
Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Running Malicious Code by
Exploiting Buffer Overflows

A survey of publicly available exploits

Ari Takanen
Secure Programming Group
Dept. of Electrical Engineering
University of Oulu
Finland

ouspg@ee.oulu.fi
http://www.ee.oulu.fi/research/ouspg

Art © by Origion, 2000

This presentation is about Buffer Overflows, and presents a case study that
explores an archive of publicly available exploits against this type of
vulnerability.

I hope you find the accompanying paper useful in beginning or continuing
your research in this field.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Buffer overflows? What are they?
� Have you seen these in your software?

� Or will you hear about them from the Media?
�

"MP3 users warned about security threat" < VNUnet >
�

"Buffer-overflow bug in IE" < CNET NEWS.COM >

Segmentation fault (core dumped)

Program terminated with signal 11, Segmentation fault.

What are these buffer overflows anyway?

Usually buffer overflows are noticed when a software crashes with some note
of violent memory accesses.

Developers might think the worst thing that can happen is the famous Denial
of Service attack.

A bit much more scary way of getting introduced to buffer overflows is when
it is too late.

Besides causing grief, the security vulnerabilities of this level of severity
often gain the attention of the media.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

A hole in your security solution?

� Hear about it from public mailinglists?

Date: Mon, 20 Dec 1999 18:08:44 +0300
From: Matt Conover <shok@cannabis.dataforce.net>
Subject: Norton Email Protection Remote Overflow (Addendum)
To: BUGTRAQ@SECURITYFOCUS.COM
...
The POProxy program crashes (stack/EIP overwritten) when
265+ characters are sent as the parameter to the "USER"
command.

...

The vulnerability may be exploited to execute arbitrary
code on a vulnerable system.
...

Some emaillists such as Bugtraq are also fond of buffer overflow
vulnerabilities.

Here is one discovered overflow from a popular security solution.

Quality should be required at least from protective software!

The key words about buffer overflows in this any many other public notices
is that the overflow can be "… exploited to execute arbitrary code on a
vulnerable program."

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Presentation structure

� Our Research Group: OUSPG
� Implementation Level Vulnerabilities
� History and Vulnerability Knowledge
� Buffer Overflows and Exploiting Them
	 Testing, Protection and Prevention

 Conclusions

This talk has the following structure:

I will start by giving a short presentation of our research group and what
drives us forward, followed by our major topic of research, the
Implementation Level Vulnerabilities.

Then I will give some background information on some sources that I have
used as references, and I will introduce the related case study.

I will continue to buffer overflow details, and the operation of the stack,
drawing examples from the exploits of the case study.

Afterwards I will present some methods of improving the security by testing
or system modifications.

The concluding slides will summarize some major points from the
presentation and the paper.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

The Research Group

And what drives us forward...

I will begin by shortly introducing our research group.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

OUSPG - Introduction

� History of the Group:
�

Active as an academic research group in the
Computer Engineering Laboratory at the
University of Oulu, Finland, since 1996.

While developing methods to improve
implementation level security, several software
vulnerabilities has been reported to the respective
vendors. This has resulted in acknowledgements
from organizations such as AusCERT, CERT and
CIAC and vendors such as IBM, Microsoft,
Netscape, SGI and Sun Microsystems.

The research group has been active in the security field since 1996, beginning
its existence from finding some security bugs ’by mistake’ when
administering the computers of the department.

Soon afterwards, while researching for possible methods of finding these
vulnerabilities, a steady flow of vulnerability reports has been sent out from
our group to relevant developers and coordinating entities.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

OUSPG - Introduction

� Purpose of the Group
�

To study, evaluate and develop methods of
implementing and testing application and system
software in order to prevent, discover and
eliminate implementation level security
vulnerabilities in a pro-active fashion.

�
To focus on implementation level security issues
and software security testing.

� This study is part of ’Protos’-project done with
VTT Electronics

This brings us to the major focus of the group, which is the development of
proactive methods of searching for implementation level security issues.

The methods developed consist of testing tools, both for instrumenting the
targets of testing, and framework for generating the testcases.

The development of the testing tools for the framework are currently done in
close cooperation with the VTT Electronics, which is a part of the Technical
Research Centre of Finland. This paper is part of this project.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Implementation level vulnerabilities

What causes buffer overflows?

Next I will show you some reasons behind these vulnerabilities that we are
interested in.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Vulnerabilities caused by
insecure programming practices

� Software development may introduce Infosec
vulnerabilities

� A large amount of recent vulnerabilities have
been caused by programming mistakes made
at the implementation level

� A large part of these have been noted to be
buffer overflows

"Programmers are human. Humans are lazy." - from Bugtraq

Software development may introduce information security vulnerabilities.

Often, these software vulnerabilities are caused by a programming mistakes.

Buffer overflow is one of these Implementation level vulnerabilities.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Implementation Level Security

� The total security of the release is the product of the
specification, design, implementation and testing
performed in the software process.

 1. Specification
 2. Design

 3. Implementation
 4. Testing

 5. Maintenance/Use

The focus of our research concentrates on these information security
vulnerabilities caused by programming faults, that should have been caught
at the testing phase.

We will try to avoid the wide field of security development done in the
specification and design phase.

Another large category where vulnerabilities are introduced is the
maintenance and configuration phase. These two are way out of scope for our
research.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Introduction to Buffer Overflows

� Buffer overflow
�

Takes place when the memory reserved for a
variable is exceeded and data is written outside
this memory

�
Caused by, for example, insecure string
manipulation functions without bounds checking

� Malware: Buffer overflow exploit
�

Input string contains arbitrary and possibly
malicious code that is executed once the
boundary of a buffer has been exceeded

In short, buffer overflow happens when the input is stored without checking
its size, in a place where too small a memory is reserved for storing it.

This is usually caused by insecure programming practices or wrong choice of
function for a specific purpose.

Programming languages without build-in bounds-checking, like C and C++,
contain several functions that introduce buffer overflow vulnerabilities.

A piece of code or a script that exploits the vulnerability is typically just
called an exploit.

In a buffer overflow exploit, the input string contains data that takes the
control from the target software to perform the wanted operations. Arbitrary
and possibly malicious code can be executed with the privileges of the
victim.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Buffer overflow properties

� Vulnerability classifications
�

Local vs. remote vulnerability
�

Client vs. server vulnerability
�

Direct vs. indirect exploitation
�

Impact - Compromised aspects (CIA)

Time of introduction: Implementation
!

(not design nor specification)
" And plenty of others

#
"One to fit every need"

There exists several different ways of trying to categorize information
security vulnerabilities.

Buffer overflows do not seem to fit into any other categorization besides the
time of introduction of the vulnerability.

As we know, there are both remote and local exploits for overflows.

Also, both clients and servers have been noted to be vulnerable for buffer
overflows.

Some buffer overflows require indirect introduction of the exploit.

Anyway, all of the buffer overflows are introduced by programming ’faults’.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Buffer Overflow example:
a client decoder

$ Client, remote, total(CIA), direct
% 1 x buffer overflow [fread()]

Date: Sun, 1 Nov 1998 12:09:35 +0100
From: Joel Eriksson <na98jen@STUDENT.HIG.SE>
Subject: mpg123-0.59k buffer overflow
To: BUGTRAQ@NETSPACE.ORG

I found a buffer overflow in mpg123-0.59k.

...

This is what causes the overflow:
...

char buf[40];
fprintf(stderr,"Skipped RIFF header\n");
fread(buf,1,68,filept);

...

Here is a simple example of a public announcement of a buffer overflow,
with example of the vulnerable code.

This example shows an overflow in a client software for decoding audio-
stream. It can be exploited remotely, and provides total control on the victim,
violating all Confidentiality, Integrity and Availability.

This, like most buffer overflows, is directly exploitable, without any other
additional steps.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Buffer Overflows

& Overflow free:
'

Safe alternatives
(sscanf(“%.<N>s”, ...)
)

fscanf(“%.<N>s”, ...)
*

sprintf(“%.<N>s”, ...)
+

strncpy()
,

strncat()
-

fgets()
. …when used correctly!

/ Risk of Overflows:
0

Classic buffer overflows
1 sscanf()
2

fscanf()
3

sprintf()
4

strcpy()
5

strcat()
6

gets()
7

Based on
8

argv[], note argv[0]
9

environment
:

network originated data

This slide shows a summary of the best known functions behind these buffer
overflow vulnerabilities.

As this slide shows, there usually is a secure option for the insecure
functions.

Every programmer making security critical code should be aware of the risks
of using the insecure functions, and should be told to use the secure one
instead.

Still, the secure choices can be abused as well, as the programmers often find
ways of creating insecure code even with the more secure functions.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

History and vulnerability knowledge

Gathering the data

Next we will have a look into the history of buffer overflows, and quickly
view the different sources of information on overflow vulnerabilities.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

History and survey

; Buffer overflows are a well known problem:
Morris introduced the Internet Worm in 1988

< Bugtraq mailinglist discussions since 1993
= Related research topics:

>
Secure programming and Code auditing

?
Vulnerability classification and databases

@
Vulnerability reporting process

A
Black-box and Fault injection testing

B
Operating system and compiler development

As all implementation level vulnerabilities, also buffer overflows have been
known for a long time.

In 1988, the world was shocked by an Internet Worm that used the
vulnerability in finger daemon to spread around the Internet of that time,
bringing it down to its knees.

With the introduction of open discussion channels like Bugtraq, the details
were finally publicly available for the security community.

Also work on other related fields have been introduced, and are discussed in
more detail in our paper. These include secure programming and code
auditing, several classification studies, and studies of the whole vulnerability
reporting process. Several methods of testing for vulnerabilities have been
discussed as well as several improvements to operating systems to reduce the
impact of these faults.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

The underground publications

C Aleph One (1996): "Smashing the Stack for Fun and
Profit"

D Mudge of L0pht (1995): "How to write buffer
overflows"

E Nate Smith (1997): "Stack smashing vulnerabilities in
the UNIX operating system"

F Dildog of cDc (1998): "The Tao of Windows Buffer
Overflows"

G David Litchfield (1999): "Exploiting Windows NT 4
Buffer Overruns"

H Matt Conover (1999): "w00w00 on heap overflows"

Perhaps a bit less academic approach has been taken by the security
community, and several articles have appeared that discuss the details of
exploiting the buffer overflow.

Since 1995, the articles have been public, and have drawn discussion on the
subject. The paper gives a detailed study of these articles and the major
points brought up in them.

I really suggest studying these further if this issue appears interesting.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Channels for getting exploits

I Public disclosure mailing lists:
J

bugtraq@securityfocus.com
K

ntbugtraq@listserv.ntbugtraq.com
L Usenet newsgroups
M Collected in databases and web-pages

N
http://www.securityfocus.com

O
http://packetstorm.securify.com

P
http://www.rootshell.com

"Consumers don’t care about security." - from Bugtraq

The best source of information on known vulnerabilities can be found from
the archives of the public disclosure mailinglists and on some Usenet
newsgroups.

Also good archives of existing exploits can be found. The paper and this
presentation give examples drawn from the case study on exploits found from
the Rootshell archive.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Rootshell archive

Q The case study concentrates on publicly
available exploits

R At the time of this study, contained exploits
from end of 1996 to beginning of 1999

S Exploits were studied and some figures are
presented from the the entries in the archive

T Archive consisted of entries in chronological
order, with time they were added

U Source and author of the exploit often missing

The case study consisted of exploits from years 1996 to 1999, and I will
summarize some discoveries from this particular archive.

The major reason for choosing this archive was that it was arranged in
chronological order, and was easy to browse through.

A drawback in the archive was that the original publication source and the
author of the exploit itself was often missing.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

0

20

40

60

80

100

120

140

160

180

200

1996/2 1997/1 1997/2 1998/1 1998/2 1999/1

Entries
BOF
Exploit

Survey on Rootshell archive

of entries on buffer overflows, with exploits

This chart summarizes the numbers of operational exploits, the attack recipes,
in the Rootshell archive.

These are compared to the overall activity of the archive, the blue line.

The most active season for Rootshell was during 1997 and 1998.

Most of the entries are about tools on hacking software or cracking
passwords.

But, the number of entries on buffer overflow vulnerabilities, the red line,
follows the general activity of the site.

Rootshell archive appears to have a boom right after most of the underground
publications appeared.

Almost all of the entries for year 1997 contained an exploit, whereas only
half for 1998 and 1999, as shown by the green line.

The buffer overflow is just announced and the generation of a working
exploit is left for the public, or announced later.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Buffer Overflows

The vulnerability and its exploitation

Lets go into more detail to the buffer overflows.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Building the Stack

V When a subfunction is called, the return
address (EIP) and stack base address (EBP)
is pushed to the stack [in x86 & C language]

W When the function returns it pops the EBP
and EIP from the stack

X Stack grows downwards in memory, towards
decreasing memory addresses

Y Arrays and strings are stored upwards,
towards increasing memory addresses

Next I will briefly present the operation of the stack frame thus causing the
vulnerability.

Especially in C, when a subfunction is called, the current state of the thread is
stored in the stack. The instruction pointer, called EIP in Intel, and the base
pointer of the current stack-frame are both pushed into the stack.

When the function returns, they are popped back and the operation usually
continues in the calling function.

When something is placed in the stack, the stack pointer value decreases, but
the data stored in the stack is still referenced as in any other memory area.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Z Stack contents
 (top of the stack)

eip of back to subfunc [00401045]
strcpy dest (*buf) [0012FF20]
strcpy src (*argument) [00300E98]

buf[8]
ebp of main [0012FF80]
eip back to main [00401094]
pointer to argv[1] [00300E98]

 (bottom of the stack)

The Stack [x86]

[C-program:

int main(int argc, char *argv[])

{

 subfunc(argv[1]); /* call */

 return 0;

}

void subfunc(char *argument)

{ /* push ebp */

 char buf[8];

 strcpy(buf, argument);

} /* pop ebp; ret */

1

1

2

23
3

4

4

5

5

6

6

This slide shows a simple C-program that contains a subfunction calling an
insecure string manipulation function. The operation is following:

1) A pointer or the value to the argument for the subfunction is pushed to the
stack for usage in the subfunction.

2) When the subfunction is called, the return address is stored to the stack.

3) When the subfunction starts, the stack base pointer is usually pushed to the
stack. The current stack pointer becomes the new base-pointer.

4) Space is reserved for local autovariables.

5) The arguments for the STRCPY function are pushed to the stack. In this
case, the destination points to the reserved autovariable.

6) The function for string copy is called, and the return address pointing back
to the subfunction is pushed to the stack.

In this example, the STRCPY-function returns nicely even if the buffer was
overflowed. The red arrow shows the direction where the buffer overflows.

The problem starts when the subfunction returns and the return address is
taken from the stack.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Traditional stack smashing

\ The return address is overwritten with
prepared value pointing back to the string

] Typically the stack address varies, thus the
beginning of the string is a "landing zone"
consisting of opcodes like NOP (no operation)

^ 89 out of the 95 exploits in Rootshell used the
landing zone approach

_ ’Shellcode’ contains the active content that is
run after the overrun

In a buffer overflow exploit, the string is formed up to contain a new return
address that usually points right back to the known address inside the string
itself.

Typically the address for the exploit can vary slightly and a ’landing zone’ or
’drop zone’ is required for the exploit to function. This can be created with
assembly instructions like NOP, which stands for No Operation.

Most of the exploits available in the Rootshell archive used the landing zone
approach for initiating the demonstration code, or the malicious code.

Followed by the landing zone is the shellcode, which is the actual active
content of the exploit, and can consist of anything small enough to fit in the
particular exploit.

This style of exploit can fail for many reasons. To overcome the difficulties,
more advanced exploits have been presented.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

The exploit variants/details

` Thread with no fixed stack address:
a

return address is pointed to memory location
consisting of operands like ’CALL ESP’

b Non-executable stack:
c

a new stack can be constructed that performs the
desired operations, or copies the string to another
executable memory location

d Heap-based overflow:
e

data is overwritten and used later, or overflowed
pointer is used later in the program flow

If the stack address of the vulnerable thread varies a lot, a landing zone is not
enough to start the exploit. But, when one searches the memory space of the
process, one can easily find useful pieces of operands with fixed location.
One good thing to look for is ’CALL ESP’ operands. This makes sure the
exploit is started as the shellcode is in the stack.

One example was available in the case study material.

Some operating systems can provide non-executable stack to protect against
typical buffer overflow exploits. The protection can be avoided by
constructing a valid stack-frame that calls the wanted system calls and
provides parameters for them. Also, the shellcode can be run from an another
memory location that is executable.

Three examples of this approach were available in the case study material.

Heap-based overflow exploits cannot use the return address for initiation, but
rely on overwriting data or a pointer that is later used as a parameter or used
for calling a subfunction.

One example was available in the case study material.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

f Stack contents
 (top of the stack)

eip back to subfunc 0x????????
strcpy dest (*buf) 0x????????
strcpy src (*argument) 0x????????

buf[8] 0x61616161 0x61616161
ebp of main 0x62626262
eip back to main 0x63636363
pointer to argv[1] 0x40404040

 (bottom of the stack)

The Smash [x86]

g C-program:

void subfunc(char *argument)

{ /* push ebp */

 char buf[8];

 strcpy(buf,
"aaaaaaaabbbbcccc@@@@@@@@");

} /* pop ebp; ret */

[63636363] call esp 0x61 = ’a’, 0x62 = ’b’, 0x63 = ’c’

Landing zone: (0x40 = inc eax)

In this little bit simplified image of the stack, we can see what happens when
a buffer is overflowed.

In the C program, we note that a long string is copied to the buffer of 8
characters.

The red area shows the contents of the buffer, and we can see that the 8 first
characters were stored there.

The red arrow shows the direction of growth of the string.

In this example, the next four letter ’b’s overwrite the stored stack base
pointer, and the next four letter ’c’s overwrite the memory containing the
return address back to the program flow.

Here, after returning from the subfunction, the program flow jumps to an
address formed up by the letter ’c’, which is address 0x63636363.

Now, if that address contains operands that perform a jump back to the stack,
the program flow jumps back to the input string, which in this example
contains operands 0x40, standing for increasing the value of the EAX
register. This is a valid operand for using in a Landing Zone.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

The skilled hacker

h Exploit - making it happen "for fun and profit"
i

A method or receipt aimed to abuse the
vulnerability

j
"It takes a skilled hacker …", not really ...

k Exploits are easy to make
l

Guides are available
m Exploits are publicly available

The Exploit...

Typically the creation of exploits have been thought to be complex and the
exploitation difficult, but it appears that all overflows are typically possible
to exploit, and guides are easily available for generating an exploit.

When someone finally manages to create one for the vulnerability, the
exploit is usually easy to find, and is widely distributed on open channels.

A typical name for a person that uses these prepared ’receipts’ is a script-
kiddie. Thus, one doesn’t have to be a ’skilled hacker’ to exploit a known
vulnerability.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

The shellcode

n Buffer overflow exploits are small strings of
assembly code, possibly malicious code

o Unlimited functionality, as all function calls of
the program and environment are available

p Typically generates an interactive ’root’-shell
q Bootstrapping, downloading malware
r Exploits are similar to viruses

s
Fingerprints of shellcodes?

t
Unlimited number of variants!

There is little limit on what one can do when exploiting a buffer overflow
vulnerability.

All function calls that can be used in the vulnerable program can also be used
in the exploit.

Any account achieved can then be used to get access to the machine, and
there usually are ways of elevating privileges further.

A possible method of increasing the functionality of the exploit is to generate
shellcode that downloads and executes a prepared program, for example a
trojan, on the victim’s machine. One of the exploits in the case study material
does that.

Virus scanners have fingerprints of viruses, why not overflow exploits? Some
Intrusion Detection Systems, for example, perhaps could have fingerprints of
popular exploits, but there can be unlimited number of variants of the
exploits, and the variants are easy to create.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

0

5

10

15

20

25

30

1996/2 1997/1 1997/2 1998/1 1998/2 1999/1

Local Shell

Remote Shell

Local Commands

Remote Commands

Operation of the shellcode

u Usually a remote or local shell, or execution
of command(s)

Here is some statistics on different operation found in the exploits in the case
study material.

Most typical shellcode just provides a local or remote shell, and some
exploits just execute commands on the remote host. The operation usually
depends on the vulnerable program.

There is a trend of going from simple ’local shell’ exploits into more
sophisticated shellcode with more advanced operation.

More advanced payload for the exploits found in Rootshell include: remote
x-terminal, download and execute, changing permissions on files, creating
files, changing the hostname, reboot, modifying password file and creating
setuid shell.

There is no limit what the shellcode can do within the privileges of the
vulnerable process.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Most popular operating systems

v Exploits in the case study (95 entries):

0 10 20 30 40 50 60 70 80 90 100

Win32

Digital Unix

SCO Unix

HP-UX

AIX

IRIX

BSD variants

Solaris/SunOS

Linux

19971996 1998 1999

"Most computer security models suck." - from Bugtraq

In this chart we can see the distribution of exploits between operating
systems.

Linux, Solaris and BSD variants can be noted to have been the favorite
platforms for the people discovering overflows and making the exploits
against them.

The availability of an operating system for home use, and the availability of
the source code probably affect the numbers most. Still, lately, all popular
operating systems have had their share of these faults.

As seen here, the popularity of exploits against Windows operating systems
and against Macintoshes is really low. Also a note about a buffer overflow on
Macintosh was found on the archive studied, but the entry did not contain an
operational exploit.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Testing, prevention and protection

Security evaluation, and safe-guards

I will briefly discuss some existing methods for discovering these faults
proactively, and protecting the system from them, reactively.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Risks in the system

w Access to interfaces providing elevated privs
x

remotely to network software (services, daemons)
y

local unprivileged users (setuid/setgid programs)
z Limit the access to these programs to the

minimum
{

firewalls to protect network applications
|

file permissions to restrict local applications
} There are always overflows hidden somewhere

"No idiots should be allowed to write something like setuid"
- an engineer at Sun Microsystems

When we consider looking for this kind of errors, the attention should first be
turned on interfaces to the network, and to programs operating with high
privileges, and that can be used by non-privileged people

There are simple solutions of restricting access to these programs both from
the network and from the filesystem.

Typically, there always are some overflows hidden somewhere waiting to be
found, and it can be difficult to decide which software to trust and rely on.

Some user installable software such as such as email clients and web
browsers can also contain overflows.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

White-box methods of revealing
buffer overflows

~ Good programming practices = Quality!
�

Educating the programmers
� Code audits and read-throughs

�
Looking for the dangerous functions

�
Can be automated

� Testing and Security evaluation
�

Fault injection
�

Mutation testing

The only place to fix these faults is in the development of the software.

Some quality in should be required from the developers.

This includes methods of evaluating the source code before the release, and
thorough testing for this type of security faults.

Some white box testing methods have attempted to discover these faults.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

After the release?

� Most pieces of software are closed-source
�

Black-box testing methods required!
� Public disclosures on buffer overflows

typically result from uncoordinated work:
�

Are 1000 monkeys doing their job?
� Systematic testing - one step ahead?

�
Focus should shift from the trivial vulnerabilities to
more fundamental problems?

�
Syntax testing / Stress testing

The evaluation of closed-source software after the release have been
considered by our group. This requires black box testing methods.

Generally most of the public disclosures on emaillists can be seen as non-
systematic, chaotic engine of black box testing. These people can be seen as
thousand monkeys trying out all possible inputs to the software.

A more systematic, and proactive methods should be available for the
developers. At least simple programming errors such as the overflows are,
can be discovered with testing methods like syntax testing and stress testing.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Software Security Testing

� From Software Testing Techniques by Boris Beizer
(2nd Edition, p. 2):

“Thrill to the excitement of the chase!
Stalk bugs with care, methodology, and reason.

Build traps for them.
....

Testers!
Break that software (as you must) and

drive it to the ultimate
- but don’t enjoy the programmer’s pain.”

Boris Beizer has worded out just what we we think about testing:

It is exciting!

Breaking software is fun and interesting!

Still, we have to be merciful to the developers, and have a professional
approach to the testing.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Protective methods

� Filtering the input with proxies and wrappers
� Non-executable stack

�
prevents only the simplest exploits

� Validating the stack integrity
�

Stackguard and Stackshield reduce to DoS
� Sandbox methods

�
Java sandbox

�
Running services with low privileges

� All reactive, and do not fix the vulnerability

Reactive protective methods limit the exploitation somewhat, but there
usually exist work-arounds enabling the exploitation.

In the case study, there were several examples of how the input filtering
could be worked around by encoding the code into something the victim will
allow. Instructions for creating a working exploit that uses only alphanumeric
characters were available in the case study material.

Operating system modifications, such as the non-executable stack prevent the
execution of shellcode from the stack. Several exploitation methods were
available that worked around the non-executable stack protection.

Compiler modifications such as Stackguard and Stackshield use different
approaches in validating the stack integrity before returning the control to the
calling function. At best, these protection methods reduce the exploit into a
Denial of Service attacks.

Sandbox methods reduce the damage after the possible penetration. If a
sandboxed application is successfully exploited, the attacker can start looking
for a route outside the box.

None of these prevent the actual fault, just reduce the impact.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Preventive (?) development

� Cryptographic signatures
� Languages with bounds checking
� Security aware programmers

� There can be buffer overflows in crypto
algorithms and advanced languages that are
surprisingly dependent on system libraries
and lower-level native code

"Assume that the caller or user is an idiot, and cannot
read any manual pages or documentation" - M. Bishop

Perhaps there are methods of preventing these kind of attacks or the
development of the programming errors?

Cryptographic signatures limit the perpetrators to someone that can be
verified.

Languages with bounds checking will not have these errors.

Ultimately, skilled and security aware programmers are the best solution.
Security should be taken seriously by software developers and there is never
enough education on good programming practices.

At this time, this is still something that is improving. Buffer overflows in
crypto software and low level system libraries can still introduce errors in
current solutions.

Security aware programmers are scarce, there are never enough skilled
programmers around.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Conclusions

Where now?

Few concluding slides.

Where are we now and where are we going?

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

A gap in security knowledge?

� Hackers, crackers and alike:
�

Public vulnerability/exploit databases
�

Accumulating expertise, specialists, dedicated?
�

High motivation, high publicity, high profits?
� Software engineers:

$ / LOC

¡
Poor documentation and tool support

¢
No specialization

£
Security -> extra payload, slower development?

"Most programmers are simply not good programmers." - from Bugtraq

Who are the experts of this field?

People who have taken security in their life maintain public exploit
databases.

They are dedicated to their field and follow the development around the
globe.

These hacker-type people are highly motivated, and some groups have gained
high publicity, and even profit with their skills.

On the other hand, the working people fighting with the actual code usually
work to produce code, not secure products.

Security products usually are unusable by people that do not have time nor
motivation to use them.

If someone happens to learn something from the security field, or shows
himself to be a ’good programmer’, he is quickly promoted to somewhere he
cannot do any good.

For software development, security is a hindrance, and just slows down the
production.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Searching for the Holy Grail

¤ Alternatives for awareness (mission impossible?):
¥

Safer libraries
¦

Better compilers and languages (e.g. Java)
§

Operating System (kernel) solutions
¨ Methods behind them:

©
bounds checking (run/compile time)

ª
non-executable stack, stack guarding techniques

«
sandboxing

¬
code signing (You will know who to blame? ;)

­ Deployment? Adaptation? Completeness?
®

There will be room for a safety-net provided by testing

If we cannot have good programmers, then maybe we have to deploy the
available solutions. Safer libraries, whole new languages and operating
system solutions come to the aid.

These have been made possible with bounds checking properties, non-
executable memory areas and different stack properties. Sandboxes and code
signing give some restriction on what the attacker can do, and who can attack
at all.

Still, current systems are far from clean from buffer overflows, and all these
presented methods have weaknesses.

There is always work in developing improved testing methods.

Department Of Electrical Engineering Computer Engineering Laboratory

EICAR 2000 Conference

Awareness overflow?

Any questions?

Contact details:
 ouspg@ee.oulu.fi

Web appearance:
 http://www.ee.oulu.fi/research/ouspg

I hope this wasn’t an awareness overflow!

References to some good sources of additional information can be found
from the accompanying paper.

Here is our email address, and we will also provide some additional
information in our homepage.

If you have questions, please ask!

