
22:03 Mitra and Mocky: Near-polyglots and Mocks
by Ange Albertini

Our readers are encouraged to read Abusing File
Formats (PoC∥GTFO 7:6). This is a follow-up with
better classification, leading to the creation of tools
to automate the generation of various kinds of weird
files: mocks, polyglots and near-polyglots. We also
share a tool, Mitra, to help apply these techniques.

The basic idea to abuse files is to make space for
foreign data that will be ignored by parsers. This
can rely on various features of the targeted file for-
mat.

Signature Some formats like MP4 and PostScript
are parsed from offset zero, but they don’t enforce a
magic at that offset. As a consequence, it’s possible
to make a MP4 / PostScript polyglot by abusing the
length of an MP4 atom to encode a PostScript dec-
laration for a dummy function that will cover more
MP4 structure.

A polyglot MP4/PS header starting a dummy
function but also an MP4 free block.

/PostScript/ whitespace then line comment
2 00:00 00 00 % f r e e \r \n % ! P S \r \n

\----MP4 ---\ Declares a comment of length 0x25
4

/PostSc ./ Declares a function name
6 then a line comment

10: / { (% 00 00 00 00 00 00 00 00 00 00 00 00
8 20:00 00 00 00 00 00 00 XX f r e e \r \n) }

\---MP4 ----\ Declares a comment len

The same bytes look quite different when inter-
preted as a PostScript file, where 00 00 00 XX de-
clares the length of a free chunk covering the whole
PostScript.

\0\0\0% free
%!PS
/{(\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\ xXXfree
)}

Starting parsing at offset zero is only a half-
measure against file-format abuse. Only when sig-
natures are enforced at the very beginning will file
format abuse and confusion become impossible.

On the other hand, having a signature for each
frame such as Ogg or ILDA can be superfluous if the
frames are properly length-defined.

Cavities Some formats start with cavities, which
are totally ignored. We used to call these empty
spaces.

A typical example is the ISO format, being a
raw dump starting with empty sectors. This is com-
monly used in IsoHybrid to make a single ISO that
boots either as a thumbdrive or as a CD-ROM.

Another example is the DICOM format, which
by courtesy skips the first 128 bytes of the file. A
magic signature and enforced structure are required
after that range. This is particularly convenient for
TIFF files, since unlike most picture formats, the
eight-byte long Image File Header points to the File
Directory, which points to the image data, so it’s
easy to move the big chunks of structure and data
around the DICOM ones. In short, a TIFF/DICOM
polyglot is easy, and a TIFF/DICOM chimera—
sharing the same image data—is even possible.

Appended data Most parsers will ignore any
further data once the file is considered “complete
enough,” which is determined by whether some kind
of recovery is required or not.

It might be explicit via some kind of terminat-
ing marker. Or it might not, when enough data
is present or by intentionally triggering a parsing
bug to end the parsing. An example of trigger-
ing a recursion exhaustion warning can be found in
PoC∥GTFO 17’s AGC polyglot.

Data added after the end—and ignored—is
called appended data, but it’s rarely mentioned ex-
plicitly in the specifications. It’s simply tolerated.

Some formats actively prevent appended data by
having a footer. A footer can be thought of as a spe-
cific structure required to be at then the very end of
the file such as ID3v1, which is a footer appended
itself to a MP3/Layer3 stream, or the XZ archive
format, which officially enforces a footer to define a
file as complete.6

Other formats like Dicom, Ogg, ILDA or
PCAP[NG] enforce the whole file to follow a given
structure: they’re just pure sequences, sometimes
even requiring a magic signature for each structure
such as ILDA or Ogg. They just go on parsing ev-
erything from the file, and returns an error since it’s
invalid.

6See “The .xz File Format, v1.0.4.”

11

Metadata Since it’s present in the file but not
needed for parsing or rendering the file’s contents,
metadata is a great source of abuse. Many old school
formats have fixed length fields, as hard coding was
the norm back then.

Comments are typically ignored empty space
with typically a set length that is declared before,
and are present in most file formats. Unlike PDF,
XML enforces an encoding for its comments like the
rest of the file, but in general, comments are just ig-
nored, and preserved, no matter their amount, their
length or their content.

Comments are not the only source of abuse. Ex-
tensible metadata with a user-chosen ID, or fields
like file names in an archive can also be used to
store some foreign data. A notable exception is that
in Gzip, the optional comment and file name are
null-terminated, which shows that they’re intended
to store standard text, while the also optional Extra
Field is defined with a 2-byte length.

As a side note, metadata may seem like a perma-
nent risk entirely, and it’s natural to wonder why we
define them officially in every format if they are so
easily abused later. While metadata doesn’t seem
like an initial requirement to keep the format simple
— like the Quite OK Image format — it is even-
tually needed to be able to keep extra information
in the file, which is exactly what happened for the
MP3 files.

At the release of l3enc (the original Mpeg Layer
3 encoder in 1994), the files initially had an l3 ex-
tension, had no file format whatsoever. They were
pure sequences of layer 3 frames, each with their own
frame header with no signature, making them hard
to detect and easy to confuse with other data such
as JPEG segments.

Since there was no way to store any metadata
in L3 files, the compatible ID3v1 footer with a hard
coded length was unofficially defined. More struc-
tures were defined in other clumsy ways around the
L3 stream (Xing, Lame, APE, . . .), showing the
need for proper definition of metadata storage from
the beginning. ID3v2 eventually defined a header,
a magic which gave at last a proper format to MP3
streams.

It’s a shortsighted move to come up with a great
compression algorithm (e.g., MP3, QOI) and define
a way to store some data in a file format without
the ability to extend it with new but optional data
in the future. Even if it means that these structures
can be abused, you can’t have an extensible format

that can’t be abused, and people will extend or fork
your format if not, requiring an extra format that
could have been avoided from the beginning.

Wrappending Some formats don’t tolerate ap-
pended data, but they can end with a parasite-
hosting structure, which acts like appended data,
just wrapped in a declarative structure. Since most
data-storing structures have all their declaration be-
fore their data itself, it behaves like appended data
from the outside, even if the length of the appended
data has to be declared somewhere. It looks like ap-
pended data — ignored but tolerated but it’s techni-
cally an appended parasite — declared and skipped.

Zipper Some formats have very strong con-
straints: a tiny cavity, or very small parasite length
(256 bytes for a GIF). Rather than parasitizing a
whole file, let’s just add the declaration of the file,
a declaration of a comment, and then store the rest
of the file as appended data.

A zipper is a fabric construct of two sliders where
each tooth interlocks with the other side’s tooth. As
an analogy, a zipper is a file construct where each
format comments the other format’s elements, and
each tooth is a parasite for the other format.

The simplest form of a zipper is made of two for-
mats: Format A starts at offset zero, tolerates ap-
pended or wrappended data, and Format B starts
with a cavity. Both formats can be parasitized.

 FileA FileB
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ ∙ ∙
 ├─────┤ ∙ ∙
BodyA │░░░░░│ ├─────┤
 │░░░░░│ │▓▓▓▓▓│ HeadB
 ╘═════╛ ├─────┤
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 └─────┘

12

We parasitize File A with Head B, adding
padding if required. We also parasitize File B with
Body A, wrappending Body B in advance if required.

 ParaA ParaB
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ ∙ ∙
 ├─────┤ ∙ ∙
 ├─────┤ ├─────┤
 │▓▓▓▓▓│ HeadB │▓▓▓▓▓│ HeadB
 ├─────┤ ├─────┤
BodyA │░░░░░│ BodyA │░░░░░│
 │░░░░░│ │░░░░░│
 ╘═════╛ ├─────┤
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 └─────┘

When we merge these files, it looks like this.

 Zipper
 ┌─────┐
HeadA │░░░░░│
 ├─────┤
 ├─────┤
 │▓▓▓▓▓│ HeadB
 ├─────┤
BodyA │░░░░░│
 │░░░░░│
 ╞═════╡
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 └─────┘

Zippers combines various format features (cav-
ity, parasite, appended data) to overcome limita-
tions and make even more weird formats combine.

Mitra is a tool that combines all this knowledge
for 40+ different format, generating hundreds of for-
mat combinations with different strategies.7

Mitra is a simple tool. It doesn’t understand
file formats structure, it just contains the minimum
amount of information to identify and parasitize a
file format. It expects standard files as input!

Abuses

Payload embedding The simplest form of ex-
ploitation is to just embed a payload that doesn’t
need to be a valid file. In this case, use the --force
command line parameter.

The universal example for that is HTML or
JavaScript that can be embedded in most file for-
mats. If the file is too big, the HTML page might
take too long to load entirely. In that case, use
JavaScript to break out of the appended data and
limit the parsing to the web payload only.

Mocks While 7:6 covered file type identification,
it didn’t cover any exploitation. The easiest way to
exploit file type identification is just to give a binary
blob the right signature at the right offset. It could
even happen accidentally. Such a file is a mock file.
A simple example is FF D8, a two byte file that can
be identified as a JPEG image.

Polymocks It’s also interesting to just add a
mock signature at a given offset in a valid file via
any of the previously mentioned techniques.

Mocky is a tool that uses the Mitra library to in-
sert specific filetype signatures at specific offsets to
create polymocks.8 Since programs like file have
so many signatures that they are scanned by alpha-
betic order of their category, it’s possible to predict
which detection will be returned first, and the order
might not be what you’d expect from a threat model
perspective.

Of course, it’s possible to cram as many signa-
tures as possible within the constraint of the target
format, such as this issue, a valid PDF with many
extra mock signatures stored in a standard stream
object. Here is an example of such a polymock file,
with many filetype detections yet no valid content:

0+2 Dos executable
2+2 Arj
4+2 JPEG 2000
6+2 UnicOS
8+4 Symbian
C+4 Sndh
10+4 Nintendo Switch
14+4 Zoo
18+4 Nintendo Wii
1C+4 Rar v1.4
20+4 AFS
24+4 zImage
28+4 PkZip
2C+4 PolyTracker
30+6 SymbOs
36+6 7-zip
3C+4 SoundFX
40+4 VirtBox
46+2 Int 21h
48+4 PkZip
4C+4 ScreamTracker
50+8 Rar v5
58+4 LrZip
5C+8 Plot84
64+7 Rar v4
6D+5 EZD Map

72+6 Xz
78+4 LZ4
7C+4 LZ4
80+4 DICOM
84+C PDF

Dos executable
Arj
JPEG 2000
UnicOS
Symbian
Sndh
Nintendo Switch
Zoo
Nintendo Wii
Rar v1.4
AFS
zImage
PkZip
PolyTracker
SymbOs
7-zip
SoundFX
VirtBox
Int 21h
PkZip
ScreamTracker
Rar v5
LrZip
Plot84
Rar v4
EZD Map

Xz
LZ4
LZ4
DICOM
PDF

..

.. ..

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

5x

6x

7x

8x

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF

0x

1x

2x

3x

4x

5x

6x

x4

7x

x2

8x % P D F - 1 . 4 \n o b jD I C M

03 21 4C 1804 22 4D 18FD 7 z X Z \0

M A P

(

R a r ! 1A 07 \0

P L O T

% % 8 4

L R Z IR a r ! 1A 07 01 \0

S C R SP K 01 02CD 217F 10 DA BE

S O N G7 z BC AF 27 1CS y m E x e

P T M FP K 03 0418 28 6F 01N X S B

R E ~ ^5D 1C 9E A3DC A7 C4 FDN R O 0

S N D H19 04 00 1001 07j P60 EAM Z

00 00

00 00

7git clone https://github.com/corkami/mitra
8unzip pocorgtfo22.pdf mocky.py

13

Running file with --keepreading gives an im-
pressive list of detected formats:

Plot84 plotting file
SymbOS executable v7.z, name: ...
Old EZD Electron Density Map
Zoo archive data , vj., modify: v78 .88+
Symbian installation file
Scream Tracker Sample adlib drum stereo ...
Poly Tracker PTM Module Title: "MZ...
SoundFX Module sound file
Nintendo Wii disc image: "NXSB ...
DICOM medical imaging data
Linux kernel ARM boot executable ...
VirtualBox Disk Image , minor 8653 (MZ...
JPEG 2000 image
ARJ archive data
COM executable for DOS
unicos (cray) executable
data

Mocky has a --combine flag for to try and insert
as many signatures in a file as possible.

file has an extra weakness that it has special
support for tar files before any other format, and can
identify tar files not by their magic, but by the valid-
ity of their header checksum, even without any tar
signature in the file. This is used in this issue too,
so even if the file is a standard PDF starting with
a generic PDF signature, file with no parameter
sees it as a tar archive, even if it doesn’t contain
a magic Tar signature.

Mocky will adjust the tar checksum if used for
a polymock file. Here is such a empty mock.tar
file, detected generically as tar archive even if it
contains no signature at all:

000: 00000000 00000000 00000000 00000000
...
090: 00000000 4 0 0 00 00000000
...
1F0: 00000000 00000000 00000000 00000000

Adding a valid tar checksum to the previous
polymock example will indeed return a tar filetype
— if the --keep reading parameter isn’t used —
despite all the other present signatures.

Near-polyglots Formats that require a different
signature at the same offset can’t be combined in a
polyglot. However their combination can still be ex-
ploited in different conditions. Near polyglots are
files that are almost polyglots, except that some
bytes have to be replaced so that the file type
changes.

This change could happen over the network if
some packets arrive in a different order. It could
also happen due to weak bits, leading to different
contents. And it can happen via a cryptographic

operation in which case you can call them crypto-
polyglots.

One of these use case is Angecryption, intro-
duced in PoC∥GTFO 3:11, where I demonstrated
abusing the Initialization Vector of CBC, CFB or
OFB block modes to replace the first block of the
crypto-polyglot. A new abuse of pseudo-polyglots is
presented in the TimeCryption article on page 30 of
this release.

To generate a near polyglot, you need very
light constraints. FormatA can be parasitized and
FormatB can start at the same offset, and needs to
tolerate appended or wrappended data. Technically,
generating a near polyglot is like parasitizing a for-
mat, ignoring that they both start at overlapping
offsets, and keeping the head.

 FileA FileB
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ │▓▓▓▓▓│ HeadB
 ├─────┤ ├─────┤
BodyA │░░░░░│ │▓▓▓▓▓│ BodyB
 │░░░░░│ │▓▓▓▓▓│
 └─────┘ ╘═════╛

Just parasitize FileA with BodyB and keep
HeadB as the overlap:

 NearP Overlap
 ┌─────┐ ┌─────┐
HeadA │░░░░░│ │▓▓▓▓▓│ HeadB
 ├─────┤ └─────┘
 │▓▓▓▓▓│ BodyB
 │▓▓▓▓▓│
 ╞═════╡
BodyA │░░░░░│
 │░░░░░│
 └─────┘

The minimum length overlap is basically the
number of bytes where you can declare a file then
have some unparsed space, either naturally or by
declaring a comment. This value can change drasti-
cally between file formats, as shown on page 15.

For example, it’s 1 for PostScript because you
can declare a line comment with %, so provided
there’s no encoded newline after decryption, this will
be a valid ignored space. The PE file format’s min-
imum overlap is two bytes — M Z — because you
can abuse the DOS header, limiting you to a 58-
byte parasite.

A JPEG header with comment declaration is FF
D8 FF FE XX YY, which is six bytes, with XXYY be-
ing the length of the comment in big endian. How-
ever, if you need a 0x3489-long comment, a 0x35??-
long comment will do the trick, so you don’t have to
bruteforce the YY byte. If you feel luck, you might

14

Variable Unsupported
offset parasite

Minimal start offset
1 2 4 8 9 16 20 23 28 34 40 64 94 132 12 28

12 26 32 36 68 112 226 16

P P J F M T F W G P R I R B C I P C J P E A P I I J W B O B E G L N
S E P l P I L A Z N I D T M P L S A P C L R C C C a A P G Z B I N E

G a 4 F V D G F 3 F P I D D B 2 A F A O C v S G G 2 M F K S
c F F v O A P P a M L

2 N
G

1* PS . M A ? ? ? ? ? ? A ?
2@ PE M . A A A A A A A A A A A A A A A A A A ! ! ! ! ! ! M M M ! ! ! ! !
4+ JPG A A . A
. .
. . [the table could go on but would take too long to bruteforce]

X: automated ?: likely possible
M: manual !: unknown

* Hack that relies on line comments with GhostScript. Requires the parasite not to contain any new line,
after encryption.

@ Hack relying on overwriting the DOS Header, therefore restricting the parasite space to offsets 2-60.

+ Signature, comment declaration and length are two bytes apiece. To specify them all is six bytes, but if
we round up the big-endian length and leave its low byte uncontrolled, we only need five. And if we
leave the length entirely uncontrolled, we only need to fix four bytes.

Figure 3: Minimal start offsets of file formats, and exploitation via near polyglots

15

also gamble on the length and not bother to brute-
force XX either.

Mitra can generate such files with the --overlap
parameter. It keeps the overlap’s content in the file-
name as well as the offsets where the content changes
formats, to be re-used later by AngeCryption or
TimeCryption scripts.

Ambiguity Files with different interpretations
depending on parsers we now call ambiguous
and previously called schizophrenic, werewolves or
shapeshifters. There are plenty of sources of this
ambiguity.

When a value such as a pointer never changes
across standard files, it’s tempting for a parser to
simply ignore it. Putting some contents under un-
usual conditions while putting other contents under
the typical conditions might reveal a difference be-
tween the two parsers.

Sometimes a value is represented twice. For ex-
ample, a buffer with a declared length might also
end with a null terminator. What if that termina-
tor happens earlier than the declared length? Which
length value is the real one? Or if you declare the
same value twice, and there isn’t an error, does the
first or the second declaration take priority?

If you corrupt a format on purpose and the
parser tries to rebuild the file, how does it do it first?
What if you put a valid file structure in a comment?
Such recovery algorithms are typically not officially
specified, so each developer might do it differently.

Some formats are extending older formats. Both
the old and the new formats are present in the file.
These formats are naturally ambiguous at a format
level, and we might call them ambiguous polyglots.

A widespread example is the Portable Exe-
cutable, defined as an extension of the DOS format.
Preciously few PE files—such as regedit95.exe—
have a meaningful DOS payload. Valid PE files are
expected to just have the same DOS stub with no
unique code.

Robert Xiao proved us wrong by crafting a uni-
versal Doom binary, which works from DOS 6 to
Windows 10, both as valid DOS and PE payloads in
the same file.9 This is something like a father and
son having the same name, with no distinctive suffix
whatsoever.

Ciphertexts can be ambiguous too, even despite
authenticated encryption! Check the TimeCryption
article page 30 in this issue for abuses of GCM,
GCM-SIV and OCB3.

Collisions PoC∥GTFO 19:05 covered a lot of de-
tails for exploiting hash collisions. However tar.gz
and DOCX (ZIPped XML)—which were initially
thought to be unexploitable—are properly dealt
with and explained in the Inside Out article on
page 19.

Conclusion
With basic knowledge of file format identification
and abuse, Mitra can try different strategies and
generates many forms of file abuse: payload embed-
ding, mock files, polyglots and pseudo-polyglots.

Pseudo-polyglots are the unified. form of file for-
mats abuses to be combined with cryptographic op-
erations. They include both AngeCryption, cover-
ing ECB, CBC, CFB, OFB modes, and TimeCryp-
tion, covering CTR, OFB, GCM, OCB3, GCM-SIV
modes.

Extensions of Mitra might cover ambiguous files
with standard strategies, hash collisions and hash
collisions over different formats.

9git clone https://github.com/nneonneo/universal-doom

16

