S2E: A Platform for
In-Vivo Multi-Path Analysis of Software Systems

Vitaly Chipounov, Volodymyr Kuznetsov, George Candea

School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Siivitmb
{vi tal y. chi pounov, vova. kuznet sov, geor ge. candea}@pf | . ch

Abstract

This paper presengE, a platform for analyzing the properties and
behavior of software systems. We demonst&tes use in devel-
oping practical tools for comprehensive performance pnafilre-
verse engineering of proprietary software, and bug findamdbth
kernel-mode and user-mode binaries. Building these taotsof
S?E took less than 77Q0C and 40 person-hours each.

S?E's novelty consists of its ability to scale to large real sys-
tems, such as a full Windows stackE is based on two new ideas:
selective symbolic executioa way to automatically minimize the
amount of code that has to be executed symbolically giverngata
analysis, and relaxegkecution consistency modedsway to make
principled performance/accuracy trade-offs in complealyses.
These techniques give’E three key abilities: to simultaneously
analyze entire families of execution paths, instead of gust exe-
cution at a time; to perform the analyses in-vivo within a set-
ware stack—user programs, libraries, kernel, drivers;-eitastead
of using abstract models of these layers; and to operatetlyiren
binaries, thus being able to analyze even proprietary soéw

ConceptuallyS*E is an automated path explorer with modular
path analyzers: the explorer drives the target system ddivaxa
ecution paths of interest, while analyzers check propedfeeach
such path (e.g., to look for bugs) or simply collect inforioate.g.,
count page faults). Desired paths can be specified in meikplys,
andS?E users can either combine existing analyzers to build a cus-
tom analysis tool, or write new analyzers using $E API.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification

General Terms Reliability, Verification, Performance, Security

1. Introduction

System developers routinely need to analyze the behaviehat
they build. One basic analysis istoderstand observed behavjor

a customer site. Ideally, system designers would also bkbet
able to do quickwhat-if analysessuch as determining whether
aligning a certain data structure on a page boundary wiliceath
cache misses and thus increase performance. For smalbpregr
experienced developers can often reason through some ¢ the
questions based on code alone. The goal of our work is to ntake i
feasible to answer such questions for large, complex, ysaéms.

We introduce in this paper a platform that enables easy con-
struction of analysis tools (such as oprofile, valgrind, Eaders,
or reverse engineering tools) that simultaneously offerfttow-
ing three properties: (1) they efficiently analyze entinmifees of
execution paths; (2) they maximize realism by running thelyan
ses within a real software stack; and (3) they are able tatijre
analyze binaries. We explain these properties below.

First, predictive analyses often must reason about efeaire-
lies of pathghrough the target system, not just one path. For exam-
ple, security analyses must check that there exist no caamas
that could violate a desired security policy; recent work ban-
ployed model checking [29] and symbolic execution [11] talfin
bugs in real systems—these are all multi-path analyses. dne
our case studies demonstrates multi-path analysis of jpeafuce
properties: instead of profiling solely one execution patderive
performance envelopes that characterize the performdremtice
families of paths. Such analyses can check real-time reougnts
(e.g., that an interrupt handler will never exceed a givetmnioloon
execution time), or can help with capacity planning (e.gted
mine how many web servers to provision for a web farm). In the
end, properties shown to hold fall paths constitute proofs, which
are in essence the ultimate prediction of a system’s behavio

Second, an accurate estimate of program behavior ofteiresqu
taking into account thevhole environmensurrounding the ana-
lyzed program: libraries, kernel, drivers, etc.—in otheords, it
requires in-vivd analysis. Even small programs interact with their
environment (e.g., to read/write files or send/receive ngtywack-
ets), so understanding program behavior requires undeiistathe

such as why a given web server is slow on a SPECweb benchmark.Nature of these interactions. Some tools execute the reaban

More sophisticated analyses aimdmaracterize future behavion
previously unseen circumstances, such as what will a weleser
maximum latency and minimum throughput be, once deployed at

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5-11, 2011, Newport Beach, California, USA.
Copyright © 2011 ACM 978-1-4503-0266-1/11/03. .. $10.00

ment, but allow calls from different execution paths to iféee
inconsistently with each other [12, 18]. Most approachestrabt
away the environment behind a model [2, 11], but writing st
models is labor-intensive (taking in some cases multiplsge
years [2]), models are rarely 100% accurate, and they tefabéo

LIn vivois Latin for “within the living” and refers to experimentingsing

a whole live systemin vitro uses a synthetic or partial system. In life sci-
ences, in vivo testing—animal testing or clinical trialss-aften preferred,
because, when organisms or tissues are disrupted (as iagbeotin vitro
settings), results can be substantially less represeatatnalogously, in-
vivo program analysis captures all interactions of theyareal code with its
surrounding system, not just with a simplified abstractibthat system.

accuracy as the modeled system evolves. It is thereforenatde
that target programs interact directly with their real eomiment
during analysis in a way that keeps multi-path analysis isterst.

Third, real systems are made up of many components from
various vendors; access to all corresponding source cadedly
feasible and, even when source code is available, builtiegade
exactly as in the shipped software product is difficult [ShuUS, in
order to be practical, analyses ought to opedéatectly on binaries

Scalability is the key challenge of performing analyses éna
in-vivo, multi-path, and operate on binaries. Going fromge-
path analysis to multi-path analysis turns a linear probileim an
exponential one, because the number of paths through agonogr
increases exponentially in the number of branches—theh“pat
plosion” problem [7]. It is therefore not feasible today teeeute
fully symbolically an entire software stack (programsrdibes,0S
kernel, drivers, etc.) as would be necessary if we wantedistamt
in-vivo multi-path analysis.

We describe in this pap&?E, a general platform for developing
multi-path in-vivo analysis tools that are practical even large,
complex systems, such as an entire Windows software stask, F
S?E simultaneously exercises entire families of executiohpat a
scalable manner by usirsglectivesymbolic execution ancelaxed
execution consistency models. Secogitl employs virtualization
to perform the desired analyses in vivo; this removes theal nee
for the stubs or abstract models required by most statbeshitt
symbolic execution engines and model checkers [3, 11, 1869
Third, S’E uses dynamic binary translation to directly interpret x86
machine code, so it can analyze a wide range of softwareidimg
proprietary systems, even if self-modifying or JITed, adl\as
obfuscated and packed/encrypted binaries.

The S2E platform offers an automated path exploration mech-
anism and modular path analyzers. The explorer drives iallpar
the target system down all execution paths of interest,enduila-
lyzers check properties of each such path (e.g., to look digsp
or simply collect information (e.g., count page faults). &mlysis
tool built on top ofS2E glues together path selectors with path ana-
lyzers.Selectorguide S’E's path explorer by specifying the paths
of interest: all paths that touch a specific memory objedhpa-
fluenced by a specific parameter, paths inside a target codelejo
etc.Analyzerscan be pieced together froBiE-provided analyzers,
or can be written from scratch using thee API.

S?E comes with ready-made selectors and analyzers that pro-
vide a wide range of analyses out of the box. The typi3&l user
only needs to define in a configuration file the desired selg)to
and analyzer(s) along with the corresponding parametens, .
the desired software stack inside ®%E virtual machine, and run
the S2E launcher in the guesds, which starts the desired applica-
tion and communicates with tt8E VM underneath. For example,
one may want to verify the code that handles license keys in a
proprietary program, such as Adobe Photoshop. The usallgst
the program in thes?E Windows VM and launches the program
using s2e.exe G;Program Files Adobe Photoshop From inside
the guestos, the s2e.exdlauncher communicates Wit&?E via
custom opcodes (described in 84). In 8% configuration file,

the tester may choose a memory-checker analyzer along with a

path selector that returns a symbolic string whenever Bho
reads HKEYLOCALMACHINE\SoftwargPhotoshofyLicenseKey
from the Windows registryS’E then automatically explores the
code paths in Photoshop that are influenced by the value of the
license key and looks for memory safety errors along thotiespa
Developing a new analysis tool wi?E takes on the order of
20-40 person-hours and a few hundtext. To illustrateS*E’s gen-
erality, we present here three very different tools builhgs?E: a
multi-path in-vivo performance profiler, a reverse engiimegtool,
and a tool for automatically testing proprietary software.

This paper makes the following four contributions:

* Selective symbolic execution, a new technique for automatic
bidirectional symbolic—concrete state conversion thathés
execution to seamlessly and correctly weave back and forth
between symbolic and concrete mode;

* Execution consistency models, a systematic way to reason
about the trade-offs involved in over/under-approximatif
paths in software system analyses;

* A general platform for performing diverse in-vivo multi-path
analyses in a way that scales to large real systems;

* The first use obymbolic execution in performance analysis.

In the rest of the paper, we describe selective symboliciexec
tion (82), execution consistency models (&)E's APIs for devel-
oping analysis tools (84), th&’E prototype (85), evaluation (86),
related work (87), and conclusions (88).

2. Selective Symbolic Execution

In devising a way to efficiently exercise entire families afips, we
were inspired by the successful use of symbolic executi@hif2
automated software testing [11, 18]. The idea is to treabgram
as a superposition of possible execution paths. For example
program that is all linear code except for one conditionaieshent
if (z>0) then ... else ..can be viewed as a superposition of two
possible paths: one far>0 and another one for<0. To exercise
all paths, itis not necessary to try all possible values, dfut rather

just one value greater th@and one value less thdn

We unfurl this superposition of paths intasgmbolic execution
treg in which each possible execution corresponds to a path from
the root of the tree to a leaf corresponding to a terminaéstite
mechanics of doing so consist of marking variables as syimhol
the beginning of the program, i.e., instead of allowing dalae x
to take on a concrete value (say:5), it is viewed as a superposi-
tion \ of all possible values could take. Then, any time a branch
instruction is conditioned on a predicgtethat depends (directly
or indirectly) onzx, execution is split into two execution8; and
E%, two copies of the program’s state are created, Aid path
remembers that the variables involvedpimust be constrained to
makep true, while E;'s path remembers thatmust be false.

The process repeats recursively; may further split intoZ;,
andE;, , and so on. Every execution of a branch statement creates
a new set of children, and thus what would normally be a linear
execution (if concrete values were used) now turns into a tre
of executions (since symbolic values are used). A nede the
tree represents a program state (a set of variables withufaem
constraining the variables’ values), and an edlge» s; indicates
that s; is s;'s successor on any path satisfying the constraints in
s;. Paths in the tree can be pursued simultaneously, as the tree
unfurls; since program state is copied, the paths can bemdpl
independently. Copy-on-write is used to make this proctissant.

S?E is based on the key observation that oftetly somefami-
lies of paths are of interest. For example, one may want tawsh
tively explore all paths through a small program, but noeayout
all paths through the libraries it uses or thgkernel. This means
that, when entering that progragtg should split executions to ex-
plore the various paths, but whenever it calls into somerqthet
of the system, such as a library, multi-path execution caseand
execution can revert to single-path. Then, when execugturms
to the program, multi-path execution must be resumed.

Multi-path execution corresponds txpandinga family of
paths by exploring the various side branches as they appbie,
switching to single-path mode correspondséosetingthe family
of paths. In multi-path mode, the tree grows in width and dgiot

single-path mode, the tree only grows in depth. We theresase
S?E's exploration of program paths édastic S?E turns multi-path
mode off whenever possible, to minimize the size of the etxecu
tree and include only paths that are of interest to the tangeysis.

S?E’s elasticity of multi-path exploration is key in being able
to perform in-vivo multi-path exploration of programs idsicom-
plex systems, like Windows. By combining elasticity withrtui
alization, S?E offers the illusion of symbolically executing a full
software stack, while actually executing symbolicallyyoeklect
components. For example, by concretely (i.e., non-syroalhy)
executing libraries and theskernel,S>E allows a program'’s paths
to be explored efficiently without having to model its sumding
environment. We refer to this aglective symbolic execution

Interleaving of symbolic execution phases with concreiaspls
must be done carefully, to preserve the meaningfulness df ea
explored execution. For example, say we wish to analyzegrano
P in multi-path (symbolic) mode, but none of its librarids
are to be explored symbolically. P has a symbolic variable
and callsst rncpy(dst, src, n) in Li, S’E must convertn to
some concrete value and invoker ncpy with that value. This is
straightforward: solve the current path constraints witlomstraint
solver and get some legal value fo(sayn=5) and callst r ncpy.
But what happens ta after st r ncpy returns? Variablalst will
containn=5 bytes, whereas prior to the call was symbolic—can
n still be treated symbolically? The answer is yes, if donefdly.

In S?E, when a symbolic value is converted to concrete X —
5), the family of executions is corseted. When a concreteevau
converted to symbolic(: 5 —), the execution family is allowed
to expand. The process of doing this back and forth is godelye
the rules of an execution consistency model (83). For theeabo
example, one might require thatbe constrained to valugin all
executions following the return frost r ncpy. However, doing so
may exclude a large number of paths from the analysis. In 83 we
describe systematic and safe relaxations of executioristensy.

We now describe the mechanics of switching back and forth
between multi-path (symbolic) and single-path (concretecu-
tion in a way that executions stay consistent. We know of riar pr
symbolic execution engine that has the machinery to effilyiemd
flexibly cross the symbolic/concrete boundary both backfarit.

Fig. 1 provides a simplified example of usisgE: an applica-
tionappuses a libraryib on top of an0Skernel The target analysis
requires to symbolically executi, but notapp or kernel Func-
tion appFnin the application calls a library functidibFn, which
eventually invokes a system calysFn OncesysFnreturns,libFn
does some further processing and returnagpFn After the exe-
cution crosses into the symbolic domain (shaded) from therete
domain (white), the execution tree (right side of Fig. 1) axqs.
After the execution returns to the concrete domain, the i@t
tree is corseted and does not add any new paths, until egacuti
returns to the symbolic domain. Some paths may terminateear
than others, e.g., due to hitting a bug in the program.

We now describe the two directions in which execution can
cross the concrete/symbolic boundary.

2.1 Concrete— Symbolic Transition

WhenappFncallslibFn, it does so by using concrete arguments;
the simplest conversion is to use &%E selector to change the
concrete arguments into symbolic ones, e.g., instedibBn(10)
calllibFn(\). One can additionally opt to constraine.g.,A < 15.
Once this transition occurss’E executedibFn symbolically
using the (potentially constrained) argument(s) and ganelously
executedibFn with the original concrete argument(s) as well. Once
exploration oflibFn completesS?E returns toappFnthe concrete
return value resulting from the concrete execution, [tnEn will
have been explored symbolically as well. In this way, thecatien

cete domain
¢

APP O,

appFn = \jcdomain
R . app
3 15 N
| :|uB 1ibFn .
i lib
kernel
sysFn@=| N VJ/N I\ | Ao XA o
lib
app

KERNEL ¢~ | .

Figure 1: Multi-path/single-path execution: three different mashu(left)
and the resulting execution tree (right). Shaded areagsept the multi-
path (symbolic) execution domain, while the white areassargle-path.

of appis consistent, while at the same tingeE exposes to the
analyzer plugins those pathslib that are rooted dtbFn’s entry
point. The concrete domain is unawarelibFn being executed in
multi-path mode. All paths execute independently, and itdgo

the S?E analyzer plugins to decide whether, besides observing the
concrete path, they also wish to look at the symbolic paths.

2.2 Symbolic— Concrete Transition

Dealing with thdibFn—sysFncall is more complicated. SdipFn
has the code shown in Fig. 2 and was called with an unconsttain
symbolic valueze(—oo, 4+00). At the firstif branch instruction,
execution forks into one path along whigk (—oo, 5) and another
path wherere[5, +00). These expressions are referred tpath
constraints as they constrain the values thatan take on a path.
Along the then-branch, a call teysFn(x)must be made. This
requirese to be concretized, sina@ysFnis in the concrete domain.
Thus, we choose a value, say=4, that is consistent with the
x€(—00,5) constraint and perform theysFn(4)call. The path
constraints in the symbolic domain are updated to reflettutha.

void libFn(int x) { Path constraints ::

if (x<5) { X E (-, +)
buf=sysFn(x); -
if (x<0) ¢
... x € (-, 5) x €[5, +)
}

Figure 2: The top level inibFn’s execution tree.

Note thatS?E actually employdazy concretizationit converts
the value ofz from symbolic to concrete on-demand, only when
concretely running code actually reads the value:oThis is an
important optimization when doing in-vivo symbolic ex&out,
because a lot of data can be carried through the layers of the
software stack without conversion. For example, when ararag
writes a buffer of symbolic data to the filesystem, there ateally
no branches in the kernel or the disk device driver that dépen
on this data, so the buffer can pass through unconcretizédean
written in symbolic form to the virtual disk, from where it i
eventually be read back in its symbolic form. For the sakdanfty,
in this section we assume eager (non-lazy) concretization.
OncesysFncompletes, execution returns libFn in the sym-
bolic domain. When: was concretized prior to callingysFn the
x=4 constraint was automaticaly added to the path constraints—
sysFrs return value is correct only under this constraint, beeau
all computation insysFnwas done assuming=4. Furthermore,
sysFnmay also have had side effects that are equally intimately
tied to thex=4 constraint. With this constraint, executionliifFn
can continue, and correctness is fully preserved.

The problem, however, is that this constraint corsets trélya
of future paths that can be explored from this point ancan no
longer take on all values if—oc, 5) so, when we subsequently
get to the branchf (x<0) ..., the then-branch will no longer be
feasible due to the added=4 constraint. This is referred to as
“overconstraining”: the constraint is not introduced bwatfaes
of libFn's code, but rather as a result of concretizingo call
into the concrete domain. We think af=4 as a soft constraint
imposed by the symbolic/concrete boundary, whitg(—co, 5) is
a hard constraint imposed IipFn’s code. Whenever a branch in
the symbolic domain is disabled because of a soft constiriiist
possible to go back in the execution tree and pick an addition
value for concretization, fork another subtree, and refhestysFn
call in a way that would enable that branch. As explained st
can track branch conditions in the concrete domain, whidpshe
redo the call in a way that re-enables subsequent branches.

The “overconstraining” problem has two components: (a) the
loss of paths that results directly from the concretizatbr, and
(b) the loss of paths that results indirectly via the comsé@ return
value and side effects. Due to the fact t&&E implements/M state
in a way that is shared between the concrete and symbolicidoma
(more details in 85), return values and side effects candadd
using identical mechanisms. We now discuss how the contdrai
are handled under different consistency models.

3. Execution Consistency Models

The traditional assumption about system execution is tieastate
at any point in time is consistent, i.e., there exists a fBagiath
from the start state to the current state. However, therenamey
analyses for which this assumption is unnecessarily stramdthe
cost of providing such consistency during multi-path eralion
is often prohibitively high. For example, when doing unisttag,
one typically exercises the unit in ways that are consistgithithe
unit's interface, without regard to whether all those pattesindeed
feasible in the integrated system. This is both becausmgette
entire system in a way that exercises all paths through titeisun
too expensive, and because exercising the unit as desafizee
offers higher confidence in its correctness in the face afreutise.
S?E aims to be a general platform for system analyses, so it
provides several levels of execution consistency, to enasérs to
make the best trade-offs. In this section, we take a first giep
ward systematically defining alternate execution conscstenod-
els (83.1), after which we explain how these different meait-
tate the symbolic/concrete conversions applied duringbidek-
and-forth transition between the analyzed code and itsr@mvi
ment (83.2). In 83.3 we survey some of the ways in which con-
sistency models are implemented in existing analysis tools

3.1 Model Definitions
The key distinction between the various execution consiste

When defining a model, we think in
terms of which paths it includes vs. ex-
cludes. Following the Venn diagram o
the right, an execution path can beti-
cally feasible in that there exists a paf
in the system’s inter-procedural contrpl
flow graph (CFG) corresponding to th&
execution in question. A subset of the
statically feasible paths atecally feasi-
blein the unit, in the sense that the execution is consistetlvath
the system’s CFG and with the restrictions on control flowosgx
by the data-related constraints within the unit. Finallgudset of
locally feasible paths iglobally feasible in the sense that their
execution is additionally consistent with control flow régtons
imposed by data-related constraints in the environmense@®ing
only the code executing in the unit, with no knowledge of code
the environment, it is impossible to tell apart locally fibsdes from
globally feasible paths.

We say that a model isompleteif every path through the unit
that corresponds to some globally feasible path througlsyeeem
will eventually be discovered by exploration done undet thadel.

A model isconsistentf, for every path through the unit admissible
by the model, there exists a corresponding globally feagilith
through the system (i.e., the system can run concretelyainthy).

We now define six points that we consider of particular inter-
est in the space of possible consistency models, proggefsim
strongest to weakest consistency. They are summarizedyin3Fi
using a representation corresponding to the Venn diagraweab
Their completeness and consistency are summarized in Table
We invite the reader to follow Fig. 3 while reading this senti

3.1.1 Strict Consistency $C)

The strongest form of consistency is one that admits only the
globally consistent paths. For example, the concrete ¢xeraf a
program always obeys the strict consister®g) (model. Moreover,
every path admitted under tis€ model can be mapped to a certain
concrete execution of the system starting with certain eec
inputs. Sound analyses produce no false positives usider

We define three subcategoriesstf based on what information
is taken into account when exploring new paths.

Strictly Consistent Concrete Execution (SC-CE): Under theSc-

CE model, the entire system is treated as a black box: no irterna
information is used to explore new paths. The only explor&ithe

are the paths that the system follows when executed wittetinge
input provided by the analysis. New paths can only be exglose
blindly guessing new inputs. Classic fuzzing (random iripating)
falls under this model.

Strictly Consistent Unit-level Execution (SC-UE): Under theScC-
UE model, an exploration engine is allowed to gather and use
information internal to the unit (e.g., by collecting patinstraints

models is which execution paths each model admits. Choosing while executing the unit). The environment is still treatech black

an appropriate consistency model is a trade-off between“hew
alistic” the admitted paths are vs. the cost of enforcingrttoglel.

The appropriateness of the trade-off is determined by tha@af

the analysis, i.e., by the way in which feasibility of difert paths
affects completeness and soundness of the analysis.

In the rest of the paper, we use the tesgstenmto denote the
complete software system under analysis, including thécgtipn
programs, libraries, and the operating system. We use itimeLiiit
to denote the part of the system that is to be analyzed. A onitlc
encompass different parts of multiple programs, librarigseven
parts of the operating system itself. We use the tenrironmento
denote everything in the system except the unit. Thus, teesy
is the sum of the environment and the unit to be analyzed.

box, i.e., path constraints generated by environment coel@at
tracked. Not every globally feasible path can be found witths
partial information (e.g., paths that are enabled by brasc¢h the
environment can be missed). However, the exploration erganes
time by not having to analyze the environment, which is tgfhyc
orders of magnitude larger than the unit.

This model is widely used by symbolic and concolic execution
tools [11, 12, 18]. Such tools usually instrument only thegoam
but not the operating system code (sometimes such toolacepl
parts of theOS by models, effectively adding a simplified version
of it as a part of the program). Whenever such tools see a call
to the OS, they execute the call uninstrumented, selecting some
concrete arguments for the call. Such “blind” selectionariarete

SC-CE
Strictly consistent
concrete execution

©

SC-UE
Strictly consistent
unit-level execution

Strictly consistent
system-level execution

+ more inputs
based on knowl-
edge of constraints
from environment

+ more inputs
based on knowl-
edge of constraints
from within the unit

+ relax constraints at unit/

environment boundary con-

sistently with environment

interface specification

+ arbitrarily relax

+ arbitrarily relax constraints at
constraints unit/environment
unywhen baundarv

RC-0OC
Local consistency

Overapproximate consistency

©

RC-CC

CFG consistency

Figure 3: Different execution consistency models cover differeris s&
feasible paths. The SC-CE model corresponds to the conexetution.
The SC-UE and SC-SE models are obtained from the previous lope
using increasingly more information about the system et@gto explore
new states. The LC, RC-OC and RC-CC models are obtained ¢hrou
progressive relaxation of constraints.

arguments might cause some paths through the unit to bednigse
they depend on unexplored environment behaviors.

Strictly Consistent System-level Execution (SC-SE): Under the
SC-SEmodel, an exploration engine gathers and uses information
about all parts of the system, to explore new paths througuit.
Such exploration is not only sound but also complete, pexvithat
the engine can solve all constraints it encounters. In otfeds,
every path through the unit that is possible under a coneseteu-
tion of the system will be eventually found ISC-SEexploration,
makingSC-SEthe only model that is both strict and complete.

However, the implementation &C-SEis limited by the path
explosion problem: the number of globally feasible patheighly
exponential in the size of the whole system. As the envirarime
is typically orders of magnitude larger than the unit, imithg its
code in the analysis (as would be required urslersg offers an
unfavorable trade-off given today’s technology.

3.1.2 Local Consistencyl(C)

The local consistency.€) model aims to combine the performance
advantages o6C-UEwith the completeness advantagessefSE
The idea is to avoid exploring all paths through the envirentn
yet still explore the corresponding path segments in thehynie-
placing the results of (some) calls to the environment wythisolic
values that represent any possible valid result of the ei@tu

For example, when a unit (such as a user-mode program) in-
vokes thewmrite(fd, buf, count) system call of &0SIX 0§
the return value can be any integer between -1anaht , depend-
ing on the state of the system. The exploration engine caaxls
the actual concrete value returned by the and replace it with
a symbolic integer between -1 andunt . This allows exploring
all paths in the unit that are enabled by different returruealof
wri t e, without analyzing thew i t e function and having to find
concrete inputs to the overall system that would enablestpaths.
This however introduces global inconsistency—for insearthere
exists no concrete execution in whichunt bytes are written to
the file and them i t e system call returns 0. However, unless the
unit explicitly checks the file (e.g., by reading its conjethis does
not matter: the inconsistency cannot yield locally infekespaths.

In other words, theLC model allows for inconsistencies in
the environment, while keeping the state of the unit intéyna
consistent. To preserveC, an exploration engine must track the

propagation of inconsistencies inside the environment @t
an execution path as soon as these inconsistencies infltleace
internal state of the unit on that path.

This keeps the internal state of the unit internally coesisbn
all explored paths: for each explored path, there existsesoon-
crete execution of the system that would lead to exactly &mees
internal state of the unit along that path—except the endies not
need to incur the cost of actually finding that path. Consetijye
any sound analysis that takes into account only the intestaéd of
the unit produces no false positives under tllemodel. For this
reason, we call theC model “locally consistent.”

The set of paths explored under this model corresponds to the
set of locally feasible paths, as defined earlier. Howewenespaths
could be aborted before completion, or even be missed coefyple
due to the propagation of inconsistencies. This means lileatt
model is not complete. In practice, the less a unit interafs its
environment, the fewer such paths are aborted or missed.

Technically speaking, thec model is inconsistent, thus it ought
to be a sub-model of thRC model, described next. However, since
the LC model is equivalent to &C model for a large class of
analyses, we devoted to it an independent category.

3.1.3 Relaxed ConsistencyrC)

Under relaxed consistencyrRC), all paths through the unit are
admitted, even those that are not allowed bysb@ndLC models.
TheRC model is therefore inconsistent in the general case.

The main advantage &fC is performance: by admitting these
additional infeasible paths, one can avoid having to amalgme
parts of the system that are not really targets of the arslysis al-
lowing path exploration to reach the true target code sod@w-
ever, admitting locally infeasible paths (i.e., allowirgetinternal
state of the unit to become inconsistent) makes most arstysae
to false positives, because some of the paths these analgses-
posed to cannot be produced by any concrete run.

This might be acceptable if the analysis is itself unsoung an
way, or if the analysis only relies on a subset of the statiecthabe
easily kept consistent (in some sense, this isllikeexcept that the
subset of the state to be kept consistent may not be the stiitts).
Also note that, even thougRC admits more paths, thus producing
more analysis work, analyses undkt can abort early those paths
that turn out to be infeasible, or the accuracy of the anslyan be
decreased, thus preserving the performance advantage.

We distinguish two subcategories of tiRe model, both of
which we found to be useful in practice.

Overapproximate Consistency (RC-OC): In the RC-OC model,
path exploration can follow paths through the unit while pbetely
ignoring the constraints that the environment/uiitl contracts
impose on return values and side effects. For example, thenay
invokewr i te(fd, buf, count), and theRC-OC model would
permit the return result to be larger thasunt , which violates the
specification of thew i t e system call. Under the previous model
(local consistency), such paths would be disallowed. Eliendh
itis not consistentRC-OCis complete: every environment behavior
is admitted undeRC-OC so every path in the unit corresponding
to some real environment behavior is admitted too.

The RC-OCmodel is useful, for example, for reverse engineer-
ing. It enables efficient exploration of all behaviors of thret that
are possible in a valid environment, plus some additionhhize
iors that are possible only when the environment behavesidesut
its specification. For instance, when reverse engineeridgvice
driver, theRC-OC model allows symbolic hardware [23] to return
unconstrained values; in this way, the resulting reverggneered
paths include some of those that correspond to allegedlgssiple
hardware behaviors. Such overapproximation improves tiladty
of the reverse engineering, as explained in [13].

Model [ConsistencyCompletenes} Use Case

SC-CE|consistent [incomplete [Single-path profiling/testing of units
that have a limited number of paths

SC-UE|consistent [incomplete |Analysis of units that generate hard-
to-solve constraints (e.g., crypfo-
graphic code)

SC-SE|consistent [complete Sound and complete verificatipn
without false positives or negatives;
testing of tightly coupled systems
with fuzzy unit boundaries.

LC Jlocally conjincomplete [Testing/profiling while avoiding falde
sistent positives from the unit’s perspective

RC-OCjinconsistenfcomplete Reverse engineering: extract conpis-
tent path segments

RC-CClinconsistenfcomplete Dynamic disassembly of a potén-
tially obfuscated binary

Table 1: S*E consistency models: completeness, consistency and sese ca
Each use case is assigned to the weakest model it can be distwdpvith.

CFG Consistency (RC-CC): In theRC-CCmodel, the exploration
engine is allowed to change any part of the system state,ngs lo
as the explored execution paths correspond to paths in titie un
inter-procedural control flow graph. This roughly corresge
to the consistency provided by static program analyzers dte
dataflow-insensitive and analyze completely unconstcapeghs.
Being strictly weaker than theC-SEmodel, though using the same
information to explore new paths, tlRe-CCmodel is complete.
TheRC-CCmodel is useful in disassembling obfuscated and/or
encrypted code: after letting the unit code decrypt itsetfar an.C
model (thus ensuring the correctness of decryption), asiésabler
can switch to therRC-CC model to reach high coverage of the
decrypted code and quickly disassemble as much of it aslpessi

3.2

We now explain how the consistency models can be implemented
by a selective symbolic execution engir&sg, by describing the
specifics of symbolic+ concrete conversion as execution goes
from the unit to the environment and then back again.

We illustrate the different implementations with the exdengf
a kernel-mode device driver (Fig. 4). The driver reads anitesr
from/to hardwarel/O ports and calls thewite_usb function,
which is implemented in a kernel-mod¢sB library, as well as
al | oc, implemented by the kernel itself.

Implementing Consistency Models

int send_packet(buffer, size) { int write usb(pkt) {
1. packet *pkt; if (usb_ready())
2. status = alloc(s&pkt, size); return do_send(pkt);
3. if (status==FAIL) { return 0;
4. assert (pkt==NULL) ; } USBLIB
518 return;
6. 1} int alloc (*ptr, size) {
7o lf. (read_gort(STATUS)==READY) } KERNEL
8. if (!write usb(pkt))
9. return FAIL; I:l Unit
} DRIVER Environment

Figure 4: Example of a “unit” (device driver) interacting with the “gron-
ment” (kernel-mode library and OS kernel itself).

3.2.1 Implementing Strict Consistency $C)

Strictly Consistent Concrete Execution (SC-CE): For this model,
ansSkEallows only concrete input to enter the system. This leads to
executing a single path through the unit and the environnidre
SSEcan execute the whole system natively without having tdktrac
or solve any constraints, because there is no symbolic data.

Strictly Consistent Unit-level Execution (SC-UE): To implement
this model, thesSEconverts all symbolic data to concrete values
when the unit calls the environment. The conversion is cbest
with the current set of path constraints in the unit. No ott@ver-
sion is performed. The environment is treated as a black doack,
no symbolic data can flow into it.

In the example of Fig. 4, th6SE concretizes the content of
packetpkt when callingwr i t e_usb and, from there on, this soft
constraint (see 8§2.2) is treated as a hard constraint onotfitertt
of pkt . The resulting paths trough the driver are globally feasibl
paths, but exploration is not complete, because treatiagctim-
straint as hard can curtail globally feasible paths durirgexplo-
ration of the driver (e.g., paths that depend on the paclpet)ty

Strictly-Consistent System-level Execution (SC-SE): Under SC-
SE, theSSElets symbolic data cross the unit/environment boundary,
and the entire system is executed symbolically. This pveser
global execution consistency.

Consider thew i t e_usb function: This function gets its input
from the USB host controller. Under strict consistency, tbsB
host controller (being “outside the system”) can returnratsglic
value, which in turn propagates through th@B library, eventually
causingusb_r eady to return a symbolic value as well.

Path explosion due to a large environment can nsksSEhard
to use in practice. The paths that go through the environmamt
substantially outnumber those that go through the unisipbsde-
laying the exploration of interest. ABSEcan heuristically priori-
tize the paths to explore, or emplmcremental symbolic execution
to execute parts of the environment as much as needed tosdisco
interesting paths in the unit quicker. We describe this next

The execution ofarite_usb proceeds as if it was executed
symbolically, but only one globally feasible path is purdie a
depth-first manner, while all other forked paths are storec i
wait list. This simulates a concrete, single-path executiwough
a symbolically executing environment. After returning send-
packet , the path being executed carries the constraints that were
accumulated in the environment, and symbolic executiotircoas
in send_packet as ifwrite_usb had executed symbolically. The
return valuer of wri t e_usb is constrained according to the depth-
first path pursued in the/sB library, and so are the side effects.
If, while executingsend_packet, a branch that depends an
becomes infeasible due to the constraints imposed by theocal
wr i t e_usb, the SSEreturns to the wait list and resumes execution
of a wait-listed path that, e.g., is likely to eventually exte line 9.

3.2.2

ForLC, anSSEconverts, at the unit/environment boundary, the con-
crete values generated by the environment into symbolieegthat
satisfy the constraints of the environmemil. This enables multi-
path exploration of the unit. In Fig. 4SEwould turnal | oc’s re-
turn valuev into a symbolic value\.:c{v, FAI L} andpkt into a
symbolic pointer, while ensuring thate.=FAI L = pkt =null, so
that theal | oc API contract is always upheld.

If symbolic data is written by the unit to the environmente th
SSE must track its propagation. If a branch in the environment
ever depends on this data, thBEmust abort that execution path,
because the unit may have derived that data based on (syi@tbpli
input from the environment that subsumed values the ernvieo
could not have produced in its state at the time.

From the driver’s perspective, the global state may seepninc
sistent, since the driver is exploring a failure path whenfaib
ure actually occurred. However, this inconsistency hasfieateon
the execution, as long as tkes does not make assumptions about
whether or not buffers are still allocated after the drisddilure.

LC would have been violated had tbsread the symbolic value of
pkt , e.g., if the driver stored it in a@Sdata structure.

Implementing Local Consistencyl(C)

3.2.3 Implementing Relaxed ConsistencyRC)

Overapproximate Consistency (RC-OC): In this model, theSSE
converts concrete values at unit/environment interfaaentaries
into unconstrained symbolic values that disregard interfeon-
tracts. For example, when returning frashl oc, both pkt and
st at us become completely unconstrained symbolic values.

4. System Analysis with 8E

S’E is a platform for rapid prototyping of custom system analy-
ses. It offers two key interfaces: ttelectioninterface, used to
guide the exploration of execution paths (and thus impléraen
bitrary consistency models), and thealysisinterface, used to col-
lect events or check properties of execution paths. Bo#rfextes

This model brings completeness at the expense of subdtantia accept modular selection and analysis plugins. Underrieattov-

overapproximation. No feasible paths are ever excludeah fitee
symbolic execution oend_packet , but sincepkt andst at us
are completely unconstrained, there could be locally sifda
paths when exploringend_packet after the call taal | oc.

As an example, note that | oc is guaranteed to sekt to null
whenever it returnsAI L, so theassert on line 4 should normally
never fail. Nevertheless, undec-OC bothst at us on line 3 and
pkt on line 4 are unconstrained, so both outcomes oftwert
statement are explored, including the infeasible one. Ustdenger
consistency models, likeC, pkt must be null ifst at us==FAI L.

CFG Consistency (RC-CC): An SSE can implementRC-CC by
pursuing all outcomes of every branch, regardless of path co
straints, thus following all edges in the unit’s inter-pedaral CFG.
UnderRC-CG exploration is fast, because branch feasibility need
not be checked with a constraint solver. As mentioned eadiee
use case is a dynamic disassembler, where running withgsron
consistency models may leave uncovered (i.e., non-disdssd)
code. ImplementingRC-CC may require program-specific knowl-
edge, to avoid exploring non-existing edges, as in the cas@ o
indirect jump pointing to an unconstrained memory location

3.3 Consistency Models in Existing Tools

We now illustrate some of the consistency models by surgeyin
example tools that implement such execution consistency.

Most dynamic analysis tools use tlB€-CE model. Examples
include Valgrind [38] and Eraser [33]. These tools execuid a
analyze programs along a single path, generated by useifisge
concrete input values. Being significantly faster than ipath
exploration, analyses performed by such tools are, foants,
useful to characterize or explain program behavior on alsseal
of developer-specified paths (i.e., test cases). Howeueh ®ols
cannot provide any confidence that results of the analysesex
beyond the concretely explored paths.

Dynamic test case generation tools usually employ either th
SC-UEor theSC-SEmodels. For exampleART [18] usesSC-UE
it executes the program concretely, starting with randoputs,
and then instruments the code to collect path constraintsach
execution.DART uses these constraints to produce new concrete
inputs that would drive the program along a different pathtton
next run. HoweverDART does not instrument the environment
and hence cannot use information from it when generating new
concrete inputs, thus missing feasible paths as indicateChUE

As another example&sLEE [11] uses either th&C-SEor a form
of the SC-UE model, depending on whether the environment is
modeled or not. In the former case, both the unit and the mafdel
the environment are executed symbolically. In the latteecevhen-
ever the unit calls the environment, EE executes the environment
with concrete arguments. Howevel.EE does not track the side
effects of executing the environment, allowing them to piggte
across otherwise independent execution paths, thus mederapr-
responding program states inconsistent. Due to this ltroitawe
cannot saXLEE implements preciselgC-UEas we defined it.

Static analysis tools usually implement some forms ofRiae
model. For exampleSDV [2] converts a program into a boolean
form, which is an over-approximation of the original progra
Consequently, every path that is feasible in the originagpam
would be found bysDV, but it also finds additional infeasible paths.

ers,S’E consists of a customized virtual machine, a dynamic binary
translator PBT), and an embedded symbolic execution engine, as
shown in Fig. 5. Th®BT decides which guest machine instructions
to execute concretely on the physicaUvs. which ones to execute
symbolically using the embedded symbolic execution engine

S?E provides many plugins out of the box for building custom
analysis tools—we describe these plugins in 84.1. One csm al
extendS?E with new plugins, using?E's developerAPI (84.2).

4.1 User Interface

Path Selection: The first step in using?E is deciding on a policy
for which part of a program to execute in multi-path (symbpli
mode vs. single-path (concrete) mode; this policy is enddde

a selector.S’E provides a default set of selectors for the most
common types of selection. They fall into three categories:

Data-based selectioprovides a way to expand an execution
path into a multi-path execution by introducing symbolidues
into the system; then, any tim&E encounters a branch predi-
cate involving a symbolic value, it will fork the executioncard-
ingly. Symbolic data can enter the system from various ssjrc
and S’E provides a selector for eacommandLindor symbolic
command-line argument&nvironmenfor shell environment vari-
ables MSWinRegistryor Microsoft Windows registry entries, etc.

Often it is useful to introduce a symbolic value at an intéima
terface. For example, say a server program calls a librargtion
I'i bFn(z) almost always withe = 10, but may call it withz < 10
in strange corner cases that are hard to induce via extewrd w
loads. The developer might therefore be interested in exgjahe
behavior ofl i bFn for all values0 < z < 10. For such analyses,
we provide amAnnotationplugin, which allows direct injection of
custom-constrained symbolic values anywhere they aresaeed

Code-based selecti@nables/disables multi-path execution de-
pending on whether the program counter is or not within aetarg
code area; e.g., one might focus cache profiling on a web lersvs
SSL code, to see if it is vulnerable to side channel attacke T
CodeSelectoplugin takes the name of the target program, library,
driver, etc. and a list of program counter ranges. Each saicger
can be an inclusion or an exclusion range, indicating thaeco
within that range should be explored in multi-path mode pgls-
path mode, respectivelodeSelectois typically used in conjunc-
tion with data-based selectors to constrain the datatselenulti-
path execution to within only code of interest.

Priority-based selectionis used to define the order in which
paths are explored within the family of paths defined withaeat
based and code-based selects®E includes basic ones, such as
RandomDepthFirst andBreadthFirst as well as others. THdax-
Coverageselector works in conjunction with coverage analyzers to
heuristically select paths that maximize coverage. PathKiller
selector monitors the executed program and deletes pathaurth
determined to no longer be of interest to the analysis. Famge,
paths can be killed if a fixed sequence of program counteestsp
more thann times; this avoids getting stuck in polling loops.

Path Analysis: Once the selectors define a family of paths,
S?E executes these paths and exposes each one of them to the
analyzer plugins. One class of analyzers are bug finders, asic
DataRaceDetectoandMemoryCheckemwhich look for the corre-
sponding bug conditions and output an execution path lgatdin

the encountered bug. Another type of analyzdexscutionTracer
which selectively records the instructions executed alargath,
along with the memory accesses, register values, and hegdi@a
Tracing can be used for many purposes, including measuovey¢
age offline. Finally, thePerformanceProfil@nalyzer counts cache
missesTLB misses, and page faults incurred along each path—this
can be used to obtain the performance envelope of an appficat
and we describe it in more detail in the evaluation sectid@).(8§
While most plugins aredS-agnostic,S*E also includes a set
of analyzers that expose Windows-specific events using ando
umented interfaces or other hacks. For examl@DriverMon
parses and monitoroS-private data structures and notifies other
plugins when the Windows kernel loads a driver. Thi@BugCheck
plugin catches “blue screen of death” events and kernelhang

4.2 Developer Interface

We now describe the interface that can be used to write negirdu
or to extend the default plugins described above. Both s@kec
and analyzers use the same interface; the only distincébmden
selectors and analyzers is that selectors influence thergxeof
the program, whereas analyzers are passive obsels&#salso
allows writing of plugins that arbitrarily modify the exetoon state.
S?E has a modular plugin architecture, in which plugins com-
municate via events in a publish/subscribe fash&E events are
generated either by ti8E platform or by other plugins. To register
for a class of events, a plugin invokesgEventX(callbackPtr)the
event callback is then invoked every tifegentXoccurs. Callbacks
have different parameters, depending on the type of event.
Table 2 shows theore eventexported bys?E that arise from
regular code translation and execution. We chose thesesuergs
because they correspond to the lowest possible level ofeaibisn
of execution: instruction translation, execution, memacgesses,
and state forking. It is possible to build diverse state ialaition
and analyses on top of them, as we will show in the evaluation.

The ExecState object captures the current state of the entire vir-
tual machinealong a specific individual patht is the first param-
eter of every event callbacExecStatgives plugins read/write ac-
cess to the entirgM state, including the virtuatPu, VM physical
memory, and virtual devices. Plugins can also toggle npalth ex-
ecution and read/writ¢M memory and registers (see Table 3 for
a short list ofExecStatebject methods). A plugin can obtain the
PID of the running process from the page directory base register
can read/write page tables and physical memory, can chdmege t
control flow by modifying the program counter, and so on.

For each path being explored, there exists a disfixetcState
object instance; when execution forks, each child exenute
ceives its own private copy of the parditecStateAggressive use
of copy-on-write reduces the memory overhead substan(gd).

Plugins partition their own state into per-path state (ewgmber
of cache misses along a path) and global state (e.qg., tatab@uof
basic blocks touched). The per-path state is storedAluginState
object, which hangs off of thExecStatebject. PluginStatemust
implement aclone method, so that it can be cloned together with
ExecStatevhenevers?E forks execution. Global plugin state can
live in the plugin’s own heap.

The dynamic binary translatobBT) turns blocks of guest code
into corresponding host code; for each block of code thigps t
cally done only once. During the translation process, aiplotay
be interested in marking certain instructions (e.g., fiomctalls)
for subsequent notification. It registers faminstrTranslationand,
when notified, it inspects thExecStatedo see which instruction
is about to be translated; if it is of interest (e.g.GALL instruc-
tion), the plugin marks it. Whenever thev executes a marked
instruction, it raises thenlnstrExecutiorevent, which notifies the
registered plugin. For example, t®deSelectoplugin is imple-

DBT is about to translate a machine instructior
VM is about to execute a marked instruction

oninstrTranslation
onlnstrExecution

onExecutionFork | S?E is about to fork execution
onException The VM interrupt pin has been asserted
onMemoryAccess| VM is about to execute a memory access

Table 2: Core events exported by théBS platform.

multiPathOn/Off() [Turn on/off multi-path execution
readMemé@ddr) Read contents of memory at addreskir
writeReg(eg, va) | Write val (symbolic or concrete) teeg
getCurBlock() Get currently executing code block from DBT

raiselnterrupifq) Assert the interrupt Tine farq

Table 3: A subset of theExecStat®bject’s interface.

mented as a subscriber dolnstrTranslationevents; upon receiv-
ing an event, it marks the instruction depending on whethés i
or not an entry/exit point for a code range of interest. Hguime
onlnstrTranslatiorandoninstrExecutiorevents separate leverages
the fact that each instruction gets translated once, butgatgxe-
cuted millions of times, as in the body of a loop. For most gsed,
onlnstrTranslatiorends up being raised so rarely that using it intro-
duces no runtime overhead (e.g., catching the kernel pamidlér
requires instrumenting only the first instruction of thantker).

S?E opcodes are custom guest machine instructions that are
directly interpreted bg?E. These form an extensible set of opcodes
for creating symbolic valuessgsym), enabling/disabling multi-
path execution§2ENA andS2DI S) and logging debug information
(s2aur). They give developers the finest grain control over multi-
path execution and analysis; they can be injected into tigeta
code manually or using binary instrumentation tools ki [27].

In practice, opcodes are the easiest way to mark data syecrdoadi
get started witls2E, without involving any plugins.

The interface presented here was sufficient for all the rpaith
analyses we attempted witfE. Selectors can enable or disable
multi-path execution based on arbitrary criteria and canimdate
machine state. Analyzers can collect information aboutlevel
hardware events all the way up to program-level events, tiagy
probe memory to extract any information they need, and so on.

5. SE Prototype

The S?E platform prototype (Fig. 5) reuses parts of tQeMU
virtual machine [4], th&XLEE symbolic execution engine [11], and
theLLVM tool chain [25]. To these, we added RBOC of C++ code
written from scratch, not including third party librarfesVe added

1 KLOC of new code taKLEE and modified 1.KLOC; in QEMU,
we added 1.KLOC of new code and modified 3K1.0OC of existing
code.S?E currently runs on Mac OS X, Microsoft Windows, and
Linux, it can execute any guests that runs on x86, and can be
easily extended to oth@pPuarchitectures, like ARM or PowerPC.
S?E can be downloaded fromt t p: / / s2e. epfl. ch.

S?E explores paths by running the target system in a virtual ma-
chine and selectively executing small parts of it symbdlic®e-
pending on which paths are desired, some of the system’singach
instructions are dynamically translated within t into an inter-
mediate representation suitable for symbolic executidmileathe
rest are translated to the host instruction set. Underribaticov-
ers, S’E transparently converts data back and forth as execution
weaves between the symbolic and concrete domains, so a®to of
the illusion that the full systens, libraries, applications, etc.) is
executing in multi-path mode.

S?E mixes concrete with symbolic execution in the same path by
using a representation of machine state that is shared betthe
VM and the embedded symbolic execution eng8t& shares the

2 All reported LOC measurements were obtained with SLOCCR8it

selection e analysis
interface applications interface
libraries
. operating system] F
kernel drivers
user-defined - : { Juser-defined
selectorsE v(l:rgual \,{Mnﬁ’gﬁ &’égilégls Danalyzers
S2E stock symbolic S2E stock
selectors E LLVM % analyzers
QEMU KLEE
real real phys real
CPU memory devices

Figure 5: S2E architecture, centered around a custom VM.

state by redirecting reads and writes frQqEMU andKLEE to the
common machine statewvi physical memory, virtuaCPU state,
and virtual device state. In this wa$?E can transparently convert
data between concrete and symbolic and provide distindesag
the entire machine state to distinct patt& reduces the memory
footprint of all these states using copy-on-write optintiaas.

In order to achieve transparent interleaving of symbolid an
concrete execution, we modifi&@EMU’'s DBT to translate the in-
structions that depend on symbolic datatem and dispatch them
to KLEE. Most instructions, however, run “natively”; this is thesea
even in the symbolic domain, because most instructions tlopo
erate on symbolic state. We wrote an x86-té4v1 back-end for
QEMU, so neither the guesdS nor KLEE are aware of the x86
to LLVM translation.S?E redirects all guest physical memory ac-
cesses, includingMIO devices, to the shared memory state object.

BesidesvM physical memoryS?E must also manage the in-
ternal state of the virtual devices when switching betweate-
tion paths S’E usesQEMU’s shapshot mechanism to automatically
save and restore virtual devices atwl states when switching ex-
ecution states. The shared representation of memory aridedev
state between the concrete and symbolic domains enahie®
do on-demand concretization of data that is stored as syeliZol
shapshot can range from hundredaviéfs to GBs; we use aggres-
sive copy-on-write to transparently share common statevesst

shapshots of physical memory and disks. Some state neecenot b

saved—for example, we do not snapshot video memory, sothlpa
share the same frame buffer. As an aside, this makes foguiirig
visual effects on-screen: multiple erratic mouse cursntBs0ODs
blend chaotically, providing free entertainment to §i& user.

Interleaved concrete/symbolic execution and copy-ortenaie
transparent to the guess, so all guesbSes can run out of the box.
Sharing state betweeREMU and KLEE allows the guest to have
a view of the system that is consistent with the chosen eketut
consistency model. It also makes it easy to replay execuiadhs
of interest, e.g., to replay a bug found by a bug-detecti@tyaer.

Conversion from x86 taLVM gives rise to complex symbolic
expressionsS’E sees a lower level representation of the programs
than what would be obtained by compiling source codeLiov
(as done IrKLEE): it actually sees the code that simulates the exe-
cution of the original program on the targefu architecture. Such
code typically contains many bitfield operations (suclaied/or ,
shi f t, masking to extract or set bits in teé| ags register).

We therefore implemented a bitfield-theory expression Bimp
fier to optimize these expressions. We rely on the observéliat,
if parts of a symbolic variable are masked away by bit openati
removing those bits can simplify the corresponding expoess
First, the simplifier starts from the bottom of the expresgi@pre-
sented as a tree) and propagates information about individts
whose value is known. If all bits in an expression are knowe, w
replace it with the corresponding constant. Second, thelgier

propagates top-down information about bits that are ighbsethe
upper parts of the expression—when an operator modifieshisly
that are ignored later, the simplifier removes that entireraibon.

Symbolic expressions can also appear in pointers (e.g.r-as a
ray indices or jump tables generated by compilers for swstake-
ments). When a memory access with a symbolic pointer occurs,
S?E determines the pages referenced by the pointer and pasges th
contents to the constraint solver. Alas, large page sizedatile-
neck the solver, s6%E splits the memory into small pages of con-
figurable size (e.g., 128 bytes), so that the constraintesaleed
not reason about large areas of symbolic memory. In §6.2 we& sh
how much this helps in practice.

Finally, S’E must carefully handle time. Each system state has
its own virtual time, which freezes when that state is nohgein
(i.e., is not in an actively explored path). Since runningesym-
bolically is slower than natives?E slows down the virtual clock
when symbolically executing a state. If it didn’t do thiset(rel-
atively) frequentvM timer interrupts would overwhelm execution
and prevent progresS?E also offers an opcode to completely dis-
able interrupts for a section of code, to further reduce tleelead.

6. Evaluation

S?E’s main goal is to enable rapid prototyping of useful, deep sy
tem analysis tools. In this vein, our evaluation$3€ aims to an-
swer three key questions: $8E truly a general platform for build-
ing diverse analysis tools (86.1)? D€ perform these analyses
with reasonable performance (§6.2)? What are the measadel t
offs involved in choosing different execution consistemegdels
on both kernel-mode and user-mode binaries (86.3)? Allrtedo
results were obtained on2ax 4-core Intel Xeon E5405 2GHz ma-
chine with 20GB of RAM, unless otherwise noted.

6.1 Three Use Cases

We usedS’E to build three vastly different tools: an automated
tester for proprietary device drivers (86.1.1), a revensgireer-
ing tool for binary drivers (86.1.2), and a multi-path inaiper-
formance profiler (86.1.3). The first two use cases are cdmple
rewrites of two systems that we built previously in an ad-hamn-
ner:RevNIC[13] andDDT [23]. The third tool is brand new.

Table 4 summarizes the productivity advantage we expeggenc
by using S’E compared to writing these tools from scratch. For
these use casez’E engendered two orders of magnitude improve-
ment in both development time and resulting code volumes Thi
justifies our efforts to create general abstractions fortinpaith in-
vivo analyses, and to centralize them into one platform.

Development Time Tool Complexity
Use Case [person-hours] [lines of code]
from scratch with SE |from scratch with SE
Testing of proprietary] 2,400 38 47,000 720
device drivers
Reverse engineering[of 3,000 40 57,000 580
closed-source driverg
Multi-path in-vivo n/a 20 n/a 767
performance profiling

Table 4: Comparative productivity when building analysis tools nfro
scratch (i.e., without ZE) vs. using 8E. Reported LOC include only new
code written or modified; any code that was reused from QEMLEIE, or
other sources is not included. For reverse engineering, X0&of offline
analysis code is reused in the new version. For performaraféimy, we
do not know of any equivalent nor?§ tool, hence the lack of comparison.

6.1.1 Automated Testing of Proprietary Device Drivers

We usedS2E to build DDT*, a tool for testing closed-source Win-
dows device drivers. This is a reimplementatiomofT [23], an ad-

hoc combination of changes @EMU andKLEE, along with hand-
written interface annotations: 38.0C added toQEMU, 3 KLOC
added tokKLEE, 2 KLOC modified inKLEE, and 7KLOC modified
in QEMU. By contrastpDT" has 72Q.0C of C++ code, which glues
together several exploration and analysis plugins, andqes the
necessary kernel/driver interface annotations to impigime.

DDT* combines several plugins: th@odeSelectoplugin re-
stricts multi-path exploration to the target driver, white Memo-
ryCheck DataRaceDetectorandWinBugCheclanalyzers look for
bugs. To collect additional information about the qualifytest-
ing (e.g., coverage), we use tBxecutionTraceanalyzer plugin.
Additional checkers can be easily addedT" implements local
consistencyl(C) via interface annotations that specify where to in-
ject symbolic values while respecting local consistencyaneples
of annotations appear in [23]. None of the reported bugsalse f
positives, indicating the appropriateness of local cdesisy for
bug finding. In the absence of annotatioP®T" reverts to strict
consistency $C-SB, where the only symbolic input comes from
hardware.

We runDDT" on two Windows network drivers, RTL8029 and
AMD PCnet.DDT" finds the same 7 bugs reported in [23], includ-
ing memory leaks, segmentation faults, race conditiond naem-
ory corruption. Of these bugs, 2 can be found when operatidgiu
SC-SEconsistency; relaxation to local consistency (via anmnara)
helps find 5 additional bug®DT" takes<20 minutes to complete
testing of each driver and explores thousands of paths in @ze.

For each bug found)DT" outputs a crash dump, an instruction
trace, a memory trace, a set of concrete inputs (e.g., regiiues
and hardware input) and values that where injected acaptdithe
LC model that trigger the buggy execution path.

While it is always possible to produce concrete inputs that
would lead the system to the desired local state of the ugit the
state in which the bug is reproduced) along a globally féagath,
the exploration engine does not actually do that while dpega
underLC. Consequently, replaying execution traces provided by
DDT" usually requires replaying the symbolic values injected in
the system during testing. Such replaying can be doségritself.
Despite being only locally consistent, the replay is stifeetive
for debugging: the execution of the driver during replayabd/and
appears consistent, and injected values correspond taltiesithat
the kernel could have passed to the driver under real, fiea@hbt
not exercised) conditions.

S?E generates crash dumps readable by Microsoft WinDbg.
Developers can thus inspect the crashes using their exisiols,
scripts, and extensions for WinDbg. They can also compaxghcr
dumps from different execution paths to better understaadtgs.

6.1.2 Reverse Engineering of Closed-Source Drivers

We also builtREV*, a tool for reverse engineering binary Windows
device drivers; it is a reimplementation RévNIC[13]. REV" takes
a closed-source binary driver, traces its execution, aad fheds
the traces to an offline component that reverse engineedsittez’s
logic and produces new device driver code that implemerdgs th
exact same hardware protocol as the original driver. Ingpla,
REV" can synthesize drivers for ar®s, making it easy to port
device drivers without any vendor documentation or souockec

Adopting theS?E perspective, we cast reverse engineering as
a type of behavior analysis. As DDT", the CodeSelectoplugin
restricts the symbolic domain to the driver's code segmé&he
ExecutionTracemplugin is configured to log to a file the driver’s
executed instructions, memory and register accesses aadddre
I/0. The already existing offline analysis tool frorevNIC then
processes these traces to synthesize a new driver.

REV' uses overapproximate consisten®C{0Q). The goal of
the tracer is to see each basic block execute, in order taaxtr

10

its logic—full path consistency is not necessary. The dfflirace
analyzer only needs fragments of paths in order to recaststine
original control flow graph—details appear in [13]. By usiRg-
OC, REV" sacrifices consistency in favor of obtaining coverage fast.

RevNIC | REV™ | Improvement
PCnet 59% 66% +7%
RTL8029 82% 87% +5%
91C111 84% 87% +3%
RTL8139 84% 86% +2%

Table 5: Basic block coverage obtained by RevNIC and RENV1 hour.

We runREV" on the same drivers reported in [13], aREV*
reverse engineers them with better coverage ta@mIC (see Ta-
ble 5). Fig. 6 shows how coverage evolves over time during re-
verse engineering. Manual inspection of the reverse eaggde
code blocks reveals that the resulting drivers are equivatethose
generated byrevNIC, and thus to the originals too [13].

100 %

80 % r

60 % r

40% ¢ ‘ 1
RTL8029 ——

20% |7

Basic Block Coverage (%)

oo b ‘ ‘ ‘ ‘ [‘ ‘
0 10 20 30 40 50 60 70 80 90
Running Time (minutes)

Figure 6: Basic block coverage over time for REV

6.1.3 Multi-Path In-Vivo Performance Profiling

To further illustrates?E'’s generality, we used it to devel®ROFs,

a multi-path in-vivo performance profiler and debugger. To o
knowledge, such a tool did not exist previously, and thisazse is

the first in the literature to employ symbolic execution ferfor-
mance analysis. In this section, we show through severahpgbes

how PROFs can be used to predict performance for certain classes
of inputs. To obtain realistic profiles, performance anialgsin be
done under local consistency or any stricter consistenayeino

PROF; allows users to measure instruction count, cache misses,
TLB misses, and page faults for arbitrary memory hierarchigh, w
flexibility to combine any number of cache levels, size, a&div-
ity, line sizes, etc. This is a superset of the cache proflimgtion-
ality found in Valgrind [38], which can only simulate L1 an@®L
caches, and can only measure cache misses.

For PROFs, we developed thdPerformanceProfileplugin. It
counts the number of instructions along each path and, fanone
reads/writes, it simulates the behavior of a desired ca@rarchy
and counts hits and misses. For our measurements, we cauafigur
PROFs with 64KB 11 and D1 caches with 64-byte cache lines
and associativity 2, plus aMB L2 cache that has 64-byte cache
lines and associativity 4. The path exploratiolPROFs is tunable,
allowing the user to choose any execution consistency model

The firstPROFRs experiment analyzes the distribution of instruc-
tion counts and cache misses for Apachéfd parser. In particu-
lar, we were interested to see whether there is any oppoytfoni
a denial-of-service attack on the Apache web server viafuare
constructedJRLS. The analysis ran under local consistency for 9.5
hours and explored 5,515 different paths through the coéléheD
9.5 hours, 2.5 hours were spent in the constraint solver dmlif
were spent running concrete code. In this experiment, thg/sis
carries high overhead, because it simulateés®and three caches.

We found each path involved in parsingJ&L to take on the
order of4.3 x 10° instructions, with one interesting feature: for
every additional “/” character present in theRL, there are 10
extra instructions being executed. We found no upper bourttie
execution ofURL parsing: aURL containingn + k “/” characters
will take 10 x k& more instructions to parse thanuRL with n

OS kernel on the program’s cache behavior and vice versgystot
the program in isolation. Although tools like Oprofile [3@rcper-
form in-vivo measurements, but not multi-path, they aresdasn
sampling, so they lack the accuracy RIROr—it is impossible,
for instance, to count the exact number of cache misses inen e
cution. Such improvements over state-of-the-art toolseeasily

“/" characters. The total number of cache misses on each pathwhen usings2E to build new tools.

was predictable alt5, 984 + 20. These are examples of behavioral
insights one can obtain with a multi-path performance peofil
Such insights can help developers fine-tune their code oertak
more secure (e.g., by ensuring that password processiegdiims
not depend on the password content, to avoid side chanaekajt

6.1.4 Other Uses o8%E

S?E can be used for pretty much any type of system-wide analysis.
We describe here four additional ideas: energy profilingdware
validation, certification of binaries, and privacy anadysi

We also set out to measure the page fault rate experienced by First, s2E could be used to profile energy use of embedded

the Microsoft 1IS web server inside i&SL modules while serving

a static page workload ove4TTPS Our goal was to check the
distribution of page faults in the cryptographic algorithro see if
there is any opportunity for side channel attacks. We foungdage
faults in theSSL code along any of the paths, and only a constant
number of them in gzip.dll. This suggests that counting gagks
should not be the first choice if trying to breg®’s SSLencryption.

Next, we aimed to establish a performance envelope in tefms o
instructions executed, cache misses, and page faultsfatiiui-
touspi ng program. This program has on the order of KLDC.

The performance analysis ran under local consistencyoesgbl
1,250 different paths, and ran for 5.9 hours. Unlikeutre. parsing
case, almost 5.8 hours of the analysis were spent in theraortst
solver—the first 1,000 paths were explored during the firsig$,
after which the exploration rate slowed down.

The analysis does not find a bound on execution time, and it
points to a path that could hit an infinite loop. This happehgrv
the reply packet t@i ng’s initial packet has the record routBR)
flag set and the option length is 3 bytes, leaving no room te ke
IP address list. While parsing the headermg finds that the list of
addresses is empty and, insteatiiodak-ing out of the loop, it does
cont i nue without updating the loop counter. This is an example
where performance analysis can identify a dual performamce
security bug: malicious hosts could hapgng clients. Once we
patchedbi ng, we found the performance envelope to be 1,645 to
129,086 executed instructions. With the bug, the maximurmdu
analysis had reachedds x 10 instructions and kept growing.

PROFs can find “best case performance” inputs without having
to enumerate the input space. For this, we modify slightly th
PerformanceProfil@lugin to track, for all paths being explored, the
common lower bound on instructions, page faults, etc. Ameti
a path exceeds this minimum, the plugin automatically abasd
exploration of that path, using theathKiller selector described
in 84. This type of functionality can be used to efficientlydan
automatically determine workloads that make a system paréd
its best. This use case is another example of performandéimyo
that can only be done using multi-path analysis.

We wanted to compare our results to what a combination of
existing tools could achieve: rudLEE to obtain inputs for paths
through the program, then run each such test case in Val¢fond
multi-path analysis) and with Oprofile (for in-vivo analgksiThis is
not possible fopi ng, becaus&LEE’s networking model does not
support yetCMP packets. Itis not possible for binary drivers either,
becauseKLEE cannot fork kernel state and requires source code.
These difficulties illustrate the benefits of having a platfdike
S?E that does not require models and can automatically crods bac
and forth the boundary between symbolic and concrete da@main

To conclude, we use&?E to build a thorough multi-path in-
vivo performance profiler that improves upon classic profil®al-
grind [38] is thorough, but only single-path and not in-vitinlike
Valgrind-type tools,PROFs performs its analyses along multiple
paths at a time, not just one, and can measure the effecteof th

11

applications: given a power consumption mod&lE could find
energy-hogging paths and help the developer optimize tiSao-
ond, S’E could serve as a hardware model valida83E can sym-
bolically execute a SystemC-based model [20] together thith
real driver andoS, when there is enough confidence in the cor-
rectness of the hardware model, the modeled chip can be ggddu
for real. Third,S?E could perform end-to-end certification of bina-
ries, e.g., verify that memory safety holds along all caipaths.
Finally, S’E could be used to analyze binaries for privacy leaks:
by monitoring the flow of symbolic input values (e.g., crechird
numbers) through the software stagki could tell whether any of
the data leaks outside the systes?E alleviates the need to trust a
compiler, since it performs all analysis on the final binary.

6.2

S2E introduces-6x runtime overhead over vanill@QEMU when
running in concrete mode, and8x in symbolic mode. Concrete-
mode overhead is mainly due to checks for accesses to symnboli
memory, while the overhead in symbolic mode is due.tom
interpretation and symbolic constraint solving.

The overhead of symbolic execution is mitigated in pradbge
the fact that the symbolic domain is much smaller than the con
crete domain. For instance, in thieng experimentsS?E executed
3 x 10* times more x86 instructions concretely than it did symboli-
cally. All the 0Scode (e.g., page fault handler, timer interrupt, sys-
tem calls) that is called frequently, as well as all the safethat is
running on top (e.g., services and daemons) are in concrete.m
Furthermore S*E can distinguish inside the symbolic domain in-
structions that can execute concretely (e.g., that do nwhtgym-
bolic data) and run them “nativelygi ng’s 4 orders of magnitude
difference is dowerbound on the amount of savings selective sym-
bolic execution brings over classic symbolic executionekgcut-
ing concretely those paths that would otherwise run syrmahtbyj,

S?E alsosaves the overhead of further forking (e.g., on branches in-
side the concrete domain) paths that are ultimately nottefést.

Another source of overhead are symbolic pointers. We com-
pared the performance of symbolically executingdhei nk util-
ity’s x86 binary inS2E vs. symbolically executing itisLvVM version
in KLEE. SinceKLEE recognizes all memory allocations performed
by the program, it can pass to the constraint solver memaaysir
of exactly the right size; in contras$?E must pass entire memory
pages. In 1 hour, with a 256-byte page siges explores 7,082
paths, compared to 7,886 pathsKbEE. Average constraint solv-
ing time is 0.06 sec for both. WithidB pages, thougts*E explores
only 2,000 states and averages 0.15 sec per constraint.

We plan to reduce this overhead in two ways: First, we can in-
strument the.LVM bitcode generated §?E with calls to the sym-
bolic execution engine, before JITing it into native maehtode, to
avoid the overhead of interpreting each instructiodlg&E. This is
similar in spirit to the difference betwe&EMU and the Bochs [6]
emulator: the latter interprets instructions in one giavitch state-
ment, whereas the former JITs them to native code and obéains

Implementation Overhead

major speedup. Second, we plan to add support for direcy ex
cuting nativeLLVM binaries insides?E, which would reduce sig-
nificantly the blowup resulting from x86-totvM translation and
would reduce the overhead of symbolic pointers.

6.3 Execution Consistency Model Trade-Offs

Having seen the ability o$*E to serve as a platform for building
powerful analysis tools, we now experimentally evaluatetthde-
offs involved in the use of different execution consistenaydels.

In particular, we measure how total running time, memorygasa
and path coverage efficiency are influenced by the choice of mo
els. We illustrate the tradeoffs using both kernel-modeutias—

the SMSC 91C111 and AMD PCnet network drivers—and a user-

mode binary—the interpreter for the Lua embedded scrigting
guage [26]. The 91C111 closed-source driver binary hag&9
PCnet has 3KB; the symbolic domain consists of the driver, and
the concrete domain is everything else. Lua has k2.@cC; the
concrete domain consists of the lexer+parse£l(@C) and the en-
vironment, while the symbolic domain is the remaining coelg.(
the interpreter). Parsers are the bane of symbolic exetatigines,
because they have many possible execution paths, of whighaon
small fraction are paths that pass the parsing/lexing §i8jeThe
ease of separating the Lua interpreter from its pars&fillus-
trates the benefit of selective symbolic execution.

We use a script in the guest OS to call the entry points of the
drivers. Execution proceeds until all paths have reachedtiver’s
unl oad entry point. We configure a selector plugin to exercise the
entry points one by one. BE has not discovered any new basic
block for some time (60 sec), this plugin kills all paths bneoThe
plugin chooses the remaining path so that execution carepdio
the driver’'s next entry point.

Without path killing, drivers could get stuck in the earlyi-in
tialization phase, because of path explosion (e.g., theerveted
at the initialization entry point may have several thousaaths
when its exploration completes). The selector plugin aie fe-
dundant subtrees when entry points return, because ceiéngext
entry point in the context afachof these execution states (subtree
leaves) would mostly exercise the same paths over again.

For Lua, we provide a symbolic string as the input program,
undersc-SEconsistency. Under local consistency, the input is con-
crete, and we insert suitably constrained symbolic Lua desaf-
ter the parser stage. Finally, RC-OCmode, we make the opcodes
completely unconstrained. We average results over 10 ouresath
consistency model on &x6-core AMD Opteron 8435 machine,
2.6 GHz, 96GB of RAM. Table 6 shows running times for diffaren
execution consistencies.

Weaker (more relaxed) consistency models help achieveshigh
basic block coverage in that time—Fig. 7 shows results fer th
running times from Table 6. For PCnet, coverage varies teiwe

14%-66%, while 91C111 ranges from 10%—88%. The stricter the

model, the fewer sources of symbolic values, hence the fewer
plorable paths and discoverable basic blocks in a given atmafu
time. In the case of our Windows drivers, system-level strim-
sistency §C-SB keeps all registry inputs concrete, which prevents
several configuration-dependent blocks from being exgldresc-

UE, concretizing symbolic inputs to arbitrary values presettite
driver from loading, thus yielding poor coverage.

Consistency | 91C111 Driver | PCnet Driver Lua
RC-OC 1,400 3,300 1,103
LC 1,600 3,200 1,114
SC-SE 1,700 1,300 1,148
SC-UE 5 7 -

Table 6: Time (in seconds) to finish the exploration experiment foo tw
device drivers and the Lua interpreter under different stescy models.

12

In the case of Lua, the local consistency model allows bypgss
the lexer component, which is especially difficult to synmitally
execute due to its loops and complex string manipulatiBasOC
exceptionally yielded less coverage because executiostgck in
complex crash paths reached due to incorrect Lua opcodes.

100 %

Q N 91C111 —8—
éi\/ 80 % | PCnet -]
E% 60 % Lua -
§ § 40% o TR N

%l © M)
m8 20 %

0%

RC-OC LC SC-SE SC-UE

Figure 7: Effect of consistency models on coverage.

Path selection together with adequate consistency moufels i
prove memory usage (Fig. 8). Undet, the PCnet driver spends
4 minutes in the initialization method, exploring7,000 paths
and using 8GB of memory. In contrast, it spends only 2 minutes
(~2,500 paths) and @B underRC-OCconsistency. UnderC con-
sistency, thecar dType registry setting is symbolic, causing the ini-
tialization entry point to call in parallel several funat®that look
for different card types. UnderC consistencyS*E explores these
functions slower than underC-OC consistency, where we liber-
ally inject symbolic values to help these functions finislicger.
Slower exploration leads to less frequent timeout-basé kils,
hence more paths, more memory consumption, and longer-explo
ration times. UndesC-SEandSC-UE consistency, registry settings
are concrete, thus exploring only functions for one caretyp

= 10 ‘
£ 91C111 —a—
%@, 81 N PCnet --@-
g§ 6F T e Lua =@

E 4t -
§z LI
S ©

S ‘ ‘

RC-OC LC SC-SE SC-UE

Figure 8: Effect of consistency models on memory usage.

Finally, consistency models affect constraint solvinggtifRig. 9).
The relationship between consistency model and conssaiving
time often depends on the structure of the system being zedhiy
generally, the deeper a path, the more complex the corrdspon
ing path constraints. For our targets, solving time de@sagth
stricter consistency, because stricter models restrietatimount
of symbolic data. For 91C111, switching from local to overap
proximate consistency increases solving time loyx. This is
mostly due to the unconstrained symbolic inputs passed €o th
Queryl nformationHandl er and Set | nformati onHandl er
entry points, which results in complex expressions beingege
ated by switch statements. In Lua, the structure of the cainss
causess’E to spend most of its time in the constraint solver.

1

100 %
PCnet
91C111 =&
Lua

o

solve a query (sec)
°
o

Average time to

Fraction of time spent
in constraint solver

0.001

RC-0OC LC SC-SE SC-UE RC-OC LC SC-SE SC-UE

Figure 9: Impact of consistency models on constraint solving.
As in 86.1.3, we attempted a comparison to varfll&E. We

expected that the Lua interpreter, being completely in-osaide
and not having any complex interactions with the environtmen

could be handled bKLEE. However,KLEE does not model some affected by state clobbering), but may result in lost pathemex-
of its operations. For example, the Lua interpreter makesafis ecution crosses program boundaries. LikewSE8TE, KLEE, and

setj nmp andl ongj np, which turn intol i bc calls that manipu- other similar tools cannot track the branch conditions & ¢bn-
late the program counter and other registers in a way thduses crete code (unlikes®E), and thus cannot determine how to redo
KLEE. Unlike S*E, other engines do not have a unified representa- calls in order to enable overconstrained but feasible paths

tion of the hardware, so all these details must be expliciyed for In-situ model checkers [16, 21, 29, 40, 41] can directly &hec
(e.g., detect thatet j np /1 ongj np is used and ensure thatEE’s programs written in a common programming language, usually
view of the execution state is appropriately adjusted)s®, this with some simplifications, such as data-range reductiatoui re-
comes “for free,” because the CPU registers, memory, I/Gcdey quiring the creation of a model. SingeE directly executes the tar-
etc. are shared between the concrete and symbolic domain. get binary, one could say itis an in-situ tool. Howe\8E goes fur-

ther and provides a consistent separation between theoanvant
(whose symbolic execution is not necessary) and the taayit ¢
to be tested (which is typically orders of magnitude smathen
the rest). This is what we call in-vivo I8 E: analyzing the target
code in-situ, while facilitating its consistent interactiwith that
code’s unmodified, real environment. Note that other wodsuke
“in vivo” term to mean something different fros*E’'s meaning—
e.g., Murphy et al. propose a technique for testing whereitia”
stands for executing tests in production environments. [28]

Several static analysis frameworks have been used to mald a
ysis tools. Saturn [14] andddbddb [24] prove the presence or
absence of bugs using a path-sensitive analysis engineteade
the number of false positives. Saturn uses function sunesdo
7. Related Work scale to larger programs and looks for bugs described inia log
programming languagbddbddb stores programs in a database as
relations that can be searched for buggy patterns usindddaize-
sides detecting bugbddbddb helped optimizing locks in multi-
threaded programs. Static analysis tools rely on source éod
accurate type information and cannot easily verify runetipnop-
erties or reason about the entire system. Battibddb and Saturn
require learning a new language.

Dynamic analysis frameworks alleviate the limitations taftis
analysis tools. In particular, they allow the analysis afdy soft-
ware. Theoretically, one could statically convert an x8@aby to,
say,LLVM and run it in a system likeLEE, but this faces the clas-
sic undecidable problems of disassembly and decompil§&iéh
disambiguating code from data, determining the targetadiféct
jumps, unpacking code, etc.

S?E adds multi-path analysis abilities to all single-path dyia
tools, while not limiting the types of analysis. PTLsim [42 VM-
based cycle-accurate x86 simulator that selectively $ipibfiling
to user-specified code ranges to improve scalability. Wadgi38]
is a framework best known for cache profiling tools, memosakle
detectors, and call graph generators @&{f] can instrument oper-
ating systems and unify user/kernel-mode tracers. How@dS
relies on Xen and a paravirtualized gues unlike S?’E. PTLsim,
Pin0Os, and Valgrind implement cache simulators that model multi-
level data and code cache hierarch& allowed us to implement
an equivalenmulti-pathsimulator with little effort.

S?E complements classic single-path, non VM-based profiling
and tracing tools. For instance, DTrace [15] is a framewark f
troubleshooting kernels and applications on productiostesys
in real time. DTrace and other techniques for efficient pirugil
such as continuous profiling [1], sampling-based profilit@][and
data type profiling [31], trade accuracy for low overheadeyl bre
useful in settings where the overhead of precise instruatient
is prohibitive. Other projects have also leveraged viraadion to
achieve goals that were previously prohibitively expeasivhese
tools could be improved witl$?E by allowing the analyses to be
exposed to multi-path executions.

S?E uses mixed-mode execution as an optimization, to increase
efficiency. This idea first appeared DART [18], CUTE [36], and
EXE [12], and later in Bitscope [8]. However, automatic bidirec
tional data conversions across the symbolic-concretedayrdid
not exist previously, and they are keyS%E’s scalability.

Our evaluation shows th&E is a general platform that can
be used to write diverse and interesting system analysesiaae
trated this by building, with little effort, tools for bug fiing, re-
verse engineering, and comprehensive performance popfiian-
sistency models offer flexible trade-offs between the perémce,
completeness, and soundness of analyses. By employingigele
symbolic execution and relaxed execution consistency fepsie
is able to scale these analyses to large systems, such asiren en
Windows stack—analyzing real-world programs like Apactipdy
Microsoft 1IS, andpi ng takes a few minutes up to a few hours, in
which S?E explores thousands of paths through the binaries.

We are not aware of any platform that can offer the level obgeih
ity in terms of dynamic analyses and execution consistermyais
that S?E offers. Nevertheless, a subset of the ideas begfigddid
appear in various forms in earlier work.

BitBlaze [37] is the closest dynamic analysis frameworks.

It combines virtualization and symbolic execution for mafe/
analysis and offers a form of local consistency to introdsye-
bolic values intoAPI calls. In contrastS?E has several additional
consistency models and various generic path selectorsrice
accuracy for exponentially improved performance in mongifile
ways. To our knowledgeS’E is the first to handle all aspects of
hardware communication, which consists/af, MMIO, DMA, and
interrupts. This enables symbolic execution across thieeesft-
ware stack, down to hardware, resulting in richer analyses.

One way to tackle the path explosion problem is to use mod-
els and/or relax execution consistency. File system mdueis al-
lowed, for instancekLEE to testUNIX utilities without involving
the real filesystem [11]. However, based on our own expegienc
writing models is a labor-intensive and error-prone uraleng.
Other researchers report that writing a model for the kéirneer
interface of a modermStook several person-years [2].

Other bodies of work have chosen to execute the environment
concretely, with various levels of consistency that wengrapriate
for the specific analysis in question, most commonly bug figdi
For instanceCUTE [36] can run concrete code consistently without
modeling, but it is limited to strict consistency and codeséd se-
lection.SJPA32] can switch from concrete to symbolic execution,
but does not track constraints when switching back, so ihaan
preserve consistency in the general case.

Another approach to tackling path explosion is compos#ion
symbolic execution [17]. This approach saves the resulexplo-
ration of parts of the program and reuses them when those part
are called again in a different context. We are investigglhiow to
implement this approach &FE, to further improve scalability.

Non-+VM based approaches cannot control the environment out-
side the analyzed program. For instance, lxatBE andEXE allow
a symbolically executing program to call into the concretendin
(e.g., perform a system call), but they cannot fork the dleppstem
state. As a result, different paths clobber each other'srede do-
main, with unpredictable consequences. Concolic exat|85]
runs everything concretely and scales to full systems (ambt

13

To summarize S’E embodies numerous ideas that were fully
or partially explored in earlier work. What is unique $AE is its
generality for writing various analyses, the availabildy multi-
ple user-selectable (as well as definable) consistency Isoale
tomatic bidirectional conversion of data between the syliolamd
concrete domains, and its ability to operate without any eling
or modification of the (concretely running) environment.

8. Conclusions

This paper describe@’E, a new platform forin-vivo multi-path
analysisof systems, which scales even to large, proprietary, real-
world software stacks, like Microsoft Windows. It is the fitene
virtualization, dynamic binary translation, and symbaiecution
are combined for the purpose of generic behavior analgsis.
simultaneously analyzes entif@amilies of pathsoperates directly
on binaries and operates vivo, i.e., includes in its analyses the
entire software stack: user programs, libraries, kerréleds, and
hardwareS?E uses automatic bidirectional symbolic—concrete data
conversions and relaxed execution consistency modelshie\ac
scalability. We showed tha®?’E enables rapid prototyping of a
variety of system behavior analysis tools with little eff@2E can

be downloaded frorht t p: / / s2e. epfl.ch/.

Acknowledgments

We thank Jim Larus, our shepherd, and Andrea Arpaci-Dusseau

Herbert Bos, Johannes Kinder, Miguel Castro, Byung-GonnChu
Petros Maniatis, Raimondas Sasnauskas, Willy Zwaenepuel,
S?E user community, and the anonymous reviewers for their help
in improving our paper. We are grateful to Microsoft Reshdor
supporting our work through a PhD Fellowship starting in201

References

[1] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. HenzingeiT.
Leung, D. Sites, M. Vandevoorde, C. A. Waldspurger, and VW&ihl.
Continuous profiling: Where have all the cycles gone?Symp. on
Operating Systems Principle$997.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenber@, McGar-
vey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorougticst
analysis of device drivers. IACM SIGOPS/EuroSys European Conf.
on Computer Systema006.

[3] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtesrly. The
static driver verifier research platform. Intl. Conf. on Computer
Aided Verification 2010.

[4] F. Bellard. QEMU, a fast and portable dynamic translabotUSENIX
Annual Technical Conf2005.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hatile
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few bil-
lion lines of code later: using static analysis to find bugshia real
world. Communications of the ACN63(2), 2010.

[6] Bochs IA-32 Emulator. http://bochs.sourceforge.net/

[7] P. Boonstoppel, C. Cadar, and D. R. Engler. RWset: Attarlpath

explosion in constraint-based test generationlnth Conf. on Tools

and Algorithms for the Construction and Analysis of Syst&088.

D. Brumley, C. Hartwig, M. G. Kang, Z. L. J. Newsome,

P. Poosankam, D. Song, and H. Yin. BitScope: Automaticaigett-

ing malicious binaries. Technical Report CMU-CS-07-13arr&gie

Mellon University, 2007.

P. P. Bungale and C.-K. Luk. PinOS: a programmable fraorkw

for whole-system dynamic instrumentation. Ifitl. Conf. on Virtual

Execution Environment2007.

M. Burrows, U. Erlingson, S.-T. Leung, M. T. VandevoerdC. A.

Waldspurger, K. Walker, and W. E. Weihl. Efficient and flegibvhlue

sampling. Inintl. Conf. on Architectural Support for Programming

Languages and Operating Syster2800.

C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted au-

tomatic generation of high-coverage tests for complexesystpro-

grams. InSymp. on Operating Systems Design and Implementation

2008.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D.Ehgler.

EXE: Automatically generating inputs of death.@onf. on Computer

and Communication Securjt2006.

(8]

El

[10]

[11]

[12]

14

[13] V. Chipounov and G. Candea. Reverse engineering ofrpidavice
drivers with RevNIC. INACM SIGOPS/EuroSys European Conf. on
Computer System2010.

[14] 1. Dillig, T. Dillig, and A. Aiken. Sound, complete anaalable path-
sensitive analysis. I€onf. on Programming Language Design and
Implementation2008.

[15] Dtrace. http://www.sun.com/bigadmin/content/deAndex.jsp.

[16] P. Godefroid. Model checking for programming languagesing
Verisoft. InSymp. on Principles of Programming Languag&897.

[17] P. Godefroid. Compositional dynamic test generatiém.Symp. on
Principles of Programming Language®007. Extended abstract.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directedt@mated
random testing. InConf. on Programming Language Design and
Implementation2005.

[19] P. Godefroid, M. Y. Levin, and D. Molnar. Automated wétiox fuzz
testing. InNetwork and Distributed System Security Syr2@08.

[20] IEEE. Standard 1666: SystemC language reference rha2Q@5.
http://standards.ieee.org/getieee/1666/.

[21] Java PathFinder. http://javapathfinder.sourcefogte 2007.

[22] J. C. King. Symbolic execution and program testi@@mmunications
of the ACM 1976.

[23] V. Kuznetsov, V. Chipounov, and G. Candea. Testingadiesource
binary device drivers with DDT. IJSENIX Annual Technical Conf.
2010.

[24] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avat
M. Carbin, and C. Unkel. Context-sensitive program analyas
database queries. Bymp. on Principles of Database Systegt5.

[25] C. Lattner and V. Adve. LLVM: A compilation framework fdifelong
program analysis and transformation.Ihtl. Symp. on Code Genera-
tion and Optimization2004.

[26] Lua: A lightweight
http://www.lua.org/, 2010.

[27] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey S. Wal-
lace, V. J. Reddi, and K. Hazelwood. PIN: building custordipeo-
gram analysis tools with dynamic instrumentation. danf. on Pro-
gramming Language Design and Implementati®®05.

[28] C. Murphy, G. Kaiser, I. Vo, and M. Chu. Quality assuranaf
software applications using the in vivo testing approacinil. Conf.
on Software Testing Verification and Validati&009.

[29] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Najnand
I. Neamtiu. Finding and reproducing Heisenbugs in conaiirpgo-
grams. InSymp. on Operating Systems Design and Implementation
2008.

[30] Oprofile. http://oprofile.sourceforge.net.

[31] A. Pesterev, N. Zeldovich, and R. T. Morris. Locatinglea perfor-
mance bottlenecks using data profiling.AG@M SIGOPS/EuroSys Eu-
ropean Conf. on Computer Syster2810.

[32] C. Pasareanu, P. Mehlitz, D. Bushnell, K. Gundy-ByrM. Lowry,

S. Person, and M. Pape. Combining unit-level symbolic ei@cand
system-level concrete execution for testing NASA softwalre Intl.
Symp. on Software Testing and Analy2i308.

[33] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, andndehson.
Eraser: a dynamic data race detector for multithreadedranagjACM
Transactions on Computer SysterbS§(4), 1997.

[34] B. Schwarz, S. Debray, and G. Andrews. Disassembly etetable
code revisited. I'Working Conf. on Reverse Engineerj2®02.

[35] K. Sen. Concolic testing. Inntl. Conf. on Automated Software
Engineering 2007.

[36] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unittiteg
engine for C. InSymp. on the Foundations of Software E2§05.

[37] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. ang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bit#lazenx
approach to computer security via binary analysis.Inth Conf. on
Information Systems Securi§008.

[38] Valgrind. http://valgrind.org/.

[39] D. Wheeler. SLOCCount. http://www.dwheeler.comé¢siount/, 2010.

[40] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. bbg,

L. Zhang, and L. Zhou. MDIST: Transparent model checking of
unmodified distributed systems. Bymp. on Networked Systems
Design and Implementatior2009.

[41] J. Yang, C. Sar, and D. Engler. EXPLODE: a lightweighengral sys-
tem for finding serious storage system errorsSymp. on Operating
Systems Design and Implementafiaf06.

[42] M. T. Yourst. PTLsim: A cycle accurate full system x88-ficroar-
chitectural simulator. INEEE Intl. Symp. on Performance Analysis of
Systems and Softwar2007.

embeddable scripting language.

