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Abstract

We show how to calculate exactly the number and strength of the connections between two arbitrary volumes, and derive and
apply a novel sum rule.

It is obviously important to know how many "channels" are available for sending information from one volume to another
using waves, and how strongly connected these channels are. This will be one of the factors that will limit our ability to
communicate information, providing one of the bounds, for example, on optical interconnection, optical memory access and
capacity, and our ability to exploit techniques such as very fine line lithography or near-field microscopy. Despite its basic
importance in many areas, relatively little has apparently been known about this limit. Here we show that there is a rigorous
and exact approach to this problem that (i) allows us to define uniquely the set of available spatial channels for
communicating between arbitrary volumes (the "communications modes"), (ii) gives us a very general "sum rule" for the
connection strength and number of such channels, (iii) enables us to deduce the previous approximate answers based on
communicating between parallel planar surfaces (e.g., as in diffraction limits to the number of resolvable spots on a surface
with a lens), and (iv) gives us new results based on the strength and number of "communications modes" between volumes.

The best-known previous model for the number of possible channels between two parallel surfaces is that due to Gabor [1].
He presumes, essentially, that a beam from one surface can be focused to a spot on another, second surface, where the size of
the spot is that corresponding to the diffraction angle of a cone converging from the entire first surface area, and deduces the
number of available distinct channels as the number of such Gaussian spots that can be placed on this second surface. This
approach is technically informal (the Gaussian spots are not truly orthogonal), but gives results that are useful, correct for the
range of circumstances to which they apply, and agree with an intuitive diffraction picture. This approach, however, tells us
nothing about situations where the cross-sectional areas are less than a wavelength (as is often the case for a microphone and a
loudspeaker, for example). It also raises a paradox. Finite areas result in finite numbers of degrees of freedom in the Gabor
approach, but it is also well known that, if we know the amplitude and derivative of a wave over any finite surface, we can
deduce the wave field everywhere, and to describe a field everywhere would require an infinite number of degrees of
freedom. This paradox was resolved (see, e.g., Toraldo di Francia [2]) by the realization that the actual description of such
communications modes, at least between plane-parallel circular or rectangular surfaces, was a kind of eigenmode problem.
For the rectangular or circular "apertures", there is an exact set of functions (the prolate spheroidal functions[3]), each
corresponding to a specific wave or source pattern on the surfaces in question,  that define a set of orthogonal channels. The
number of such channels that are "strongly connected" is the number deduced less formally by Gabor [1] previously, with the
remaining required infinite number of channels or "degrees of freedom" being so weakly connected as to be negligible in
practice while still resolving the formal paradox. This kind of eigenmode approach was also used to analyze problems such as
communication through a turbulent atmosphere [4].

Neither of these previous approaches [1][2] tell us anything about consequences of the thickness of the volume. Both are also
based on diffraction theory that, though useful, is an approximation to start with, and hence is of dubious value for drawing
fundamental conclusions. Even the eigenmode approaches [2] were apparently only able to give conclusions about the number

of channels for the specific cases of circular or rectangular apertures, in
which cases they relied on specific properties of the eigenvalues
associated with prolate spheroidal wavefunctions.

Diffraction theory is based on effective, approximate sources in an
aperture, whose amplitudes are given by the local wave amplitude or
derivative. Here, by contrast, we work directly with the (scalar)
(Helmholtz) wave equation and its exact solutions. We will restrict the
discussion here to monochromatic waves (of angular frequency Z = ck,
where k is the magnitude of the wavevector and c is the wave propagation
velocity), though that is not a necessary restriction. We start with a source
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Fig. 1. Illustration of transmitting (VT) and
receiving (VR) volumes, with associated source
(<(rT)) and wave (I(rR)), functions



function, <(rT), in a "transmitting" volume, VT, which gives rise to a wave, I(rR), in a "receiving" volume, VR, as illustrated in
Fig. 1.

We know directly from the wave equation that the Green's function corresponding to outgoing waves (i.e., the wave resulting
from a point source at position rT) is
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and so we can write the wave I(rR), as
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We can choose to expand the source and wave in complete orthonormal sets for each volume, aT1(rT), aT2(rT), aT3(rT), ... for

VT, and aR1(rR), aR2(rR), aR3(rR), ... for VR. For the moment there is no restriction on what these functions are other than that

they are complete sets in their respective volumes. Suppose for the moment that the source function is one of these functions,
aTi(rT). In the wave generated in the receiving volume, we wish to know what is the resulting amplitude, gji, of one of the

particular receiving modes, aRj(rR). That amplitude will represent a "coupling coefficient" between these particular source and

receiving modes. By multiplying both sides of Eq. (2) by aR R

 r1 6 and integrating, we obtain
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Now, expanding the Green's function, G(rR,rT), in the same basis sets gives
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We also know trivially from Eq. (1) that
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so, from Eqs. (4) and (5), we find
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Eq. (6) is quite a remarkable sum rule. It tells us that, for waves obeying the scalar Helmholtz wave equation, the sum of the
squares of the "connection strengths" from sources in one volume generating waves in another volume is given by a simple
volume integral over the two volumes. There are no approximations in this result, and it applies to any volumes, and for any
orthonormal basis sets in the two volumes.

Before proceeding to consequences of this sum rule, we next ask what are the "best" choices of the basis functions. It is

immediately clear from  Eq. (6) that there is some maximum value of gji

2
. Hence, there must be some pair of (normalized)

"transmitting",<1(rT), and "receiving", I1(rR), functions that are the most strongly coupled, i.e., for which the coupling

coefficient g1 has the largest squared modulus, g1

2
, and we choose <1(rT) and I1(rR) to be the first members of the new basis

function sets for the two volumes. We could find the functions <1(rT) and I1(rR) by some variational procedure, for example.
Then we could proceed to find the next members of the sets by finding those functions <2(rT) and I2(rR) that are the most
strongly coupled, under the constraint that they are orthogonal to <1(rT) and I1(rR) respectively, and so on to establish the rest
of the member of the basis sets (with each new member orthogonal to all the previous ones). By this means, we could
establish all of the orthogonal "communications modes" between the two volumes, and their associated coupling strengths, gi.

In fact, this kind of problem is known mathematically, and some aspects of it have already been applied (in the two
dimensional case, and based on diffraction theory approximations) in the theory of turbulence [4]. If we were to rewrite this
linear algebra problem in matrix form, the solutions we seek would reduce to the results of a singular value decomposition of



the matrix of coefficients gji. In integral form, the
results are that the set of pairs of functions,
<i(rT) and Ii(rR), that correspond to our desired
"communications modes" are the solutions of the
integral eigen equations

g K di T T T

V

T T

T

2 3\ \�  �Ir r r r r1 6 1 6 1 6, (7)

g J di R R R

V

R R

T

2 3I I�  �Ir r r r r1 6 1 6 1 6, (8)

where

K G G dT T R T

V

R T R

R

�  �


Ir r r r r r r, , ,1 6 1 6 1 6 3 (9)

and

J G G dR R T R

V

R T T

T

�  �


Ir r r r r r r, , ,1 6 1 6 1 6 3 (10)

Note that the eigenvalues gi

2
are the same for

both equations (7) and (8).

Note also that the sets <i(rT) and Ii(rR) are
complete orthogonal sets within their respective
volumes, and that these "communications modes"
are orthogonal to one another, in that source
function <i(rT) is only coupled to the wave
function Ii(rR), and not to any other wave
functions, i.e., mathematically, gji is zero unless
i = j. (This also means that, with these basis
function sets, the sum in Eq. (6) reduces to a sum
over i only.) Hence, we have identified the
distinct communications channels between two
volumes, with the best possible couplings from
source in VT  to wave in VR.

It is mathematically straightforward now to deal
with the situation of communication modes
between two plane parallel rectangular surfaces
by formally considering very thin volumes and
taking a paraxial approximation, and we omit the
details here. The result of applying the analysis
above to this case is to recreate the previous
results of Toraldo di Francia [2], who concluded
that the optimum functions for both <i(rT) and
Ii(rR) were prolate spheroidal functions.
Applying the sum rule, Eq. (6), here tells us not
only that the connection strengths drop off
abruptly once we pass a specific number of
modes but that their squares sum to a finite
number.

A more substantial use of this analysis is to
examine what happens in situations other than
thin volumes. One simple question, relevant, for
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Fig. 2. Illustration (a) of two thin volumes considered in this example,
(b) the strongest communications mode, and (c) the second
communications mode. For the transmitting volume, the real part of the
wave amplitude along the length of the volume is shown for a particular
arbitrary phase. For the receiving volume, the real part of the wave is
shown in a contour plot illustrating approximately half a period of the
wave, and with horizontal scale such that 2S of phase is the same size as
one wavelength on the diagram. With this choice of scale, the curvature
of the phase fronts corresponds approximately to the actual curvature of
the propagating waves. Dimensions are in wavelengths (O). Note that the
second communications mode changes sign between the peak in the
center and the upper and lower lobes. Note also that these upper and
lower lobes are more intense than the center peak. At least 86% of the
available communications strength is in the first mode, and at least 11%
in the second.



example, to reading out volume optical memories, is whether the use of a thick volumes gives us more spatial communication
channels in or out of the volume; the answer, in most cases of optical interest, is that it does not. The number of channels we
would deduce from the Gabor approach from the sizes of the end face and of the lens addressing it remains correct even as we
make the volume thicker. To start to get more usable spatial communications channels in and out of the volume, we conclude
that we would have to have a volume whose thickness was comparable to the separation between the volume and the lens (or
other optical volume) addressing it, or go to a system with very high numerical aperture (>> 1), or both. We omit the details
of this analysis here.

We can use this method to deal numerically with extreme situations, or cases that simply cannot be approached by the
previous methods. An example is shown in Fig. 2. We have two very thin (1/10th wavelength) volumes at right angles to each
other and only 1 wavelength apart. A conventional picture based on plane parallel surfaces can tell us nothing about the
communications modes in this situation. Note that the separation between these volumes is less than the "thickness"
(horizontal length) of the transmitting volume, and that the receiving volume effectively has a very large "numerical aperture"
in the vertical direction, especially as seen from the nearer end of the transmitting volume. Solving numerically for the
communications modes using Eqs. (7) and (8) gives the functions illustrated in Fig. 2 for the strongest two modes. (In each
case, the functions do not vary significantly along the "thin" directions.) The first mode (Fig. 2(a)) takes at least ~86% of the

available communications strength (i.e., g1

2
0 86# . * ) and the second mode (Fig. 2(b)) takes at least ~11% (i.e.,

g2

2
011# . * ). There are apparently no other modes of significant strength (the 3% unaccounted for may be from limitations

of the numerical technique). Incidentally, this problem is symmetric, giving essentially the same solutions if the roles of
transmitting and receiving volume and of the source and wave functions are interchanged. The orthogonality of the functions
is relatively obvious for the waves (the second mode has strong side lobes of opposite sign to the main peak); the source
functions are orthogonal also, though it is necessary to look at the entire complex function to see this clearly. We note that the
second mode has more intensity in the wave at the edges, and a somewhat stronger contribution from the "far end" of the
source, as we might expect intuitively.

In a specific application more relevant to use in information technology, this approach can also be used, for example, to
derive an absolute upper bound on the sum of the squares of the diffraction efficiencies of a volume hologram. We find this
bound is proportional to the square of the maximum refractive index change in the medium (for small index changes) and a
simple volume integral. Again, we omit the details of this analysis here.

In summary, we have (a) proposed a rigorous way of defining the orthogonal spatial channels for communication between two
volumes, (b) shown a very basic and general sum rule for the squares of the interconnection strengths, (c) used this approach
to reproduce previous approximate results for the number of "degrees of freedom" in communicating between two surfaces,
(d) drawn clear conclusions about the effects of finite thickness on the number of communications channels, (e) illustrated by
example the extreme cases in which new communications modes appear for very closely spaced volumes and (f) sketched
results for general limits on diffraction efficiencies of volume holograms. This novel approach may have a variety of
applications in information processing and elsewhere.
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