
- 1 -

Windows Vista 32bits and unexported kernel
symbols.

Matthieu Suiche, Senior Security Fanatics!
<matt@msuiche.net>

http://www.msuiche.net

January 31, 2007

Abstract: Numerous tools exist to detect Rootkits through different tricks (e.g. Rootkit
Revealer [1], and so on) and some protections only work on 64-bits architecture (e.g.
Patchguard [3][4]). Anyways, this one has been publicly announced as broken by Authentium
[5].

Actually, most of these Rookits work on 32-bits architectures, more especially under
Windows 2000, XP and 2003. Detection of Rookits is still a hard race between hackers and
security researchers.

Although Rootkits’ hiding mechanisms (e.g. SSDT, IDT, MSR, and System Structures) are
still the same, there are no standalone solutions provided which can take advantage of the full
range of resource that the kernel allows.

Furthermore, this article doesn’t provide any introduction to Interrupts and Exceptions
mechanisms. Anyways some advanced references are available in the last section.

This paper can be considered similar to my previous article about Windows Vista 64-bits [6].

Introduction: This article doesn’t talk about a method to localize the SSDT, because the
method published by “90210” still works under Windows Vista 32-bits. The goal of this
article is to introduce two new ways of authenticity checking for the IDT and the Syscall
MSRs.

The reader should notice that those tricks are also working under Windows 2000, XP and
2003. For, Windows Vista’s kernel scheme is very similar to its previous version.

Prerequisites: Deprived of access to documentation and source code, we analysed Windows
Vista 32-bits RTM version using an external disassembler, and the latest Debugging Tools for
Windows (32-bits) to have a CPL 0 debugger compatible with Microsoft Windows Vista 32-
bits. Of course, a strong assembly understanding is necessary here.

- 2 -

I. System Interruptions

Once upon a time near the edge of the lost kernel there was a funny function called
“KiSystemStartup”.

During December 2006, I published a proof of concept of IDTGuard which runs only on
Windows 2000 and XP for technical reasons [7] because it uses the \PhysicalMemory object.
The ingenuity of IDTGuard is to localize and to use the in-raw IDT inside the kernel as a
fingerprint.

This “fingerprinting” becomes very useful when we comparing two structures by their
theoretical entries. The difficulty of this trick is to rebuild correctly all the original entries.

Why? Ntoskrnl makes further self-modification after copying the in-raw IDT. Additionally,
the HAL’s dll (=Hardware Abstraction Layer) do also further modification using the KPCR
structure to access the IDT.

Therefore, our goal can only be reached by a three-step stair.
 Find the original entry inside the kernel
 Find self modifications from Ntoskrnl.exe
 And then others from Hal.dll

Here is my decompiling of the main part of KiSystemStartup:

 //
 // Intialize the FS segment to 0x30, this segment is use inside
 // the KiInitializePcr() function.
 //
 _asm {
 push 0x30
 pop fs
 }
 // [...]

 //
 // Returns GdtBase, IdtBase, Pcr, TssBase
 // After calling this function the idt base address is stored
 // into a local variable.
 //
 GetMachineBootPointers();

 // [...]

 IdtBase[DOUBLE_FAULT]->Type = 0x85;
 IdtBase[DOUBLE_FAULT]->Selector = 0x50;

 IdtBase[NMI_NPX_ERROR]->Type = 0x85;
 IdtBase[NMI_NPX_ERROR]->Selector = 0x58;

 // [...]

 //
 // Initialize the PCR structure
 // The "IdtBase" variable will be stored into the KPCR structure,
 // This is a very important part to understand how HAL get the

- 3 -

 // IDT base address.
 //
 KiInitializePcr(KeNbrProcessors,
 Pcr,
 IdtBase,
 GdtBase,
 TssBase,
 &KiInitialThread,
 &KiDoubleFaultStack);

 // [...]

 //
 // The in-raw structure of the IDT uses a very different scheme as
 // we know. This is the most important part of the function that helps
 // us to understand how to read the in-raw IDT.
 //
 KiSwapIDT();

 // [...]

 //
 // Copy RawIdt into memory and restore DoubleFault and NmiNpxError
 // interrupts, which have been copied before.
 //
 _asm
 {
 push dword ptr IdtBase[DOUBLE_FAULT].dw00
 push dword ptr IdtBase[DOUBLE_FAULT].dw04
 push dword ptr IdtBase[NMI_NPX_ERROR].dw00
 push dword ptr IdtBase[NMI_NPX_ERROR].dw04
 }

 //
 // This is the part where "rep movsd" opcode is copied.
 //
 RtlFillMemoryUlong(IdtBase,
 RawIdtBase,
 0x200);

 //
 // Restoring the Int 2 and 8.
 //
 _asm
 {
 pop dword ptr IdtBase[NMI_NPX_ERROR].dw04
 pop dword ptr IdtBase[NMI_NPX_ERROR].dw00
 pop dword ptr IdtBase[DOUBLE_FAULT].dw04
 pop dword ptr IdtBase[DOUBLE_FAULT].dw00
 }

 // [...]

Here, the disassembling of the main part of the GetMachineBootPointers() function.

 _asm {
 sgdt [ebp+kgdt]
 mov edi, dword ptr [ebp+kgdt+2]
 mov cx, fs ; fs = 0x30
 and cx, 0FFFCh
 movzx ecx, cx

- 4 -

 add ecx, edi ; @GdtEntry + 0x30
 mov dh, [ecx+7]
 mov dl, [ecx+4]
 shl edx, 10h
 mov dx, [ecx+2]
 mov esi, edx ; esi = PcrBase

 // [...]

 sidt [ebp+kidt]
 mov eax, dword ptr [ebp+kidt+2] ; eax = IdtBase
 }

And here, the decompiling of main part of KiInitializePcr().
For reminding the PCR structure looks like:

typedef struct _KPCR {
 KPCR_TIB Tib; // +0x000
 PKPCR SelfPcr; // +0x01C
 PKPRCB Prcb; // +0x020
 KIRQL Irql; // +0x024
 ULONG IRR; // +0x028
 ULONG IrrActive; // +0x02C
 ULONG IDR; // +0x030
 PVOID KdVersionBlock; // +0x034
 PKIDTENTRY IDT; // +0x038
 PKGDTENTRY GDT; // +0x03C
 PKTSSENTRY TSS; // +0x040
 USHORT MajorVersion; // +0x044
 USHORT MinorVersion; // +0x046
 KAFFINITY SetMember; // +0x048
 ULONG StallScaleFactor; // +0x04C
 UCHAR SpareUnused; // +0x050
 UCHAR Number; // +0x051
 UCHAR Spare0; // +0x052
 UCHAR SecondLevelCacheAssociativity; // +0x053
 UINT VdmAlert; // +0x054
 UINT KernelReserved[14]; // +0x058
 UINT SecondLevelCacheSize; // +0x090
 UINT HalReserved[16]; // +0x094
 UINT InterruptMode; // +0x0d4
 UCHAR Spare1; // +0x0d8
 UINT KernelReserved2[17]; // +0x0dc
 KPRCB PrcbData; // +0x120
} KPCR, *PKPCR;

Here is the decompiling.
 // [...]

 //
 // PCR structure Initialization
 //
 Pcr.GDT = GDTBase; // mov [eax+3Ch], ecx
 Pcr.IDT = IDTBase; // mov [eax+38h], ecx
 Pcr.TSS = TSSBase; // mov [eax+40h], ecx

 // [...]

- 5 -

1. Step one: Flight to the original IDT entries.

This is the part of the code we have to look for while scanning the code. It’s an inline function
so it’s very easy to recognize a “rep movsd” opcode, which has only one occurrence is the
whole kernel.

 //
 // This is the part where "rep movsd" opcode is copied.
 //
 RtlFillMemoryUlong(IdtBase,
 RawIdtBase,
 0x200);

Then, we look for this part of code :
8B 45 XX mov edi, [ebp+IdtBase]
BE F4 A1 70 00 mov esi, offset RawIdtBase
B9 00 08 00 00 mov ecx, 2048
C1 E9 02 shr ecx, 2
F3 A5 rep movsd

These red bytes are unchanged since Windows 2000, then with this 10bytes signature it’s very
easy to get a pointer to “mov esi, offset RawIdtBase”.
And then, we can easily recover the dword “0x0070A1F4” which is a pointer to the
RawIdtBase.

RawIdtBase dd offset _KiTrap00
 dd 88E00h
 dd offset _KiTrap01
 dd 88E00h
 dd offset _KiTrap02
 dd 88E00h
 dd offset _KiTrap03
 dd 8EE00h
 [...]
 dd offset _KiGetTickCount
 dd 8EE00h
 dd offset _KiCallbackReturn
 dd 8EE00h
 dd offset _KiRaiseAssertion
 dd 8EE00h
 dd offset _KiDebugService ; 0x2D
 dd 8EE00h
 dd offset _KiSystemService ; 0x2E
 dd 8EE00h
 [...]

As you can see, there are some very interesting interrupts like: all x86 exception interrupts
and more especially the 0x2D and 0x2E interrupts.

After having analysed the KiSystemStartup() and KiSwapIDT(), we can rebuild the structure
of the in-raw IDT.

typedef struct _KIDT_RAW_ENTRY32 {
 union {
 ULONG Offset;
 struct {
 USHORT OffsetLow;

- 6 -

 USHORT OffsetHigh;
 };
 };
 UCHAR Reserved;
 UCHAR Type:4;
 UCHAR Always0:1;
 UCHAR Dpl:2;
 UCHAR Present:1;
 UCHAR Selector;
} *PKIDT_RAW_ENTRY32, KIDT_RAW_ENTRY32;

2. Step two: A boat near the self-modification.

These two following interrupts are different from others exception interrupts because they are
task gates and not interrupt gates. That’s why they don’t have any offset.

 IdtBase[DOUBLE_FAULT]->Type = 0x85;
 IdtBase[DOUBLE_FAULT]->Selector = 0x50;

 IdtBase[NMI_NPX_ERROR]->Type = 0x85;
 IdtBase[NMI_NPX_ERROR]->Selector = 0x58;

3. Step three: Rocket to the HAL

The difference between HAL and Ntoskrnl is that HAL uses KPCR structure to get the IDT entry
base address.

For reminding, in kernel-land FS points to the Processor Control Region (KPCR) structure. This
structure can be found at the hard address 0xFFDFFF00. Anyways, kernel programmers would
rather use FS:0x1C which points to the SelfPCR structure’s member.

The problem is that HAL exists in six different versions. This involves that the methods to access to
the IDT are different from each others.

- "Standard PC", Non-ACPI PIC HAL (Hal.dll)
- "MPS Uniprocessor PC", Non-ACPI APIC UP HAL (Halapic.dll)
- "MPS Multiprocessor PC", Non-ACPI APIC MP HAL (Halmps.dll)
- "Advanced Configuration and Power Interface (ACPI) PC", ACPI PIC HAL (Halacpi.dll)
- "ACPI Uniprocessor PC", ACPI APIC UP HAL (Halaacpi.dll)
- "ACPI Multiprocessor PC", ACPI APIC MP HAL (Halmacpi.dll)

There are three different ways to access to the IDT Entry without the SIDT opcode.

The first one consists to accessing the SelfPCR structure’s member.

 mov r00, dword ptr fs:0x1C
 mov r01, [r00+0x38]

The second one directly reads the IDT Entry member.

 mov r00, dword ptr fs:0x38

- 7 -

And the last one uses an untypical scheme to access the KPCR by using its hard address instead of
FS:0x1C.
Therefore, we have a part of code like this.

 mov r00, dword ptr ds:0xFFDFF000
 mov r01, [r00+0x38]

Or more directly like these following:

 mov r00, dword ptr ds:0xFFDFF038h

For instance, with the HalpMcaCurrentProcessorSetTSS() (halmacpi.dll) function which modify the
18th interrupt.

 mov ecx, large fs:38h
 lea eax, [ecx+144]
 mov byte ptr [eax+5], 85h
 mov word ptr [eax+2], 0A0h

Although the most common way to initialize interrupts in the Vista’s HAL is the following:

 mov edx, large fs:1Ch
 mov edx, [edx+38h]
 movzx eax, al
 shl eax, 3
 mov ecx, offset HalpHpetRolloverInterrupt
 mov edi, ecx
 shr ecx, 10h
 mov [edx+eax+6], cx
 mov [eax+ecx], di

- 8 -

II. Syscall

Once upon a time near the edge of the lost kernel there was a funny function called
“KiLoadFastSyscallMachineSpecificRegisters”.

To call a native function Windows uses ntdll.dll to switch from CPL3 to CPL0.
This switch is done by the SYSENTER opcode. Metasploit published a full listing for system
call table index, available here [9].

After referring into the Intel instructions handbook [10], we note these following notes:

SYSENTER—Fast System Call
Executes a fast call to a level 0 system procedure or routine.
SYSENTER is a companion instruction to SYSEXIT. The instruction is
optimized to provide the maximum performance for system calls from
user code running at privilege level 3 to operating system or
executive procedures running at privilege level 0.
Prior to executing the SYSENTER instruction, software must specify
the privilege level 0 code segment and code entry point, and the
privilege level 0 stack segment and stack pointer by writing values
to the following MSRs:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the
lower 16 bits are the segment selector for the privilege level
0 code segment. This value is also used to compute the segment
selector of the privilege level 0 stack segment.
• IA32_SYSENTER_EIP — Contains the 32-bit offset into the
privilege level 0 code segment to the first instruction of the
selected operating procedure or routine.
• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the
privilege level 0 stack.

These MSRs can be read from and written to using RDMSR/WRMSR.
Register addresses are listed in Table 4-6. The addresses are defined
to remain fixed for future Intel 64 and IA-32 processors.

For remaining a 32bits switch looks like:

Zwxxxxxxxxxxxxx proc near
 mov eax, FunctionIndex
 mov edx, ppKiFastSystemCall
 call dword ptr ds:[edx]
 retn 0xXX
Zwxxxxxxxxxxxxx endp

KiFastSystemCall proc near
 mov edx, esp
 sysenter
KiFastSystemCall endp

We first notice that Zw* functions move function’s index into eax and then jump near
KiFastSystemCall.

Furthermore, this is the KiFastSystemCall function which executes the SYSENTER opcode to
enter in CPL 0 from CPL 3.

- 9 -

That’s another way used by Rootkits’ authors who don’t want to patch the SSDT because of
the easiness of being detected and restored with tools like SDTRestore.

As we can see above in the Intel documentation, there are three important MSR registers to
initialize (IA32_SYSENTER_CS, IA32_SYSENTER_EIP, and IA32_SYSENTER_ESP).

Let’s take a look at theses structures and constants.

#define IA32_SYSENTER_CS 0x00000174
#define IA32_SYSENTER_EIP 0x00000175
#define IA32_SYSENTER_ESP 0x00000176

//
// IA32_SYSENTER_CS
//
typedef struct _SEP_SEL {
 USHORT Segment;
 USHORT scratch;
 ULONG ignored;
} SEP_SEL, *PSEP_SEL;

//
// IA32_SYSENTER_EIP
//
typedef struct _SEP_EIP {
 ULONG TargetEIP;
 ULONG ignored;
} SEP_EIP, *PSEP_EIP;

//
// IA32_SYSENTER_ESP
//
typedef struct _SEP_ESP {
 ULONG TargetESP;
 ULONG ignored;
} SEP_ESP, *PSEP_ESP;

And here the decompiling of the broadcasted function pushed to KeIpiGenericCall inside the
KiRestoreFastSyscallReturnState function.

ULONG_PTR
KiLoadFastSyscallMachineSpecificRegisters(
 IN ULONG_PTR Argument)
{
 ULONG Unknow;

 if (KiFastSystemCallIsIA32)
 {
 _asm mov Unknow, dword ptr fs:[0x20]
 WRMSR(IA32_SYSENTER_CS, 0x08, 0x00);
 WRMSR(IA32_SYSENTER_EIP, KiFastCallEntry, 0x00);
 WRMSR(IA32_SYSENTER_ESP, Unknow.u1988, 0x00);
 }
}

As you can see, there is a series of three calls towards WRMSR function. Therefore, it becomes very
easy to build a signature to localize this part of code.

- 10 -

6A 00 push 0
6A 08 push 8
68 74 01 00 00 push 174h ; IA32_SYSENTER_CS
E8 XX XX XX XX call _WRMSR@12 ; WRMSR(x,x,x)
6A 00 push 0
68 YY YY YY YY push offset _KiFastCallEntry
68 76 01 00 00 push 176h ; IA32_SYSENTER_EIP
E8 XX XX XX XX call _WRMSR@12 ; WRMSR(x,x,x)
6A 00 push 0
FF B6 88 19 00 00 push dword ptr [esi+1988h]
68 75 01 00 00 push 175h ; IA32_SYSENTER_ESP
E8 XX XX XX XX call _WRMSR@12 ; WRMSR(x,x,x)

The red bytes are constants and unchanged bytes, the green bytes are what we look for and the
uncolored bytes are submitted to modifications.

There are some registers pushed and used except ESI. Thus, we are able to build a 26bytes length
signature to find out the address of KiFastCallEntry.

- 11 -

References and further informations

[1] Bryce Cogswell and Mark Russinovich (November 2006), RootkitRevealer v1.71
http://www.microsoft.com/technet/sysinternals/utilities/RootkitRevealer.mspx

[3] Microsoft (June 2006), Patching Policy for x64-Based Systems
http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx

[4] Authentium (October 2006), Microsoft Patchguard
http://blogs.authentium.com/sharp/?p=12

[5] Uninformed (December, 2006), Subverting PatchGuard Version 2
http://www.uninformed.org/?v=6&a=1

[6] Matthieu Suiche (January 2007), Windows Vista 64-bits and unexported kernel symbols.
http://www.msuiche.net/papers/Windows_Vista_64bits_and_unexported_kernel_symbols.pdf

[7] Microsoft, Device\PhysicalMemory Object
http://technet2.microsoft.com/WindowsServer/en/library/e0f862a3-cf16-4a48-bea5-
f2004d12ce351033.mspx?mfr=true

[8] Microsoft Press, Windows Internals Fourth Edition
Chapter 3, Trap dispatching

[9] Metasploit, Windows System Call Table (NT/2000/XP/2003/Vista)
http://www.metasploit.com/users/opcode/syscalls.html

[10] Intel, SYENTER
IA-32 Intel Architecture Software Developer’s Manual. Volume 2B

