
flLPHfl SVSTEKIS

i

■

GEDHGE MDRRISDN

ATARI SOFTWARE PROTECTION TECHNIQUES

by George Morrison

Forward by Ed Stewart

(Author of Letterman)

AN ALPHA SYSTEMS PRODUCT

SOFTWARE PROTECTION TECHNIQUES
DISK UTILITIES

<C> COPYWRITE 1933

FROM ALPHA SYSTEMS

ATARI is a registered trademark of Atari, Inc.

Atari Software Protections Techinques Disk Utilities is a

utility package designed -for use by software writers to help

protect your software from, illegal copying. The theory is

described in the book <Atari Software Protection Techniques)

that is included in this package, but this disk utility should

help even the beginner use some of the methods described.

A menu of options will automatically appear on your screen

when the disk is loaded (with the BASIC cartridge in), or just

type RUM "DzMENU" from BASIC. Each of the utilities and options

contain instructions which appear on the screen when the program

is run. For your convenience, most of the programs are listable,

and are well documented to help you understand them. I suggest

you LIST or RUN each one to see the instructions, but type NO

when asked if you wish to execute the program. Also all the

program listings from the book are contained on this disk. For

example, Figure 4.4 from the book is called aFIG44" on the disk.

The following information will help you better understand some

of the programs on the disk

Directory Hider (called HIDER on the disk)

The directory Hider is used to help prevent DOS copies. It

is especially useful for menu driven programs, or programs which

must—epeiv- files or run other programs from the disk. The

Directory Hider hides your disk directory in a new location on

the disk. Your programs will automatically use the hidden

directory (because this program changes DOS to point to it). But

others trying to copy your programs will see 787 free sectors.

WARNING - Make a back-up of the disk you wish to protect

before running this program.

SETSCAN - This program will scan the sectors on the disk for

bad or misassigned sectors. It asks for the starting and ending

sectors you wish to scan, and then displays a message for each

sector.

SECTLOOK - This displays the contents of a sector in

character format. Just enter the sector you wish to read, and it

will be displayed on the screen.

VTOCER - This program has two parts. Option One shows you

which sectors on the disk are used and which are free (according

to the VTOC).

Option Two is used to reserve space on a disk for a hidden

directory. As indicated in the book, the directory should be

hidden in a certain range of sectors. If HIDER can't find the

space to hide your directory, a message will be displayed

telling you to run this program- Complete instructions are

displayed on the screen.

BADWRITE - This program enables you to protect your disks

with bad-sectoring. The methods used to have your program check'

for the bad sectors are explained in the book. This utility lets

you create bad sectors on your disk. There are two simple ways

to create a bad sector on a disk using only standard hardware.

This utility will do both.

Bad Sector Writer Option One requires that you slow down

your disk speed, but is much quicker than Option Two. Some types

of disk drives cannot be slowed down enough to write bad

sectors, so if yours is one of those, you must use Option Two.

USING OPTION 1. The first step in using Option 1 is to

adjust your drive speed down to 228 +-10 RPMS. Before changing

your drive speed, go to option 3 - ADJUST DRIVE SPEED. This

option will help you get your speed properly adjusted. To write

bad sectors adjust your speed to aprox. 228 +-18 RPMs. Try to

write the bad sectors at the slowest possible speed without

getting I/O errors. To get the best bad sectors, your disk

should just barely be able to write.

Adjustino Your Drive Speed

To adjust your disk drive speed, it is necessary to remove the

top cover and adjust one screw. To remove the cover, just pry

off the four little tabs on the top of the drive with any sharp

instrument. Then with a standard phi 1 lips head screwdriver,

loosen the four screws (under the tabs) that hold the cover on,

and gently lift off the cover. There are two basic types of

ATARI 818 disk drives around. The newer drives have a circuit

board across the top (see diagram "A"). The older drives have no

circuit board across the top and have a large white plastic

screw in the back left corner of the drive (see diagram "B") .

This large white screw can be turned by hand to adjust your

speed. It is ^ery sensitive so a quarter turn may be all you

need.

The newer drives are a bit trickier to adjust. To find the

speed adjustment, look for a small green box with a tiny silver

screw on it. It is located in toward the rear and a little left

of center in _Jfche_ drive. It is very smaJ_Lfeyi^carv_j3e jyAJALsied

"using a micro-screwdriver. The speed adjustment on the newer

drive is not \/ery precise. It may take as many as 8 complete

revolutions to properly adjust your speed.

The next step is to write the sectors. Use option 1 to do

this. Just enter the sectors you wish to create then press

return. After all your bad sectors are complete, return to

option 3 to adjust your speed back to normal.

USING OPTION 2

This method provides an alternate method of writing bad

sectors. I still recommend option 1 as a faster and easier

method, however if your disk drive was purchased after Jan 83,

or you own a non-Atari disk drive, you may need to use option 2.

To use this method, you must attach two long pieces of tape

(folded over onto themselves) firmly to the top of the disk you

wish to write bad sectors on (see Diagram 1). Then insert the

disk in your drive, so that the tape sticks out when the door is

closed (be sure tape is long enough to get a grip on when the

disk door is closed). Next, enter the destination disk drive

number (the disk drive you wish to write bad sectors on) and the

sector number. Then be sure everything is set and type return.

The screen will now prompt you to shake the tape. You can gently

move the tape back and forth, and alternately push on one piece

while pulling on the other. The computer will beep and signal

you when the bad sector is written. Then stop pulling while it

rechecks the sector. Note that until you get good at it, it can

take 18 minutes or more to write a single bad sector. So keep at

it, and wait for the computer to signal you that it is done. If
you wish to abort the process, hit any key.

DIAGRAM A

5 i
QD

L Jl I

■ o

DIAGRAM B

®

DIAGRAM 1

WARRANTY

ALPHA SYSTEMS warrants to the original consumer/purchaser that

this program disk <not including the computer programs) shall be

•free o-f any defects in material or workmanship for a period of

68 days from the date of purchase. If a the disk fails to load

during this 68 day warranty period, Alpha Systems will repair or

replace the disk at Alpha Systems option, provided the disk and

proof of purchase is delivered or mailed, postage prepaid, to

Alpha Systems.

This warranty shall not apply if the disk <1) has been misused

or shows signs of excessive wear, <2> has been damaged by

playback equipment, or <3) if the purchaser causes or permits

the disk to be serviced or modified by anyone other than Alpha

Systems. Any applicable implied warranties, including warranties

of merchantability and fitness are hereby limited to 68 days

from the date of purchase. Consequential or incidental damages

resulting from a breach of any applicable express or implied

warranties are hereby excluded.

NOTICE

As with most computer software, all Alpha Systems computer

programs are distributed on an "as is11 basis without warranty of

any kind. The entire risk as to the quality and performance of

such programs is with the purchaser. Should the porgrams prove

manufacturer, distribyt&r, or ^etitili^ assumes t$i# #nfi>e coif
of all necessary servicing or repair.

Alpha Systems shall have no liability or responsibility to a

purchaser, customer, or any other person or entity with respect

to any liability, loss or damage caused or alleged to be caused

directly or indirectly by computer programs sold through Alpha

Systems. This includes but is not limited to any interruption of

service, loss of business or anticipatory profits or.

consequential damages resulting from the use or operation of

such computer programs.

The provisions of the foregoing warranty are subject to the

laws of the state in which th disk is purchased. Such laws may

broaden the warranty protection available to the purchaser of

the disk.

ATARI SOFTWARE PROTECTION TECHNIQUES

by George Morrison

Forward by Ed Stewart

(Author of Letterman)

AN ALPHA SYSTEMS PRODUCT

Atari, Atari 400 Computer, Atari 410

Program Recorder, Atari 800 Computer,

Atari 810 Disk Drive are all trademarks of

Atari, Inc.

Apple is a trademark of Apple, Inc.

IBM-PC is a trademark of IBM, Inc.

(c) Copyright 1983 by Alpha Systems, Stow,

Ohio, 44224

Printing #6 batch 2, Jan 1985

All rights reserved. No part of this book

may be reproduced by any means without

permission in writing from Alpha Systems.

Printed in the United States of America

10 9876543

Cover design by Richard M. Morrison

FOREWARD

The need for software authors to protect

their property from theft is increasing. The

unauthorized duplication of computer

programs has become such a widespread

activity as to threaten the very existence

of the element that has helped to popularize

the home computer most, namely the

independent software entrepreneur. The

phenomenal growth of the computer market

has opened up vast new horizons of

possibility for both the creator and the

thief. It is therefore important for

programmers to have at their disposal all

of the available techniques to inhibit a

potential pirate.

This book provides the fuel necessary

to make an informed decision on what

protection schemes would be most approp

riate to employ and as such fills a void in

the literature. It may be argued that

disclosure of this information will only

encourage piracy. I do not agree with this

argument for two reasons. First, an

advanced pirate is already aware of the

contents of this book and would not benefit

in the least from a review of it. Secondly,

the would-be pirate does not have the

technical acumen to break the protection

techniques suggested herein. This book is

therefore a valuable asset to you, the

software author, in identifying the strong

points and shortcomings of the various

methods available today.

I found this book to be well written

and authoritative in its approach to the

problem, I feel that most readers will find

it both informative and helpful in their

endeavor to protect their investment.

Ed Stewart, April, 1983

Honeybear Software

ii

ACKNOWLEDGEMENTS

Alpha Systems would like to thank John

Liang for the encouragement to market the

book. Ed Stewart (the author of ietterman)
for his technical help. Helen Prozialeck for

doing all the little things that helped to

get the book written. Richard and Ethel

Morrison for their help in making this book

a reality.

iii

PREFACE

This book is written with the average

software writer in mind. Most of the

software protection techniques presented

here can be used by anyone with even a

small amount of experience with Atari

computers. Some topics covered do require a

good amount of expertise to really

understand, so small programs are included
in the book. Some sample programs that

make the techniques easy to use are on the

optional software disk. Be sure to use the
glossary in the back of the book, since

some technical terms are needed to describe
the protection processes. Also, it is advised
that you read the chapters in order so that
you can gain a working knowledge before

reaching the difficult sections.

iv

TABLE OF CONTENTS

Foreward i

Acknowledgements iii

Preface iv

Chapter 1: INTRODUCTION TO SOFTWARE

PROTECTION i

What is Software Protection?

The Concentration of the Book.

Pros and Cons of Software Protection

Problems of Piracy

Need for Back-Ups

The Responsibility of the Vendor
Totally Uncopyable Software?

Chapter 2: GENERAL PROTECTION OF

PROGRAMS WRITTEN IN BASIC 6

Disabling the Break Key

Disabling the System Reset Key

Preventing an Error Break

Preventing a LOAD and SAVE Combination

Protecting Against LIST

Special Cases

Chapter 3: CASSETTE PROTECTION 12

u

Chapter 4: GENERAL DISK PROTECTION 15 ^

An AUTORUN.SYS File ^
Preventing DOS Copies

Disk Directories ^
VTOCs

Hiding Disk Directories and VTOCs ^

Chapter 5: BAD SECTORING 28 ^

What is a Bad Sector? ^
How Bad Sectors Protect Software

Creating Bad Sectors ^

Conclusion

Chapter 6: HIDING PROTECTION CODE 38 -

<J

Breaking Code by Hand

Hiding Protection Codes ^
Self Modifying Code

Layering Your Protection ^

Wild Goose Chases

Conclusion <J

Chapter 7: MISASSIGNED SECTORS 46 ^

What are Misassigned Sectors? ^J

How Misassigned Sectors Protect Software

Creating Misassigned Sectors <J

How Pirates Copy Misassigned Sectors

Protecting Misassigned Sectors O

u

o

o

o

vi KJ

o

Chapter 8: ROM AND EPROM CARTRIDGES 56

ROM Copy Technique I

Protecting Against Technique I

ROM Copy Technique II

Preventing ROM Copy Technique II

Chapter 9: HARDWARE DATA-KEYS 61

How Data-Keys Protect Programs

Building Data-Keys

Copying Data-Key Protected Software

Preventing the Data-Key Copy Techniques

Conclusions

Chapter 10: LEGAL PROTECTION TECHNIQUES 67

Patents

Copyrights

Trade Secrets

Conclusion

Chapter 11: COERCIVE PROTECTION TECHNIQUES ... 74

Serial Numbered Software

Protection Through Intimidation

Self-Destructing Code

Freeware

Selling Unprotected Software

Chapter 12: RECOMMENDED METHODS OF

PROTECTION 81

Chapter 13: THE FUTURE OF SOFTWARE

PROTECTION AND PIRACY 85

Vll

Appendix A 89

Glossary 92

viii

CHAPTER 1

INTRODUCTION TO SOFTWARE PROTECTION

Talk about bootleg record albums, tapes

and movies has been increasing for several

years. Copyright infringements by people

who tape television programs has also been

a growing problem. One fast growing area

that hasn't seen much media coverage is

software copying. It is estimated that there

are two illegal copies of Visicalc (a

popular spread sheet program) distributed

for each one legally purchased. With the

growing problem of software piracy, more

people are writing about ways to prevent

it. Sources that try to deal with the topic

seem to focus only on legal protection tech

niques. They mention copyrighting or

patents, but usually neglect to say that

these methods have not been effective in

stopping or even slowing down the problem.

The reason for the failure of legal

protection is the type of people who are

pirating software. While record piraters

may be big operators taking in millions,

most software pirating is done by

individuals. Catching them is almost

impossible, let alone trying to legally

prosecute each one.

WHAT IS SOFTWARE PROTECTION?

Software protection refers to techniques

which discourage or prevent people from

making copies. The techniques used can

-1-

take many different forms. The software

producers can threaten legal prosecution of

pirates; make a moral plea against

copying; give idle threats; make software

physically difficult to copy; or attempt to

bypass the problem through the use of new

marketing or distribution methods. The goal

of software protection should be to maximize

the return on the investment of the

producers, not prevent piracy at any cost.

If the protection method prevents the

product from being brought to the market at

a reasonable price or makes the product too

difficult or tedious to use, then the

producers have overlooked this goal. There

are people so. obsessed with protecting their

software that it prevents them from selling

their programs. Keep the goal of

maximizing the return on your investment

in mind when considering any software

protection method.

THE CONCENTRATION OF THE BOOK

This book is written to help software

producers deal with the problems of

piracy. Legal protection and ways to

discourage copying are dealt with in a

good amount of detail, but the primary

focus of the book is on methods that make

copying physically more difficult. As

mentioned above, the majority of copying is

done by individuals who make copies for a

few of their friends. Such people are not

worried about the police coming to their

door with search warrants, and the scope

of the problem shows that pleading with

-2-

them not to copy, has little effect on the

vast majority of software pirates.

Protecting software should be like a bank

protecting its money. To be effective,

software protection must try to physically

prevent piraters from being able to steal

the software. Legal and coersive techniques

may discourage some, but I feel the best

protection makes copying so difficult that

only a few people have enough expertise to

copy it, and is so time consuming and

tedious that those expert pirates give up

before breaking the protection codes. The

majority of this book deals with methods to

achieve these goals.

THE PROS AND CONS OF

SOFTWARE PROTECTION

The problems of piracy. Every bootleg

program made deprives the producers of

some of their earnings. Some programs can

take months or years to write, so it is only

natural that the writer wishes to get

financial rewards for his efforts. The

problem of piracy is so bad that many

times the person receives an illegal copy of

a program before he has even seen ads for

the product. Loosely knit national software

trading rings are making the bootleg

software available even in the most remote

areas. Obviously, something must be done

about software copying, but for a moment,

consider the other side to the problem.

The need for backups. Unfortunately,

software is a fragile and volatile product.

-3-

Software can be destroyed by heat,

humidity, wear, magnetic fields, faulty

reading devices or even dirt. Just touching

the exposed surface of a disk can destroy

it. Most computer owners have learned that

the only reasonably sure way to preserve

your software is to make backups. Many

people have come to rely on their software

for balancing checkbooks and keeping their

phone lists, etc., and would have serious

problems should their software fail to work.

In fact, many businesses have come to rely

so heavily on their software that they could

not function without it. Unfortunately, well

protected software is intentionally very

difficult to back up. On one hand we have

the need to protect manufacturers from

pirates and on the other, the need for the

user to be able to back up his software.

The responsibility of the vendor.

Although backing up game software is

obviously not as important as home filing

or business software, all software should

have provisions for backups. Some of the

techniques that will be discussed later are

well suited to deal with the back up

problem, but at the very least, it is the

responsibility of the vendor to provide

quick and inexpensive back up service by

mail. This can be as simple as an offer to

replace malfunctioning software by mail for

a small handling charge. Keep in mind that

providing for backups removes one of the

reasons for people to spend their time

breaking software protection and may

produce good will toward your product and

company.

-4-

TOTALLY UNCOPYABLE SOFTWARE?

Can any program be made totally

uncopyable? This question gets a qualified

no. For most practical purposes, any

software .can be pirated. No matter how

complex the protection technique, there are

people who can break it. Any protection

technique invented by man can be broken

by man. Let us say for a moment that truly

unduplicatable software is invented at some

point in the future. If it is t**uly

uncopyable, then even the manufacturer

cannot copy it for distribution purposes. As

you can see, truly uncopyable code is not

good unless you only wish to sell that one

copy. The trick to protecting software is

not to make it completely uncopyable, but

to make it difficult enough to discourage

all but the most advanced and persistent

would-be pirates.

I hate to qualify my original statement,

but I can think of one case where software

duplication is almost impossible. The case

that comes to mind is the software

available only on an information service

like The Source or CompuServe. This is

software which you never get possession of

because your responses are transmitted to

the computer which contains the software,

fhis may be fine for adventure type games,

but for the real time arcade graphics type

games, it is virtually unusable. Presently

the cost is high and the response slow, but

maybe the future will show some hope for

this method.

-5-

CHAPTER 2

GENERAL PROTECTION OF PROGRAMS

WRITTEN IN BASIC

Protecting programs written - in BASIC

requires several protection techniques. In

the following chapters, the specifics of

dealing with tape and disk software are

covered, however, certain protection is

needed no matter how BASIC programs are

stored. The real problem protecting BASIC

code is the SAVE command. Protecting

against the SAVE is probably more difficult

than at first you would expect. This is

because there are many different ways of

stopping a programs execution and then

saving it via a SAVEMD: program" or

SAVE"C:fl command. The topics that one must

understand to stop this possibility are:

1. Disabling the break key

2. Disabling the system reset key

3. Preventing an error break

4. Preventing LOAD and SAVE com

binations

5. Special cases where control must be

given to the program user.

All these problems come up with BASIC

programs because once loaded into memory,

they are very simple to save to disk or

tape if the program user is given the

opportunity. The trick is not to give them

the chance. In other words, your program

must not lose control of the computer.

-6-

DISABLING THE BREAK KEY

Hitting the break key stops the

execution of a program without clearing

memory. This allows simple saving of the

program. To disable the break key takes
only two pokes. They are:

POKE 16,112

POKE 53774,112

Technically, you are changing the POKEY
interrupt vector but suffice it to say that

these pokes will disable the break key. It

is important to note that these pokes must

be repeated after each GRAPHICS command.
This is because the GRAPHICS command

refreshes those memory locations. Other

commands can clear these locations also. To

be on the safe side, it is good to repeat

these pokes several times throughout the

program. Since the break key is sometimes

hit accidentally, these pokes are a good

idea even in unprotected BASIC programs.

DISABLING THE SYSTEM RESET KEY

The system reset key is similar to the

break key in that it stops execution without

clearing the program from memory. There

are two simple ways to disable this key.

The first is:

POKE 580, 1

This POKE causes what is called a cold

start. In other words, if system reset is

pressed after this POKE, the system will

-7-

restart itself in the same way it would if

you turned the computer off and then back

on again, and all program memory is

cleared. Another way to disable the system

reset key is:

POKE 9,255

This will cause the system to lock up (keys

won't work) if system reset is pressed.

Either of these two methods is acceptable

for disabling the system reset key,

however, the first is preferable for disk

based software because it will cause the

disk to reboot.

PREVENTING AN ERROR BREAK

As you probably know, when an error

is encountered in a BASIC program,

execution is stopped and an error message

is displayed. This provides anyone the

opportunity to save your program. Of

course, a well written program should not

have errors in it, but often unusual input

can cause them. For example, if the

program asks for a number but the person

enters a letter, it may cause an error.

Also, unusual circumstances may arise that

were not foreseen by the programmer. To

help prevent these types of breaks, the

BASIC command TRAP can be used. For those

not familiar with this, it causes the

program to go to a specified line number if

an error is encountered. A complete explan-

-8-

ation is in your BASIC manual. It should

be noted that once a TRAP is used, another

TRAP statement must be issued if you want

to continue stopping errors.

PREVENTING A LOAD AND SAVE COMBINATION

If your program requires the user to

"LOAD11 it or to "RUN" it, it is more

difficult to protect. This procedure gives

the user the opportunity to save it before it

is run. One good way to prevent this is by

having an automatically booting disk or

cassette. The details of this method will be

presented in the sections on disk and

cassette protection, but essentially an

autoboot system causes your program to run

automatically when the system is started.

PROTECTING AGAINST LIST

There are several ways to prevent

someone from being able to LIST your

program. The one I feel is best causes the

computer to lock up if a LIST (or any other

command) is given with your program

loaded in memory. Be sure to have a back

up before using this procedure so you will

have a listable version to work with should

you decide to update your program. To use

this procedure, just insert this line as the

last line in your program:

32500 POKE PEEK(138)+256*PEEK(139)+2,0:

SAVE "D:programM:NEW

-9-

For disk usage, change where it says
"program" to the name you wish to save
your program as. For cassettes, change the

SAVE to a SAVE "C:'\ Type GOTO 32500 to
save the protected version to the disk. This
procedure changes the current statement
pointer to 0 and will allow your program to

run normally even though it cannot be
listed.

SPECIAL CASES

At times, it is necessary or desirable to
let the user have control of the computer
and LIST or MODIFY your program. Even in
these cases, it is still possible to protect
your programs from copying. The trick here

is to make your program need some
conditions preset before it will run. One

way to do this is to have your autoboot

procedure point to a small initialization
program that will then load your program.

An example would be to have this
initialization program POKE a small

machine language subroutine into memory
and then run your main program. For those
not familiar with assembly language, here
is a simple example that can be used:

POKE 1680,104:POKE 1681,96

This assembly language routine will just
clear the stack and return to your program

when called with a statement like this:

-10-

X=USR(l680)

This call can be put in various locations
throughout your main program. These are
used to make your computer lock up should

it try to run without having POKED the

subroutine into place. In other words, you

can let your program user copy and modify

your main program, but it will not work

without running your initialization program
which is protected. You may point out that
the person can just remove these statements
and then the program will run correctly.
This is true, but hopefully they will think
the statement serves some purpose other
than just protection and not just remove it.
One way to prevent the program user from
being able to remove it is to make the

subroutine perform some valid function

needed by your program. Then, the program

will not run (with or without statements) if

your initialization program is not run

first.

-11-

CHAPTER 3

CASSETTE PROTECTION

There are major problems with tech

niques used to protect cassettes. In fact,

many companies have stopped releasing

cassette based software because of this.

Various methods are available that make

cassettes harder to copy, but none offer

protection against a copy system called

"Audio Duping11.

Audio duping is a technique used by

large scale software producers to duplicate

their tapes. It is also used by software

pirates. Audio duping is done by directly

recording one cassette from the other using

two high quality cassette recorders. A cord

is run from the output (or earphone) jack

of one recorder to the input (usually aux

in) of the other, and the cassette is copied

with all filters and noise reduction systems

turned off. This yields a working copy of

the cassette.

This software protection problem arises

from the fact that standard cassettes are

used for software. With all the high quality

stereo systems around, almost everyone can

get access to a cassette recorder good

enough to duplicate tapes used for

software. Although the use of this method

by pirates, stops the software manufacturer

from preventing copying altogether, certain

techniques are available which at least

help protect the program against simple

BASIC copies and tape to disk copies. They

can also help prevent others from trying to

-12-

market your programs with only minor

modifications and a different name.

First, the methods discussed in the

previous chapter on general BASIC

protection should be employed on cassettes

using BASIC. One simple way to protect a

program against the LOAD and SAVE

combination is to make your program

unlistable. The technique presented earlier

to prevent the list command (see chapter 2)

also protects against a simple save

command. In this case, you must instruct

the purchaser (in the documentation) to

type;

RUN "C:lf

A load would not work because on^e the

program is loaded, the protection would

prevent a run command from working. This

technique also helps prevent a pirate from

transferring the tape program to disk or

modifying the program for resale.

Machine language programs offer

different protection problems. Several

companies market programs which transfer

machine language programs from tape to

disk. Fortunately, these programs are not

effective at copying multistage loads. A

multi-stage load program is one which

loads in several parts. The program uses

the standard boot procedure to load a

routine, which then loads the rest of the

program, or the program can be broken into

several segments that load each other in

turn. The use of these multi-stage loads is

very effective against standard tape to

-13-

2). See Atari Technical User's Notes for

complete details on this method.

Creating an AUTORUN.SYS file is much

more difficult for a BASIC programmer,

since the file has to be a machine language

program. Figure 4.1 shows a simple BASIC

program that will create an AUTORUN.SYS

file for you. When the program is run, it

will create a file called AUTORUN.SYS that

will automatically run your BASIC program

for you. The BASIC program must be named

"FIRSTPGM" for it to work. Also, the disk

must have DOS.SYS on it.

Besides helping to protect your

program, an AUTORUN disk has another

advantage. It is much easier for beginners

to use since it loads and runs your

program automatically.

Preventing DOS Copies

The protection methods presented up to

now are sufficient to prevent copies from

BASIC. This section focuses on preventing

DOS copies. From the Atari DOS menu, the

user can duplicate a file (option 0), copy

a file (option C) or duplicate a disk

(option J). Preventing these types of copies

requires a knowledge of directories and

VTOC's.

Disk Directories: The disk directory is

probably the most heavily used part of the

disk. Whenever a file is accessed (loaded,

deleted, read, copied, etc.) DOS uses the

directory. The directory contains the

names, locations and lengths of all files on

-16-

FI GURE <4 . 1

18 REM XX THIS PROGRAM CREATES AN

AUTORUN.SYS FILE, NHICH MILL

AUTOMATICALLY

28 REM XX RUN PROGRAM "D:FIRSTP6M"

WHEN DISK IS LOADED

38 OPEN »4,8,e,-D:AUT0RUN-SYS"

48 FOR J=l TO 153

58 READ A:PUT »4,A

68 NEXT J

78 CLOSE #4

88 DATA 255,255,6,6, 138,6, 162,8, 189,2<S

,3,291,69,249,5

98 DATA 232,232,232,298,244,232,142,19

5,6,189,26,3,133,285,169

188 DATA 107,157,26,3,232,189,26,3,133

,286,169,6,157,26,3

118 DATA 168,8,162,16,177,285,153,187,

6,288,282,288,247,169,67

128 DATA 141,111,6,169,6,141,112,6,169

,15,141,186,6,96,172

138 DATA 186,6,248,9,185,123,6,286,186

,6,168,1,96,138,72

148 DATA 174,185,6,165,285,157,26,3,23

2,165,286,157,26,3,184

158 DATA 178,169,155,168,1,96,8,8,8,8,

tfylfytfjiJjtf

168 DATA 8,8,8,8,8,76,8,8,8,34,77,71,8

8,84,83

178 DATA 82,73,78,58,68,34,32,78,85,82

,255,255,226,2,227

188 DATA 2,8,6

-17-

the disk.

The directory is loaded in the ap

proximate center of the disk, in sectors 361

through 368, inclusive. It is created when

the disk is formatted with DOS. A machine

language program can do away with the

directory all together if it is autobooting

and doesn't need to access files. In

general though, the directory is a required

part of the disk. Figure 4.2 shows how the

directory is stored on the disk. This

diagram is included for advanced users but

its understanding is not required.

VTOC's: VTOC stands for "volume table of

contents11 and is used to keep track of

which sectors on a disk are full and which

are free. Whenever a file is added or

deleted from the directory, the VTOC is

updated to show which sectors are now used

or free. The VTOC is stored on sector 360

and its layout is shown in diagram 4.3.

Understanding this diagram is not required

but is included as an aid for advanced

users.

Hiding Disk Directories and VTOC's

Hiding disk directories is a very

effective technique for stopping novice

copiers. It is very widely used and will

prevent simple DOS copies. To be most

effective in BASIC, this technique should be

combined with stopping program breaks,

system resets and other methods discussed

in Chapter 2. This method is especially

good for programs which automatically run

-18-

FIGURE 4,2

A DIRECTORY SECTOR LAYOUT

Director Entry

0 13 5 13 ^

JFJCNT5SSN5 FILE NAME 5 EXT 5

s :

; +— Starting sector number

\ Two Bytes

i Points to first sector

5 of a f i I e

Count - Two bytes

The number of sectors

in the file

Flag - One byte

$01 -File opened for output

$02 -File created by DOS

$00 -Entry never used

♦20 -File locked

$40 -File in use

$80 -File deleted

FIGURE 4,3

VTOC SECTOR LAYOUT (Sector 360)

$168 Hex

BYTES

0 Type Code <0=DOS 2.0)

1-2 Total number of sectors

3-4 Number of unused sectors

5 Reserved

6-9 unused

10-99 Each bit in this area

represents a spacific

sec tor (0=used,l=unused)

-19-

other programs, and programs where the

user may need to access specific listings or

files. After it is used, a normal directory

listing will show 707 free sectors (or

whatever you want it to show), but your

programs can still use the hidden directory

as they please. Also, some files can be put

in the hidden directory and the real

directory, letting the user access certain

files but not others.

The optional program disk has a

program that will hide your directory

automdtically for you. If you did not

purchase this disk, but would like to, see

the back of the book for ordering

information.

The routines to search for your file in

the directory are part of DOS and are

loaded when you turn on your computer. A

method I developed to hide your directory

involves altering part of DOS to point to a

new directory in a different location. A

warning should be given at this point:

BEFORE USING THIS (OR ANY OTHER

PROTECTION METHOD), BE SURE YOU HAVE

MADE A BACK-UP. The back-up serves two

purposes. First, the unprotected back-up

gives you the means to change your

program in the future (to modify it or just

fix bugs, etc.). Secondly, the back-up is

needed in case you accidentally damage or

destroy your disk during the protection

process. Hiding the directory involves five

steps. They are:

1. Back up your completed disk.

2. Copy the directory to a new location.

3. Alter DOS to point to your new directory.

-20-

4. Write the altered DOS files to your disk.

5. Destroy or change the old directory,

VTOC and DUP.SYS file.

Step 1: Back up your completed disk. Before

you protect your disk, you should have it

finished and complete because once

protected, it will be hard to modify. Also,

be sure to keep an unprotected back-up for

the reasons mentioned above. One

requirement of this technique is that you

have the DOS files on the disk. If they are

not there now, use DOS option H to write

them.

Step 2: Copy the directory to a new

location. It was stated earlier that the

directory rides at sectors 361-368.

Normally, DOS looks to these sectors to

access files. To hide the directory, we will

copy the directory to a new location, then

later delete (or just alter) the old

directory to trick a normal DOS. In other

words, your program can use your hidden

directory as usual, even though the real

directory shows the disk to be different or

empty. To move the directory requires a

sector mover. Figure 4.4 contains a basic

program that can move a sector of data

from one location on the disk to another. In

this case, we will move the eight sectors

(which make up the directory) to a new

location.

To keep this protection method simple,

you must stay within certain restrictions.

In this case, you can move your directory

to anywhere between sector 255 and 510 (the

-21-

i gure: «* - ■**

18 REM XX ROUTINE TO MOVE A SECTOR

FROM ONE LOCATION TO ANOTHER

28 REM XX SET UP CIO CALL XX

38 FOR 1=1536 TO 1540:READ XrPOKE I,X:

NEXT I

48 DATA 184,32,83,228,96

58 DIM A$<128>,B*<1)

68 REM XX SET DRIVE XX

78 DRIVE=1:POKE 769,DRIVE

88 REM XX SET COMMANDS XX

98 RREAD=82:WWRITE=87sP0KE 778,RREAD

188 REM XX GET SECTOR NUMBERS XX

118 ? " FROM SECTOR";:INPUT FRMSEC

126 ? :? ' TO SECTOR";:INPUT TOSEC

138 POKE 778,FRMSEC-<INT<FRMSEC/256>X2

56):POKE 779,1NT < FRMSEC/256)

148 REM XX SET ADDRESS TO STORE READ X

X

158 ADRA=ADR<A*>:POKE 772,ADRA-<INT<AD

RA/256)X256):POKE 773,INT(ADRA/256)

168 REM

178 REM XX EXECUTE CALL-CIO ROUTINE XX

188 ? "HIT RETURN TO READ SECTOR ";FRM

SECIINPUT B*

198 Z=USR<1536)

288 REM XX SET WRITE SECTOR XX
218 POKE 778,T0SEC-<INT<T0SEC/256)X256

):POKE 779,INT<T0SEC/256)

228 ? "HIT RETURN TO WRITE SECTOR ";TO

SECiINPUT B*

238 POKE 778,WWRITE

248 Z=USR<1536)

-22-

reason for this will be explained later).

Where you move your directory in this

range is not important, but it must be to

unused sectors. Figure 4.5 contains a

program that will tell you if the sector is

free.

For the sake of simplicity, let's say

you decide to move your directory to sector

501 through 508. To do this, you would run

the sector mover (figure 4.4) and move

sector 361 to 501. Then, run again and

move 362 to 502, etc. until you reach 368 to

508. You are then ready for step 3-

Step 3: Alter DOS to point to your new

directory. Changing DOS is very easy if

you know what to do. In this case, we will

change DOS to point to our new directory

with just one POKE. Since DOS is stored in

memory, we can change it by changing

these memory locations. To cause DOS to

look at our hidden directory, we will POKE

location 4226 with a new value. It normally

contains 105, and this tells DOS to look to

sector 361 for the directory. To compute the

new value to POKE into this location, just

use this formula:

New POKE value = 105 + (hidden directory

sector number - 361)

In our example we moved the directory to

start in sector 501, so our new value to

POKE would equal 245 (= 105 + (501 - 361)).

-2 3-

FI GURE

IB REM XX ROUTINE TO CHECK IF SECTOR

IS USED XX

28 REM

38 REM X NOTE; TO CLEAR UNUSED SECTORS

48 REM X START WITH FORMATTED DISK

58 REM X AND COPY YOUR FILES TO IT

68 FOR 1=1536 TO 1540:READ X:POKE I,X:

NEXT I

78 DATA 184,32,83,228,96

88 DIM A»<128),B«<128)

98 REM XX CLEAR STRINGS XX

188 A*(1,1)=CHR*(8):A*(128,128>=A*:A*<

2,128)=A*

118 B*<1,1)=" ■!B»(128,128)=B*!B*<2,12

8)=B*

128 DRIVE=lsPOKE 769,DRIVE

138 RREAD=82:P0KE 778.RREAD

148 ? :? " WHAT SECTOR";:INPUT SECN

158 POKE 778,SECN-<INT<SECN/256)X256):

POKE 779,INT(SECN/256)

168 ADRA=^DRCB*> :POKE 772,ADRA-<INTCAD

RA/256)X256):POKE 773,INT<ADRA/256)

178 Z=USR(1536)

188 IF A«=B» THEN ? " SECTOR IS FREE":

GOTO 148

198 ? "SECTOR IS FULL":GOTO 148

-24-

So you would use this statement to change

DOS to point to our hidden directory:

POKE 4226, 245

The reason why we can only move the

directory to a certain range of values, is

because of this POKE. The minimum value

you can POKE is 0 and the maximum is 255,

that is why our directory has to be hidden

within these 256 sectors.

Step 4: Write altered DOS files to disk. In

order to make the modification to DOS

permanent, we must rewrite the DOS files.

To do this, just type DOS and press return.

If your directory was moved properly, the

DOS menu should appear. If the menu does

not appear, go back to step 2 and try

again. For those who made it to DOS, type

H (write DOS files). This will write your

modified DOS to the disk, so your programs

can find the hidden directory.

Step 5: Destroy or change old directory,

VrOC and DUP.SYS file. Now comes the time

to burn our bridges behind us. First turn

your computer off and then back on and

thoroughly test your programs. They now

use the hidden directory. Next, we will

delete or alter the old directory, V FOC r»nd

DUP.SYS files.

If you are not familiar with the

DUP.SYS file, this file is created when you

write DOS files, and must be deleted in

order to protect your programs. The

DUP.SYS is used to load the DOS menu. The

-25-

DOS menu could point a pirate directly to

your hidden directory. To delete it, load

the DOS menu from another disk, then

return your disk to the drive. Use option D

to delete the DUP.SYS file.

Next, let's get rid of the old (real)

directory so others won't be able to find

your programs. The easiest way to protect

it is to delete it. Once again, use the

sector mover (figure 4.4). This time, copy

sector 720 (or any blank sector) to sectors

361-368. This will delete the old directory.

Advanced users may wish to just delete

certain files and leave others intact so that

your users could list or copy them. To dc

this, you would need to understand and

modify the old directory. Figure 4.2 should

be a big help in doing this. Keep in mind

that the directory is not used by your

programs, your programs use only the

hidden directory.

The final step is to change your VTOC.

The VfOC is used when a DOS command J

(duplicate disk) is issued. This command

copies all sectors which the VTOC shows to

be full. Fortunately, there is a very simple

way to make the VTOC say 707 free sectors

(a blank disk). Again, we need our sector

mover (figure 4.4). The trick is to copy the

VTOC from a blank, formatted disk onto our

disk's VTOC. The VTOC is stored in sector

360, so just insert a blank formatted disk
in the drive and tell the sector mover to

move sector 360 to sector 360. Then read

sector 360 from your blank disk, and switch

disks to write it to your program disk.

Now your disk is complete. I recommend

-26-

that you thoroughly test it again. Now boot

up another disk in your drive and go to

DOS. Then insert your protected disk into

the drive and type A (display disk

directory). Surprise! Your disk says there

are no files and 707 free sectors, but it

still runs your programs perfectly.

-2 7-

CHAPTER 5

BAD SECTORING

WHAT IS A BAD SECTOR?

A bad sector is a term often used by

software producers trying to protect their

software and by pirates. A bad sector is

basically a sector on a disk which cannot

be read accurately by the disk drive. This

can be an unformatted sector, a sector that

was written with a misaligned disk, a

sector that was partially overlaid (usually

caused by incorrect disk speed) or a sector

that was physically or magnetically

damaged. I will go into these further, but

first, let me deal with the most common

misconception about bad sectors and

creating bad sectors. The most often asked

question about bad sectors is, "Can't you

just store bad or random data in a sector

to create a bad sector?" The answer is,

"No", since the data on a disk is stored as

binary 0fs and l's, any pattern of them is

valid and can be read by a disk as long

as they are properly placed. In other

words, it makes no difference to the disk

drive what data is stored in a sector. If it

can be read accurately, it is considered to

be a good sector.

Another common misconception deals

with creating bad sectors. People under

stand that an unformatted sector is bad

(this is correct), and say that they can

just format the sectors they want to be

-28-

good, and leave the others unformatted (to

be bad sectors). Unfortunately, this cannot

be done with the standard ATARI disk

drive. The standard ATARI disk drive

accepts only four commands. They are:

READ SECTOR, WRITE SECTOR, CHECK STATUS

and FORMAT DISK. Because the drive has

its own 6507 microprocessor, it controls the

actual functions involved with the four

commands. The details of how to perform

these functions is stored on a ROM chip in

the disk drive. When a format disk

command is sent to the drive, it takes over

and formats the entire disk. Even turning

off the computer will not affect the

formatting. About the only way not to

format the entire disk with an unmodified

drive is to turn off the disk drive during

the formatting process. This is difficult to

control, but is sometimes effective in

creating bad sectors.

HOW BAD SECTORS PROTECT SOFTWARE

Most ATARI users are aware that bad

sectors are used to prevent the copying of

disks, but wonder how they achieve this. A

little history of protection techniques would

help clear this up. For a long time, hidden

directories and other disk protection

methods explained earlier were the only

methods available (and for that matter,

needed) to prevent disk piracy. As sector

copiers began to be readily available, it

became obvious that some new method of

copy protection was needed. It was known

that the sector copier would duplicate all

-29-

readable data on a disk (at that time), so

the problem became how to stop a copy from

running. It was reasoned that the program

had to have some way of telling if it

resided on the original disk or a copy. The

original disk had to have some

characteristic that could distinguish it from

a copy. Bad sectors fit the bill perfectly.

The original disk could have a bad sector

that could be checked by the program. In

other words, the program would be able to

tell if it resided on the original disk by

checking for the bad sector. The program

would run as usual if the bad sector was

found, but if it didn't find the bad sector,

it would know that it was on a copy disk

and take some appropriate action (e.g. lock

up the computer, attempt to format the

disk, etc.).

CREATING BAD SECTORS

For a medium to large scale software

producer, the best way to create bad

sectors is to purchase custom hardware or

special modifications for the 810 disk drive

'See appendix "A11 for a list of companies).

For small scale software producers, there

are several ways to create bad sectors

without special hardware. Also, one should

know of the techniques presented below

because they are sometimes used by

software pirates to create bad sectors. Once

a bad sector is created on the original

disk, most disk duplicating companies can

-30-

make batches of them easily (see appendix

"A") which saves the small software

company from having to recreate the bad

sectors on all their disks to be distributed.

As mentioned earlier, there is no way

to create bad sectors with the standard 810
disk drive from software alone, however,

there are some special techniques that can

be used. One very good method is to use

other small computers to write bad sectors

and tracks. Some computers like the APPLE

and IBM-PC allow you to format single

sectors and tracks. Their formats are not

compatible with ATARI'S, thus resulting in

bad sectors. However, this technique is not

effective if precise control of the bad

sectors is needed, and you must have

access to and knowledge of the other

computers to use this method.

Another method is to physically damage

the disk, i have seen this technique used

successfully, but it has major drawbacks.

Basically, you map out the disk, and using

a pin or other sharp object, physically

damage the sectors that should be bad.

Needless to say, hitting the right sector is

very difficult, and permanent damage to

the disk must be done. A very similar

technique is to magnetically damage sectors

on the disk using a powerful magnet or a

picoelectric device. This saves the disk

from permanent damage, but it is even

harder to place the bad sectors precisely

where you want them.

-31-

Another technique sometimes used is to

alter the read/write head alignment on your

disk drive. This technique works but I

strongly ' warn against using it because

readjusting your alignment properly

requires an oscilloscope, and a disk with

improper alignment is usually incompatible

with a properly aligned disk drive.

Finally, there are two techniques which

are effective and relatively easy to use to

create bad sectors. The first technique

involves attaching a piece of tape to your

disk jacket so that when the disk is

inserted in the drive, the tape sticks out

the door. Essentially, you shake the tape

(which is attached to your disk cover)

while a program is continually writing and

reading the sector you wish to destroy.

This technique works but can take as long

as 10 minutes to write a single bad sector.

The other technique involves adjusting the

speed of your disk drive. This method is

fast and very precise. It enables you to

write as many bad sectors as you wish

without doing any permanent damage to

& to

your disk. Your drive must be slowed to

approximately 220 RPMs (so you can just

barely write a sector without an error).

Then, you have the disk write the sector

you wish to destroy. When your drive is

adjusted back to normal speed, those

sectors will be read as bad sectors.

The optional software disk (ordering

-32-

information in back of book) that goes with

this book contains programs which makes

writing bad sectors by these methods

easier.

CHECKING FOR BAD SECTORS

Obviously, to use bad sectors as a

protection technique, the program must

have some way to check for them.

Fortunately, this is a simple process.

Figure 5.1 shows a simple BASIC program

that will help with this. All it does is read

a sector, check the status byte and display

a message saying if it got an error or not.

Figure 5.2 contains a modification to

the program that will cause the computer to

lock up if the sector is good, but continue

if reading the sector, returned an error

code. This routine can be used in your

program to verify a bad sector. To use it,

just insert this routine at the beginning of

the program you wish to protect, then

create a bad sector on the disk at the

location checked in the program (currently

set to sector 710 but can be changed to

whatever sector you wish). Now the program

will run only on disks that get an error

trying to read the specified sector.

Note that this program will register any

error in the attempt to read the sector.

This means that if the disk drive is turned

off or the disk is removed before the read,

the program will continue to run as usual.

-33-

FIGURE 5-1

18 REM XX ROUTINE TO CHECK BAD SECTORS

28 DIM AS<128>

38 REM

48 REM XX SET DRIVE XX

58 DRIVE=1:POKE 769,DRIVE

68 REM

78 REM XX SET COMMAND TO READ XX

88 RREAD=82:P0KE 778,RREAD

98 REM

188 REM XX GET SECTOR NUMBER XX

118 ? "NHAT SECTOR ";:INPUT SECN

128 POKE 778,SECN-<INT<SECN/256>X256>!

POKE 779, INT<SECN/256>

138 REM

148 REM XX SET ADDRESS TO STORE SECTOR

AT XX

158 ADRA=ADR<A*>:POKE 772,ADRA-<INTCAD

RA/256)*256>:POKE 773,INT(ADRA/256)

168 REM

178 REM XX SET UP CALL-CIO ROUTINE XX

188 FOR 1-1536 TO 1540:RLAD XrPOKE I,X

:NEXT I

199 DATA 184,32,83,228,96

288 REM

218 REM XX EXECUTE CALL-CIO ROUTINE XX

228 Z=USR(1536)

238 REM

248 REM XX CHECK STATUS CODE XX

258 STTUS=PEEK(771)sIF STTUS=1 THEN PR

INT "SECTOR WAS GOOD":END

268 PRINT "SECTOR WAS BAD'sEND

-34-

IGURE 5.

18 REM XX ROUTINE TO LOCK-UP COMPUTER

IF CHECKED SECTOR NOT BAD

28 DIM A«<128)

38 REM

48 REM XX SET DRIVE XX

58 DRIVEN 1:POKE 769,DRIVE

69 REM

78 REM XX SET COMMAND TO READ XX

88 RREAD=82sP0KE 778,RREAD

98 REM

188 REM XX SET SECTOR NUMBER TO 718 XX

118 SECN=718:POKE 778,SECN-<INT<SECN/2

56>X25<4> :POKE 779, INT<SECN/256>

128 REM

138 REM XX SET ADDRESS TO STORE SECTOR

AT XX

148 ADRA=ADR<A*>:POKE 772,ADRA-<INT<AD

RA/256) X254> : POKE 773, INT<ADRA/25<S>

158 REM

148 REM XX SET UP CALL-CIO ROUTINE XX

178 FOR 1=1536 TO 1548:READ X:POKE I,X

:NEXT I

188 DATA 184,32,83,228,96

198 REM

288 REM XX EXECUTE CALL-CIO ROUTINE XX

218 Z=USR<1536)

228 REM

238 REM XX CHECK STATUS CODE XX

248 STTUS=PEEK<771>:IF STTUS=1 THEN ?

"COPY DISK DETECTED":X=USR<8)

258 PRINT "PROGRAM RUNS NORMALLY"sEND

-35-

To prevent a pirate from using this

technique to trick your program, it is a

good idea to read a good sector after

checking for the bad sector and bomb the

program if this sector is not good.

Essentially then, you first check the bad

sector and bomb if it is not an error, then

check the good sector and bomb if it is an

error.

Now is a good time to mention hiding

the protection code. Hiding protection code

comprises a set of techniques which

disguise your protection functions to help

prevent a pirate from finding and removing

the protection code. These techniques are

discussed in detail in the next chapter.

The importance of these methods cannot be

overemphasized because if a software pirate

can find and disable the protection in the

program, this unprotected version can

quickly spread through pirate circles.

CONCLUSIONS

Although bad sectoring is the most

widely used protection technique, it has a

major drawback. The drawback is that bad

sectors can be created by anyone who

knows how with just a standard 810 disk

drive. This means that a pirate can copy

the original disk (with a sector copier) and

then create bad sectors on the copy

wherever they were on the original. This

would create a working copy, because all

36-

the checks for bad sectors would yield the

same results as the original* Needless to

say, this technique is spreading fast

through the pirate community and will soon

make bad sectoring only effective against

novice pirates. However, keep in mind that

this protection technique can be applied by

even the smallest software producers with

the most limited resources, and when

combined with some of the other methods

discussed, is still effective against many

pirates.

-37-

CHAPTER 6

HIDING PROTECTION CODE

In order to adequately protect software

you must understand the techniques used by

software pirates. One of the main

techniques is called "hand breaking of the

protection code11.

Breaking Code by Hand

Hand breaking of software is one of the

most powerful software copying techniques.

This technique can copy programs using

virtually any protection scheme and is

considered practically impossible to stop.

Breaking the code by hand is also the most

difficult and time consuming copy technique

used, and requires advanced knowledge of

6502 assembler and software protection tech

niques. The first step in using this

technique involves listing the BASIC code or

disassembling the machine language

program. A disassembler takes a program

(or section of a program) from disk, tape,

or memory and converts it into assembler

language. Converting the machine language

into assembler language makes it much

easier to read and understand, but it is

still very difficult to find the protection

instructions.

Some disassembler and debugger

packages have advanced features which can

make the process easier. A string search

can be a great help in finding things like

disk reads or status checks. A string

-38-

search, searches memory (or disk, etc.) for

a selected number or string of numbers. A

sector editor lets you read a sector from a

disk and change the contents of it. A

tracer lets you follow the program step by

step. There are also many other utilities

and tools that aid the pirater in finding

and eliminating the protection techniques.

Once the code is listed and the

protection steps found, the software pirate

makes a "fix" to the program to bypass the

protection. There are many ways to

eliminate the protection once the code is

found. Let's say the program checks for a

bad sector in sector 700. One way to "fix11

this would be to make it read sector 1,000

(a sector that does not exist) instead. This

would return an error no matter what disk

it reads. Another way would be to jump

over the protection instructions, bypassing

the check altogether. Still another way is

to put a break in the code that would wait

for a keystroke before continuing. Then,

while running, the program would stop at

the break and pause until a key is hit.

This would give you time to turn off your

disk drive so that it would get a bad

sector status no matter what sector the

program reads.

Although stopping an experienced and

determined software pirate who can break

programs by hand is extremely difficult, it

must be attempted because this kind of copy

is the most costly to sales. Once a program

is handbroken to eliminate the protection

techniques, anyone with a sector copier can

copy it. In other words, once broken, any

-39-

number of copies can be made very easily

and this unprotected pirated version can

spread through circles of pirates extremely

fast.

Hiding Protection Codes

Because hand breaking of protection is

such a dangerous weapon in the pirate

arsenal, it warrants major measures to stop

it. The best way a software producer can

do this is by making it very difficult to

find and "fix11 the protection code. This

section will cover ways of hiding the

protection code. This process disguises

portions of the program in order to lead the

would-be pirate astray and to make his job

much harder.

Protection code is best hidden in an

assembly language program, however, it is

possible to use some of these methods in

BASIC also. This section is geared mainly

to those who are familiar with assembly

language programming.

The first goal is to stop a simple string

search from finding your protection and to

prevent the disassembled program's

protection methods from being obvious. A

good example to demonstrate this is in

checking for a bad sector. Normally, when

a program checks a bad sector, it would

call the CIO function of the operating

system. A simple assembly language

statement to do this is:

JSR $E453

-40-

This instruction shows up as a series of

hexidecimal numbers in memory (which is

the machine language equivalent of the

instructions). A pirate searching for

instructions that check for bad sectors,

would see this instruction in the

disassembled code and immediately study it

to see if it is the protection code. The

techniques presented below show how to

hide this and other instructions so that

they don't show up in a disassembly or

string search. In general, these methods

create the instructions only after the

program begins executing. This process is

referred to as Mself modifying code11.

Self Modifying Code: There are many ways

to make programs self modifying. Perhaps

the simplest is by overlaying your

instructions. Using this method, the

program could have an innocent instruction

like STA $0000 that would be converted to a

disk read (a ClO call) after the program

begins executing. To do this, the program

could store the numbers representing the

disk access call (32,83,228 decimal) into

the memory locations where the STA $0000

currently resides. These store instructions

could be mixed in with other routines and

separated from each other to help hide what

they are doing. Only after the program

begins running would the innocent STA

instruction be transformed by the program

into the call CIO instruction. Using this

simple technique to disguise a few of the

protection instructions makes the pirate's

job a lot harder.

-41-

Another way to make your program's

protection harder to decipher is through

indirect addressing. Indirect addressing is

where the instructions point to an address

which in turn points to another address to

complete the instruction. Heavy use of

indirect addressing can help make the

program much more complex for the pirate.

A tricky method to have your program

create its own instructions is called

"adding instructions11. As you know, all

instructions are stored in the computer as

binary numbers. There is nothing forcing

you to just move them to their locations.

The instructions can be created by adding

numbers together and storing them in their

proper locations. A variation of this would

be adding (or subtracting) numbers to

other instructions to transform them to new

instructions. In this way the code for a

particular instruction or address is not

even in the program until the instructions

which create it are executed.

Probably the trickiest and hardest to

decipher method of making self modifying

code is combining areas of memory or disk

sectors. This method uses two separate sets

of meaningless numbers and combines them

to create the program instructions. This

combination can be done by ORing, ANDing,

Exclusive ORing, etc. (these terms refer to

assembler language instructions). Let's say

for example, that two sectors on a disk

contain what appears to be meaningless

data. The program could read them into

memory and then Exclusive OR (see glossary

for definition) them together to create a

-42-

whole sector of instructions at one time. To

use this method, the programmer must

carefully set the sectors up so that they

will combine to form. the proper

instructions. If you wish to get really

devious, you would disguise the

instructions that do the combining also.

Needless to say, these techniques make

finding the protection in a program much

harder for the pirate.

To the average reader it may seem that

the techniques presented above would

prevent anyone from deciphering and

removing the protection from a program. If

you believe this, you are underestimating

the skill and determination of advanced

software pirates. To discourage the true

diehards requires additional measures

designed especially to wear down and

antagonize your pirate adversary.

Layering Your Protection: This technique is

similar to methods used to keep prisoners

in jail. The bars on the cell represent only

the first layer of protection. The would-be

escaper must then get past the guards, get

out of the building and finally, past the

main wall. Software protection can use a

similar form of layering.

After the pirate breathes a sigh of

relief, convinced he has finally found and

disabled the protection, it can be very

discouraging to find that the program still

won't run. Instead the pirate must deal

with layer 2 of protection, etc. A good way

to layer your protection is with

••checksums11. Checksums refer to adding up

-43-

certain areas of memory and comparing

them to a stored value. To use this method,

you could add up the memory locations

which store your protection instructions and

store the number in your program. Then,

when the program runs, it could add these

locations and compare it to the number you

stored. If the pirate changes the protection

instructions, they would no longer add up

to the required number and the program

could bomb. In other words, this method

protects against someone changing your

protection code. Of course, the pirate could

then alter the checked value to reflect his

changes, but this would add a whole new

layer of protection which he would have to

disable. You should now be convinced that

hand breaking of your protection can be
made very difficult, but here is one last

technique to harass the pirate.

Wild Goose Chases: Different forms of this
technique have been used effectively for

centuries. It involves planting extra code

in your program to deliberately lead the

pirate on a wild goose chase. This could

also be used to disguise the program
further or just to lead the pirate astray.

Conclusion: All this probably seems like a
lot of work to protect your program, it is.
But, if it's any consolation, remember that
the pirate may have an even harder time
deciphering your work than you had

creating it. Also, hiding the protection

code fights the most dangerous form of

-44-

piracy. As stated earlier, if the protection

is removed from a program just once, that

copy can spread through the pirate

community at a very rapid pace. Again,

remember that no matter how clever you are

in protecting your program, there will be

someone who can break it.

-45-

CHAPTER 7

MISASSIGNED SECTORS

WHAT ARE MISASSIGNED SECTORS?

Misassigned sectoring is one of the most

powerful disk copy protection techniques

available today. There are very few people

and almost no utilities (short of major disk

drive modifications) that can successfully

copy software protected by this method.

Misassigned sectors (also known as custom

formatting or duplicate sectors) are sectors

with incorrect sector ID data assigned to

them. This is a difficult concept, so 1 will

start by explaining the normal disk format.

Each normally formatted disk has 40

tracks which are concentric circles or

bands of data (see diagram 7.1). Each
track has 18 sectors on it arranged in

various orders, depending on the disk

drive. A track also contains a 19th slice

that serves as an index to define the start

of each of the 40 tracks, (see diagram 7.2)

Each sector contains 128 bytes of user data

that can be read and written through the

normal programming methods.

In addition, each sector contains 44

bytes of ID data that can only be* used

internally by the disk drive. This ID data

is written and maintained by the drive's

Floppy Disk Controller or FDC (the disk

drive's internal controller) and is the key

to misassigned sectors. The 44 bytes

contain the following information:

1. a sector number

-46-

F1QURE 7.1

TRACKS

FIGURE 7.2

-47-

2. a track number

3. CRC's (cyclic redundancy checks)

4. a data mark

5. filler data

Misassigned sectors work by altering

the sector ID data in ways that cannot be

done on a standard 810 disk drive.

Normally, the sector and track numbers are

written when the disk is formatted and

cannot be changed. The CRCs are

automatically generated by the controller

during every write operation and are used

to verify the data when the sector is read

(it works much like a checksum). Similarly,

the data mark (normally a hex $FB) which
is used to mark the start of the user data

(the 128 bytes you are familiar with) is
created automatically by the controller.

There are three basic types of mis

assigned sectors and all can be created by

changing selected parts of the sector ID

data. The types of misassigned sectors are:

forced CRC errors, bad data marks and

duplicate sectors. As their name suggests,

forced CRC errors are sectors in which the

CRC bytes do not match the data. Normally,

this would signal what is called a soft

error. When a soft error occurs, the system

reads the data again to see if it can get a

matching CRC. The disk drive does not

grind (as with bad sectors) but will

usually read the sector four times and seem

to slow down. A bad data mark is a data

mark other than the standard $FB and also

causes a soft error. Duplicate sectors are

the trickiest to use and detect.Normally,

the sectors on a track are numbered 1

-48-

through 18, however, a disk using

duplicate sectors might have 2 sector 17fs

for example. When a track has more than

one sector with the same sector number, it

is referred to as a duplicate sector.

HOW MISASSIGNED SECTORS

PROTECT SOFTWARE

As with bad sectors, misassigned

sectors allow the program to identify the

original disk vs. a normally formatted copy

disk. But the misassigned sector can also

go further by causing copies to be missing

whole sectors of data.

The program can check for the presence

of a CRC or bad data mark error in a

specific sector. If the error is not found,

the program would bomb because it knows it

resides on a copied disk (just like with

bad sectors). However, with both CRC and

data mark errors the data of the sector can

remain intact. This means that the program

can check the error and check (or make use

of) the data on the sector as well. Even the

most creative software pirate can't create a

sector with a bad data mark or CRC which

also has good data using a standard 810
disk drive. Figure 7.3 shows one way a

program can check the data on a sector as

well as its status.

Duplicate sectors are a bit harder to

understand, so here is a simple example of

how they might be used to protect a disk.

Say the original- disk is custom formatted to

contain two sector 17fs. One of them has

data and one is all zeros. A simple way for

-49-

I GURE 7" . 3

18 REM XX ROUTINE TO CHECK DATA AND

STATUS OF A SECTOR XX

28 REM

38 REM XX SET UP CALL-C10 ROUTINE XX

48 FOR 1=1536 TO 1548:READ X:POKE I,X:

NEXT I

58 DATA 184,32,83,228,96

60 DIM A*(128),B*<128)

79 a*=" ":A*<128>=" ":A*<2)=A*

88 REM

98 REM XX SET DRIVE XX

188 DRIVE=1:POKE 769,DRIVE

118 REM

128 REM XX SET COMMAND TO READ XX

138 RREAD=82:P0KE 778,RREAD

148 REM

158 REM XX SET SECTOR NUMBER XX

168 ?" HHAT SECTOR";:INPUT SECN

178 POKE 778,SECN-<INT<SECN/256)X256>:

POKE 779,INT<SECN/256>

188 REM

198 REM XX SET ADDRESS TO READ XX

288 ADRA=ADR<A$):POKE 772,ADRA-(INT(AD

RA/256)X256):POKE 773,INT<ADRA/256)

218 REM

228 REM XX EXECUTE CALL-CIO ROUTINE XX

238 Z=USR(1536)

248 IF PEEK<771)=1 THEN 278

258 IF A*<1,27)<>"SECTOR MUST MATCH TH

IS DATA" THEN 278

268 ? "PROGRAM RUNS BECAUSE SECTOR

IS BAD BUT DATA IS GOOD":END

278 ? "PROGRAM COULD BOMB BECAUSE

SECTOR IS NOT RIGHT":END

-50-

the program to be sure it resides on the
orignal disk is to read sector 17 twice in a

row and compare the results. On the

original custom formatted disk, the first

read would get one sector 17 and the second

read would continue on the disk and get

the other. Comparing them would show they

are not the same, and the program would

proceed as normal. On a normally formatted

disk (with the program copied on it),
however, there is only one sector 17, so

reading it twice would get the same sector

both times. If the program finds the two
reads are the same, it could end or lock up

the keyboard, because it would know that

it resides on a copied disk. Figure 7.4

contains a simple BASIC program that can

check for a duplicate sector.

CREATING MISASSIGNED SECTORS

Misassigned sectors cannot be created

using a standard, unmodified 810 disk

drive. Although this makes the technique

harder for a small software writer to use,

it also means that this technique is very

difficult to break. Special hardware or

major modifications to an 810 disk drive

are needed to create misassigned sectors.

There are several advanced programming

systems costing anywhere from $225.00 to

$5,000.00 for the ATARI that have the

capability to create, or at least copy the

misassigned sectors. There are a few

companies that make inexpensive 810

modifications that allow this. See appendix

"A" for a partial list of companies that sell

-51-

oure: 7" -

18 REM XX ROUTINE TO CHECK MISSASIGNED

SECTORS XX

28 DIM A*<128),B*<128)
36 A»<1,1>="X":A*<128,128>=A*

46 B*<1, 1>="X":B*<128,128)=B*

58 DRIUE»1:POKE 749,DRIVE

68 RREAD=82:P0KE 778,RREAD

78 ?' WHAT SECTOR";:INPUT SECN
88 POKE 778,SECN-<INT<SECN/256>X256> :P

OKE 779,INT<SECN/256>

98 REM

188 REM XX SET ADDRESS TO STORE FIRST

READ XX

118 ADRA=ADR<A*>:ADRAL=ADRA-<INT<ADRA/

256>X256>;ADRAH=INT<ADRA/256>

128 POKE 772,ADRAL:POKE 773,ADRAH

138 REM

148 REM XX CALC POKES FOR 2ED READ XX

158 ADRB=ADR<B*>:ADRBL=ADRB-<INT<ADRB/

256>X256> :ADRBH=INT<ADRB/256>

148 POKE 772,ADRAL:P0KE 773,ADRAH

178 REM XX SET UP CALL-C1O ROUTINE XX

188 FOR 1=1536 TO 1546:READ X:POKE I,X

:NEXT I

198 DATA 184,32,83,228,96

288 REM XX EXECUTE CALL-C1O ROUTINE XX

218 Z-USR<1536)

228 POKE 772,ADRBL:P0KE 773,ADRBH

238 Z=USR< 153<i)

248 IF A*OB* THEN 288

258 Z=USR<1536)

268 REM XX CHECK IF READS ARE EQUAL XX

278 IF A*=B* THEN PRINT "SECTOR WAS 60

OD":END

288 PRINT "SECTOR MAS MISSASIGNED":END

-52-

hardware, services, or modifications that
can be used for misassigned or bad sectors.

One note to large scale software producers,

although misassigned sectors are tricky to
create initially, most disk duplicating

companies can copy them for you with no

problems. So this technique doesn't slow

down large scale production.

HOW PIRATES COPY MISASSIGNED SECTORS

Since special hardware is needed to

create misassigned sectors, software

protected by this method is usually broken

by hand. In other words, manually

breaking the protection codes (see breaking
codes by hand in Chapter 6). There are

several special techniques that help in

hand breaking misassigned sectors. First,

the would-be pirate determines the location

of the misassigned and bad sectors. The

duplicate sectors can be found by writing a

program that reads all the sectors on a

track in different orders, and compares the

results. In other words, first they may

read sector 1 and store it. Then read sector

1 again and compare it to what was just

stored. If they are different, this sector is

flagged as a duplicate sector. Sometimes

the duplicate sectors are right next to each

other and can be missed, so the sectors

must be read in different orders to be sure

all the misassigned sectors are found. Also,

the program does a status check on bad

sectors to see if they have data mark or

CRC errors. Once all the misassigned

sectors are found, the program is disas-

-53-

sembled and debugged with the basic hand-

breaking methods discussed in Chapter 6.
Once again, note that breaking by hand

yields a program that is unprotected and

can be copied by anyone as many times as

they wish.

Another technique used to copy

programs protected with misassigned sectors

is by using special hardware or major disk

drive modifications. In this case, the

hardware enables the user to make an exact

duplicate of the original disk (misassigned

and bad sectors included). This technique

requires no special expertise by the user,

but yields an uncopyable copy. This

technique makes an exact copy of the

original, so the copy itself is protected

from being copied. As mentioned earlier,

the special hardware can cost anywhere

from $225.00 to $5,000.00.

There is also a technique which is not

currently used but may be available in the

future. A company whose name I won't

mention, advertised that their utility will

copy all ATARI software available before a

specified date. They have not yet delivered

on their promise, but basically, their

technique is this. After someone laboriously

breaks each program by hand, the program

fixes are saved on disk. Next, a program

is written which identifies the program to

be copied by the location of bad and

misassigned sectors. So, when a copy is

made, the fixes are put in to make the copy

work. Essentially, they are selling the way

to break the protection techniques on

specific programs. This is close to selling

-54-

the program itself, but is a difficult thing

to prove in court. As stated earlier, the

company has not delivered on their promise

(and has essentially ripped off many

purchasers) but it will be interesting to

see what the legal consequences are if they

do.

PROTECTING MISASSIGNED SECTORS

Protecting mi sassigned sectors is much

like protecting bad sector code. The major

threat here is that someone will break your

protection scheme by hand and distribute

unprotected copies which will spread

quickly through the pirate community. The

best way to prevent hand breaking of codes

is by using the techniques presented in the

previous chapter, Hiding Your Protection

Code. Hopefully, this will make it as

difficult as possible to break the code by

hand so that you will discourage all but

the most talented and diehard pirates.

-55-

CHAPTER 8

ROM AND EPROM CARTRIDGES

ROMs are Read Only Memories. As you

know, the ATARI operating system is on a

10K ROM board, and cartridge games are on

ROM chips varying from 4K to 16K, There
are two cartridge slots on the ATARI 800
and one on the ATARI 400 and 1200XL. The

right hand cartridge slot on the 800 uses

memory locations $8000 through $9FFF
(HEX). The left cartridge slot uses memory

locations $A000 through $BFFF for 4K and

8K cartridges and $8000 through $BFFF for

16K cartridges. When a cartridge is

present, it will disable the RAM (on a 48K

system) that uses the same addresses as the

cartridge. At first glance, ROM cartridge

software is a natural at being difficult to

copy since no simple duplicate tape or

sector copier would work here. However,

reading ATARI'S technical user notes will

tell you most of what you weed to know to

save the cartridge data to disk or tape.

There are also several programs floating

around that do most of the work for you.

Another way is by using an EPROM burner

(more details on this later).

ROM COPY TECHNIQUE I

Essentially, to save a cartridge to disk or

tape, a program dumps the memory

locations (where the cartridge is stored) to

the disk or tape. This data is then usually

converted into a binary load file (some

-56-

cartridge copy programs create these

automatically) and loaded using the binary

load option of DOS. Some programs also

need a special routine to clear out screen

memory before running. Although this

sounds complicated, keep in mind that once

properly saved to disk or tape, an

unlimited number of copies can be made,

just by using DOS, and these spread around

very fast.

PROTECTING AGAINST TECHNIQUE I

The copy technique mentioned above was

effective on all cartridges up until about

the time ATARI came out with Asteroids and

Missile Command. Fortunately for cartridge

makers, a good technique to thwart this

copy method was found. This technique

works by storing numbers into the memory

locations where the program resides, which

make the program bomb (or cause some

error like a background with no player,

etc.). As you know, you cannot store

numbers into a ROM (Read Only Memory) so

this process has no effect on the original

cartridge. However, since the copy is

loaded in from tape or disk and stored in

RAM, this technique will stop it from

running. Here is an example of how this

technique might be used. Note that this

example requires knowledge of assembly

language and so is geared toward the more

technically advanced user. Suppose that in

memory location $A005 a JSR $CD (assembly

language statement meaning jump to

subroutine) is stored. Remember that $

-57-

means the number is in hexadecimal. This

command would be represented by a $20 in

location $A005, a $00 in location $A006 and

a $CD in location $A007. With this

instruction, the program would run

correctly. To protect this program, one of

the instructions in the program might store

zeros in location $A007, so that when it

reached this instruction, the program would

jump there and bomb. So if the program is

on a ROM cartridge, the instruction to store

zeros in location $A007 would be ignored

because you can't store the numbers in

ROM, and the program would execute

normally. If, however, the program was

loaded into RAM from a disk or tape, this

store instruction would alter the program in

RAM and when it hit the JSR (jump to

subroutine) it would bomb because there

would be no subroutine there.

Using this protection technique makes

copying the ROM cartridge much more

difficult because you would need a good

assembly programmer to find the instruction

causing the error. Of course, this methoc

can be made even more effective by hiding

the protection instructions. The techniques

to hide the instructions are very similar to

those used to hide disk protection ins

tructions, and as always, the more

complicated and convoluted they become,

the better your chances are of them not

being broken.

ROM COPY TECHNIQUE 11

This copy method has some drawbacks

-58-

but, all in all, is the simplest and most
effective ROM copy technique being used by

software pirates today. To explain this

technique, I will introduce a new term -

EPROM chip. An EPROM chip is an Erasable,

Programmable, Read Only Memory (also
PROM, Programmable Read Only Memory

chips can be used but cannot later be

erased and revised). EPROMs are just like

ROMs except that the instructions can be

altered using a device called an EPROM

burner. This, figuratively speaking, burns

instructions into the chip and makes it

operate just like a ROM. To erase an

EPROM, just put it under an ultraviolet

light and it is ready for reprogramming.

An EPROM burner with the proper software

can also read the contents of a ROM (or

EPROM, etc.) and store those instructions to

disk or tape. This permits one to strip off

the contents of a ROM cartridge and then

reproduce a duplicate EPROM or PROM

cartridge. This EPROM will operate exactly

like the original. Even the protection

technique mentioned above is totally

ineffective against the EPROM copy. EPROM

burners range in price from $20.00 (in kit

form without software) to several thousand

dollars, but one that would adequately do

the job for ATARI cartridges would cost

about $120.00 to $200.00. That puts an

EPROM burner within the grasp of most

serious computer owners.

PREVENTING ROM COPY TECHNIQUE II

This is a good news/bad news situ

ation. The good news is that to use an

EPROM burner takes a certain amount of

-59-

expertise not everyone has, and the cost

per copy can be quite high. For example,

for a two chip, 8K cartridge, chips

themselves can cost between $3.00 and $9.00

and the board to mount them on can cost

$10,00 to $20.00, not to mention the cost of

the EPROM burner itself. The bad news,

however, is that for those with the time,

money, and expertise to make EPROM

cartridges, there is no effective technique

to stop them currently available. Note

though that the cartridges made by this

method are exact copies, and so offer the

same level of protection as the original. In

conclusion, ROM cartridges remain one of

the best ways to distribute your program

from a protection viewpoint.

-60-

CHAPTER 9

HARDWARE DATA-KEYS

As its name implies, a hardware

data-key is a hardware device. It usually

plugs into the joystick port and can be

"read" by the computer like a joystick or

paddle. A hardware data-key accompanies a

program and must be plugged in for the

program to operate properly. its sole

purpose is to protect the program from

being copied by software pirates. An added

function of the data-key could be to allow

the purchaser protection of his files from

others. For example, if a data base

program is protected by such a key, the

user can use the key to help prevent

unauthorized access to his files. Hardware

data-keys have the potential to be one of

the safest and best protection techniques

used. The purchaser can be allowed to back

up the program as many times as is

needed, but without the data key, copies

are worthless. This means that data-keys

potentially solve one of the biggest

problems with software protection because

they prevent copies from functioning for

pirates, but they allow the purchaser to

have functional backups.

Hew Data-Keys Protect Programs

The simplest way for hardware

data-keys to work is by having the

program check the value passed from the

key and compare it to a value stored in the

-61-

program. If the values passed from the key

are incorrect (meaning no key or a

counterfeit key is present) the program

bombs or self-destructs. A more complex

system might have the key pass several

values or even use a few separate keys

plugged into joystick ports or the serial

interface port.

To have the program checked for the

presence of the key is very simple. Here is

an example of a basic statement that will

check for a simple data-key:

IF PADDLE (1) NOT = 100 THEN NEW

If paddle (1) or a data-key passing in

equal value is not set to 100, then the

program will erase itself from memory. A

more complex key might require statements

like this:

10 IF PADDLE (0) = 210 AND PADDLE (I) =

80 AND STRIG (0) = 1 THEN XX = 1

20 IF XX<> 1 THEN NEW

These statements would check a data key

for three separate values before allowing

the program to proceed. As you see,

checking a data-key (in a joystick port) is

just like reading values from paddles and

joysticks, but a data-key can pass several

values at once that would be impossible to

duplicate with the standard controllers.

Building Data-Keys

Construction of a data-key varies

-62-

depending on the desired functions. To
understand data-key construction, you must
understand how values are read from the

controller jack. Diagram 9.1 shows the pin

arrangement of a controller jack. As you

can see, the different pins can be used to

read separate values from whatever is
plugged into the jack. The joystick and
trigger pins can only be used for a simple

on or off input, but potentiometer A or B

(the paddle inputs) can read a resistance
value between 0 and 228. Using all joystick
and paddle inputs together give a total of
1,611,504 possible combinations from each
controller jack. A typical data-key might

be two resistors encased in plastic and
attached to a standard joystick or paddle
plug (see diagram 9.2). These resistors
would act like a pair of paddles

permanently set to certain values. Wires

could be run to the joystick pins if you

wish to check for additional values from

the data-key. As diagram 9.1 shows, a
single joystick port can check many

separate values at the same time. For

added protection, the software could

require two or more data-keys plugged into

separate ports simultaneously. The key

should be constructed in such a way that it

is difficult to take apart and study.

Encasing the parts in plastic or a

permanently sealed casing is very good for

this. If mass produced, these keys should

cost under 50tf to make. Keeping the cost

low is important, since these costs wind up

being passed on to the consumer.

-63-

FIGURE 9.1

Controller Jack Pin Functions

2 3 4 5

7 8

1) Joystick Forward 6) Trigger Input

2) Joystick Back 7) +5 Volts

3) Joystick Left 8) Ground

4) Joystick Right 9) Pot A Input

5> Potentiometer B Input

FIGURE 9,2

-64-

Copying Data-Key Protected Software

A single data-key is like a lock with

1,611,504 possible combinations. For a
pirate to determine the correct one by trial

and error would take years. This fact has

lead many to believe that the data-key is

an ideal solution to prevent piracy.

However, this logic has a serious flaw. It

is true that trial and error methods would

be futile, but a software pirate has an

easier way to break the code.

Ail the pirate has to do to determine

the proper combination of values on a

data-key is run a simple BASIC program

with the data-key plugged into a joystick

port. The program could easily read the

joystick and paddle values and display

them on the screen. This technique would

immediately give away the key's

combination. Fortunately, knowing the

combination alone is not sufficient to

produce working copies of the program

because something is needed to pass these

values to the computer for each copy. The

pirate would either have to build his own

data-key or modify his paddle controllers

to also pass joystick values. Keep in mind

that a pirate could build one key with

switches on it that could be used on any

program requiring a data-key key of this

type.

Another possible way to copy a program

protected by a data key is by breaking the

code by hand (see chapter 6). Once again,

this menacing technique used by pirates

could yield a completely unprotected

-65-

program that could be copied with no need

for duplicate data-keys. The pirate would

find and remove the portions of the program

which check for the presence of the

data-key, then the program would run as

usual.

Preventing the Data-Key Copy Techniques

As mentioned earlier, most data-keys

can be simply decoded by a software

pirate, but he still must somehow reproduce

that key or change the software to bypass

the protection. Once again, hiding the

protection code is the best way to

discourage pirates from removing the

protection. In this case, well hidden

protection code is made more valuable by

the lack of easy alternatives available to

the pirate. No special hardware or software

is available which makes it easy to copy

software protected by data-keys. So,

anyone attempting to copy the software,

must have a good amount of technical

knowledge.

Hardware data-keys also have good

potential for improvement. If a simple and

inexpensive key is built that can accept a

signal from the computer and respond only

after a certain time interval, it would make

the key much more difficult to copy.

Attempts by pirates to read the key's

combination with a program would not work

because the key would not respond until it

got the proper input. An even more

promising technique would be the use of a

microprocessor in the key. This would

-66-

enable the key to perform a complex

"handshake" type of communication with the

computer, and this could stop all but a

very few advanced software pirates.

Conclusions

The use of hardware data-keys for

software protection involves some

trade-offs. It does offer a relatively high

level of copy protection, but it adds cost to

the program and is disliked and

inconvenient for the purchaser. Your

decision on these trade-offs depends on the

particular product and market being

considered, but data-keys should not be

overlooked as a possible protection method.

-67-

CHAPTER 10

LEGAL PROTECTION TECHNIQUES

There are three methods available to

legally protect your program. Of course,

they do not stop someone from copying your

programs, but they do give you legal

recourse should you find a company copying

your ideas or bootleggers selling your

programs. The three methods are patents,

copyrights and trade secrets. Each has

various requirements and gives different

amounts of protection.

Patents. As of March, 1981, in the U.S.

Supreme Court decision of Diamond v.

Diehr, the U.S. Patent Office began issuing

patents for software program inventions.

Before that time, the Office said that

software inventions were unpatentable, but

since then, several software patents have

been issued. These are the first patents

issued in the United States for software and

offer the opportunity for software writers to

license their software for income and get

the tax benefits of long term capital gains.

Basically, a patent is a contract

between the government and the inventor. A

patent gives the inventor the right to

exclude other members of the public from

making, using or selling the invention. In

general, this right lasts for 17 years. After

this period the inventor is powerless to

exclude the public from using or selling the

invention.

The patentor must make public (in the

-68-

patent) enough information to enable one

with "ordinary skill in the art of

invention11 to make and use the patented

invention. This is called the "enabling

disclosure11, and its purpose is to enhance

the public's awareness of new inventions.

The patent for a software program

invention has three parts. The speci

fication, a set of drawing figures, and one

or many claims.

The specification is the main body of

the text and explains what field the

invention is in and what problems it

solves. The specification usually emph

asizes the advantage of using the invention

such as reduced costs, greater accuracy,

increased speed, or enhanced productivity.

It also describes how the invention

achieves these things and should teach the

readers about its use.

The drawing figure section has

drawings and charts which help the

specifications explain the invention's

importance. For software patents, this

section usually includes a listing of the

program and flow charts explaining it. It

also contains other charts and diagrams

which help explain the originality or use of

the invention.

The claims section defines exactly what

it is the public is excluded from making,

using or selling. The claims should be a

clear and concise explanation that defines

the invention. The claims are what allow

the inventor to license others to make, use

or sell his invention. Also, they permit the

inventor to obtain licensing fees (royalties)

-69-

that are recorded as long term capital

gains and taxed at a lower rate than

ordinary income.

Almost anyone who writes software,

either independently or for a corporation,

could benefit from the new patent rules.

Keep in mind that only features of programs

and not the programs themselves are

patentabie. Also, the feature must be new

and achieve advantages over currently

existing systems. The U.S. Patent Code

contains the exact criteria that determine

newness. Besides being new, the Patent

Code states that it must be "non-obviousM.

If your idea has significant advantages

over current systems, it can be argued that

it is non-obvious.

Records showing when the idea was

conceived and when it was put into practice

...if it was put into practice) must be kept.

All records should be properly witnessed

and kept safely. For more details on

patents, see the book, How to Protect and

Benefit from your Ideas which can be

ordered from the American Patent Law

Association, 2001 Jefferson Davis Highway,

Arlington, Virginia, 22002.

Copyrights. Software copyrighting is

anothei area that has become much more

effective in the past few years. The

boundaries and interpretation of the law

have been changing very fast. Basically,

software copywriting is very similar to

copywriting books or songs. If you can

prove that someone is copying your

-70-

copywrited program, you can stop them from

copying and recover damages. You are

eligible to receive statutory damages and

attorneys fees, even if you cannot prove

actual damages. If your program is

properly registered and your copyright is

in order, you can collect up to $50,000.00

in statutory damages. A copyright covers

anyone who sees the work and receives

proper notice. To give notice, just clearly

display the copyright in the program and

documentation. Under old copyright laws,

the work had to be published before it can

receive copyright protection, but now

copyright protection begins when the work

is fixed or completed. To apply for a

copyright, the work must be registered with

the copyright office. You must send them a

copy of the source code and documentation.

It is also a good idea to send a copy to

yourself and a lawyer or friend by

registered mail. Leave these sealed so that

the date you did the work can be verified.

Copyrights have proven themselves

effective recently when MicroPro Inter

national won a $250,000.00 suit against

Data Equipment Corporation. They claimed

that Data Equipment violated their

copyright by distributing unauthorized

copies of their programs to customers. In

another case, ATARI was able to show a

copyright violation, even though the

program had been completely rewritten. The

court decided that K.C. Munchkin (North

American Phillips Company) was close

enough to Pac-Man to be a copyright

violation, even though it was by no means

-71-

an exact copy.

Trade Secrets. A trade secret is defined

as something of value that gives the owner

an edge over the competition. It is

generally something not known to the

public. A trade secret can be ideas,

know-how, software or even just information

that the owners can benefit from. The

formula for Coca Cola or McDonald's recipe

for french fries are examples of trade

secrets. Trade secrets are usually state

protected as opposed to patents and

copyrights which are protected Federally.

This means that laws pertaining to trade

secrets can vary from state to state.

Fortunately, all states afford some

protection to software under the laws that

govern unfair competition or breach of a

confidential relationship.

To claim someone violated your trade

secret, you must show that they disclosed

or used the information which they agreed

to keep confidential. If a third party gains

knowledge of your information and the

information is not part of a confidential

agreement, you cannot stop or seek damages

from the third party. In other words, trade

secret protection can be used against

another party provided they agree to keep

your information confidential.

Conclusions. The legal protection

techniques can offer you compensation

should you find your program being pirated

or copied. One great problem, however, is

finding the bootleg copies. Someone

-72-

advertising your software in a national
magazine may be an easy target, but try

finding the U year old kid who makes a
copy for a friend. Even if you could find

him, would you want to prosecute a 14 year
old? If so, how much do you think you can
collect? In conclusion, legal protection
techniques are good protection against
another company attempting to profit from
your programs. For this, I highly

recommend their use, but keep in mind that

they do little to stop the vast majority of
small-time software pirates.

-73-

CHAPTER 11

COERCIVE PROTECTION TECHNIQUES

In this day and age, most would agree

that the best protection methods are ones

that physically prevent copying. The

majority of this book deals with these

methods, however, another major area of

software protection exists. This

miscellaneous group of techniques hope to

prevent illegal copying in a number of

ways. I refer to these as coercive

protection methods since most try to prevent

piracy through psychological means. Some

have had a good deal of success and are

certainly worth using in addition to the

"real11 protection methods.

Serial Numbered Software

Serial numbered software is software

that has serial numbers in the code. The

serial numbers are registered to the

purchaser either at the time of sale or

when the purchaser sends in his warranty

or registration card. The numbers are used

to identify the source of bootleg copies of

the program. If a pirated copy of the

program is discovered, the serial numbers

should lead you back to the original

purchaser. By telling the purchaser (in the

documentation or program) that he will be

responsible for pirated copies found with

his serial numbers, he is hopefully

discouraged from allowing the program to

be copied. The use of this technique to

-74-

discourage software piracy has met with
some success. I know of cases where even a

hard-core pirate would not let some of his
serial numbered software be copied.

The serial numbers should be displayed
and also hidden in the software to be
effective. It is relatively easy for a pirate
to delete the displayed numbers, but the

hidden and/or encoded serial numbers
would be difficult to find. Probably the

biggest problem with this method is
registering the purchasers to the software.

You can be sure that a pirate intent on
spreading copies of the software won't send

in a registration card. The manufacturer

can keep track of those copies shipped
directly to the purchasers, but it is nearly
impossible to keep track of all copies sold

retail or through large distributors. You

may try to induce the purchaser into

registering by offering future updates or

enhancements, but even honest purchasers
frequently neglect warranty and
registration cards.

Protection Through Intimidation

In this technique, the program and

documentation contain warnings to the user
usually saying that this program is

copywritten and that unauthorized copiers

will be prosecuted. The documentation can

remind the purchaser that pirating is

punishable by up to $50,000.00 in fines and

5 years in prison. Sometimes software
manufacturers go as far as to say that

attempts to copy their programs may cause

-75-

damage to the program or the copier's

computer. This can backfire though because

if the purchaser's computer does break, he

may believe that your software is to blame

and cause problems for your company. In

general, pirates draw the line at selling

bootleg programs, but don't fear the

consequences of making free copies for their

friends.

Self-Destructing Code

Self-destructing code is used mainly for

business software when the seller wants to

allow the potential purchaser to try the

program before buying it. The program is

set up to run only a given number of times

and then it automatically self-destructs

(erases or formats itself). The idea is that

the user will try the program and like it

enough to buy it, but if he tries to keep

the sample without paying, the program

will self-destruct. Another use of

self-destructing code is to make copies that

appear to work, but after several uses, the

copy self-destructs.

This method is best suited for disk

software and is relatively simple to

implement. Essentially, the program

updates a counter on the disk each time it

is used, and formats itself when the limit

is reached. Of course, the program must

check to be sure that the disk is not write

protected, as this would stop it from being

able to format or update itself. Writing a

sector then checking the status is all that

is needed to check for write protection.

-76-

Then, if the status is bad, the program
should end and display a message telling
the user to remove the write protect tab
before running.

Unfortunately, there are loopholes in

this method. If the user can copy the

program, he could save one with several

uses left (before self destruction). Then

only run copies of this disk, and when they

near self destruction, he could just recopy

his saved disk again, ad infinitum. I don't

recommend this method because even a

legitimate purchaser can inadvertently
destroy his non-write protected disk.

Freeware

Freeware is a unique marketing concept

invented by Andrew Fluegelman of Tiburn,

California. Essentially, he gives his

products away free and actively encourages

you to make copies for all your friends.

The catch is that the first thing you see

when you run the programs is a notice

asking for a $25.00 contribution if you like

the program. Since you are under no obli

gation to make a contribution, he relies on

the good faith he has created by giving

away the program and on the guilt feelings

he can inspire with the notice at the start

of the program.

Fluegelman has three basic principles

of freeware, they are:

1. The value and utility of software is

best assessed by the user on his/her

own system. Only after using a

program can one really determine

-77-

whether it serves personal

applications, needs and techniques.

2. The creation of independent personal

computer software can and should be

supported by the computing

community.

3. Copying and networking programs

should be encouraged, rather than

restricted. The ease with which

software can be distributed outside

traditional commercial channels

reflects the strength, rather than

the weakness of electronic

information.

If the freeware concept is to be used,

certain legal precautions should still be

taken. The program should still be

copyrighted to prevent others from selling

it, but you should probably issue a limited

license in it that allows the recipient to

use and copy the program for others,

provided that they do not change the notice

asking for contributions. The legal

consequences are not certain, so caution

should be taken in this form of marketing.

The real question regarding the

viability of the freeware concept pertains

to its profitability. Fluegelman claims that

about 2/3 of the people sending him a
blank disk and requesting his program,

end up sending the contribution and he

estimates about 15% of the people who

receive the program second hand do the

same. Depending on the size of the market,

-78-

this could be a significant income and
would easily rival that of protected

programs after pirated versions have

spread. However, many experienced

software producers are skeptical of

Fluegelman1 s claims and believe the concept
has no future. Undeterred, Fluegelman
plans on continuing and expanding his line

of freeware products. Anyone wishing more

information on freeware can communicate
with Andrew Fluegelman and can reach him

c/o The Headlands Press, Inc., P.O. 862,
Tiburon, California, 94920. His CompuServe
ID is #71435,1235.

Selling Unprotected Software

Several companies (mainly supplying

Apple software) advertise their software as

being unprotected, and/or modifiable by the

user. Some take the view that pirates

cannot be stopped, so why waste time

protecting your programs. Others use this

as a marketing technique to encourage

sales. Some just wish to allow users to

make back-ups of their programs. There are

also several variations of selling

unprotected software. Infocomm sells

minimally protected software but sells some

of their programs with extensive and well

done documentation packages that some

people buy even if they can get a copy of

the software free. Other companies just

plead with the purchasers not to copy their

software by explaining the amount of work

that went into making it, etc.

The success of selling unprotected

-79-

software is difficult to gauge, but some

companies claim that they increased sales

by advertising that their software is

unprotected. This also offers a marketing

opportunity for those who are not willing or

capable of protecting their software.

One sure way to make your profit even

writing completely unprotected software is

to write for magazines. You get paid for

the article and program and do not have to

worry about copying. This is also good for

programs without the market potential to

warrant spending money on a sales

promotion, and it can help build a

programmer's reputation. Computer

magazines currently pay about $50.00 -
$120.00 per page for articles and programs,

and offer a software writer a good way to

get started without the worries of

production and marketing.

-80-

CHAPTER 12

RECOMMENDED METHODS OF PROTECTION

The protection methods you choose are

dependent on many factors. These factors

include your intended market, the price of

your product, expected sales volume, your

methods of marketing your product, and

your personal tastes and preferences.

However, certain techniques stand out as

being more secure and have advantages if

they meet your particular needs. Most often

a combination of techniques is best. Legal

methods such as copyrights and cohersive

methods like serial numbered software can

be combined with physical protection

methods like bad sectoring and hidden

directories. This section will discuss the

best of these physical protection methods.

Currently, one of the most secure

methods to sell your software is on ROM

cartridges. Although they can be copied by

EPROM burners, this copy technique is

expensive and creates copies that are as

protected as the originals. Also, if the ROM

cartridge protection techniques (explained

earlier) are employed, then about the only

way to make copies (without an EPROM

burner) is to break the protection code by

hand. Using this method also reduces the

problem of having to provide back-ups

because of the high reliability of the

ROM's, and don't forget that the market for

the cartridges is potentially larger than

that for disks. Keep in mind, however, that

ROM cartridges pose certain restrictions.

-81-

The program must fit in 16K of memory and

your expected sales volume must be quite

large, to offset the high production costs.

If you can handle these restrictions without

significantly downgrading your product, I

believe that ROMs are an excellent

distribution method from the standpoint of

protection.

If you do not wish to fit your programs

on 16K or do not like ROMs for other

reasons, I believe misassigned sectors is

the next best alternative. Although the cost

of special hardware to pirate software

protected with misassigned sectors is

coming down, and its availability is going

up, it is still better than most other

alternatives. Keep in mind that people who

pirate programs using special hardware,

create copies that are still protected.

Next down the line I would place bad

sectoring. There are many people who can

copy programs protected by bad sectoring,

but it is better than nothing and relatively

easy for the software producer to use. If

this method is employed, the bad sectors

should be scattered around the disk to help
discourage people from copying it. Also, be
sure the program only checks for one or two

bad sectors, because any more, and the
disk will load very slow and can really
bother the purchasers.

Probably the easiest to use protection
method is to hide the disk directory and
wipe out the VTOC. Although this only stops
the very novice copiers, it is the easiest
way to create and reproduce disks for a

small software maker since no special

-82-

hardware or hardware adjustments are

needed. Also, this technique at least helps

prevent others from selling your program

with just minor modifications.

The hardware data-key can be somewhat

effective if used with a combination of

other methods, but they add cost to your

program and create an inconvenience for

the purchaser. If your program is so good

that you feel your purchasers will not mind

the extra cost and inconvenience, then

hardware data-keys offer a relatively good

degree of protection for your software.

As stated earlier, a combination of

legal, cohersive and physical protection

techniques is probably your best solution,

but there are certainly cases where it is

very desirable to allow the purchasers to

copy, list and even modify your code. Don't

forget about the possibility that by

modifying your program, others may market

it under their own name with minor

modifications.

There is a major warning that should

be given at this point. Some of the most

well protected programs created are in

widespread circulation among the pirate

community because of internal company

leaks and unprotected copies given to

dealers as demos, etc. By giving a dealer

an unprotected copy as a demo, software

producers are defeating their own

protection schemes. These copies inevitably

wind up in the hands of a software pirate

who distributes them. Many of the best

protected programs become available to

pirates from this source.

-83-

Another way for a company to defeat its

own protection methods is by software

leaks. Many companies (most notably Atari)

have inadvertently allowed unprotected

programs (some still under development) to

leak out through their employees or

visitors. One well known case was Atari's

Centipede which was easily available to

many pirates on unprotected disks almost a

year before Atari's official release of the

cartridge. The point is - don't make it

easy on pirates by releasing unprotected

versions to anyone, and be very careful

about internal leaks.

-84-

CHAPTER 13

THE FUTURE OF SOFTWARE PROTECTION
AND PIRACY

Predicting the future is always hard,
but given the size and scope of the piracy
problem, you can be sure that many new

protection schemes will be developed and
used.

One area which has future potential is
hardware data-keys. Although the current
ones are not very effective, with the cost of

chips falling, you will eventually see

cheap mass-produced data-keys which can

give a high amount of protection. The

data-keys of the future may be

microprocessors that have a complex

handshake signal with the computer that
can be very hard to break. Data-keys or a

new generation of ROM cartridges could

contain memory and even their own

microprocessors that would perform some of

the work needed by the program. These

steps would make the programs extremely

difficult to copy.

Some of the new micro and mini

computers (like Apple's LISA) contain

serial numbers built into the hardware,

which can be checked by the software. This

means that programs could be set to run

only on a specific machine. Serial numbers

are widely used in large main frame

computer systems and will probably become

available in smaller machines. Although

this technique seems to have great promise,

there are problems with it. First, it is not

-85-

necessarily in the interest of micro

manufacturers to use this method since they

benefit from having a lot of cheap software

available for their computers. Secondly, the

software still can be hand broken to ignore

the serial number, and lastly, this method

is not very good for mass marketing items

like games because each piece of software

must be coded with the purchaser's serial

number at the time of the sale.

The future will also see new directions

in dealing with the piracy problem. We may

see such a large market for software that it

could be distributed so cheaply (much like

paperback books) that it pays to buy

originals just for the convenience. The

software could be broadcast over radio or

cable TV channels for a low enough price

that it would be bought rather than copied

(most people purchase cable TV service

even though they can have friends record

the shows for them). Another area that may

grow is data base software. This is

software that is available only on an info

service (like Source or CompuServe). The

future may see fiber optic links giving

such fast response that even certain arcade

type games are possible on these systems.

Other changes may come in the legal

area. There may be a significant

strengthening of the laws dealing with

software, and possibly a crack-down on

pirates. The whole field of software

production on micros will see significant

changes along with the changing computer

environment. The best a software producer

can do is stay up with the most current

-86-

copy and protection techniques and hope to

stay ahead of the game.

Although the information above points

to a brighter future for software producers,

keep in mind that pirates are not standing

still either. Falling hardware prices have

put sophisticated equipment to duplicate

tapes, disks or cartridges within the reach

of the slightly well-to-do pirate. In fact, a

few hundred dollars can buy pirates the

equipment to make exact copies of any

tape, disk or cartridge currently

available. Also, the ranks of the pirate

groups are growing fast. Many loosly knit

pirate clubs have contacts all over the

country, meaning that bootleg software can

spread even faster than most producers can

make it. Even people with no connections

can pick up any computer magazine and

find ads for utilities that can copy most

currently used tape and disk protection

schemes (except misassigned sectoring and

a few others).

Other specters will emerge in the near

future also. The ATARI 1200XL allows users

to change the operating system, meaning

that advanced programmers may come up

with a way to dump memory to tape or

disk, after a program has been loaded, and

the protection checks are done. This also

offers the opportunity to copy ROM

cartridges and alter the operating system

to make them run properly from RAM.

Although the 1200XL makes these .methods

easier, they can be done on an ATARI 800

with hardware modifications.

And so the battle goes on. Software

-87-

producers and pirates will continue to

advance their arts with neither being the

clear victor. Only by actively using state

of the art protection methods can software

producers hope to stay ahead. I am

confident this book can help you achieve

that goal.

-88-

APPENDIX A

Companies selling hardware and/or services

to create or duplicate protected disks,

cassette, EPROM and ROM

ALF COPY SERVICE

1448 Estes

Denver, Colorado 80215

(303) 234-0871
Disk duplication or service for Atari, Apple

and TRS 80

ALPHA SOFTWARE PROTECTION CONSULTING

4435 Maplepark Road

Stow, Ohio 44224

Service specializes in protection techniques

including bad sectoring and misassigned

sectoring. Also disk duplication service.

CAMELON COMPUTING

Department of Physics & Astronomy

Box 119A

Dickenson College

Carlisle, Pennsylvania 17013

(717) 245-1717
ROM and EPROM cartridge boards

EASTERN HOUSE

3239 Linda Drive

Winston-Salem, North Carolina 27106

(919) 924-2889
EPROM burners, software, cartridge boards

and cases.

-89-

ELCOMP PUBLISHING, INC.

53 Redrock Lane

Pamona, California 91766

(714) 623-83U
EPROM burners and boards for cartrige

production.

EXPANSION PRODUCTS CO.

P.O. Box 4217

Mountain View, California 94040

Tape duplication, disk duplication service.

HAPPY COMPUTING

P.O. Box 32331

San Jose, California 95152

(408) 251-6603
Sell inexpensive disk drive modification

packages and software capable of creation

and duplication of disks with bad and/or

misassigned sectors.

HONEYBEAR SOFTWARE

Ed Stewart, Programmer/Consultant

1840 Orchard Lane

Akron, Ohio 44312

(216) 877-4166

Consultant for creation and distribution of

software.

L.E. SYSTEMS, INC.

8642A Spicewood Springs Road #532

Austin, Texas 78759

(512) 258-3828 or 258-0867
Hardware supplies for professional Atari

custom disk production, including

misassigned and bad sectoring, etc. Also

hardware for large scale duplication of

custom disks in quanity.

-90-

MICROSETTE COMPANY

475 Ellis Street

Mt. View, California

(415) 962-0220

Cassette duplication service

MPC PERIPHERALS CORPORATION

9424 Chesapeake Drive

San Diego, California 92123

(714) 278-0630

Cartridge EPROM burners/software

RECORDED PUBLICATION LABORATORIES

1100 State Street

Camden, New Jersey 08105

(609) 963-3000

Disk copy service

-91-

GLOSSARY

Back-Ups: A copy of a program kept for

safekeeping in case the original is

accidentally damaged, lost or destroyed.

Bad Sector; A sector on a disk that cannot

be read without errors.

Bomb: When a program stops functioning

(this can result in a locked keyboard,

etc.). Other similar terms include: crashed,

blow-up, abended, died, blew.

Breaking by Hand: Refers to copying

protected software by manually determining

the protection scheme and changing the

program to remove it or bypass it. This

usually involves LISTING or disassembling

the program.

Breaking Software: The act of duplicating

protected software. You figuratively break

the protection code.

Code: Refers to the program, commands or

instructions (in any programming

language). Writing a program is often

referred to as coding.

Coercive Protection Techniques: Protecting

programs by trying to convince people not

to copy them.

Controller Jack: The socket where the

joystick or paddle is plugged in.

-92-

Copy Protection Method or Technique; A

method used to help prevent people from

duplicating software.

Data-Key; See Hardware data-key

Disassembler; A program that reads machine

language data and converts it to assembler

code that can be more easily understood.

EPROM; Erasable programable read-only

memory. Can be used to make or duplicate

cartridges.

Exclusive PR's; Comparing two binary

numbers and putting out a 1 only if one of

the numbers compared is a 1 and the other

is a 0.

Freeware; A unique marketing concept

where programs are given away but a

contribution is asked for.

Hand Breaking Software; See breaking by

hand.

Hardware-Data-Key; A device used to

prevent a copied program from running.

Usually small and fits into a joystick port.

Usually must be plugged in for the program

to run properly.

Joystick Port: See controller jack.

Legal Protection Techniques: Using the law

to protect your programs.

-93-

Pirate: Someone who tries to illegally copy

software.

Pirating: The act of duplicating software

for illegal use or distribution.

Producers: See software producers.

RAM: Random access memory.

ROM: Read only memory.

RPM: Revolutions per minute. An Atari

disk's normal speed is 288 RPM.

Sector: A 128 byte area of a disk. There

are 18 sectors on a track and 720 sectors

on a disk.

Software Pirate: See pirate.

Software Producers: People who write,

manufacture or finance software.

Track: A complete circle on a disk. There

are 40 tracks on a disk and 18 sectors in a

track.

User: Anyone who uses the program or

computer service.

Write-Protect: A method to prevent accident-

ally writing on a disk or tape. If the notch

on the right side of a disk is covered, the

disk drive will not write to the disk.

-94-

NEW RELEASE

ATARI SOFTWARE PROTECTION TECHNIQUES
BOOK II + DISK II - Advanced Software Protection

Also written by George Morrison

For those who have this book and wish to continue and learn more
about Software protection and back-up methods, this ALL NEW sequel
brings you the latest innovations in this fast moving field. It
explains the new protection methods used by such companies as

23K51Tl?l5SSSSS ^rs?ajso includes compiete reviews and
The Happy Enhancement* The Chip*
The Impossible* The Pill + Super Pill*
The Scanalyzer many others

areu£HH thciiica'!y w,hf they copy' what they won't»howare used, and the details of how they work. Book II also includes
such topics as;

transmitting protected programs logic bombs

copying disks with more than 19 bank-select cartridges
sectors/track Random Access codes

data encryption new trends in software law

phreaking methods sample BASIC + Assembler programs
Program worms on-line security

The Advanced software protection disk (included with Book II)
contains more do-it-yourself protection and analysis programs
including;

automatic program protector forced password appender
custom format detector data encrypter
newest protection demos and more

Check your local computer store or order directly from Alpha
Systems

* denotes products and companies not related to Alpha Systems.

ALPHA SYSTEMS

4435 Maplepark Road

Stow, Ohio 44224

ATARI SOFTWARE PROTECTION TECHNIQUES

The software piracy problem is reaching

staggering proportions. It is estimated that

for each piece of business software sold,

there are two illegal copies. For game

software, the ratio approaches ten illegal

copies for each one sold. The law seems to

be no deterrent to the growing ranks of

software pirates.

Large scale software producers have

been enlisting many complex software

protection techniques to combat the

problem. Now, this book offers everyone the

opportunity to learn-the state-of-the-art in

software copy protection for Atari

computers. By using examples and sample

programs, this easy to understand book is

ideal for advanced programmers down to

beginners just interested in learning more

about their computers.

by George Morrison

Foreward by Ed Stewart

(author of Letterman)

