
22:05 Inside Out; or,
Abusing archive file formats.

by Ange Albertini

We have previously demonstrated hash
collisions in documents with blocks of 64
bytes, such as the great MD5 pileup in
PoC∥GTFO 19:05. This used colliding, aligned
blocks in pocorgtfo19.pdf to match a hash
of pocorgtfo19.exe, pocorgtfo19.png and
pocorgtfo19.mp4. That is to say, these files were
not identical, but they did share an MD5 hash.

This research started with an incorrect assump-
tion that Zip, TAR, and GZIP couldn’t be gener-
ically exploited with collisions. Even with the
almighty chosen-prefix collisions, I thought that Zips
may not work, XML will never work, and GZIP will
always trigger a warning.

Zip is the most collision unfriendly of standard
file formats: bottom-up, pointers everywhere, dupli-
cated data... Since they are officially parsed bottom-
up, you can’t even use a Chosen Prefix Collision on
a pair of Zip files if their size difference is bigger
than 64 kb, as the EoCD (end of Central Directory
record) of the smaller archive will be too far from
the end of the file to be found, thus making the file
invalid.

On top of that, some critical data (such as file
length, name, and content CRC32) is duplicated in
the Local File Headers and in the Central Directory
for a given file, which means it is present before and
after the file contents—thus preventing any generic
exploitation.

And unlike most archive formats, Zip is a tree of
pointers between structures instead of sequences, so
any size change of file content will propagate on the
rest of the file: the last structure of the file contains
a pointer and the number of archived files.

XML files also don’t play nice with collisions:
CDATA comments are defined in XML files, but they
have to use the defined encoding, which is incom-
patible with the randomness of collision blocks.

XML files don’t tolerate appended data either.
It’s another totally collision-unfriendly format.

DOCX files are Zip archives containing XML
files and various data files, such as JPEG and PNG
images.

Root file In DOCX files, the /_rels/.rels file
plays a very special role. It’s the root of the docu-
ment, which points to other XML files of the docu-
ment. It defines the relationships between the files.

You can move the files around provided you up-
date the root, which requires a hard-coded path and
filename in the archive. You can also make two doc-
uments co-exist in the same archive, pointing to ei-
ther in the root file. A valid strategy to generically
collide two documents seems possible.

Collision blocks You can’t store the collision
blocks after the XML content, since that would in-
validate the root file’s XML structure. And we can’t
easily forge the CRC of collision blocks, so we can’t
store them in the contents of a dummy file.

However, we can store the collision blocks in the
Extra Field of a file, since Extra Fields don’t have
a CRC. Extra Fields were defined in 1990, in the
very first version of the specifications.10 They are
commonly used and very extensible, so many im-
plementations both ignore this field and preserve it.
Extra Fields are stored before file contents, so they
can’t be stored in the Local File Header of the root;
a dummy file stored after the root file can be used
as a host for them.

It’s easy to force the same length for the root
file. We just need to choose two close paths for each
document. Storing them rather than compressing
them guarantees the lengths to be identical and pre-
dictable.

CRC You need to keep the root file CRC con-
stant despite the collision blocks, since the CRC is
duplicated near the end of the file in the Central
Directory.

Forging a CRC is easy, but CRCHack makes it
super easy!11 Just specify the bits you want, and
it instantly gives you the requested output with the
requested CRC32 without any encoding violation.

As an example, we now demonstrate forging a
CRC with ASCII characters.

$ cat ascii
10unzip pocorgtfo22.pdf APPNOTE-1.0.txt
11git clone https://github.com/resilar/crchack.git

19

<!--ABCDEF-->
$ crchack \

-b 4.0:+.8*6:1 -b 4.1:+.8*6:1 \
-b 4.2:+.8*6:1 -b 4.3:+.8*6:1 \
-b 4.4:+.8*6:1 -b 4.5:+.8*5:1 \
ascii 0xdeadf00d

<!--tuI_\Y-->

Only with the uppercase bit of letters:

$ cat letters
<!--THESEKINDSOFCRCAREVERYIMPRESSIVE-->
$ crchack -b 4.5:+.8*32:.8 letters 0xcafebabe
<!--thEsEKIndsOFcRcAReVEryiMPREssIVe-->

So now we have two versions of the root files,
with the same CRC, the same length, and via a
dummy file with Extra Field containing HashClash
collision blocks: the two Local File Headers that give
the archive the same MD5.12

Results Unlike most reusable generic collision
prefixes with a header and no body, this actu-
ally gives us two reusable generic collision pre-
archives that are totally valid and manipulatable
with standard tools. Provided you’re careful with
timestamps—either ignoring them in the source files
or recompiling within two seconds—doing the same
operations on both pre-archives will maintain the
equality of hash values of both files, which is nice
and very unusual.

Even better, deleting any archived files beside
the root and the dummy collision block file will re-
vert to the original hash values without any further
modification required! Who would have expected
that standard Zip tools could give you predictable
hash values?

$ md5sum docx*zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx1.zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx2.zip
$ zip -oXll docx1.zip zinsider.py

adding: zinsider.py (deflated 64%)
$ zip -oXll docx2.zip zinsider.py

adding: zinsider.py (deflated 64%)
$ md5sum docx*zip
d12044feee801ad0530a911fa7f18db5 *docx1.zip
d12044feee801ad0530a911fa7f18db5 *docx2.zip
$ zip -d docx1.zip zinsider.py
deleting: zinsider.py
$ zip -d docx2.zip zinsider.py

deleting: zinsider.py
$ md5sum docx*zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx1.zip
6c33d52590ff0bb0cc8cdafe6aa5153b *docx2.zip

Supported formats This trick is applicable to
any file format made of a Zip-ed XML with a root
file. It works for .docx, .pptx, and .xlsx from
Office, for the open container format in ePub, and
for other open packaging conventions, such as .3mf
for 3D manufacturing and the XML Paper Specifi-
cation, .xps and .oxps.

Corkami collisions’ zInsider makes it possible
to instantly collide any of these formats, with pre-
computed prefix archives.13

This is easy to extend to any other similar for-
mat, but a new prefix pair must be recomputed for
any new format.

Some formats like Quake’s PK3 aren’t ex-
ploitable: they don’t have a root file to abuse. The
Open Document Format requires their root file to
mention every other file, which isn’t generic. APK,
JAR, and XPI are even worse: they require all the
other files’ hashes!

Gzip
TAR files have no room for any abuse: pure se-
quences of headers with hardcoded size and offsets,
then file contents. No declared lengths, no skip-
pable content. You can use chosen-prefix collisions
on them, but that’s it: nothing generic.

Gzip doesn’t seem to be playing nice with hash
collisions either: any extra data is placed before the
compressed file contents, and appended data typi-
cally triggers a warning and is not taken into account
for parsing anyway. Gzip collisions are possible, but
not in a generic way.

However, while most Gzip files start with the
typical 1F D8 structure—called a member—it’s ac-
tually specified that a Gzip file can contain several of
these members, in which case the data of each will
be decompressed and concatenated. So a member
with no compressed data but with extra data acts
as a comment that can be parasitized, albeit quite
a complex one.

Since the length of the Extra Field is stored on
two bytes in little-endian before the Extra Field it-
self, it’s even exploitable with UniColl!14

12git clone https://github.com/cr-marcstevens/hashclash
13git clone https://github.com/corkami/collisions; find collisions -name zinsider.py
14git clone https://github.com/corkami/collisions; find collisions -name unicoll.md

20

So a generic reusable hash collision for Gzip is ac-
tually possible via a classic sequence of comments.
First one comment to align the rest of the file to col-
lision block boundaries, then one comment whose
length is variable—its encoded value will be over-
lapping with one of the differences in the collision
blocks—and then we start two chains of comments
to toggle one payload or the other, exactly like we
did for JPEG, MD5, or SHA1.

Colliding GZIPs like JPEGs Like JPEG, we
have this limit that extra field can’t be bigger than
64 kb, but recompressing data in chunks of 64 kb is
much easier with Deflate than with JPEG! Since the
decompressed data of all members is concatenated,
we just need to cut the archived data in chunks.

This idea isn’t new. Some formats like BGZIP
(2008) chunk the data in several members and store
an index in the extra field, making it easier to de-
compress some contents separately while maintain-
ing a standard Gunzip-compatible structure. This
is a common source of multi-member Gzip files.

So it gives us reusable hash collisions for any-
thing that relies on Gzip as outer encryption, such
as .tar.gz or SVGZ. As long as the data is decom-
pressed, the structure of the outer archive can be
freely modified.

However, some programs like Inkscape use their
own lightweight implementation of Gzip, which
doesn’t support files made of several members, so
our collision strategy will not work in these excep-
tional cases.

Conclusion
While Zip, XML, GZIP, and TAR seemed very hos-
tile to collisions, combining several tricks made it
possible to get generic reusable hash collisions for
GZip archives (.tar.gz) and Zipped XML files with
a root, such as DOCX files.

The strategies are very different, even if they
both rely on the extensible Extra Field which is sim-
ilar in both formats. For DOCX, it’s a merge of two
documents inside the same Zip, with two versions of
the same root file. For Gzip archives, Extra Fields
are used as comments, and two independent archives
are interleaved via two chains of skip and data.

Other formats aren’t playing that nice: Bzip2
is a pure compressor, bit-based with only bit align-

ment, and no padding and no form of comments.
Other formats such as XZ, AR or Compress (.Z
archives) are just too simple for any exploitation.
RAR applies CRC16 to headers, which does not help
our cause.

Thanks for Yann Droneaud for the TAR.GZ
challenge, and Philippe Lagadec for the DOCX chal-
lenge!

Still using MD5? It might feel useless to still
care about MD5, but as MD5, SHA1, and SHA2
use the same construct, exploits of hash collisions
via file format tricks will be re-usable for other
hash collisions while being cheaper to pull off with
MD5. These techniques would work for SHA1 via
the Shamble attack too, except that it costs $45,000
USD to compute it. And at least, MD5 is still
widespread enough that it has enough targets to at-
tack in practice, unlike MD2 and MD4!

You might be tempted to still use MD5 to des-
ignate a file, but using MD5 will expose you to all
kinds of tricks and confusion that SHA2 or Blake2
don’t.

Fastcolls are very quick to compute and can be
chained, providing one bit of stored data while keep-
ing the MD5 constant.15 They will make it trivial to
watermark a file, and a very short shellcode can eas-
ily detect which version of the file is running, then
adjust its behavior accordingly. Using a stronger al-
gorithm would prevent any possible pranks or con-
fusion, at least for some years until we get better
collisions.

Bonus: ZGIP Zip can use Deflate among other
compression algorithms. On the other hand, Gzip
only uses Deflate.

Both are wrapping Deflate data around differ-
ent structures that are not compatible. By abusing
structures, it’s possible to make ZGIP, a chimera
of Zip/GZIP: a polyglot file sharing the compressed
data.16

By abusing Deflate stored blocks and dummy
members, it’s even possible to partially hide some
data from the other format, even if they belong to
the same stream.

In short, this is just going the extra mile to prove
that GZIP is not a wrapper around Zip, nor Zip is
a wrapper around GZIP.17

15git clone https://github.com/brimstone/fastcoll
16git clone https://github.com/corkami/pocs; find pocs -name zgip
17https://speakerdeck.com/ange/gzip-equals-zip-equals-zlib-equals-deflate

21

Bonus: The craziest colliding file The latest
advanced MD5 manipulation is a very clever ZStan-
dard+Tar hashquine+polyglot by David ‘Retr0id’
Buchanan,18 also known for his beautiful PNG
hashquine.19

It can either be just a Zst file, but also a Tar.zst,
so the Tar header can be toggled on or off, as well
as the complete tar checksum. To be a reusable
hashquine, it’s able to output any MD5 and Tar
checksum while keeping the whole file’s MD5 con-
stant.

The same prefix is reusable in three differ-
ent ways. First it can be a pure ZStandard file
hashquine.

$ md5sum hashquine.zst
720ca7f6842f1a608fcb924f5811ebb9 *hashquine.zst

$ zstd -cd hashquine.zst
The MD5 of hashquine.zst is:
720ca7f6842f1a608fcb924f5811ebb9

Second, it can be a Zstandard(tar) file.

$ md5sum hashquine.tar.zst
703911cf9e409965cebd05392acc1503 *hashquine.tar.zst

$ tar -Oxf hashquine.tar.zst hash.md5
The MD5 of hashquine.tar.zst is:
703911cf9e409965cebd05392acc1503

Finally, it can be a self-checked “auto-manifest”
Tar.zst.

$ md5sum self.tar.zst
f068d54fabb12dbb1b359745a80d78fc *self.tar.zst
~
$ tar -xvf self.tar.zst
x hash.md5
x hello.txt

$ cat hash.md5
f068d54fabb12dbb1b359745a80d78fc *self.tar.zst

ed076287532e86365e841e92bfc50d8c *hello.txt

$ md5sum -c hash.md5
self.tar.zst: OK
hello.txt: OK

The whole prefix uses 653 Unicolls to toggle Zs-
tandard frames and output optional contents after
decompression.

For the optional Tar Header (generic for any
hash.md5 contents), it uses one frame for the con-
stant Tar header start, 8∗11 frames for the hash.md5
file size in octal, one frame for the constant Tar
timestamp 14412572240, 8∗6 frames for any tar
header checksum in octal, and one frame for the rest
of the tar header.

For the optional text prefixes in the file contents,
it uses one frame for the constant prefix of “The MD5
of hashquine.tar.zst is” and other for “The MD5 of
hashquine.zst is” in ASCII. Finally, it uses 32∗16 col-
lisions for all nybble possibilities of an MD5 hash.

Bonus: Wordpad weird files Colliding .docx
files will show the same document with Microsoft
Wordpad. It turns out that Wordpad ignores the
root files entirely, and just locates the document file
via the Content Types files. Really!

As you would expect with such sloppiness, it
doesn’t check if all files in the archive are declared
in the Content Types file, which can turn any Zip
archive into a very weird .docx that is Wordpad-
only with just two XML files. Sadly, this issue being
far from a standard file. Wordpad is confused as it
should be, and we can’t make this issue a Wordpad-
compatible DocX file too. Extract an example from
this PDF’s attachments.20

18git clone https://github.com/corkami/collisions; find collisions -name hashquines
19unzip pocorgtfo22.pdf retr0id.zip; unzip retr0id.zip hashquine_by_retr0id.png
20unzip pocorgtfo22.pdf mini.docx

22

