A d4am % =san inc crack ZA16-HE-AS
——————————————————— . updated 2A16-A9-A49
I

Hame: Gumball
Genre: arcade
Year: 1983
Credits:
by Robert Cook
concept by Doug Carlstaon
Fublisher: Broderbund Software
Flatform: Apple 1L+ or later (43K
Media: single-=sided 5.253-inch floppy
05S: custom
Other wersions:
Mr. KErac-Man & The Disk Jockey
several uncredited cracks

Chapter A
In Which Warious Automated Tools Fail
In Interesting Waus

COPY#RA
immediate disk read error

Lock=mith Fast Disk Backup
unable to read ang track

EOD 4 bit copy Cnho s4dnc., no count 2
Oisk seeks off track B, then hanags
wmith the driwe motor on

Copy 1L+ nibble editor

THA has a modified address prologue
05 AA BS Y and modified epilogues

TA1+ appears to be 4-4 encoded data
L2 nibbles on disk = 1 bute in
memord? with a custom prologues
delimiter. In ang case., it's
neither 13 nor 16 sectors.

Oisk Fixer
not much help

Mhy didn't COPYA work?
not a 1e6-sector disk

Mhy didn't Locksmith FOE workT
ditto

Mhgy didn't mg EDD copy work?
I don't know. Early Broderbund games
loved using half tracks and gquarter
tracks, not to mention the runtime
protection checks: =0 it could be
literally angthing. Or. more likely,
and combination of thing=s.

Thi=s is decidedly not a =ingle-load
game. There iz a classic crack that is
a =ingle binmnarg:, but it cuts out a laot
of the introduction and =s=ome cut =cenes
later. All other cracks are whole-disk.
multi-loaders.

Combined with the early indications of
a custom bootloader and 4-4 encoded
sectors, this is not going to be a
straightforward crack by ang definition
of "straight" or "forward."

Let's start at the beginning.

Chapter 1
In Mhich MWe Brag About Our
Humble Beginninas

I have two floppy drives, one in =slot &
and the other in =slot 5. My "work disk"
tin =lot 532 runs Diver=i-005 64K, which
i=s compatible with Apple D05 3.3 but
relocates most of DO0S to the language
card on boot. This frees up most of
main memory Yonly wusing a single page
at *¥BF@A. $BFFF >, which is useful for
loading large files or examining code
that liwves in areas tupically reserved
for DOS.

C55.01=0original disk1
C55.01=my work disk1

The floppy drive firmware code at #CeHA
iz responsible for aligning the drive
head and reading sector B of track @
into main memorg at FAS3AA. Because the
driwve can be connected to ang =slot., the
firmware code can't assume it's loaded
at #¥Ced@a. If the floppy drive card were
removed from =lot & and reinstalled in
=lot 5. the firmware code would load at
¥C5AA instead.

To accommodate this. the firmware does
some fancyd =tack manipulation to detect
where it i=s in memord Cwhich is a neat
trick, =since the 8382 program counter
i= not generally accessible). Howewer.,
due to space constraints., the detection
code only cares about the lower 4 bits
of the high buyte of its own addre=ss.

Stay with me, this i=s all about to come
together and go boaom.

¥CeEA Cor #CSHEBA, or anduwhere in #Cx@A 2
i= read-only memorg. I canmn't change it.
which means I can't =s=top it from
transferring control to the boot =ector
of the disk once it's in memorg. BUT!
The disk firmware code works unmodified
at ang addres=s. Ang address that ends
wmith =688 will boot =slot &, including
¥BeEA, FAcHABE., $£968H. Lo

i copd driwve firmware to £#36680
¥96EA<CEEA CEFFHM

i and execute it
¥950EG
. .reboots =lot &, loads game. ..

MHow then:

IPR#5

IcALL -151

F¥9EEE<CEAE . CEFFHM

FIEFEL

S5FS- 40 @1 @S JMF @S58

That's where the disk contraller EOM
code ends and the on-disk code begins.
But #2688 i= part of read-swrite memoryg.
I can change it at will. So I can
interrupt the boot process after the
driwve firmware loads the boot sector
from the disk but before it transfers
control to the disk's bootloader.

i inmnstead of jumping to on-disk code.
i copd boot sector to higher memory =o
i 1t surwiwves a reboot

SEF2- AE BE LOY AL
SEFA- B2 BB @S LOA *FA384.,Y
SEFD- 299 A 28 STA 2288, Y
SvEE- Ce IHY

S9vEl- oa F? EHE *9aFA

i turn off =lot & driwve motor
SYBR3- AD ES CA LOA *CHES

i reboot to my work disk in =lot 5
SYHE- 4C HBE CS5 JMP *C5EE
¥958EG

. .reboots =lot &. ..
. .reboots =lot 5. ..

JESAUE BOOTA.A$2508.,L%1846

How we get tol*¥ > trace the boot process
one sector. one page., ane instruction
at a time.

ck2 If you replace the words "hneed tao"
with the words "get to." life
becomes amazing.

Chapter 2
In Mhich Me Get To Dip Our Toes
Into An Ocean OF Raw Sewage

JCALL -131

i copd code back to #@A3AA where it was
i originally loaded., to make it easier
i to follow

¥2aa< 2808 . 28FFHM

FEA1L

i immediately mowe this code to the
i input buffer at #8200

agal- A2 B8 LOx #+006
BE02E- EOD 88 @as8 LOA FESAHE, X
BEhE - 20 88 a2 =TH FEZ20E, K
BER3- ES IH=

BSBaR- 0Da F? EME FOSE3
Basac- 4C BF @2 JMP FOZ8F

Ok, I canmn do that too. HWell, mostly.
The page at #8280 i= the text input
buffer. used by both Applesoft BARASIC
and the built-in monitor Cwhich I'm in
Fight now?». But I can copy enough of it
to examine this code in =itu.

¥28F<88F . 2FFM

i ¥@As08
B2aF - AA
Ba=211- 28
B=212- 25
B=214- 4 A
B=213- A5
Ba21v- c3
B219- (s
B21B- Ca
a=10- F&
B21F- 2H
B2z2a- 339
B223- ES
B224- Ca
B223- D&
227 - 2
#¥00H

loading data

B2239-
B22B-
az2z0-

B22F -
B=231-

24 25 STY
AY B3 LOA
85 27 STAH

i Tero page ¥2B holds the
AE 2B LO=
28 30 @z J5F

nibble translation table at

E&
30

LOY
TYA
=TA
LSE
OFEA
CHMP
EME
CPY
BEL
T#A
as =TH
IMX
IMY
EHE
STY

#+AE
$30C

F3C
#FFF
FO224
#+05
fO224

FE508.,Y

FE211
£30

i into zero page $26 and #F83 into
i ¥2¥ means we're probably going to be
i into #8288, $83FF later.
i because (*26) points to #RA3IAA .

F26
#+03
F27

boot =slot =16
i ey
@250

¥220L

@ "ma Cme "ma "ma Cme ma

az
Az
Az
@Az
az

read a sector from track #8068 (thi=s 1=
actually deriwved from the code in the
disk controller ROM routine at FCe35C.
but looking for an address prologue
af "O3 AA BS" instead of "O5 AR 98" 2
and using the nibble translation
table we =et up earlier at FA3AA

20- 15 CLC

2E- as FHF

aF - ED SC CH LOA FCASC, K
- 18 FE EFL FEZ23F
Bd- 43 D5 EOR #+03
BE- 0Da F¥ EHE FHE2IF
8- ED S8C CH LOA FCASC, K
eE- 18 FE EFL FOZ63
0= C2 AA CHMFP #¥AR

aF - Da F3 EHE FHZ2e4

[EA HOF

re= ED S8C CH LOA FCASC, K

fil= b 18 FE EFL FOZ7 2

third prologue nibble

ES CHMP
a3 BEL

FLF
OF ECC
RO EOF
1F BEL
k= EHE
A3 LOY
2A STY
aC Ca LOA
FE EFL

FOL
AL =TH
=2C CH LOA
FE EFL
AC AMD

DEY
EE EHE

FLF
A0 CHMP
EE EME
EDO ECS
2A LoOY
AL STY
aC Ca LO%Y
FE EFL

#¥B5
FE254

i use the nibble translation table we
i set up earlier to conwvert nibbles aon

i dizk into baytes in memory

H2AA- a9 @8 @8 EOR @268, Y
Bz2Aa0- A4 3C LOY ¥3C
B2AF - a8 OEY

H2EBE- 99 @@ Qs STAH f@2Ea, Y
H2B3- 08 EE EHE F@AZ2A3
H2BS- a4 3C STY ¥3C
H2B7Y - BC 3C C@a LOY ¥CASC, ¥
B2BA- 18 FB BFL ¥82B7
H2BC- a9 @68 @8 EOR F@a2@a, Y
H2BF - A4 32C LOY $3C

i store the converted butes at FH3I0H
B2C1- 21 25 STAH CEZE LY
B2C3- Ca IHY

B2C4- 08 EF EHE $@2ES

i vwerifuy the data with a one-nibble

i checksum

B2Ce- EC
B2Ca- 16
B2CE- 23
B=CE- DA
az208- (=45

Continuing
¥234L
B234- 28

2C CA LOY
FE EFL
AE @2 EOF
20 EHME

RTS
From @234 . ..
o1 @z J5F

FCASC, K
FHZCE
FESEE.,Y
F8230

F0201

¥201L

i finish decoding nibbles

dz201- AS TAY

Bz02- A2 @A LO= #8006
Bz204- B2 B8 @2 LOA F@a2@a, Yy
B207- 4R LSF

dz208- Z2E CC @3 ROL FAICC, ¥
Hz20B- 4 A LSK

dz20C- 3E 99 @3 ROL FE399, ¥
B20F - 285 3C STAH ¥3C
H2E1- Bl 25 LOA CEZE LY
H2E3- HA ASL

H2E4 - HA ASL

H2ES- HA ASL

H2E&-— AS 3C ORA ¥3C
H2ES- 21 25 STAH CEZE LY
H2ER- Ca IHY

H2EEB- ES IH=

H2EC- Ea 33 CP= #¥33
H2EE- 08 E4 EHE ¥@az204
B2F@- Ce Z2A ODEC ¥2A
H2F2- 08 DE EHE ¥@az20z2

i werifuy final checksum

H2F4- CC 68 @3 CPY FE368
B2F 7 - 08 @3 BEHE ¥E02FC

i checksum passed., return to caller and
i continue with the boot process
Bz2F9- &H ETS

i checksum failed. print "ERR" and exit
B2FC- 4C 20 FF JMP *FFZ2D0

Continuing from @8237. ..
¥237L

i Jump into the code we just read
B237- 4C @1 @3 JMP 83681

This is where I get to interrupt the
boot, before it jumps to FA3@1 .

Chapter 3
In Which HWe Do A Belluflap
Into A Decrypted Stack
And Discowver That
I Am Wergy Bad At Metaphors

¥9e8B<CaBd . CeFFM

i patch bootA =o it calls my routine
i lnstead of Jjumping to #8341

2eF8- A3 B3 LOA #+85
FeFA- 20 38 @8 STH FAS33
2eFD- AS 37 LOA #$£27
2eFF- =20 23 @asg =THA FHE33

i start the boot
Qvaz2- 4C @1 @& JMP 8261

i tcallback i=s here) copy the code at
i ¥8388 to higher memory so it surwviwves

s AE B LOY #+006

27ayY- ES B8 a3 LOA FOI08.,Y
27VBEA- 29 B8 23 STHA F238048.,Y
2vab- CE IHY

2VBE- Da F¥ EHE F3787

i turn off =lot &6 drive motor and
i reboot to my work disk in slot 5
av18- AD ES C@A LOA ¥CHES
av13- 4C @A CS5 JHMP ¥CoEA

¥BSAVE TEACE.A$#9c8A.L*F116
¥958A80

. .reboots =lot &. ..

. .reboot=s =lot 5. ..

JESAVE EBOOT1 B380-03FF.,RAF2308,LF106
JCALL -131

¥2381L
2381- 24 43 STY $43

i clear hi-res graphics screen 2

2383- AB BA LOY #EEE
238a5- Q8 TYA

2386- A2 2A LO¥ #¥28
2388 - 299 A8 48 STA £4888,Y
238B- Ca IHY

238ac- 08 FA EHE $2388
238E- EE AAa 83 IHC +038A
2311- CA OE

231z2- 08 F4 EHE $2388
i and show it Cappears blank?
2314- AD 57 CA LOA $CASY
2317- AD S2 CA LOA ¥CAS2
231Aa- AD 55 CA LOA $CEASS
2310- AD 58 CA LOA $CBE5A

i decrypt the rest of this page to the
i stack page at $¥01803

2328- E2 AA @83 LOA 0388, Y
2323 45 48 EOR 48
2325- 299 88 61 STA ¥60188,Y
2328- Ca IHY

2329- 08 F5 EHE $2320A

i set the stack pointer

232B- A2 CF LO¥ #*¥CF
2320~ 98 THS

i and exit wia RETS
232E- &H ETS

Oh Jjog., stack manipulation. The =stack
on an Apple II i= just #1688 bytes in
main memory C*¥A1IAA. ¥A1FF» and a =ingle
bute register that serwves as an index
into that page. Thi=s allows for all
manner of mischief —-- owverwriting the
ztack page Cas we're doing herel.
manuwally chanmnging the =tack pointer
talso doing that herel, or even putting
executable code directly on the =stack.

The wupshot is that I hawve no idea where
execUution continuwes next, because 1
don't know what ends up on the =stack
page. I get to interrupt the boot again
to =ee the decruypted data that ends up
at #81@8 .

Chapter 4
Mischief Managed

¥ELOAD TREACE

Cfir=st part i=s the =zame asz the
previous tracel

i reproduce the decryption loop. but
i store the result at 21688 =o it
i surwiwves a reboot

FVBA3- 24 48 STY $45
27ay- AB B8 LOY #+80H
F7Ya9- ES B8 @3 LOA FOIE8.,Y
2yac- 45 43 EOR $43
2VHE- 29 88 21 STHA F21848.,Y%
2v11- CE IHY

= D F3 EHE 3783

i turn off driwe motor and reboot to
i mu work disk

2v14- AO ES CH LOA F$CHES
= W 4C B8 C3 JMF FC38H
¥BSAVE TRACEZ.A$#59c08.L#*11A
FIeBaG

. .reboots =lot &. ..
. .rFreboots =lot 5. ..

JESAVE EBOOT1 B180-01FF.RAFZ216068,LF1046
JCALL -131

The original code at $FH380H0 manually
reset the stack pointer to #$CF and
exited wia EBTS. The Apple II will
increment the =tack pointer before
Using it as an index into #8188 to get
the next address. (For reasons I won't
get into here., 1t als=o increments the
address before passing execution to
it. 2

¥2108
2108- 2F a1 FF 83 FF 84 4F @4

o ot oy

next return address

¥A12F + 1 = #8138, which i=s already in
memoryg at $21368.

Oh jog. Code on the stack. (FRemember.
the "stack" is= just a page in main
memord. If gou want to use that page
for something else, it's up to gou Lo
en=sure that it doesn't conflict with
the =tack functioning as a stack. 2

2138l

2138- AZ @4 LOx #¥04
2132- oE 26 ST F56
21324- AB B8 LOY #+806
2138- 24 83 STY F83
2138- 28 24 ST $E84

How #2832 points to $840868 .

i get =lot number ¢xl162
213R/- A& 2B LO= $2E

i find a 2-nibble prologue C"BF DOV DS"2
213C- ED =2C C@a LOA ¥CASC, ¥
213F- 18 FBE EFL ¥213C
2141- C2 BF CHMF #¥EBF
2143- 0a Fv EHE ¥213C
2145- BD 3C C@a LOA FCA3C, ¥
2148- 18 FE EFL £¥2145
214R/- Cc2 Ov CHMP #¥07
214C- 08 F3 EHE ¥2141
214E- BED 3C C@a LOA ¥CASC, ¥
2151- 18 FB BFL ¥214E
2153- C2 D05 CHMP #0535
2155- Oa F3 EHE £¥214A

i read 4-d4-encoded data

2157- BD 3C C@a LOA FCA3C, ¥
215/- 18 FB BFL ¥2157
215C- 2R ROL

2150- 25 85 STAH 85
215F- EOD 2C C@a LOA F¥CASC, ¥
21l62- 18 FB BFL ¥215F
2164- 25 85 AMD ¥385

store in #$¥8488 (text page, but it's

i hidden right now because we switched
i to hi-res graphics screen 2 at #83142
2le6- 91 33 STAH CEII Y
2168- 2 IHY

2169- 0Oa EC EHE £¥2157

i Find a 1-nibble epilogue C"0O4" 2
216B- HE @@ C@a ASL ¥CAEA

216E- BD 3C C@a LOA FCA3C, ¥
2171- 18 FE EFL $¥216E

2173- C2 D4 CHMP #¥0O4

2175- 08 B9 EHE ¥2138

i increment target memorg page

2177 - Ee 24 IHLC 54

i decrement sector count Cinitialized
i oat #8132

2179- CE 26 OEC ¥26

217B- 08 DA EHE 2157

i exit wia RTS
2170- &H ETS

Wait., what? Ah: we're using the =zame
trick we uwsed to call this routine —-
the =tack has been prefilled with a
series of "return" addresses. It's
time to "return" to the next one.

¥2108 .
2108- 2F 81 FF 83 FF 84 4F @4

o e e e e,

next return address

¥A3FF + 1 = #8488, and that's where I
get to interrupt the boot.

Chapter 5
Sesek And Ye Shall Find

¥ELOAD TRACEZ

C=zame as prewvious tracel

j reproduce the decruption loop that

i was
27VBA5-
=
VA3 -
F7yac-
F7YBAE-
2711-
2v1z-

noaLl

F0168,

originally at @328

24

that

Fa

83
a1

the =tack

STY
LOY
LOA
EOR
STHAH
IMY
EHE

i=s

$45
#¥08
FE308.,Y
$43
F01688.,Y

3783

in place at
change the first return
it point=s to a callback

under mu conktrol Cinstead of
cantinuing to #8484

J
J
i address =so
H
.'

97V 14- A9
av16- a0
ayv19- A3
Sv1EB- 20
i continue
SV1E- A2
Qv 2E- 95
avz2l-)

i tcallback

21

02 @i

a7

03 @i
the boot
CF

i= here? copu the contents

i of the text

Irz2-
Irzd-
e
V23—
V20—
2vz0-
I7V2F -
AVaz-
2V 3a-
]

Az
AA
ES
23
Ca
0aE
EE
EE
CA
D&

LOA
STH
LOA
STH

LOx
THS
ETS

#+21
F@102
#3237
$0103

#+CF

page to higher memaory

B4
24

ar
ar

LOx
LOY
LOA
=TH
IHY
EME
IMC
IHC
DE =
EHE

#+04
#+006
FE488,Y
F2488,Y

FIAV2E
FIV28
$97 2B

FI7 26

i turnm off the driwve and reboot to my
i work disk

FVia- AO ES CH LOA FCHES
27 EB- 4C B8 C35 JMP L3088
¥BESAUE TRACEZ.A$9c80,L*13E
F¥IeB40G

. .rFreboots =lot 5. ..
. .reboots =lot 5. ..

JESAVE EOOT1 B8480-07FF.,AF24008, LF406
JCALL -131

I'm going to leawve this code at #2464,
since I can't put it on the text page
and examine it at the =same time.
EFelatiwe branches will look correctkt.
but absolute addresses will be off by
¥20688 .

24880

i copyd three pages to the top of main
i memary

24 B88- AB B8 LOY #+80H
24B82- ES B8 a5 LOA FA288.,Y
24B85- 23 88 EBO STH FE0DB8.,Y
24085 - ES B8 A& LOA FEEEHE, Y
24B8E- 23 B8 EBE =TH F$EBEQGE., Y
24 BE- ES @@ ay LOA FEA7YAE.,Y
2411- 23 88 BF STH F$BFB@@.Y
2414- Ca IMY

2413- DE EE EHE 2482

I can replicate that.

¥FE=23L FES3G i disconnect DOS
Y¥EDOEC 25808 . 27FFHM i simulate copu loop

2417 - AE 2B LO¥ ¥2B
2419- 2E &6 BF STH $BFER
241C- 28 438 BF JSE $BF 45
¥BF42L

i Zzap contents of language card
EF42- AD 21 CA LOA $CEE1
EF4E- AD 21 Ca LOA $CE21
EF4E- AB AA LOY #+¥EE
EFSGQ- A2 DA LOA #+0E
EFsZz- 24 AA STY ¥AE
EFS4- 23 Al STA ¥A1l
BEFS&- Bl AA LOA CEA@ DY
BFS2- 291 AA STA CEAB DY
EFSA- Ca IHY

EFSE- 0a F5 EHE $BFSE
EFs0D- Ee Al IHC ¥Al
EFSF- 08 F3 EHE $BF 36
EF&1- 2C 2@a CA BIT $CBE2A

BEFcd- & ETS

Continuing from 841F. . .

i =et low-lewel reset wvectors and page
i 3 wectors to point to ¥BFAE —-

i presumably The Badlands ¢ from which
i there iz no return?

24 1F - A0 23 CH LOA FCASS
2422- A0 23 CH LOA FCASS
2423- AE 86 LOY #+00
2427 - A3 BF LOA #+EBF
2429- 2C FC FF STY $FFFC
242C0- =20 FD FF STH $FFFD
24 2F - 2C F2 B3 STY FHIF 2
2d432- =20 F3 83 =TH FHIF 3
24.33- AE B3 LOY #¥0.2
2437 - 2C F@a B3 STY FOIFA
24 2A- 20 F1 @3 STH FAIF1
2430- 24 28 STY F38
24 3F - =23 33 =THAH F39
2441 - 43 A3 EOR #¥AD
2443- 20 F4 B3 STA FO3IF4
¥EFBAL

i There are multiple entry points here:
i ¥BFBB., #$¥BFB3., *BFHE&., and #$BF@S

i thidden in this listing by the "BIT"
i opcodes).

BFBG@- AZ D2 LOA #¥02
BFBZ- 2C A3 DA BIT FOBRS
BEFB3- 2C A3 CC EIT FCCRS
EF@S- 2C A2 Al BEIT FA1AZ
EFBE- 48 FHA

i zap the language card again
EFEC—- 28 48 BF JSE *EF43

i TERT-HOME~<MOEMAL

EF&F -
EF1Z-
EF15-

i Depending on the
i this displaus a different character
i 1in the top left corner of the =crean

28 2ZF FE
28 328 FC
28 =24 FE

JSE
JSE
JSE

$FEZF
$FCSS
$FEZ4

initial entry point.

BEF135- a8 FLA

BEF13- 20 68 64 STAH 8468
i now wipe all of main memoryd
EF1C- A @A LOY #¥00
EF1E- 98 TYA

BEF1F- 99 @@ BE STAH ¥BE@A., Y
BFz22- Ca IHY

BFz23- 08 FA BEHE ¥BF1F
BEFz25- CE 21 EBF OELC ¥BF 21
i while plaging a sound

BFz3- 2C 328 Ca BIT ¥CA3A
BFZB- AD 21 BF LOA ¥BFZ21
EFZE- C9 @& CHMP #¥AS
BEF38- E&@ EA BCS ¥BF1C
i munge the reset wvector

BF32- 20 F32 @83 STAH FHA3F3
BF35- 20 F4 B3 STAH FE03F4

i and reboot from whence we came

BF 32— AD & EBEF LOA ¥EBFE&
BF ZE- 4H LSE
BF3C- 4H LSE
EFZ0- 4A LSR
EF ZE- 4A LSR
BF 3F- a3 CH OFA #ECH
BF41- ES B84 SBEC #0083
BFd432- 45 FHA
EF44- A3 FF LOA #+FF
EFd4e- 45 FHA
EF47 - (=45 ETS

Yeah, let's trug mot to end up there.
Continuing from #8446, .

24de- AZ ay LOA #¥07
2d44E- 28 B8 EE JSE $EEBAH
¥EEBAL

i entry point #1
EEBG - Az 13 LOx #F13

i entry point #2 Chidden behind a BIT
i opcode, but it's "LDO=x #F@A" 2
BEEGQZ- 2C A2 dA BIT f0ARA2

i 1~ modify the code later based on
i Wwhich entry point we called
BEEBS - 2E &E BE STH *EBESE

i The rest of this routine
i wvwariety drive sealk.

Ctrack = 22

&0

Ch
Fi
A3
a0
RO
a0
38
ED
F&
Ed
43
EE
24
&3
CE
Ch
26
AL
C3
EA
AS
28
26
ES
24
A
15
26
ES
26
EE
DA
28
18
A

i=s

EF

EF

EF

EE

i= a garden

The target phase

in the accumulator on

STHAH
CHMP
BEEL
LOA
=TH
LOA
STHAH
SEC
SBEC
BEL
ECS
EOR
IMC
ECC
AOC
DEC
CHMP
ECC
LOA
CHMP
ECS
TAY
SEC
JS5E
LOA
JSE
LOA
CLC
JSE
LOA
JSE
IHC
EME
JSE
CLC
LOA

$BE38
$BF&3
$BEE3
#+80
$BES1
$BF &3
$BES3Z

$EBEZH
F$EBESS

BEESF - 239 B3 AMD #+08.3

BEGS1- ZH FEOL

BEGZ- a0 & EBF OFEA fEBFEG
BES3- HA TAA

BEEGE- ED S8 CH LOA FCASA, X
EEE3- RE && EBF LOx $BF G
BEE&C- & H ETS

i twalue of ¥ may be modified depending
i on which entry point was called?

BEE&D- A2 13 LOx #+123
BEEGF - CA DE X

BEEVE- OB FD BEHE $BEGF
BEVZ2- 38 SEC

BEV3- E3 @1 SBC #¥081
BEEVS- D8 Fg& EME $BEcD
BEEV V- (=45 ETS

BEEY2- [CAl 28 258 24 28 1E 10 1C1
BEESA- [C1C 1C 1C 1C V@ 2C 2e 221
EES=Z- [C1F 1E 10 1C 1C 1C 1C 1C1

The fact that there are two entry
points i=s interesting. Calling *¥EBEQAG
Wmill =et ¥ to ##13, which will end up
in ¥BEGE. =0 the wait routine at FBE&D
Wwill wait long enough to go to the next
phase Ca.k.a. half a track». Hothing
unu=swal there; that's how all driwve
seek routines work. But calling $BEBA3
instead of *BEAA will =et ¥ to #FHA.
which will make the wait routine burn
fewer CPU cucles while the driwve head
iz mowving:, =0 it will only mowve half a
phase (a.k.a. a gquarter track??. That i=s
potentially wery interesting.

Continuing from 844E. .

244B- AZ A5 LOA #¥03
2440- 20 33 =TH F33
244F - A2 B3 LOx #¥03
2421- 26 36 STH F3i6
2453- AE BH LoOY #¥08
2455- AS 323 LOA F33
2457 - =4 34 STY F.34
24339 39 33 STA $33

How C*%34 2 points to #8500 .
i find a 3-nibble prologue C"BS OE F7" 2

245B- HE && EBEF LOx FEFEG
243E- ED S8C CH LOA FCASC, K
246l1- 18 FE EFL $245E
2463- C2 BS CHMFP #¥B5
2463- 0D F¥ EHE F243E
2467 - ED =C CH LOA FLCASC, K
246A- 18 FE EFL 2467
24eC- C3 DE CHMP #+0DE
24e6E- D8 F3 EHE F2de83
24 7a- ED 2C CH LOA FCASC, X
247 3- 18 FE EFL 2476
247V 5- C3 F? CHMP #FF 7

2477 - DA F3 EME F246C

i read 4-4-encoded data into F@586+

2479- ED =2C C@a LOA ¥CASC, ¥
247 C- 18 FBE EFL £¥2479
247E- 2A ROL

247F - 285 37 STH ¥37
2431- BD 3C C@a LOA FCA3C, ¥
24584 - 18 FE EFL £¥2421
2486- 25 37 AMDO £37
24388- 291 34 STAH CEI4 Y
243R- Ca IHY

243B- 0a EC EHE ¥2479
243B- 0a EC BEHE ¥2473
2420- HE FF FF ASL ¥FFFF

i Find a 1-nibble epilogue C"0OS"2
2496- BD 3C C@a LOA FCA3C, ¥
2493- 18 FB BFL 2498
2495- C2 05 CHMP #¥05
2497 - 08 Es& EHE ¥244F
2499 Ege 325 IHC £35

i 3 sectors (initialized at $68451>
249E- Ce 26 OELC 36
2490- Oa 0OA EHE £2479

i and exit wia RBTS
249F- 5] RTS

He'vwe read 3 more sectors into #0508+,
overwriting the code we read earlier
tbut mowved to #BOEA+ 2, and once again
we =imply exit and let the stack tell
U= where we're going next.

¥2108
2108- 2F a1 FF 83 FF 84 4F @4

o oy

next return address

¥804FF + 1 = #8588, the code we just
read.

And that's where I get to interrupt the
boot .

Chapter &
Return of the Jeadi

i reboot because I disconnected and

i owerwrote 005 to examine the prewvious
i code chunk at $BDAG+

¥C50REG

JCALL -151

¥BLOAD TRACES

. C=same as prewvious tracel

} Fatch the stack again. but =lightly
i later, at #8104. (The previous trace
i patched it at #@102. 2

9714- AT 21 LOA #¥21

av16- 20 D04 @1 STAH 8104
av19- AS 97 LOA #E97

Sv1B- 20 05 @1 STAH 3105
i continue the boot

SV1E- A2 CF LO= #¥CF

AV 2E- 95 T®S

2v21- & H ETS

i tcallback i=s here? He just executed

i all the code up to and including the

i "RTS" at #A49F, =0 now let's copy the

j latest code at *#@588. F@7YFF to higher
memord so it surwviwves a reboot.

9?22— AZ2 B4 LO¥ #¥E3
av24- AB AA LOY #+¥EAE

AV 26— E2 AQ @5 LOA @588, Y
Qv 29- 99 AQ@ 25 STA £2588.,Y
Qv2C- Ca IHY

avz20- 0a F7? EHE £V 26
Qv 2F - EE z& 397 IHC $3728
Qv 32- EE zB 97 IHC $37 2B
Q¥ 35— CA OE*

A7 36— 08 EE EHE £V 26

i reboot to my work disk

A7 38— AD ES CA LOA $CHES
Q7 3B- 4C A@ C5 JHP $C5AA
¥BSAVE TRACE4.A$96608.L*13E

¥9500806

.Freboots =lot &. ..
.Freboots =lot 5. ..

JESAVE EBOOTZ B580-07FF ., AF25008, LF308
JCALL -131

Fgain., I'm going to leawe this at #2584
because I can't examine code on the
text page. Eelatiwve branches will loaok
correct, but absolute addresses will be
of f by ¥Z2088.

¥2288L

i seek to track 1
25868 - A9 A2 LOA #fE2
2582 - 28 BB BE JSE *EEQG

i get =slot number =16 (set a long time
i ago., at #8419

25R85- AE && BF LO= ¥BF &5
2588 - A @A LOY #8006
2SR - AS 2@ LOA #¥20
25[aC- 25 24 STAH 28
Z25HE- 28 OEY

258F - 08 @4 EHE £¥2515
2511- Ce 2@ OEC 38
2513- Fa 232C BEG ¥2551

i Find a Z-nibble prologuese C"0OS FF OO"
2515- EOD =2C C@A LOA ¥CASC, ¥
2518- 18 FB EFL ¥2515
251/- C2 D05 CHMP #¥05
231C- 08 Fa BEHE ¥2568E
251E- EOD =2C C@A LOA FCASC, ¥
2521- 18 FE EFL ¥251E
2523- C2 FF CHMP #¥FF
2525- 0a F3 EHE ¥251A
2927 - BD 3C C@a LOA FCA3C, ¥
292A- 18 FB BFL F2527
252C- C2 00 CHMP #+00

232E- Da F3 EHE F22323

i read 4-4-encoded data

2538-
2532-
2333
2937 -
2038
25339-
253B-
223E-
2548-

i imto #¥BAAA Chard-coded here.

A
EDO
16
28
ZA
25
EDO
16
29

AE
=2C CH
FE

2C CH

LoOY
LOA
EFL
SEC
FROL
=TA
LOA
EFL
AMD

#0083
FCASC, X
F2232

$30
FCASC, X
F223E
F38

i modified earlier unless I missed
i something?2

wmas not

it

2542- 99 @@ EBEa STAH ¥BAEA, Y
2545- Ca IHY

2546- 08 EA BEHE F2532

i Find a 1-nibble epiloguese C"0OS" 2
2548- EOD 2C C@a LOA F¥CASC, ¥
254B- 18 FB BFL ¥2548

2540- C2 D5 CHMP #0535

254F- Fa @E BEER £2550C

i This i= odd. If the epilogue doesn't
i match., it's not an error. Instead.

i appears that we simply copy a page of

i data that we read earlier C(at FA7HEA).

2551-
2303-
2006 -
2529-
292A-

i execution continues here regardless

23aC-

A
ES
239
Ca
()

26

HE
a8 ay
a8 Ed

Fr

F@ a3

LoOY
LOA
=TH
IMY
EHE

JSE

#0083
FEA7YEAE.,Y
FEOQE., Y

$2353

F83FH

¥22FaL

i MWeird, but 0OK. This end=s up callinag
i ¥BEVWA with A=%87V, which will =sesk to

2oF8a- AB 56 LOY #+26
25F2- A2 EBD LOA #+ED
25F4- 45 FHA
25F5- A2 FF LOA #¥FF
25F7- 435 FHA
25F8- RS A7 LOA #¥07
23FA- (=45 ETS

And now we're on half tracks.
Continuing from @835F. ..
i find a 3-nibble prologue C"OO EF AO" 2

235F- ED =2C CH LOA FCASC, X
2a62- 18 FE EFL F223F
256d4- C3 0D CHMP #+00
2066- 0Da F? EHE F225F
206E- ED =2C CH LOA FCASC, X
256B- 18 FE EFL F2268
2aeb- C3 EF CHMP #FEF
256F- OB F3 EME F2064
2371- ED SC CH LOA FCASC, K
2974- 18 FE EFL F2371
237 6e- C2 ab CHMF #+A0

2ara- Da F3 EHE 2260

i read a 4-4 encoded byte Ctwo nibbles

i on disk = 1 byte in memoryg?
257A- A @A LoY #¥00
2570C- BEOD =2C C@a LOA ¥CASC, ¥
2a7F- 18 FB BFL ¥257C
29381- 38 SEC

2582- 2R ROL

2583- 25 @A STAH ¥@A
2585- EO =2C C@a LOA ¥CASC, ¥
2588- 18 FB EBFL ¥2585
258A- 25 @A AMD 45 JE)

i push the byte to the stack (WTFT2
25380C- 48 FHA

i repeat for #1868 buytes=s

2a30- a8 OEY

258E- 0a EC EHE £257C

i Find a 1-nibble epiloguese C"0OS"2
25968 - BED 2C C@a LOA ¥CASC, ¥
2593- 18 FB BFL £2598
2595- C2 05 CHMP #¥05
2597 - Oa C3 EHE £2550C
2599- CE 2C @5 ODEC F@53C Bt
259C- &1 @A ADOC CEAE, D

Alw Self-modifying code alert! WOO WOO.
I'll u=se this sumbol whenewver one
instruction modifies the next
instruction. MWhen this happens. the
disassembly listing i=s misleading
because the opcode will be changed
by the time the second instruction
i1z executed.

In this case., the DEC at #8599 modifies
the opcode at #¥@A533C. =so that'=s not
really an "AOC" . By the time we execute
the instruction at $E33C, 1t will hawve
been decremented to ##%fc@, a. k.a. "ETS".

One other thing: we'wve read $¥18680 bytes
and pushed all of them to the stack.
The =stack i= only #1860 bytes CFA168AH. .
¥@1FF », =0 this completely obliterates
and previous wvalues.

Me hawven't changed the =stack pointer.
though. That means the "ETS" at F@53C
will =till look at #8106 to find the
next "return" address. That used to be
"4F @A4", but now it's been owverwritten
with new walues Calong with the rest of
the stack?». That's some =serious Jedi
mind trick =stuff.

"The=se aren't the return addresses
you're looking for. "

"These aren't the return addresses
we're looking for."

"He can go about his bootloader . "
"You can go about gour bootloader .
"Mowe along."

"Mowe along... mowe along."

Chapter ¢
In Mhich MWe Mowe Along

Luckily, there's plenty of room at
¥A599 . I can insert a JAMP to call back
to code under my control. where I can
save a copd of the stack Cand $BABEA as
well, whatewver that i=>». I get to
ensure I don't disturb the =stack before
I =ave it, =0 Pmo J5E. PHA. PHF. or

T®s. I think I cam manage that. JMP
doesn't disturb the =s=tack., =o that's=s
zafe for the callback.

¥ELOAD TRACE4
. C=zame asz prewvious tracel

j set up a JMP #9734 at £@A5939

Ir2s- A3 4C LOA #+4C
V24— 20 23 A5 STHAH FH333
V2V - AZ 34 LOA #¥24
V23— =0 FA 83 =TH FE3IA
= ey A3 397 LOA #£37
I7Y2E- 20 3B B85 STA 0396

i conktinue the boot
ar3l- 4C HBE @S JMP FH586

i tcallback i=s here? Copg #BHEAE and
i ¥8188 tao higher memory so they
i surwive a reboot

2734 - AE B8 LOY #+¥08
FVie- ES B8 EH LOA FEOBAE, Y
F7E9- 23 88 24 STH F28088.,Y
27 aC- ES @8 a1l LOA FO1668.,Y
2V 3F- 29 88 21 STHA F21848.,Y
Fvdz- CE IHY

= Da F1 EHE F37 36

i reboot to my work disk

27vd45- AO ES CH LOA F$CHES
2VdE- 4C B8 C3 JMF L3286
¥BSAVE TRACES.A$9c08.,L#%14E
F¥Ie88G6

. .reboots =lot &. ..
. .reboots =lot 5. ..

JESAVE EOOTZ EOBO-BAFF.,AFZ0608,LF10H
JESAVE EBOOTZ B180-01FF.,RAF216068,LF1046
JCALL -131

Eemember., the =stack ¥pointerf¥ hasn't
changed. How that I hawe the new =s=tack
¥datak¥, I cam Jjust look at the right
index in the captured =s=tack page to see
where the bootloader continues once it
issues the "RETS" at F@A53C.

¥2108 .
2108- Fa 72 AD D2 @2 285 25 @1

next FEE::;AaddFESE
FB125 + 1 = #8126

That's part of the s=tack page I just
captured, =o it's already in memory.

¥2126L

Another disk read routine! The fourth?
FifthY I'we truly lost count.

O4" 2

i find a 3-nibble prologue ¢ "BF BE
21z26- ED =2C C@a LOA ¥CASC, ¥
21z29- 18 FBE EFL ¥2126
212B- C2 BF CHMF #¥EBF
21z20- 0a Fv EHE ¥2126
212F- BD 3C C@a LOA FCA3C, ¥
2132- 18 FE EFL £¥212F
2134- C2 BE CHMP #¥EE
2136- 08 F3 EHE ¥212E
2138- BED 3C C@a LOA ¥CASC, ¥
213B- 18 FB BFL ¥2138
2130- C2 D4 CHMP #¥04
213F- Oa F3 EHE £2134

i read 4-d4-encoded data

2141- A @A LOv #¥00
2143- BD 3C C@a LOA FCA3C, ¥
2146- 18 FE EFL £2143
2148- 38 SEC

2149- 2A ROL

214/- 20 88 @z STAH FE2608
2140- BD 3C C@a LOA FCA3C, ¥
2158- 18 FE EFL £2140
2152- 20 68 @z AMDO f@AZ2EA

i decrupt the data from disk by using
i this entire page of code Cin the
i stack page? as the decryption key
i tmore on this later:?

2155- a9 @8 @1 EOR f¥@1a@, Yy
i and store it in zero page

2158- 299 @08 @A STAH FEaEa, Y
215EB- Ca IHY

215C- Oa ES EHE £¥2143

i find a 1-nibble epilogue C"D0O5"2
215E- ED 2C C#A LOA $CESC, X
2161~ 18 FE EFL $215E
2183- C2 D5 CHP #*¥05
2185- 08 EF EHE $2126

i and exit wia RTS
2167 - &E ETS

And we're back on the stack again.
¥2108 .

2108- F@ V& R0 D& B2 85 25 @1
210=z- 3¥ FF 3¥ FF 3¢ FF 3¥ FF

e e e e e ot e e e e e ey e e, e oty e e

next return addresses

21EB8- 3V FF 22 81 FF 83 El1 4C

TR A L L AL

¥FFSY + 1 = #$FF38., which i= a well-
known address in REOM that is alwads an
"RTS" instruction. So this will burn
through seweral return addresses on the
stack in short order. then finally
arrive at #8123 Cin memory at $#21232.

¥2123L0
2123- eC 25 A6 JMF CEBBAZS D

..which i=s in the new zero page that
Wmas Jjust read from dizsk.

And to think: we'we loaded basically
nothing of consequence Jdet. The screen
i= =still black. He hawe 3 pages of code
at *#BDWA. . $BFFF. There's =till =ome
code on the text screen., but who knows
if we'll ever call it again. How we're
off to zero page for some reasaon.

Un. Be. Liewable.

Chapter &2
By Persewverance
The Snail RFeached The Ark

I can't touch the code on the =stack.
because it'=s used as a decrdaption keyg.
I mean, I could theoretically change a
few bytes of 1t, then calculate the
proper decrdpted buytes on zero page by
hand. But no.

Instead, I'm just going to copy thi=
late=st disk routine wholesale. It's
short and has no external dependencies.
=0 why not¥ Then I can capture the
decrypted zero page and =ee where that
JMP C¥8A28) i= headed.

¥BELOAD TRACES
¥aV3d4<2126 . 2166M

Here'=s the entire disassembly lis=ting
of boot trace #6:

i patch bootA so it calls my routine
i instead of Jjumping to $¥8381

2eFa- AZ A5 LOA #¥05
2eFA- =0 25 @8 =TH FHS IS
2eF0- A3 397 LOA #£37
eFF- 20 32 @8 STA FOZ33

i start the boot
SQvEz2- 4C A1 @8 JMP *H3E1

i tcallback #1 is here? reproduce the
i decryption loop that was originally
i at #8320

VA3 - =4 48 aTY $45
27ay- AB B8 LOY #+00H
F7ra9- ES B8 @3 LOA FOI08.,Y
2VAC- 45 48 EOR $45
2VHE- 29 88 a1 =THAH F0188.,Y
2711- Ca IHY

arlz2- DA F3 EME $3703

i patch the stack =so it jumps to my
i callback #2 instead of continuing to
i ¥8588

9714- AT 21 LOA #¥21

av16- 20 D04 @1 STAH 8104
av19- AS 97 LOA #E97

Sv1B- 20 05 @1 STAH 3105
i continue the boot

SV1E- A2 CF LO= #¥CF

AV 2E- 95 T®S

avzl- 5] RTS

i tcallback #23 set up callback #3
i instead of passing control to the
i disk read routine at F0126

Ir2s- RS 4C LOA #+4C
V24— 20 23 A5 STA FH333
V2V - AZ 34 LOA #+24
V23— =0 FA 83 =TH FE3IA
Ir2C- A3 397 LOA #£37
I7YZE- 20 3B @5 STAH 0396

i conktinue the boot
Sr3l- 4C BB @5 JMP FH586

tcallback #3» disk read routine

i copied wholeszale from #0126, . $0166
i that reads a sector and decrypts

i 1lnto zero page

27 Ed-
A7AV -
V39—
27V 3EB-
2v3D-
2748-
Frd2-
F7dd-
2Vde-
2743-

IrvVa-

ED
16
C3
0&
ED
16
c3
)
EDO
146
C3
()
AA
EDO
16
A5
2A
=20
EDO
16
20
239
23
Ca
D&
EDO
16
c3
()

aC Ca

=2C CH

2C CH

2C CH

BB B2

BB B2
B8 B8

=2C CH

LOA
EFL
CHMF
EHE
LOA
EFL
CHMP
EHE
LOA
EFL
CHMP
EME
LOY
LOA
EFL
SEC
ROL
STH
LOA
EFL
AMHD
EOR
STH
IMY
EHE
LOA
EFL
CHMP
EHE

FCASC, K
F3734
#¥BF
F3734
FCASC, K
$3730

Fa168,Y
FOBEE.,Y

F3731
FCASC, X
F37el
#+05
F3734

i execution falls through here

it

i now capture the decruypted zero page

2¢ya- AE B8 LoOY #0083
YV - ES B8 a4 LOA FEAAE, Y
FPVA- 23 88 26 =TH F200848.,Y
2¢v0- Ca IMY

= 0Da F? EHE FIAVYV

i turnm off the =lot & driwve moktor
Sy sa- A0 ES CA LOA *CHES

i reboot to my work disk
avVe3- 4C @A CS5 JMP £¥C5EA

¥ESAVE TRACEES.,A+2c@B.,L$F126
Mhew. Let's do it.

Y9G
. .reboots =lot &. ..
. .reboot=s =lot 5. ..

JESAVE EBOOTZE 8080-08FF ., AFZ008,LF106
JCALL -1351

F2028 . 2823
28z28- DA @&

Ok, the JdMP (8022 points to $68504.
which I captured earlier. It's part of
the =econd chunk we read into the text
page Cnot the first chunk -- that was
copied to #BDAB+ then owverwritten. So
it's in the "BOOTZ2 A588-AB7FF" file., not
the "BOOT1 B8488-87FF" file.

¥ELOAD EBOOTZ @380-A7FF.,RAF2580

F¥2elal

2ebB- AZ A6 LOx #0183
2ebz2- EE D3 @& IHC @05 P N
2eb5- C3 EE CHMP #+EE

Oh Jjodg, more self-modifuying code.

2603 :CA
¥2e03L

2ab5- CA DE X
2ebe- EE D2 @& IHC F@aeD2 P
2eb03- aF TEY

¥2eb02:18
¥2el03L

i branch i= newver taken. because we
i Just DER'd from ##+88 to #$FF

2eb3- 18 FE EFL F2eb6

2aDB- CE DE @& DEC FBeDE P A
2eDE- &1 A8 AOC CEAB . WD
¥2e0E: 68

¥2e0EL

2aDE- (=15 ETS

And now we're back on the =stack.

¥ELOAD EBOOTZ @180-01FF.R*2180

¥21E8

21E@- 3V FF 22 81 FF 83 El1 4C

o oy

next return address

¥85FF + 1 = #B8c8B8., which

memord at $2600 .
¥2eBEL

i destrogy stack ba pushing the =zame

i wvwalue #1808 times

2eBRa- AE @6 LoY
2eBR2- 45 FHA
2eR3- 28 DEY
Z2e@d- 0Da FC EHE

i= already

#0083

F2e02

in

I guess we're done with all that code
I hope we're
done with it, since it all just

on the s=tack page. I mean.

dizappeared.

i reset the stack pointer

ZEHE— Az FF LOx
ZEHS - 9A THS
ZEHS - EE AC A& IHLC
2EHC—- A TAY
Oh Jjoug.

¥2eA0C: A9

¥2eACL

ZEHC—- A9 27 LOA
ZEHE- EE 11 @& IHLC

2ell1- 17 TET

HEFF

FOEAC

27
FAE11

¥2ell:18

¥2el1l1L

2el11- 15 CLC

Z2el2- EE 13 @& IMC FHE15 P
2e15- &8 FLA

¥2615:69

¥2613L

2615- g3 03 ROC #+03

2617 - EE 1A A& IMC FfOE 1R SN
2el1A- 4E TEY

F261R:4C

¥2elAl

2el1A- 4C 28 FO JMF $F0O24

Mait, what?v
¥FDO9EL
FO2E- Oa SB EHE *FOED

ODespite the fact that the accumulator
iz #$008 (because #F27V + #F0D2 = #F@Q 2,
the IHC at #8617 affects the 2 register
and causes this branch to be taken
tbecause the final walue of #$HA51A was
not zZerol.

¥FDEDL
FOED- eC 26 @4 JMF CEABREG D

O0f course., this i=s the standard output
character routine, which routes through
the output wvector at (FAA35). And we
Just =et that wector, along with the
rest of zero page. So what is 1it7¥

¥2E35 2@3Y

2836—- &F BF

Oh jog. Let's =ee. $BDOEG. $BFFF wmas
copied earlier from #8588 . *#@87YFF. but
from the first time we read into the
text page., not the second time we read
into text page. So it'=s inm the "BOOTI1
B4868-A7FF" file, not the "BOOTZ2
BSEE-A7VFF" file.

¥ELOAD BOOT1 B4808-87FF.afz2d4dB

¥FES3: FES3G i disconnect 0OO0S
¥EDOOE 2588 27FFM ;i mowe code into place

¥EF&FL

EF&F- C3 av CHMP #¥87
EFV1- 298 B3 ECC $BF 7 &
BF 72— eC 2R 84 JMF CEABAEIA D
F¥2B03R. 2836

Z282A- FA FD

i sawve input walue
EF¥&— 25 5F STA *5F

i Wse waluwe as an index into an arrag

BF 72— AS TAY

BEF 79 - E2 &8 BF LOA $BF&2. Y

i S~ =zelf-modifying code alert —-- this
i changes the upcoming J5E at $BF21
BFFC- 20 22 BF STA $BF 22

BEF7F - A2 @A LOA #+¥EE

EF21- 28 DA BE JSE $BEDA

Amazing. So this "output" wvector does
actually print characters through the
standard #FOFBA text print routine. but
only if the character to be printed is
at least #F87. If it's less than #F@7.
the "character" is treated as a
command. Each command gets routed to a
different routine somewhere in #BExx.
The low bayte of each routine is staored
in the arrag at #¥BF&3., and the "STA" at
¥BFYC modifies the "JSE" at $BF21 to
call the appropriate address.

¥BF&S .
EFE2- DB DOF OB DB FD FD D&
Since A = #8088 this time. the call is

unchanged and we J5SFE #BEDB. Other input
values mauy call #EBEDOF or #BEFD instead.

¥EEDAL

i u=ze the "walue" of #CA5H to produce
i a pseudo-random number between #$F61
i and ##F8E

BEEDG- AS &8 LOA ¥506
EEDZ- 40 5S@ CA EOQR *CHSE
EEDS- 25 68 STa *506
EEDY - 29 AF AMDO #FEF
i not #F84

EEDOS- FA F5 BER *BEDA
i not #FAF

EEDOE- Cc9 AF CHMP #FEF
EEDOD- FAa F1 BER *EBEDGA

i zet the lo-res plotting colaor Cin
i Fero page $¥3A2 to the random-ish
i walue we Jjust produced

BEDF - 28 656 F& JS5K ¥F265

i Fill the lo-res graphics screen with
i blocks aof that caolar

BEEEZ- A9 17V LOA #¥17

BEEE4 - 48 FHA

i calculates the base address for this
i lime in memorgy and puts it in %¥26-°%27

BEEES- 28 47 F& JSE FFE47
BEEEZ- AE 27 LOY #F27
EEEA- RS 28 LOA F38
EEEC- 21 26 STH CEZE Y
EEEE- == DEY

BEEEF - 18 FE EFL $EBEEC

EEF1- 3= FLA

i do it for all 24 (%172 rows of the
i SCreean

BEEFZ2- 38 SEC

BEF3- Ea A1 SEC #¥01

BEFS- 18 ED BFL ¥BEE4

i and switch to lo-res graphics mode
BEEF?Y- AD 56 CA LOA ¥CASE
BEEFA- AD 54 C@A LOA ¥CAS4
BEFD- 45 RTS

This explains whg the original disk
fill=s the screen with a different colaor
eyaery Ltime it boots=s.

But wait. these commands do so much
more thanm just fill the screen.

Continuing from $BFS4. ..

EFZd- AS SF LOA $oF
EFZe- C3 a4 CHMP #+04
BFSE- DE a3 EHE $EBF=20
BEFSA- 4C 88 EDO JMF F$EDBAH

If A = #$¥84d, we exit wia FEBOBE. which
I'll inwestigate later.

BFED- C3 A5 CHMF #0535
BFSF - DE a3 EHE F$EF34
BEF31- eC 32 BF JMF . ¥BF S22

If A = #$85, we exit wia (FEFS22, which
i= the =zame thing we Jjust called wia
the self-modified JSE at FEBFS1.

For all other walues of A, we do this:

EF34- 28 BB BE JSE *EEEQ
¥EEEGEL

i another laver of encryption!
EEEG - AZ &8 LOx #¥50
EEEZ- EO 9F EF LOA *BF9F . ¥
EEES- a0 BB BE EOQR *EBEQA ., ¥

i and it's decrupting the code that
i wWe're about to run

BEEEZ- 20 3F EBEF =TH F$EF3F . R
EEEE- CA DE=x

EEEC- 18 F4 EFL $BEEBZ
EEEE- RE && BF LOx $BFEG
BEC1- & ETS

This is =s=elf-contained, =0 I can just
runm it right now and see what ends up
at *¥BFS9F.

¥EEEBAG

Continuing from #%BF37. ..

BEFS7- AB @A LOY #¥00
EF99- A9 B2 LOA #¥EBEZ2
EFSE- 24 44 STY 44
EFS0- 25 45 STAH 45

i evergthing beyond this point wmas

i encrypted., but we just decrypted it
i in #¥BEE#Q

BFSF- EOD 22 C@a LOA ¥CAS9., ¥

i Find a Z-nibble prologue {wvaries.
i based on whatewver the hell is in
i ZTero page ¥40-%41-%42 at this point?

EFAZ- ED 2C CA LOA $CHEC, B
EFAS- 18 FE EFL $BFAZ
BEFAT- CS 4a CHP 48
EFAS- 08 F7 EHE $BFAZ
EFAE- ED 2C C#A LOA $CESC, ¥
EFAE- 18 FE EFL $BFAE
EFEGQ- CS 41 CHP 41
EFEZ- 08 F3 EHE $¥BFAY
EFE4- EOD 2C C@a LOA $CEBC, ¥
EFET - 18 FE EFL +BFE4
EFES- CS 42 CHP ¥42
EFEE- 08 F3 EHE $BFEA

i read 4-4-encoded data

EFED- ED 2C C#A LOA $CEAEC, X
EFCA- 18 FE EFL ¥BFED
BEFCZz- 38 SEC

BEFC3- 2R ROL

EFC4- 25 46 STA 45
BFCE- ED 2C C#A LOA $CEEC, =
BEFC9- 18 FE EFL $BFCA
EFCE- 25 46 AHD 45

i store in memorgy starting at $EB2EA
i L=et at $BFSE2

BFCD- 21 44 STHA CELG .Y
BEFCF- CE IHY

BEFDG- D8 EE EHE F#EFED
EFDZ2- Ee 43 IMC $43
EFD4- ED SC CH LOA FCASC, K
BFDY - 18 FE EFL $EBFD4
BEFD2- C3 43 CHMP $423

EFDE- D8 EA EHE F$EBF3Y

i read into $#BzB@. $B368, and $B480,
i then =stop

BEFOD- AZ 45 LOA <

EFDF - 43 ES EOFR #¥EB3

EFE1- 0Da DA EME $BFED

EFE3- 45 FHA i A=
EFE4- AT 45 LOA $435 i A=
BEFE&- 43 3ZE EOR #¥5E i A=
BEFEZ- 45 FHA

EFES- (=45 RTS

So we push ##F88 and #$3B to the stack
then exit wia RBRTS. That will "return"

515
ES
2B

4

to $¥8A3C, which i=s in memory at $#Z2803C.

¥2E3CL
2B3C—- 4C HAB BZ JMP *EZ2806
And that's the code we just read from

disk.:; which means I get to =et up
another boot trace to capture it.

Chapter 29
In Which MWe Flutter For A Dau
And Think It Is Forewer

I'll reboot muy work disk again. since 1
disconnected 0O0S5 to examine the code at
¥BDEG . . ¥BFFF .

¥CSEEG
ICALL —-151
+ELOAD TRACEG

Czame as previouws trace, up to and
including the inline disk read
Frouktine copied from #8126 that
decrypt=s a sector into zero pagel

j change the JMP address at $HBA3C so it
i points to my callback instead of
i continuing to ¥BZB0G

2 ya- AZ 26 LOA #2508
VYV - =32 30 =TH F30
27V a- A3 37 LOA #£37
27VE- 22 3E STA F3E

i conktinue the boot
Sy yh- 4C HE H& JMP FHeEH

i tcallback i=s here? copd the new code
i to the graphics page so it surwviwves 3
i reboot

27aa- A2 B3 LOx #¥0.3
IVez- ES B8 B2 LOA FEZ208.,Y
F7YE5- 23 @A 22 STH F22088.,Y
FrEg8- Ca IMY

2783- Da F¥ EHE Fa732
2VEE- EE 24 3¢ IHC F3754
FVEE- EE =¥ 37 IHC F3737
27al- CA DE X

Iraz2- D@ EE EME FI782

i reboot to my work disk

ES CH LOA F$CHES
A8 C5 JMF L3286

¥BSAVE TRACEY.A$F9c08.,L*¥13A

S7VSd4- Aad
Qryary-—- 4
¥95AEG

. .reboots

. .rFreboots
AESAUE OEJ.
JCALL -151
¥E20@C 22808 .
¥E2EEL
EzEn- A9
BEzEz—- 2A
EzBS—- A
EzEvy - 25
Ezes- 26
BEzEC—- 4
¥B40B iz 3

to the one

=laot &. ..
=lot 5. ..

Ez2B8-B4FF ., AFZ2208, L3008

24FFHM

a4 LOA #+04
a8 B4 JSE $EB4088
515 LOA #¥08
2H =THAH $3A
a8 B3 JSE $E28606
B8 B3 JMP $B308

disk seek routine., identical
at ¥BEBA. (It ewen hazs the

zame dual entruy points for seeking by

half track

and quarter track. at EBE4804

and ¥B483.) There's nothing at ¥ES58H
yet, =o the routine at #B3288 must be
another disk read.

i Some zero page initializatiaon

FE388L

B2B@- A
BiBz- A3
BiBd- =
Bifpe- 45

Bigay- 26

B LDY #5068

ES LDa #3ES

55 STY #59
FHEA

I8 B3 JER $B338

¥B238L

iomMmoare Zera page

Bii@-
B3Z1-
B333-
B235-
Biig-
B333-
B3ZB-
B320-
B3ZE-
BidB-
Bidz-

BE34B-
¥B3258.

45
AS
23
AS
ES
20
AS
4A
a3
25
AS
a3
20
1=
Ee
4L

2A
ar

S0 B3
S0
S8

initialization

FHA
LDA
AND
TAY
LDA
STH
LDA
LSR
ORA
STH
LDA
ORA
=TH
FLA
THC
JMP

$0A
#+87

FEB328.Y
3]
FOA

#+AA
$31
$3A
#¥AA
F02

$3A
¥EB356

BZ58- D3 BS BY BEC DF D4 E4 OB

That could be an arrag of nibbles.
Maube a rotating prologue¥ O a
decruption keg?

¥BIEHEL
Oh Jjoug.

BicB-
Bicz-
Bicd-
Bicg-
Bigg-
BicA-
BIclC-

Another disk read routine.

20
A
2E
=15
AS
24
25

STH
LOx
ST
LOY
LOA
STY
STA

$54
#¥02
F37
#¥00
$54
$93
$36

i find a 3-nibble prologue (waries,

i baszed on the zerao page locations that
i Were initialized at #B3380 based on

i the arrayg at #B35@2

BEZcE- HE &6& BF LO= ¥BF &5
B2V1- BD 3C C@a LOA FCA3C, ¥
BEZV4- 18 FE EFL $B371
BEZV&- CS 5@ CHMP £5A
BZVE8- oa Fv EHE ¥B371
BEVA- BED 3C C@a LOA ¥CASC, ¥
BEVD- 18 FB BFL ¥B37A
BEVF- CS 51 CHMP 51
BEZ21- Oa F3 EHE ¥B375
BEZg3- EOD =2C C@a LOA FCASC, ¥
BiZg6- 18 FB EBFL ¥B333
B2Z338- CS 52 CHMP ¥52
BIZ3Aa- 08 F3 BEHE ¥B37YF

i read a 4-d4-encoded sectaor

BZ3C- EOD 2C C@a LOA F¥CASC, ¥
B2Z3F- 18 FB BFL ¥B33C
BZ921- 2H ROL

BEZ92- 25 58 STAH 58
BEZ594- EOD =2C C@A LOA FCASC, ¥
BZ97- 18 FBE BEFL B394
BZ99- 25 58 AMDO ¥58

i store the data into (35352

EZ9E- 91 55 STAH CESS Y
BEZ50- Ca IHY

BI3E- Da EC EHE FEB32C

i Find a 1-nibble epilogus C"0O4" 2

BiRa- HE FF FF ASL ¥FFFF
BIRz- ED =2C CH LOA FCASC, X
BiRg- 18 FE EFL FE3R3
BE3AS- Cc3 D4 CHMP #+04
BZRAA- 08 EB& EME F$B3I62
BZAC- Ee 36 IHC F36
BZRE- Ce 37 DEC F37
BiB@- Da DA EHE FEB35C
B3BZ2- (=45 RTS

Let's seea:

#3537 i= the =ector count. Initially #*@:2
r=et at *¥B36d 2, decremented at $B3RE.

#3536 1= the target page in memorg. Set
at #¥B3ceC to the accumulator. which is
=et at *¥B3I68 to the wvalue of address
534, which i=s =set at $B3cA to the
accumulator, which is set at #¥B342 by
the PLA., which was pushed to the stack
at #¥B3Z38., which was originallgy =set at
¥B3A2 to a constant wvalue of #FBS. Then
$#56 1= incremented ¢ at FBIAC Y after
reading and decoding #1868 buytes worth
of data from disk.

$¥25 1= ##80 C=et at FEIGAL.

So this reads two zectors into $B58H8 . .
¥B&5FF and returns to the caller.

Backtrackinag to $BZ8A/A. ..
i ¥59 i=s initially #%868 (=set at $FE3E4 2

BiBA- Ad 53 LOY $903
BiacC- 15 CLC

i current phase (track = 22
EZ00- AD &5 BF LOA +BF &S

i new phase
E318- ¥a 28 B3 AOC FBE32E8.Y

i move the driwe head to the new phase.
i but using the second entry point.

i which uses a reduced timing laoop ¢! 2
BZ13- 28 B3 B4 JS5K ¥B463

this pulls the walue that was pushed

i to the =tack at #¥B3@&., which was the
i target memory page to store the data
i being read from disk ba the routine
i at #¥B3c@

B3Zlg- a8 FLA

i page += 2

BEZ17- 13 CLC

BZ135- B3 A2 AOC Q2

i counter += 1

EZ1/- A4 59 LoOY £59

BEZ1C- Ca IHY

i loop for 4 iterations

BZ10D- Ca @4 CPY #¥04

EZ1F- 98 E3 BCC B304

Biz1l- &2 H ETS

So we're reading two sectors at a time.
four time=s., into $BSBEA+. 2 = 4 = 8, =0
wme're loading into $B5HEA. #BCFF. That
completely fill=s the gap in memoryg
between the code at $Bz2B88. $#B4FF (this=s
chunk» and the code at *BDBEA. . $BFFF
Ccopied much searlier?:, which strongly
suggest=s that my anmnalu=sis i= correct.

But what's going on with the weird
driwve seeking?

There is some definite weirdness here.
and it's centered around the arrag at
¥B322. At #$BZ2EAA, we called the main
entry point for the driwve seek routine
at #¥B488 to seek to track 2. How. after
reading two sectors: we're calling the
secandaryg entrgy point Cat $¥B483 > tao
seek. .. where exactly?

¥B328.
Biz2- 81 FF 81 868 80 80 80 40

Aha! This array is the differential to
get the drive to seek forward or back.
At #¥BZ8A, we seeked to track 2. The
first time through thi=s loop at B384,
we read two sectors into FB58H. FB&FF.
then add 1 to the current phase
Cbecause $B323 = ##@1>. Hormalluy this
would =seek forward a half track. to
track 2.5, but because we're using the
reduced timing loop: we only sesk
forward by a quarter track. to track
2.25.

The second time through the loop. we
rFread two sectors into #¥BVAA . ¥BEFF.
then subtract 1 from the phase (hecause
¥B329 = #*fFF» and =seek backwards by a
quarter track. How we're back on track
2.8,

The third time, we read two sectors
from track 2.23 into $#B986. $#BAFF. then
seek forward by a quarter track
Cbecause $B3z2A = #F@1 2.

The fourth and final time, we read the
fimal two sectors from track 2.25 into
¥EBEBGOB . . ¥BCFF .

1.75 2.8 2.25 2.5 2.75
—_—t——_———— +———— - t——— +———-
ESAE)
BEcAE .
. s .
: BEVan
: BE2BA
. - .
ESAE
EABE
. S .
: BEEGA
ECBA

This explains the little "fluttering"
noise the original disk makes during
thi=s phase of the boot. It's fFlipping
back and forth between adjacent gquarter
tracks:, reading two =ectors from esach.

Bogy am I glad I'm not truing to copy
this disk with a generic bit copier.
That would be nearly impossible., ewven
if I knew exactly which tracks were
split like this.

Chapter 18
In Mhich The Floodgates Burst Open

¥ELOAD TRACEY
. C=zame as prewvious tracel
j interrupt the boot at FEZBC after it

i calls $¥B38A but before it jumps Lo
the new code at $BSA8A

2Vaa- AZ 20 LOA #+50
IVaz- =0 a0 B2 =TH FEZ280
27YE5- A3 397 LOA #£37
Iray- 20 BE B:Z STAH $BZ0E

i conktinue the boot
Qv EA- 4C HBE BZ JMP *EZ2E0H

i tcallback i= here? capture the code
i at #B58A8. $BCFF =0 it =surwiwves a3
i reboot

avan- A2 HE LO= A3

SV aF- A @A LOY #¥006
av9l- E2 @@ BS LOA ¥BoEA, Y
9794 - 299 @@ 25 STAH 25688, Y
I Ca IHY

avV9s8- oa Fv EHE £3791
av9R- EE 23 37 IHC ¥3793
avapn- EE 2& 37 IHC ¥3795
SYVABE- CHA OE =

S97Al- 08 EE BEHE F2791

i reboot to muy work disk

SVRA3- AD ES C@A LOA ¥CHES
SYVAG— 4C @@ CS JHMP ¥CoEA
¥ESAVE TRACES.A$9c@B@.L$F1A9

¥96EA0G

. .rFreboots =lot 5. ..
. .reboots =lot 5. ..

JESAUE OBJ.B38B-BCFF.A*2508, L5304
JCALL -131

¥E2BB<25688 . 2CFFHM
¥BS8AL

i same command ID0 ¢ =awved at #$BFY&E 2 that
i was "printed" earlier (passed to the
i routine at *#BFe&F wia $FDED?>

ESaE- AE SF dA LO= fEA5F

i uzse command I0D as an index into this
i new array
BESB3- EOD 2@ BES LOA ¥EB520H., ¥

i I~ store the array walue in the
i middle of the next JSFE instruction
BESBs—- 20 BA BS STA *ESHA

i and call it ¢modified based on the

i previous lookup?

ESEs- 28 58 BS JSE *B5508

¥ES2HE .

ES20- S8 52 62 VA @A A@ 58

The high bute of the J5F address newver

changes, =o depending on the command IO
we're calling

B => $BS58
A1 => $BS58
A2 => $B5&S
A3 => $B378
He =» ¥B353 again

A nice, compact jump table.

¥BE258L

Ba5A- A3
Ba52- AH
BES54- 4C
¥EB338L

Ba53- A3
BES2A- AA
BES2C- 26
BES2F- A3
Bael- A
Baa3- 4L
¥B28EL

Baaa- A3
BacA- A
BaalC- 4C
¥EBE27AL

Bava- A3
Bavrz- AH
BESV4- 4C

B8 BA

B8 BA

A28 EA

A8 EA

41
B
B BA

LOA
LoY
JMP

LOA
LOY

LOA
LoY
JMF

LOA
LoY
JMF

LOA
LoY
JMP

#+03
#0608
f$BRBEE

#¥13
#+80
$EBRBEE
#+239
#¥58
$BRABE

#+31
#+¥08
F$EABH

#¥41
#F¥AB
F$BROE

Those all look quite similar. Let's =ee
what'=s at $BABAGA .

FEABAL

i =zawve the
BEAOBE- 48
BERral- =d

i seek the
i im A2
BEAQZ- 28

two input parameters (A &% Y2

28

FHA
STY

$328

driwe to a new phase (giwven

B8 EE

JSE

$EBEBAH

i copd a number of bytes from $EB2648.Y
i LY was passed in from the caller> to
i ¥BEBGO

Eras- AZ2 @A LO¥ #¥EE

Epas- A4 58 LOY $58

ErBap- ES BAa B9 LOA $B288.,Y
EraD- 90 88 BEE STA $BEBA, X
Erla- Ca IHY

Eall- ES IH®

i ¥68C buytes. Always exactly #$@C bytes.
Ealz- Ea acC CFP #¥E@lC

EAald- 98 F4 ECC +BRBA

Mhat'=s at #B926887 All kinds of fund*?
stuff.

t¥» not guaranteed, actual fun mau wvary

¥E288 .

ESBB- B8 82 o 8B oC abh BE aF
Ba@z- 18 11 12 13 14 15 16 17
BE21a- 18 13 18 1B 1C 1D 1E 1F
Bala- 28 21 22 23 24 25 26 27
B3z2@- 28 292 2R 2B 2C 20 ZE 2F
B3z28- 28 31 22 33 34 35 38 37
BE328- 28 392 Za 3B 3C 3D 3E 3F
B232- 68 &1 &2 &3 &4 &5 &6 &7
BE2d4bB- &8 &3 &6A 6B &C &0 &E &F
BEgd4z- V@ V1 V2 V3 ¥4 V3 Ve F7
E328- V8 ¥2 YA ¥B YC ¥D YE ¥F
BE3528- 88 81 82 83 84 85 88 &7
EScb- B8 B8 80 80 80 80 80 60

That looks =suspiciously like a set of
high byte=s for addresses in main
memord. Mote how 1t starts at #FA3
cimmediately after the text pagel, then
later Jjumps from ##F3F to ##F68 (=skipping
over hi-res page 2.

Continuing from $¥BR1:5. ..

EAl&- 28 38 BA JSE *EA3E
¥EAZEL

i current phase

Ea3Za- AOD &5 BF LOA *EBFE&5

i conwert it to a track number
BEA3Z3- 4H LSE

Ea3d- AZ B3 LOx #FHE3

i Ctrack MOD #1G2

BRAZI&—- 29 AF AMD #+EF

i u=ze that as the index into an arrau
Ea3s- AS TARY

BEAZs- ES2 18 EBC LOA *EBC1@.,Y
i and store it in zero page

BEA3IC- 95 58 STa 56, ¥
EAZE- Cce IHY

EA3ZF- Qs TYA

EAada- CHA OE

EAad1l- 18 F3 EFL *EBA3E
¥BC1G .

ECl8- F¥ F2 EF EE DF DD D& EE
EC18- BD BA BY EB& AF RAD AE AA

All of those are walid nmnibbles. Magbe
this is =setting up another rotating
prologue for the next disk read
Froutine?

Continuing from *BAd43. ..

EAad3- 4C HBAC BE JMP *EBEBAC
¥EEBACL

Oh jodg. Another disk read routine.

i I think #3534 i= the =ector count

BEEBAC- A2 HAC LO= #¥AC

BEERE- 25 54 STH 54

i and #3535 i= the logical sector number
EE18- A @A Lov #8006

EEl1Z2- 2C 54 EBE STY $¥BES4

EE1S5- 24 55 STY £55

i find a 3-nibble prologue Cuvaries
i by track., set up at FEBR3IS2

BE1V- AE && EBEF LOx fEFEG
EE1A- ED S8C CH LOA FCASC, K
EE10- 18 FE EFL $BE1R
EE1F- CS 58 CHMP Fo8
BEZ1- 0D F¥ EHE ¥EEB1A
BEZ2- ED =2C CH LOA FCASC, K
BEZG- 18 FE EFL FEBZ3
EEZ2S- CS 51 CHMP $51
EEZA- 08 EE EHE ¥BE1R
BEZC- EOD 2C CH LOA FCASC, X
BEZF - 18 FE EFL $EBZC
BEE31- C3 3 CHMP F22

EBZ3- 0Da ES EME $BE1R

i logical sector number Cinitialized to
i #%¥8BB8 at $BEB1S5>
EEZS- A4 55 LOY 55

i use the sector number as an index
i imto the #AC-length page arrag we
i set up at FEBRQS)

EEBZ7Y - ES @8 EE LOA $BEEA, Y
i and modify the upcoming code
BEB3A- 20 35 BB STAH ¥BESS
BBZD- Ee 55 IHC £55

i get the actual bute

BEB3F- BC 2C C@a LOY ¥CASC, ¥
BEEB42- 18 FB BFL ¥BEB3F
EB44- B2 @@ BC LOA ¥BCAEA, Y
EE47 - HA ASL

EE45- HA ASL

EE439- HA ASL

EE4A/- HE ASL

BEE4E- BC 3C C@a LOv FCA3C, ¥
EE4E- 18 FE EFL ¥EE4E
EESH- 12 88 BC ORA fBCAA, Y

i modified earlier Cat $BE3A>» to be the
i desired page in memory

EE23- =20 88 FF STHAH FFFOa
BEESE- EE 34 EE IHC $EBS4
BEES2- D8 E4 EHE F$EB3F
EESE- EE 33 EE IHC F¥EBEEB3S

i Find a 1-nibble epilogue Calso wvaries
i bu track?2

BEESE- ED =2C CH LOA FCASC, X
BEEGS1- 18 FE EFL $EBEEB3E
EEG3- CS 93 CHMP $903

EEES- D8 A3 EME $BEAC

i loop for all #B8C sectors

BEG&Y - Ce 24 DEC $54
BEES3- Da CA EHE $EB35
EESE- &2 ETS

So we've read $AC sectors from the
current track. which i= the most gou
can fit on a track with this kind of
"d-and-4" nibble encoding scheme.

Continuing from #%BAl1S9. ..

i ilncrement the pointer to the next
i memord page

EBAl3- AS 58 LOA ¥58

BR1EB- 13 CLC

BAlC- &3 @AC ADC #¥QC

ER1E- AS TAY

i 1f the next page 1= #$HHA, we're done
BAlF- E2 B@ B9 LOA ¥B96a,Y
BAzz2- Fa @y BEQ ¥BAZE

i otherwise loop back, where we'll mouve
i the driwve head one full track forward
i and read another #$HC sectaors

EAzZd- &8 FLA
ERZ5- 15 CLC
BRZE- 23 A2 AOC #0602
BRzZE- Da De EHE $EABAH

i execution continuwes here ¢ from FBAZZ2
BEAZE- a8 FLA
BRAZC- e RTS

How we hawve a whole bunch of new stuff
in memorgy. In this case. $¥B558 =tarted
on track 4.5 (A = #$69 on entry to
¥BAEA Y and filled #8288 . $3FFF and
¥c088 . F#3VFF. If we "print" a different
character. the routine at *B3H8 will
route through one of the other
subroutines —-- $¥B552., #B562., or *#B37VA.
Each of them =tarts on a different
track (A and uses a different starting
index %2 into the page arraug at $EB2006.
The underlying routine at *BABA doesn't
know angthing else; it just seeks and
reads #$HC sectors per track until the
target page = #$FHA.

Continuing from BSAC. ..

ESEC- 28 BB BY JSE *EYEH
¥EVAEL

i oh Jjou, another decruyption loop
EVan- AZ B8 LOx #F60
Eraz- EOD BB EBE& LOA *EBEHE ., ¥
EFYEs- a0 BB BE EOQR *EBEQA ., ¥
EFYEs-— S0 A @3 STa FAZ0H, ¥
EVYHE- E= IH=

EVac-—- Ea DB CPx #£008
EVYHE- 98 F2 ECLC *EYAZ
EFia- CE 13 EBY OEC ¥EBEY 13 N
BEV13- &0 A2 BY AOC ¥EYAS

BVle- & ETS

And more self-modifying code.

¥EY13:6C
¥EY13L

BE¥li- eC B2 BY JMP CEBEYEAS D

...which will Jjump to the newly
decrupted code at 63680 .

To recap: after ¥ boot traces., the
bootloader prints a null character wia
¥FD28, which jumps to #FOED. which
Jump=s to CFEARAIG D), which jumps to #BFG&F.
which calls #BEBA. which decraypts the
code at #BF2F and returns just in time
to execute it. #¥BF3F reads 3 sectors
into ¥BzZBB8-%B4FF., pushes #f80-#%3E to
the =s=tack and exits wia ETS., which
returns to #EE3C, which Jjumps to #B2AA .
¥B28A reads 2 sectors into $¥BS8E-$BCFF
from tracks 2 and 2.5, shifting betuwesen
the adjacent gquarter tracks ewvery two
sectors, then jumps to #¥B3EA. which
call=s $BASCSA 53|62 7VE], which reads
actual game code from multiple tracks
starting at track 4.5, 9.5, 24 .5, oaor
22.93. Then it calls #$B¥A8. which
decruypts #B6AB into #A3AA (using #¥BEQA+
as the decruption keg) and exits wia a
Jump to $A3HEA .

I'm sureCk? the code at #8308 will be
straightforward and =easg to understand.

ck» not actually sure

Chapter 11
In Mhich We Go Completely Inzane

The code at $BeBB i= decruypted with the
code at $¥BEBA as= the keg. That was
originally copied from the text page
tthe first time., not the =s=econd timel.

¥ELOAD BOOT1 B4868-87FF.A$%248A
Y¥BEBOQA< 266808 . 26FFHM i mowe key into place

¥EBV18: 58 i stop after loop
¥EVAEG i decrupt
Y3880

i wipe almost everything we'wve already
i loaded at the top of main memorg o132

BIEE- A @A LOv #¥00
BiIAz2- a3 TYA

BIA3- 99 @A Bl STAH ¥B1G@., Y
HIAE- Ca IHY

BIA7 - 0a F2 EHE @362
BIR9- EE A5 B3 IHC FH3E5
BIAC- AE BS B3 LO= FE365

i =top at $BDAA

HIAF - Ea ED CP= #¥ED
H311- 298 F@a BCC FH363

0K, =0 all we're left with in memoryg is
the RWTS at $EBDOE. $BFFF ¢ includinga the
*FDED wector at #BF&F > and the =ingle
page at $BABEA (more on that later 2. 0Oh.
and the game. but who cares about that?
CkEidding! 2

Mowing on. ..

B313- A3 A7 LOA #¥87
B315- 28 88 a3 J5E 0358

¥3s8L

i driwve sesek (A = #FB7, =0 track 3.5
BH388- 28 BB BE JSE *EEQG

i Pull 4 bytes from the stack. thus
i negating the JSE that got us here
i Lat #8315 and the J5F before that
i Tat FBSAEALC .

B3a3- A2 B3 LOx #+03
B3E85- &8 FLA
Bize- CA DEX
B3a7- 18 FC EFL BI85

i continue by Jumping directly to the
i place we would have returned to. if
i we hadn't just popped the stack

i Cwhich we did?>

HIg9- 4C 18 @3 JHMP @318

What. The. Fahrveranuaen.

¥318L

Oh Jjog. Another disk routine.

B318- AE && BF LOX $BF &G

i % = command ID Ca.k.a. the character

i we "printed" wau back when?
B31EB- A4 SF LOY *5F

i Find a Z-nibble prologuese C"0O4 OS5 O7"

B310- ED =2C C@a LOA ¥CASC, ¥
BHIzE- 18 FBE EFL ¥@310
BIzz2- C2 D4 CHMF #¥04
Bizd4- 0a Fv EHE ¥@310
BIzZ2G6-— BD 3C C@a LOA FCA3C, ¥
BIz29- 18 FE EFL fA325
HIZB- C2 05 CHMP #¥05
BIz20- 08 F3 EHE FHA3IZ22
BIZ2F- BED 3C C@a LOA ¥CASC, ¥
HI32- 18 FB BFL FEIZF
H334- Cc2 0Oy CHMP #¥07
HI36- Oa F3 EHE fA32E

i branch when % goes negatiwve
H338- a8 OEY

HI39- 38 @8 BMI FH343

i read one bute from disk., store it in
i ¥53E Cnot shown?

B33E- 28 51 @3 JSE ¥A351

i read 1 more bute from disk

B33E- 28 51 @3 JSE *H351

i loop back, unless the bute is #F00
B341- oA F5 EHE ¥FAI33

Ok, I see it. It was hard to follow at
first because the exit condition was=s
checked before I knew it was a loop.
But this is= a loop. 0On track 3.3, there
iz a 3-nibble prologue ¢"D4 05 DO7F" 2,
then amn arrag of walue=s. Each walue is
two bytes. MHe're just finding the Hth
value in the arrag. But to what end?

i execution continuwes here ¢ from FA3IZII
i read 2 more butes from disk and push
i them tao the =tack

B343- 2@ 51 B3 JSR $8351
BI46- 48 FH&
B347- 208 S1 B3 JSR $8351
B34p- 48 FH&

AR! A new "return" address!
Oh God. A new "return" address.

That's what this i=: an array of
addresses, indexed bay the command ID.
That's what we're looping through. and
eventually pushing to the stack: the
entry point for this block of the game.

But the entry point for each block is
read directly from disk., =so I hawe no
idea what any of them are. Add that to
the list of things I get to come back
to later.

Onward. . .

i turm off the driwve motaor

B34E- EOD 22 C@a LOA $CASE, ¥
B34E- 4C &2 B3 JMP fE362
¥362L

i Wwipe this routine from memory
B362- AB @A LOY #¥00
B364 - 99 @@ 83 STAH @388, Y
B367 - C2 IHY

B368- CA &5 CPY #¥FES

BicA- 28 F3 ECC FO3ic4

i push seweral walues to the =stack

BiclC- AZ EE LOA #+EBE

BicE- 45 FHA

BiaF- AZ AF LOA #FAF

B3vl- 435 FHA

Ba3vVa- RS 34 LOA #+34

Bivd- 48 FHA

B3va- CE V& B3 DEC FHI7E P
Bira- 23 CE AMHD #*CE

More =self-modifuing code.

¥iva: 28
F3vaL

pop that ##34 off the =tack. but use
it a=s status registers (weird. but
legal —-- if it turn=s out to matter.

I can figure out exactly which =status
bits get =et and cleared?

"ma "ma Cme ms

EE?E— 28 FLP

B3vV3a- CE FC B3 DEC FAI7C P A
B3VC- &l &8 AOC CEGE . R
¥3VC: 08

¥3VCL

B3vC- (=15 ETS

How we "return" to #¥BEBA (because ue
pushed #$BE-<#FfAF-#*34 but then popped
#+34 2. The routine at #BEEHA reencrupts
the code at #BF2F Checause now we'we
#0R'd it twice =0 it's back to its
original form?» and exits wia ETS., which
"returns" to the address we pushed to
the =stack at #8345, which we read fraom
track 2.5 and waries based aon the
command we're still executing., which is
really the character we "printed" wia
the output wvector.

Mhich i= all completely insane.

Chapter 12
In Which HWe Are Restored To Sanity
LOL., Just Kidding
But Soon. Maube

Since the "JSE #B¥AE" at $BS8AC newver
returns (because of the crazy stack
manipulation at #FA3ISZ 2, that'=s the last
chance I'll get to interrupt the boot
and capture this chunk of game code in
memord. I won't Know what the entry
point is Checause it's read from disk 2.
but one thing at a time.

¥ELOAD TRACES
. C=same as previous tracel

i unconditionally break after loadinag
i the game code into main memary

avabn- AZ 4C LOA #¥40C
SV aF- 20 @aCc BS STAH ¥BoAC
avV9z2- A9 59 LOA #¥59
9794 - 20 a0 EBS STAH ¥BSAD0
avVa9y-— A9 FF LOA #¥FF
a7V99- 20 BE BS STAH ¥BoSHE
i continue the boot

avac- 4C @A EBS JMP ¥BSHEA
¥BSAVE TEACES.RAF29c@d.,L$F13F
¥968806

. .reboots =lot &. ..
...read read read. ..
“heap>

Success!
¥CESH CAS4 CASY Casz
Cdisplaus a werdgd nice picture aof a

gumball machine which i=s featured in
the game's introduction sequencel

¥Ca31

Ok, let's =sawve it. According to the
table at $B2868., we filled @388 . F3FFF
and #6808 . #27FF. #@2688+ i=z overwritten
on reboot by the boot sector and later
by the HELLO program on md work disk.
$¥23800@A+ i= also overwritten by Diwversi-
005 ed4k, which i=s annoding but not
insurmountable. So I'll =awve this in
pieces.

FCoBAG

AEBSAVE BLOCEKE 68 . 2808-3FFF.Af2000, L2088
JERUH TRACEZ2

. ..reboots =slot &, ..

“heap:

¥228@8<208 . 1FFFHM

¥CoEaG

AEBSAUVE BLOCEK 68 . 828@8-1FFF.A$f238008,.L%f138A
JAERUH TRACESZ

.. .Freboots =slot &. ..

“heap:

¥2zaga< @l 8VFFM

¥CoEac

IBSAVE ELOCK 8@ . 6808-37FF.A$2006.L$25608

How whaty Well this is only the first
chunk of game code., loaded by printing
a null character. By setting up another
trace and changing the walue of zero
page *¥5F., I can route #B5A@ through a
different subroutine at #B552 or #B36S8
or #¥B3¥A and load a different chunk of
game code.

JCALL -151

¥ELOAD OBJ.BSHG-BCFF., AFEBSQG

According to the lookup table at #EBESE26,
¥B508 routed through #B552 to load the
game code. Here is that routine:

¥E335L

BES28- A3 13 LOA #+13
BES2A- RE B8 LOY #+006
B35C- 28 B8 EA JSE $EABGH
B35F- AZ 23 LOA #2393
Bagl- AE &5 LoY #¥02
Boe3- 4C 88 EBA JMP f$BREE

The first call to #BAAE will Fill up
the =zame part=s of memory as we filled
when the character Cin #5F 2 was #Ff0E —-
¥@323688 . $3FFF and #$68868. #27FF. But it
starts reading from disk at phase #1959
Ctrack #AC 1.2, =so it's a completely
different chunk of code.

The second call to #¥BABA starts reading
at phase $29 (track %14 122, and it
look=s at #B288 + % = *¥B29c2 to get the
li=s=t of pages to fill in memoryg.

¥ES8S .

BE3e8- 88 8% B8R 8B 8C &80 BSE BSF
Bava- 2@ 31 32 33 94 35 35 37
Bayz- 38 33 38 3B 3C 30 3E 3SF
BE38B8- AB Al A2 A3 A4 AS AGE AY
E328- A8 A2 AR AEB AC AD AE AF
E328- B2 BZ B2 BZ B2 BZ B2 BZ
E292- B8 80 80 80 80 80 80 40

The first call to #¥BABE stopped just
=hg of #8288, and that's exactly where
Wme pick up in the second call. I'm
gues=sing that #BZEAA i=sn't really used.
but the track read routine at $BABE i=
"dumb" in that it always reads exactly
¥AC sectors from each track. So we're
fillinmg up #2208 . *AFFF. then reading
the rest of the last track into $BZ2HA
over and owver .

Let's capture it.
¥ELOAD TRACES9
. C=same as previous tracel

j again., break to the monitor at $BSAC
i lnstead of continuing to $BYAA

2vah- AZ 4C LOA #+4C
I7VEF- 20 BC EBS STH $B3AC
IrI2- A3 53 LOA #+3239
27394 - =0 a0 ES STA $E380
= A FF LOA #FFF
V59— =0 BE ES =TH $EB38E

i change the character being "printed"
i Lo ##%#81 just before the bootloader

i Wses it to load the appropriate chunk
i of game code

avVaCc- A9 A1 LOA #¥01

SV32E- 25 5SF STAH ¥5F

i conktinue the boot
S7YAR- 4C HBE BS JMP *BESHH

¥BSAUE TEACELIB.AF9c@@,LF1A3
¥9eEA0G

. .reboots =lot &. ..

..Fread read read. ..

{beep}
¥CASA CAS4 CASyY Casz

Cdisplaus a werdgd nice picture aof the
main game screenld

¥Ca31
FCoBA0G

ABESAVE BLOCEK @1 .28608-3FFF.Af2000., L2088
JERUH TRACE1A

.. .Feboots =slot &. ..

“heap:

¥2e88< 208 . 1FFFHM

¥CoBac

AESAVE EBLOCEKE 61 . 8288-1FFF.A$f228008,.L¥128A
AERUH TRACEZ

.. .rFreboots =slot &. ..

‘bheep>

¥2aa<c@@@ AFFFM

¥Codac

IBSAVE BLOCK @1 .6@888-AFFF.A$2006,. L$SA60A

And similarly with blocks 2 and 3 Cnot
shown here, but gou can look at TEACEL1
and TRACEl1Z2 on my work disk». Blocks 4
and 5 get special-cased esarlier ¢ at
¥BF35 and #$BF20. respectiwvelygl’, =so they
never reach #B5868 to load angthing from
disk. Block & i=s the =same as block 1.

That's
code .
at this point:

JCATALOG

C1323 DSE~CH#254
BA13 FEEE

H M W W MW

HH

H MW

H

i H
MMM MMMMMOMIOmMMMMMmMOMDM Mmoo o I-

aEaz
BE 3
AE3
BiE3
BE3
a3
BE 3
A&
BE3
BE5
a3
BB 3
AE3
B3
BE3
B3
BE35
BB 3
al1a
BiE3
(5 jeg
a4
a4z
A6 3
B2
B34
(G-
BE 3
A2e
B34
ad:

it. I'we

Here'=s what the

HELLDO
BEOOTHA
TEACE

captured all the game
looks like

BOOT1 @30B8-03iFF

TEACEZ

BEOOT1 B188-81FF

TREACES

EOOT1 B408-87YFF

TEACE4

BOOT: @3688-87FF

TEACES

EOOTZ BUBBE-EOFF
BEOOTZ B108-81FF

TEACER

BOOTE O8@@-0aFF

TEACEY

OE.J.B20E-

TREACES

QDEJ.BS0E-

TEACES

BELOCE @8,
ELOCE @8,
ELOCE @8,

TRACEL1A
BELOCE @1
BELOCE @1
ELOCE @1
TERACEL11

ELOCE B2.
BELOCE @2,
BELOCEK @2,

E4FF
ECFF
BEEE-1FFF

28BBa-3FFF
EHBE-8YFF

.HB888-1FFF
BB -3FFF
.6888-RFFF

BSBaE-1FFF
2aBBa-3FFF
eEEE-37VFF

Ilgamell

¥B 883 TRACE1l:Z
B 824 ELOCEK B83.20808-3FFF

It'=... it'=s beautiful. Yuipes teark

Chapter 13
In Which Ewerygy Exit I=
An Entrance Somewhere Else

I'we captured all the blocks of the
game code I think?», but I =still hawve
no idea how o run it. The entry points

for sach block are read directly from
disk., in the loop at $68310.

Father tham trgy to boot trace euvery
po==sible block, I'm goinmng to load up
the original disk in a nibble editor
and do the calculations muself. The
arrady of entry points is on track 3.5.
Firing up Copg II Plus nibble editor. I
searched for the same I-nibble prologue
that the code at #8310 =searches for
c"DO4 OS5 O7P" 2, and lo and behold!

__"-'I__

cary 1AC FPLUS BIT CORPY FPEOGEAM 5.4
cCy» 13232-3 CEHTEAL FOINT SO0OFTHWARE. IHC.

TEACK: B3.538 START: 1888 LEMGTH: 320FF

EAT T LY

10AE: FA AA FA AA FA AA Fa aa UIEN
10A2: EE FA FF BAE EA EE FF AE

10E@: EE EA FC FF FF FF FF FF

i0ES: FF FF FF FF FF FF FF FF

i0C@: FF FF FF D4 DS D7 AF AF <-10C3

100S: @B FF FF FF AE FF BE AE FIND:
IDEG: EBE FF A& A& AA AA AA AA D4 OS5 D7

A TO AMALYZE DATA ESC TO QUIT
¥ FOR HELF SCREEH ~ CHAHGE PARMS
@ FOR HExT TEACK SFACE TO RE-RERD

—— g, ——

After the "D4 DS DY" prologue., I find
an arrad of d4-—and-4-encoded nibbles
starting at off=set $10CE. Breaking them
down into pairs and decoding them with
the 4-4 encoding scheme, I get this
list of bytes:

nibbles | bute
________ +________
AF AF | #FO0F
EE EE | #E30C
________ +________
Ea EE | #$+31
FE FnA | H#¥F 2
________ +________
AA EBA | #$£1A
EAa EE | #3234
________ +________
FF FF | H#¥FF
RE FF | #+57
________ +________
FF FF | H¥FF
AE FF | #E57
________ +________
FF FF | H#¥FF
RE FF | #E57
________ +________
EE AE | #F23
EE FF | #E7T
And now -- madbe! —-—— I hawve mag list of

entry points for each block of the game
code .

Only one wauy to know for sure. ..
AFPE#5
IcALL -151

i clear main memorg so I'm not

i accidentally relying on random stuff
i left ower from all mg other testing
¥208:8 H 2A1<388 BEFEHM

i load all of block 8 into place
¥ELOAD BLOCE G668 .8208-1FFF.A*28A
¥BELOAD BLOCEKE 68 .20688-3FFF.A*2804
¥BELOAD EBLOCEK 668 . 60EAB-27FF.AF&E0A

i Jump to the entry point I found aon
i track 3.5 (+1, =since the original
i code pushes it to the =tack and

i "returns" to it

¥F20G

Cdisplagys the game intro sequencel

¥doe=z a3 little happy dance in my chair¥
Me hawe no further use for the original
disk. How would be an excellent Ltime to

take it out of the driwe and store it
in a cool.:, dru place.

Chapter 14
Imn Which Two MWrongs Don't Make A
Oh God I Can't Ewven
Mith This Pun

Eemember when I =aid I'd look at #EBDAA
later?™ The time has come. Later is now.

The output wvector at $BF&F has special
case handling if A = #$¥84. Instead of
continuing to #8388 and #BS@A, it Jjumps
directly to #B0OBEA. MWhat's =so special
about FEDBAYT

The code at $BDAE was moved there wery
early in the boot process. from page
¥@5388 on the text =screen (the first
time we loaded code into the text
screens nokt the second Ltime». So it's
in "BOOT1 @488-B7FF" on my work disk.

IPR#5
JELOAD BOOT1 B4B8-BFFF.AfZ4@0

JCALL -151

YEDQAA< 2588 . 253FFM

¥EDABEL

i turm on driwve motor

EOBGE- AE &6 BF LOx *EBFE&E
EOB3- EOD =22 CA LOA ¥CHED, ¥
i wait for driwve to settle
EOBE&—- A9 &4 LOA #fed
EOBS - 28 A8 FC JSE *FCAS
i seek to phase #18 (track 22
EOBE- A9 18 LOA #f¥10A
EOBD- 28 BB BE JSE *EBEQGH
i seek to phase #82 (track 12
EDO1&8- A9 A2 LOA Q2

BEO12- 28 B8 EE JSE $EBEBAH

i imitialize data latches

BEO13-
BO1V-
ED1A-
EO1DO-
EODZB-

i wait
BOz23-
BDz25-
BDz23-

i Oh God

BEOZE-

A
EDO
EDO
20
10

A9
26
26

EDO
EDO
28
20
10
48
3=
C1
C1
EA
=

a0
1D
ES
il5
e
Ef
Ef
ES
45
4 i
Ba

AA

CH
CH

Ca

Ca
ED

Ed

LoOY
LOA
LOA
STHAH
ORA

LOA
JSE
JSE

LOA
LOA

STH
ORA
FHA
FLA

CHMP
HOF
IHY

STH
ORA
LOA
EHE
TAY
HOF
MOP
LO&
FHA
LSR
ORA

HEFF
$CEE0, X
$CEHZE, X
$CESF, X
$CEEC, X

#+20
FFCAS
$FCAS

FCAS0., X
FCASZE ., X

FCASF ., K
FCASC, X

FCASD., X
FCASC, K
FEBDSF .Y
F$ED3A

F$EOBE.Y <--

#¥AA

i Oh God Oh God Oh God

BEOSS- 90 =20 CcA STA
EOSS- oo =2Cc ca CHP
EOSE- C1 @A CHP
EOSD- En HOP
EOSE- Ef HOP
EOSF - 48 FHA
ED&@- a8 FLA
EO&1- a8 FLA
EO&z- A9 AA ORA
EO&4- a0 =20 Cca STA
BEO&T - oo sC Cca CHP
BEDO&A- 48 FHA
EO&E- a8 FLA
EO&C- Ca IHY
ED&D- 08 DF EHE
BEO&F - AS D5 LOA
EDOV1- C1 @A CHP
EOV3- Ef HOP
EOV4- En HOP
EOVS- a0 =20 Cca STA
EOVS- 10 2C C@8 ORA
EOVE- A2 A8 LOA
EDOVD- 28 AS FC JSE
EDO2G- EOD 2E C#A LOA
EODE3- EOD =2C C@A LOA
i seek back to track 3.5
ED2&E- A2 Ay LOA
EDO25- 28 AA BE JSE

FCAS0, X
FCASC, X
CEAB L KD

#FAA
FCAS0., X
FCASC, K

$B04E
#+05
CEEB, WD

FCAS0., X
FCASC, K
#¥02
FFCRE
FCAZE ., X
FCASC, K

#¥07
$EEBAH

i turn off driwe motor and exit
i aracefully

BEOSE- EDO
BEOSE- &

28 CH

LOA
ETS

FCASE, X

Thi=s is a disk write routine. It's
taking the data at $BABEA Cthat mustery
sector that was loaded ewven earlier in
the boot? and writing it to track 1.

Because high =cores.

That's what's at $¥BOBBA. High =cores.
CEdit fraom the future: alszo some
persistent Jjoustick options.1

Mhy i= this =so distressing? Because it
means I'1]1 get to include a full reads
write EWTS on my crack Ywhich I hawven't
even starting building get., but soaon! 2
o it can =s=awve high scores like the
original game. Because andthing less is
obwiouwsly unacceptable.

Chapter 15
The Eight Ones In The Right Order

Let's step back from the low-lewel code
for a moment and talk about how this
game interacts with the disk at a hiagh
level.

There is no runtime protection check.
All the "protection" i= structural -—-
data i= stored on whole tracks. half
tracks, and ewven =ome consecutbiwve
quarter tracks. Once the game code is
in memord, there are no nibble checks
or secondardg protections.

The game code itself contains no disk
code. Theg're completely iszolated. I
proved this by loading the game code
from may work disk and jumping to the
entry point. ¢I tested the animated
introduction., but gouw can als=o run
the game its=elf by loading the block
¥@81 files into memory and Jjumping to
¥321F2. The game runs until gou finizsh
the lewel and it tries to load the
first cut scene from disk. 2

The game code communicates with the
disk subsystem through the output
vector, i.e. by printing #%88. #$f0c5
to ¥FOED. The disk code handles
filling the screen with a pseudo-
random color. reading the right
chunks from the right places on disk
and putting them into the right
places in memord. then jumping to the
right address to continue. CIn the
case of printing #*@4, 1t handles
writing the right data in memorg to
the right place on disk. 2

Game code liwves at #8388, #AFFF. =zero
page., and one page at ¥EBEAAA for high
scores. The disk subsystem clobbers
the text screen at $84H88 (using lo-
res graphics for the color fills?a.
All memory abowve $B18H i= available:
in fact, most of it i=s wiped ¢ at
¥A3AA» after every disk command.

This is great news. It giwves us total
flexibility to recreate the game from
its constituent pieces.

Chapter 16
A Man. A Plamn. A Canal., &c.

Here'=s the plan:

1. HMrite the game code to a =tandard
lé—-=zector disk

2. Write a3 bootloader and ERWTS that can
read the game code into memory

3. HWrite szome glue code to mimic the
original output wvector at FBF&F
CA = command I0D from #$F00-#$f05. all
other walues actually print? =o I
don't need to change any game code

4. Declare wictory Cf2
ci> take a nap

Looking at the length of each block and
diwviding by 16, I can =space evergthing
out on separate tracks and =still hawve
plenty of room. This means each block
can start on its own track. which sawes
a few bytes by being able to hard-code
the starting sector for each block.

The disk map will look like this:

o]e) $B0OBG . . $EFFF Gumboot

A1 ¥B0Ea . $B3FF sCcoresszpagesglue
A2 02808 . . $17FF block

A3 ¥12808 . $27YFF block

A4 ¥28808 . $£37FF block

A5 $383808 . . $£3FFF block

BE 58808 . $567FF block

Ay 528808 . $£77FF block

F7088 . ¥237FF
F0588 . #17FF block
#1588 . #27FF block

| |

+ +

| |

| |

| |

| |

| |

| |

| |

| |

| | bBlock
| |

BB | #2288 . $3VFF | block

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

I MMM MMM P = = e e e = 5SS

ac F2288. F3FFF block
am FeOBd . F¥oFFF block
AE F7088 . #YFFF block
aF #5088 . $3FFF block
16 200868 . F9FFF block
11 FABEE . FAFFF block
12 FE0588 . ¥17FF block
13 F$1588. #27FF block
14 F25808. F37FF block
15 F3388. F3FFF block
16 FoBB88 . FoFFF block
17 Fraaa. F7FFF block
18 F2088 . ¥237FF block
15 F2088. F2FFF block
1A #3088 . #3FFF block

I wrote a3 build =script to take all the
chunks of game code I captured wag back
in chapter 12. And by "script." I mean
"BASIC program."

JFE#3

-
[= =

24
Load
24
45

Mrite

28

Load
&a

Mrite

v

FEM HMAKE GUMEALL

FEM Se&.D1=BLAME DISK
FEM S32.D01=H0RK DISK
D% = CHR#% <42

the first part of block @:
FRINT D#f"ELOAD BLOCE A8 . B@28E-1FFF.
AFlAEA"
FRINT Df"BELOAD EBLOCE 88 .2080-3FFF.
AfEZ2EER"

it to tracks F82-%Q5:

FAGE = 1&6:COUNT = S6:TRK = 2:
SEC = 8: GOSUE 1868

the second part of block A:

FEINT DF"ELORD ELOCEK @96 .cB8B88-27FF.,
AFcBaEn"

it to tracks F8&6-%Q5:

FAGE = S&:COUMT = 48:TRK = &:
SEC = 8: GOSUE 1868

And =so on.

=15

24

186
114
128
138
140
158
1e(
17a
1808
1368
Z28a
218
226
238
246
233

FEINT D"ELORD ELOCK

for all the other blocks:

A1 . 8s0Ba-1FFF.

AF¥laEa"

FREINT DF"BELOAD EBLOCEK @1.2808-3FFF.
REZSEE"

FAGE = 16:COUNT = S&6:TRK = 3:

SEC = B: GOSUE 16868

FEIHNT DF"ELORD ELOCE @1 .a888-RFFF.
AFEEER"

FAGE = 9&:COUHT = B8:TRK = 13:

SEC = B: GOSUE 18488

FEINT DF"ELORD ELOCEK @2 . 8388-1FFF.,
AF¥laEn"

FEIHNT DF"ELORD ELOCEK 82.2888-3FFF.
AEZSEa"

FAGE = 1&:COUNHT = 2&:TRK = 1&8:

SEC = @: GOSUE 16868

FEINT DF"ELORD ELOCEK B82.a888-57FF.
AFeAER"

FAGE = 3&:COUNT = 48:TRK = 22:

SEC = B: GOSUE 18480

FREINT DF"ELORD ELOCEK @83 .20808-3FFF.
AFZAER"

FPAGE = 32:COUNT = 32:TRK = 23:

SEC = B: GOSUE 1840

FREINT DF"ELOAD EOOTZ B38O-G7FF.
RE2SE8"

FAGE = 32:COUNT = 1:TEK = 1:

SEC = B: GOSUE 1868

FEIHNT D"ELORD EOOT3 G088-B8FF.
AFlEEa"

FOKE 4158.8: FOKE 4131.178: REEM
SET c#%3e> TO *EZ2008

FAGE = 1&6:COUNT = 1:TEK = 1:

SEC = V: GOSUE 1868

EHD

168 EEM WRITE TO DISK
1818 FPRIWMT Of"ELOAD WRITE"
1828 FOKE 2838, TEE

1828 FOKE 283, 5SEC

1

A48 FOEKE 213, FPAGE
18368 FOKE ¢&3, COUNT
18eB CALL 7&8

1878 RETURH

JSAUE MAKE

The BASIC program relies on a short
assembly language rouktine to do the
actual writing to disk. Here i=s that
routine ¢ loaded on line 181QA>:

JCALL -151

i page count C=et Ffrom BARASIC
B3EE- A9 D01 LOA #¥01 o_0
Bi3Ez2—- 25 FF STa *FF

i logical =sector Cincremented:
B384 - A9 B8 LOA #F60
BIEE— 25 FE STA *FE

i call RWTS to write sector
BiEs—- A9 A3 LOA #0603
BI3EA- AR 282 LOY #F325
B3EC—- 28 09 @3 JSE *F@309

i increment logical sector. wrap around
i From #8F to #8808 and increment track

BI6EF - Ee FE IHC ¥FE
B3il11- A4 FE LOY ¥FE
B3l13- Ca 18 CFPY #¥18
B315- 0Da av EME FOI1E
B3l1v- AB B8 LOY #+06
Bi13- 24 FE STY ¥FE

BI1E- EE 2C 83 IHC F@32C

i conwert logical to phusical sector

B31E- B2 48 @3 LOA Fa348,Y
B321- 20 20 B3 STa *@320

i increment page to write

B324- EE 91 @3 IHLC ¥A391

i loop until done with all sectors
B327— Ce FF OEC *FF
B329- Oa oo EHE FH3IAS
B3Z2E- &H ETS

¥3408 . 34F

i logical to phuysical sector mapping
B348- B@ @Y BE B& A0 AS BAC A4
B342- AEB B3 AA B2 A9 Al B2 AF

¥3g88 . 397

i RHTS parameter table., pre-initialized
i with =slot C##f8c5>, drive C(##681>, and
i BHTS write command ¢ #F@22
H3Z28- 81 &8 A1 868 0O1 D1 FEB F7?
track-sector
t=set from BASIC

B3%68- 88 D1 88 86 B2 80 860 &f

oy

addre=ss (=set from BASIC

¥BSAVE WRITE.R#*308,L*38
CSe.01=blank disk1

ArRUIH MAKE
.write write write. ..

Boom! The entire game i= on tracks
¥A2-%1A of a standard l16-=zector disk.

How we get to write an RWTS.

Chapter 17
Introducing Gumboot

Gumboot i=s a fast bootloader and full
read<write EWTS. It fits in 4 sectors
on track B, including a boot sector. It
Uses anly & pages of memoryg for all its
code + data + scratch space. It uses no
zero page addresses after boot. It can
=tart the game from a cold boot in 3
seconds (not a typolr. That's twice as
fast as the original disk.

qkumba wrote it from scratch. because
of course he did. I. um. mostly just
cheerad.

After boot-time initialization. Gumboot
is dead simple and alwadys ready Lo use:

entry | command | parameters
first track

A =
| | ¥ = first page
w = sector count

______ +_________+______________________
¥BEGE | write | A = =sactar

| | ¥ = paage
______ +_________+______________________
¥BFOE | seek | A = track

That's it. It's so =mall. there's=s $24
unused bute=z at FEBFZA. You could Fit =
cukte message in there! (We didn't. 2

Some important notes:

- The read routine reads consecutive
tracks in phyusical sector order into
consecutive pages in memorg. There
iz no translation from phusical to
logical =sectors.

- The write routine writes one sector.
and also assumes a phusical sector
number .

- The seek routine can seek forward ar
back to anyg whole track. ¢I mention
this because =zome fastloaders can
only seek forward.

I =said Gumboot takes & pages in memory.
but I'wve only mentioned 3. The other 3
are for data:

¥BABA . . $BB3S - =cratch space for write
ttechnically available as= long as Jou
don't mind them being clobbered
during disk write?

¥BBBA . . $BCFF - data tables (initialized
once during boot 2

Chapter 18
Gumboot Bootd

Gumboot =starts., as all disks =start., on
track #¥8A. Sector #AH CbhootBA) reuses
the disk controller EOM routine to read
sector #M@E., #80., and $8C (bootl>». BootH
creates a few data tables., modifies the
bootl code to accommodate booting from
and =slot, and jumps to it.

Bootd 1= loaded at #8260 buy the disk
contraller EOM routine.

i tell the EOM to load only this sector
i twe'll do the rest manually?l
B2EE- LCE11

i The accumulator i=s ##81 after loading
i sector #8068, #$f603 after loading sector
i ¥PAE. ##BA5 after loading =ector A0,

i and #*#@AY after loading sector $FHC.

i Me shift it right to diwide by 2.

i then use that to calculate the load

i address of the next =sector.

#2A1- 4R LSF

i Sector #AE =» *BDOAA
i Sector #¥80 =:> ¥BEGA
i Sector #¥8C => *¥BFAA
BH2RZ2- &3 BC ADOC #¥BC

i store the load address
HEEd - 25 27 STA ¥27

i shift the accumulator again Cnow that
i we'vwe stored the load addresso

H2A6- HA ASL

H2A7 - HA ASL

transfer ¥ (boot =slot =162 to the
accumuylator, which will be uwuseful
later but doesn't affect the carry
flag we may hawe Jjust tripped with
the two "ASL" instructions
28a3- SH THA

if the two "ASL" instructions =et the
carvrd flag., it means the load address
was at least ##FCH, which means we'we
loaded all the sectors we wanted to
load and we should exit this loop
2A9- Ea @b BCS f@A218

Gl = = = e e

Il = = %= = e

i Set up next sector number to read.
i The disk controller EOM does this

i once already., but due to guirks of

i timing.:, it'=s much faster to increment
i it twice =0 the next sector gou want
i to load i= actually the next sector

i under the driwve head. Otherwise gou

i end up waiting for the disk to spin

i an entire revolution: which i=s= guite
i =low.

HE2AE- Ee 2D IHC 30

Set up the "return" address to jump
to the "read sector" entry point of
the disk controller EOM. This could
be andwhere in #¥CxAA depending on the
=lot we booted from: which 1= why we
put the boot =lot in the accumulator
at *¥@3@8 .

fmr "ma ma "ma Cmae wme

EEED— 4A LSE
BEBE - 4A LSE
BEAF - 4H LSE
Ba8168- 4A LSR

ag11- a3 Ca ORA #+CH

i

push the entrg point on the stack

Bs12- 48 FHA
as14- AZ 3B LOA #+3E
Asle- 45 FHA

i
i
i
i
i
i
i
i

5]

Tmr Cme "ma "ma Cme "ms "ma me "ma "ma me Cma Cme

"BEeturn" to the entry point wia ETS.
The disk controller EOM alwadgs jumps
to #8381 Cremember., that's why we
had to mowe it and patch it to trace
the boot all the wag back in chapter
12, =0 this entire thing is a loop
that only exit=s wia the "BCS" branch
at F@AZE9 .

2lv- &2 H ETS

Execution continues here (from 8283
after three sectors hawve been loaded
into memorgy at *B08E . ¥BFFF .

There are a number of places in bootl
that hit a slot-specific soft =switch
Cread a nibble from disk. turn off
the drive, &c». Eather than the usual
Form of "LDA #CHASC,®", we will use
"LOA #$CBEC" and modifa the *¥EC bute
in adwance, based on the boot =lot.
¥823A4 i= an arradg of all the places
in the Gumboot code that get this
adjustment .

EEIE— a3 2C OREA #F50C
BE1A- A2 B LOx #¥00
as1C- EC AF A& LOY FHESAF . K
BS1F- 24 26 STY F26
asz1- EC BB @8 LOY FASEA ., K
BaE24- F@ @nA BEL FHE3H
BE2e- 24 27 STY F27
AE2a- AE B4 LOY #0600
BS8z2A- 21 26 STAH CEZE Y
BagzC- ES IMX

aez2b- ES ITHx

BE2E- 0Da EC EHE FES1C

i munge *¥EC -> $¥EZ2 (used
i off the driwve motor?

HE2368- 29 F& AMDO
HE232- 20 FC ED STAH

i mungae ¥ES -> ¥E9 (used
i on the driwve motar?2

BE33- a3 Al OFEA
BE37 - =0 8B EDO =TH
BE82A- 20 87y EBE STA

i munge *¥E9 -> $¥EB@ (used
i the driwe head wia the
H230- 49 @9 EOR
H23F- 20 54 BF STAH

i munge ¥EA -> ¥68 (boot

later to turn

#FF 2
$#EBEDOFC

later to turn

#¥01
F$EDBE
$BEBQY

later to mowve
stepper motor
Q9
¥BF 5S4

=zlot %16, used

i during seek and write routines?

Bsd - 23 VA AMHD
asd4- =0 327 BE =TH
SEE Iy 20 &2 BE STH
BaSd4R- 20 ¥F BE STH

asd40- 20 AC EBE STA

#+7 8
FEBE3Y
$BEE3
$BEYF
$EBERC

Chapter 12
e + 2

Before I diwe into the next chunk of
code, I get to pause and explain a
little bit of theory. As you probably
know if you're the sort of person who's
read this far alreada., Apple II floppu
disks do not contain the actual data
that ends up being loaded into memaryg.
Oue to hardware limitation=s of the
original Oisk II driwve, data on disk i=s
stored in an intermediate format called
"mibbles." Bytes in memoryd are encoded
into nibbles before writing to disk.
and nibbles that ygou read from the disk
mu=t be decoded back into butes. The
round trip is lossless but reguires
some bit wranaling.

Oecoding nibbles-on-di=sk into buytes-in-
memord is a multi-step process. In
"E&—and-2 encoding" (uwused by DOS 3.3,
FroDOS, and all ".dsk" image filesi.,
there are 64 possible walues that gou
mad find in the data field ¢in the
range ¥9¢. .#FF., but not all of those.
because some of them hawe bit patterns
that trip up the drive firmware., He'll
call these "vraw nibbles."

Step 1: read #1556 raw nibbles from the
data field. These wvalues will range
from *#26 to #FF. but as mentioned
earlier, not all walues in that range
will appear on disk.

How we hawe #1566 raw nibbles.

Step 2: decode each of the raw nibbles
into a 6-bit bute between B and &3
CHABAABRAEA and XEA111111 in binarg?.
$¥95 1= the lowest walid raw nibble. =o
it gets decoded to B. #3937 i= the next
valid raw nibble, =0 it's decoded to 1.
#¥92 and #2929 are inwalid, =o we =kip
them, and #3278 gets decoded to 2. And =o
ons. Wp to #¥FF Cthe highest walid raw
nibble?, which gets decoded to &63.

How we hawve #1536 &-bit butes.

Step 3: split up each of the first #3536
E—-bit buytes into pairs of bits. In
other words., each &6-bit buyte becomes
three 2-bit buytes. These 2-bit butes=s
are merged with the next #18A &-bit
bute=s to create #1800 S-bit bytes. Hence
the name, "&6—-and-2" encoding.

The exact process of how the bits are
split and merged i=s... complicated. The
first #3536 6-bit byte=s get =plit up into
Z2-bit bytes, but those two bits get
swapped (=so %A1 becomes %18 and wvice-
versar., The other #1868 6-bit butes esach
get multiplied by 4 ¢a.k.a. bit-=shifted
two places left?>. This leawves a hole in
the lower two bits, which i=s filled by
one of the Z2-bit butes from the first
gQroup .

A diagram might help.

each represent one bit.

1 decoded
nibble in
First #¥56

BAabcdef

|
|
=plit
&
swapped

|
L

BEBEEAEf =
BEBEAEdC
BEBEEED0 S

Tada! Four
BAabcdef
BAghijkl
BAmnopqgr
A=t

+

++ +

2 decoded

nibbles in
other $14A

BAghijkl
BAmnopqr
BAstuww

|
shifted
left =2

|
L

ghijklaa
mhopqr&aQ
stuvw=EaE

E-bit bytes

become three 2-bit bytes

ghiijklfe
mhoprgdc
stuvuxba

Ilall

through "=x"

3 butes

ghijklfe
mhoprqdc
stuvwxba

WMhen DOS 2.3 reads a sector. it reads
the first #5686 raw nibble=s, decoded them
into 6-bit byte=, and =tashes them in a
temporary buffer (at $BCEHAY. Then 1t
reads the other #1688 raw nibbles.
decode=s them into &6-bit butes., and puts
them in another temporarg buffer Cat
¥BEBAA Y. Only then does DOS 3.3 start
combining the bits from each group to
create the full S8-bit buytes that will
end up in the target page in memoryg.
This i= whg DOS 3.3 "misses" sectors
when it's reading. because it's busy
twiddling bit=s while the disk 1= =till
Spinning.

Gumboot also uses "&6—-and-2" encoding.
The first #5686 nibble=s in the data field
are =till =split into pairs of bits that
will be merged with nibble=s that won't
come until later. But instead of
waiting for all #1536 raw nibbles to be
read from disk., it "inmnterleawves" the
nibble read=s with the bit twiddling
required to merge the first #5656 &-bit
butes and the #1688 that follow. By the
time Gumboot get=s to the data field
checksum., it has already stored all
#1880 2-bit bute=s in their final resting
Flace in memord. This means that we can
read all 16 sectors on a track in one
revolution of the disk. That'=s what
makes it crazg fast.

To make it possible to twiddle the bits
and not mis=s nibbles asz the disk
spinstfr, we do some of the work in
aduvance. MHe multiply seach of the &4
pos=sible decoded walues by 4 and store
those walues. (Since this i= done by
bit shifting and we're doing it before
we start reading the disk., this i=
called the "pre-shift" table.? He al=so
store all possible 2-bit walues in a
repeating pattern that will make it
easy to look them up later. Then. as
we're reading from disk Cand timing is
tight?: we can s=imulate bit math with a
series of table lookup=s. There 1= just
enough time to conwert each raw nibble
into its final 28-bit buyte before
reading the next nibble.

L2 The disk =pins independently of the
CPU, anmnd we only have a limited
time to read a nibble and do what
we're going to do with it before
WMHOOFS HERE COMES AMOTHER OHE. So
time i=s of the essence. Also. "As
The Disk Spins" would make a great
name for a retrocomputing—-themed
Soap opera.

The first table., at $BCBABA. ¥BCFF. i=
three columns wide and 64 rows deep.
Astute readers will notice that 3 = &4
i= not 2536. 0Onlgy three of the columns
are used; the fourth Cunused? column
exlists because multiplying by 3 i=s hard
but multipluying by 4 i= easgy Cin base 2
andwad?». The three columns correspond
to the three pairs of 2-bit wvalues in
those first #5356 6-bit butes. Since the
values are only 2 bits wide. esach
column holds one of four different
values CXAA, XA1, %18, ar 1122,

The =econd table., at $BEB3&. . $BBFF., is=s
the "pre-shift" table. This contains
all the pos=sible &6-bit butes., in order.
each multiplied by 4 Ca3.k.a. shifted tao
the left two places., so the & bit=s that
started in columns B-5 are now in
columns 2-7V, and columns 8 and 1 are
zeroes), Like this:

BEaghiikl - ahijklBg

Astute readers will notice that there
are only 64 possible &6-bit butes., but
thi=s second table i= larger than &4
buyte=s. To make lookups easier. the
table has empty =lot=s for sach of the
invalid raw nibbles. In other words., we
don't do ang math to decode raw nibbles
into &6-bit bytes; we Jjust look them up
in thi= table {offset by $36, =ince
that's the lowest walid raw nibble» and
get the required bit shifting for free.

addr | raw | decoded &-bit | pre-shift

¥BE2E | #9686 | B = XAQAAAEAA | XA00EBEEA
¥BE2Y | #9Y | 1 = Z@AQ@8QAEA1 | XA000@814A
¥BEB2S | #9838 Cinvalid raw nibblel
¥BEB29 | #9219 Cinvalid raw nibblel
¥BE2A | #9A | 2 = XA0A8AGE1AE | XA86801G64A
¥BESE | #9B | 3 = X@AQd@A@Ell | x688d1148A
¥BB2C | #$2C Cinvwalid raw nibbled

| #2920 | 4 = *X0080E168 | XE86010084

$BBFE | $FE | &2
$BBFF | %FF | &3

Inn
e
[W
[W
—
—
—— -
—
—
Pty
—
—— -
-
—
el
= 5
=&

Each walue in this "pre-zhift" table
al=so =serwes a= an index into the first
table Cwith all the Z2-bit butes>. This
wasn't an accident; I mean. that sort
of magic doesn't just happen. But the
table of Z2-bit bytes i= arranged in
such a wagd that we cam take one of the
raw nibbles to be decoded and split
apart (from the first #5356 raw nibbles
in the data field?», use each raw nibble
as an index into the pre-shift table.
then wuse that pre-shifted wvalue as an
index into the first table to get the
2-bit walue we need.

Chapter 28
Back to Gumboot

This

i= the loop that creates the

pre—-zhift table at *¥BES&. As a special

bonus.,

table that
operations

direction?.

Bs5a-
BE52-
B834-
B825-
B827 -
BE59-
BE5A-

A
=]
ES
AA
24
28
AA
24
F@
a5
43
29
Ed
4A
Da
CA
2H
AA
BA
23
28
a3
20
==
Da

it also creates the inwerse

is used during disk write
Cconverting inm the other

3F LD¥ #%3F
FF ST $FF
IHX
7F LDY #%7F
FE STY $FE
TVH
ASL
FE EIT $FE
18 BEQ $BE7F
FE ORA $FE
FF EOR #3FF
7E AHD #37E
18 BECS #8877
LSR
FE EHE $B265
DEX
THA
ASL
ASL
28 EE STH $BES@.Y
TVA
=15 ORE #3286
S6 EE STH $BESE. X
DEY
il BEHE #8857

And this
address

BEESG-
EE2S-
EEAB-
BEEAZ-
EEEG-
BEEEZ-
EECH-
EECS-
EEDB-
BEDZ-
EEEG-

i= the result " . .

means the

i=s uninitialized and unused?:

B
35
5
SC
B4
ES

ac

28
SC
34
BC
Fe

16
2C
& 4
&
7H

Hext wup: a loop to create the table of
2-bit walues at $BCHA, magically
arranged to enable s2asy lookups later.

BEVA- 24 FD STY $FD
BsvC- 46 FF LSE ¥FF
BEYE- 45 FF LSE ¥FF
Bassa- EOD EO A& LOA FESED ., X
BE83- 23 B8 EC =THAH FECAA., Y
B8Ee— Ee FD IMC $FD
BSE8- RS FD LOA $FD
BSEA- 22 FF AMD ¥FF
BEsC- D8 a5 EHE FEEI3
BEsE- ES IH=

BE5F - = H Tw=A

BS268- 23 B3 AMD #¥03
Bga2- HA TAX

BE93- = ITHY

BE94- CE IHY

BE33- Ca IHY

B826- Ca IMY

Bgay - CA B3 CPY #¥03
BE99- E@d ES ECS FH220H
BE9E- CE ITHY

BE3C- Ca a3 CPY #¥0.3

BS2E- 28 0C ECC FA3YC

And this is the result:

BECAB- A8 A8 a4 A8 A8 Az
BECAZ- B8 88 a1l A8 B8 a3
ECl8- Bd 82 @8 B8 B2 Az
EC18- B8 82 Al B8 B2 B3
BECzZB8- @88 A1 a4 aE a1 @Az
BCZ2- B8 a1 @l BE a1 a3
BC2B0- A8 A3 a4 AE A3 Az
ECZ8- B@ 83 Al B8 B3 A3
EC4B8- B2 88 04 a2 B8 Az
EC45- B2 88 Al A2 B8 A3
BECSA- A2 A2 a4 A2 a2 Az
BCS2- B2 a2 al A2 A2 A3
BECeB- @2 A1 a4 A= a1 a:z
ECeS- B2 81 Al B2 @1 B3
ECYE- B2 82 B8 A2 B3 A2
BECYa- B2 83 @l A2 B3 A3
BECE8@A- @1 88 8 .. 81 86 a2
BECS2- @1 8@ a1l .. 81 86 a3
EC28- @1 82 @@ .. @61 a2 @2
BEC28- @1 82 a1l .. A1 a2 a3
ECAg- @1 81 8 .. 81 81 @82
BECAz- @1 a1 a1 .. 81 81 a3
BECEGA- A1 83 8 .. 81 83 a2
ECES- @1 83 A1 .. A1 83 A3
ECCB- B3 @8 a8 . 2 B8 Az
ECCE- B3 88 Al .. B3 86 B3
BECOBA- A3 A2 a4 a3 a2 Az
BECDzZ- B3 a2 @l B3 a2 A3
ECEG- B3 A1 a4 a3 a1 a:s
ECES- B3 @81 Al B3 81 B3
ECFE- B3 83 B8 .. B3 83 B2
BECF2- B3 83 a1 .. 83 83 83

And with that.: Gumboot i= fully armed
and operational.

i Push a "return" address on the stack.
i Me'll come back to thi=s later. C(Ha

i ha, get it, come back to it7T QK.

i let's pretend that newver happened.

BESAE- RS B2 LOA #¥EB2
BESAZ- 45 FHA
BEAZ- AZ FA LOA #¥F B
BEA3- 48 FHA

Set up an initial read of 3 sectors
from track 1 into #B8@d. $BZ2FF. This
contains the high scores data. zero
page., and a new output wector that

i interfaces with Gumbaoot .

"mr Cma Cma tma

BEAE— AS A1 LOA #¥081
BESAS- A2 B3 LOx #+03
BESAA- AE EBA@ LOY #+E0

i Read all that from disk and exit wia
i the "return" address we Jjust pushed
i on the =stack at #8235,

B2AC- 4C @@ EBED JHMP fB0DAEA

Execution will continue at *¥BZ2F1., aonce
we read that from disk. #B2F1 1= new
code I wrote, and I promise to show it
to you. But first, I get to finish
showing gou how the disk read routine
norks.

Chapter 21
Fead & Go Sesk

In a standard D05 3.3 RWTS., the
softswitch to read the data latch i=
"LOA #CASC.®", where ® i= the boot =lot
time=s 16 Cto allow disks to boot from
and =slot?. Gumboot also supports
booting and reading from ang =lot. but
instead of uwusing an index., most fetch
instructions are =et up in adwvance
baszed on the boot =lot. Hot only does
thi=s free up the ¥ register. it lets us
Juggle all the registers and put the
raw nibble walue in whichewver one i=s
conwvenient at the time. (He take full
advantage of this freedom. > I'we marked
each pre—-set =oftswitch with "o_0O".

There are sewveral other instances of
addresses and constant=s that get
modified while Gumboot iz executing.
I'wve left these with a bogus walue #01
and marked them with "o_0O".

Gumboot's source code shouwld be
available from the same place you found
this write-up. If gou're looking to
modify this code for Jour own PUFpOsSes.
I suggest gyou "uwuse the source, Luke."

FEDBAEL

i A = the track number to =esk to. He

i multiply it by 2 to convert 1t to a

i phase., then =store it inside the =seek
roudtine which we will call shaortly.

BEDOBE- AR ASL
BEDA1- 20 18 BF STAH $BF 1@
w = the number of =sectors to read

BEOB4- =ZE EF EDO ST $EDEF

i % = the starting address in memoryg
BEDAY - 2C 24 ED STY *B024

i turm on the driwve motor
EOBA- AdD E2 CA LOA *CHES o_0

i poll for real nibbles C(#%FF followed
i by non—-#%¥FF>» as a way to ensure the
i driwe has spun up fully

EDGAD- 28 75 BF J5F ¥BF 7S

i are we reading this entire track?
ED1B8- A9 1@ LOA #¥108
ED12- CO EF ED CHMP +BOEF

i Jves —r branch

EDO15- Ea A1 BECS ¥B0O1S

i no

ED17- AR TAX

ED12- 2E 94 BF STH $EBF 94

i seek to the track we want
EO1E- 28 B4 BF JSE *EFG4

Tmr Cme "ma "ma Cme "ms "ma me "ma "ma me ma

Initialize an arrag of which sectors
we'we read from the current track.
The arrayg i= in phdsical sector
order., thus the RWTS assumes data 1=
stored in physical sector order on
each track. (This =saves 183 buytes: 16
for the table and 2 for the lookup
command! » Walues are the actual pages
in memord where that =sector =hould
go., and theg get zeroed once the
sector is read (=0 we don't wmaste
time decoding the same sector twice?.

EDIE— AE 24 EF LOx F$EF34

BOZ21- AE 86 LOY #0083

BOZ22- A2 D1 LOA #¥01 o_0
EDZ25- 23 84 BF STH $BFS4.Y

EODZ2S- EE =24 ED IMC fBD24

BEOZE- CE ITHY

BOZ2C- CA DE =

EDz2D- Da F4 EHE FEDZ23

EOZF - 28 03 BE J5E $BEDS

¥EBEDSL

This routine reads nibbles from disk
until 1t finds the =sequence "O3 AA".
then it reads one more nibble and
returns it in the accumulator. He
reudse this routine to find both the
addres=s and data field prologues.

"mr "mar Cme "me "ma

EEDS— 28 E4 EBEE JSR $BEE4

BEEDS- C3 03 CHMP #+05

EEDA- 0Da F3 EHE $BEDS

EEDC- 28 E4 BE JSE $BEE4

BEEDF - C2 AR CHMP #EAA

EEE1- OB F3 EHE $BEDSZ

BEEE3- AS TAY

EEE4- RO EC CH LOA F$CHAEC o_
BEEEY - 18 FE EFL $BEE4

BEEES- (=15 RTS

Continuing from #BO32. ..

If that third nibble i= not #FA0. we
assume it's the end of the address
prologue. C#F36 would be the third
nibble of a standard address
prologue, but we don't actually
check. > He fall through and start
decoding the 4-4 encoded walues in
the address field.

EDEE— 49 Ab EOR #+Aa0

BO34- Fa 35 BER ¥B0O&E

"mr "mar Cme fme "ma me me ms

E0OZe- 28 C2 BE J5E $BECZ

¥EBECZL

Tmr Cme "ma "ma me "me "ma me "me "ma

This routine parses the 4-4-ancoded
values in the address field. The
first time throuwgah this loop., we'll
read the disk wolume number. The
second time, we'll read the track
number . The third time, we'll read
the phu=sical =sector number. We don't
actually care about the disk wvolume
ar the track number. and once we get
the sector number. we don't werify
the address field checksum.

EEEE— AE B3 LOY #¥0.3
BEEC4- 28 E4 EE JSE ¥EEE4
BEECY - ZA ROL

BEECS- =20 E& ED STH $B0DEB
BEECE- 28 E4 BE JSE $EEE4
BEECE- 20 E&@ EO AMHDO $EDEQ
BEED1- == DEY

BEEDZ- DA Fa EME $BEC4H

i

On exit, the accumulator contains the
phy=sical sector number.

BEED4 - 5] RTS
Continuing from *%BO39. ..

i

i

use phuysical sector number as an
index into the sector address arraug

BED33- AS TAY

i

i

get the target page Cwhere we want to
ztore this =sector in memoryg?l

BDOZ3A- EE =4 EF LOx FEBFZ4.Y

i 1f the target page i= #$668., 1t means
i Wwe'vwe already read this sector. so

i loop back to find the next addres=s

i Prologue

BD3D- Fa F@a BEQ ¥B0DZ2F

i store the phusical =sector number
i later in thi=s routine
EO3F - 20 EB EDO STA *E0OEQ

i store the target page in sewveral
i pPlaces throughout this routine

BOd42- =ZE &4 EO ST $EDE4
BO43- =ZE C4 ED ST F$EOCH
BO4z- =E vC EO ST FEOVC
EO4E- 2E SE ED STH $BOSE
EO4E- 2E A& EO STH fB0AG
BEOS1- ZE BE EDO ST $EBEDEE
BEOS4- ES IH=

BEOS3- =E D32 EO ST $E0DS
EODS2S- CA DE X

EOD29- CA DE X

BEOSA- 2E 24 EDO ST $ED024
BEDOSD- =ZE AC EO STw F$EDORC

i Save the two buytes immediately after
i the target page. because we're going
i to use them for temporarg storage.

i CHWe'll restore them later.

BEOc@- A FE LOY #+FE
B0z - ES a2 D1 LOA #0182, %
BEO&S- 45 FHA

BEOGE— Ca IMY

BOeV - DEa F3 EHE f$BDE 2

i this i= an unconditional branch
EO&S - Ea Cd ECS *EB0OZ2F

i execution continuwes here ¢ from FBDO34
i after matching the data prologue
EO&E- EA 8@ CPx #FHEH

If ¥ i= =till ##$688., it means we found
a data prologue before we found an
address prologue. In that case. we
hawve to skip this sector. because we
don't know which sector it 1= and we
wouldn't know where to put it. Sad!
EDED— Fa C@a BEQ ¥BDZ2F

"ma "ma me "ma Cma

Hibble loop #1 reads nibbles #8068 . 55,
look=s up the corresponding aoffset in
the preshift table at #BB9:5., and =stores
that offset in the temporargy two-bute
buffer after the target page.

i lnitialize rolling checksum to #F40G0.
i oF update it with the results from
i the calculations below

EDO&F - 20 VE EBED STa *EOVE

i read one nibble from disk

EOVz2- AE EC CHA LOx *CHEC o_0
EOVS—- 18 FEBE EFL B0V 2

i The nibble walue i= in the X register
i now. The lowest possible nibble walue
i 1= #96 and the highest i= #FF. To

i look up the off=set in the table at

i ¥BB256., we index off #$BEBA + X. Math!
BDVY V- BED 6@ EBE LOA ¥BEEA, ¥

i Mow the accumulator has the offset

i imto the table of indiwvidual Z2-bit

i combinations C*BCAA. FBCFF >, Store

i that offset in a temporargy buffer

i towards the end of the target page.

i It will eventually get overwritten

i by full 2-bit buyte=s. but in the

i meantime it's a uwuseful #56-byte

i scratch space.

BEDVA- 299 @z D1 STAH ¥01@z2.Y a_0

i The EOR walue i= =set at #¥BOEF
i each time through loop #1.
EDOFYD- 49 01 EOR #¥01 o_0

i The ¥ register started at #FAA
i t=et by the "TAY" instruction
i at #¥BD39 >, =o this loop reads
i a total of ##536 nibbles.

BEDOVF- Ca IHY

BD2E- 0&a ED EHE ¥BO&F

Here endeth nibble loop #1.

Hibble loop #2 reads nibbles #56. #[/B.
combines them with bits B8-1 of the
appropriate nibble from the first 56,
and stores them in butes $88. $£35 of
the target page in memoryg.

BEOSZ2- AE AA LOY #FAR

EOZ4- ARE EC CH LOx F$CHAEC a_0
BEOEY - 18 FE EFL fB0S4

BEOS2- 20 88 EE EOR $EEBBA ., X

BOSC- EE @2 D1 LOx FO18:2.,% o0

BEOSF - 20 a2 EC EOQR FECAZ., K

i This address was set at #EBDOSA
i based on the target page (minus 1
i =0 we can add %Y Ffrom #FAA. O H#HEFF .

EO22- 232 5e D1
EOD25- Ca
E0Ze- 0Da EC

STAH
IMY
EHE

F013a.% o0
$B0S4

Here endeth nibble loop #2.

Hibble loop #3 reads nibbles #AC. . #1681,
combines them with bits 2-3 of the

appropriate nibble from the first 56,
them
page

and stores
the target
BDS23- 29
BD2A- A E
EDOSC- AE
BEOSF- 18
BEDOALl- alb
BDA4- BE
BDAY- alb

CH

EE
b1
EC

AMD
LOY
LOx
BEFL
EOR
LOx
EOR

in bute=s %¥5&6. . %¥AE of
in memoryg.

#+FC

#¥AA

F$CHEC o0
$EDO3C

FEEQA, X
F0182.,Y a_0
$BCAL., K

i This address was =set at EBDOSO
i based on the target page (minus 1
i =0 we can add Y from #FAA. H#HFEFF 2.

EOAA- 22 AaCc D1
EOAD- Ca
EOARE- OB EC

STH
IMY
EHE

F01AC.Y a_0
$BO3C

Here endeth nibble loop #3.

Loop #4 reads nibbles #1682, #1355,
combines them with bits 4-5 of the
appropriate nibble from the first 56,
and =stores them in butes F[C. $181 of
the target page in memordg. C(This
overwrites two butes after the end of
the target page. but we'll restore
then later from the =s=tack. >

EOEBA- 23 FC AMD #+FC

EOEZ- A2 AC LOx #+ALC

EDOE4 - AC EC CH LOY F$CAEC o
EOEY - 18 FBE BFL $B0E4

EOES- 239 @@ EEB EOR $BEQ@ .Y
EOEC- EC @@ Dl LOY F$0188, X]
EOEF - 29 @@ BC EOR FBCAB., Y

i This address was =set at *BD45
i based on the target page.

BEOCZ2- 20 @@ D1 STA $0188, X]
BEOCS- ES IM=
EOCeE- DA EC EME $B0E4

Here endeth nibble loop #4.

Finalluy:, get the last nibble and
convert it to a bute. This =should
equal all the previous butes XO0R'd
together. ¢This i=s the standard
checksum algorithm shared by all
leg-=sector disks.

"ma "ma Cme "ma "ma

éDEE— 23 FC AMD #FFC
EOCA- AC EC CH LOY F$CAEC o_
BEOCO- 18 FBE BFL $BOCAH

BOCF - 22 B8 EE EOR f$BEEBBGE. Y

i zet carrg if walue i= andthing
i but @
EODOZ- ce @i CMP #¥f61

Restore the original data in the
two bytes after the target page.
.t This does not affect the carry
flag, which we will check in a
moment, but we need to restore
these bytes nmow to balance out
the pushing to the =s=tack we did
at *¥BD&S. 2

P Cme tma "ma "me me "ma Cme

BOD4- AP @l LoY #¥01
BEOD&- 3= FLA

BEODY - 23 88 D1 =TH F0188.%
EODA- 28 DEY

EODE- 18 F3 EFL $B0D&

i 1f data checksum failed at *BDODZ.
i start owver
EODOD- EA SR ECS *EB0OE2

i This was =set to the phusical
i zector number ¢ at FBO3IF >, =0
i this i= a index into the 1&56-
i bute arrag at FBFZ4.

BDDF - AE D1 Lov #¥01
BEDE1- 2H THA

i store #$88 at this location in
i the =sector arraug to indicate
i that we've read this sector

EDEZ2- 299 24 BF STha *BF24.Y
i decrement sector count

EOES- CE EF ED OEC *EOEF
EOE=- CE 94 BF OEC *EF 24

EOEE- 38 SEC

i If the =sectors-left-in-this-track
i count Cin ¥BF24 2 i=sn't zero yet,
i loop back to read more sectaors.
BEDOEC- 08 EF EHE ¥B0OODO

If the total sector count Cin
¥BDOEF. =et at #B0OB4 and decremented
at #¥BOES>» i= zeras, we're done —-

no need to read the rest of

the track. (This lets us hawve
sector counts that are not
multiples of 16, 1.e. reading

Just a few =s=ectors from the

last track of a multi-track

i block. 2

"mr "ma ma "ma "mar me "ma "me me ms

EOEE- Az 01 LOx #+01 o

EOFB- Fa @3 EER $B0OFE

i increment phase Ctwice, =o it
i points to the next whole block?
BOF2- EE 18 BF IHC ¥BF 18
BDOFS- EE 18 BF IHC ¥BF 1@

i Jump back to sesk and read
i from the next track
EOF=- 4C 18 EO JMP *E01G8

i Execution continues here ¢ from
i ¥BDOEF?»>. Me're all done. so
i turm off driwve motor and exit.

EOFE- AO ES CH LOA F$CHES o_

EOFE- &H ETS
And that's all =s=he wrote~H~H~H~Hread.

Chapter 22
I Make Mu UVerse For The Uniwverse

How'=s our master plan ¢ from chapter 163
qoing¥ Pretty darn well, I'd =ay.

Step 1: write all the game code to a
standard disk. Done.

Step 2: write an RMTS. Done.

Step 3: make them talk to seach other.
The "glue code" for this final step
lives on track 1. It was loaded into

memoryg at the wery end of the boot
zsector C(chapter 2@32:

tt HEBSEBE- AZ A1l LOA #¥01 :
st Be30- A2 B3 LD #¥0.3 :
St BE89F- AB EBA LOY #+EH :
tt B8Al- 4C @8 EBED JMF fEDBGB :

- 4 4. - .= - 4 4.

That loads 3 sectors from track 1 into
¥BAEa . $B2FF. #BEBA i= the high =scores.
which staus at $¥EBEAAA. #fB1AA i= mowved to
zero page. #¥B2A@ 1= the output wvector
and finmal initialization code. This
page i=s newver used by the game. (It was
used by the original EWTS. but that has
been greatly =implified by =stripping
out the copu protection. I lowe when
that happens! 2

Here is my output wector. replacing
code that originally liwved at $BF&F:

FEZ288L

i command or regular character?

the

o_0O

o_0

EzB@- cCe Ay CHMP #0607

i command —-* branch

BEzaz- 98 A3 ECLC *EZAY

i regular character - print to screen
EzEd- &C 3A @A JMP CEEBZA D

i store command in zZzero page

Ezary - 25 5F STa *¥5F

i set up the call to the =creen fill
EzEs- AS TAY

EzEA- Ea 97 BZ LOA FE297 .Y
EzabD- 20 1% BZ STa ¥EZ213

i set up the call to Gumboot

EzlB- E2 SE EZ LOA *EB29E. Y
Ezl13- 20 1C BZ STA *EBZ21C

i call the appropriate screen fill
BEzl16- A9 Ad LOA #$+6A

Ezla- 28 89 BZ JSE *EZ2E9

i call Gumboot

Ez1E- 28 2B Bz JSE *EZ22E

i finmnd the entry point for this block
EzZ1E- AS 5SF LOA *5F

Ezz2E- HA ASL

BEz221- RS TAY

i push the entrg point to the stack
Bzzz- E2 As BZ LOA *EB2AG. Y
Ezz25- 48 FHA

Bzz26—- E2 AS BZ LOA *EBZ2AS.Y
Ezz29- 45 FHA

i and exit wia "RTS"

Ezz2Aa- &E ETS

This is the routine that calls Gumboot

to load the appropriate blocks of game
code from the disk., according
di=k map in chapter 1&. Here
summaryd of which sectors are loaded by
each block:

track CA» | count Cx2

___________ Fm——_—_——— e —
82 | ¥38
FOE | ¥28
___________ +___________
83 | F33
£80 | 08
___________ F+—_—_—————————
F12 | ¥38
¥le | ¥z248
___________ +___________
¥13 | 28

to the

i=s the

page C4Y 2

. The parameters for command #FH5 are
the =zame as command #FE@1 . >

The lookup at #¥BZ218 modified the "J5R"
instruction at #%¥B21EB. =0 esach command
start=s in a different place:

i command #8006

B22B- AS @2 LOA ¥R 2
EzzDO- 28 58 B2 J5F ¥B256
BEz3E- A9 HE LOA #¥HE
Bz3z2- oa 1c EHE ¥B25A
i command #F@1

B234- AZ @3 LOA #¥Q9
Bz236- 28 586 B2 J5F ¥B256
Bz39- A2 @b LOA #+80
Bz23B- A2 SA LO= #¥50
Bz230- 0Da 13 EHE ¥B252
i command #FAZ2

Bz23F- A9 12 LOA #¥12
Bzd41- 28 56 B2 JS5F ¥B256
Bz2d44- A9 16 LOA ¥l
B24a- 08 @s BEHE ¥B25A
i command #FA3

BEz45- A9 19 LOA #¥19
Bz24Aa- A2 2@ LO= #2206
Bz24C- AE 2@ Lov #¥206
B24E- 08 @/ BEHE ¥B25A
Ez258- A2 28 LO= 22
Bz52- A &A@ Lov #¥EH
Bz254- 08 @4 EHE ¥B25A
B2a&6- A2 38 LO= #¥33
B2538- AE @2 LOY #¥03

B25A- 4C 88 EO JMF f$EDBGH

i command #*%8A4: seek to track 1 and
i Wwrite *¥BOEA. ¥BBAFF to sector @

B=25D0- AZ Al LOA #¥01
B=25F - 28 88 EBF JSE FEFBAH
B2e2- A3 B8 LOA #+80
B2ed- RE EBA& LOY #+EB0O
B2eg- 4C B8 EE JMF $EBEBGH

i exact replica of the screen fill code
i that was originally at #BEEA

BE2e3- AS &8 LOA Fo8
BE2eB- 40 58 CH EOR FCASA
B2aE- 22 &4 =TA <34
B2vr@- 23 AaF AMHD #¥0F
Bavrz- F@ F3 BEL F$EZE53
B2vVd- C3 BaF CHMP #+8F
B2vVe- FB F1 EER fBZ263
B2via- 28 g5 F8 JSE FFEEE
B2vE- AZ 17 LOA #¥17
B=2vD- 45 FHA

BE2VE- 28 47 F& JSR FF347
B2al- RBE 27 LOY #E27
B=282- AT 26 LOA $30
B=2832- 21 Z2a =TH CEZER LY
B28v - = DEY

BE228- 18 FE EFL $B283
BE22A- &8 FLA

BE22B- 38 SEC

B28C- ES a1 SBEC #¥01
B2SE- 18 EO EFL F$E270
B=250- AD 2&e CH LOA FLCHAIGE
B223- RO 54 CH LOA F$CA54
BE=22e- (=45 ETS

i lookup table for screen fills
Eza7Y- L[CE9 YB &9 &9 95 95 591

i lookup table for Gumboot calls
EZ29E- LC2E 34 3F 428 z2A 2A 347

i lookup table for entry points
EZ2AS- LC92C A&F1
Ez2A7- LCF2 311
Ez2A9- LC34 181
E2AE- LC37 FF1
BEz2zAD- LC3C EBZ21
E2AF- L[C95 EBZ21
EzZBl1- LCL77 231

Last but not least, a short routine at
¥B2F1 to mowve zZzero page into place and
start the game. (This is called because
we pushed #FEB2-#FFHA to the =s=tack in our
boot =sector., at FA335. 2

¥BZF1L

i copd #¥Bl1AA to zero page

Ez2F1- A2 @A LO= #8006
Bz2F3- ED 6@ Bl LOA ¥B168, ¥
Bz2F&—- 295 @A STAH £68, X
B2F3- ES IH=

Ez2F32- Oa F& EHE ¥B2F 3

i print a null character to start the
i game

B2FEB- AZ @A LOA #8006
B2FD- 4C ED FD JMP ¥FDED

Buod erat liberand one more thing. ..

Chapter 23
Oops=s

Heeeeey there. ERemember this code?¥

B37Z- A9 34 LDa #$34
B374- 48 FHA
BIFe- 28 PLF

Here's what I =aid about it when I
first =saw it:

pop that ##34 off the =tack. but use
it a=s status registers (weird. but
legal —-- if it turns out to matter.

I can figure out exactly which status
bits get =et and cleared?

"mar "ma ms "ma Cme

Yeah, =so that turned out to be more
important than I thought. After
extensive plagy testing, wel k2
discowvered the game becomes unplagable
on lewvel 3.

t¥» not me, and not gkumba either. who
beat the entire game twice. It was
Marco . Thanks., Marcol

How unplavgable? Gates that are open
won't close; balls pass throuwah gates
that are already closed; bins won't
move more thanm a few pixels.

So, not a crash., and Ccontrarg to our
first guess2 not an incompatibility
with modern emulators. It affects real
hardware too, and it was intentional.
ODeep within the game code. there are
several instances of code like this:

—_——y—
TAAR., 588

——————————— DISASSEMELY MODE -----—-—--—-
BEZ1:83 FHF

BEZ22: 63 FLA

BE23:23 A4 AMHD #¥04

Aaz232:08 AR EHE FEAI1

BEZ2Y A2 18 LOA $13

BEZ29:C2 A2 CHMP #¥0:2

AEZE:98 64 ECC FEAZ1

AEaz0:[2 18 LOA #¥18

BEZF 83 73 =TH F73

BBZ1:R/2 V3 LOA 73

BEZ3:832 VA STA F7A

—— e, ——

"PHF" pushes the status registers on
the stack. but "PLA" pulls a wvalue from
the stack and stores it as a bute. in
the accumulator. That'=s. .. weird. Also.
it's the reverse of the weird code we
zaw at FA3IV2, which took a byte in the
accumulator and blitted it into the
status registers. Then "AND #Fa4"
isolates ane =tatus bit in particular:
the interrupt flag. The rest of the
code i= the game-specific way of making
the game unplavable.

This i=s a weryg conwoluted.:. obfuscated.
sneaky wagd to ensure that the game was
loaded through it=s original bootloader.
Mhich, of course, it wasn't.

The solution: after loading each block
of game code and pushing the new entry
point to the stack, set the interrupt
flag.

i push the entry point to the stack

B2z22- E3 Ae B2 LOA FBZAG.Y
B22a- 48 FHA
B2zZe- E3 R3S EB:Z LOA FEZAS.Y
B2z23- 45 FHA

i =et the interrupt flag Cnew!
BzzA- e SEI

i and exit wia "RTS"
EzZ2E- &H ETS

Mangy thanks to Marco W, for reporting
thi=s and helping reproduce it gkumba
for digging into it to find the check
within the game code; Tom G. for making
the connection between the interrupt
flag and the weird "LDA-PHA<PLP" code
at FA3I7Z2.

Chapter 24
This Is Hot The End.:. Though

This game holds one more secret., but
it's not related to the copy protection
tthank goodne=ss2>. As far as I can tell.
this =secret has not been rewvealed in 33
Jgears. gqkumba found it because of
course he did.

Once the game starts, press <Ctrl-J> to
switch to joustick mode. Press and hold
button 2 to actiwvate "targeting" mode.
then mowe gour Jjodstick to the bottom-
left corner of the =s=creen and also
press button 1. The screen will be
replaced by thisz message:

__u__

FEESS CTREL-Z2 OURIMG THE CARTOOHS

—_—— i, ——

How.: the game has 3 lewvels. After gou
complete 3 lewvel., gour character gets
promoted: worker., foreman. superwisor.
manager, and finally wice president.
Each of these i=s a little cartoon —--
what kids today would call a "cut
scene." HWhen gyou complete the entire
game, it shows a final screen and gour
character retires.

Fressing <Ctrl-2* during each
rewveals four ciphers.

After lewsl 1:
—_—y—
EEJRY JSYRER
After lewel 2:
——U——
URJIEY ZIAR
After lewel 3:
—_—y—
ESEE
After lewel 4:
——U——

FIG YREJMYE

—— s, ——

cartoon

Taken together. they form a simple
substitution cipher:

EHNTERE THREE

LETTER CODE

MHEH

You RETIRE

But what i=s the code¥

It turn=s out that pressing <Ctrl-23
¥Yagainf¥, while any of the pieces aof the
cipher are on screen., reveals another
clue:

__U__

DOUEBLE HELI®

—— e, ——

Entering the three-letter code "ODHA" at
the "retirement" screen rewesals the
finmnal secret message:

__u__

AHA! YOU MADE IT!

EITHER %0OU ARE AWM EXCELLEMT GRME-FLARYEE
OF CGAH! » FREOGEAM-EREEREKER!

YOU ARE CERTAIMLY OWE OF THE FEW FEOFLE
THAT WILL EVER SEE THIS SCEEEHM.

THIS IS MOT THE EHWDO., THOUGH.

IM AMOTHER EREGDEREUHD FRODUCT
TYFE 'ZaDWARE' FOR MORE FPUZZLES.

HRUE FUH! BYE!!
FE.A.C.

—_—— i, ——

At time of writing., mo one has found
the 'ZAOMARE' puzzle. You could be the
first!

Transcript

This crack was a collaboration between
d4am and gkumba of =an inc. What follows
iz a transcript of our chat as we
stepped through the inzanity together
owver the coursze aof seweral dags. It has
been lightly edited to remowve temporaryg
URL=.

Mag 23

| .. .gkumba. ..

|okag, =o where are gou up to with

| Gumball?

|it looks like a huybrid &6-2-5-3 booter
|reminds me of Captain Goodnight

Ludam. L L |

I traced the boot and got the 4|
sectors that are loaded in the text|
paae|

check may work disk|]

3 of those get copied to higher memoryg]
¥B0BE8 . . $BFFF and stag there (I think 2|
that's the resident RWTS and AFI. Also|
¥BFEBA i= the reset-reboot code. |
=tandard Broderbund. |

| .. .gkumba. ..

|then it =s=eeks to track ¥ and loads
| over *5S88-7Fff

|and jumps to #5684

o odam. L L
gyes, that's where I stopped]
but Jjust because of lack of time|

| .. .gkumba. ..
|okay, you hawe time now?
|how cam I help?

dam. .|

yes |

wmell let's just walk through it
together |

#4800 coples code, calls #BF42 (zap EAM|
card», sets reset wvectors., calls $BEGH|
I assume that's the driwve seek and-sor|
read routine?|

| .. .gkumba. . .
| ¥belld 1=z seek
|Freads appear to be inline

o odam. L L
ah, manual read after that, at $44EB|
es, ok

| .. .gkumba. ..
Iues, $356 i= "sector" count. #34-35 i=s
| address

Lodam. L |
ah:, then exit wia BTS again. is #84FF|
the next address on the stack at this|

pointT|
| .. qkumba ..
| g continues at #5840
| £ it just read

dam. . .|

Ok, I'll write a tracer to capture|
that. Hanmg on. |
BOOTZ2 @85388-87FF aon https:- . . .|

| .. .gkumba. . .
|got 1t

Ludam. L L |

Cyuaery simple trace, reallu. just|
change a different part of the stack|
then capture the zame memory range! 2|

| .. .gkumba. ..
|wery nice. Funnu thing at 593-539cC
o odam. L L
haha|

wtf i= 568 doing. loading a sector|
into #¥BAAA then JSE #A5F@ to =seek back|
to track 7|

| .. .gkumba. ..

| =0 #5868 =seeks to track 2 for a 4=x=4
|read to #7868 (copied to #BAAA», *5f0
| take=s us back to track 2. 4x4 read
|directly onto stack

Lodam. L |
ah:, I missed the PHA at #$852C. Jesus. |

| .. .gkumba. ..

|ye=, it took me a few goes before 1
|=aw 1t., too

|go'=s"

|whatewver

Lodam. L L |

wmell there's no checksum on this code. |
=0 let's just patch it at #8339 to|
capture *¥BABA and #8168 |

andwad.:, madbe a callback jump at #5339, |
=0 we can capture FbHAAE and #184|

| .. .gkumba. ..
|lha:, vyou tupe faster than I do

.o dam. L L

great minds think alike|

ok, hanga on|

BOOTz BABB-BAFF and BOOTZ2 B188-A1FF on|
https: <. . .|

| .. .gkumba. . .
|okay, back in a little while

.dam.

N
I
That's a straight dump of $EIBE |
I
|
|

."H.

¥8A1FF., =0 need the stack pointer. I
think it's #05, so execution continues
at #8125+1

| .. .gkumba. ..

|okag, back again. and des, continues
|at #1265

|it wouwld be a nmneat trick to use the
lnibble=s as the stack pointer walue
|ah, read is encoded using the stack
|content before storing Lo zpage

|and then a chain of ETS=s

| and Jjump through (232

dam. .|

lovely]

wmaikt, i'm not sure 1 captured $BAHEA|
Froperlyl]

gonna re—-trace it on real hardware|
ok, false alarm]|

| .. .gkumba. . .
|callback at #1233 and capture zpage¥

.o dam. L L

i was thinking to just copg the read]|
loop from #8126 into may boot tracer at|
¥937xx somewhere|

=0 page 1 i=s undisturbed and we don't|
hawve to recalculate angy EOQOE=s|

BEOOTZE BAEB-B8BFF on https:-r . ..
CEEARAZ2E2) points to #F@AED0A, which is in
BOOT2 BSEE-B7FF

it's self-modifying., but ultimately
Just set=s ¥ to ##fFF and exits wia ETS
=0 the next thing on the stack i=

FF B85 =» $£4A

| .. .gkumba. . .

|okad, good point - it decodes owver the
|whole stack, =o we can't touch ang of
| it .

o odam. L L

¥588 destrous the entire stack by|
calling PHA #1868 times|

mare self-modifuying code|

| .. .gkumba. . .
| imp #fd287

dam. .|

which branches back to $FDED; uh1ch|
Jump=s to #AA36, which is.. .|

=1l i$EBEE}I

=r ¥BF&F|

which i=s in BOOT1 B4868-87FF |

Ccopied from $BFEF}|

C...1

BF&F - C3
=1 24
BFV3- &C
EFvVE- 20
BFFa- AS
BF 73— ES
BFFC- =0
EFVF- A3
EFZ1- 26
EFZd- D
BEFS&- C3
BFSz- D&
BEFSA- 4L
EFa0- Cc3
EFEF - ()
BF31- &L
BF34- 24
BF37 - HE
EF23- A3
EF2E- 24

5]

EF

EF

EE

EDO

EF
EE

CHMP
ECC
JMP
STH
TAY
LOA
=TH
LOA
JS5E
LOA
CHMFP
EHE
JMFP
CHMP
EME
JMF
JSE
LOY
LOA
STY

#+87
$BF Y&
CEEBZEA D
$5F

I

I

I

I

I

|
$BFE3.Y |
$BFS2 I
#+80 I
$BEDG I
FoF I
#+E4 |
$BF S0 I
I

I

I

I

I

I

I

I

I

za printing a character prints a|

character.
in which case

| .. .gkumba. . .

|ye=s, that's correct

That's wonderfully twisted.

| .. .gkumba. . .

|bFE2 i= a Jjump table

well, half of a jump table.

unless

it's less than 7. |

it executes a command at |

F$BF Y& |

Lodam. L |
I lowe it .|

Ludam. L |
hiagh bute]

i= alwau=s #¥EBE|

| .. .gkumba. ..
|that's lows =tyle

o odam. L L
glad it has a name, i guessT|

| .. .gkumba. ..

| I =uppose so. looks like the commands
| are =creen switching

| ¥bedd i=s lowres animation

|=o i= #bedf., and a couple of rts
|command 4 i= a write

|command 5 just animates again

| the other commands decode $bFf2fF-bfff
|presumably recoding it after use

|ha: using the =eek routine as the key
|mot animate - =creen fill

| then read to #b2080-bdfF

|lreturn to #3c, Jjumps to #b26A

Lodam. L |
ok, vou work faster tham 1 do, but ues|
za how to capture thatT|

| .. .gkumba. . .
|can we owverwrite $#3c-3e with callback
| Jump ¥

Lo odam. L L
probablu]|

| .. .gkumba. ..
|right after boot 3 completes?

Ludam. L L |

no checksums or other dependencies|
right|

hamng on|

BEOOTd4 BZBE-B4FF on https:- .. .|

i need a better nmnaming sustem|

| .. .gkumba. . .
|at least gou hawve one

Lodam. L L
:look-of-disapprowval : |
zo ¥B4BPAB@ i=s another seek routine]

.. .qkumba. . .

gyes, seek track 4., read to $b5868+ with
half-steps

bSAE-bEFF T

oh:, it's a =split track - reads 2
sectors, adwvances. reads 2. steps back
again., reads 2., adwvances. reads 2., =o
¥bodBa-bcff

Ludam. L L |

agreead|

that explains the funky drive noises|
during boot|

.. .qkumba. . .

madybe it'=s qguarter—-track. I can't
tell from the timing.

andwad.:, another callback jump at
¥bZ@cy

Ludam. L L |

whatever it i=, it's stepping forward. |
then back. then forward again|

because of the B1 FF 81 88 table|

at FB3IZ2S|

| .. .gkumba. ..

|lright. the driwe will "chatter" as a
|result. Captain Goodnight did that
| ower sewveral tracks

..o dam. |
i =ee no checksums or dependencies. Dl
i'll callback at #B28C before it jumps|
to $ESEEI
oh, you =aid that already : 2|
| .. .gkumba. ..
|lo=t in the storm of words
|youw =ay thing=s now

.o dam. L L

OB.J.EBSEBA-BCFF on http5=ff.. |

I think #BS88 i= the main RHTS ﬁPII
entry point. zZp#3F i= the command IO, |
look=s up lows in #¥BS38., 5 (E=zp$3F 2, |
calls one of the routines at #¥B354. |
¥B352., #BSeZ2., or $BSVA|

| .. .gkumba. . .
|I'we lost track of the walue in #5Ff by
|this point

dam. L
it's @]
Cfrom BOOT3 GEEE-BEFF 2|
| .. .gkumba. ..
| =eek track 2
dam. . .|
b55G@1 |

oops. WFong windaow : 2|

| .. .gkumba. ..

|lread 12 sectors to $300+

|at a time

|lwith partial =s=tepping. all the wag up
|to 87 FF

| decode $bexx to #3xx wia $bexx

| then perhaps two other block reads of
| #8808 —-afff Cwith #b2xx asz dummy page .,
| and #$2E8E-3FfffF

|either or both of which might be

| transient

Lo odam. L L
eges glazing owver |

| .. .gkumba. ..
|I think the track numbers that 1
| quoted are all doubled already

Ludam. L L |

gyes, theg're phases|

¥B358 =tarts at phase #8083, $B553|
starts at $19 then $29., ¥B562 starts|
at *#31., FBS578 =tartzs at 41|

ok, =o the routine at #BeHBA decrupt=s|
to #8388, =seeks to phase #$687., reads|
some nibble=s., then continues at #8362
which wipes the routine and pushes|
¥BEAF to the =tack (along with #F34. |
which i=s popped as the status|
registersi|

| .. .gkumba. ..

|=o0 it loads that first big chunk from
| three locations on the disk. for

| commands B-2.

maube’|
| .. .gkumba. . .
| look=s like it
dam. .|
M =100

| .. .gkumba. . .
|zo0 a callback at $¥b3512 would capture
|the first part

o odam. L L
out of time nouw]
pick thi=s up later ¢ probably tomorrow|

| .. .gkumba. ..
|okay
|that was fun
Lodam. L |

indeed. two pairs of eges helps|
immensely. |

Mag 24

| .. .gkumba. ..

|I'm back again. whenewver gou're ready.
| I was thinking this mormning that the
|game might hawve a demo mode
|corresponding to command B, cut scene
|is command 1 and &, game i= command 2.

|hiscores is command 3. saomething like
|that .
|4 and 5 are unassigned
Lo odam. L L
ready |

sektting up a JMP #$FF52 at #B519 to see|
if we can capture the first block in|
memary |

o odam., L L
not working]
the JSE *¥B7YHA does not return|

| .. .gqkumba. ..
|maybe 1da $cB28a3 First?
|or Jmp ¥$¥c588 to khow for sure

.o dam. L L

putting JMP #C58AHA at #B5SHEAC reboots to|
work disk in =lot 5|

putting JMP #C58H at $B3BEF runs game |
intro s=equence., then hanas|

putting JMP $FF32 at *B3AC|
successfully breaks to monitor|

thi=s i=s on hi-res page 1:|
C=screenshot]]

S88A-1FFF also filled with new code|
4808 -53FFF untouched|

GHAE-3VFF has new code|

SRR+ untouched|

oops. nol|

22888+ untouched)|

tother than prewvious s=tages of boot|
code, which we'vwe already captured??|
OBJ files are here: https:ss. . |

need to re-trace $BVYHA and figure out|
why 1t newver returns., and where it
goes instead]|

I =till think #B388 is= the highest-|
level entry point to the game-specific|
di=sk loadinmng AFI|

Clike #2688 in Mr. Do

I'm going to try fiddling with zp#3F |
before calling #B5SH88 and see if I can|
get the game to load the other blocks|
oooooooh. the routines at $¥B558. |
¥B552., #BS6S8., and #BS57YA load A with]|
the =s=tarting disk phase and % with the|
starting index into #B9688. $B2868 i=|
the page arrag. |

¥B558 => A=%$09., Y=%8Q8, =0 it =eeks to]
Fhase #¥A2 and reads sectors into the|
memord pages listed at #B9@H+ (because|
¥EB2308 + $#08 = FB9G84)|

C...1

B3B8 . E9cQ

I
I
BESBb- A8 83 8p 8B @C abh 8E aF I
BEg@z- 18 11 12 13 14 15 16 17 I
E318- 18 12 1A 1B 1C 1D 1E 1F I
BE318- 28 21 22 23 24 25 28 27 I
Baza- 28 23 2 2B 2C 20 2E Z2F |
Baza- 28 21 32 33 34 35 36 37 I
B22@- 28 323 3a 3B 3C 3D 3E 3F I
BE9Z28- 68 &1 62 &3 64 63 66 &7 I
E348- &8 &2 &R &6B &C &0 &E &F I
BE348- V8 ¥1 VY2 ¥3 Y4 V3 Ye P7 I
BS50- V&8 V3 ¥a ¥B ¥C ¥0 ¥YE ¥F |
B353- 28 21 52 83 &84 835 86 &7 I
EZcb- 84 I

I

¥88 at #$B26H means stop|

that exactly matches the behawvior 1|
zaw in TERACES|

¥B558 =et=s A=#%19., Y=%$08 (again». JSE|
¥BABA, =0 it's filling those exact|
pages again. but starting at disk|
phase #$19 instead. Then $¥BABA returns|
gracefully and execution continues at|
¥B535F, which =et= A=%29., Y=%$68., and|
exits wia #$¥BAAB. So it's doingl
another read starting at disk phase|
#2929 and using the page arrayg at $¥B953+|

¥ES68 B393

BE3e8- 88 8% B8R 8B 8C 8D 8E BF
E3VE- 28 31 22 93 94 35 95 37
BE3yE- 28 233 38 3B 3C 30 3E 3F
B388- Al Al A2 A3 A4 AS A AY
BE3582- AS RS AA RE RAC AD RAE AF
E328- B2 BZ B2 BZ B2 EBZ B2 BZ
E328- B8

e ——— ——_——_————_.— . —

So if I =set zp#3F to #81 before|
calling #$B58A, and interrupt it at|]
¥B5AC again. I can expect 1t to Fill|]
¥A388-$3FFF., *c0@B@-%$27FF. *2208-%AFFF. |
and #¥B288-%B2FF (likely unused. it|
seems to use it as a filler page =so|
the lower lewel disk read routine can|
alwadys read a multiple of 8 sectors|
teszting that theorg now. . .|

..qkumba. . .

es, ¥b2xx 1= a dummy page =o it can
ill it=s 12-=lot read arrayg the
ifferent commands load different
locks=s, and some of them owverlap.
hich i= whay I think that theg're
utscenes and hiscores or somethian

Lo odam. L L

canfirmed that =s=etting zp#*3F to @1 |
calling #$BS88 loads exactly what I
thought it would]

| .. .gkumba. . .
|yes,:, we want the blocks for
I$5F=BJ 1., 2, 3, and &.

Lodam. L L |
C=creenshotd]|
on hi-res page 1 after loading blaock 2|

| .. .gkumba. ..
|amnimated., surely

Lo odam. L L
block & i= identical to blaock 1|
because $BS5S231 = #BESS6 (both ##%58)|

.. .qkumba. . .

ight, the actual code might display
omething different - win<lose., but
t's not relevant to us

lock 3 has a picture

-
=
i
b

Lo odam. L L
yas, capturing it now]

| .. .gkumba. . .

|this i=s exciting

|and this is why the file-based
|versions hawve only the main game.

o odam. L L
C=screenshotl]
| .. .gkumba. . .
lmiiiice
Lodam. L |
all files on https: 7. . .|
| .. .gkumba. . .

|Fename BLOCEKE @8 .2808-1FFF.

|BELOCEK @8 . 2888-3FFF

| "ok, =0 the routine at $B&BB8 decrypts
|to #8388, =seeks to phase $87. reads

| =ome nibble=s, then continues at FEA3I6Z2
|lwhich wipes the routine and pushes

| #BEAF to the =tack (along with #F34.
|which is popped as the status
|registers2" is probably wha $B7V8H

| mever returns

.o dam. L L

Fixed filename: http=s:~ s . |

in theordg, we hawe all the data we|
need to recreate the game|

| .. .gkumba. ..

|okag, =so... i= the original write-
|protected? Ho suggestion that it can
| =ave angthing?

.o dam. L L

i don't remember., and the picture I|
took doesn't show it, and 1i'm not|
rhuysically near it so0o 1 can't werify]
but agreed., 1 don't =ee any evidence|
of high scores or saved games or andl|
disk write routines|

| .. .gkumba. . .
|areat . and ideas for a new loader?
| gboot couwld do it.

. o
works far me|

need=s to s=tay resident and Fit in|
¥B0Ea . . ¥BFFF I think 2|

need to permanently decrupt FBFSF+|
and #¥BeBABd Cwhich ends up at FE368 1|

| .. .gkumba. ..

|okag, gboot fFit=s in #bdBBE-bFfff.

|mot sure if bF3F will be available.
|though. I will check

dam. . .|
and figure out where execution]|
continues after the JS5E #E7VQA |
well #¥BZ2xx is awailable., yesT|

| .. .gkumba. ..

lright. Jes=s.

|Me can mowve one aof the tables there.
| and free Fbfyf+

Lodam. L L |
excellant |

| .. .gkumba. . .
|okag, Jjust hawve to mowve preshift to
| #¥b288, and the rest should be fine.

Lo odam. L L
out of time, pick it up tomorrow]

| .. .gkumba. ..
| okay

Mag 25

Codam. L
Uh aoh. Ctrl-H during plagy displau=s|
"GUMBALL HALL OF FAME"|]
¥B0EA (copied from #8588 in BOOT1 |
B4BAA-AFFF > i= the disk write routine. |
It =aves high scores on track #A1 |
Ltphasze #AZ2 2 then seeks back to phase|
¥87Y. High scores are stored in #EB8EE-|
¥BAFF, which explains whgy one of the|
boot =stages ftried to read into that|
page but stored a page of default|
values instead if the disk read]
failed. |
Andwad:, a full read<write EWTS will be|
required, although perhaps the write|
roudktine could be read from disk onlyg]
when needed ¢like gou did with Captain]
Goodnight 2. |
So I traced it again more carefullyg. |
and I figured out whay the JS5E $B7V84|
never returns. It decrupts #fBEEABE into]|
¥@3608 then exits wia JMP C(EBVES), |
a.k.a. #8388, The decrupted routine at|
¥@388 does this:

B3l13i- A3 A7 LOA #+087
B313- 28 28 B3 JSE FH 226
Bisa- 28 B8 EBEE JSE $EEBAH
B353- AZ B3 LOx #¥0.2
B385- &8 FLA

Bige- CA DE X

BIg3- 4C 18 83 JMF FH318

That negates both the JSE $#A328 ¢ at
¥8315» and the J5F $EYB0A (at FESAC)

I

I

I

I

I

I

I

BI87v - 18 FC EFL FHI25 |
I

I

I

-
C...1

Then it does this:

I

I

H343- 28 531 @3 J5K FHA251 |
Hid4E- 48 FH& |
B347 - 28 51 a3 JS5K F0351 I
B3d4Q/- 43 FHA |
I

#0351 reads a 4-4 encoded bayte Ffrom|
disk|

Later it pushes ##$BE and ##AF. which]|
re—encrdpts the code at #¥BF2F and|
exits wia RTS, =0 we "return" to the|
address that was read directlyg from]
di=k and pushed to the stack ©at|
¥@0343 . F6034[/0. |

Furthermore, the entrg point that's=s|
read from disk waries by block. It|
reads a nmnibble prologue. then there's|
a loop at #8333 which reads through al
null-delimited array of addresses on|
disk until it finds the Hth address|
Cwhere H is the character a. k.a.|
command I0D a.k.a. block number that|]
wmas passed to the output wector in the|
first place |

To unfick this routine. we need tol
find the entry point for each block. |
I can write another tracer. or I can|
loak at the disk with a nibble editar|
and manually calculate the bytes it's=|
reading. |

Oop=s, I was =slightly wrong but mostly]
right. The entrg point address arraug|
i= on track 2.5 (phase V23, and it i=s]|
after the "DO4 05 0O7" praologue., and it|
iz 4-4 encoded. but it'=s not null-—|
delimited. |

I found the arrag in a nibble editor|
and conwverted the walues. The|
"return" address for block B i=s $AF3C . |
C...1

JFRE#5 I
C |
JcALL -131 I
¥5068:8 H S81<508 . BEFEM I
¥ELOAD ELOCEKE 86 . 6388-1FFF.,AA¥5048 I
¥ELOAD ELOCEKE @86 .2808-3FFF.Afz2808 |
¥ELORD ELOCEK 88 .cBB0-27FF,AF¥cBEa |
¥ELORD EOOT1 @488-87FF.,AF¥4480 I
¥FEE3L FEZEG I

I

I

I

¥EDEA< 45608 . 47VFFHM
¥F200G

diszplays intro sequence and runs|
through it =seweral times until it
eventually tries to load the next|
phase from disk and crashes|

updated draft with entry points for|
each bloack: https:-rs .. .|

| .. .gkumba. ..

|excellent work.

|I'm about fto start reading.

|is the disk a dual-boot?

|the track A stuff looks like S—and-3
|=ince evergthing else is 4-and-4., it
|could certainly be

.o dam. L L

Yeah, THA,SHA i= wirtually identical]
to other games from that earlay S@0=|
that I'we seen, like Falcons|
auto-boots on 13-sector or lé-sector|
drive|

| .. .gkumba. ..

|drive seek: the 1dx #%13 i= the whole
| track delag; the BIT masks the 1dx

| #¥8a, which I beliewe i=s half-track

.o dam. L L

Faul explained to me that disks like|]
that actually hawve THDO TEA.,SAA —— aone|
wmith the "O3 AA 95" prologue and one |
with the "0O5 AA BS" prologue. The one|
I see i=s, of course, the D3AASE one. |
which includes enough of the S5-3|
fFirmware code to read the next sector. |
And evergthing after that 1= 4-4 and]
custom, =0 no fFurther i1ssues. Ueryg]
clever solution to the backward]
compatibility problem. |

| .. .gkumba. ..

|ye=, that's exactly correct

| and produces weird copy errors that
|make some people think that the copuy
|won't work because one sector is
Imi==ing

|excellent text =o fFar

.o dam. L L

thanks|

honestlygy, if gou're traing to bit]
copd this disk., track B i= the least|
of gour problems|

Mag 27

Lodam. L L |

Good news. everdone! |

Gumball's crazy encrypted routine at|
¥A388 wipes #¥Bl18B . $¥BCFF and the game|
never uses it until it reloads its|
loader into it .|

Mhich means we hawe TOWS of space for|
and kind of RHTS we want. He could go]
with a full DOS 3.3 RWTS and =till|
have *#7VAB bytes left for our own glue|

code . |
| .. .gkumba. . .
|yau! but D05 RWTS is slow. and
| Gumball i=s fast.
|we should be fast.
|lit's onluy proper.
Lodam. L |

Agreed. but mavybe we could read in|
a 005 RWHTS when we need to write]
the high =cores|

Or i= gboot already readswrite]

| .. .gkumba. ..

|gboot i=s read-only., but I am working
lom a small write routine right nouw.
|Counting cycles intensivelyg. . .

.o dam. L L

In fact, we can Jjust keep the write]
routines in memoryg. Tons of space. |
and I werified that the game code|
communicates with the EWTS =solely]
through the output vector Cprintingl
a "command" character wia FFDED>. |
So lots of fFlexibility. |

| .. .gkumba. ..

|or we could just use 0OO0S RWTS.
|=ince it'=s only 2 sectors long

|005 write routine i=s only 2 sectors.
|that i=.

Ludam. L L |

Mell, hawing a complete fast ERWTS|
wmodld certainly be useful Cand]|

likely reusable?, it's not a necessity]
for this project. He could start byl
rewsing D05 routines and optimize|

them on a future project. |

| .. .gkumba. . .
|okau, that gets uwus a release sooner.

o odam. L L
Back in a few hours|

| .. .gkumba. ..
| okay

dam. L

Feady |

It's been 2 hours;: hawve gou written|
a new EWNTS get¥|

| .. .gkumba.
| g e
|I ju=st finmished it

Lodam. L L
Damn it, I was kiddinag]

EKeus and Controls
The game can be plagyed with a joustick
or kegboard.

“Ckrl-Jdx switch to joustick mode
“CErl-K > switch to kegyboard mode

Mhen wusing a keygboard:

S mowve bins left

] =top bins

F move bins right

CSpacel switch in-tube gates

E increase speed

C decrease speed

CReturnl toggle target =ighting
U In mowe the target =ight
J E L L for when the bombs
M . start dropping?

Mhen using a joustick:

buttons BA+1 toggle target =sighting
“Chrl-®> flip Jjoustick ¥ axis
“CErl-=-%: flip joustick ¥ axis
Other keys:

“Ckrl1-5: toggle =zound onsoff
“CErl-R: restart leuveal

“Chrl-0: restart game

“Ctrl-Hx view high scores

“E=sc > pPausesresume game

After the game starts, press <Ctrl-U:
“Ctrl-C» <Ctrl-B* in sequence Lo =see 3
sectret credit=s page that lists most aof
the people invaolwed in making the game
tbut =adly, not the person responsible
for developing the copy protection?.

Cheats

I hawve not enabled ang cheat=s on our
release, but I hawe wverified that they

work. You can wse and orF all of them.

Stop the clock:
TAS,SAA.*¥B1 change A1 to @4

Start on lewel 2-5:
TAS,SAC, $53 change BAA to <lewel-1:>

Acknowledgements

Thanks to Alex., Andrew. John. Martin.
Faul.: Guinn. and Richard for reviewing
drafts of this write-up.

And finmally, many thanks to gkumba:
Shifter of Bit=s, Master of the Stack.
author of Gumboot., and mu friend.

Changelog

281e-03-03

- update Gumboot to poll for good data
before zeeking (compatibility with
Floppay Emu?2

Z2Bl1e-B6-13

- defeat =secondary protection ¢chapter
2372

- more documented cheats

- clarify how to actiwvate the fFirst
hint towards the secret final screen

2Ele-Be-A3

- initial releasze

A d4am &% =an inc crack Ho. 623

