

Have you ever asked yourself these questions?

• How safe is the password function of my USB flash drive (UFD)?

• What if I loose or forget my password, then what?

• If my UFD is lost or stolen, can someone else access my data?

If so, continue reading this document and you will hopefully get some answers!

This paper will focus on four different USB flash drives and the different software
that is distributed with the UFD in question. It also includes a brief analysis of how
safe they are. Or should I say “how unsafe they are?!”. As the software that I
have tested does not use encryption a simple patch may sometimes do the
trick and provide us with the real password.

Sometimes those handy devices, which we rely on so much to keep our work
portable and safe, are NOT always as safe as you would wish them to be. Using
a ring3 debugger (OllyDbg) the communication between the protection
software and the flash drive is easily intercepted. If the data, sent between the
UFD and the computer, is just plain text, security could be totally compromised
when monitoring the data via the debugger. This is both positive AND negative;
the upside is that if you really have lost/forgotten your password, it MIGHT be
retrievable (if you have to knowledge). On the downside, if someone wants to
snoop around on your “protected” section of your UFD you could be,
depending on choice of software, VERY poorly protected. As a special bonus I
have decided to bundle this paper with my password recovery tool, the “UFD
Password Revealer v1.2”.

Enjoy your read,

potassium / ARTeam

1. Forewords

Table of Contents

1. TakeMS

2. PEAK III

3. PEAK II

4. AlcorMicro

AA SSeeccuurriittyy AAssppeecctt OOff UUSSBB FFllaasshh DDrriivveess

ppoo ttaass ss ii uumm // AARR TTeeaamm

Version 1.1

September 2007

PAGE 2A SECURITY ASPECT OF USB FLASH DRIVES

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This
tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating

the theories and methods described. No distribution of patched applications has been done under any media or

host. The applications used were most of the times already been patched, and cracked versions were available

since a lot of time. ARTeam or the authors of the paper cannot be considered responsible damages the

companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of

sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking

how to improve the RCE art. We are not releasing any cracked application.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://arteam.accessroot.com/releases/

Table of Contents

Verification .. 2
1. TakeMS – Protection? Where?... 3

1.1 Hardware ... 3
1.2 Methodology... 3
1.3 Patching protection application to reveal the password... 5

2. PEAK III – Not much better.. ... 7
2.1 Hardware ... 7
2.2 Methodology... 7
2.3 Patching protection application to reveal the password... 9

3. PEAK II – A Harder Shell... 11
3.1 Hardware ... 11
3.2 Methodology... 11

4. AlcorMicro – XOR:ed partial password storage... 16
4.1 Hardware ... 16
4.2 Methodology... 16

5. What if I’m not a hardcore reverser then?... 20
6. Conclusions ... 20
7. Greetings ... 20
8. References .. 20

Document History ... 20

PAGE 3 A SECURITY ASPECT OF USB FLASH DRIVES

1. TakeMS – Protection? Where?

1.1. Hardware

First victim is a USB flash drive (UFD) from TakeMS (1 Gb, fig 1.1), which supports a public and a “secure” partition
that was setup with the software that came with the device.

 Fig 1.1 TakeMS 1 Gb stick

1.2. Methodology

The first UFD to be examined was the TakeMS stick. So load up the protection software included with the stick
(CarryItEasy from cososys.com) and assign a password (ARTeam) and a password reminder (Who owns?) to the
protected partition. Unplug and re-plug the UFD and re-run CarryItEasy. This time you will be asked to enter a
password. See figure 1.2.

 Figure 1.2 Password dialog of CarryItEasy. Yeah, Who Rules? BGates? Nah.

Since this application launches a copy of itself in a temporary folder and re-launches with CreateProcess, we
need to attach OllyDbg to the newly created process. So launch our good friend Olly!

Figure 1.3 Attaching to CarryItEasy.exe

PAGE 4A SECURITY ASPECT OF USB FLASH DRIVES

There it is. Press the “Attach” button and then press “F9” to continue running the application. Now, set a break-
on-access bp on the code section of CarryItEasy and press the login dialog, you will now, hopefully, end up
somewhere in the running code. Search for “All intermodular calls” and find the calls to DeviceIoControl (for more
info, consult MSDN) and set breakpoints on all of them.

 Figure 1.4 Setting breakpoints on DeviceIoControl

With this done, return to the login dialog and enter any password e.g BGates :) and press the “login”-button. Now
OllyDbg will break here:

 Figure 1.5 Break at DeviceIoControl with fake password

Follow the “InBuffer” in dump and you will see our input password “BGates”. Press “F9” one time and break again
on DeviceIoControl. Now press “F8” and check the place where the text “BGates” was before! Now it displays
your real password! ARTeam (of course)

PAGE 5 A SECURITY ASPECT OF USB FLASH DRIVES

 Figure 1.6 Break at DeviceIoControl with the real password

Now we need not to know more. Remove the bp’s and let the application run freely. Enter “ARTeam” as
password and.. Voilá! You now have complete access to everything that resides inside the so-called “protected”
partition. Now this will of course satisfy the needs for some reverse engineers. But I want to take it a step further.
How about modifying CarryItEasy to show the real password instead of the password hint?!

1.3. Patching protection application to reveal the password
My thought was to modify the application CarryItEasy. When you press the “Password Reminder” button, the
reminder, which is read from UFD during launch, is shown in the dialog window. Problem is that if we are going to
reverse engineer this application we will certainly need more than one try at the reminder button and since it
becomes hidden directly after pressing.. Ummm. It needs some improvements :) The following section of code
hides the reminder button.

004DFD13 FF7424 04 PUSH [DWORD SS:ESP+4]
004DFD17 FF71 1C PUSH [DWORD DS:ECX+1C]
004DFD1A FF15 28A74F00 CALL [DWORD DS:<&USER32.ShowWindow>]
004DFD20 C2 0400 RETN 4

Exchanging PUSH [DWORD SS:ESP+4] (0 = SW_HIDE) with PUSH 1 (1 = SW_SHOWNORMAL) will let us investigate
further ^_^

 Figure 1.7 Yeah, who rules? Button is still there :)

PAGE 6A SECURITY ASPECT OF USB FLASH DRIVES

Now restart the CarryItEasy.exe and reattach OllyDbg, the breakpoints set earlier will still be there. Now, follow the
“InBuffer” in dump just as before. When you see the “Who Rules?” text set a hardware breakpoint on write on the
first char of the text. Continue to execute with “F9”. Then you will break in kernel32.dll for a while and then return
to CarryItEasy.exe, here:

00491C82 51 PUSH ECX
00491C83 56 PUSH ESI
00491C84 57 PUSH EDI
00491C85 50 PUSH EAX
00491C86 E8 D53CFFFF CALL CarryItE.00485960
00491C8B 8B55 FC MOV EDX,[DWORD SS:EBP-4]
00491C8E 8B7D 08 MOV EDI,[DWORD SS:EBP+8]
00491C91 03D2 ADD EDX,EDX
00491C93 8BCA MOV ECX,EDX
00491C95 8BF0 MOV ESI,EAX
00491C97 8BC1 MOV EAX,ECX
00491C99 C1E9 02 SHR ECX,2
00491C9C F3:A5 REP MOVS [DWORD ES:EDI],[DWORD DS:ESI]
00491C9E 8BC8 MOV ECX,EAX
00491CA0 83E1 03 AND ECX,3
00491CA3 F3:A4 REP MOVS [BYTE ES:EDI],[BYTE DS:ESI]
00491CA5 8B7B 04 MOV EDI,[DWORD DS:EBX+4]
00491CA8 81C7 A0000000 ADD EDI,0A0
00491CAE 8955 FC MOV [DWORD SS:EBP-4],EDX
00491CB1 75 04 JNZ SHORT CarryItE.00491CB7
00491CB3 33C0 XOR EAX,EAX
00491CB5 EB 29 JMP SHORT CarryItE.00491CE0
00491CB7 57 PUSH EDI
00491CB8 FF15 24A44F00 CALL [DWORD DS:<&KERNEL32.lstrlenA>
00491CBE 8BF0 MOV ESI,EAX

Registers:

EDX 010E14F9 ASCII "ho Rules?"
ESP 0104FEF0 UNICODE "ARTeam"
EDI 010E14F8 ASCII "Who Rules?"

As you can plainly see the correct password is currently stored as pointer to a UNICODE string in ESP. Setting a
breakpoint @ 00491C82 reveals something interesting. The call at 00491C86 converts the password in ASCII format
to UNICODE format, which suits us just fine :). At 00491CA8 something of interest caught my eye. EDI is a pointer to
the “InBuffer” (read from UFD), adding 0xA0h to the starting point of the buffer will point to the string “Who
Rules?” and then the code goes on in similar fashion, convert ASCII to UNICODE etc. Changing the ADD EDI, 0A0
to ADD EDI,092, just like previous procedure above, will then point to the ASCII string “ARTeam” and convert it to a
UNICODE string. Now pressing of the reminder button is so much nicer. :D Make things easy on yourself now, write
the one-byte patch to disk to make things permanent and you’re all done!

 Figure 1.8 The real password is now pwnd!!

