
Vulnerability dependencies in antivirus software

Kreetta Askola, Rauli Puuperä, Pekka Pietikäinen,
Juhani Eronen� , Marko Laakso, Kimmo Halunen, Juha Röning

Oulu University Secure Programming Group
Department of Electrical and Information Engineering

P.O. Box 4500
90014 University of Oulu
Email: ouspg@ee.oulu.�

� Finnish Communications Regulatory Authority FICORA
Itämerenkatu 3a
00181 Helsinki

Email: juhani.eronen@�cora.�

Abstract

In this paper we present an application of the MATINE
method for investigating dependencies in antivirus (AV)
software and some vulnerabilities arising from these depen-
dencies. Previously, this method has been effectively used to
�nd vulnerabilities in network protocols. Because AV soft-
ware is as vulnerable as any other software and has a great
security impact, we decided to use this method to �nd vul-
nerabilities in AV software. These �ndings may have impli-
cations to critical infrastructure, for the use of AV is often
considered obligatory. The results were obtained by gath-
ering semantic data on AV vulnerabilities, analyisis of the
data and content analysis of media follow-up. The results
indicate, that different aspects of AV software should be ob-
served in the context of critical infrastructure planning and
management.

Key words: Vulnerability dependencies, dependency
tracking, antivirus vulnerabilities

1 Introduction

Vulnerabilities are abundant in modern software inten-
sive systems. Bugs and security �aws can also be found
in the very software that is supposed to keep one safe from
malicious programs (malware). The use of antivirus (AV)
software is widely adopted procedure also among critical
infrastructure systems [8].

However, protecting oneself from malware is not that
simple. First, although AV software is considered to in-
crease security, it is made by the same programming pro-

cesses, that make insecure programs. In general, any soft-
ware is breakable [2]. Secondly, AV software population is
quite homogeneous, which in itself is a warning sign, as it
enables the spreading of malware [1]. The market is domi-
nated by a few leading vendors and using more than one AV
program at a time is usually impossible [9]. Homogeneity
facilitates the design process of malware, for it is fast to test
the malware in all of the most common AV software [12].
Thirdly, AV software require high access rights in order to
perform systems monitoring, which makes them attractive
attack vectors for systems compromise.

The concept of vulnerability is complex and multiform,
for it includes challenges related to permanent existence as
well as classi�cation and managing of vulnerabilities. Also
the current status of AV software use is a complex phe-
nomenon. The use of AV software does not automatically
increase security, but may be a source of unnecessary risk,
especially for critical information infrastructure. For exam-
ple, the main component of an AV software is the scanning
engine, which is responsible for identifying malicious �les
using signature databases. Although some AV software al-
low use of different engines to enhance protection, many AV
software share the same integral scanning engine. [14, 15]

All software contains bugs due to various factors, such as
inherent dif�culty in translating the requirements to code,
complexity of the requirements or the underlying system,
immature programming practices and methods [7, 2]. Bugs
with security implications are called vulnerabilities. Per-
petual vulnerabilities have forced the development of con-
ceptual methods and tools to manage them. Formal and
machine-processable taxonomies foster automated analysis
and tracking of vulnerabilities. In time, testing would re-

1



duce the likelihood of the occurrence of the bug type and
gradually make it relatively infrequent [4]. It is unclear,
whether software is actually improving with respect to these
problems, or if they are not inspected as frequently.

Apart from technical vulnerability, there are issues re-
lated to vulnerability disclosure and reliability of AV soft-
ware. AV software vulnerabilities are not in general re-
ported by the media, even though the number of AV vul-
nerabilities has expanded rapidly in recent years [13]. Al-
though the overall vulnerability numbers seem to have de-
creased, the future progression of AV vulnerabilities is un-
predictable. As it is not easy for the users to test AV prod-
ucts prior to purchases, they are forced to trust the vendors'
promises of reliability, for independent assessments of reli-
ability of AV software are rare.

Despite the given problems, AV software is at present
considered as a basic element of safe computer use. For
example, FICORA1 recommends that an AV software
should be installed to computer systems in order to pro-
tect them from malware. HIPAA [8] and Sarbanes-Oxley
Act, (SOX) [11] have extended these security requirements
to laws. The same conception of security produced by AV
software is distributed by security policies, user education
and media. There is considerable lack of controversial opin-
ions in all of these areas.

The current security paradigm is the main reason for
problems in the context of AV software use. Although AV
software increases security for an everyday-user, the neces-
sity of using AV software should be reconsidered in critical
infrastructure systems. In many cases, the use of AV soft-
ware may expose the system to unnecessary vulnerabilities
and cause needless dependencies. Many critical systems
do not handle the kind of information that AV software is
meant to protect.

2 Approach

2.1 Dependency tracking and critical in-
frastructure in antivirus vulnerability
context

In this paper, dependency is de�ned as a linkage between
entities or common metadata. Dependencies are discovered
by forming descriptive metadata and links from given in-
formation and then analysing common features and differ-
ences of this semantic data. In the case of antivirus vulner-
abilities, bene�ts from discovering dependencies are multi-
ple. In critical infrastructure, dependencies can be identi�ed
on multiple levels including technology, functions, people,
processes and location.

1Finnish Communications Regulatory Authority,
http://www.�cora.�/en/index.html

Dependency tracking has been used in the context of crit-
ical infrastructure before. For example, Crisis and Risk Net-
work, (CRN)2 has published The CRN International CIIP
Handbook, which presents national policy approaches to
critical information infrastructure protection and the meth-
ods and models used to assess the vulnerability and security
of these structures. [10]

The concept of meta levels (see Table 1 on page 3) is ap-
plicable to any context with inherent dependencies. Meta
level is an attribute of a vulnerability, which describes its
level of abstraction as well as its scope. Information on the
structure of different systems and their relations highlights
elements, which are highly connected or common between
multiple systems. Vulnerabilities in these elements are typ-
ically of a higher meta level as they can result in epidemic
failures due to their wide implementation base, or cascad-
ing effects due to the failure of a high number of dependent
elements. [5]

Meta level zero describes the case where a vulnerability
only affects a single implementation (a software version).
Meta level one vulnerabilities affect a whole class of sys-
tems (all software that implements interface x). Meta level
two vulnerabilities affect a super-system consisting of mul-
tiple classes of systems (all software having any interface
that includes subsystem x). Meta level three affects an el-
ement that is used for widely disparate purposes, perhaps
by a great number of systems (all systems that use a certain
notation, encoding, or other function). [5]

In this study the attention is focused on the �le formats
that AV software handle. File formats constitute a com-
mon public interface to different AV programs, constitut-
ing a hothouse of overt and covert dependencies. However,
noticing dependencies in this area may be dif�cult or even
impossible, because same �le format can cause same prob-
lems in different software and some �le formats may in-
clude other �le formats. Especially in the latter case, the
underlying reason may lead to different algorithms in dif-
ferent parsing implementations of �le types. In addition, all
AV software do not support all formats, for example, the
support of archive �le formats varies considerably between
different software.

2.2 The MATINE model

The research method is based on earlier OUSPG3

project, PROTOS-MATINE4 which focused on protocol de-
pendencies and produced the PROTOS-MATINE model [5]
(see Figure 1) and the semantic tool Graphingwiki [6],

2http://www.crn.ethz.ch/
3Oulu University Secure Programming Group,

http://www.ee.oulu.�/research/ouspg
4PROTOS - Security Testing of Protocol Implementations,

http://www.ee.oulu.�/research/ouspg/protos/index.html

2



Table 1. Vulnerability Metalevels
Meta level 3 Single scheme in multiple protocols / protocol families
Meta level 2 Single protocol embedded in multiple protocol families
Meta level 1 Single protocol, multiple implementations by multiple vendors
Traditional approach Single vendor, single implementation, single vulnerability

which are now put into use in the context of AV vulnera-
bilities.

The model presents an iterative method for rapidly gain-
ing insight on a �eld of study. The model uses several
sources of data, such as speci�cations, literature, media and
experts. All of the gathered information works towards a
common goal - understanding a technological subject on
multiple levels: its contents and structure, its history as well
as projected future, its �elds of use and use cases, and its
environment and relations to other subjects. With this kind
of knowledge, the weight of the subject can be accurately
determined in a desired context, such as a system, a net-
work, a corporation or a sector of the critical infrastructure.
The MATINE model has been applied in depicting effects
of ASN.1 vulnerabilities with heavy emphasis on systems
used in critical infrastructures [7, 5].

Figure 1. Model for analysing protocol depen-
dencies

In the context of AV software, vulnerability databases
and media represent the main data sources of the MATINE
model. Media tracking and review of the market situation
lay out the priorities of later data gathering and the relative

importance of different AV software. Reviews of speci�ca-
tions and expert interviews are considered out of scope for
this paper.

The semantic information on AV vulnerabilities, for ex-
ample impact type and �le format, was gathered from Na-
tional Vulnerability Database (NVD)5, for it is government-
run and thus of�cial and it's descriptors of vulnerabili-
ties are classi�ed and presented in speci�ed, CVE standard
form [4]. Additional information was gathered as a media
follow-up, which was focused to national level. The me-
dia follow-up consisted of regular observation of Digitoday
Finland6, commercial news database focusing on IT sec-
tor, throughout the year 2006. News considering AV issues
were classi�ed and analysed with content analysis. The fo-
cus of media follow-up was on how the AV software and
vendors are presented in the media.

3 Results and analysis

This section contains the data in numbers and shares and
presents the picture gathered from the media during our re-
search. We collected AV vulnerability data from 1998 to
2008. The number for the year 2008 is just the �rst quar-
ter of 2008. The total number of vulnerabilities was 276
and the main body of the data was from years 2004-2007.
The results are gathered in Figures 2 and 3 and Table 2. In
Figure 2 the �rst number is the number of vulnerabilities as-
sociated with that �le format and the second number is the
procentual share. The number of AV vulnerabilities has ex-
panded rapidly through these years (see Figure 3). The year
2006 was exceptional, as the number of vulnerabilities was
lower than the previous year. However, in 2007 there was
again an increase and it seems that any future predictions on
the number of vulnerabilities would be mere speculation as
there is no clear trend.

From our data we noted, that �le formats are associated
with most of the vulnerabilities (see Figure 2). The most
frequent �le formats were RAR, CAB and ZIP and alto-
gether archive �le formats were present in 70% of all vul-
nerabilities with �le format association. This prompted re-
search in PROTOS Genome -project, where AV software
was tested against malformed archive �les. The results of
this research are reported in [16]. Our analysis suggests,

5http://nvd.nist.gov
6http://www.digitoday.�

3



Figure 2. File formats associated with vulner-
abilities

that biggest factors in the AV vulnerability peak of the year
2005 are different archive �le formats, mainly RAR and ZIP
vulnerabilities and the results of PROTOS Genome archive
test set will affect the number of vulnerabilities in the year
2008.

The most common error type in AV software is design
error (see Table 2). Errors in design are hard to avoid, but
most of the other types of errors, which account for almost
70% of vulnerabilities, could be avoided by using thorough
testing. For example, other most common errors in AV soft-
ware include buffer over�ow, input validation and excep-
tional condition handling errors. With extensive software
testing, the amount of vulnerabilities associated with these
errors could be avoided.

The media analysis resource consisted of 92 news items.
The results can be seen in Table 3.

In general, AV software is presented in the news in very
positive light as continuously developing industry, which
provides better solutions and increased security. This is
only half of the truth, and the discussion of more negative
issues is neglected. For example, in the year 2006 there
were 50 antivirus vulnerabilities listed in NVD database,
but only 4 of them were reported in the news. The subcon-
tracts are much more visible part of the news. All subcon-
tract news considered new contracts between AV software
vendors and various companies such as banks or operators.
Apparently the biggest vendors dominate also the news me-
dia. However, the vendor shares in news are not represen-

Figure 3. Number of AV vulnerabilities in the
years 1998-2008

tative mainly due to very limited sources included in media
follow-up.

From the media analysis the following observations can
be made: The AV software is presented very positively,
while at the same time vulnerabilities, even the critical ones,
are seldom reported. The examined news did not discuss
any events on the circulation of code e.g. in the terms of
vendor fusions or sharing the engines. Contradiction cannot
be found, unless vendor's disputes over vulnerability of op-
erating systems or mobile devices is counted in. The results
are promising and support earlier assumptions, but more re-
search is needed for assurance and generalisation.

4 Conclusions

The main goal for this paper is to examine AV soft-
ware vulnerabilities and the risks they bring to critical in-
formation infrastructure systems. The MATINE model was
used as a method for disentangling the untrodden �eld of
AV vulnerabilities in a rapid, iteratively expanding fash-
ion. Among the various data sources utilised by the model,
public vulnerability data and media sources were tapped by
this project. This paper presents the results of our research,
which focused on AV software vulnerabilities and depen-
dencies between these vulnerabilities.

One target in the study were �le formats and it seems
that archive �le formats have been the main reason for the
fast rise of AV vulnerabilities until the year 2006. Our �nd-
ings also prompted research in PROTOS Genome -project
and the results there show, that archive �le formats are still
a big issue in AV software. However, the future is unpre-
dictable and it is hard to tell what kind of improvements, if

4


