Windows Vista 64bits and unexported kernel
symbols.

Matthieu Suiche, Senior Security Fanatics!
<matt@msuiche.net>

January 1, 2007

Abstract: For the first Microsoft Windows Vista Beta, several articles have been published,
talking about miscellaneous subjects like IT or more specifically Operating System Security
(e.g. Matthew Conover[1]). There are numerous conflicts between ISV and Microsoft about
unexported native symbolslike the IDT, SDT and some MSRs on x64 Windows version.

However, while the Windows Vista Beta 2 beta testing, Joanna Rutkowska[2] showed these
initiatives will not make Microsoft Windows more secure. Further, the October 25 2006, an
Anti-Virus vendor called Authentium[3] announced publicly that Patchguard protection has
been subverted.

Actually, Microsoft Windows Vista RTM (Release to Manufacturing) has been released but
the problem for AV vendors still exists. Even if companies have told to Microsoft that
building a standalone symbols importer is an easy task. AV Companies have announced to
Microsoft that the decision to make these symbols as exportable won’t make it easier for
Rootkit’s authors to access to privileged areas.

Introduction: Windows Vista x64 uses very different internal schemes compared to the x86
version. If someone reversed the x86 kernel and wanted to reverse the x64 kernel, thinking
that he will find the same data at the same address, then he is wrong. Further, there are some
innovations in x64 reversing like the x64 calling convention. The reader needs to know these
specificities whether he doesn’t want to get stopped because of alack of understanding with
pushed arguments.

This paper is covering a quick analysis of the main parts of the Microsoft Vista kernel loader
to explain how it’s possible to get a hand on the main native system structures, like software
interruption address, SSDT address and syscall MSRs.

Prerequisites. Deprived of access to documentation and source code, we analysed Windows
Vista x64 RTM version using an external disassembler, and the latest Debugging Tools for
Windows (x64) to have a CPL 0 debugger compatible with Microsoft Windows Vista x64.
Some knowledge of x64 assembly is needed like news operands, registers and calling
convention. Of course, a fluent assembly understanding is necessary there.

-1-

http://www.msuiche.net

|. System Interruptions

Our story start in the KiSystemStartup() which the prototypes seemed to be:

VO D Ki Systenttart up(

PLOADER PARAMETER BLOCK pKeLoader Bl ock) ;

Ki Syst enfst art up

sub rsp, 38h

nov [rsp+38h+shadow], r15
nmov rl5, rsp

nov cs: KeLoader Bl ock, rcx
nov rdx, [rcx+38h]

| ea rax, KPCR

t est rdx, rdx

cnovz rdx, rax

nov [rcx+38h], rdx ; PKPCR
sub rdx, 180h

As can you see the argument pKel oaderBlock is stored into the exportable variable
KeLoader Bl ock located in the ALMOSTRO section.

For reminding the LOADER PARAMETER_BL OCK structureis:

typedef struct _LOADER PARAVETER BLOC {

LI ST_ENTRY

LI ST_ENTRY

LI ST_ENTRY

UCHAR

PULONG64

UCHAR

UCHAR

USHORT

PVO D

PCONFI GURATI ON_COVPONENT_DATA
PUCHAR

PUCHAR

PUCHAR

PUCHAR

PUCHAR

PNLS DATA BLOCK

PARC DI SK_| NFORMVATI ON

PVO D

PSETUP_LOADER BLOCK

PLOADER PARANETER EXTENSI ON

} LOADER_PARAMETER BLOC, *PLOADER PARAMETER BLOC;

LoadOr der Li st Head;

Menmor yDescri pt or Li st Head
Boot Dri ver Li st Head;

Ker nel St ack;

Prcb;

Process;

Thr ead;

Regi st ryLengt h;
Regi st ryBase;
Confi gurati onRoot ;
Ar cBoot Devi ceNane;
Ar cHal Devi ceNane;
Nt Boot Pat hNane;

Nt Hal Pat hName;
LoadOpti ons;

N sDat a;

ArcDi skl nfornmati on

CenfFont Fi | €;
Set upLoader Bl ock;
Ext ensi on;

11
Il
11
11
I
11
11
11
11
Il
Il
Il
11
Il
11
11
Il
Il
Il
I

+0x000
+0x010
+0x020
+0x030
+0x038
+0x040
+0x048
+0x050
+0x052
+0x060
+0x068
+0x070
+0x078
+0x080
+0x088
+0x090
+0x098
+0x0a0
+0x0a8
+0x0b0

The beginning of the function just fixes the PKPCR value to KelLoader Block.Prcb.

nmov [rdx+18h], rdx ; PKPCR-0x180
nov [rdx+20h], r10 ; PKPCR

nov rg, cr0

nov [rdx+1C0Oh], r8 ; CRO

mv r8, cr2

nov [rdx+1C8h], r8 ; CR2

nmov rg, cr3

nov [rdx+1D0Oh], r8 ; CR3

nov rg8, cr4

nov [rdx+1D8h], r8 ; CR4
sgdt gword ptr [rdx+216h]

nov r8, [rdx+218h]

nmov [rdx], r8

si dt gword ptr [rdx+226h]

nov r9, [rdx+228h]

nov [rdx+38h], r9

str word ptr [rdx+230h]

sl dt word ptr [rdx+232h]

nov dword ptr [rdx+180h], 1F80h

| dnxcsr dword ptr [rdx+180h]

These following registers/tables values are stored into the structure pointer by rdx.
- CR (=Control Registers)

- TR (=Task Register)

- GDT (=d obal Descriptor Table)

- IDT (=Interrupt Descriptor Table)
- LDT (=Local Descriptor Table)
nov eax, edx
shr rdx, 32
nmov ecx, 00C0000101h ; GS_BASE
W s T
nov ecx, 0C0000102h ; KERNEL_GS BASE
W s I

The RDX register is going to be stored in aM SR identified by GS_BASE and
KERNEL_GS_BASE constants.

Some instructions later, the function KilnitializeBootSructures() is called. His prototype
seemed to be like the following:

VO D KilnitializeBoot Structures(
PLOADER_PARAMETER BLOCK pKeLoader Bl ock) ;

After reading the function we see that mapped IDT Base addressis obtained in 2 lines of
code:

nov rsi, gs:18h

nov pMri dt Entry, [rsi+38h]

In fact, these 2 lines of code represents a 13 lines tricks of internal structure initialization:

nov cs: KeLoader Bl ock, rcx
nov rdx, [rcx+38h]

| ea rax, KPCR

t est rdx, rdx

cnovz rdx, rax

nov [rcx+38h], rdx ; PKPCR
nov r10, rdx

sub rdx, 180h

nov [rdx+18h], rdx

nov [rdx+20h], r10 ; PKPCR

si dt gword ptr [rdx+226h]
nov r9, [rdx+228h]

-3-

nov

[rdx+38h], r9

Wherer dx+0x18, isapointer to gs: [0x18] andr dx+0x38 apointer to the mapped Idt.

Note: We seethat intheory gs:[0x18] should beequal to GS_BASE so gs: [0x38]
should point to mapped IDT.

All of the following lines are used to copy System Interrupt to mapped memory. Here, the

copy procedure isinitialized.

| ea
xor
| ea
| ea
| ea
sub

rii,
ri1od,
rlz,

(KxUnexpect edl nt err upt 0+1)

r10d

(Ki I nterruptlnitTabl e+8)

r9, KxUnexpectedlnterruptO

r8,

[pMl dt Ent r y+4]

ril, pMmdtEntry

The most interesting line here is the R12 initialization. Whether we check this offset we will

see

KilnterruptlnitTable

dqg

0
of f set
1
of f set
30002h
of f set
303h
of f set
304h
of f set
5
of f set
6
of f set
7
of f set
10008h
of f set
9
of f set
OAh
of f set
0Bh
of f set
0Ch
of f set
0Dh
of f set
OEh
of f set
10h
of f set
11h
of f set
20012h
of f set
13h
of f set
1Fh

K

Ki

K

K

K

K

K

K

Ki

K

K

Ki

K

Ki Gener al Prot ecti onFaul t

K

K

K

K

Ki

Di vi deError Faul t
DebugTr apOr Faul t

Nmi | nt errupt

Br eakpoi nt Tr ap
Overfl owTr ap
BoundFaul t

I nval i dOpcodeFaul t
NpxNot Avai | abl eFaul t

Doubl eFaul t Abort

NpxSegnent Over r unAbor t

I nval i dTssFaul t

Segrent Not Pr esent Faul t

St ackFaul t

PageFaul t

Fl oati ngError Faul t
Al'i gnnent Faul t
McheckAbor t

XmrExcepti on

DI VI DE_ERROR

SI NGLE_STEP

NM _| NTERRUPT
BREAKPOI NT
OVERFLOW

BOUND

| NVALI D_OPCODE
NPX_NOT_AVAI LABLE
DOUBLE_FAULT
NPX_SEGVENT _OVERRUN
| NVALI D_TSS
SEGVENT_NOT_PRESENT
STACK
GENERAL_PROTECTI ON
PAGE

FLOATI NG_ERROR

ALI GNVENT

MACHI NE_CHECK

XMM_EXCEPTI ON

dq of fset Ki Apclnterrupt ;. APC

dq 32Ch

dq of fset Ki Rai seAssertion i RAI SE_ASSERTI ON
dq 32Dh

dq of fset Ki DebugServiceTrap ; DEBUG_SERVI CE

dq 2Fh

dq of fset Ki Dpclnterrupt ; DPC

dg OElh

dq of fset Kilpilnterrupt ;1P

dq 2 dup(0)

Doesn’t it seem so interesting? After a short looking on the copy routine we can rebuild a
theoretical structure for these raw interruptions entries.

typedef struct _KI DT_RAW SOFTWARE_| NTERRUPT_ENTRY64 {

UCHAR Interruptld, /1 +0x00
UCHAR Unknow01; /1 +0x01
UCHAR Unknow02; /1 +0x02
UCHAR Reserved03; /1 +0x03
ULONG Reser ved04; /1 +0x04
PULONG64 Interrupti onCff set; /1 +0x05

} KI DT_RAW SOFTWARE_| NTERRUPT_ENTRY64, *PKI DT_RAW SOFTWARE_| NTERRUPT_ENTRY64;

As you see the pointer to PKI DT_RAW SOFTWARE_| NTERRUPT_ENTRY64 allows us to get al
protected-mode exceptions and interrupts detailed in the Intel Manual Volume 3[4].

For remaining the way to accessto this “in-raw” structure is this one:
The way to access to theKi Ser vi ceTabl e isthe following:

Ki Systentstartup()
=> call KilnitializeBootStructures ()
-> | ea ri12, (KilnterruptlnitTabl e+8)

Comparing memory interrupt address with their adjusted address is more effective than a
basic checking between kernel address base and kernel base limit.

Imagine if an attacker wanted to interchange an IDT entry? It could affect the correct system
operation.

For 32bits architecture a proof of concept is available without documentation using
PhysicalMemory trick that I’ve written one year ago.

This tool | caled “IDTGuard”’[5] has been released on 10 December 2006. A paper about
32bits Windows System Protection should be published soon.

I1. Syscall / Sysret

To cal anative function Windows uses ntdll.dll to switch from CPL3 to CPLO. Thisswitchis
done by the SYSCALL opcode. Metasploit published a full listing for system call table index,
available here [6].

After referring into the Intel instructions handbook [7], we note these following notes:

SYSCALL - Fast System Cal
SYSRET - Return From Fast System Cal

SYSCALL saves the RIP of the instruction follow ng SYSCALL to RCX and
| oads a new RIP fromthe | A32_LSTAR (64bit node). Upon return, SYSRET
copies the value saved in RCX to the RIP

The CS of the SYSCALL target has a privilege |evel of O.
The CS of the SYSRET target has a privilege |evel of 3.

For remaining antdll’s function switcher looks like:

NE XXXXXXXXXXXXX Proc near

mv r10, rcx ; NEXXXXXXXXXXXXX
nmov eax, Functi onl ndex

syscal |

retn

Nt XXXXXXXXXXXXX endp

First, we notice the kernel function identifier is stored into the 32bits register: eax.
Secondly, the ntdll’s function executes the SYSCALL opcode to switch into CPLO.

Some rootkits would rather hook the SYSCALL opcode than patching the System Service
Descriptor Table.

On a 64bits system there are two important MSRs (=Model Specific Registers) which are
initialized, 0xC0000082 and 0xC0000083.

Let’stake alook at the structures and constants declaration.

#define LSTAR 0xC0000082
#def i ne CSTAR 0xC0000083

11
/1l Syscall 64
I
typedef struct _KLSTAR {
ULONGLONG Tar get Rl PAPMB4Cal | ers;
} KLSTAR

11
/'l Syscall 32
11
typedef struct _KCSTAR {
ULONGLONG Target R PACMCal | ers;
} KLSTAR

These two MSRs are configured by the KilnitializeBootStructures() function. If we look some
lines after the IDT copy memory routine we can see the following part of code:

| ea rax,
nov ecx,
nov r dx,
shr rdx,
Wr nsr

| ea rax,
nov ecx,
nov rdx,
shr rdx,
W s T

Ki SystentCal | 32
0C0000083h
r ax
20h

CSTAR

Ki Syst entCal | 64
0C0000082h ; LSTAR
r ax

20h

As you can see function names are very explicit and are very easy to locate with a signature

which looks like:

48 8D 05 XX XX XX XX | ea
B9 YY 00 00 CO nmov
48 8B DO nov
48 C1 EA 20 shr
OF 30 W BT

rax,
ecx,
r dx,
rdx,

(00,0.0,0.9.9.9.0.9.9.9.0.9.9.9.04
0C00000YYh

rax

20h

Only 5 bytes differ on 21bytes. But if we build a double signature there are 8 differing bytes

on 42bytes.

Cause of LSTAR and CSTAR constant and WRMSR opcode, this part of code is very easy to be

|ocated.

1. System Service Descriptor Table

The KeSer vi ceDescri pt or Tabl e pointer isn’t exported on Windows Vista 64bits even if it’s
still to be on the 32bits version.

The similar points with previous version of Windows are that this pointer still being present in
the ALMOSTRO section and Ki Ser vi ceTabl e array still beinthe. t ext section.

We have to look for these opcodes in the KilnitSystem function in the I NI T section:

| ea rax, gword_1401C7120

nov cs: gword_1401C7128, rax

nmov cs:gword_1401C7120, rax

| ea rax, Ki ServiceTable

nov cs: KeServiceDescriptorTable, rax
nov eax, dword ptr cs: Ki ServiceLimt
nov cs: Ki SwapEvent, 1

nmov cs: dword_1401F9990, eax

| ea rax, Ki Argunent Tabl e

| ea rax, Ki ServiceTable

nov cs: KeServi ceDescri pt or Tabl e, rax

There are severa variables initialized into the Ki I ni t Syst em function, then find the pointer
toward Ki Servi ceTabl e could seem very delicate. Further, the KilnitSystem function
isn’t an exported function.

That’s why using a 64bits LDE (=Length Disassembler Engine) or an open source
disassembler [8] would be rather than a basic print code searching cause of these notes.

With counting instructions and opcode identification we could make a theoretical way to the
“lea rax, KiServiceTable”.

The way to access to theKi Ser vi ceTabl e isthe following:

Ki Syst enfst art up()
=> call KilnitializeKernel ()
=> call KilnitSystem)
-> |ea rax, Ki ServiceTable
-> nov cs: KeServi ceDescri pt or Tabl e, rax

Like for the IDT, get an access “in-raw” to the table is complex but not impossible. The main
point of this access is the organization to use correctly a standalone disassembler to rebuild a
virtual path to these variables.

For instance, you have to count the number of instructions “x” between the calling and the
beginning of the function. Then, on another kernel binary file, you read “x” instructions and
compare the current one with a call, if wrong compare the instruction at the position “x+n”
and “x-n”, for n alittle number. Additionally, look for pushed arguments into registers and
stack. Inside the function we can consider more information about instructions’ scheme.

Here, we look for thisinstruction’s prototype “lea reg64, [imm64]” if we run a scan inside the
function it will return numerous results. The ingenuity behind this idea is to use a basic
isomorphs trick, comparing a personal signature with the compiled code.

Conclusion:

In this paper, we cover how to redize a kind of standalone “Patchguard” for 64bits
architecture to check main targeted structures of rootkits.

The specificity of this paper is its 64bits oriented architecture and the improvement of
authenticity trick compared to x86 existing tools like SVV (System Virginity Verifier) which
are not allowed to restore interrupts or MSRs by their original values.

-10 -

References

[1] Matthew Conover (2006), Windows Vista Kernel Mode Security

[4] Intel, Protected-Mode Exceptions and Interrupts (5-3)
IA-32 Intel Architecture Software Developer’s Manual. System Programming Guide

[5] Matthieu Suiche (December, 2006) IDTGuard v0.1 Public Build

[7] Intel, SYSCALL / SYSRET
IA-32 Intel Architecture Software Developer’s Manual. Volume 2B

[8] Matthew Conover (2004), Open-source x64 Disassembler

-11 -

http://www.symantec.com/avcenter/reference/Windows_Vista_Kernel_Mode_Security.pdf
http://invisiblethings.org/papers/joanna%20rutkowska%20-%20subverting%20vista%20kernel.ppt
http://blogs.authentium.com/sharp/?p=12
http://www.msuiche.net/?p=9
http://www.metasploit.com/users/opcode/syscalls.html
http://www.cybertech.net/~sh0ksh0k/projects/x64dis/

