
16:12 This PDF is a Shell Script
That Runs a Python Webserver
That Serves a Scala-Based JavaScript Compiler
With an HTML5 Hex Viewer; or,
Reverse Engineer Your Own Damn Polyglot

by Evan Sultanik

This PDF starts a web server that displays an annotated hex view of itself, ripe with the potential for
reverse enginerding.

PoC‖GTFO Issue 0x16
In Which a PDF is a Shell Script that Runs a Python Webserver
Serving a Scala-Based JavaScript Compiler with an HTML5 Hex

Viewer that Can Help You Reverse Engineer Itself
Neighbor, as you read this, your web browser is downloading the dozens of megabytes
constituting pocorgtfo16.pdf. From itself. Depending on your endowment of RAM,
you may notice your operating system start to resist. Please be patient, as this may
take a couple minutes to load.

The hex viewer used for this polyglot is Kaitai Struct’s WebIDE, which is freely available
under the GPL v3. The only modifications we made to it were to display this dialog
and to auto-load pocorgtfo16.pdf. All of the modified source code is available in the
feelies.

Despite where you may stand in The Great Editor Schism, Pastor Manul Laphroaig
urges you to put aside your theological differences and celebrate this great licensing
achievement of Saint IGNUcius—which is not so much different than our own самиздат
license—, without which this polyglot would have likely been impossible. Sanctity can
be found in all manner of hackery. In any event, we hear that the good Saint runs Vim
from inside of Emacs, which is not so much different than our own polyglots.

This is a fully functional hex viewer and reverse engineering tool, with which you can load
any other file from your filesystem. We have annotated the PDF using Kaitai Struct,
which should be sufficient for you to figure it all out. You might even be tempted to
edit the PDF to make your own PoC, but be careful! We’ve included some tricks to
make modifications more of a challenge for you. But most importantly: Have fun!

Close

http://localhost:8080/

$ sh pocorgtfo16.pdf 8080
Listening on port 8080...

58

Warning: Spoilers ahead! Stop reading now if you want the challenge of
reverse engineering this polyglot on your own!

The General Method
First, let’s talk about the overall method by which
this polyglot was accomplished, since it’s slightly
different than that which we used for the Ruby web-
server polyglot in PoC‖GTFO 11:9. After that I’ll
give some further spoilers on the additional obfus-
cations used to make reversing this polyglot a bit
more challenging.

The file starts with the following shell wizardry:

! read -d ’’ String <<"PYTHONSTART"

This uses here document syntax to slurp up all of the
bytes after this line until it encounters the string
“PYTHONSTART” again. This is piped into read as
stdin, and promptly ignored. This gives us a place
to insert the PDF header in such a way that it does
not interfere with the shell script.

Inside of the here document goes the PDF header
and the start of a PDF stream object that will con-
tain the Python webserver script. This is our stan-
dard technique for embedding arbitrary bytes into a
PDF and has been detailed numerous times in pre-
vious issues. Python is bootstrapped by storing its
code in yet another here document, which is passed
to python’s stdin and run via Python’s exec com-
mand.

! read -d ’’ String <<"PYTHONSTART"
%PDF-1.5
%0x25D0D4C5D8
9999 0 obj
<</Length # bytes in the stream
>>
stream
PYTHONSTART
python -c ’import sys;
exec sys.stdin.read()’ $0 $* <<"ENDPYTHON"

Python webserver code

ENDPYTHON
exit $?
endstream
endobj
Remainder of the PDF

Obfuscations

In actuality, we added a second PDF object stream
before the one discussed above. This contains some
padding bytes followed by 16 KiB of MD5 colli-
sions that are used to encode the MD5 hash of the
PDF (cf. 14:12). The padding bytes are to ensure
that the collision occurs at a byte offset that is a
multiple of 64.

Next, the “Python webserver code” is actually
base64 encoded. That means the only Python code
you’ll see if you open the PDF in a hex viewer is
exec sys.stdin.read().decode("base64").

The first thing that the webserver does is read
itself, find the first PDF stream object containing
its MD5 quine, decode the MD5 hash, and com-
pare that to its actual MD5 hash. If they don’t
match, then the web server fails to run. In other
words, if you try and modify the PDF at all, the
webserver will fail to run unless you also update the
MD5 quine. (Or if you remove the MD5 check in
the webserver script.)

From where does the script serve its files?
HTML, CSS, JavaScript, . . . they need to be some-
where. But where are they?

The observant reader might notice that there is
a particular file, “PoC.pdf”,38 that was purposefully
omitted from the feelies index. It sure is curious
that that PDF—whose vector drawing should be no
more than a few hundred KiB—is in fact 6.5 MiB!
Sure enough, that PDF is an encrypted ZIP poly-
glot!

The ZIP password is hard-coded in the Python
script; the first three characters are encoded
using the symbolic regression trick from 16:09
(q.v. page 47), and the remaining characters in the
password are encoded using Python reflection obfus-
cation that simply amounts to a ROT13 cipher. In
summary, the web server extracts itself in-memory,
and then decrypts and extracts the encrypted ZIP.

38Here, “PoC” stands for “Pictures of Cats”, because the PDF contains a picture of Micah Elizabeth Scott’s cat Tuco.

59

