
V T T P U B L I C A T I O N S

TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 2001

Rauli Kaksonen

A Functional Method
for Assessing Protocol
Implementation Security

4 4 8

V
TT PU

BLICA
TIO

N
S 448

A
 Functional M

ethod for A
ssessing Protocol Im

plem
entation Security

Rauli K
aksonen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. + 358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax + 358 9 456 4374

VTT PUBLICATIONS

429 Olin, Markus, Pasanen, Antti, Ojaniemi, Ulla, Mroueh, Ulla-Maija, Walavaara, Marko,
Larjava, Kari, Vasara, Petri, Lobbas, Pia & Lillandt, Katja. Implementation of IPPC-
directive. Development of a new generation methodology and a case study in pulp industry.
2000. 81 p.

430 Virkajärvi, Ilkka. Feasibility of continuous main fermentation of beer using immobilized
yeast. 2001. 87 p. + app. 50 p.

432 Alfthan, Kaija. Structural stability and binding properties of soluble and membrane-
anchored recombinant antibodies. 2001. 106 p. + app. 39 p.

433 Lauro, Marianna. α-Amylolysis of barley starch. 2001. 45 p. + app. 40 p.
434 Ronkainen, Helena. Tribological properties of hydrogenated and hydrogen-free diamond-

like carbon coatings. 2001. 51 p. + app. 72 p.
436 Paajanen, Mika. The cellular polypropylene electret material – electromechanical properties.

2001. 66 p. + app. 50 p.
437 Ikonen, Kari. Large inelastic deformation analysis of steel pressure vessels at high

temperature. 2001. 141 p. + app. 15 p.
438 Pasanen, Antti. Phenomenon-Driven Process Design methodology. Computer

implementation and test usage. 2001. 140 p. + app. 26 p.
439 Ahonen, Petri. Aerosol production and crystallization of titanium dioxide from metal

alkoxide droplets. 2001. 55 p. + app. 62 p.
440 Niskanen, Pirjo. Finnish universities and the EU Framework Programme – Towards a new

phase. Towards a new phase. 2001. 86 p. + app. 20 p.
441 Södergård, Caj (ed.). Integrated news publishing – Technology and user experiences. Report

of the IMU2 project. 2001. 210 p. + app. 25 p.
442 Moilanen, Markus. Management framework of distributed software objects and

components. 2001. 153 p. + app. 45 p.
443 Pakanen, Jouko. Demonstrating a fault diagnostic method in an automated, computer-

controlled HVAC process. 2001. 45 p. + app. 2 p.
444 Holappa, Jarkko. Security threats and requirements for Java-based applications in the

networked home environment. 2001. 116 p.
445 Vierimaa, Matias, Ronkainen, Jussi, Salo, Outi, Sandelin, Toni, Tihinen, Maarit, Freimut,

Bernd & Parviainen, Päivi. MIKKO Handbook. Comprehensive collection and utilisation of
software measurement data. 2001. 227 p. + app. 53 p.

446 Holt, Erika E. Early age autogenous shrinkage of concrete. 2001. 184 p. + app. 9 p.
447 Rämä, Pirkko. Effects of weather-controlled variable message signing on driver behaviour.

2001. 55 p + app. 50 p.
448 Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security.

2001. 128 p. + app. 15 p.

ISBN 951–38–5873–1 (soft back ed.) ISBN 951–38–5874–X (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

<transfer>

!up

<read-transfer> <write-transfer>

|

<reads>

<writes>

<BLOCK>
<ACK> <LAST-BLOCK>

{ }

<ACK>

<RRQ>

!down
!down!up !up

!up

<WRQ>

<BLOCK> <ACK>

<LAST-BLOCK>

{ }

<ACK>

!up

!up

!down

!down

<ACK>

!down

<FILE-NAME> <MODE>

0x00 0x01

<CHARACTER>

{ } 0x00

"octet"

|

"netascii"

0x00 0x00

0x00 0x03

<BLOCK-NUMBER>

<OCTET> <OCTET>

<OCTET>

512

0x00 0x03

<BLOCK-NUMBER> { }

<OCTET>

0..511

0x00 0x04

<BLOCK-NUMBER>

0x00 - 0xff

<FILE-NAME> <MODE>

0x00 0x02

0x20 - 0x7f

VTT PUBLICATIONS 448

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2001

A Functional Method
for Assessing Protocol

Implementation Security

Rauli Kaksonen
VTT Electronics

ISBN 951–38–5873–1 (soft back ed.)
ISSN 1235–0621 (soft back ed.)
ISBN 951–38–5874–X (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2001

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Tietoliikennejärjestelmät, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Telekommunikationssystem, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Telecommunication Systems, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Leena Ukskoski

Otamedia Oy, Espoo 2001

3

Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security. Espoo.
Technical Research Centre of Finland, VTT Publications 448. 128 p. + app. 15 p.

Keywords information security, automated testing, software quality, implementation
vulnerabilities, programming mistakes, mini-simulation method

Abstract
Serious information security vulnerabilities are discovered daily and reported
from already deployed software products. Customers have no feasible means for
estimating the security level of the products they purchase. The few generally
applicable methods require the source code, which is often not delivered with a
product. Many of the reported vulnerabilities are robustness problems.
Robustness can be functionally assessed without the source code by injecting
anomalies, unexpected input elements, to the tested component. The component
passes the tests if it can securely handle the injected anomalies.

The methods generally applied for software testing and modelling were found to
be too complex and rigid for functional robustness assessment. A new mini-
simulation method using attribute grammar to model both input syntax and
software behaviour was proposed. Means for the systematic creation of a large
number of test cases was presented. The method was used to test the robustness
of 49 software products. A total of 40 tested products were found to be
vulnerable to denial-of-service problems, and 14 of them were proven to contain
vulnerabilities making it possible to execute remotely supplied code on the host
system.

Applications of the method include quantitative comparisons and the
benchmarking of software components, but it has some limitations. The
proportion of the flaws found using the method compared to the actual number
of flaws is difficult to assess and the tests may favour some components over
others. However, if the method can help to eliminate the most obvious
vulnerabilities, it would be much more difficult to find serious flaws using
unsystematic methods. This could cut down on the number of publicly disclosed
vulnerabilities.

4

Preface
This publication presents some of the results from the work done in the project
Security Testing of Protocol Implementations (PROTOS) during 1999–2001. At
the same time this publication acts as my licentiate thesis. The supervisor of the
thesis was professor Juha Röning from the Department of Electrical Engineering
of the University of Oulu. The thesis was inspected by professor Veikko
Seppänen. Professor Petri Mähönen supported the work.

Back in 1998 the inspiration for the PROTOS-project was the large number of
security problems found from software on a daily basis. It seemed clear that at
least some of these problems could be revealed using functional testing, but
there did not seem to be much research on the topic. The PROTOS-project was
initiated in the beginning of 1999 as a joint effort of the University of Oulu and
VTT Electronics. The original industrial partners were Nokia Networks and
Oulun Puhelin, later Nokia Mobile Phones joined the project. The main part of
the project funding was provided by the National Technology Agency (Tekes).

The PROTOS-project concept was originally proposed by Marko Laakso, who is
the founder of the Oulu University Secure Programming Group (OUSPG). He
and Ari Takanen, also from OUSPG, have been participating in the PROTOS
project since its beginning. In VTT the PROTOS-project has been supported by
Marko Heikkinen, Jussi Paakkari, and Aija Kotila. Virtually all OUSPG
employees have been involved in the testing conducted on the PROTOS-project:
Juhani Eronen, Mikko Hiltunen, Jani Kenttälä, Jarkko Lämsä, Tomi Nylund,
Mikko Varpiola, and Joachim Viide, as well as exchange students Raymond
Hofman, Christian Wieser, and Alexander List. Antti Häyrynen from Nokia
Mobile Phones and Jarmo Mustonen, Teemu Särkelä, and Mikko Tienhaara
from Nokia Networks have also taken part in the testing activities.

Personally I have been responsible for the development of the mini-simulation
method and implementation of the prototype toolkit, called the “Bugbear”. In
that work I have exploited ideas and experiences from the other PROTOS-
project participants. For the results-part of this study, I have used the material
from the tests done in the OUSPG. In my mind the PROTOS-project has
succeeded in providing useful ideas and new information for the public good,
like the material presented in this publication. However, giving out information

5

about security holes is always a two-edged sword, since the pieces of
information may also give new arsenal to “crackers”. Still, I strongly feel that it
is good to bring the issues out in the open: The public must know that software
does contain vulnerabilities. Developers must know what causes the
vulnerabilities and how to avoid them. Testers must have methods and tools to
search for the vulnerabilities.

I thank all the aforementioned people for their contribution to this study, which
quite incorrectly carries my name only. I also thank Zach Shelby for the final
proof-reading of the text. Finally, I must thank by parents, Aune and Veijo
Kaksonen, for their support since the beginning.

Oulu, 28th September 2001

Rauli Kaksonen

6

Contents

Abstract ... 3

Preface .. 4

Contents .. 6

List of Symbols ... 10

1. Introduction... 13

2. Implementation Vulnerabilities .. 16
2.1 Types ... 16
2.2 Vulnerability Management .. 17

2.2.1 Avoidance ... 18
2.2.2 Elimination.. 18
2.2.3 Tolerance... 19

2.3 Vulnerability Analysis... 20
2.3.1 Component Analysis ... 21
2.3.2 System Scanning ... 22

3. Assessing Software Components.. 23
3.1 Software Testing.. 23

3.1.1 Basic Concepts .. 23
3.1.2 Testing Process.. 25
3.1.3 Functional Testing... 26
3.1.4 Domain Testing and Syntax Testing 28
3.1.5 Conformance Testing .. 29
3.1.6 Structural Testing .. 30

3.2 Fault Injection.. 31
3.2.1 Injection .. 32
3.2.2 Output Monitoring .. 32
3.2.3 Fault Injection Examples... 33

3.3 Testing Security Properties.. 35
3.4 Summary of the Presented Techniques ... 36

7

4. Functional Software Modelling .. 37
4.1 Basic Techniques... 38

4.1.1 Regular Expressions.. 38
4.1.2 Finite State Machine ... 41
4.1.3 Context-Free Grammars.. 41
4.1.4 Attribute Grammars .. 43

4.2 Modelling Standards.. 44
4.2.1 Specification and Description Language................................. 44
4.2.2 Message Sequence Chart... 46
4.2.3 Unified Modelling Language .. 47
4.2.4 Tree and Tabular Combined Notation..................................... 48
4.2.5 Abstract Syntax Notation One .. 49
4.2.6 Extensible Markup Language ... 50

4.3 Modelling Summary.. 50
4.4 Conclusions ... 52

5. Mini-Simulation Method .. 54
5.1 Mini-Simulation Overview.. 54

5.1.1 Requirements... 54
5.1.2 Negative Requirements ... 56
5.1.3 Concept ... 57

5.2 Specifications .. 57
5.2.1 Grammar Symbols .. 58
5.2.2 Rules.. 62
5.2.3 Evaluation ... 63
5.2.4 Evaluation Problems ... 68

5.3 Paths and Masks .. 69
5.4 The Mini-Simulation Toolkit .. 71

5.4.1 Two-Language Solution.. 71
5.4.2 Configuration Scripts .. 72
5.4.3 Script Header... 72
5.4.4 Script Body ... 73
5.4.5 Script Trailer ... 75
5.4.6 Running a Configuration Script .. 75

5.5 Modelling Tasks .. 76
5.5.1 Communication Rules... 76
5.5.2 Simple Message Exchanges .. 78

8

5.5.3 Exceptional Message Exchanges .. 80
5.5.4 Semantic Rules.. 81
5.5.5 Mixing Communication Rules .. 83

6. Mini-Simulation Testing... 84
6.1 Extensions for Testing... 84

6.1.1 Test Strategy ... 84
6.1.2 Injection .. 85
6.1.3 Instrumentation ... 85

6.2 The Testing Process... 86
6.2.1 Preparations... 86
6.2.2 Test Design ... 87
6.2.3 Test Execution... 88
6.2.4 Post-Processing ... 88

6.3 Testing Using the Mini-Simulation Toolkit .. 89
6.3.1 Example: TFTP Test Suite .. 89
6.3.2 Sections ... 90
6.3.3 Pre-Selection Section .. 90
6.3.4 Selection Section... 93
6.3.5 Post-Selection Section... 96

7. Results... 98
7.1 Overview ... 98
7.2 WAP-WSP-Request Test Suite ... 102
7.3 WAP-WMLC Test Suite ... 103
7.4 HTTP-Reply Test Suite ... 103
7.5 LDAPv3 Test Suite.. 104
7.6 SNMPv1 Test Suite ... 105

8. Analysis .. 106
8.1 Mini-Simulation Method ... 106
8.2 Scope of the Analysis .. 107
8.3 Applicability .. 108
8.4 Implementation Quality and Security.. 109
8.5 Difficulties and Dead-Ends ... 111
8.6 Open Issues.. 112

9

9. Summary... 114

References... 119

APPENDICES

Appendix A: BNF and Tree Notations

Appendix B: Operations

Appendix C: Default Rules

Appendix D: TFTP Specification

Appendix E: TFTP Test Suite Configuration

Appendix F: Results from Test Runs

10

List of Symbols
ACM Advanced Computer Machinery

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

AVA Adaptive Vulnerability Analysis

BER Basic Encoding Rules

BNF Backus Naur Form

CTMF Conformance Testing and Methodology Framework

DOM Document Object Model

DTD Document Type Declaration

EPA Extended Propagation Analysis

FIST Fault Injection Security Tool

FSM Finite State Machine

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

11

IP Internet Protocol

IUT Implementation Under Test

LOTOS Language for Temporal Ordering Specification

LDAP Lightweight Directory Access Protocol

MSC Message Sequence Chart

Perl Practical Extraction and Reporting Language

PCO Point of Control and Observation

POSIX Portable Operating System Interface

PDU Protocol Data Unit

PROTOS Project: Security Assessment of Protocol Implementations

RTAG Real-Time Asynchronous Grammar

SDL Specification and Description Language

SNMP Simple Network Management Protocol

Tcl Tool Command Language

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TTCN Tree and Tabular Combined Notation

UDP Unreliable Datagram Protocol

12

UML Unified Modelling Language

WAP Wireless Application Protocol

WML Wireless Markup Language

WMLC Wireless Markup Language Compiled

WSP Wireless Session Protocol

WWW World Wide Web

XML Extensible Markup Language

13

1. Introduction
The infrastructure of modern society relies heavily on computer systems and
networks for most of its critical functions. Emerging e-commerce and other
applications rely on the trusted handling of digital information. The failure of
software is a great risk for this infrastructure, either through inadvertent failures
or by malicious attacks. The latter risk has become more severe under recent
years since the Internet connection has lowered both the financial and
intellectual barriers to launch effective attacks against critical systems.
Furthermore, systems previously protected from external access are being
equipped with network connectivity, exposing them to external intrusion
attempts.

The security of a computer system is often mistakenly described only by the
properties of its cryptographic algorithms, e.g. key lengths [61]. In practice most
security compromises bypass cryptographic protections by exploiting
weaknesses in the system software. This conclusion can be drawn, e.g. by
looking at the annals of the BugTraq mailing list dedicated to the public
disclosure of information security vulnerabilities [14]. The rate at which
vulnerabilities are reported to the public is high. This causes a continuous stream
of updates and security advisories. Administrators have difficulty keeping
systems up-to-date and serious vulnerabilities remain even though there are fixes
available [48]. The problem is more severe for home users, who lack the time or
expertise to continuously maintain their systems.

Instead of considering security as something we can add into a system as an
afterthought, we should view security as a quality attribute determined during
development work [22]. Software vulnerabilities, security-critical flaws in
software, can be introduced during both the design and implementation of a
product [61]. Design vulnerabilities can result from a poor design caused by a
lack of expertise, e.g. a bad encryption algorithm is selected. An unfortunate
trend is to ship products with the default configuration set to minimal security
and leave the hardening to the users or administrators. In many cases decisions
leading to vulnerabilities are made to add novel features, e.g. executable scripts
are embedded into e-mail messages [62]. It is not easy to say when a feature is a
vulnerability and when it is a reasonable design choice [30, p. 127]. Sometimes a
feature is highly desirable, sometimes the dangers it conveys cannot be justified.

14

Modern software products tend to be complex. A complex system is difficult to
implement and use [5]. High assurance of the correctness of a simple system is
easier to get than that of a complex one [30, p. 14]. A simpler system is also
more likely to be used appropriately. Still, complexity can be justified if no
simple solution fulfils the system requirements.

Implementation vulnerabilities are introduced during the implementation phase
[32; 61]. They are security hazards resulting from programming mistakes. Even
if the software design is flawless and used protocols and algorithms provide
strong theoretical security, implementation vulnerabilities can make a software
component vulnerable. A design may be formally modelled and proven to
contain some desirable security properties, but implementation complexity
greatly exceeds the capabilities of formal analysis [22]. The more complex a
product is, the more likely it is to contain implementation mistakes [63]. An
intruder who has access to a vulnerable software component through, e.g. a
network interface, can exploit the vulnerability to compromise the computer
system.

Implementation vulnerabilities are caused by dangerous program constructs.
They often have directly observable failure modes like crashes or hangs resulting
from corruption of the internal state [42; 50]. Many implementation
vulnerabilities can be unambiguously detected, in contrast to design problems
which are on a more abstract level and open for interpretation. The automatic
detection of implementation vulnerabilities should be possible, at least to a
limited extent. Some tools for this do exist, but many require access to the
source code [64; 74, p. 226; 81]. Functional assessment is possible without the
source code, but the existing tools are few in numbers and limited in scope [42;
50; 53]. Only a few generally applicable functional security analysis tools seems
to be available.

Security has not sold products in the past. Time-to-market, new features, and
performance have been more attractive properties [19]. Even if a customer
considers security as a requirement and is willing to pay for it, there have been
only a few feasible means for assessing the true security of the product. The
existing methods usually rely on source code. In many cases the source code is
not part of the delivered package and the buyer is at the mercy of the vendor.

15

The purpose of this study is to present a new assessment method for finding
software implementation vulnerabilities through functional testing. The source
code is not required and no co-operation with the software vendor is needed to
analyse a product. The focus of the study is on the method itself, vulnerabilities,
design of effective tests, and the treatment of vulnerabilities are only briefly
introduced for understanding.

Chapter 2 gives an overview to implementation vulnerabilities. It is followed by
a summary of software assessment techniques in chapter 3 and behavioural
modelling methods in chapter 4. In chapter 5 a new method for software
modelling is introduced and further refined in chapter 6 to be used for
vulnerability assessment. Chapter 7 show results from tests using the method.
Finally, an analysis of the proposed method and a summary are given.

16

2. Implementation Vulnerabilities
Implementation vulnerabilities result from mistakes made by software
programmers. There are no reliable means for preventing these mistakes from
remaining in software and current software error rates are high [11]. Some of the
mistakes inevitably lead to vulnerabilities. They exist despite the use of rigorous
software processes, maturity models, and formally verified protocols [74, p. 14].
Security is hard to measure and the security properties of many contemporary
software products are largely unknown [26].

Compared to normal implementation flaws (or faults), implementation
vulnerabilities have some unique properties. Normal flaws prevent applications
from functioning correctly and are observable by the users. Vulnerabilities
enable an attacker to gain privileges or interfere with proper functionality. They
do not manifest themselves during everyday operation and can lay dormant for
years. Still, after a vulnerability is exploited there is a sudden need to get it
fixed.

A program or procedure taking advantage of a vulnerability is called an exploit.
Exploits may have varying impacts from denial-of-service to the total
compromise of a system. A vulnerability in a shipped software products requires
patching if the implications of the vulnerability cannot be tolerated. A patch
must be created, tested, distributed, and deployed to installed systems before the
problem is fixed [44]. This may be an expensive process for both vendors and
customers. Many systems are left vulnerable since their administrators lack
expertise and/or time for continuous patching. This is especially true for home
users. Embedded systems without upgrade capability cannot be patched at all.

2.1 Types

There are many different types of implementation vulnerabilities. Common
mistakes include failure to verify the validity of input from a mistrusted source,
use of an insecure library function, or use of the function in an insecure way. An
interested reader should consult some of the available secure programming
resources for further information about implementation vulnerabilities and
avoiding them [3; 10; 70; 80].

17

The C and C++ programming languages are especially problematic from the
security point of view since it is relatively easy to write insecure code
inadvertently. Careless use of many standard library functions, e.g. gets,
sprintf, and strcpy, opens up security holes. Programmers make these
mistakes because of a lack of knowledge or they prefer the easiest way despite
of the hazards [73]. Despite the programming language used an implementation
vulnerability can exist in an employed external component.

A common and serious vulnerability type is buffer overflow, but other types of
vulnerabilities exists as well. A buffer-overflow vulnerability is a failure to
ensure that a processed chunk of input data fits into the space reserved for it [13;
28; 43; 66]. The oversized input chunk overwrites the memory content beyond
the reserved buffer. Arbitrary input usually leads to a crash of the program, but
carefully constructed data embedded into the input chunk may be executed with
the privileges of the victim process. Instructions for exploiting buffer overflows
are publicly available [72]. Enough details for exploiting a buffer overflow
vulnerability can be obtained without access to the source code. When present,
buffer overflows are often exploitable.

2.2 Vulnerability Management

Overall there are three alternatives for managing software faults proactively,
before taking a system into use: fault avoidance, fault elimination, and fault
tolerance [74, p. 40]. Similar categorisation may be applied for vulnerability
management as well, for this study we define the following vulnerability
management activities:

1. Vulnerability avoidance: Developing a software component using
techniques which prevent the introduction of (specific types of)
vulnerabilities into the component.

2. Vulnerability elimination: Searching for the vulnerabilities from a
component using testing or other activities and removing the problems.

18

3. Vulnerability tolerance: Building tolerance to the (potential)
vulnerabilities in a component and ensuring that acceptable results are
produced despite of them.

As this study is concerned with implementation vulnerabilities, the following
discussion is limited to them.

2.2.1 Avoidance

Vulnerability avoidance means the use of an implementation technique which
does not suffer from a particular type of vulnerability at all. Completely avoiding
some vulnerability types leaves more resources to deal with other kinds of
vulnerabilities.

For example, a Java virtual machine provides a protected execution environment
for programs. Effects of the failure of a program is limited by the actions
allowed by the virtual machine [19]. Java programs do not have, e.g. buffer-
overflow problems, since all memory access is controlled by the virtual machine.
Java also contains a bytecode verifier, which enforces the integrity properties of
Java programs. Still, all kinds of faults in the virtual machine itself are possible.

Buffer-overflows, illegal memory accesses, and memory leaks are major
problems in C and C++ software. A compiler can embed integrity checks into
programs for invalid variable access and perform bounds checking for memory
accesses [57; 40; 20]. Unfortunately such extra precautions have in most cases a
negative performance impact [13]. Problems can be avoided also by introducing
coding conventions which deny the use of vulnerable functions, e.g. strcpy,
and mandate other safe programming practices. The supervision of such rules
requires inspections or reviews.

2.2.2 Elimination

Vulnerability elimination means the identification of vulnerabilities from
software and fixing them. Elimination must include searching for vulnerabilities
and can only address problems which are found. The elimination of

19

vulnerabilities before shipment is cheap compared to the patching of deployed
products [44]. Elimination of all flaws is not usually possible or cost effective.
At some point the product must be shipped despite that it still may contain
vulnerabilities. The shipping point must be based on cost estimations of using
more resources to eliminate the existing vulnerabilities compared to fixing them
after shipment.

The finding of the vulnerabilities is problematic. The size and complexity of
code is proportional to the number of faults it may contain [63]. An elimination
process can be promoted by limiting the amount of code in a system, which cuts
down the number of potentially vulnerable locations. The amount of critical
code is limited if systems are made as simple as possible and all non-essential
software is removed [19].

2.2.3 Tolerance

Vulnerability tolerance strategies recognise that software does have
vulnerabilities and tries to limit their impact to system security. Tolerance is
inferior for avoidance and elimination in the sense that it requires the addition of
some kind of protection system. The protection system brings complexity which
has a negative impact to performance and cost. Ironically enough, the protection
system itself may contain vulnerabilities. Still, tolerance often is the only
available approach if the system is built from external components of which
security cannot be ensured [19]. Defensive programming assumes that flaws may
exist in the developed components and attempts are made to detect problems and
remedy the detected inconsistencies [68, p. 302].

The access of hostile entities to a computer system can be limited by firewalls
and wrappers [19]. Firewalls allow only limited communication between the
external world and the system internals. A wrapper inspects input to a protected
component and blocks any suspicious interactions before the component is
corrupted. Execution of the component may also be terminated if a vulnerable
condition is observed. For example, integrity checks could be included into
vulnerable library functions to prevent buffer-overflows [13]. Alternatively the
operating system could be modified to have a non-executable stack [83]. Finally,
an intrusion detection system (IDS) can be used to detect ongoing attacks by

20

monitoring network and host activity [7]. Still, no bullet-proof solutions seem to
exists as different exploitation strategies are devised to bypass the protection
systems.

The impact of software flaws in a component can be reduced by limiting the
access rights of the component to the minimum required. Abuse of the
component is limited by the access rights. The principle is not always followed,
e.g. many UNIX programs are running unnecessarily as root [25]. Root
programs have all privileges and the potential to do anything (good and evil) in
the system. As said earlier, Java and other virtual machines protect against a set
of problems [71]. The security features of Java allow non-trusted programs to be
executed under tighter restrictions. For example, Java applets loaded from the
Internet are not allowed to access critical local resources. In Practical Extraction
and Reporting Language (Perl), a mechanism called tainting, tries to ensure that
input provided to a program is not used insecurely [55]. Input data is tainted and
attempt to use it in a vulnerable fashion, e.g. as a name of a file opened for
writing, is aborted. This prevents an intruder from exploiting the vulnerability.

2.3 Vulnerability Analysis

Vulnerability elimination and vulnerability tolerance activities require
information about the location of the vulnerabilities. Vulnerabilities can be
searched individually from components or from an aggregate system.

The software components themselves are increasingly built from sub-
components and the aggregated behaviour may lead to insecurities, even if each
component appears to be free of vulnerabilities. However, a secure system is
easier to build from secure components than from insecure components [27].
The vulnerability analysis can be done statically from source code (sometimes
from object code) or dynamically by observing an executing component or
system. Time of the analysis may be before or after the release of the product or
activation of the system.

21

2.3.1 Component Analysis

The traditional software project activities for achieving a high quality product,
promote discovery of the implementation vulnerabilities as well. Inspections,
reviews, conformance testing, structural testing, coding conventions, etc. are all
useful and required for the production of high quality software.

Source code inspections can be automated into tools searching for vulnerable
constructs [73; 75]. For example, ITS4, Flawfinder, and RATS are tools for
scanning C and C++ source code [17; 64; 81]. One problem is that the scanning
tools tend to create many false positives, i.e. alarms for statements which do not
contain real vulnerabilities. There are also problems which the source code
scanners do not find.

Traditional testing tends to be concerned only whether the software component
performs the behaviour specified for it [29]. Testing for the ability of the
component to stand anomalous events and malicious attacks requires a different
approach. Fault-injection analysis purposefully injects faults into a system and
observes the resulting behaviour [26; 27; 28]. Software fault injection mutates
the source code, or data at software interfaces. The former requires access to the
source code, but the latter does not. Fault injection gives information about
robustness, the ability of software to function correctly in the presence of invalid
inputs or stressful environmental conditions [33, p. 64]. Robustness is especially
important in safety-critical and security-critical applications [74, pp. 45, 275].

There are few tools available for robustness evaluation through software
interfaces. Three tools are given as examples.

• The Fuzz tool is used for testing the robustness of different UNIX utility
commands [50]. The tested programs were subjected to random input.
Somewhat comparable tests were conducted in 1990 and 1995, results
indicate improved robustness. Still, significant failure rates of up to 40%
were observed in some categories.

• The Ballista tool has been used to test the ability of POSIX-compatible
operating systems to handle exceptional input parameters in system calls
[42]. The selection of input was not random, but based on the type and

22

meaning of the call parameters. The tests consisted of over 1 million tests
cases and resulted in failure rates were between 10% to 23% depending on
the operating system. Also Microsoft Windows systems have been tested
with Ballista [65].

• The IP Stack Integrity Checker exercises the robustness of the IP stack and
related stacks [53]. The tool creates pseudo-random packets which are then
fed into the tested stack.

Ghosh proposes a Component Security Certification pipeline for a
comprehensive analyse of the security of a software component [27]. The
pipeline includes test planning, structural testing, and functional testing
activities. As a result the component is assigned a rating based on metrics
collected throughout the analysis pipeline.

2.3.2 System Scanning

Vulnerabilities can be searched also from a deployed system. In tiger-team
testing a group of experts attempt to break into an installed system [74, p. 230].
A vulnerability is found if the break-in succeeds. The problem is that the tiger-
team testing is manual work based on the experience of the team, rather than a
systematic and reproducible effort. Tiger teams do also vary in their point of
view and expertise.

Security scanner tools systematically scan hosts of the inspected system for
known vulnerabilities [7]. These tools capture the tiger team testing process [74,
p. 230]. Normally a security scanner probes only for known vulnerabilities,
vulnerabilities unknown by the scanner are not noticed.

23

3. Assessing Software Components
Software component assessment probes whether a software component meets
the stated requirements or holds some other desirable properties. Security is one
such property of a software component. In the following some traditional and
non-traditional assessment techniques are described and their relevance for
security analysis is discussed. The discussion is limited to the testing of an
already implemented software component, the implementation under test, IUT.

3.1 Software Testing

The IEEE Standard Glossary of Software Engineering Terminology defines
testing as [33, p. 76].

The process of operating a system or component under specified
conditions, observing or recording the results, and making an
evaluation of some aspect of the system or component.

It is important to note that the testing is defined to evaluate some aspect of the
tested system or component, rather than vague “goodness” or “badness”. A test
should always have a clear purpose, which exactly defines the aspects of the IUT
that must be assessed.

The following overview to software testing is based on books from Beizer and
Baumgarten [9; 8]. Some terms are from the IEEE glossary [33].

3.1.1 Basic Concepts

The IEEE glossary defines the terms mistake, fault, and failure [33, p. 31]. A
developer may make a mistake which causes a fault, which is an incorrect step,
statement or data definition. A failure is the inability of a software to perform its
required functionality. Alternatively the term flaw is used instead of the term
fault.

24

The fundamental unit of testing is a test case. A test case demonstrates certain
behaviour or the realisation of some capability [8, p. 71]. Test cases are grouped
into test groups and further into test suites. A test case has a specific test purpose
and a group may have a test group objective. The result of a test case is called
the verdict [8, p. 32]. It is either pass, fail, or inconclusive. In a test case with the
pass verdict the tested component fulfils the test purpose and displays only valid
behaviour. In a test case with the fail verdict some requirement is violated, i.e. a
failure is observed. Inconclusive means the inability to assign either the pass or
fail verdict.

An oracle specifies the expected outcome for a test case [9, p. 23]. An
input/output oracle specifies the expected output from the IUT. An oracle may
be created manually during test design. An automated oracle can be a simplified
implementation, an older version of the same program or a program from
another source. The test output of an initial program version can be collected and
manually validated, and the testing of subsequent versions can be done against
the collected data.

Testing can be divided into structural testing (white-box testing) and functional
testing (black-box testing) [9, p. 10]. In functional testing software internals are
not considered. Test input is constructed and the output verified solely according
to the specified behaviour. Structural testing is based on implementation details,
such as source code. Structural testing and functional testing complement each
other [9, p. 10]. Functional testing is theoretically sufficient, but it may take an
infinite time to detect all flaws since the analysis is limited to the software
interfaces. Complete (in some sense) structural testing takes a finite time, but
cannot address problems which are visible only during execution.

Static analysis is structural testing conducted while the tested component is not
running [9, p. 8]. Modern compilers perform a variety of static analysis, e.g. type
checking. Dynamic analysis is done while the tested component is executing [9,
p. 74].

25

3.1.2 Testing Process

Figure 1 shows the V-model of the software development process and
information flows within the process. The model combines the software
construction process from the waterfall model with the testing process [68, pp. 5,
376]. In the presented V-model software construction is divided into
requirement analysis, architecture design, module design, and programming.
Each phase uses specifications provided by the earlier phase. Development-time
testing of the product is divided into unit testing (component testing), integration
testing and system testing [9, p. 20]. Unit testing addresses the individual
program components. Integration testing proceeds with checking the co-
operation of components. The overall system conformance to the architectural
design is assured during system testing. The end product is evaluated against the
requirements during acceptance testing [9, p. 16].

requirement
analysis

architecture
design

module
design

integration
testing

system
testing

acceptance
testing

programming
integration

testing

unit
testing

Figure 1. V-model for software development.

Structural testing tends to dominate the earlier testing activities, especially unit
testing [9, p. 428]. Unit testing is usually done by the programmers themselves,
who are familiar with the program structure. Also, the amount of code in the
program units is relatively small, so a high code coverage up to 100% is feasible

26

and desirable [9, p. 75]. The later testing phases, like system testing, usually
takes advantage of functional testing techniques [9, p. 428].

3.1.3 Functional Testing

Functional testing is based on the specification, not program internals [9, p. 10].
It is applicable to all software components regardless of whether they are white-
box or black-box components. In this respect it is an universal approach.

Functional testing should exercise all required functionality of the tested
component. The functionality can be modelled using a special graph, a
transaction flowgraph, drawn from the software specification. This graph
defines the expected behaviour of the component using nodes and edges [9, p.
121]. A node stands for an identifiable state or status of the modelled entity, an
edge is a labelled transfer from one node to another. A single sequence of
events, a path, forms a route through the graph. Each execution of the
component selects one path. Usually testing is designed to cover the graph using
some coverage criteria. For example, a test suite can be designed to exercise all
edges of the graph at least once.

Figure 2 shows a simple graph, with the nodes numbered from 1 to 9 and the
edges labelled with event names. Input events are underlined to separate them
from output events. The graph is drawn from the specification of the Trivial File
Transfer Protocol (TFTP)1 server [67]. The protocol provides a simple method
for transferring files between a TFTP server and client. For brevity, the TFTP
protocol error handling and timeout mechanism is omitted. TFTP is intended to
be a continuously running service, but the graph represents only a single
transfer, either a file read or a file write.

1 TFTP is chosen to be the example protocol of this study, it is used in this and the
following chapters. TFTP was chosen because of its simplicity, the available space is
enough to present meaningful TFTP sessions.

27

1 6

3

2
R A2

A0

4
A1

W
7

8

D2 A3

9

D3

A4

D0 D1

5

Figure 2. TFTP transfer without error handling.

A TFTP transfer is initiated by the client. The client requests either a read or
write transfer from a TFTP server. In a read transfer the client downloads a file
from the server. In a write transfer the client uploads a file to the server. A file is
transferred in data blocks, the size of all but the last one being 512 octets2. The
last data block is shorter than 512 octets, possibly zero octets. Each data block is
acknowledged before the next one is sent. Table 1 explains the edge labels used
in Figure 2.

Functional testing should exercise the specified functionality and verify that is it
correctly implemented. A simple coverage criteria would be to cover each edge
at least once. Paths (R D0 A0 D1 A1) and (W A2 D2 A3 D3 A4) cover the
graph in Figure 2.

A graph can be represented as a path expression [9, p. 243]. For example, the
graph shown in Figure 2 is represented by the path expression (1). In path
expressions braces are used to group nodes or paths. The “+” sign separates
alternative nodes or paths. An exponent following a node or a path indicates a
loop in the graph. In the expression (1), exponents n and m indicate potentially
unlimited looping.

4A3D3A2D2AW1A1D0A0DR mn)()(+ (1)

2 Octet is 8-bit byte of data.

28

Table 1. Edge labels of the graph in Figure 2.

Label Explanation

R Client requests a file read.

D0 Server sends a 512-octet data block.

A0 Client acknowledges the previous 512-octet data block.

D1 Server sends the final data block, less than 512 octets.

A1 Client acknowledges the final data block.

W Client requests a file write.

A2 Server acknowledges the readiness to receive.

D2 Client sends a 512-octet data block.

A3 Server acknowledges the previous 512-octet data block.

D3 Client sends the final data block, less than 512 octets.

A4 Server acknowledges the final data block.

3.1.4 Domain Testing and Syntax Testing

In domain testing the test cases are based on the specification of input values
accepted by a software component [9, p. 173]. The possible input values are
divided into input domains which are ranges of values treated uniformly. The
component is likely to process values in one input domain similarly and the tests
should sample each domain at least once. The tester should especially
concentrate on domain boundaries, since they are the more likely to be
misunderstood or badly handled.

Usually tests verify the correctness of the IUT responses for valid input. As a
complementary approach one should also verify the responses for illegal input,
i.e. “garbage” [9, p. 284]. Systems that have an interface to a potentially hostile
environment should always perform strict input validation. Unless this is done,
garbage input may drive the system to an invalid internal state.

29

Syntax testing is an another technique for generating test cases from the input
specification. In syntax testing the tester uses a syntax description of the input
languages accepted by the IUT [9, p. 284]. Virtually all input can be modelled as
a language and syntax testing is usually applicable for a software interface. The
syntax testing cases assess the input validation routines of the software
components by erroneous input elements. Beizer proposes the following kinds of
erroneous elements [9, p. 296].

1. Elements with illegal contents, i.e. “garbage”.

2. Misplaced and missing elements, elements in wrong order, too many
elements.

3. Correct element, but in wrong context.

4. Illegal delimiters (such as spaces or braces), if delimiters exists between
elements. Apply all presented faults to delimiters as well, try also
unbalanced braces, if possible.

5. Broken inter-element dependencies. If a value of one element is used in
another elements as reference, design cases where this dependency is
broken.

6. Empty input, only the end of input character, if any.

The best test cases are those which are difficult to categorise either as valid or
invalid [9, p. 299]. A programmer has had a hard time determining what to do
with them, and she or he may have made mistakes there. For effective tests all
other parts of the input data, except the error element, should be legal [9, p. 297].

3.1.5 Conformance Testing

The OSI conformance testing methodology and framework (CTMF) defines a
methodology for the conformance testing of protocol implementations [38; 8, p.
15]. The purpose of conformance testing is to ensure that the behaviour of a
protocol implementation fulfils the standardised conformance requirements.

30

Conformance testing uses the functional testing approach, because the same tests
must be applicable to test different implementations from different vendors.

Conformance testing can be done by a third party: an entity independent from
the software provider (the first party) and procurer (the second party). Before
third party testing the provider claims the conformance of a product to the
protocol by creating a conformance statement. The statement describes the
functionality that is supposed to meet the conformance requirements. The third
party does the actual testing and verifies whether the product fulfils the
conformance requirements or not.

Interoperability tests are different from conformance tests [8, p. 19]. In the
interoperability testing two or more different implementations from potentially
different vendors are used together to see if and how they interoperate. The
interoperability tests may reveal misunderstandings about the protocol
specification, especially if the used conformance tests are not extensive or the
protocol specification is ambiguous.

3.1.6 Structural Testing

Structural testing is based on implementation details, such as source code [9, p.
11]. Sometimes the structural methods can be applied to the object code of a
component as well [13].

Statements and branches form the control flowgraph of component [9, p. 60]. In
control flowgraph testing the test cases are designed to cover the control
flowgraph according some coverage criterion [9, p. 72]. For example, all
statements and branches from the tested component must be executed at least
once. In data-flow testing the test design is based on a data flowgraph [9, p.
145]. The data flowgraph shows the life-cycle and dependencies of the data
objects in a component. The tests are designed to find data-flow anomalies, i.e.
flaws in the manner the component is handling data objects. Modern
programming language compilers perform versatile data-flow analysis [9, p.
156].

31

Property-based testing concentrates the testing effort to the important parts of
the tested component rather than to full coverage [25]. Property-based testing
takes advantage of program slices. A slice is a truncated version of the program
which has the same behaviour as the full program in respect to the tested
property. The slice is considerably smaller than the original program which
greatly reduces the testing effort. The observed behaviour of the slice during
tests is evaluated against the test purpose. The assumption is that the testing of
the slice is equal to the testing of the whole program, as far as the tested property
is concerned. Property-based testing has been applied to white-box security
analysis [25].

3.2 Fault Injection

A real-world system is always likely to contain faults. Rather than (desperately)
trying to remove the faults, the aim can be the building of a system which
provides the required service despite them. Fault injection purposefully injects
artificial faults into a system for analysis purposes. Fault injection has been
proposed to be used to understand the effects of real faults, to get feedback for
system correction or enhancement and to forecast the expected system behaviour
[16].

Fault injection can be applied to both hardware and software [16]. In hardware
transient faults change system state but hardware is not damaged, but permanent
faults are irreversible and hardware must be replaced to fix them. In contrast,
software faults result only from incorrect design or implementation. The fault is
always there, but it may require a rare condition to cause a failure. The fault may
be latent in a software for years, emerge once or a few times and then disappear
again. Such faults are extremely difficult to pin-point and repair.

It is relatively straightforward to validate system behaviour in the presence of a
foreseen set of faults [16]. The faults are injected into the system and the
behaviour is monitored. The evaluation of the system behaviour more broadly is
difficult, since the actual faults that are going to occur during the system life-
cycle are unknown.

32

3.2.1 Injection

Software fault injection analyses what happens after an anomaly [74, pp. 26,
201]. An anomaly is an unexpected event that appears to have the potential to
alter software behaviour through the alteration or corruption of its internal state
[74, p. 40]. Fault injection provides information on the behaviour of the software
component when faults do happen. This enables the analyser to know to some
extend how the component will behave when it faces unknown situations.

In software fault injection, anomalies are injected into a software component
which is executed [74, p. 45]. The anomalies can be injected to the component
inputs, or directly into the component code or data structures. When only inputs
are used, then fault injection is a functional technique.

3.2.2 Output Monitoring

In fault injection, as in normal testing, software output is monitored. The
monitored output should include not only the normal results of a component, but
also the forms of output not usually categorised as output. For example, a system
call made by the observed component should be considered as output. There are
two fundamental approaches for output monitoring in fault injection [74, p. 48].

• Monitoring for deviation between the output of the normal component
version and versions with injected anomalies.

• Monitoring of the component output events using a postcondition checker
[74, p. 272]. The postcondition checker analyses the output events and
declares a failure when unacceptable output is observed.

A component may hide failures, if the monitoring is too narrow. The component
may also have some unidentified input or output points. The monitoring of
software output may be augmented with the monitoring of the internal state of
the component or the state of the whole system [74, p. 51].

Software fault injection can be seen as a non-traditional software testing
paradigm [74, p. 34]. Traditional testing usually tries to ascertain that the tested

33

program conforms to stated requirements. Software fault injection is generally
incapable of determining this conformance. If the source code is mutated, it is
impossible to say whether the result is a product of the software itself or caused
by the injected fault. If the software input is mutated, the requirements may
specify the expected output for the mutated input.

3.2.3 Fault Injection Examples

Extended Propagation Analysis (EPA) is a source code software fault injection
technique developed into a tool by Reliable Software Technologies3. Extended
propagation analysis is composed of four steps: [74, p. 191]

1. Insert instruments into the source code of the analysed program. Instruments
are software constructs for injecting artificial faults into program state and
monitoring program behaviour. The locations of instruments can be selected
either manually of automatically.

2. Compile the instrumented program.

3. Run the compiled program once for each test case and simulated fault. The
simulated faults are injected by the instruments. The execution results
including the instrumentation data is logged.

4. The collected logs are analysed and various metrics are calculated.

The metrics may, for example, indicate that some portions of the program were
particularly sensitive to the injected faults and unacceptable behaviour were
observed. These portions should probably receive additional effort to make them
more tolerant.

Another method, Adaptive Vulnerability Analysis (AVA) assesses information
system security quantitatively. AVA is used by commercial Fault Injection

3 Reliable Software Technologies has been since renamed to Cigital [17].

34

Security Tool (FIST) [26]. The method is applicable for simulation of many
known security threats, although it may fail to take account new threats [74, p.
226]. AVA is further developed from EPA [74, p. 234]:

• The ability to simulate code weaknesses though fault injection is
strengthened. This includes the simulation of known threats, but also random
mutations to simulate unknown threats.

• Automatic test-case generation is added. The rarely used region of input
space is used to reveal inputs problematic from the security point of view.

• The postcondition checker is tuned to determine which events represent
security breaches.

AVA has the following steps, browsed here using Hypertext Transport Protocol
(HTTP) server password authentication as an example. The example uses only a
single input scenario and single intrusion detection predicate [74, p. 238]:

1. Define what is analysed. In this case a web-page requiring authentication is
fetched. The provided username is correct, but password is invalid. The
analysis probes if a potential flaw can be exploited to access the web-page
without proper authentication, i.e. without knowing the password.

2. Add instruments to the program. This step is done automatically.

3. Execute test cases as in EPA.

4. Analyse the results.

The locations where mutations caused security breaches, i.e. the web-page was
fetched, are noted from the test results. These locations can be then manually
inspected to see if they are in fact problematic and should be fixed.

35

3.3 Testing Security Properties

With a narrow view, testing is considered solely as the process of ensuring that a
software product satisfies the stated requirements [6]. The requirements indicate
what the product is supposed to do and this is reflected by the testing activities.
However, many security properties are negative, they describe what the program
is not supposed to do [25]. With a broader view the true mission of testing is to
bring light to the risk of having serious problems in the product [6]. The stated
requirements are just one source for identifying these risks, there are others. Not
all risks are equal, the higher risk areas should receive more attention.

For example, in an approach presented by G. Flink and K. Levitt special security
specification is constructed to be used in testing [25]. The security specification
states the set of requirements which a program must not violate. A requirement
may state, e.g. that the password file must not be accessed by the tested program.
Other requirements may cover common programming mistakes which cause
vulnerabilities. During testing a test case receives the fail verdict if any of the
security requirements are violated.

A secure software component must be robust to maliciously formatted input.
Testing activities should also include robustness testing. Robustness testing has a
very attractive property: there is no need for an input/output oracle. The
correctness of output from the IUT does not matter, if only the robustness is
tested. This greatly reduces the required test design effort since only input must
be crafted. A large number of test cases are feasible and desirable.

The security assessment of black-box software components must rely on
component interfaces, although sometimes the monitoring facilities of the used
operating system or special instrumentation may be available to access the
internals of the analysed program. The design of test cases must be done only
using the behavioural specification and knowledge of relevant vulnerabilities.
On the positive side, the same functional tests can be used in assessing multiple
implementations based on the same behavioural specification.

36

3.4 Summary of the Presented Techniques

The Table 2 summarises the presented software testing techniques. The
techniques are categorised by whether they require access to the source code and
whether the primary focus is in the conformance to functional requirements or in
software quality. The techniques probing quality aspects without requiring
source code access are the most interesting from the functional security analysis
point of view.

Table 2. Summary of presented software testing techniques.

Technique Requires
source code?

Probes mainly conformance or
quality?

Transaction flowgraph testing No Requirements

Domain testing and syntax
testing

No Both

Data and control flowgraph
testing

Yes Both

Property-based testing Yes Both

Code and data fault injection Yes Quality

Fault injection using interfaces No Quality

37

4. Functional Software Modelling
Functional testing of a software implementation requires modelling of the peer
components which the IUT communicates with. For example, the testing of a
server requires the model of a client. A real-world software component can be
used, if it is available and allows the execution of the test cases as designed. On
many cases this is not possible because there is a need to test exceptional
scenarios which cannot be produced by the component. The component may
also require a human operator to perform some test steps, which prevents fully
automated testing.

A model of the peer component is required, if no software components are
available or suitable. Generally, a model is an abstraction of the modelled
system. A model concentrates on some properties of the system while
suppressing other aspects [59, p. 15; 51, p. 1-3]. Models are built in order to
understand complex systems, to simulate and visualise systems and to be used as
communication aids between people. Many different models can be constructed
from a single system.

The conformance testing methodology and framework recognises two major
alternatives for realisation of the peers for functional testing: the
encoder/decoder technique and enhanced implementation (CTMF calls them
lower testers) [8, p. 79]. In the encoder/decoder technique a fixed data set
contains the test cases and execution is straightforward. In the latter alternative
the tests are executed by the enchanted implementation capable of producing the
required behaviour.

The following discussion provides a pragmatic introduction to some techniques
and methods for describing the behaviour and syntax of protocols. The
applicability of the techniques and methods for functional security assessment is
emphasised. Features for horizontal decomposition (modularization) and vertical
decomposition (layering) are ignored.

38

4.1 Basic Techniques

This chapter presents finite state machines as the fundamental technique for
functional modelling and an alternative approach, regular expressions, having
the same modelling power. The techniques are extended into extended finite
state machines, context-free grammars, and attribute grammars.

4.1.1 Regular Expressions

A regular expression consists of rules defining a language over some alphabet
[2, p. 94]. The language is the union of all input strings accepted by the regular
expression. Path expressions and directed graphs, which were presented earlier,
can be converted into regular expressions by assigning link weights to edges [9,
p. 243].

Regular expressions are traditionally used for lexical analysis in compilers, but
they are widely applicable e.g. for behavioural modelling. Figure 3 shows a
modified version of the earlier transaction flowgraph of the TFTP specification
with edge names as link weights. The names are listed in Table 3. The
corresponding regular expression is written down as expression (2).

adaDaWadaDR }{|}{ (2)

1 6

3

2
R

4
a

W
7

8

D

9

d
a

D d

5

a a

a

Figure 3. Regular expression for TFTP transaction without error handling.

39

There are some notational differences between the path expression and regular
expression. In regular expressions alternative symbols are separated by vertical
bar “|”. Zero or more instances of a symbol are indicated by enclosing the
symbol in curly braces “{...}”. The language defined by the regular expression
contains all possible TFTP transfers (without error handling). As before,
underlining is used to separate received messages from sent messages.

Table 3. Explanations of link names of Figure 3.

Link name Explanation

R Request to read a file from the server.

W Request to write a file to the server.

D A 512 octet data block.

d A data block shorter than 512 octets.

a Acknowledgement of a data block.

When the modelled behaviour is complex, the regular expression becomes long
and complicated. A regular expression can be divided into more manageable
parts by using regular definitions [2, p. 96]. For example, expression (3) is
equivalent to expression (2), but uses regular definitions of the identifiers
<TFTP>, <RRQ>, and <WRQ>. The identifier <TFTP> denotes either a read
transfer or a write transfer, <RRQ> denotes a read transfer and <WRQ> a write
transfer. A regular definition has a left-hand side identifier and a right-hand side
regular expression separated by an equals sign “=” in the middle. Recursion is
not allowed, a left-hand side identifier must not be used in the right-hand side of
the same definition or any definition transitively used in the right-hand side.

adaDaWWRQ

adaDRRRQ

WRQRRQTFTP

}{

}{

|

=

=

= (3)

Fusion, an object-oriented development method, uses regular expressions called
life-cycle expressions [18, p. 31]. A life-cycle expression is used to describe the

40

possible interactions of the modelled system. Life-cycle expressions have
notations for input events and output events, for sequential events, alternative
events, repeating events, optional events, and concurrent events. A life-cycle
expression can take advantage of regular definitions. Apart from notation, the
only difference between life-cycle expressions and the presented approach is that
life-cycle expressions can represent concurrent events.

Regular expressions are used in scripting languages and other similar tools for
extracting portions from a textual (also binary) stream for searching or
manipulation. For example, consider the definition of a TFTP write request
message in Figure 4. The message has a two-octet operation code, character
string filename terminated by a zero octet, and character string data mode
terminated by a zero octet as well [].

0 1 1st 2nd nth 0 0

operation
code

1st 2nd mth

file name data mode

octet

Figure 4. TFTP write request message.

Using notation from the scripting language Perl the write request would be
identified and matched using regular expressions [55; 77]:

 ^\x00\x01([^\x00]*)\x00([^\x00]*)\x00$

The notation used in Perl is somewhat different from expressions (2) and (3). A
backslash followed by letter x “\xXX“ indicates an octet with hexadecimal value
XX, “[^\x00]“ indicates any character with null, postfix asterisk “*“ indicates
that the proceeding symbols is repeated zero or more times. The initial character
“^” and final character “$” indicate the beginning and end of data (actually end
of line), respectively. Braces are used for grouping.

41

4.1.2 Finite State Machine

A finite state machine (FSM) (or finite automata) is capable of recognising a
regular language [2, p. 113; 31, p. 16]. A FSM is constructed from states, state
transitions, and input symbols. A FSM has a single initial state and set of
accepting states. FSM execution starts from the initial state and goes through
state transitions caused by the consumed input symbols. A string is accepted
only if the string symbols lead from the initial state to one of the accepting
states.

A FSM recognising the same language as a regular expression can be
constructed from the regular expression. Figure 3 can be seen as a FSM
recognising legal TFTP behaviour by considering the nodes as states and the
edges as state transitions. The initial state is 1 and there is a single accepting
state 5.

An extended finite-state machine is a FSM with variables [23, p. 228; 60, p. 92].
The use of variables effectively limits the number of explicit states required for
the modelling of such elements as numerical identifiers or counters. The used
variables must be considered as part of the global state of an extended FSM.

4.1.3 Context-Free Grammars

Context-free grammar, also called Backus-Naur Form (BNF), is an extension to
regular expressions [2, pp. 25, 172; 31, p. 8]. BNF is widely used, but there is no
standard or consensus on the notation. Most of the notation used in this study is
adopted from Wirth4, but some modifications are made to conform to commonly
seen conventions and to facilitate extensibility [82]. The resulting notation is
described in Table 4, the term “closure” is taken from Gough [31, p. 78].

4 Wirth’s article was written in 1977 especially to unify used BNF notations. This
intention is clearly broken by introducing modifications.

42

Table 4. Context-free grammar symbols..

Symbol Description Notation

string A string of characters enclosed in double
quotes.

"xyz" "Hello, World!"

identifier An identifier enclosed in angle braces.
The identifier can be replaced by the
right-hand side of the corresponding
production.

<a> <Name>

production Production consisting of the left hand side
identifier, an equals sign, and right hand
side symbol(s).

<Name> = "xyz"

sequence Sequence (or concatenation) of symbols.
Normal braces are used to group symbols.

(<a> <c>)

<d> <e> (<f> <g>)

null Empty sequence. ()

selection Selection (or alteration) from alternative
symbols separated by a vertical bar.

<a> | | <c>

closure Selection between zero, one or multiple
repeats of a symbol enclosed in curly
braces, e.g. { <a> } equals to <a> |<a>
<a> |<a> <a> <a> |... etc.

{ <a> }

option Optional symbol, [<a>] equals to () |
<a>.

[0xff]

The TFTP specification from Figure 3 is shown below using context-free
grammar. Identifiers <RRQ>, <WRQ>, <BLOCK>, <ACK>, and <LAST-BLOCK>
correspond to read request, write request, intermediate data block,
acknowledgement, and last data block, respectively. The direction of messages is
not shown.

<transfer> = <read-transfer> |<write-transfer>

<read-transfer> = <RRQ> <reads>

43

<write-transfer> = <WRQ> <ACK> <writes>

<reads> = {<BLOCK> <ACK>} <LAST-BLOCK> <ACK>

<writes> = {<BLOCK> <ACK>} <LAST-BLOCK> <ACK>

Context-free grammars can contain recursive structures forbidden in regular
definitions [2, p. 165]. For example, consider a trivial language consisting
merely of balanced braces:

<balanced> ::= "(" <balanced> ")" | "()"

There are as many close braces as there are open braces. This language cannot
be described by regular expressions. Consequently a FSM cannot recognise all
context free languages. A push-down automata is an extension to FSM which is
able to recognise a context-free grammar [31, p. 149]. A push-down automata
contains a stack for storing symbols.

BNF is used to describe the message formats of various Internet-related
protocols [21]. Beizer suggests a method for creating test cases from the BNF
specification of input language accepted by the IUT [9, p. 284]. Maurer has used
BNF for the creation of test cases for hardware testing [49]. Maurer takes
advantage of variables to distribute the same value into many parts of a single
sentence. This resembles the variables in extended FSMs. He also used action
routines to extend the capabilities of BNF. An action routine is a programming
language routine performing calculations and other operations difficult to model
using only a context-free grammar.

4.1.4 Attribute Grammars

Attribute grammars are an extension of context-free grammars having attributes
associated to the grammar symbols [2, p. 279; 54]. In first-order attribute
grammars attributes are separate from grammar, but in higher-order attribute
grammars the attributes may themselves be grammar symbols. Attribute values
are calculated by a traversal through the grammar using semantic rules. A
semantic rule may also perform any other actions during the traversal besides
calculating attribute values. A semantic rule is similar to action routines

44

proposed by Maurer. The first-order attribute grammar attributes resemble the
variables in extended FSM.

Real-time asynchronous grammar (RTAG) uses attribute grammars for a
specification of protocols and for an automatic implementation of protocol
entities [4]. A RTAG specification contains symbols for input messages, output
messages, and special purposes (e.g. a timer). Externally supplied C-routines are
used for communication with the outside world. RTAG has been proposed as a
method for easier implementation of protocol stacks.

4.2 Modelling Standards

This chapter overviews some standard methods for software modelling. They
take advantage of the techniques presented in the previous chapter. The
applicability of the standard techniques for functional vulnerability assessment is
discussed in the end of this chapter.

4.2.1 Specification and Description Language

Specification and Description Language (SDL) is a standard language for
specifying systems [34; 23, p. 1]. The aspects covered by SDL are behaviour,
structure and data. SDL can be used to describe the co-operation of a system
with the environment, as well as, the internal system structure. SDL supports
stepwise refinement from higher-level models into more detailed models. An
SDL description may contain enough information to be directly executable or to
be converted into programming language code. SDL was originally designed for
telecommunication system modelling, but it is applicable to any kind of
computer system. SDL includes both graphical and textual notation.

The overall behaviour of an SDL system is the joint behaviour of all process
instances [23, p. 8]. Process behaviour is modelled using extended FSM [23, p.
227]. The state machines are further extended with decisions and signals. Timers
are used to specify time sensitive actions, such as timeouts. Procedures are used
in a similar manner as in programming languages [23, p. 125].

45

The SDL state machine of a partial TFTP server is shown in Figure 5. More
understandable state and event labels are introduced compared to the earlier
single-letter labels. The conditions related to the decisions between
nondeterministic states are added to the diagram. Explanations of the labels used
are given in Table 5.

For data definitions SDL uses the concept of abstract data types [23, p. 13].
Optionally an SDL specification can take advantage of ASN.1 data types.
Abstract data types define data in a hardware and software platform independent
manner. For example, an integer in SDL is defined as a mathematical concept
and not limited to any particular implementation or range.

RRQ

ACK

wait_read

done

ACK

BLOCK

ACK

wait_write

WRQ

block
< 512

idle

BLOCK

noblock
 < 512

yesyes

no

Figure 5. SDL state machine for TFTP transfer without error handling.

46

Table 5. Explanations of the events and states of Figure 5.

Label Type Explanation

idle state Waiting for a request.

RRQ event Request to read a file from the server.

BLOCK event A data block.

wait_read state Waiting for the client to acknowledge a block.

ACK event Acknowledgement of a data block.

WRQ event Request to write a file to the server.

wait_write state Waiting for the client to write the next data block.

4.2.2 Message Sequence Chart

A companion for SDL is a standardised Message Sequence Chart (MSC)
language for visualising message exchanges [35; 23, p. 250; 58]. As SDL, MSC
also includes both graphical and textual notations. An MSC shows one specific
transaction compared to a state machine which captures the complete behaviour
of an entity, and is usually easier to understand than a state machine. However,
an MSC cannot be outright used as a specification since it only shows one
possible interaction from many or an unlimited number of different interactions.

Figure 6 shows an error-free TFTP transfer of a 1050 octet file from server to
client using MSC. The file name is “sample.txt” and transfer mode is “octet”.
The file is transferred in three messages, two 512 octet messages and a final 26
octet message.

47

client server

RRQ("sample.txt", "octet")

BLOCK(1, ...)

ACK(1)

BLOCK(2, ...)

ACK(2)

LAST_BLOCK(3, ...)

ACK(3)

Figure 6. MSC of successful TFTP file read transfer.

4.2.3 Unified Modelling Language

Unified Modelling Language (UML) is a visual object-oriented modelling
language to develop and exchange models [51, p. 1-5]. It is programming
language independent. UML supports high-level concepts such as components,
collaborations, frameworks, and patterns. UML is meant for specifying,
constructing, visualising, and documenting software systems. It is not a
programming language. In a software project UML modelling and programming
are separate tasks.

UML provides use cases, collaborations, state machines, and activity graphs for
behavioural specification [51, p. 2-83]. State machines are essentially finite state
machines [51, p. 2-129]. The FSMs are described using graphs called statechart
diagrams [51, p. 3-131]. Activity graphs are FSMs intended for the modelling of
computational processes in terms of control-flows and object-flows [51, p. 2-
160]. Apart from the differences in terminology and notation UML and SDL
provide similar tools for behavioural modelling. Figure 7 shows a UML
statechart diagram of a TFTP transfer. The black dot is the start state and black
dot surrounded by white binding is the end state. The general form of a UML
state transition is:

48

event [guard condition] / action

An event is the triggering condition for the state transition. A guard condition,
when present, must also be satisfied. An action is taken when a state transition
occurs. Figure 7 uses link names from Table 3 as events (received messages) and
actions (send messages).

a [data left >= 512] / D

a

S1

S2

S3

a [data left < 512] / d

R [data left >= 512] / D

R [data left < 512] / d

W / a

d / a

D / a

Figure 7. UML statechart diagram of TFTP transfer without error handling.

UML uses interaction diagrams to show the interaction between two or more
instances [51, p. 3-97]. There are two variants, namely sequence diagrams and
collaboration diagrams. A sequence diagrams shows interaction as messages
arranged as a time sequence. A collaboration diagram emphasises more the
relationships between communicating peers. UML sequence diagrams have a lot
in common with MSC diagrams, the differences are mostly notational.

4.2.4 Tree and Tabular Combined Notation

Tree and Tabular Combined Notation (TTCN) is a standard notation for
describing test cases [39; 8, p. 95]. TTCN has both a machine readable notation
and a graphical notation suitable for human comprehension.

A TTCN test case is formed from a behaviour tree [8, p. 164]. A behaviour tree
is a conceptual tree and is usually composed from several TTCN trees. There can
be multiple concurrently executed behavioural trees. Behaviour tree nodes are
called behavioural lines. Interaction with the IUT takes place at points of control

49

and observation (PCOs) [8, p. 55]. There are several types of behavioural lines,
the most important ones are described in the following list [8, pp. 164, 194].

• Send event, a data object is sent to the IUT. A send is assumed to be always
successful.

• Receive event, a data object is received from the IUT. The range of data
objects accepted is specified by constraints. The next behavioural line is
evaluated if no matching objects are available.

• Timeout, which can be used to avoid endless waits for data objects.

• Pseudo events, which do not cause interaction with the IUT:

• Qualifier evaluates a condition and acts differently depending on the
outcome of the condition.

• Assignment performs some calculations and assigns results to a variable.

• Timer operation is used to set and reset a timer for timeout lines.

In addition to the listed behavioural lines there are default lines and constructs
for a more compact description of behaviour trees. TTCN behaviour lines can be
looped and branches can be defined recursively, to achieve similar description
power as recursion in context-free grammars.

TTCN test suites are not directly executable, they are abstract test suites [8, p.
77]. They must be converted to executable test suites by selecting applicable test
cases and providing the needed parameters, such as used network addresses and
ports.

4.2.5 Abstract Syntax Notation One

Abstract Syntax Notation One (ASN.1) is a platform and language independent
notation for specifying data structures [36; 23, p. 219; 47, p. 16]. Many protocol
specifications use ASN.1 to specify the format of exchanged messages or

50

protocol data units (PDUs). ASN.1 structures can be mapped into program
language data-structures using automated tools [47, p. 16].

ASN.1 separates an abstract syntax and a transfer syntax [47, p. 30]. The
abstract syntax describes the information content of data structures. The transfer
syntax defines the octets and bits actually transmitted. The process of converting
data from the abstract syntax into the transfer syntax is called encoding, the
reverse is decoding. There are multiple encoding and decoding rules with
different properties for ASN.1, e.g. Basic Encoding Rules (BER) [37; 47, p.
236]. Tools and protocol stack layers are readily available for ASN.1 encoding
and decoding [47, p. 16].

4.2.6 Extensible Markup Language

The Extensible Markup Language (XML) has recently gained attention as a
standard method for describing structure and relationships of data elements in
documents [12]. A document type declaration (DTD) specifies how the XML
documents of that particular type must be constructed. Using a DTD the
correctness of a XML document can be checked. A document object model
(DOM) defines the programming interface for accessing XML documents and
tools conforming to the DOM are available.

A DTD can be considered as the grammar of the language made up from the
XML documents conforming to the type. XML documents are machine readable
text-only documents. XML document syntax is described in a platform-
independent manner which makes XML suitable as a data exchange method.
There is ongoing activity to use XML for the message syntax description of
communication protocols [12].

4.3 Modelling Summary

The presented approaches provide tools for system modelling. Depending on the
approach, different properties of the system are emphasised while others are
abstracted away. The three main aspects of behavioural modelling can be
identified:

51

1. Interaction modelling to describe joint behaviour of two or more entities.

2. Entity modelling to describe behaviour of an entity.

3. Syntax modelling to describe syntax of data exchanged by entities.

Interaction models describe messages exchanged between two or more entities,
e.g. TTCN or MSC. They capture a single sequence of messages rather than all
possible interaction sequences. The interplay of the entities and the causal
relationship between the messages is emphasised. The syntax of the exchanged
messages and behaviour not relevant for the interaction is omitted. An
interaction model is not enough for the specification of the participating entities,
since it describes only partial functionality. A test case is an executable
interaction model.

An entity model captures the (complete) behaviour of an entity or a system, e.g.
SDL. The model emphasis the order and types of messages sent and received by
the entity. Message syntaxes and the behaviour of other entities are suppressed.
The behaviour of a real-world entity tends to be complex, which makes
behaviour models complex and difficult to understand. A formally defined entity
model can be executed to provide a simulation of the modelled entity.

A syntax model describes the syntax of data exchanged by entities, e.g. ASN.1
or XML. It does not take into account the order of messages or the semantics
(meaning) of the messages. An abstract syntax describes the information
contained in data structures platform-independently. A transfer syntax describes
the actual bits exchanged.

A software or hardware implementation is the ultimate entity and syntax model.
There are tools to actually create implementations from entity and syntax
models. The presented modelling methods are summarised in Table 6.

52

Table 6. Summary of presented modelling methods.

Modelled aspect Method

Interaction MSC

TTCN

UML interaction diagrams

Entity SDL

UML statechart diagrams

Syntax ASN.1

XML

4.4 Conclusions

Functional testing of a component requires interaction models of the peers of the
tested component. In general, interaction models are derived from entity models.
For example, TTCN test cases are derived from an SDL specification.

The derivation process from entity models into interaction models reduces
uncertainty to the point that actions are described in sufficient detail: message
contents are specified, loops are assigned with repetition counts and optional
elements are included or excluded, etc. The output messages must be completely
defined, but the input messages may contain uncertainty, which is resolved when
the receive operation takes place. The derivation process can be automated by a
tool or conducted manually. With proper tool support the resulting interaction
model can be executed, but only after all required parameters, like network
addresses and ports, are specified.

The derivation of interaction models from the entity model is not addressed by
the presented methods. The gap has to be filled by additional methods. Also the
means of communication between the interaction models and real-world
programs, e.g. using network sockets, is left to be specified somewhere else. The
creation and execution of interaction models seems to be a complex process,
which requires the developer to master the following skills.

53

• Entity modelling (e.g. SDL or UML).

• Interaction modelling (e.g. UML, MSC or TTCN).

• The derivation of the entity models from interaction models.

• The use of the execution platform.

There are methods for behavioural modelling not discussed in this study, e.g.
Extended State Transition Language (Estelle) and Language for Temporal
Ordering Specification (LOTOS) [60, pp. 24, 92, 173]. However, they do not
change the nature of behavioural modelling. It can be justifiably argued that the
rigid approaches may be well suitable for conformance testing, but are not
optimal for the creation of a large number of versatile test cases with exceptional
or even illegally formatted data, e.g. for functional robustness testing.

54

5. Mini-Simulation Method
This chapter proposes a new method, the mini-simulation method, for the
functional modelling of protocol exchanges. It is based on the techniques
presented in earlier chapters. The method covers interaction modelling and
syntax modelling with capabilities to create exceptional data. The idea is to take
advantage of multiple miniature simulations, not a single complete simulation
bound to be complex.

5.1 Mini-Simulation Overview

The mini-simulation method was originally developed for functional robustness
testing. The main requirement was the ability to generate a large amount of
messages with one or few exceptional elements but otherwise legal content.
Checksums and other such fields must be calculated correctly, and messages had
to be delivered into tested implementations.

However, from the early stages the broader potential of mini-simulations was
recognised. A set of requirements started to form, deriving from the experience
gained during robustness testing.

5.1.1 Requirements

A mini-simulation method provides the means for creating models from protocol
specifications. The method aims to fulfil the following set of requirements.

R1: A mini-simulation specification should be simple and human
readable.

A single notation is sufficient for all behaviour modelling. A developer5 should
be able to create a simulation of the basic behaviour just by looking at the mini-

5 The term developer is used herein for the user of the mini-simulation method: software
designer, programmer, tester, etc.

55

simulation specification, even if she or he is not an expert on this particular
protocol.

R2: A specification should provide a basis for multiple models for
different purposes.

Multiple models are created for a single protocol and a single protocol entity.
Each model emphasises a different point of view or a different scenario. All
models use the same specification as the starting point, for easier maintenance
and comprehension. The maintenance is easier because corrections and additions
to the protocol specification propagate to all models. Comprehension of different
models should be easier if they all use the common definitions from this single
specification. The derivation of the models from the specification must be
covered by the method and be fully visible.

R3: The modelling of exceptional conditions and optional elements
should be possible without cluttering the specification with all turns and
twists.

After the basic behaviour is covered, the developer can create models
performing exceptional and optional behaviour. The basic models should remain
for providing a learning path to newcomers.

R4: Models should be applicable as prototype implementations.

The first use of the mini-simulation method in a software project can be the
implementation of stubs. The developed software component is debugged
against the stubs.

R5: Models should be applicable as executable test cases.

As the project continues, test cases can be constructed using the mini-simulation
method.

R6: Execution should produce a result, which is itself executable.

56

A direct way to create test cases is to execute a mini-simulation model and
collect the execution output. The output itself must be a mini-simulation model.

R7: There should be a direct way to mix programming language routines
into models.

A model should be able to use routines developed using a general-purpose
programming language for syntactic calculations, semantic decisions, external
communications, etc.

R8: The encoding of valid and invalid behaviour should be easy.

A mini-simulation model of a message, file, or any other data structure should be
flexible for modifications to produce both valid and invalid data.

R9: The decoding and analysis of messages should be easy.

A model must be executable “both-ways”, i.e. applicable both to the encoding of
data structures into octets and to the decoding of octets back into structures.

5.1.2 Negative Requirements

The mini-simulation method should not attempt to provide a means for complete
entity modelling or the structural decomposition of a complex system. These
tasks are already addressed with “heavy-weight” methodologies such as SDL
and UML. The mini-simulation method is a debugging and testing aid, not a
design method.

Description of the complete entity behaviour is not required. A mini-simulation
is not to be used as method for code generation, protocol standardisation or
behavioural validation. The method should promote many small models, not a
large monolith one. The mini-simulation method should not be bloated by
conditions, expressions, etc. “programming” constructs better handled by
embedded general-purpose programming language routines.

57

The performance of a mini-simulation model is not essential, simplicity, ease of
use, flexibility, etc. are far more desirable properties. A mini-simulation is not
intended for applications having real-time demands.

5.1.3 Concept

A mini-simulation model is made up of the master specification and
configuration. Higher-order attribute grammars are used for both interaction
modelling and syntax descriptions. BNF is the basis of the mini-simulation
language notation. The master specification is usually not a complete protocol
specification, but describes typical and/or error-free protocol exchanges. A
partial specification is faster to write and easier to understand than a
comprehensive specification. Still, the specification should contain the
definitions of optional messages to support the modelling of all message
exchanges.

Semantic rules for mini-simulation attribute grammar are implemented as Java
objects. Communication between the model and external world is done using
communication rules, also implemented using Java. Java is a platform-
independent, high-level, versatile, and general-purpose programming language
suitable for rule implementation [71].

A model is derived in the configuration. The configuration reads the master
specification (grammar) and uses operations to modify the grammar into the
required interaction model. Figure 8 visualises the mini-simulation concept. In
the figure a single protocol specification is the basis for multiple models for
multiple purposes: functional testing, stub implementation, traffic analysis,
simulation, and conversion.

5.2 Specifications

Attribute grammar and BNF are the basis of the mini-simulation specification
approach. A single notation is used for behaviour specification and syntax
specification.

58

Real-World
Entity

Configuration
A

Configuration
A

Functional testing

Real-World
Entity

Traffic analysis

Real-World
Entity

Simulation

Model Real-World
Entity

Stub implementation

Model Model

Model

Model

Conversion

Real-World
Entity

Real-World
EntityModel

Configuration

Master
Specification

Operation
Library

Rule
Library

Figure 8. Visualisation of the mini-simulation concept.

5.2.1 Grammar Symbols

A mini-simulation specification is a higher-order attribute grammar. The
language defined by the grammar is the set of all protocol exchanges conforming
to the specification. No distinction between context-free productions and
attributes is made, a production can be viewed also as an attribute whose name is
the left-hand side of the production and value is the right-hand side. Productions
are divided into data productions and type productions. The distinction is
important mainly during evaluation, introduced later.

59

Table 7. Additions to symbols given in Table 4.

Symbol Description Notation

octet 8-bit octet, a one or two digit hexadecimal
value prefixed with “0x”.

0x0 0x12 0xff

octet range Octet range, a shorthand notation for
selection between octets from a range.
Octets are separated by a dash “-“.

0x00 - 0x7f

0xf0 - 0xff

bit A bit. Two special identifiers <B0> and
<B1> serve as bits 0 and 1, respectively.

<B0> <B1>

type
production

Type productions are different from data
productions. They use a double-colon
before the equal sign.

<Name> ::= "xyz"

repeat Repeating a symbol n times. The repeated
symbol is prefixed with n “x”.

100 x "A"

tag Tagging a symbol, a tag is a string with
prefix exclamation mark “!”. A tag bears
no syntactic meaning.

!up <PDU>

closure
with limits

A closure can be prefixed by an upper
repeat limit, e.g. 3 { <a> }, or by a lower
and upper limit, e.g. 1..3 { <a> }. The
number of repeats is only allowed in the
limit range. Letter n is used for unlimited
upper limit, e.g. 0..n { <a> } equals to {
<a> } closure.

3..8 { 0x0 }

1..n { "xyz" }

comment Comment in BNF, ignored during
processing. Comments start with the “#”
character and continue to the end of the
line.

This is a comment

The basic context-free grammar symbols and their notations were presented
earlier in Table 4. The mini-simulation additions are given here in Table 7, the

60

comment symbol is included to the table although it is not really a symbol. The
grammar symbols and their short descriptions are presented in Appendix A. The
precedence is the following:

1. Repeats and tags.

2. Sequences.

3. Selections.

The above precedence can be changed by the use of regular braces. From this
point forward the term BNF refers to the mini-simulation notation and term
grammar or simulation grammar stands for a mini-simulation protocol
specification.

Strings, bytes, and bits can be mixed in the syntax modelling of protocol
messages. The encoding of a string into bytes uses the Java default string
encoding [71]. Mini-simulation models are byte aligned and bits must be
arranged in multiples of eight bits. A run-time exception is thrown, if illegal bit
arrangements are encountered.

The previously introduced TFTP server example is used also in mini-simulation
examples. Figure 9 shows the grammar, using BNF, defining TFTP behaviour
without error handling or timeouts.

<transfer> = <read-transfer> |<write-transfer>

<read-transfer> = !up<RRQ> <reads>

<write-transfer> = !up<WRQ> <writes>

<reads> = {!down<BLOCK> !up<ACK>} !down<LAST-BLOCK> !up<ACK>

<writes> = !down<ACK> {!up<BLOCK> !down<ACK>} !up<LAST-BLOCK> !down<ACK>

Figure 9. Mini-simulation grammar of TFTP behaviour without error handling.

The specification contains tags. A tag applies to the symbol immediately
following it, e.g. in !up<WRQ> the tag !up applies to <WRQ>. Tags convey only
semantic meaning, they have no syntactic content. Tags are used for various
purposes, in the TFTP grammar they indicate the direction of a message flow:

61

!up for upstream (from a client to a server) and !down for downstream (from a
server to a client).

A simulation grammar can be alternatively shown as a simulation tree. The
simulation tree concept is similar to trees in TTCN [8, p. 164]. A symbol is
represented in a simulation tree by a node. Symbols and nodes are divided into
non-terminals, intermediate nodes, and terminals, leaf nodes. Sequences,
selections, options, closures, repeats, and tags are represented by intermediate
nodes. Strings, octets, bits, and nulls are represented by leaf nodes. An octet
range can be drawn to be either a leaf node or an intermediate selection node. An
identifier can be a leaf node or an intermediate node with the right-hand side of
the production drawn below the identifier. Tree node syntax is given in
Appendix A. Figure 10 shows the TFTP behaviour grammar in tree format.

<transfer>

!up

<read-transfer> <write-transfer>

|

<reads> <writes>

<BLOCK> <ACK>

<LAST-BLOCK>

{ }

<ACK>

<RRQ>

!down

!down

!up

!up

!up

<WRQ>

<BLOCK> <ACK>

<LAST-BLOCK>

{ }

<ACK>

!up

!up

!down

!down

<ACK>

!down

Figure 10. Simulation tree of TFTP behaviour without error handling.

Message syntax definition uses the same set of symbols as the behavioural
definition. Figure 11 specification defines the message formats of the TFTP
protocol using BNF.

62

Request PDUs

<RRQ> ::= (0x00 0x01) <FILE-NAME> <MODE>

<WRQ> ::= (0x00 0x02) <FILE-NAME> <MODE>

Subsequent PDUs

<BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 512 x <OCTET>

<LAST-BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 0..511 { <OCTET> }

<ACK> ::= (0x00 0x04) <BLOCK-NUMBER>

<ERROR> ::= (0x00 0x05) <ERROR-CODE> <ERROR-MESSAGE>

Miscellaneous productions

<MODE> ::= "octet" 0x00 |"netascii" 0x00

<FILE-NAME> ::= { <CHARACTER> } 0x00

<BLOCK-NUMBER> ::= <OCTET> <OCTET>

<ERROR-CODE> ::= <OCTET> <OCTET>

<ERROR-MESSAGE> ::= { <CHARACTER> } 0x00

<CHARACTER> ::= 0x01 - 0x7f

<OCTET> ::= 0x00 - 0xff

Figure 11. Mini-simulation grammar of TFTP messages.

The size constrains of the last block and the intermediate blocks are modelled
without a condition expression. The intermediate data block (<BLOCK>) is
specified to contain exactly 512 octets of data and the last data block (<LAST-
BLOCK>) is modelled to have from zero to 511 octets of data.

The grammar also includes an error message <ERROR>, although only error-free
behaviour is specified in the behavioural part. It is a good idea to specify the
error messages as well, since the grammar can be always mutated to test error
handling.

5.2.2 Rules

Rules are implemented by the Java programming language. Rules are divided
into communication rules and semantic rules. Communication rules provide the
means for exchanging data with external entities. Semantic rules are used to

63

implement constructs which are difficult or impossible to describe using only
pure grammar, such as lengths and checksums. A rule registers callbacks which
are associated to triggers. Callbacks are routines called to achieve the
functionality provided by the rule. A trigger can be a tag, an identifier, or a
special trigger root. The root trigger implies that the callback must be called
before the grammar is evaluated. Apart from the root trigger multiple rules
cannot share triggers.

Communication rules divide a grammar into a behaviour part and a syntax part.
The behaviour part describes the behaviour of the modelled entity in a way
similar to SDL or TTCN. The syntax part describes the syntax of used messages
as in ASN.1 transfer syntax6. A communication rule input trigger indicates an
input data stream and an output trigger an output data stream.

The TFTP grammar (see Figure 10) uses the tags !up and !down to indicate UDP
messages. The grammar is applicable to both the modelling of a server or a
client since the grammar models the traffic between them rather than the
behaviour of one or the another. Whether a client or a server is simulated
depends on the communication rules assigned to the tags. A server has !up as an
input trigger !down as an output trigger, a client has !down as the input trigger
!up as the output trigger.

5.2.3 Evaluation

Evaluation transforms an input grammar (or input tree) into an output grammar
(or output tree). The simulation functionality, e.g. sending and receiving of
messages, takes place as a side-effect of an evaluation. An output grammar
could be used again as input grammar to playback the earlier evaluation.

The mini-simulation evaluation engine traverses an input tree in top-down, left-
to-right order. When a trigger, a tag or an identifier, is encountered, the

6 Here the transfer syntax is specified directly, but generally semantic rules can be used
to achieve a separate encoding phase and use of an abstract syntax.

64

evaluation is transferred to the registered rule by calling the callback. The
enclosed branch of the input tree is handed over to the rule as a rule input
branch. If the trigger is a tag, then the rule input is the child symbol of the tag. If
the trigger is an identifier, then the rule input is the right-hand side of the
corresponding production. During evaluation the desired functions are
performed by the rule. After evaluation the rule returns a rule output branch. The
evaluation engine attaches the rule output to the output tree on the location of the
trigger and continues the evaluation.

A semantic rule takes the rule input branch, does semantic calculations, and
returns the output branch. On the other hand, a communication rule either sends
the input7 branch or receives data according to the input branch. During a send
callback, the input branch is evaluated to calculate inner semantic rules, if any,
and then encoded into raw data, which is sent into the communication channel.
During a receive callback, the raw data is decoded8 from the communication
channel using the input branch. The rule output from a send callback is the
evaluated branch, the output branch from a receive callback is the decoded
branch.

In addition to the input branch and output branch, rules also have read and write
access to all productions available at the point of the evaluation. This breaks the
strict top-down, left-to-right order of the evaluation. A rule may choose
productions “further down” to be evaluated immediately. Also, a rule may
overwrite an already evaluated production. This is a powerful mechanism, but
causes tricky problems if used without caution.

7 The terminology is somewhat confusing: from an evaluation point of view the rule
input branch is really sent, although generally the branch sent by a communication rule
is called an output branch and the received branch is called an input branch.

8 Term “decoding” is here synonymous to the widely used term “parsing”, e.g. in [2] and
[31]. The term “decoding” is used to provide symmetry to the term “encoding” although
the actions are not fully symmetrical since encoding is preceded by evaluation while
decoding is not.

65

All this is best explained by examples. Figure 12 shows a simulation tree
evaluation with a single communication rule. The sample protocol consist of a
request message “Ok?” and response messages “Ok” or “NotOk”.

<session>

"Ok?" "Ok" "NotOk"

|

!send !receive

a) <session>

"Ok?" "Ok" "NotOk"

|

!send !receive

b)

<session>

"Ok?" "Ok" "NotOk"

|

!send !receive

c) <session>

"Ok?" "Ok" "NotOk"

|

!send !receive

d)

<session>

"Ok?" "Ok" "NotOk"

|

!send !receive

e) <session>

"Ok?" "Ok"

!send !receive

f)

Figure 12. Evaluation example with a communication rule.

66

<session> = !send "Ok?" !receive ("Ok" |"NotOk")

The communication rule output trigger is the tag !send and the input trigger is
the tag !receive. Figure 12 a) shows the simulation tree before evaluation. In
b) the evaluation starts from the root identifier <session> and advances down
until the output trigger !send is encountered. The evaluation is handled by the
registered communication rule callback. In c) callback evaluates the input
branch, encodes it, and sends the resulting octets into the communication
channel. In d) the communication rule callback returns and the evaluation
continues right until another trigger, !receive, is encountered. There the
communication rule callback waits for data from the channel and when data is
received in e) it is decoded. The received reply is the string “Ok” and the output
tree is modified to reflect the response. In f) the evaluation proceeds back to the
root and is terminated, the final output tree remains as a result of the evaluation.

The evaluation (or decoding) of a selection symbol from an input grammar
results in the choosing of exactly one child to the output grammar. Traversal of
the selection starts from the leftmost child symbol. The traversal may be
unsuccessful, in which case the next child to the right is tried. The first
successful child causes the skipping of the remaining children on the left. For
example, in Figure 12 e) if the response would have been “NotOk”, then the
decoding of the left selection child “Ok”, would have been unsuccessful, but the
decoding of the right child “NotOk” would have succeeded.

A branch is unsuccessful if it is backtracked. Backtracking may be caused by the
evaluation engine, e.g. an identifier without a corresponding production is
encountered. A communication rule may backtrack for a variety of reasons e.g.,
if the received data does not match the syntax specification. A semantic rule may
also backtrack. Generally, the backtracking of a symbol causes the backtracking
of all the parent symbols until a selection is encountered. As explained before,
backtracking causes the next child of the selection to be traversed. The selection
itself becomes backtracked, if all children backtrack.

A child symbol of a closure is evaluated (or decoded) greedily as many times as
the child symbol succeeds or the upper repeat limit imposed on the closure is
achieved. In the output grammar the closure is replaced by a sequence of zero or

67

more of the resulting child symbols. For example, in the TFTP grammar the
<reads> production is defined as:

<reads> = {!down<BLOCK> !up<ACK>} !down<LAST-BLOCK> !up<ACK>

In a client simulation the above closure models the receiving of full 512-octet
data blocks and the sending of acknowledgements. The closure is evaluated as
many times as !down<BLOCK> is successful (sending of an acknowledgement
!up<ACK> virtually always succeeds), i.e. as many times as a 512-octet block is
received. The last received data block will be shorter than 512 octets, which
causes the backtracking of the closure, subsequent reception9 of the last data
block, and sending of the last acknowledgement.

During evaluation, a data production (defined using “=” in BNF) is treated as a
“write-once attribute”. When the left-hand side of the production is encountered
from the input tree, the traversal proceeds to the input branch defined on the
right-hand side of the production. After the branch is evaluated the identifier is
added to the output grammar with the resulting output branch as the right-hand
side. The new data production may be different or the same as in the input
grammar, depending on whether selections were encountered on the right-hand
side. After the first evaluation of the right-hand side of a data production, the
branch is no longer re-evaluated even if the identifier is encountered again in the
simulation tree. Any subsequent evaluations are skipped and the production
value in the output grammar is left untouched. This feature can be used e.g. to
decode a session identifier from a received message and use it in subsequent
send messages, like in the following grammar.

9 A received UDP datagram is temporarily stored by the UDP communication rule, if the
rule backtracks. The same datagram is then “received” again next time the rule input
callback is called.

68

<session> ::= !receive ("id " <id> 0x00) !send ("received id " <id> 0x00)

<id> = { 0x01 - 0x7f }

In contrast to a data production, a type production (using “::=” in BNF) is not
modified, but is always copied unmodified from the input grammar to the output
grammar. If the evaluation of the right-hand side of a type production encounters
selections, the identifier itself is replaced by the output branch in the output
grammar. For example, execution of the TFTP read transfer specified in the
MSC of Figure 6 results in the output grammar below10.

<transfer> = <read-transfer>

<read-transfer> =

 !up((0x00 0x01) ("sample.txt" 0x00) ("octet" 0x00)) <reads>

<reads> =

 ((!down((0x00 0x03) (0x00 0x01) ...) !up((0x00 0x04) (0x00 0x01)))

 (!down((0x00 0x03) (0x00 0x02) ...) !up((0x00 0x04) (0x00 0x02))))

 !down((0x00 0x03) (0x00 0x03) ...) !up((0x00 0x04) (0x00 0x03))

In the grammar the type productions, e.g. <RRQ> or <BLOCK>, left-hand side
identifiers are replaced by the modified right-hand sides. In contrast to this, the
data productions <transfer> and <reads> are present, but modified.

5.2.4 Evaluation Problems

The top-down, left-to-right traversal method used by the evaluation engine is
intuitive and easy to follow. In principle the evaluation can backtrack from
infinitely deep branches when evaluation is not successful. On the negative side,
backtracking is an inefficient method [2, p. 181]. More effective parsing
methods are difficult to be used because of the rules, which allow unlimited
features to be added in the evaluation process. The behaviour of a rule cannot be
predicted beforehand.

10 Ellipsis “...” indicates omitting of symbols for fitting a sample conveniently onto a
printed page.

69

Another problem related to rules is that a rule cannot always be backtracked. For
example, a communication rule which has already sent a message into the
network cannot take the message back if backtracking is required.

The evaluation process can get stuck in an infinite loop, if care is not taken in
specification construction. Left recursive productions lead to infinite loops and
should not be present in mini-simulation grammars [2, pp. 176, 181]. In left
recursion the left-hand identifier is also the first symbol of the right-hand side of
the production, e.g. the production <a> ::= <a> is left recursive. Also a
closure whose child symbol evaluation always succeeds will be expanded
infinitely until the evaluation engine runs out of memory.

5.3 Paths and Masks

Symbols and branches from a grammar need to be accessed for different
purposes, e.g. by operations to mutate the grammar. A symbol from a grammar
is uniquely identified by a path. Since the use of full paths is cumbersome,
masks are used as shorthand notations for paths.

Paths and masks are made up of segments separated by dots “.”. In a path each
segment corresponds to an edge in the simulation tree, a mask also contains
wildcard segments. A path specifies a single sequence of symbols starting from
the root of the tree, advancing to a child of the root, to child of that child, and so
on. A special path root points to the root of the tree, all other paths end to an
intermediate symbol or to a leaf symbol. A path segment is either an index of a
child symbol, an identifier, or a tag. Child indices are numbered from 0 onwards
starting from the leftmost child. Figure 13 shows an example path from the
TFTP grammar, the path specifies the last data block sent from a read transfer.

Full paths tend to be quite long, even for simple grammars. Masks provide the
wildcard segments for selecting multiple segments at once. A wildcard may
match several path segments, similarly a mask may match several paths: There
are two wildcards.

• Question mark “?” matches any single path segment.

70

• Asterisk “*” matches zero or more segments until the next segment on the
right side of the asterisk matches.

For example, mask *.<LAST-BLOCK> matches the paths to the content of all
last blocks. The mask also matches the last block from the write transfer since
the asterisk matches any suitable path prefix. This can be prevented by rewriting
the mask into *.<read-transfer>.*.<LAST-BLOCK>, which explicitly
matches only the read transfer. The question mark is useful for matching several
symbols which are siblings, i.e. children of the same parent symbol. For
example, all “fields” (operation code, mode, and filename) of the read request
can be matched by the mask *.<RRQ>.? at once.

<transfer>.0.<read-transfer>.1.<reads>.1.!down.<LAST-BLOCK>

<transfer>

!up

<read-transfer> <write-transfer>

|

<reads>

<BLOCK> <ACK>

<LAST-BLOCK>

{ }

<ACK>

<RRQ>

!down

!down

!up

!up

<read-transfer>

!down

root

<reads>

1

0

<transfer>

1

<LAST-BLOCK>

Figure 13. Sample path from the TFTP simulation tree.

A definition path can be used to access the right-hand sides of productions
directly. A definition path does not start from the root symbol, but from any

71

identifier. For example, the last data block can be specified simply as <LAST-
BLOCK>. The mask includes again the last block from both the read transfer and
write transfer. Mask <read-transfer>.*.<LAST-BLOCK> specifies the last
block only from the read transfer.

A closure is equal to a selection of two or more sequences of the closure child
symbol. This is significant when closure children are accessed using paths and
masks. This is best understood by considering production <C> ::= 0..3 {
<A> }, having a limited closure as the right-hand side. The production is equal
to another production <C> ::= () |<A> |<A> <A> |<A> <A> <A> having
a selection instead of the closure. A path can be used to access the sequences
inside the closure: mask <C>.0 selects null (), mask <C>.1 selects (<A>) and
mask <C>.2 selects (<A> <A>), etc.

5.4 The Mini-Simulation Toolkit

A prototype mini-simulation toolkit has been implemented using the Java
programming language [71]. The toolkit is a collection of Java components
rather than an application or applications. Each mini-simulation is a Java
application constructed from a set of parameterised components from the toolkit.
A configuration script specifies the required components and sets their
parameters. Configuration scripts are written using the Tool Command
Language (Tcl) [1; 79].

5.4.1 Two-Language Solution

The mini-simulation model uses two programming languages: a system language
and a scripting language. The reasoning is to use different languages for
different tasks [52]. Complex routines are done with the system language, while
integration and user customisation utilises the scripting language. System
programming languages (e.g. C, C++, Java) are suitable for building complex
algorithms and data structures, but a programmer must write a lot of code for
each task because the system programming languages tend to give little
functionality per code line. Scripting languages (e.g. Perl, Tcl, shell scripts) give
more functionality per code line, but they are less scalable for larger tasks than

72

system programming languages. A script is also interpreted in run-time, which
brings a negative performance impact.

The system programming language used is Java [71]. Java was chosen as the
system language because it is easily portable to many different systems and
provides programming aids like garbage collection, reflection, and a rich set of
application programming interfaces for different purposes. The supported
scripting language is Tcl with TclBlend, but any scripting language with Java
support can be used. Tcl and TclBlend were chosen because Tcl and Java
complement each other conveniently [69]. Jacl is a version of Tcl, with in-build
TclBlend functionality, written using Java [1]. Jacl can be used instead of the
regular Tcl interpreter.

5.4.2 Configuration Scripts

A simple mini-simulation configuration script in given in Figure 14. The script
can be run by a Java-enabled Tcl interpreter, i.e. Tcl with TclBlend or Jacl. The
script has three parts repeating in all configuration scripts: script header, script
body, and script trailer. Tcl uses “#” as a comment indicator similarly to the
mini-simulation BNF.

5.4.3 Script Header

The script header imports the Tcl packages java and configurer, using Tcl
procedure package require. The java-package is provided with TclBlend and
Jacl. The configurer-package is specific to the mini-simulation toolkit, the
package contains Tcl procedures and variables for configuration scripts. Before
the configurer-package can be imported, the location of the toolkit must be
appended to the package search paths stored in the variable auto_path. The
location is found by the static method tclLib of Java class FI.protos.Root,
if the toolkit is properly installed. All Java classes of the toolkit have the
FI.protos11 prefix. The method is called from Tcl using the procedure

11 “FI“ stands for Finland and ”protos“ for the PROTOS-project.

73

java::call. The final procedure of the script header, namespace import,
enables use of the procedures from the configurer-package without the
“configurer::” package prefix.

All Tcl configuration script headers contain at least the presented initialisation
procedures. Additionally they may define more procedures to be used in the
script body. All Tcl features, such as command-line parameters, are available for
a script writer in all parts of the configuration scripts.

Script Header

package require java

lappend auto_path [java::call FI.protos.Root tclLib]

package require configurer

namespace import configurer::*

Script Body

section simulator {

 section operation {

 parseBNFFile "tftp.bnf"

 show

 }

}

Script Trailer

call [it] run

Figure 14. A simple mini-simulation configuration script.

5.4.4 Script Body

The script body defines the software architecture of the mini-simulation. It
specifies the used components, their connections, and sets the required
parameters of the components. The script body is made up of configuration
sections, configuration procedures, and configuration properties. A section
configures a software component for the mini-simulation. Two sections are
nested, when the component configured by the inner section is part of the

74

component configured by the outer section. A configuration property belongs to
the enclosing section. A configuration procedure is a convenience mechanism,
which may set multiple properties at once or configure a whole component at
once. A procedure takes zero or more configuration parameters.

The example configuration script in Figure 14 defines a root configuration
section simulator, inner section operation, and two configuration procedures:
readFile and show. The former procedure has a single parameter, a file name.
The example configuration does not set any configuration properties. A block
diagram of the configuration is given in Figure 15.

The configuration procedures inside the operation section are the operations for
manipulation of the mini-simulation grammar. The example script has two
operations. The first operation, configured by procedure parseBNFFile, reads
the BNF specification from the file “tftp.bnf”. The second operation,
configured by procedure show, outputs the specification into the log of the
simulator. All available operators are listed in Appendix B.

Script body is the variant part of a configuration script, while header and trailer
tend to be quite static. In the following chapters only the script body or parts of
the script body are shown, rather than the whole script.

simulator

operation

parseBNFFile "tftp.bnf"

show

Configuration
Sections

Configuration
Procedures

Figure 15. Block diagram of the sample mini-simulation.

75

5.4.5 Script Trailer

The script trailer specifies the actions taken after the application is build. A
minimal script trailer typically invokes the start-up method of the constructed
application, as done in the example script in Figure 14. The application may also
be serialised into a file using the Java serialization feature [71]. A serialised
configuration can be started without the Tcl interpreter as a regular Java
application.

The trailer of the example script uses the Tcl procedure call (actually
configurer::call) to invoke the method run in the Java object specified by
[it]. The Tcl construct [it] invokes the Tcl procedure it (configurer::it).
The procedure returns either the component configured by the enclosing section
or the root object of the Java application if no enclosing section is present. In the
example script the situation is the latter and the method run of the configured
Java application is invoked.

The invoking of the run method causes the execution of the mini-simulation
application. Building the mini-simulation application and executing it are two
completely separate tasks. Conceptually this is equivalent to the compilation of a
C-program and execution of the resulting executable.

5.4.6 Running a Configuration Script

A configuration script is run from an UNIX shell or from a Windows command
prompt using TclBlend in the following fashion, assuming “sample.config.tcl”
is the name of the configuration script file.

% jtclsh sample.config.tcl

Alternatively the script can be run using Jacl, the Java-based Tcl interpreter:

% java tcl.lang.Shell sample.config.tcl

The TclBlend or Jacl must be property configured and the root directory of the
mini-simulation toolkit must be in the classpath of the Java installation. Readers

76

should refer to the documentation of TclBlend and Java for instructions on how
to do this [1; 71].

5.5 Modelling Tasks

This subchapter shows how some typical modelling tasks are done using the
mini-simulation toolkit. Corresponding configuration script clips are presented.

5.5.1 Communication Rules

The adopted TFTP specification is jointly specified by the BNF clips in Figure 9
and Figure 11, and also given in Appendix D. The following configuration script
body specifies a simulation of the TFTP server. The TFTP specification is
assumed to be in BNF-format in the file “tftp.bnf”.

section simulator {

 section operation {

 parseBNFFile "tftp.bnf"

 # Specification modifications here...

 section insertRule {

 section rule [new FI.protos.rule.UDPSocket] {

 property open root

 property input !up

 property output !down

 property localPort 69

 }

 }

 evaluateRules

 show

 }

}

The block diagram of the mini-simulation application is shown in Figure 16.
Two additions to the earlier example are introduced. Firstly, a communication

77

rule for the TFTP upstream and downstream traffic is added. Secondly, the
procedure evaluateRules is used for evaluation of the simulation grammar.

simulator

operation

parseBNFFile "tftp.bnf"

show

insertRule

evaluateRules

FI.protos.rule.UDPSocket

open = root
input = !up
output = !down
localPort = 69

Figure 16. Block diagram of TFTP server mini-simulation.

The simulation acts as a server, so upstream traffic is input for the simulation
and downstream traffic is output. The required communication rule is inserted in
the insertRule section. The section configures the rule class in an inner section
rule. The UDP socket communication rule is implemented using Java as the
FI.protos.rule.UDPSocket class. An instance of the class is created using
the Tcl procedure new. Configuration properties open, input, output, and
localPort of the instance are parameterised. The input property determines the
input trigger, and property output the output trigger for the communication. The
property open indicates the context (branch) in which the rule operates. A
context is usually the whole simulation tree, as in the example. A

78

communication rule requires the specification of the context for correct handling
of backtracked input triggers. Some semantic rules use contexts as well. Finally,
the localPort property specifies the UDP port which the simulation should be
listening for input from the client.

A TFTP client simulator would be almost similar: The rule labels of input and
output would be swapped. No localPort property would be set, but remoteHost
and remotePort properties would be set to specify the host and the port of the
server.

However, the simulation produced by the configuration script will not work as a
TFTP server or as a TFTP client. The problem is that no content for the TFTP
transfer messages is specified. The content has to be added to the simulation
grammar originally read from the master specification in the file “tftp.bnf”.

5.5.2 Simple Message Exchanges

The first working example is a mini-simulation of the TFTP server. The server
accepts a read request and provides a 1050-octet file, if no network errors takes
place. The read transfer is described in the MSC in Figure 6. The simulation
reads the BNF specification (Appendix D), adds the content into the grammar,
inserts a communication rule and evaluates the resulting grammar. For brevity,
only the required additions to the configuration body of the previous mini-
simulation are shown.

Specification is modified by the operation replace. It takes two input
parameters, a mask and replacement branch. The replacement branch is specified
using BNF. The following four replacements modify the grammar for the server-
side simulation of the read transfer by adding the transferred data blocks. Note
that the curly braces around replacement branches are required by the Tcl
interpreter, they are not part of the BNF notation.

replace <reads>.0 {<_OLD>.2}

replace <reads>.0.0.*.<BLOCK> {<BLOCK>.0 (0x00 0x01) 512x 0x61}

replace <reads>.0.1.*.<BLOCK> {<BLOCK>.0 (0x00 0x02) 512x 0x62}

replace <reads>.*.<LAST-BLOCK> {<LAST-BLOCK>.0 (0x00 0x03) 26x 0x63}

79

The replacements are illustrated in Figure 17. The first replacement uses the
substitution identifier <_OLD>. The substitution identifier is used to substitute
the original branch, or parts of it, back into the new branch. In the first
replacement operation the substitution identifier stands for the {!down<BLOCK>
!up<ACK>} closure. The value <_OLD>.2 selects a sequence of two data block
and acknowledgement pairs. The next two replacements set the content of the
512-octet data blocks. The operation codes for the data blocks are not specified
directly, but they are snipped using path <BLOCK>.0 from the right-hand side of
the <BLOCK> production. The final fourth replacement builds up the last data
block with 26-octets of data.

<reads>

<BLOCK> <ACK>

<LAST-BLOCK> <ACK>!down

!down

!up

!up

<reads>

<BLOCK> <ACK>

<LAST-BLOCK>

{ }

<ACK>!down

!down

!up

!up

<ACK>

!down !up

replace <reads>.0 {<_OLD>.2}

replace <reads>.0.0.*.<BLOCK> ...

<BLOCK>

replace <reads>.0.1.*.<BLOCK> ...
replace <reads>.*.<LAST-BLOCK> ...

Figure 17. Illustration of some replacements to the TFTP grammar.

80

The read request message and acknowledgements are not filled with content,
since they are received from the TFTP client. The production <reads> has the
following value after the replacements.

<reads> = ((!down ((0x00 0x03) (0x00 0x01) 512x 0x61) !up <ACK>)

 (!down ((0x00 0x03) (0x00 0x02) 512x 0x62) !up <ACK>))

 !down ((0x00 0x03) (0x00 0x03) 26x 0x63) !up <ACK>

The right-hand sides of the type productions <BLOCK> and <LAST-BLOCK> are
not modified, but the identifiers are replaced by the actual contents. This
behavioural is analogous to the treatment of data productions and type
productions by the evaluation engine. A definition path (path starting with the
left-hand side identifier of a production) would have to be used in the
replacements to mutate the data productions <BLOCK> and <LAST-BLOCK>
themselves.

After the replacements the simulation can be started. The running simulation can
be contacted by a TFTP client program to request for a read transfer. The
transfer is similar to the MSC of Figure 6.

5.5.3 Exceptional Message Exchanges

The previous simulation provided an error-free read transfer. In a similar fashion
one can prepare a simulation with error behaviour. The following operations
build a simulation ending in an error message.

replace <reads>.0 {<_OLD>.2}

replace <reads>.0.0.*.<BLOCK> {<BLOCK>.0 (0x00 0x01) 512 x 0x61}

replace <reads>.0.1.*.<BLOCK> {<BLOCK>.0 (0x00 0x02) 512 x 0x62}

Simulate error, should terminate transfer

replace <reads>.1 {!down (<ERROR>.0 (0x00 0x00) ("test error" 0x00))}

replace <reads>.2 ()

81

5.5.4 Semantic Rules

Thus far only communication rules have been used. Semantic rules are used to
augment the grammar description. For example, in the previous TFTP protocol
example a semantic rule could have been used to automatically number the sent
data blocks.

The semantic rule SequenceNumber is used to create a sequence of numbers.
The rule has the property number for the location of the sequence number and
property step to increment the sequence number counter. Also, the format of the
number and the counter value have to be set. The following script clip
configures the SequenceNumber rule and adds the required tag to the TFTP
grammar for the counter increment.

section insertRule {

 section rule [new FI.protos.rule.SequenceNumber] {

 property number <BLOCK-NUMBER>

 property step <ACK>

 property start 1

 property byteLength 2

 }

}

replace <reads>.0 {<_OLD>.2}

replace <BLOCK>.2 {512 x 0x61}

replace <LAST-BLOCK>.2 {26 x 0x63}

The insertRule section configures the rule to use a two-byte sequence number
starting from 1 (property start is 1 and property byteLength is 2). The sequence
number will replace <BLOCK-NUMBER> during evaluation and the counter is
incremented when an acknowledgement is received. After these modifications,
the server simulation can be constructed without explicitly replacing each
<BLOCK-NUMBER> with an appropriate value. In the example, the transferred
octets are directly put inside the <BLOCK> and <LAST-BLOCK> right-hand sides.

Checksums and length fields are frequently present in protocol messages,
although they are not needed in the TFTP example. The following artificial
example defines a PDU having an 8-bit length field, 16-bit checksum, and

82

variable length data block. The checksum is calculated over the whole PDU and
the length is calculated over the data block and checksum.

<pdu> = <length> <payload>

<length> = <OCTET>

<payload> = <checksum> <data>

<checksum> = <OCTET> <OCTET>

<data> = { <OCTET> }

<OCTET> ::= 0x00 - 0xff

Two semantic rules, Length and IPChecksum, the first for length calculation
and the second for checksum calculation, are needed to encode and decode the
defined PDU. Both of the inserted rules require a context trigger to be specified
by the property context. The rules are evaluated after the evaluation of their
contexts, the length is calculated after <pdu> is evaluated and the checksum
after everything else. The length field is calculated before the checksum and
hence the checksum calculation uses the correct length value. Length calculation
does not need correct checksum, only the length of the checksum is relevant,
which is always two octets.

section insertRule {

 section rule [new FI.protos.rule.Length] {

 property context <pdu>

 property length <length>

 property payload <payload>

 property byteLength 1

 }

}

section insertRule {

 section rule [new FI.protos.rule.IPChecksum] {

 property context root

 property sum <checksum>

 property payload <pdu>

 }

}

83

5.5.5 Mixing Communication Rules

Multiple communication rules can be mixed into a single simulation. This is
illustrated in the final TFTP server simulation example. The simulation reads a
file and sends it to the client. The data block content is read from the file using
the communication rule FileIO and delivered to the client using the UDPSocket
rule. The semantic rule SequenceNumber is used for numbering the data
blocks. The configuration of the rules UDPSocket and SequenceNumber is not
shown, since no modifications to their earlier configuration sections are
required. The configuration section of the rule FileIO and a few required
replacements are shown below.

section insertRule {

 section rule [new FI.protos.rule.FileIO] {

 property open !open-file

 property input !read-file

 property file "sample.txt"

 }

}

replace <reads> {!open-file<_OLD>}

replace <BLOCK>.2 {!read-file<_OLD>}

replace <LAST-BLOCK>.2 {!read-file<_OLD>}

The rule FileIO reads data from the file "sample.txt". The file is opened
when the !open-file tag is encountered. The file content is read into the last
field of the data blocks, where the !read-file tags are located. When the file
runs out of data, sending of the full 512 octet block <BLOCK> backtracks, since
there is no longer 512 octets available. The evaluation engine then proceeds to
the sending of the last data block <LAST-BLOCK>.

Default semantic rules and communication rules included in the mini-simulation
toolkit are given in Appendix C. New rules can be implemented when no default
rule provides the required functionality.

84

6. Mini-Simulation Testing
The mini-simulation method presented in the previous chapter was originally
designed for functional robustness testing. This chapter provides a description of
this mini-simulation testing method. The testing method includes both test
design and test execution. The prototype mini-simulation toolkit contains the
extensions required for the method.

6.1 Extensions for Testing

The mini-simulation toolkit must consider the format of test cases during test
design and execution. The test cases must be injected into the IUT. The IUT
must be instrumented in order to control and monitor its behaviour. The test
verdicts have to be assigned.

6.1.1 Test Strategy

Test cases are designed using syntax testing principles from Beizer [9, p. 284].
The starting point of test case design is the protocol specification. A test design
is done in two main phases:

1. Mutate the specification to contain both normal elements required for the
test cases and also anomalous elements (or anomalies), which are
unexpected or illegal protocol elements targeted for finding flaws from
the IUT.

2. Design the test cases by specifying combinations of normal protocol
elements and anomalies.

Each test case forms a separate simulation grammar. During the test case
execution the grammar is evaluated. The injected PDUs are formatted according
the protocol specification, apart from the added anomalies. The test verdicts are
assigned based on the observed behaviour, the correctness of the IUT responses
is not checked for.

85

Since all functionality is modelled in a uniform fashion using simulation
grammar, robustness testing can cover all levels of the behaviour and message
syntaxes. Anomalies can be syntax elements, messages or even higher-level
interactions.

6.1.2 Injection

Test input must be injected into the IUT through an interface. The most used
interface is probably a network socket interface, but also dial-in (serial)
interfaces, command-line access, application programming interfaces, files, e-
mail content etc. should be considered. In the mini-simulation testing method
communication rules are used for the injection.

6.1.3 Instrumentation

Test verdicts are based on the acceptability of the behaviour of the IUT during
test execution. The verdict assignment requires monitoring of the IUT. In the
simplest case the IUT user interface or the entry in the process list can be
monitored for visible failure modes like crashes and hangs. Unsupervised test
execution and detection of more complex vulnerabilities require subtle
instrumentation:

• Test log analysis: The log of the mini-simulation application is analysed
and conclusions are drawn about the behaviour of the IUT.

• Audit trail analysis: The operating system may provide audit trails
containing information about actions of the IUT [25]. Sometimes the
operating system can be modified to support the test instrumentation.

• Wrappers: Messages transferred through the interface between the tested
executable and the operating system can be intercepted [45]. Test verdict
can be based on analysis of the intercepted calls.

86

• Code modifications. The source code of the IUT can be augmented with
statements that log the actions relevant to verdict assignment. In binary
patching an executable is modified directly.

Instrumentation is also required to control the IUT. It must be started, and
possibly terminated and restarted when it hangs. Such extensive control of the
IUT may be tedious and dependent on the used operating system. The design
and implementation of test instrumentation is beyond this study.

6.2 The Testing Process

As in all development activities, mini-simulation testing must also be carefully
designed to succeed. Although the space considerations prevent a full-fledged
description of the required testing process, this subchapter shortly discusses
some of the fundamental issues of the assessment process.

6.2.1 Preparations

Before any other activity is started, the testing requirements must be formulated.
The problem statement must be specified and the expected value of the test
results considered. When the overall problem statement is done, the tester should
conduct a survey of the available information. There might be tracks of past
vulnerabilities or other information available to help define the focus of the
testing. One must also seek standards, RFCs, technical documentation, academic
publications, etc. required for the test case design. A test plan must be written, it
should define minimally:

1. The protocol or protocol family used in the test cases. The complexity of
protocols may prevent full test coverage and only a subset of the selected
protocol can be used.

2. The vulnerability types searched for, and the types of anomalies used in
the test design.

3. Methods of the test case injection and the IUT instrumentation.

87

4. List of the software products or components to be tested.

Before committing to a test plan, it may be a good idea to conduct trial tests to
get a better view of the problems ahead. Trials should be quickly drafted,
something the mini-simulation method is ideal for, and only one or two products
should be evaluated. Some of the problems which might be found in trial tests
are:

• The selected protocol or protocol family is too complex for comprehensive
tests or some required specification is not available. The problem statement
should be narrowed.

• There are problems with injecting the test cases into the IUT interface.
Better communication rules must be obtained or the problem statement must
be adjusted.

• Monitoring of the tested component is difficult or impossible. New tools for
better instrumentation are needed.

However, not too much emphasis must be given to the trial tests and no test
verdicts should be drawn from this phase. After the problems are solved, the
tested products or components are selected, and the tester feels confident that the
tests can be conducted, the test plan must be finalised.

6.2.2 Test Design

The test cases are designed to expose security-critical flaws from the IUT. A test
designer should also add a few test cases which ensure that the connection to the
IUT is working properly and the IUT does attempt to process the injected data.
Otherwise tests could me marked as passed without actually exercising the IUT
at all or marked as failed due to injection problems.

Test design using the mini-simulation toolkit is done by obtaining a specification
for the tested protocol and writing a configuration script or multiple scripts.
Specification has to be converted into mini-simulation format, if no suitably
formatted specification is available.

88

A test case should be designed to contain a single anomaly, or a combination of
a few anomalies, and be otherwise legally formatted. An IUT may have too easy
of a task to reject completely misshapen PDUs. Care is also needed since it is
easy to create redundant test cases. Observing the messages from a live protocol
session is a good starting point for test case design. It is essential to get some
feedback on the effectiveness of the tests during test design. At least one
implementation should be available to try out the test cases. However, the tests
may become biased towards finding flaws from the IUTs used during test design
and be less effective against other IUTs.

6.2.3 Test Execution

Tests should be executed in a well-defined and documented environment.
Documentation must be precise enough to make it possible to reproduce the
results afterwards. The test design and the test execution phases must be clearly
separated to ensure the use of the same test cases for all IUTs. Tests must be run
again for all implementations if the test design is changed.

A lack of instrumentation to observe and control the IUT during test execution
may cause problems. Manual intervention may be required after a crash or other
failure of the IUT. Manual work prolongs test execution and leaves possibilities
for human mistakes. The tester should consider aborting test execution or
skipping the most problematic test groups for an IUT which performs
exceptionally poorly. All such short-cuts must be carefully documented.

The linking of some test case to a particular failure may be difficult or even
impossible. Often the failures are caused by a combination of several test cases
or the IUT may slowly degenerate during the test process and finally fail.

6.2.4 Post-Processing

Result analysis must be done to estimate the value of the findings. In the
simplest case it may be enough to double-check that test cases with a fail verdict
do indeed cause problems in the IUT. Sometimes is it necessary to create
exploits to demonstrate the severity of the findings. It must be understood, that

89

there may be flaws in the IUTs, which are were not found by the tests. The
comparison of test results from multiple IUTs must take into account that the
tests might be biased to emphasise the problems of certain IUTs.

The underlying flaws behind the vulnerabilities should usually corrected. The
root causes behind the emergence of the vulnerabilities in the first place should
also be resolved (e.g. bad programming conventions or ignorance) and
preventive actions taken. This should be possible, if the tester is part of the
organisation developing the tested product or the tester is in a position to put
pressure on the product vendor. However, if there is no direct link between the
tester and the originator, the process for handling vulnerability reporting and
patching may become complex. An interested reader should refer to other
sources for more information, e.g. papers from Laakso et. al. [44; 46].

6.3 Testing Using the Mini-Simulation Toolkit

Test case design using the mini-simulation toolkit is a matter of creating test
configuration scripts. The configuration scripts for testing are similar to the basic
configuration scripts and the used Tcl configurer-package is the same. This
chapter presents the steps of test design and the architecture of a test mini-
simulation with the help of an example test suite: the TFTP test suite.

6.3.1 Example: TFTP Test Suite

The TFTP test suite assesses the robustness of TFTP server implementations by
feeding them with exceptional PDUs from a simulated TFTP client. Test cases
shall cover the read request PDU, the acknowledgement PDU, and error PDUs.
The data block PDUs are not mutated, since they are sent from server to client.
The TFTP server must contain a file named “sample.txt” readable by the
simulated client.

The TFTP test suite uses the TFTP specification already presented in Figure 9
and Figure 11. The specification is also given in Appendix D. The whole test
suite configuration is in Appendix E. The suite is limited in scope since it is
constructed only for demonstration purposes.

90

6.3.2 Sections

Figure 18 shows the most important configuration sections of a test
configuration script. The root section is driver. Driver is made up of the
subsections preSelection, selection, and postSelection. The script header and
the script trailer are equal to ones shown in Figure 14.

The subsections preSelection and postSelection are similar to the operation
subsection in the previously shown simulator sections. The operations in the
preSelection section are executed before the test cases are selected in the
selection section. The operations in the postSelection section are executed
separately for each case after the selection process.

driver
preSelection

 procedure #0

selection
combine #0

postSelection
 procedure #0

Figure 18. Main sections of a test configuration script.

6.3.3 Pre-Selection Section

The preSelection section contains the operations which are applied before test
case selection takes place. The section usually fulfils the following tasks.

91

1. Read the specification file to construct the grammar.

2. Adjust the grammar for testing by adding and/or removing elements.

3. Define (legal) default content for PDUs sent to the IUT.

4. Define and insert anomalies to be used in the test cases.

5. Add the needed semantic rules and communication rules.

The driver section forms the body of the TFTP test suite configuration script.
The first subsection to the driver section is the preSelection section. Firstly, the
preSelection section reads the specification from a file with the parseBNFFile
operation.

section driver {

 section preSelection {

 parseBNFFile "tftp.bnf"

The test suite concentrates on the read transfer, hence the grammar can be
chopped. All test cases start with the read request PDU (but in some test cases
the operation mode is mutated and the message is not a read request). The
<read-transfer> production is augmented with some erroneous interactions,
defined in the production <read-errors>. The test suite expects the TFTP
server to supply one full data block followed by the last data block, which
requires the sample file to have a size between 512 octets and 1023 octets.

only read transfer

replace <transfer> <read-transfer>

RRQ followed by successful or erroneous transfer

replace <read-transfer>.1 {<_OLD> |<read-error>}

successful transfer, expecting file size 512...1023 byte

replace <reads>.0 <_OLD>.1

 # define transfers ending to error

92

data <read-error> {(!down <BLOCK> !up<ERROR>) |

 (!down <BLOCK> !up <ACK>) !down <LAST-BLOCK> !up<ERROR>}

The fields <FILE-NAME>, <MODE>, and <ERROR-MESSAGE> are all null-
terminated strings. They are set with the default values “sample.txt”,
“octet”, and “test error”, which are accompanied with anomaly strings
defined in <A-string>. The field <ERROR-CODE> is a 16-bit field , with a
default value set to zero and the anomaly values defined in <A-16>. Operation
codes are also 16-bit values with the same anomalies. The operation code is
mutated only from the read request <RRQ> (send first) and from the error
messages <ERROR> (sent as the second or last message). This way the operation
code anomalies are tried on all of the three upstream PDUs, no anomalous
operation code needs to be added to the acknowledgement PDU <ACK>.
However, the block number of the acknowledgement PDU is mutated with
anomalous values from <A-16>.

value and anomaly to RRQ op. code, filename and mode

replace <RRQ>.0 {<_OLD> |<A-16>}

replace <FILE-NAME> {"sample.txt" 0x00 |<A-string>}

replace <MODE> {<MODE>.0 |<A-string>}

value and anomaly to error op. code, error code and message

replace <ERROR>.0 {<_OLD> |<A-16>}

replace <ERROR-CODE> {(0x00 0x00) |<A-16>}

replace <ERROR-MESSAGE> {"test error" 0x00 |<A-string>}

anomaly to acknowledgement block number

replace <ACK>.1 {<_OLD> |<A-16>}

The field <BLOCK-NUMBER> is used in the acknowledgement messages
when no anomaly is present in the block number. The legal value is set by the
SequenceNumber rule. The presented modifications and elimination of
unnecessary productions result in the following TFTP grammar.

<transfer> = <read-transfer>

<read-transfer> = !up <RRQ> (<reads> |<read-error>)

<reads> = (!down <BLOCK> !up <ACK>) !down <LAST-BLOCK> !up <ACK>

93

<read-error> = !down <BLOCK> !up <ERROR> |

 (!down <BLOCK> !up <ACK>) !down <LAST-BLOCK> !up <ERROR>

<RRQ> ::= (0x00 0x01 |<A-16>) <FILE-NAME> <MODE>

<BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 512x <OCTET>

<LAST-BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 0..511 {<OCTET>}

<ACK> ::= (0x00 0x04) (<BLOCK-NUMBER> |<A-16>)

<ERROR> ::= (0x00 0x05 |<A-16>) <ERROR-CODE> <ERROR-MESSAGE>

<FILE-NAME> ::= "sample.txt" 0x00 |<A-string>

<MODE> ::= "octet" 0x00 |<A-string>

<OCTET> ::= 0x00 - 0xff

<ERROR-CODE> ::= 0x00 0x00 |<A-16>

<ERROR-MESSAGE> ::= "test error" 0x00 |<A-string>

The anomaly production <A–16> is defined to have different exceptional 16-bit
integer values. The production <A-string> is defined to have various special
characters, long strings with null termination, and long strings without null
termination. See Appendix E for the exact values. The specified values are not
intended as guideline for anomaly design, rather they provide examples of what
can be tried out.

As a last step, two rules have to be added: UDPSocket for UDP communication
and SequenceNumber for the creation of acknowledgement block numbers. The
complete preSelection section is given in Appendix E. After these mutations the
TFTP grammar is ready for test case selection.

6.3.4 Selection Section

In the selection section the elements from the grammar, prepared in the
preSelection section, are combined to form each test case. The selection section
contains combine subsections, each combine creates a test group. The combine
subsections have the property label, which identifies the test group.
Furthermore, the subsection masks contains zero or more add procedures,
which select the elements to the test cases of the test group. The grammar is
modified for each case to force the evaluation of the selected elements during the

94

test case. In the TFTP test suite the first test group consist of only one test case,
labelled zero-case.

section combine {

 property label "zero-case"

 section masks {

 }

}

In the masks section there is nothing. This means that the test case is created by
making the default leftmost choice for all evaluated selections, which gives a
valid and error-free TFTP read transfer. The zero case is intended for ensuring
that the connection to the tested TFTP server is functioning correctly.

The second combine is labelled error-cases, it has a masks section with a single
mask *.<read-error>.? selecting all children of the <read-error>
production.

section combine {

 property label "error-cases"

 section masks {

 add *.<read-error>.?

 }

}

The combine selects the two read transfers from <read-error>, both ending
with an error PDU. In the first transfer the error is sent after the first data block,
in the second transfer the error is send after the last data block. There test cases
are also intended more for validating the existence of a proper connection to the
TFTP server than actually testing it.

The third combine, labelled string, produces the first robustness test group.

section combine {

 property label "string"

 section masks {

 add *.<A-string>.?

 }

}

95

This group contains a test case for each string anomaly from the <A-string>
tried in the locations where the <A-string> has been added. There are 30
different anomalies and the anomaly is in four distinct locations (the file name,
the mode, and the two error messages). This gives a total of 120 test cases for
the group.

The next combine, label integer, creates a test group using the <A-16> anomaly
production. There are 17 anomalies in eight locations giving a total of 136 test
cases.

section combine {

 property label "integer"

 section masks {

 add *.<A-16>.?

 }

}

Now all single-anomaly test cases have been created. Multiple masks are used to
create the next test group, labelled no-mode-and-filename.

section combine {

 property label "no-mode-and-filename"

 section masks {

 add *.<FILE-NAME>.*.<A-string>.?

 add *.<MODE>.*.<A-string>.0

 }

}

The first mask selects all <A-string> anomalies for <FILE-NAME>. As itself,
the test cases generated by this mask would be already covered by test cases
generated by the string test group. However, the second mask forces the mode to
be replaced by the symbol <A-string>.0, which is a null symbol. Thus, the
test cases generated by the combine contain an anomalous file name and are
simultaneously missing the mode field.

The last three test groups combine invalid operation codes in three different
locations (in the read request message and in the two error messages) with
anomalous content from the production <A-string>. The first combine is

96

labelled operation-code-and-overflow-1 and it mutates the read request message.
The remaining two combines are quite similar and not shown here.

section combine {

 property label "operation-code-and-overflow-1"

 section masks {

 add *.<RRQ>.0.*.<A-16>.?

 add *.<RRQ>.2.*.<A-string>.?

 }

}

Table 8 summarises the test groups from the TFTP test suite. There are eight
different test groups having total of 1819 test cases. The last three test groups are
large, 510 test cases, and form the majority of the test cases. This happens
because they combine two masks which both match a large set of anomalies.

6.3.5 Post-Selection Section

The operations in the postSelection section are executed separately for the
grammar of each test case. The section should contain at least the procedure
evaluateRules to evaluate the grammar and perform the test case.

In the TFTP test suite the postSelection section contains a few procedures for
cleaning up the grammar before evaluation. The three cutSelections procedures
remove selections from the outgoing PDUs. This is not necessary, but eases
human inspection of the test cases, because all irrelevant details are removed.
The procedure cutNames removes all names, which are not part of the
simulation tree, i.e. names which will not be encountered during evaluation.

section postSelection {

 cutSelections <RRQ>.*

 cutSelections <ACK>.*

 cutSelections <ERROR>.*

 cutNames

97

After the cleanup, procedure show is used to print the grammar in the toolkit
log. Then the test case is evaluated, by the procedure evaluateRules, and finally
the resulting grammar is also added to the log.

 show

 evaluateRules

 show

}

The full configuration script is shown in Appendix E. In addition to the
explained sections, the script contains configuration sections for test controlling
and logging.

Table 8. Test groups of the TFTP test suite.

Label Test case
number(s)

Description

zero-case 0 Valid and error-free read transfer

error-cases 1–2 Valid, but error terminated transfers

string 3–122 String anomalies

integer 123–258 Integer anomalies

no-mode-and-filename 259–288 The read request without mode and
with filename anomaly

operation-code-and-
overflow-1

289–798 Invalid operation code in the read
request with content anomaly

operation-code-and-
overflow-2

799–1308 Invalid operation code in the first
error PDU with content anomaly

operation-code-and-
overflow-3

1309–1818 Invalid operation code in the second
error PDU with content anomaly

98

7. Results
This chapter presents five test suites and the results from tests conducted using
them. The implemented prototype mini-simulation toolkit was used in the design
of the test suites and in test execution. Implementation of the prototype toolkit,
the creation of the test suites, and the execution of the tests had multiple goals:

1. Validation and development of the testing method. The method is not
usable, if we cannot use it to find real vulnerabilities.

2. Collection of quantitative information about implementation security of
contemporary software products.

3. Promote discussion about vulnerability of modern software products.

4. Offering of the test suites to the public. Public test suites can be used to
improve the quality of software under development or for assessing the
quality of shipped products.

The following subchapters give statistics about the prototype toolkit and an
overview of the test suites. For the details of test results refer to Appendix F.

7.1 Overview

A prototype toolkit was implemented to study the developed testing method in
practice. The toolkit contained both the mini-simulation method and extensions
for functional robustness testing.

The toolkit itself is a relatively small set of components as seen from Table 9,
which lists some metrics from the Java and Tcl code of the toolkit. The lines of
source code metric is calculated with comment lines, but excluding empty lines.
The java class file sizes are summed from class files compiled with the compiler
supplied with JDK 1.2.2 (Solaris) without debug information or optimisations,
i.e. “javac -g:none sourcefile.java ...”

99

Table 9. Size of the prototype tool.

Java Number of source files: 192

Lines of source code: 29 214

Number of class files: 205

Total size of all class files (bytes): 553 865

Tcl Number of source files: 1

Lines of source code: 318

The created test suites addressed five different application domains using five
different protocols. The application domains and the tested protocols are shown
in Figure 19. The protocols and tested software components tested were:

• Wireless Application Protocol (WAP) gateways. WAP is intended for the
integration of telecommunication networks and the Internet. A WAP
gateway meditates traffic between WAP terminals and content providers.

• WAP terminals, e.g. WAP phones. WAP users use the terminals to browse
the network.

• Hypertext Transfer Protocol (HTTP) clients, e.g. HTTP browsers. The
HTTP browsers are used to access the World Wide Web (WWW).

• Lightweight Directory Access Protocol (LDAP) enabled databases. LDAP is
used to provide access to all kinds of information, for management and
business purposes.

• The Simple Network Management Protocol (SNMP) is used for the
management of networked systems and devices.

Each test suite is a collection of test cases designed to reveal implementation
vulnerabilities. After the design of each test suite, a test campaign was
conducted [8, p. 81]. During the campaign the implementation security of a few

100

software or hardware implementations were assessed. Assessment of a single
implementation is called a test run.

[Embedded & Telephony]

[Infrastucture &
Management]

[Server & Infrastructure]

[Server & Telephony]

[Home & Desktop]

LDAP Database

WAP Gateway
WAP Terminal

HTTP Client

SNMP

Networks

Figure 19. Tested product domains.

A summary of the test suites and test campaigns is given in Table 10, more
details are provided in Appendix F. The table shows the number of test groups
and test cases in a test suite. A test group corresponds to a single combine in the
used mini-simulation configuration. The table also shows the total number of
test runs, the number of test runs with fail verdicts, and the number of
constructed exploits.

A test run received a pass verdict, if no vulnerable behaviour was observed on
any of the test cases. When denial-of-service or other vulnerabilities were
observed, the test run received a fail verdict. The fail verdict was assigned to 40
out of 49 test runs, i.e. 82% of the tested implementations were vulnerable to at
least denial-of-service. A total of 14 exploit demonstrations were constructed for
some of the implementations containing buffer overflow vulnerabilities, to prove
the seriousness of the problems. Each exploit made it possible to run remotely

101

supplied code on the host system. The number of exploits could potentially have
been larger, if more resources would have been used on the demonstrations.

Table 10. Summary of test suites.

Test suite Test
groups

Test
cases

Test
runs

Test runs
with

failures

Exploits Note

WAP-WSP-Request 39 4 236 7 7 4

WMLC 84 1 033 10 10 2

HTTP-Reply 115 3 966 12 6 2

LDAPv3 93 12 649 8 6 4 a)

SNMPv1 request 118 29 516 8 7 1 b)

trap 100 24 100 4 4 1 c)

549 75 500 49 40 14

a) LDAPv3 test suite is made up of application tests (77 groups) and encoding
tests (16 groups).

b) SNMP request tests are divided into applications tests (61 groups) and
encoding tests (57 groups).

c) SNMP trap tests are divided into applications tests (76 groups) and encoding
tests (24 groups).

Appendix F gives more detailed test run statistics. For test runs in LDAPv3 and
SNMPv1 test suites the exact verdicts for all test cases were impossible to
determine due to difficulties in test automation. The number of test cases causing
IUT failures was too large for full manual test execution. For this reason, the
appendix shows only the number of test groups containing at least one test case
which received the fail verdict.

The total effort spent on the preparation, design, execution, and analysis of the
tests is ca. 24 man months (average 4,8 man-months per test suite). This effort

102

also includes a considerable amount of work not presented in this publication.
Due to this, the 24 man-month figure only gives a rough upper limit for the
required effort.

In all test suites the focus is on the robustness of tested implementations, the
overall security of system based on the tested products is not assessed. However,
a single vulnerable point is sufficient to totally compromise the security of a
system. Some of the presented material is also available from the PROTOS
project web page [56]. Names of the products and vendors are excluded from
both presentations.

7.2 WAP-WSP-Request Test Suite

WAP is a family of protocols for delivering advanced data services and Internet
content to wireless terminals [78]. A WAP gateway mediates the traffic between
the terminals and the actual content providers, e.g. WAP and HTTP servers. The
relevant components of the WAP infrastructure are shown in Figure 20. The
transportation mechanism between terminals and gateways is UDP.

WAP is an interesting subject for security analysis since it is an attempt to
integrate telecommunication networks, which have very high dependability
requirements, to the open Internet. The security of a WAP gateway is essential
since even encrypted WAP traffic will be exposed as plain text inside the
gateway.

Terminal Wireless Network Gateway Internet, intranet, etc. Server

Figure 20. WAP infrastructure relevant for the WAP-WSP-Request test suite.

The purpose of the WAP-WSP-Request test suite is to assess the ability of a
WAP gateway to handle maliciously formatted Wireless Session Protocol (WSP)
messages [41]. Using a computer with a modem and a phone an intruder can

103

send malicious WSP messages to a gateway. From the seven tested WAP
gateways all were found to be vulnerable to denial-of-service attacks. Exploits
taking advantage of the buffer overflows were constructed against four
gateways.

7.3 WAP-WMLC Test Suite

The WAP-WMLC test suite is a complementary test suite for the WAP-WSP-
Request test suite. A WAP terminal is used to access the WAP-enabled network
through a WAP gateway [78]. Most WAP terminals are portable (e.g. phones
and palm computers), but desktop browsers are also available. The Wireless
Markup Language (WML) defines the content of WAP pages. WML is
conceptually similar to HTML. A compact version of WML, called WML
Compiled (WMLC), is defined to minimise bandwidth usage. The WML pages
can be converted from HTML pages or created directly using WML. The
compression from WML into WMLC can be done on-the-fly or beforehand. A
server can submit compressed pages directly.

The purpose of the WAP-WMLC test suite is to analyse the robustness of WAP
terminals in the handling of WMLC data. Malicious WMLC pages can be
injected directly by a content provider since they pass through the WAP gateway
without modifications. A total of six of the tested implementations were WAP
phones and four were desktop browsers. All 10 implementations were found to
contain denial-of-service type of vulnerabilities. Exploits beyond denial-of-
service were constructed against two desktop browsers.

7.4 HTTP-Reply Test Suite

HTTP is a protocol for distributed, collaborative, hypermedia information
systems [24]. It was originally designed to retrieve hypertext information but has
since been used for variety of tasks such as name servers and distributed object
management systems. The WWW is heavily based on the use of HTTP.

An HTTP client sends requests to HTTP servers, which return replies according
to the requests. The communication protocol used is the Transmission Control

104

Protocol (TCP). End-user clients are often called WWW browsers. An HTTP
proxy is an intermediate node which acts as both an HTTP server and a client to
make requests on behalf of other HTTP clients. Proxies can be used, e.g. for
caching WWW pages.

The HTTP-Reply test suite consists of exceptional HTTP replies to test the
robustness of HTTP reply processing. Seven HTTP browsers and five HTTP
proxies were tested. Six of the tested browsers failed in some of the test cases,
but none of the tested proxies exhibited vulnerable behaviour. The buffer
overflow vulnerabilities of two browsers were exploited to demonstrate full
compromises.

7.5 LDAPv3 Test Suite

LDAP is a protocol to retrieve and manage directory information, e.g. email-
addresses, phone numbers, and public key information [76]. The underlying
database is exposed to intrusion attempts through the LDAP interface. An LDAP
client makes requests to the LDAP server which processes the request and
returns replies. The communication protocol is TCP. LDAP messages are
specified by ASN.1 with BER transfer encoding. A sender must encode BER
messages before sending and the correspondingly receiver must decode them
before processing.

The LDAPv3 test suite is designed to assess the ability of an LDAP server to
handle maliciously formatted requests from a rogue LDAP client. The “v3” part
in the name comes from the newest version of LDAP, version 3. The test suite
contains mutated LDAP search request messages. The test cases are divided into
two parts, encoding test cases and application test cases. The former contains
anomalies in the BER encoding of messages and the latter contains anomalies in
the LDAP application content. The encoding test cases are aimed at revealing
vulnerabilities in the decoder used by the LDAP server, while the application
test cases exercise the LDAP application code. The idea is that the two different
functions might be developed independently, possibly by different vendors. The
ability to test BER-encoded data required ASN.1/BER support for the creation
of both illegal and legal BER-encoded PDUs.

105

A total of eight LDAP-enabled databases were tested, out of which six were
found vulnerable to at least denial-of-service. The exact verdicts for all test cases
were difficult to gather since the controlling of the IUTs and observation of test
case behaviour had to be performed mostly manually. The verdicts in six test
runs are inconclusive for some of the test cases, since there were too many
failures to run the full test suite. In two test runs the number of test groups
containing failed test cases is unknown and only the lower bounds can be
provided. Exploits were constructed taking advantage of buffer overflow
vulnerabilities in four tested databases.

7.6 SNMPv1 Test Suite

SNMP is a protocol for the transportation of network management information
[15]. The SNMP traffic takes place between network management stations and
management agents. The agents are located in managed network elements.
Management stations use SNMP to set or get (retrieve) values of variables
located in the network elements. SNMP requests are sent from management
stations to the agents which reply back to the management station. SNMP traps
are used by agents to signal condition changes to the management stations.
SNMP takes advantage of ASN.1 and BER as a protocol specification and
encoding method. The transportation method is UDP.

The SNMPv1 test suite assesses the ability of SNMP management stations and
agents to tolerate maliciously formatted SNMP version 1 messages. As in
LDAP, the tests were divided into encoding tests and application tests.
Furthermore, the tests were divided into SNMP request tests and SNMP trap
tests, giving a total of four different test categories: request/encoding,
request/application, trap/encoding, and trap/application.

Some of the tested implementations were network devices dedicated to
forwarding and screening network traffic. A total of eight agents were tested
using anomalous request messages, only one of them received a pass verdict.
Four management stations were tested using the trap tests, all stations received a
fail verdict. Buffer-overflow exploits were constructed against one agent and one
management station.

106

8. Analysis
This chapter provides an analysis of the applicability of the presented testing and
modelling approaches for robustness testing. Some thoughts about the quality of
contemporary software are given in light of the presented test results. In the last
subchapters some of the difficulties and dead-ends of the PROTOS-project are
explained and a few open issues are collected.

8.1 Mini-Simulation Method

Traditional software modelling and testing methods are not by themselves
suitable for flexible test data creation. Heavy tool support and the mastering of
many skills seem to be required. Versatile debugging and robustness testing
activities are not promoted. An alternative approach, the mini-simulation
method, is presented in this study.

Higher-order attribute grammars provide a solid base for mini-simulation models
applicable for debugging and testing purposes. The higher-order attribute
grammars are suitable for both behaviour modelling and syntax definitions. The
operations with paths and masks are used for grammar mutations. The presented
method provides a powerful approach for the explicit derivation of interaction
models and promotes reuse of the master specifications. The grammar can be
kept simple by leaving the modelling of complex structures to the semantic
rules. A direct link to the external world is provided by communication rules.

Security assessment using robustness testing can take advantage of the features
of the mini-simulation method. The test design starts from the protocol
specification, mutates it with operations, and combines the suitable elements into
test cases. The design process is fully visible without any gaps in the path from
the protocol specification into each test case. A large number of test cases can be
constructed with ease. The generation of test cases with anomalous messages or
invalid message exchanges is feasible.

The test campaigns conducted using the prototype tool were effective and found
vulnerabilities from 84% of the tested products. However, the content of the test

107

cases is totally determined by the test designer. The knowledge and experience
of the test developer may become a limiting factor.

8.2 Scope of the Analysis

In order to interpret the test results presented in chapter 7, one must answer a
fundamental question. What does it mean if a software component fails in 0, 3,
100, or 300 test cases from a total of 1000? A low number of failures may result
if the tested product had good quality, but also if the tests were not effective. A
high number of failures clearly demonstrates the presence of problems, but the
comparison of numbers between two different products is dubious. Both
products may be equally vulnerable, but the tests only triggered the flaws from
one. This problem is emphasised if the other product is used during test case
design as the trial target. The test cases may become biased for finding flaws
from the trial target and be less efficient against other products.

The code coverage analysis provides information about the proportion of code
actually executed. A suite which executes only a few percent of the code of a
component is likely to miss most of the existing vulnerabilities. This means that
the component may not become significantly more secure by fixing the exposed
vulnerabilities only. Even very high coverage does not give a full guarantee of
robustness, since the successful execution of a code statement does not mean
that it is flawless. Indeed, some of the products which failed the tests presented
in chapter 7 have probably received unit testing of near 100% code coverage.
These tests did not seek for vulnerabilities, so they remained hidden.

Until more research on the topic is conducted, the final merits of robustness
testing as a security assessment method are unknown. It is safe to argue that a
test suite samples the robustness of the tested component and, at best, the results
represent the quality of the whole component. This assumption may be realistic
provided that:

1. Tests do reveal vulnerabilities, if they exist.

2. The executed code part reflects the overall quality of the product.

108

The confirmation of the first assumption requires that we compare test results
with material from other sources, e.g. from vulnerability histories or inspection
results. The second assumption is difficult to probe without a source code
analysis of the tested implementation.

Publicly disclosed vulnerabilities are often found by an ad-hoc manual analysis
which probes for well-known vulnerabilities. This analysis would be less
successful, if products would be systematically analysed for the presence of the
most obvious vulnerabilities. The major benefit from a wider use of robustness
testing might be the elimination of obvious vulnerabilities from products in their
early stages, which would cut down on the number of publicly disclosed
vulnerabilities found by ad-hoc analysis.

All testing suffers from the pesticide paradox: The programmers eventually
learn to avoid the flaws that testers can find, rendering testing in some sense
useless [9, p. 9]. Wide use of robustness testing would probably bring another
kind of problem as well: The underground community would shift focus from
the vulnerabilities covered by the tests to vulnerabilities not tested for. This
could lead to a circle of extending tests to the new vulnerability types followed
by a counter-move from the underground community. However, in this circle
software quality would be improving, in contrast to the current state of affairs
where similar vulnerabilities reappear again and again.

It is worth to emphasise again that the presented security assessment does not
cover design vulnerabilities, deliberately added backdoors, or other
vulnerabilities having complex failure modes. We cannot test for vulnerabilities
that we cannot both trigger and detect.

8.3 Applicability

A metric is a measurement which relates to a software system, process, or
related documentation [68, p. 598]. Robustness testing promises to provide a
repeatable and quantitative metric about the quality and security of tested
components. The metric can be combined from various parts, such as the
number of fail verdicts, the severity of discovered problems, the number of

109

separate underlying flaws, etc. This kind of metric may be used for a variety of
purposes. [42]

• Creation of a robustness benchmark. A benchmark is a standard against
which measurements or comparisons are made [33, p. 12]. A product
may pass or fail the robustness benchmark.

• Measuring changes in robustness between different versions of the same
software component. It can also provide feedback about the effectiveness
of the applied quality improvement actions.

• Quantitative comparison of several products, e.g. for purchase decisions.
The product with a suitable ratio between features, quality, and price can
be selected.

• Locating the weakest components from a system. The weakest
components may be replaced or hardened to improve system-wide
security.

The limitations of the presented approach must be weighted against the
aforementioned applications. The calculated metric should not be considered as
an absolute value of “goodness” or “badness” of the IUT. Passing the test is by
no means an indication of definitive security or even bullet-proof robustness.
The tests may be biased to find flaws from a product while missing them from
an another. The pesticide paradox may fool us to think that the quality of
software is improving, but in reality the tests have just become inefficient.

8.4 Implementation Quality and Security

The quality of contemporary software seems to be low in the robustness respect.
This statement can be drawn, not only from the test results of chapter 7, but from
other similar results as well [42; 50; 65]. Many widely deployed software
components cannot withstand a systematic analysis for vulnerabilities. In many
cases, the vulnerabilities can be exploited to totally compromise the system
hosting these components. The results from the testing of WAP terminals did not
indicate that the quality of software in the embedded systems would be better

110

than the quality of other kinds of software. The observed quality does not meet
high security requirements.

There is a lack of functional security testing standards or widely adopted
conventions or tools. The efforts used for improving quality have focused on
improving the process of making software rather than to the product itself [74, p.
14; 68, p. 591]. In functional testing the focus has been on rigid requirement-
based conformance testing. Also, the effectiveness and reach of the functional
techniques for security assessment has been, quite rightly, questioned [63].

Improvements in the software design process and in programming languages are
used to push the complexity barrier further [9, p. 9]. The complexity barrier is
the ultimate limit of complexity we can handle and still produce an operational
system. New features inevitably add to complexity and require more lines of
code. The more code there is, the more opportunities there are for programmer
mistakes [63]. Some of the mistakes are likely to result in vulnerabilities. A
security feature added to a system may also make the system less secure by
introducing new implementation vulnerabilities. This means that a secure system
should be designed to provide the required functionality as simply as possible. A
simpler system is likely to contain less vulnerabilities than a complex system.
Assessing the properties of the simple system is cheaper and a more throughout
analysis is possible. No serious improvements in software security can be
expected before the goal is changed from new features to true security.

Wide use of security assessment, e.g. robustness testing, could create a pressure
to create high-quality software. Vendors would have to invest in the true security
in their products, if they know that potential customers or some third parties may
analyse their products independently. The overall security of software would be
better and the number of publicly disclosed vulnerabilities would decrease.
Smaller numbers of vulnerabilities revealed after shipment would result in less
security advisories and patches. Administrators and users are more likely to
apply patches if they are less frequent. There might be a possibility that all this
leads to more up-to-date systems having less security problems than nowadays.

The huge number of security problems, and the fact that the number of problems
is rather increasing than decreasing, has given space for pessimism. The
software industry has its roots in trusted isolated systems and the state of affairs

111

has fundamentally changed with the introduction of heterogeneous systems
interconnected by inherently insecure networks. Some believe that traditional
techniques simply cannot address the challenge. As said in a paper by Blakley
[11]:

“... the traditional model of computer security is no longer viable, and ...
new definitions of the security problem are needed before the industry
can begin to work toward effective security in the new environment.”

8.5 Difficulties and Dead-Ends

We have found the monitoring and controlling of tested implementations a
problematic issue. A fully automatic test environment would require the ability
to start and stop the IUT and observe IUT behaviour without the presence of an
operator. The observations must be linked into test cases for verdict assignment.
The testing must be suspended while the IUT has stopped responding and
continue after it is again up and running. All this requires a considerable amount
of software which may be operating system dependent.

As an additional hurdle the programs tend to catch fatal failures, e.g. illegal
memory accesses, branch a new thread, and continue “business as usual”.
Detecting such situations is problematic and may require kernel-level
modifications to the operating system. Unfortunately, this failure hiding does not
necessarily prevent the exploitation of the vulnerability, so an overly positive
impression of program quality and security may be perceived.

In our earliest attempts we tried to fully automate the generation of test cases
from the protocol specification. It become quickly clear, that the goal was too
ambiguous, at least as a starting point. The design of effective test cases requires
an understanding of the protocol semantic structure, which cannot be determined
from the syntax specification alone. In the next attempt we provided semantic
clues embedded into the specification for the test case generator. A clue pointed
out symbol types, separators, file names, length fields, etc. from the
specification. The resulting method was quite rigid and we found ourselves
adding as many different clue types as there were potential locations for
anomalies. In the current approach the anomalies are directly inserted as

112

alternatives for the original protocol elements. Natural naming of the anomaly
identifiers and verbose comments provide the required “clues” for human
understanding.

8.6 Open Issues

The ultimate value of security assessment by robustness testing is unknown.
Some experiments would bring more light to this issue:

1. Comparing test results from two independent test suites created by
different teams who have used different trial implementations. Would
both tests reveal the same set of problems?

2. Comparing vulnerabilities discovered using a test suite to results from
other kinds of sources, e.g. to code reviews or to incident histories.
Would the tests reveal vulnerabilities not found by other means? Would
the tests fail to reveal vulnerabilities which can be found by other means?

3. Comparing the number of publicly disclosed vulnerabilities from
products hardened by the help of robustness testing to products which
have not received any special hardening. Does the hardening lessen the
number of publicly disclosed vulnerabilities?

The optimum location of robustness analysis embedded into the software
development process (e.g. see Figure 1) is an open question. Implementation
vulnerabilities should be visible already in individual program units and the
robustness analysis can be a part of unit testing. Additionally, robustness test
cases might be usable for revealing interoperability problems between software
modules. This would be a good reason for running robustness tests in later
phases as well. The robustness analysis might also be a part of the acceptance
tests.

This study has said only a little about the actual design of effective test cases.
The discussion in chapter 2.1 about implementation vulnerabilities and domain
testing and syntax testing in chapter 0 provide some ideas. Still, the systematic
enumeration of effective anomalies and their best locations in PDUs remains to

113

be done. Also, the applicability of formal techniques for robustness test design
should be studied. Mini-simulation testing may also be used for the testing of
software properties beyond robustness, such as timing problems, interface
mismatches, etc.

The applicability of standard testing methods and notations for security
assessment should be analysed. Surely test cases could be specified using, for
example, TTCN, but test case design cannot use the approach as presented in
this study, since there are no methods for mutating a TTCN specification. The
other side of the coin is the applicability of the mini-simulation method to
traditional requirements-based conformance testing. The strong points of the
mini-simulation toolkit, one simple notation, powerful operations, and easy test
case selection would probably be as useful for traditional testing as well. An
input/output oracle should be able to be produced in a similar fashion as test
cases are combined.

114

9. Summary
The increasing dependence of modern society on computer networks and the
emergence of new critical applications emphasise the importance of information
security. A growing number of intrusion attempts is expected as more systems
become connected to open networks. Up till recently, security may not have
been a good selling point, most products have been bought for their novel
features, not for their high security. Even if customers have demanded secure
software, there often have been no practical methods to verify the claims of the
vendor. The few generally applicable methods require access to source code,
which is not often delivered to the customer. There is a lack of security
assessment methods that are applicable without source code.

Software vulnerabilities expose a system to malicious intrusions. Often,
information security is only seen as a collection of cryptographic algorithms and
protection components. In reality, security is also a quality attribute built inside
the systems. The vulnerabilities are caused by decisions and mistakes made
during software design and implementation. The complexity of a system is
determined at the time of the design and has a great impact on the resulting
security. A complex system is likely to be difficult to implement and use.
Implementation vulnerabilities result from programming mistakes, they make up
a large portion of the vulnerabilities reported to the public.

From a security point of view, the robustness of software components is an
important quality. Robustness is the ability to tolerate unexpected and
anomalous input and stressful environmental conditions. Failures in robustness
are at least denial-of-service problems. Certain kinds of robustness problems,
especially buffer-overflows in C and C++ programs, can be further exploited to
execute malicious code in the vulnerable system. Robustness problems usually
have direct failure modes like crashing or hanging. Despite this there are only a
few tools available for functional robustness analysis. The available testing
methods are mainly focused on requirement-based testing of software and
exclude quality factors like robustness.

Software testing assesses that a software component meets the requirements or
holds some other desirable properties. Functional (black-box) testing is based on
the interface specification of the component and can be performed without

115

source code access. Structural (white-box) testing requires access to internals of
the component. The functional testing approach is more universal since it can be
applied to any software component. Different functional testing approaches have
been proposed.

• Transaction flowgraph testing. Test design is based on a graph defining
the expected behaviour of the component using nodes and edges. A node
represents a status or state of the component. An edge is a transition between
nodes. Ideally the testing covers the whole graph.

• Domain testing and syntax testing. Test design is based on the range and
syntax of the input elements the component accepts. Potentially problematic
input values are tried in order to expose flaws in the component
implementation.

• Fault injection using interfaces. The component interfaces are used to
inject anomalous, unexpected, or even illegal input to the tested component.
The purpose of fault injection is to study the impact of faults on the system.

Robustness testing can take advantage of all the above approaches. An attractive
property of robustness testing is that the correctness of the responses from the
tested component does not have to be checked. Test verdicts can be based solely
on whether the component behaved in a secure fashion or whether there were
indications of possible vulnerabilities. The freedom from response validation
greatly reduces the effort required for testing.

Functional testing of a protocol entity requires modelling of the other peers
participating in the protocol, e.g. testing of a server requires the model of a
client. Behavioural modelling is often based on extensions of finite state
machines, regular expressions, or context-free grammars. Several standard
methods are available for software specification and testing activities. Different
methods emphasise different aspects:

• SDL provides tools for both the structural and behavioural decomposition of
the modelled entity. Emphasis is on specification of the entity.

116

• MSC specifies interaction sessions between two or more protocol entities.
The order and the relationships of the exchanged messages is emphasised.

• UML provides a means for entity and interaction specification.

• TTCN is aimed for the description of conformance tests. It provides a rich
set of behaviour description elements and is aimed for executable
interactions.

• ASN.1 is a notation for the syntax modelling of data and messages. Multiple
platform independent encoding conventions are specified.

• XML is a method for describing data structures and relationships. It can be
used as a platform independent data transfer method.

The use of these methods for testing is a complex process. The process starts
from entity behaviour specification (e.g. SDL), which is translated into
interaction specifications of each test case (e.g. TTCN). An interaction
specification has to be made executable by specifying network addresses, etc. A
separate syntax specification language (e.g. ASN.1) may be required. The
developer has to master all notations, translations, and the execution
environment. In all, the process is not optimal for versatile robustness testing
and debugging.

As an alternative, this study described the mini-simulation method based on
attribute grammars. The mini-simulation method is a simple and light-weight
approach for software modelling. A mini-simulation is derived from a master
specification by using a configuration script. The simulated protocol is described
using an attribute grammar augmented with semantic and communication rules.
The attribute grammar is applicable for both syntax modelling and behavioural
modelling. The semantic rules are used to calculate structures unfeasible to be
modelled using pure grammar, such as lengths and checksums. External
communication is provided by communication rules. A prototype mini-
simulation toolkit has been implemented using Java.

A configuration script contains operations to mutate the simulation grammar, for
adding the required rules, and to set parameters. Multiple simulation grammars

117

can be created for different purposes from the same master specification. The
evaluation engine is used to execute the simulation grammar. The engine
traverses the grammar and evaluates the encountered semantic and
communication rules. External interaction takes place as a side-effect of the
evaluation of communication rules. The result of the evaluation is an output
grammar. Since it uses the same notation, it can be re-evaluated to reproduce the
same simulation.

The mini-simulation method provides a relatively simple but powerful means for
protocol entity simulation. The use of the master specification and operations
provides a convenient means for producing different models for different
debugging and testing purposes. The effective creation of messages with both
legal and illegal elements is possible. The models are readily executable and can
interact with real-world products and components.

A robustness testing method was further developed from the mini-simulation
method. The idea is to mutate the master specification to contain anomalous,
unexpected, or illegal protocol elements targeted for finding flaws from the IUT.
The anomalies are combined with normal protocol elements to form test cases.
The mini-simulation toolkit automatically generates the messages required in the
test cases. The messages are semantically valid apart from the added anomalies.

Five test suites have been created with the mini-simulation testing method and
used to test a total of 49 different available products, see Table 10. The products
represent various application domains from telecommunication end-user
terminals to network maintenance including embedded devices. A total of 40
tested products were found to be potentially vulnerable, at least to denial-of-
service attacks. 14 tested products were proven to contain buffer-overflows
exploitable to the point of total compromise of the host system. The security of
software products seems to be low, at least in the robustness respect.

The dominance of rigid methods aimed for conformance has not promoted the
development of robustness testing methods. The proposed mini-simulation
robustness testing method is effective for finding vulnerabilities from
contemporary software products, including software in embedded products.
Different components implementing the same functionality can be evaluated in a
comparable manner. The number of failures provide a quantitative figure, which

118

can be used as a benchmark, as a quality feedback metric, or as criterion for
purchase decisions or allocation of system hardening efforts.

However, robustness analysis has its limitations. A low number of fail verdicts
may result either because of good quality software or inefficient tests. The
differences between the test results of two products may be caused by their
quality differences, but the tests may also be biased to find more flaws from the
other product. The code coverage of tests may be low, which means that the
overall security of the product may not be reflected by the test results.
Additionally, the programmers will eventually learn to avoid the flaws which are
found by robustness testing and it will no longer find problems. Still, there might
be problems not discovered by testing, which the underground community
eventually will learn to exploit.

Despite its limitations, functional security testing may have the potential to
lessen the number of vulnerabilities reported in the public. A large portion of the
disclosed vulnerabilities are variations of well-known vulnerability types. If
testing would remove these most obvious vulnerabilities, the underground
community would have a harder time discovering new vulnerabilities. Also, if
vendors know their products might be analysed without their co-operation, they
may invest more effort to ensure the true quality of the products. All this may
result in fewer numbers of patches being released to fix serious vulnerabilities in
shipped products. The fewer patches required, the more likely is that they are
applied and less systems are left vulnerable. All in all, the robustness and
security of contemporary software would potentially be improved if methods
similar to the one presented in this study would be taken into wide use.

119

References
1. ActiveState. Tcl Developer Xchange [HTML] [Accessed 2001-08-23] URL:

http://tcl.activestate.com/

2. Aho, A. V., Sethi, R. & Ullman, J. D. 1986. Compilers, Principles,
Techniques, and Tools. Reprinted with corrections March, 1988. USA.
Addison–Wesley Publishing Company. 796 p. ISBN 0-201-10088-6

3. Al-Herbish, T. 1999. Secure UNIX Programming FAQ, Version 0.5. [HTML
or Text] [Accessed 2001-08-22] URL: http://www.whitefang.com/sup/

4. Anderson, D. P. & Landweber, L. H. 1985. A Grammar-Based
Methodology for Protocol Specification and Implementation. In:
Proceedings of the Ninth Symposium on Data Communications. September
10–12, 1985. British Columbia Canada. ACM. Pp. 63–70.

5. Anderson, R. 1993. Why Cryptosystems Fail. In: First Conference of
Computer and Communication Security. November 3–5, 1993, Fairfax VA
USA. ACM. Pp. 215–227.

6. Bach, J. 1999. Risk and Requirements-Based Testing. IEEE Computer,
June, pp. 113–114. ISSN 0018-9162

7. Bace, R. & Mell, P. 2001. NIST Special Publication on Intrusion Detection
Systems, Draft Publication, February 12, 2001. [Microsoft Word] National
Institute of Standards and Technology (NIST), Computer Security Resource
Center. [Accessed 2001-08-23] URL: http://csrc.nist.gov/publications/.
51 p.

8. Baumgarten, B. & Giessler, A. 1994. OSI Conformance Testing
Methodology and TTCN. Amsterdam, The Netherlands. Elsevier Science
B.V. 328 p. ISBN 0-444-98712-7

9. Beizer, B. 1990. Software Testing Techniques. Second Edition. New York,
USA. Van Nostrand Reinhold. 550 p. ISBN 0-442-20672-0

120

10. Binkley, D. W. 1995. C++ in Safety Critical Systems, NIST IR 5769,
November 1995. [PostScript] Gaithersburg. National Institute of Standards
and Technology (NIST) [Accessed 2001-08-23] URL: http://hissa.nist.gov/.
P. 31

11. Blakley, B. 1996. The Emperor’s Old Armor. In: Proceedings of the UCLA
Conference on New Security Paradigms Workshops, September 17–20,
1996, Lake Arrowhead, CA, USA. ACM. Pp. 2–16. ISBN 0-89791-944-0

12. Bray, T., Paoli, J., Sperberg-McQueen, C. M. & Maler, E. 2000. Extensible
Markup Language (XML) 1.0 (Second Edition) W3C Recommendation 6
October 2000. World Wide Web Consortium (W3C). 59 p.

13. Bruschi, D., Rosti, E. & Banfi, R. 1998. A Tool for Pro-Active Defense
Against the Buffer Overrun Attack. In: Quisquater, J.-J., Deswarte, Y.,
Meadows, C. & Gollmann, D. (Eds.) Computer Security – ESORICS'98
Lecture Notes in Computer Science No. 1485, Fifth European Symposium
on Research in Computer Security, September 16–18, Louvain-la-Neuve,
Belgium, 1998, Proceedings. Springer–Verlag. Pp. 17–31. ISBN 3-540-
65004-0

14. BugTraq. 1993. [E-mailing list] SecurityFocus.com. [Accessed 2001-08-23]
Subscriptions at URL: http://www.securityfocus.com/

15. Case, J., Fedol, M., Schoffstall, M. & Davin, J. 1990. Request for
Comments: 1157 A Simple Network Management Protocol (SNMP). May
1990. IETF. 36 p.

16. Carreira, J. V., Costa, D. & Silva, J. G. 1999. Fault Injection Spot-checks
Computer System Dependability. IEEE Spectrum, August, pp. 50–55.
ISSN 0018-9235

17. Cigital [Accessed 2001-08-23] URL: http://www.cigital.com/

18. Coleman, D., et al. 1994. Object-Oriented Development The Fusion
Method. Englewood Cliffs, New Jersey. Prentice-Hall. 332 p. ISBN 0-13-
338823-9

121

19. Cowan, C. & Pu, C. 1998. Death, Taxes, and Imperfect Software: Surviving
the Inevitable. In: Proceedings of the 1998 Workshop on New Security
Paradigms, September 22–26, 1998. Charlottesville, VA USA. ACM.
Pp. 54–70. ISBN 1-58113-168-2

20. Cowan, C., et al. 1998. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In: Proceedings of the Seventh
USENIX Security Symposium, January 26–29, 1998. San Antonio, TX
USA. The USENIX Association. Pp. 63–78.

21. Crocker, D. H. 1982. Request For Comments: 822 Standard For The Format
of ARPA Internet Text Messages, August 13, 1982. IETF. 47 p.

22. Devanbu, P. T. & Stubblebine, S. 2000. Software Engineering for Security:
a Roadmap. In: Proceedings of the Conference on the Future of Software
Engineering (ICSE 2000), June 4–5, 2000. Limerick, Ireland. ACM. Pp.
227–239. ISBN 1-58113-253-0

23. Ellsberger, J., Hogrefe, D. & Sarma, A. 1997. SDL Formal Object-Oriented
Language for Communicating Systems. Great Britain. Prentice-Hall Europe.
P. 312. ISBN 0-13-632886-5

24. Fielding, R., et al. 1999. Request for Comments: 2616 Hypertext Transfer
Protocol – HTTP/1.1, June 1999. IETF. 176 p.

25. Fink, G. & Levitt, K. 1994. Property-Based Testing of Privileged Programs.
In: Proceedings of the 10th Annual Computer Security Conference, 5–9
December, 1994. Orlando, FL USA. Pp. 154–163.

26. Ghosh, A. K., O'Connor, T. & McGraw, G. 1998. An Automated Approach
for Identifying Potential Vulnerabilities in Software. In: Proceedings of the
IEEE Symposium on Security and Privacy, May 3–6, 1998. Oakland, CA
USA. IEEE. Pp. 104–114.

122

27. Ghosh, A. K. & McGraw, G. 1998. An Approach for Certifying Security in
Software Components [PDF] Proceedings of the 21st National Information
Systems Security Conference, October 5–9, 1998. Crystal City, VA, USA.
National Institute of Standards and Technology (NIST). [Accessed 2001-08-
23] URL: http://csrc.nist.gov/nissc/1998/

28. Ghosh, A. K. & O’Conner, T. 1998. Analyzing Programs for Vulnerability
to Buffer Overrun Attacks [PDF] Proceedings of the 21st National
Information Systems Security Conference, October 5–9, 1998. Crystal City,
VA, USA. National Institute of Standards and Technology (NIST).
[Accessed 2001-08-23] URL: http://csrc.nist.gov/nissc/1998/

29. Ghosh, A. K. & Voas, J. M. 1999. Inoculating Software for Survivability.
Communications of the ACM, Vol. 42, Issue 7, pp. 38–44. ISSN 0001-0782

30. Gollmann, D. 1999. Computer Security. New York, USA: John Wiley &
Sons. 320 p. ISBN 0-471-97844-2

31. Gough, K. J. 1988. Syntax Analysis and Software Tools. Great Britain.
Addison–Wesley. 459 p. ISBN 0-201-18048-0

32. Howard, J. D. & Longstaff, T. A. 1998. A Common Language for Computer
Security Incidents, Sandia Report SAND98-8667. Printed October 1998.
USA. Sandia National Laboratories. 26 p.

33. IEEE Std 610.12-1990. 1991. IEEE Standard Glossary of Software
Engineering Terminology, Corrected Edition, February 1991. IEEE. 83 p.

34. ITU-T Recommendation Z.100 (11/99). 1999. Specification and
Description Language (SDL). International Telecommunication Union,
Telecommunication Standardization Sector (ITU-T).

35. ITU-T Recommendation Z.120 (11/99). 1999. Message Sequence Chart
(MSC). International Telecommunication Union, Telecommunication
Standardization Sector (ITU-T).

123

36. ITU-T Recommendation X.208 (11/88). 1988. Specification of Abstract
Syntax Notation One (ASN.1). International Telecommunication Union,
Telecommunication Standardization Sector (ITU-T).

37. ITU-T Recommendation X.209 (11/88). 1988. Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.1). International
Telecommunication Union, Telecommunication Standardization Sector
(ITU-T).

38. ITU-T Recommendation X.290 (04/95). 1995. OSI Conformance Testing
Methodology and Framework for Protocol Recommendations for ITU-T
Applications – General Concepts. International Telecommunication Union,
Telecommunication Standardization Sector (ITU-T).

39. ITU-T Recommendation X.292 (09/98). 1998. OSI Conformance Testing
Methodology and Framework for Protocol Recommendations for ITU-T
Applications – The Tree and Tabular Combined Notation (TTCN).
International Telecommunication Union, Telecommunication Standardiz-
ation Sector (ITU-T).

40. Jones, R. W. M. & Kelly, P. H. J. 1997. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs. In: Kamkar, M. (Ed.)
Linköping Electronic Articles in Computer and Information Science, Vol. 2,
No. 009. AADEBUG’97. Proceedings of the Third International Workshop
on Automatic Debugging, May 26–27, 1997. Linköping, Sweden.
[Accessed 2001-08-23] URL: http://www.ep.liu.se/ea/cis/1997/009/. ISSN
1401-9841

41. Kaksonen, R., Laakso, M., & Takanen, A. 2001. Software Security
Assessment through Specification Mutations and Fault Injection. In:
Steinmetz, R., Dittmann, J., Steinebach, M. (Eds.). Communications and
Multimedia Security Issues of the New Century. IFIP TC6/TC11 Fifth Joint
Working Conference on Communications and Multimedia Security
(CMS'01) May 21–22, 2001. Darmstadt, Germany. Pp. 173–183. ISDN 0-
7923-7365-0

124

42. Koopman, P. & DeVale, J. 2000. The Exception Handling Effectiveness of
POSIX Operating Systems. IEEE Transactions on Software Engineering,
Vol. 26, No. 9, September 2000, pp. 837–848. ISSN 0098-5586

43. Krsul, I., Spafford, E. & Tripunitara, M. 1998 An Analysis of Some
Software Vulnerabilities [PDF] Proceedings of the 21st National
Information Systems Security Conference (NISSC), October 5–9 1998.
Crystal City, VA, USA. National Institute of Standards and Technology
(NIST). [Accessed 2001-08-23] URL: http://csrc.nist.gov/nissc/1998/

44. Laakso, M., Takanen, A. & Röning, J. 1999. The Vulnerability Process: a
tiger team approach to resolving vulnerability cases. In: Proceedings of the
11th FIRST Conference on Computer Security Incident Handling and
Response, 13–18 June 1999. Brisbane, Australia. Forum of Incident
Response and Security Teams (FIRST).

45. Laakso, M.,Takanen, A. & Röning, J. 1999. Runtime Symbol Interposition
– Infiltrating the Black-box. In: Proceedings of the Eighth Annual
Conference on System Administration, Networking and Security
(SANS’99), 7–14 May, 1999. Baltimore, USA. System Administration,
Networking, and Security (SANS) Institute.

46. Laakso, M., Takanen, A. & Röning, J. 2001. Introducing Constructive
Vulnerability Disclosures. In Proceedings of the 13th FIRST Conference on
Computer Security Incident Handling. June 17–22, 2001. Toulouse, France.
Forum of Incident Response and Security Teams (FIRST).

47. Larmouth, J. 1999. ASN.1 Complete [PDF] OSS Nokalva. 387 p. [Accessed
2001-08-23] URL: http://www.oss.com/

48. McGraw, G. 1998. Testing for Security During Development: Why We
Should Scrap Penetrate-and-Patch. IEEE Aerospace and Electronic
Systems, 13(4), April 1998, pp. 13–15. ISSN 0885-8985

49. Maurer, P. M. 1990. Generating Test Data with Enhanced Context-Free
Grammars. IEEE Software, July 1990, pp. 50–55. ISSN 0740-7459

125

50. Miller, B. P. et al. 1995. Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services, April 11 1995. [USA] Computer
Sciences Department, University of Wisconsin.

51. Object Management Group (OMG). 1999. Unified Modelling Language
(UML) Specification, Version 1.3, June 1999. [Microsoft Word] [Accessed
2001-08-23] URL: http://www.omg.org/

52. Ousterhout, J. K. 1998. Scripting: Higher Level Programming for the 21th
Century. IEEE Computer, March 1998, pp. 23–30. ISSN 0018-9162

53. Packetfactory [HTML] [Accessed 2001-08-23]
URL: http://www.packetfactory.net/

54. Paakki, J. 1995. Attribute Grammar Paradigms – A High-Level
Methodology in Language Implementation. ACM Computing Surveys, Vol.
27, No. 2, June 1995, pp. 196–255. ISSN 0360-0300

55. Perl.com [HTML] [Accessed 2001-08-23] URL: http://www.perl.com/

56. Project: Security Testing of Protocol Implementation (PROTOS). 1999–.
[HTML] University of Oulu, Computer Engineering Laboratory [Accessed
2001-08-23] URL: http://www.ee.oulu.fi/research/ouspg/protos/

57. Rational. Purify: Fast Detection of Memory Leaks and Access Errors.
Whitepaper [HTML] [Accessed 2001-08-23] URL: http://www.rational.com/

58. Rudolph, E., Graubmann, P. & Grabowski, J. 1996. Tutorial on Message
Sequence Charts. Computer Networks and ISDN Systems, Volume 28,
Issue 12, June 1996. Elsevier Science. Pp. 1629–1641. ISSN 0169-7552

59. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. 1991.
Object-Oriented Modelling and Design. New Jersey, USA. Prentice-Hall.
512 p. ISBN 0-13-629841-9

60. Sarikaya, B. 1993. Principles of Protocol Engineering and Conformance
Testing. Great Britain. Ellis Horwood. 502 p. ISBN 0-13-012642-X

126

61. Schneier, B. 1998. Cryptographic Design Vulnerabilities. IEEE Computer,
September 1998, pp. 29–33. ISSN 0018-9162

62. Schneier, B. 1998. E-Mail Viruses, Worms, and Trojan Horses. Crypto-
Gram, June 15, 1998 [e-mail newsletter] Counterpane Internet Security, Inc.
[Accessed 2001-08-15] URL: http://www.counterpane.com/

63. Schneier, B. 2000. Software Complexity and Security. Crypto-Gram, March
15, 2000 [e-mail newsletter] Counterpane Internet Security, Inc. [Accessed
2001-08-15] URL: http://www.counterpane.com/

64. Secure Software Solutions. RATS (Rough Auditing Tool for Security).
[HTML] [Accessed 2001-08-13] URL: http://www.securesw.com/

65. Shelton. C. P., Koopman, P. & DeVale, K. 2000. Robustness Testing of the
Microsoft Win32 API. In: International Conference on Dependable Systems
and Networks (DSN 2000), 25–28 June 2000. New York, NY USA. IEEE.
Pp. 261–272. ISBN 0-7695-0707-7

66. Smith, N. P. 1997. Stack Smashing Vulnerabilities in the UNIX Operating
System. [PostScript] [Accessed 2001-03-12] URL: http://destroy.net/

67. Sollins, K. 1992. Request For Comments: 1350 The TFTP Protocol
(Revision 2), July 1992. IETF. 11 p.

68. Sommerville, I. 1992. Software Engineering. USA. Addison–Wesley
Publishers. 649 p. ISBN 0-201-56529-3

69. Stanton, S. 1998. Blending Tcl and Java. Dr. Dobb’s Journal, February
1998. pp. 50–54. ISSN 1044-789X

70. Stein, L. D. 2001. The World Wide Web Security FAQ. Version 3.1.0, July
28, 2001 [HTML] World Wide Web Consortium (W3C) [Accessed 2001-
08-23] URL: http://www.w3.org/

71. Sun Microsystems. The Source for Java Technology [HTML] [Accessed
2001-08-23] URL: http://java.sun.com/

127

72. Takanen, A., Laakso, M., Eronen, J. & Röning, J. 2000. Running Malicious
Code by Exploiting Buffer Overflows: A Survey Of Publicly Available
Exploits. In: EICAR 2000 Best Paper Proceedings. First European Anti-
Malware Conference, March 4–7, 2000. Brussels, Belgium. EICAR.
Pp.158–180

73. Viega, J. & Bloch, J. T. 2000. ITS4: A Static Vulnerability Scanner for C
and C++ Code [PDF] 16th Annual Computer Security Applications
Conference, December 11–15, 2000. New Orleans, Louisiana, USA. 20 p
[Accessed 2001-08-23] URL: http://www.acsac.org/

74. Voas, J. & McGraw, G. 1998. Software Fault Injection. New York, USA.
John Wiley & Sons. 352 p. ISBN 0-471-18381-4

75. Wagner, D., Foster, J. S., Brewer, E. A. & Aiken, A. 2000. A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities. [PDF]
Networking and Distributed System Security Symposium, 3–4 February,
2000. San Diego, California, USA. [Accessed 2001-08-23] URL:
http://www.isoc.org/ndss2000/

76. Wahl, M., Howes, T. & Kille, S. 1997. Request for Comments: 2251
Lightweight Directory Access Protocol (v3), December 1997. Internet
Engineering Task Force (IETF) 50 p.

77. Wall, L., Christiansen, T. & Orwant, J. 2000. Programming Perl, 3rd
Edition. O'Reilly & Associates. 1092 p. ISBN 0-596-00027-8

78. WAP Forum. [HTML] [Accessed 2001-08-23]
URL: http://www.wapforum.com/

79. Welch, B. B. 2000. Practical Programming in Tcl and Tk. New Jersey,
USA: Prentice-Hall. 772 p. ISBN 0-13-022028-0

80. Wheeler, D. A. 2001. Secure Programming for Linux and Unix HOWTO,
April 2001 [HTML, PDF, PostScript] Linux Documentation Project
[Accessed 2001-08-13] URL: http://www.linuxdoc.org/

128

81. Wheeler, D. A. Flawfinder. [HTML] [Accessed 2001-08-23] ULR:
http://www.dwheeler.com/

82. Wirth, N. 1977. What Can We Do about the Unnecessary Diversity of
Notation for Syntactic Definitions? Communications of the ACM, Vol. 20,
No. 11, November 1977. ACM. pp. 822–823. ISSN 0001-0782

83. Wojtczuk, R. Defeating Solar Designer’s Non-Executable Stack Path.
[HTML] [Accessed 2001-03-12] URL: http://area.insecure.org/

A 1

Appendix A: BNF and Tree Notations

Selection of one child symbol, a, b or c.

n..m {a}

a b c

a|b|c

<p>

n x a

{ }

<p>

b c

a b c

|

a

a
n..m

a
n

"xyz" "xyz"

0xxx0xXX

()

a

[][a]

0xxx-0xyy0xXX-0xYY

!tag

a

!tag

Terminal string xyz.

A range of octets. Equal to selection from
octets xx, yy and all octets between..

Terminal octet, hexadecimal value XX.

Sequence of child symbols a, b and c.

Empty sequence, i.e. empty symbol or null.

Repeat selection, the child symbol a is
repeated from n to m times. Default is from
zero to infinity.

Optional child symbol a . Equals to repeat
selection from zero to one, or selection
between empty and the symbol.

Repeat sequence, the child symbol a is
repeated n times.

Identifier <p> defined as "<p> = a" or "<p>
::= a ". The child branch can be omitted to
simplify presentation.

Tag symbol. Child symbol a is tagged.

... Some symbols are omitted.

<p>

a
or

B 1

Appendix B: Operations

The following table summarises the most important mini-simulation operations
available for Tcl configuration scripts.

cutNames Cut unused productions, whose left-hand side
identifiers cannot be reached from the root symbol.

cutRules Cut rules from the grammar.

cutSelections mask Cut selections by leaning the leftmost choice from
selections pointed to by a mask.

data name symbol Define a data production with left-hand side name
and right-hand side symbol.

evaluateRules Evaluate the grammar.

insert mask index symbol Insert symbol as a child to the position index of the
non-terminal pointed by mask

parseBNF text Read BNF specification directly from text.

parseBNFFile filename Read BNF specification from file filename.

remove name Remove production with left-hand side name.

replace mask [symbol] Replace the branch pointed to by mask with symbol.
Remove the branch, if symbol parameter is not
specified.

save filename Save the grammar into file filename using BNF.

section evaluateRule ... Section for configuring a rule and evaluating the
grammar with the configured rule.

section insertRule ... Section for configuring a rule and inserting the
configured rule into the grammar.

show Write the current grammar into the log.

type name symbol Define a type production with left-hand side name
and right-hand side symbol.

C 1

Appendix C: Default Rules

The following tables summarise the semantic and communication rules
implemented in the mini-simulation toolkit.

Semantic rules

Embed Embed a symbol into an encoded binary stream.

IntegerField Encode and decode integer field using ASCII
notation, bytes or bits.

IPChecksum Calculate IP checksum used in various IP-
protocol family PDUs.

Length Calculate a length field with explicit context.

Length2 Calculate a length field.

Offsets Calculate offsets between symbols in an
encoded binary stream.

Padding Pad a symbol length in encoding.

PrefixPadding Pad an ASCII numeric field by prefix zeroes.

Reverse Reverse the order of bytes during encoding and
decoding.

SequenceNumber Add sequence numbers.

StringField Convert binary sequence into ASCII string
during decoding.

Wait Suspend evaluation for a specified amount of
time.

C 2

Communication rules

DirectIO Decode data directly from the configuration
script. Encode data to the log.

Evaluator Decode data from the standard output or the
standard error stream of an external process.
Encode data to the standard input stream.

FileIO Decode from a file. Encode into a file.

MemoryIO Decode from an encoded symbol. Encode from a
decoded symbol.

TCPClientSocket Decode from the input stream of a TCP client
socket. Encode to the output stream.

TCPServerSocket Decode from the input stream of a TCP server
socket (or listening socket). Encode to the output
stream.

UDPSocket Decode from a received UDP datagram. Encode
into an outgoing datagram.

D 1

Appendix D: TFTP Specification

A simple BNF specification of a TFTP transfer

Model a single transfer

<transfer> = <read-transfer> |<write-transfer>

Read transfer

<read-transfer> = !up<RRQ> <reads>

<reads> = {!down<BLOCK> !up<ACK>} !down<LAST-BLOCK> !up<ACK>

Write transfer

<write-transfer> = !up<WRQ> <writes>

<writes> = !down<ACK> {!up<BLOCK> !down<ACK>} !up<LAST-BLOCK> !down<ACK>

Request PDUs

<RRQ> ::= (0x00 0x01) <FILE-NAME> <MODE>

<WRQ> ::= (0x00 0x02) <FILE-NAME> <MODE>

Subsequent PDUs

<BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 512 x <OCTET>

<LAST-BLOCK> ::= (0x00 0x03) <BLOCK-NUMBER> 0..511 { <OCTET> }

<ACK> ::= (0x00 0x04) <BLOCK-NUMBER>

<ERROR> ::= (0x00 0x05) <ERROR-CODE> <ERROR-MESSAGE>

Miscellaneous productions

<MODE> ::= "octet" 0x00 |"netascii" 0x00

<FILE-NAME> ::= { <CHARACTER> } 0x00

<BLOCK-NUMBER> ::= <OCTET> <OCTET>

<ERROR-CODE> ::= <OCTET> <OCTET>

<ERROR-MESSAGE> ::= { <CHARACTER> } 0x00

<CHARACTER> ::= 0x01 - 0x7f

<OCTET> ::= 0x00 - 0xff

E 1

Appendix E: TFTP Test Suite Configuration

A simple TFTP test suite Tcl configuration script

- for assessing the robustness of TFTP servers

- error handling excluded

- the download file "sample.txt" size must be between 512...1023 bytes

package require java

lappend auto_path [java::call FI.protos.Root tclLib]

package require configurer

namespace import configurer::*

Script Body

section driver {

 section preSelection {

 parseBNFFile "tftp.bnf"

 # only read transfer

 replace <transfer> <read-transfer>

 # RRQ followed by successful or erroneous transfer

 replace <read-transfer>.1 {<_OLD> |<read-error>}

 # successful transfer, expecting file size 512...1023 bytes

 replace <reads>.0 <_OLD>.1

 # define transfers ending to error

 data <read-error> {(!down <BLOCK> !up<ERROR>) |

 (!down <BLOCK> !up <ACK>) !down <LAST-BLOCK> !up<ERROR>}

 # value and anomaly to RRQ op. code, filename and mode

 replace <RRQ>.0 {<_OLD> |<A-16>}

 replace <FILE-NAME> {"sample.txt" 0x00 |<A-string>}

 replace <MODE> {<MODE>.0 |<A-string>}

 # value and anomaly to error op. code, error code and message

E 2

 replace <ERROR>.0 {<_OLD> |<A-16>}

 replace <ERROR-CODE> {(0x00 0x00) |<A-16>}

 replace <ERROR-MESSAGE> {"test error" 0x00 |<A-string>}

 # anomaly to acknowledgement block number

 replace <ACK>.1 {<_OLD> |<A-16>}

 # remove unused productions

 cutNames

 # define anomalies

 type <A-16> {

 (0x00 0x00) |(0x00 0x01) |(0x00 0x02) |(0x00 0x03) |

 (0x00 0x04) |(0x00 0x05) |(0x00 0x06) |(0x00 0xff) |

 (0x7f 0xff) |(0x80 0x00) |(0x80 0x01) |(0xff 0xfe) |

 (0xff 0x7f) |(0x00 0x80) |(0x01 0x08) |(0xfe 0xff) |

 (0xff 0xff)

 }

 type <A-string> {

 # string missing and empty string

 () |0x00 |

 # "illegal" characters

 0x01 0x00 |0x10 0x00 |0x1f 0x00 |0x7f 0x00 |0x80 0x00 |

 0x81 0x00 |0xa0 0x00 |0xfe 0x00 |0xff 0x00 |

 # overflow strings

 32x 0x61 0x00 |64x 0x61 0x00 |128x 0x61 0x00 |256x 0x61 0x00 |

 511x 0x61 0x00 |512x 0x61 0x00 |513x 0x61 0x00 |

 1024x 0x61 0x00 |2048x 0x61 0x00 |4096x 0x61 0x00

 # runaway overflow strings (no terminating null)

 32x 0x61 |64x 0x61 |128x 0x61 |256x 0x61 |

 511x 0x61 |512x 0x61 |513x 0x61 |

 1024x 0x61 |2048x 0x61 |4096x 0x61

 }

E 3

 # add rules

 section insertRule {

 section rule [new FI.protos.rule.UDPSocket] {

 property timeoutPeriod 5000

 property open root

 property output !up

 property input !down

 property remotePort 69

 property followPort true

 #property remoteHost "10.10.10.205"

 property remoteHost "10.10.10.41"

 }

 }

 section insertRule {

 section rule [new FI.protos.rule.SequenceNumber] {

 property number <BLOCK-NUMBER>

 property step <BLOCK>

 property start 1

 property byteLength 2

 }

 }

 show

 }

 section selection {

 section combine {

 property label "zero-case"

 section masks {

 }

 }

 section combine {

 property label "error-cases"

 section masks {

 add *.<read-error>.?

E 4

 }

 }

 # RRQ filename, RRQ mode or error message anomaly

 section combine {

 property label "string"

 section masks {

 add *.<A-string>.?

 }

 }

 # PDU operation code, ack number anomaly or error code

 section combine {

 property label "integer"

 section masks {

 add *.<A-16>.?

 }

 }

 # RRQ filename overflow with mode missing

 section combine {

 property label "no-mode-and-filename"

 section masks {

 add *.<FILE-NAME>.*.<A-string>.?

 add *.<MODE>.*.<A-string>.0

 }

 }

 # First PDU operation code anomaly and overflow

 section combine {

 property label "operation-code-and-overflow-1"

 section masks {

 add *.<RRQ>.0.*.<A-16>.?

 add *.<RRQ>.2.*.<A-string>.?

 }

 }

 # Intermediate PDU operation code anomaly and overflow

 section combine {

 property label "operation-code-and-overflow-2"

 section masks {

 add *.<read-error>.0.*.<ERROR>.0.*.<A-16>.?

E 5

 add *.<read-error>.0.*.<ERROR>.*.<A-string>.?

 }

 }

 # Last PDU operation code anomaly and overflow

 section combine {

 property label "operation-code-and-overflow-3"

 section masks {

 add *.<read-error>.1.*.<ERROR>.0.*.<A-16>.?

 add *.<read-error>.1.*.<ERROR>.*.<A-string>.?

 }

 }

 }

 section postSelection {

 # clean up the grammar a bit (not necessary)

 cutSelections <RRQ>.*

 cutSelections <ACK>.*

 cutSelections <ERROR>.*

 cutNames

 # show grammar, evaluate and show again

 show

 evaluateRules

 show

 }

 section logger {

 property debug true

 }

 section controller [new FI.protos.driver.BlindControl] {

 property timeout -1

 }

}

Script Trailer

call [it] run

F 1

Appendix F: Results from Test Runs

WAP-WSP-Request Test Suite

Test groups 39 Test cases 4 236

Fail verdicts: NoteTest
run test groups test cases

001 10 569

002 18 141 Exploited

003 2 10 Exploited

004 16 385 Exploited

005 8 664

006 14 622

007 20 148 Exploited

Legend: Exploited One of the found vulnerabilities was exploited by
running remotely supplied code in the host system.

F 2

WAP-WMLC Test Suite

Test groups 84 Test cases 1 033

Fail verdicts:Test
run test groups test cases

Note

001 4 26

002 43 183

003 2 8 Exploited

004 2 4 Exploited

005 4 34 Embedded

006 9 21 Embedded

007 2 25 Embedded

008 11 31 Embedded

009 1 9 Embedded

010 15 34 Embedded

Legend: Exploited One of the found vulnerabilities was exploited by
running remotely supplied code in the host system.

Embedded The tested implementation was embedded into a
hardware product.

F 3

HTTP-Reply Test Suite

Test groups 115 Test cases 3 966

Fail verdicts:Test
run test groups test cases

Note

001 8 122 Exploited

002 4 57

003 8 120

004 1 2 Exploited

005 1 2

006 0 0

007 0 0 Proxy

008 0 0 Proxy

009 0 0 Proxy

010 0 0 Proxy

011 0 0 Proxy

012 1 9

Legend: Exploited One of the found vulnerabilities was exploited by
running remotely supplied code in the host system.

Proxy Tested implementation was HTTP proxy, not a
browser.

F 4

LDAPv3 Test Suite

Application Test groups 16 Test cases 5 964

Encoding Test groups 77 Test cases 6 685

Test groups 93 Test cases 12 649

Fail verdicts: NoteTest
run application

test groups
application

test cases
encoding

test groups
encoding
test cases

001 0 0 1 N

002 *) 1 N *) 1 N Exploited

003 0 0 0 0

004 23 N 1 5 Exploited

005 46 N 1 N Exploited

006 *) 4 N 9 79

007 0 0 0 0

008 1 9 12 N Exploited

Legend: Exploited One of the found vulnerabilities was exploited by
running remotely supplied code in the host system.

*) The exact number of test groups with failures could not
be verified, but a lower bound is given.

N Failures were too frequent to execute all test cases.

F 5

SNMPv1 Test Suite

Request Application Test groups 61 Test cases 10 601

Encoding Test groups 57 Test cases 18 915

Test groups 118 Test cases 29 516

Trap Application Test groups 76 Test cases 15 323

Encoding Test groups 24 Test cases 8 777

Test groups 100 Test cases 24 100

Fail verdicts: NoteTest
run application

test groups
application

test cases
encoding

test groups
encoding
test cases

001 8 N 0 0

002 0 0 0 0

003 6 13 5 N Net, Exploited

004 8 16 0 0

005 0 0 3 4 Net

006 8 224 0 0 Net

007 4 57 5 N Net

008 0 0 2 10

009 9 N 1 5 Exploited

010 17 166 5 24

011 8 12 10 N

012 1 N 3 N

Legend: Exploited One of the found vulnerabilities was exploited by
running remotely supplied code in the host system.

Net The tested product was an embedded device dedicated to
network traffic forwarding and screening.

N Failures were too frequent to execute all test cases.

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 448
VTT–PUBS–448

Author(s)
Kaksonen, Rauli

Title

A Functional Method for Assessing Protocol
Implementation Security

Abstract
Serious information security vulnerabilities are discovered daily and reported from already
deployed software products. Customers have no feasible means for estimating the security level
of the products they purchase. The few generally applicable methods require the source code,
which is often not delivered with a product. Many of the reported vulnerabilities are robustness
problems. Robustness can be functionally assessed without the source code by injecting
anomalies, unexpected input elements, to the tested component. The component passes the tests
if it can securely handle the injected anomalies.

The methods generally applied for software testing and modelling were found to be too
complex and rigid for functional robustness assessment. A new mini-simulation method using
attribute grammar to model both input syntax and software behaviour was proposed. Means for
the systematic creation of a large number of test cases was presented. The method was used to
test the robustness of 49 software products. A total of 40 tested products were found to be
vulnerable to denial-of-service problems, and 14 of them were proven to contain vulnerabilities
making it possible to execute remotely supplied code on the host system.

Applications of the method include quantitative comparisons and the benchmarking of software
components, but it has some limitations. The proportion of the flaws found using the method
compared to the actual number of flaws is difficult to assess and the tests may favour some
components over others. However, if the method can help to eliminate the most obvious
vulnerabilities, it would be much more difficult to find serious flaws using unsystematic
methods. This could cut down on the number of publicly disclosed vulnerabilities.

Keywords
information security, automated testing, software quality, implementation vulnerabilities, programming
mistakes, mini-simulation method

Activity unit
VTT Electronics, Telecommunication Systems, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

ISBN Project number
951–38–5873–1 (soft back ed.)
951–38–5874–X (URL: http://www.inf.vtt.fi/pdf/)

Date Language Pages Price
October 2001 English 128 p. + 15 p. C

Name of project Commissioned by
Security Testing of Protocol Implementations
(PROTOS)

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

Julkaisija

Vuorimiehentie 5, PL 2000, 02044 VTT
Puh. (09) 4561
Faksi (09) 456 4374

Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 448
VTT–PUBS–448

Tekijä(t)
Kaksonen, Rauli

Nimeke

Menetelmä ohjelmistojen tietoturvan toiminnalliseen
analysointiin

Tiivistelmä
Ohjelmistoista löytyneitä vakavia tietoturvallisuushaavoittuvaisuuksia löydetään ja raportoidaan päivittäin.
Asiakkailla ei ole käyttökelpoisia menetelmiä hankkimiensa tuotteiden tietoturvallisuustason arviointiin.
Harvat yleisesti käyttökelpoiset menetelmät vaativat lähdekoodin, eikä sellaista yleensä toimitetakaan
tuotteen mukana. Monet raportoiduista haavoittuvaisuuksista ovat ohjelmistojen toimintavarmuus-
ongelmia. Toimintavarmuutta on mahdollista arvioida funktionaalisesti ilman lähdekoodia syöttämällä
anomalioita, odottamattomia dataelementtejä, testattavaan ohjelmistoon. Ohjelmisto läpäisee testit, jos se
pystyy turvallisesti käsittelemään syötetyt anomaliat.

Yleisesti käytetyt ohjelmistojen testaus- ja mallinnusmenetelmät havaittiin monimutkaisiksi ja jäykiksi
funktionaaliseen toimintavarmuuden analysointiin. Analysointiin ehdotettiin uutta mini-simulaatio-
menetelmää, joka käyttää attribuuttikielioppia sekä syötteiden syntaksin että ohjelmiston käyttäytymisen
mallintamiseen. Suurten testitapausmäärien systemaattinen luominen menetelmällä esiteltiin. Menetelmää
käytettiin 49:n eri ohjelmiston toimintavarmuuden testaamiseen, näistä 40:stä löydettiin toiminta-
varmuusongelmia. 14 ohjelmiston sisältämien haavoittuvaisuuksien osoitettiin mahdollistavat ulkopuolelta
syötetyn ohjelmakoodin ajamisen kyseessä olevissa järjestelmissä.

Esitellyn menetelmän sovelluksia ovat ohjelmistokomponenttien kvantitatiiviset vertailut ja mittaukset,
mutta sillä on joitain heikkouksia. Paljastuvien virheiden ja komponenttien sisältävien kaikkien virheiden
suhdetta on vaikea arvioida ja testit voivat suosia joitakin komponentteja toisten kustannuksella.
Kuitenkin, jos menetelmän avulla voitaisiin karsia ilmeisimmät haavoittuvaisuudet, olisi haavoittu-
vaisuuksia paljon vaikeampi löytää ei-systemaattisilla menetelmillä. Tämä voisi vähentää julkisesti
paljastettujen tietoturvahaavoittuvaisuuksien määrää.

Avainsanat
information security, automated testing, software quality, implementation vulnerabilities, programming
mistakes, mini-simulation method

Toimintayksikö
VTT Elektroniikka, Tietoliikennejärjestelmät, Kaitoväylä 1, PL 1100, 90571 OULU

ISBN Projektinumero
951–38–5873–1 (nid.)
951–38–5874–X (URL: http://www.inf.vtt.fi/pdf/)

Julkaisuaika Kieli Sivuja Hinta
Lokakuu 2001 Englanti 128 s. + liitt. 15 s. C

Projektin nimi Toimeksiantaja(t)
Security Testing of Protocol Implementations
(PROTOS)

Avainnimeke ja ISSN Myynti
VTT Publications
1235–0621 (nid.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. (09) 456 4404
Faksi (09) 456 4374

	Abstract
	Preface
	Contents
	List of Symbols
	1. Introduction
	2. Implementation Vulnerabilities
	2.1 Types
	2.2 Vulnerability Management
	2.2.1 Avoidance
	2.2.2 Elimination
	2.2.3 Tolerance

	2.3 Vulnerability Analysis
	2.3.1 Component Analysis

	2.3.2 System Scanning

	3. Assessing Software Components
	3.1 Software Testing
	3.1.1 Basic Concepts
	3.1.2 Testing Process
	3.1.3 Functional Testing
	3.1.4 Domain Testing and Syntax Testing
	3.1.5 Conformance Testing
	3.1.6 Structural Testing

	3.2 Fault Injection
	3.2.1 Injection
	3.2.2 Output Monitoring
	3.2.3 Fault Injection Examples

	3.3 Testing Security Properties
	3.4 Summary of the Presented Techniques

	4. Functional Software Modelling
	4.1 Basic Techniques
	4.1.1 Regular Expressions
	4.1.2 Finite State Machine
	4.1.3 Context-Free Grammars
	4.1.4 Attribute Grammars

	4.2 Modelling Standards
	4.2.1 Specification and Description Language
	4.2.2 Message Sequence Chart
	4.2.3 Unified Modelling Language
	4.2.4 Tree and Tabular Combined Notation
	4.2.5 Abstract Syntax Notation One
	4.2.6 Extensible Markup Language

	4.3 Modelling Summary
	4.4 Conclusions

	5. Mini-Simulation Method
	5.1 Mini-Simulation Overview
	5.1.1 Requirements
	5.1.2 Negative Requirements
	5.1.3 Concept

	5.2 Specifications
	5.2.1 Grammar Symbols
	5.2.2 Rules
	5.2.3 Evaluation
	5.2.4 Evaluation Problems

	5.3 Paths and Masks
	5.4 The Mini-Simulation Toolkit
	5.4.1 Two-Language Solution
	5.4.2 Configuration Scripts
	5.4.3 Script Header
	5.4.4 Script Body
	5.4.5 Script Trailer

	5.4.6 Running a Configuration Script
	5.5 Modelling Tasks
	5.5.1 Communication Rules
	5.5.2 Simple Message Exchanges
	5.5.3 Exceptional Message Exchanges
	5.5.4 Semantic Rules
	5.5.5 Mixing Communication Rules

	6. Mini-Simulation Testing
	6.1 Extensions for Testing
	6.1.1 Test Strategy
	6.1.2 Injection
	6.1.3 Instrumentation

	6.2 The Testing Process
	6.2.1 Preparations
	6.2.2 Test Design
	6.2.3 Test Execution
	6.2.4 Post-Processing

	6.3 Testing Using the Mini-Simulation Toolkit
	6.3.1 Example: TFTP Test Suite
	6.3.2 Sections
	6.3.3 Pre-Selection Section
	6.3.4 Selection Section
	6.3.5 Post-Selection Section

	7. Results
	7.1 Overview
	7.2 WAP-WSP-Request Test Suite
	7.3 WAP-WMLC Test Suite
	7.4 HTTP-Reply Test Suite
	7.5 LDAPv3 Test Suite
	7.6 SNMPv1 Test Suite

	8. Analysis
	8.1 Mini-Simulation Method
	8.2 Scope of the Analysis
	8.3 Applicability
	8.4 Implementation Quality and Security
	8.5 Difficulties and Dead-Ends
	8.6 Open Issues

	9. Summary
	References
	Appendix A: BNF and Tree Notations
	Appendix B: Operations
	Appendix C: Default Rules
	Appendix D: TFTP Specification
	Appendix E: TFTP Test Suite Configuration
	Appendix F: Results from Test Runs

