Nl
REVER

b

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This tutorial is
also free to distribute in its current unaltered form, with all the included supplements.

G SLIDELOCK 1.1

Disclaimers

All the commercial programs used within this document have been used only for the purpose of demonstrating
the theories and methods described. No distribution of patched applications has been done under any media or host.
The applications used were most of the times already been patched, and cracked versions were available since a lot of
time. ARTeam or the authors of the paper cannot be considered responsible for damages to the companies holding
rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of sharing knowledge and
teaching how to patch applications, how to bypass protections and generally speaking how to improve the RCE art.
We are not releasing any cracked application.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and are unaltered.
The ARTeamESFVChecker can be obtained in the release section of the ARTeam site: http://releases.accessroot.com

Table of Contents

1. Introduction 10 SHAELOCK T.T ..ottt 2
1.1. Whatisit, GNd WRY O L CAIE7 ...ttt ettt et er et ebeeras 2

L I R e (o =3 SOOI 2
1.3, TOOIS USEA.......oo ettt b ettt b ettt b et b et bt st e b s st st nens 2
T, REFEIENCES ...ttt 2
2. INVeSHGANNG SIAE LOCK ..ottt sa e a st s e s nesnens 3
2.1. Finding the SHAELOCK CIASSES...........ccooiieieiiieiieeseeseere ettt se e esenes 3
2.2, ANQIYZING The CIASSES.........cooeeeeeeee ettt s e seebestesbestese s enseneenas 3
2.2 0. RIGREISINFO ...ttt ettt ettt et e be e be b e st et eaenaennenea 3
2.2.2. RIGRISMANQQEL..........oo ettt et ettt et e e et eaeeaeeteebeebeetestebensesaesneneas 4
2.2.3. RIGRESACHVIY ..ottt st st et st e b e e saenaeneas 5
2.2.4. RIGhISACHVITYS3........oeeee ettt ettt senenas 6
2.25. Finding the DeVelopers CIASS ...ttt es 7

3. Patching/Removing the DRMc.ooo ittt be st e b b e s e s enaeseas 8
3.1. Patching the Switch Statemento s 8
3.2. Changing the STArtup CIASS ... e 8
4. What about the ApPPICOHON KEY 227, ...ttt ettt et st et ete s sbeereene e 9
B CONCIUSIONS ...t bbbt b bbbttt n e 10

8. GIEEHINGS..... ...ttt bbbt E bttt b et b bttt n s 10

http://releases.accessroot.com/

SLIDELOCK 1.1

1. Introduction to SlideLock 1.1
1.1. Whatis it, and why do | care?

SlideLOCK is a DRM system for AndroidOS programs that aims to prevent the sharing of
purchased APKs amongst users. The protection lies in special classes that the programmer must
implement into his/her own code that does server-side checking with device-specific information to
ensure the user is authorized to access the application. Each application is assigned a ‘key’ that is
unique to the application and no longer than 32 characters. It is important for this key to stay
unknown to users, we’ll find out why later.

While DRM protection is OK in some instances it doesn’t seem good in this one. Let’s say
you bought the game AntiBody2 for $2, and successfully installed it on your phone, and then your
phone breaks/dies/gets upgraded, shouldn’t you still be entitled to play the game without purchasing
it again? I think so.

So with the motive above | dug deeper into SlideLock 1.1 and will detail my findings here,
and the end of the tutorial you should be able to properly remove SlideLock 1.1 protection from any
application.

It is important to note that since SlideLOCK 1.1 is NOT an out-of-the-box solution, no two
scenarios will be exactly the same, so you must learn from this tutorial WHY 1 did what 1 did, and
not just try to mimic the steps! Here We Go!

1.2. Target:

> AntiBody2 (Game)
o Available for 1.99 USD on SlideME Market
o Also included in this distribution (uncracked)

1.3. Tools used

» APK Manager
o For Decompiling/Recompiling/Signing APKs

> ADB

o For pulling and installing APKs
> Notepad

o For reading the smali/xml files
» Brain

1.4. References

> http://pallergabor.uw.hu/androidblog/dalvik opcodes.html

http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

2. Investigating Slide Lock

2.1.

L

Finding the SlideLOCK Classes

IDELOCK 1.1
o

Upon decompiling the application with APKManager we can find the SlideLOCK specific
classes in the /smali/org/slideme/android/drm folder, and looks like this:

| || Rights&ctivity51.smali 11/29/201011:11 ... Text Document g KB|
|| Rights&ctivity52.smali 11/29/201011:11 ... Text Document 2 KB
|| Rightsfctivity33.smali 11/29/201011:29 ... Text Document 6 KB
|| Rights&ctivity.smali 11/29/201011:16 ... Text Document 10 KE
| RightsInfo.smali 11/29/201011:11 ... Text Document 2 KB
|| RightsManager.smali 11/29/201011:11 ... Text Document 12 KE

While there appears to be 6 classes, there are really only 3
e RightsActivity
e Rightsinfo
e RightsManager

2.2. Analyzing the Classes

2.2.1. Rightsinfo

This is the smallest of the 3 classes in the DRM system, so it seems natural to look at
this one first. Upon opening the file in notepad, the first thing we’ll see is that it uses an
explicit constructor (one taking arguments):

direct methods

.mEtP?gcgl_.lJtsﬂgc constructor <init=(Ljava/lang/string;Ljavas;l1ang,/Class; v

. parameter "key"
.parameter "mainClass™

.prologusg|
.line 3
invoke-direct {p0}, Ljava/lang/Object;-»<init=>={J)V

We see that the constructor takes a String named ‘key’ and a Class named ‘main’ this
information will be important later. For now we just need to know that any Rightsinfo
object requires the key and the mainClass of the application to be passed in upon creation.

SLIDELOCK 1.1
2.2.2. RightsManager

This is the second largest class, and by name seems to be the one that manages
whether or not we are allowed to access the application. Once open in notepad we can see
that this Class uses the Default Constructor (no parameters) and requires no specialized setup.
It also provides 2 functions:

.method private static checkForwardLock{Ljava/net /URL;Z)Z
.locals &
. parameter "url™
. parameter "hasrFile”
.method isForwardLocked({Ljava,/l1ang,/string;Ljava;l1ang,/string;ILandroid/Telephony/Telephonyanager;Z)1Z
.locals 5
. parameter "key"
. parameter "version™
. parameter "versionCode™
. parameter "mng"
. parameter "hasFile"

In Dalvik Annotation, Z represents a Boolean Value, so as we can see above, the 2"
routine isForwardLocked returns a Boolean value, and is also accessible from outside the

class. We can see that the first one checkForwardL ock is private which means chances are
this is a helper routine that is called from inside isForwardL ocked.

We should remember that this class is responsible for validating us. | have provided
Java equivalents of these routines here in the distribution of this tutorial and also online here:

. checkForwardLock -> http://pastebin.com/fyaxzdRg
° isForwardLocked -> http://pastebin.com/YmLaBiex

After analyzing the converted sources, it becomes apparent that in the
isForwardL ocked routine they are grabbing a LOT of device-specific user information
(most of which is NOT needed for their purposes) and sending it to their server. The
information includes:

Device ID -> Only one really needed
Network Operator

Network Operator Name

Network Country ISO

Device Software Version

Phone Type

Network Type

Sim Country ISO

Sim Operator

Sim Serial Number -> Maybe this one too (For GSM users)
Subscriber ID

Network Roaming

While the information provided here in the RightsManager class isn’t directly related
to the removal of the SlideLOCK DRM, it is quite alarming to see the amount of data they
are pulling for no apparent reason.

http://pastebin.com/fyaxzdRq
http://pastebin.com/YmLaBiex

"SLIDELOCK 1.1

This is the largest of the 3 classes and perhaps the most complex. For this reason |
will not be providing a full conversion of the class into Java, but rather just the important
pieces. First thing to notice when opening up the file in notepad is that this is an abstract
class, which means that the person using this class (the developer) must create a class that
inherits from this one and implements the missing functions.

Also we should note the declared constants in the file as they may be helpful later:
.field private static Tinal LOCKED:I = 0Ox0
Field private static Tinal ERROR:I = 0Ox1l
.field priwvate static final IO_ERROR:I = Ox2

.Field private static Tinal NOT_LOCKED:I = 0Ox3

The functions contained in this class are as follows:
.method private startMainapplication{)Vv

.method public exitOnError()Z
.method public abstract getRightsInfo()Lorg/slideme/android/drm/RightsInfo;
.method public Tinal onCreate{Landroid/os/Bundle;)V

.method protected onCreatebialog(IiLandroid/app/Dialog;

Note that the getRightsinfo() routine is labeled abstract, and as such is not
implemented here, but rather in the developer’s class that inherits this one.

The routine startMainApplication does just what it says, it calls getRightsinfo to get
the Rightsinfo object associated with this program, which if you recall holds the Applications
KEY and the true Main class, for all intents and purposes we can consider this Main Class as
OEP :P

The exitOnError() routine just tells the DRM whether or not the app should exit if
there is an error when trying to validate (i.e. no internet connection) so this one is
unimportant for our needs. Might be worth noting that by default this routine returns 0 or
FALSE but the developer may override this function to return TRUE. That is up to the
implementation and developer’s wishes.

The last 2 routines are pretty unimportant to us so we will not discuss them here.

REVERSING SLIDELOCK 1.1
224, RightsActivity$3

| came across this class simply by just looking through them all; one thing you’ll
notice in this class is that it contains some bad boy messages:

° const-string v2, "This application is locked to another device. Shutting down."
° const-string v2, "An error detecting lock on device. Is network active?"
o const-string v2, "There was a problem with the network."

Now we need to learn some things about smali code. It is equivalent to ASM code for
x86 reversing. With some practice it is as readable as java code, but logic statements such as
loops and ifs and switches can be confusing. For those who have developed in java before we
know that switches must act upon numerical values only, which is different than .NET
languages where you can switch on a string.

The routine that contains these bad-boy strings is using a switch statement to
determine which one to go to, we can see the setup for the switch statement here:

iget vl, pl, Landroid/os/Message;->what:I
packed-switch vl, :pswitch data 0

The code above says to read in the integer value of Message.what and store it in the
v1 variable. The Message Object they are referring to is pl (parameter 1) that was passed into
the routine. After the value is stored, they then perform a switch on the value in v1, and use
:pswitch_data_0 to define the range of values used in the switch. By doing a Ctrl+F on that
string we find it here:

:pswitch data 0
.packed-switch 0x0
:pswitch 0
:pswitch 1
:pswitch 2
:pswitch 3
.end packed-switch

This shows that the values for the switch start at O and that there are 4 test cases, each
case being the next number higher which results in a switch on the values 0 — 3 inclusive.
Recall the constants we found earlier :

.Tield private static Tinal LOCKED:I = 0OxO0
.Field private static final ERROR:I = Ox1
.Field private static final IO_ERROR:I = 0Ox2

.Tield private static final NOT_LOCKED:I = 0Ox3

Seems like this is where they come into play ©.

The lines between .packed-switch and .end packed-switch show the labels that define
the start of that case’s code. So to find the code for the case that vl == 0 simply do a Ctrl+F
for “:pswitch_0”. A couple lines down from this we see the bad-boy message that the
application is locked, this confirms our suspicion that it is here that the above constants are
used. This also looks like a good place to patch <<hint>>

You can find the java equivalent sources of the above RightsActivity class (remember
it’s only a partial conversion) in this package and also here: http://pastebin.com/9P8SE9a9

http://pastebin.com/9P8SE9a9

SLIDELOCK 1.1

2.2.5. Finding the Developers Class

We could stop here with what we know and successfully patch the application to
bypass the lock, but we’re here to reverse as much as we can. So the next thing we need to
figure out is which class the developer created that extends the RightsActivity class. There is
a few ways we could do this, but only one sure fire way.

We could check the AndroidManifest.xml file to see if the class is set to the startup
class, but this is not guaranteed. The only sure fire way is to navigate to the smali folder in a
command prompt and execute this line of code to rename all .smali files to .txt:

FOR /R %$x IN (*.smali) DO ren "%x" *.txt

Once all the files are renamed to .txt, we need to search all file contents for this string:

.super Lorg/slideme/android/drm/RightsActivity;

The results of this search will show that the file SlideLock.smali located in
/smali/creafire/com/antibody?2 extends the RightsActivity Class. Remember, whichever class
extends the RightsActivity one MUST implement the getRightsinfo() routine. So let’s take a

look at the developer’s implementation ©.

.method public getRightsInfol{liLorg/s1ideme/android/drm/RightsInfo;
.locals 3

. prologue

.1ine 9

new-instance vo, Lorg/slideme/android/drm/RightsInfo;

const-string vi, "dnsfgkgish44kSuFTIshgui4shgdsTnb™

const-class vz, Lcreafire/com/antibodyz/Main;

invoke-direct {vl, vi, w2}, Lorg/slideme/android/drm/RightsInfo;-><init=>

return-object wvo
.end method

We see here that they are creating a new instance of the Rightsinfo Object, which if
we remember takes a Key and a Class as constructor arguments. The object is set to the
variable v0, then v1 is assigned a 32 character string (the key), and v2 is assigned to class
Main located in the /smali/creafire/com/antibody?2 folder. They then call the Rightsinfo
object’s constructor and pass these 2 variables in. Seems we’ve found the elusive application
key and the “OEP”. Now let’s put everything we have found together :P

SLIDELOCK 1.1

3. Patching/Removing the DRM ,

With all the information we’ve gathered, we can easily come up with a 2 ways to patch or remove
the DRM from this application, | will cover both options for the sake of completeness. 1 option given is
clearly the most desireable.

3.1. Patching the Switch Statement

Remember the switch statement that accepts the values 0 — 3? Well we could insert a single
line of smali code right before the switch statement begins to alter the value it uses. We could force
the value to always equal 3 (good value) prior to entering the switch statement.

The line of code we could use is this:

const/4 vl1, 0x3

This line tells the application to assign the constant 4-bit value 0x3 to the variable v1.
After our patch the code would look like this:

iget vl1, pl, Landroid/os/Message;->what:I
const/4 vl1, 0x3
packed-switch vl, :pswitch data O

The above code will ensure that regardless of the status code really sent it will ALWAYS
equal 3 prior to the switch statement and thus ALWAY'S think we passed. After adding this line of
code we simply need to recompile/resign/reinstall the application. And tada! The Server check has
been defeated!.

NOTE: Because we altered the file and signed it with a different key than the original
application we MUST uninstall the application first prior to installing our modified one.

3.2. Changing the Startup Class

Recall that during our investigation, we discovered what the true startup class is, effectively
the OEP of the application. We could simply try to change the applications startup class to Main and
bypass SlideLOCK all together :P. Let’s take a look.

Every Android application contains an AndroidManifest.xml file that tells the operating
system certain things about the application. Things like what permissions the application requires to
run properly, and whether the screen should be portrait or landscape. Also included in this file is a
list of all Activities (or screens) the application contains, and specific things about them as well.

Let’s take a look at the AndroidManifest file for this application.

W

<activity android:label="@string/app name" android:name="{,51idelLock"
<intent-filter>
<action android:name="android.intent.actionMAINF />

</intent-filter>

<factivity>

<actiwvity android:1abel="@5tringlapp_name" android:name="ﬂ}§§tg android:screenCrientation="1ands
<intent-filter>

</intent-filter>

<factivity>

We can see here that the there are 2 activities listed, SlideLock being 1 and Main being the
other. Notice how BOTH have the <category> of LAUNCHER and BOTH have the <action> of
MAIN. This was a design error on the developer’s part. The only activity that should be listed here as
MAIN and LAUNCHER is the SlideLock. I'm sure you noticed upon installing the original APK
there were 2 entries for AntiBody2. This is the reason. The first entry that shows up is the
SlideLock’d Activity that uses the DRM to verify you are allowed to run it. The second however is a
completely unprotected activity!

All we have to do here, is remove the <activity> entry that lists SlideLock as the activity
name. This will result in only one entry in the App Drawer, and that entry will automatically launch
the Main class (which remember has no DRM in it).

If however you come across an application that has this part done correctly all you need to do
is replace the Activities name with that of the real Main Class that we found in part 2.2.5 and
recompile. The resulting APK will bypass all the DRM code leaving you with an unbound
application :D

4. What about the Application KEY???

While the key itself is useless to us for removing the application’s DRM, it could be usefull
in other scenarios. Let’s say you purchase an application for $0.50, that’s pretty cheap, let’s also say
you can find out the application’s key. Once you’ve done that all you would need to do to use a
different (perhaps more expensive) application is swap the expensive app’s key with the key of an
application you legitimately bought. After you swapped it so both applications have the key of the
$0.50 application, in theory they should both pass validation. You will need to change other things
too like Version and VersionCode, but that will not be covered here because here at ARTeam we do
not agree with piracy.

REVE

5. Conclusions

SLIDELOCK 1.1

Through our adventure today into SlideLOCK 1.1 we have learned quite a bit about the DRM
and the company itself. We have learned how to bypass the Server Check by inserting smali code to
affect the switch statement, we also learned how to completely bypass the DRM mechanisms by
altering the AndroidManifest.xml file, and we learned that they are using quite a bit of information
(or so it seems) to verify that you are authorized to run the application.

It would seem that removing the DRM completely would be the safest bet. By removing it we
prevent SlideLOCK from sending our information to the servers. According to their site they are
only grabbing your Device ID to verify, but we learned they grab a LOT more than that, so what are
they doing with all the additional data? I will leave that up to you to decide!

6. Greetings

| would like to thank the following people (in no particular order)
e Nilrem for getting me involved in RCE
¢ ARTeam for becoming my ‘home’
e SSIEVIN for the Template
e Ghandi for all the long talks on reversing and the endless hours of teaching :P
o JesusFreke for Baksmali/Smali
e Daneshm90 for APK Manager
e The reader for um... ya reading this :P

-- Nieylana

http://forum.xda-developers.com/member.php?s=dbc1f2f47e7b901a3a797410f469143b&u=1807388

