
tween 3.6⇥ and 6.9⇥ slower than QEMU+BT. This is cer-
tainly fast enough to enable useful evaluation.

Uninstrumented SAE boots full, unmodified operating
systems at noteworthy speeds. Table 4a shows boot times
for Linux, Android, and Windows. We compare Simics and
SAE (without any instrumentation) against QEMU with
direct execution (‘QEMU+KVM’) and with binary trans-
lation (‘QEMU+BT’). Both QEMU+KVM and Simics (by
default) operate using hardware virtualization. Though all
other performance data on Simics and SAE in this paper are
measured only on Simics 4.8, Table 4a also lists data for Sim-
ics 5, the latest major release. Simics 5 compares favorably
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Native
QEMU
+KVM

Simics
4.8

Simics
5

QEMU
+BT

SAE

Ubuntu 14.04.3 54s 7.9s 14.4s 8.5s 99.8s 117.7s
Android 4.4 Failed 10.0s 11.8s 9.0s 100.3s 126.8s
Windows 7 30s 8.6s 14.7s 9.7s Failed 95.5s

(a) OS boot times (measured on the host machine). Sim-
ulation can boot faster than native hardware because the
disk images are often cached in the host memory.

QEMU
+KVM

Simics
QEMU

+BT
SAE Pin

Geomean Slowdown 1.02⇥ 1.79⇥ 31.15⇥ 38.51⇥ 1.28⇥

(b) SPEC CPU 2006 (ref inputs) slowdown relative to
native execution. See Figure 8a for the slowdown results
that correspond to the individual CPU 2006 benchmarks.

Pin+
ihist

SAE+
ihist

Pin+
memtrace

SAE+
memtrace

Geomean Slowdown 7.13⇥ 2.93⇥ 2.89⇥ 5.55⇥

(c) Instrumentation tool slowdown relative to uninstru-
mented Pin and SAE execution.

Table 4: SAE performance. We show the geometric
mean slowdown of SAE and other tools in executing OS
boot, SPEC CPU 2006, and instrumented code using in-
struction mix tools and memory tracing tools.

with QEMU+KVM, achieving nearly the same speed.
Worth extra attention is the fact that boot times on vir-

tual platforms are often significantly faster than on real
hardware. This is largely because virtual platform read vir-
tual disk image data from the host operating system where
it is often already cached, while booting on real hardware
requires bringing in the data from actual storage. SAE and
QEMU+BT both use binary translation as their base sim-
ulation technology, and performance is similar with SAE
being closely behind QEMU+BT in the boot scenarios.

In program execution, SAE introduces a 1-2 order of mag-
nitude slowdown (38.51⇥, geometric mean) compared to na-
tive execution. Table 4b summarizes the results. The table
also includes data for (uninstrumented) Pin, QEMU+KVM,
QEMU+BT, and Simics. Simics (using direct execution)
and QEMU+KVM show near-native speeds. SAE is only
21.50⇥ slower than Simics. Figure 8a shows the detailed
running time breakdown of SAE across all the benchmarks
from the SPEC CPU 2006 benchmark suite (using the ref
input set). The results are relative to native execution.
QEMU+BT relative times are also included for comparison.

Instrumentation The addition of instrumentation im-
poses additional speed penalty in SAE. These results are
summarized in Table 4c for two di↵erent tools: instruction
mix (ihist) and memory tracer (memtrace). These tools ex-
ercise frequently used APIs. For reference, we also use com-
parable tools in Pin. SAE’s tools have di↵erent slowdowns
than Pin (2.93⇥ and 5.55⇥ versus 7.13⇥ and 2.89⇥).

The slowdown of the ihist SAE tool is the product of SAE’s
base slowdown (38.51⇥) and the additional slowdown im-
posed by the tool (2.93⇥), or 112.83⇥. While this seems
high, we emphasize that the majority of the slowdown comes
from the overheads of binary translation and interpretation,

1 System 6 Systems 12 Systems 24 Systems 96 Systems

Time 108.6s 198.9s 252.4s 446.9s 1697.1s

Slowdown 1⇥ 1.83⇥ 2.32⇥ 4.11⇥ 15.62⇥

Table 5: Multisystem simulation performance. Until the
host’s resources are exhausted, the penalty for simulat-
ing multiple systems is small. Simulating multiple sys-
tems, however, is not limited to the host’s resources we
use for our experiments. Each SAE system simulated a
single-core CPU and 2 GB of RAM. The host had 12
hyper-threaded cores and 160 GB of RAM.

which even QEMU is subject to because it uses similar tech-
nology. Compared to QEMU+BT, the ihist and memtrace
slowdowns are only 3.62⇥ and 6.87⇥, respectively. Fig-
ure 8b shows the execution times of SAE (relative to unin-
strumented execution) with the two tools across the entire
SPEC CPU 2006 benchmark suite (using the ref input set).

SAE provides more powerful instrumentation insights than
Pin (e.g. full- and multi-system visibility). Additionally,
SAE is orders of magnitude faster than a full microarchitec-
tural simulator for collecting similar statistics and it can run
the programs to completion within a reasonable timeframe.

Multicore When simulating a multicore CPU, SAE only
uses one host thread, serializing all simulated threads. SAE
slowdown scales almost perfectly linearly with the number
of active cores; i.e., inactive simulated cores have a negligi-
ble contribution to simulation time. We verified this using
the swaptions benchmark from the PARSEC 2.1 benchmark
suite [2], which scales linearly on multicore hardware [3].

Multisystem: To simulate multiple systems, SAE relies
on multiple threads—one host thread per simulated system.
Though Simics su↵ers some penalty for synchronizing the
systems, the overhead is small. Table 5 shows the speeds
at which SAE on a single host is able to simultaneously
boot one or more simulated systems. Each simulated system
boots CentOS 6.7 with a single-core CPU and 2 GB of RAM;
the host system boasts 160 GB of RAM and uses a single 12-
core Intel Xeon E5-2697 v2, with hyper-threading enabled.
Booting 6 or 12 systems o↵ers each simulated system its own
host core and imposes only a 1.83⇥ or 2.32⇥ slowdown, re-
spectively. Jumping to 24 systems exhausts the logical cores
of the host (12 cores, each with hyper-threading) but only
increases the slowdown to 4.11⇥. To demonstrate that the
number of simulated systems is not limited to the resources
of the host (though performance may su↵er), we also boot
96 systems, thoroughly overwhelming the host’s resources
and this is accomplished with only a 15.62⇥ slowdown.

6.3 Use Cases
To show how SAE can be useful for program analysis and

architecture research, we provide three high-level examples.
Kernel Vulnerability Detection: The power of SAE is

showcased in a kernel vulnerability detection tool we imple-
mented called Kernel Double-Fetch (KDF). It is based on
prior work on security vulnerabilities in the Windows NT
kernel [15]. When an application makes a system call, the
kernel should copy function arguments into kernel space in
a single fetch; if an argument is fetched more than once,
an attacker could change the argument between fetches and
compromise system security [15]. Though the research tar-
geted Windows NT, we reimplemented KDF for Linux with-
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(a) Running times of the SPEC CPU 2006 programs under QEMU and SAE relative to native execution.
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Figure 8: Relative times (a) without and (b) with instrumentation enabled for the SPEC CPU 2006 benchmarks.

out any OS-specific changes and identified a potential bug in
the Linux kernel that has been confirmed by the kernel team
(though, fortunately, it turned out to be unexploitable).

The KDF tool showcases much of SAE’s power. It in-
curs only a ⇠1.2⇥ slowdown during OS boot and utilizes
many of SAE’s unique features, including memory access
notification, instrumentation of both kernel- and user-space
code, kernel ring 0 instruction-level instrumentation, dy-
namic tool reconfiguration (to restrict its scope to system
calls), and OS awareness (to provide names of functions in-
volved in the double-fetch). At only⇠600 lines of C++ code,
the KDF tool demonstrates that powerful analysis tools can
be written with very moderate coding investment.

ISA Exploration and Software Enablement: As clock
frequency scaling has diminished, CPU innovation has come
to increasingly rely on ISA and architectural changes to de-
liver improved performance and new features. SAE is an
instruction set simulator, and so an existing ISA can be ex-
tended by simulating new features within SAE tools.

SAE can enable software development ahead of the hard-
ware. Software to exercise new hardware features must be
developed well before the working silicon is available. Com-
pilation tools must be extended to generate new instructions;
runtime libraries must be rewritten to use them; operating
systems need to be updated; and new applications must be
created to evaluate their benefit. For these types of software
changes, SAE excels because modified software can be run
on top of the simulated new ISA. Therefore, SAE facilitates
prototyping, evaluation, and validation of software support
for future ISA extensions and architectural designs.

Simulation Description Total LOC Task LOC
hlt instruction (ring 0) 153 58
jmp instruction 143 40
inc instruction 180 77
mov instruction 184 66
lgdt instruction 176 71
Memory redirection 377 266
Shadow memory 434 321
kmalloc interception 290 215
Average 242 139

Table 6: Lines of Code (LOC) for hardware simulation
using SAE. Total LOC corresponds to the total lines
of code for the entire tool. Task LOC corresponds to
the implementing the actual functionality, minus envi-
ronment setup and instrumentation configuration.

Table 6 shows example SAE tools for instruction and mem-
ory system simulation and OS call interception. Due to
SAE’s extensive and easy-to-use APIs, developers, on av-
erage, wrote only 242 total lines of tool code. At their core,
however, these tools rely on an average of only 139 lines of
new code, the remaining lines come from instrumentation
setup and configuration that can be reused across tools.

Big Data: Due to its unique ability to simultaneously
simulate and instrument multiple systems, SAE is ideally
suited to studying big data workloads. To demonstrate its
capabilities and potential, we installed Hadoop on a simu-
lated cluster and instrumented three representative Hadoop
workloads: K-means, Wordcount, and Sort. We used real
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Simics SAE Tool Slowdown
K-Means 6840s 13860s 37320s 5.45⇥
Sort 5160s 22980s 132540s 25.7⇥

(a) Instruction mix instrumentation results.

Simics SAE Tool Slowdown
K-Means 6840s 13860s 26340s 3.85⇥
Sort 5160s 22980s 92280s 17.9⇥
Wordcount 4860s 9660s 58260s 12⇥

(b) Memory reuse distance instrumentation results.

Simics SAE Tool Slowdown
K-Means 6840s 13860s 62160 9.1⇥
Sort 5160s 22980s 133020 27.4⇥
Wordcount 4860s 9660s 96300 18.7⇥

(c) Memory footprint instrumentation results.

Table 7: Multisystem instrumentation. We use a 4-
socket Xeon-EP E7-8890 v3 @ 2.5 GHz with 512 GB.

datasets and instrumented four worker nodes that perform
computation. Recall from Section 6.2 that SAE can scale
to a much larger system count. In the interest of time, we
scaled down the size of datasets to accelerate workload com-
pletion. The size does not a↵ect the accuracy of the tools.

We used three tools—instruction mix, memory reuse, and
memory footprint—to instrument Hadoop and collect system-
wide profiles of every process. Instruction mix reports statis-
tics using the instruction discovery, inspection, and execu-
tion API. Memory reuse and memory footprint both exploit
SAE’s memory access API to collect a memory profile.

Table 7 shows the results for instrumenting Hadoop. On
average, SAE instrumentation tools introduce a 15⇥ slow-
down compared to running on Simics. Despite the overhead,
recall that a user need only write a single tool to aggregate
all the instruction-level statistics across all the systems.

7. PRIOR WORK
We believe that no prior tool is fully adequate for study-

ing scale-out workloads, and we contend that there are three
key attributes that a tool must have to qualify: it must sup-
port flexible instrumentation, simulate the entire system,
and maintain perfect transparency. SAE meets all three
of these requirements. But much prior work has laid the
foundation for developing SAE. We group the prior work ac-
cording to five di↵erent categories, indicated using the group
labels A through E in Figure 1. We encourage the reader
to refer back to Figure 1 and its associated table before pro-
ceeding further. We omit discussion of a sixth category that
arises from combining transparency with user space-only in-
strumentation because we are not aware of any system that
is capable of this particular combination, given the stringent
requirements we present for transparency.

Category A [Transparency]: Performance counters
are the best example of transparent inspection. In their sim-
plest form, performance counters report counts of a small set
of events with zero impact on program execution. However,
the transparency is lost when performance counters are used

to trigger interrupts for program introspection or when used
to record kernel behavior; though they are capable of intro-
spection of the kernel, performance counters must be con-
trolled via the kernel, which is a violation of transparency.
Furthermore, they provide no extensibility (i.e. a researcher
cannot write a tool providing support for a new counter).

Category B [Instrumentation]: Valgrind [21], Dy-
namoRIO [5], and Pin [19] provide instrumentation capabil-
ities, including the requisite flexibility. However, they are
limited to user-space analysis. They also reside in their ap-
plications’ memory space and slow execution relative to the
kernel and the rest of the system, violating transparency.

Category C [Full-System]: The gem5 [4] full-system
simulator is a powerful platform, supporting a complete sys-
tem setup. Unfortunately, it relies on the simulated OS be-
ing modified specifically for gem5 execution (violating trans-
parency) and lacks an instrumentation system. Only those
with expert knowledge of its source code can introduce cus-
tom analysis by directly modifying its internal source code.

Category D [Transparent Full-System]: QEMU [1],
SimFlex [25], and BOCHS [17] combine transparency with
full-system capabilities. SimFlex is a microarchitectural sim-
ulator like gem5, but because it builds on Simics it can boot
unmodified OSs. QEMU and BOCHS are functional simu-
lators, capable of the same feat. However, none of these sys-
tems o↵ers an instrumentation interface; researchers are con-
strained to whatever analyses are provided out-of-the-box.
QTrace [24] and DECAF [12] have attempted to add instru-
mentation capabilities to QEMU, but their APIs represent
only a small subset of SAE’s extensive API. Additionally,
these systems’ transparency breaks down when extended to
multiple systems, as one system’s slowdown changes its in-
teractions with the other systems. This would be a prob-
lem, for example, if instrumenting a single node in a Hadoop
cluster, which would likely change the work assignments and
therefore alter the behavior of the workload.

Category E [Full-System Instrumentation]: PinOS
[7] and DrK [10] extend the instrumentation frameworks of
Pin and DynamoRIO to support kernel-level instrumenta-
tion. However, these solutions are OS-specific and require
substantial porting e↵ort to support additional OSs. Be-
cause they rely on OS specifics, they also a↵ect execution
behavior, which violates the transparency requirement.

8. CONCLUSION
New instrumentation systems, such as SAE, are crucial for

advancing research and development. We believe that SAE
has the potential to help its tool writers unlock new research
because of the following features: (1) Transparency: Since
it operates within a simulator, SAE in no way alters the ex-
ecution or perceived state of the target system. This is criti-
cal in commercial workloads where relaxing transparency or
compromising execution is not an option. (2) Performance:
Many scale-out workloads exercise OS functionalities and
rely on complex software stacks. SAE is fast enough to boot
an OS and execute a full Hadoop stack in real-time. SAE
couples an interpreter and just-in-time compiler for flexibil-
ity and performance. Moreover, it leverages multi-threaded
execution to e�ciently support multisystem instrumenta-
tion. (3) Extensibility: SAE’s program and architecture in-
trospection capabilities are simple and easily understood. It
enables early-stage pathfinding by abstracting the instruc-
tion set architecture and operating system idiosyncrasies. It
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can even extend ISA capabilities for early software develop-
ment for future anticipated hardware. (4) Interoperability:
SAE requires no OS-specific support. Because it is plugged
into a virtual platform simulator, SAE can transparently
run any operating system, including Windows, Linux, and
Android, and all applications contained therein.
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