

After a while, I’ve decided to write about something interesting which I’ve

found while unpacking one protection, and it will be also nice introduction to

one of my tools which I have wrote for fun of it.

However, I won’t mention application name here, but to demonstrate

checksum check which I have found I will be using one test application, thus

you will get idea what happened, and how checksum is defeated

I will also introduce one tool I wrote, which served me well in this particular case.

Tool should come with this document, thus I won’t describe tool, and it’s

internals as source code should be well commented

deroko of ARTeam

1. Forewords

Editor: deroko

DDeeaalliinngg wwiitthh ffuunnnnyy cchheecckkssuumm

DD EE RR OO KK OO OO FF AARR TT EE AAMM

Version 1.0
February 2013

PAGE 2 DEALING WITH FUNNY CHECKSUM

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This

tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating

the theories and methods described. No distribution of patched applications has been done under any media or

host. The applications used were most of the times already been patched, and cracked versions were available

since a lot of time. ARTeam or the authors of the paper cannot be considered responsible damages the

companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of

sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking

how to improve the RCE art. We are not releasing any cracked application.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and

are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:

http://releases.accessroot.com

Table of Contents

1. Forewords .. 1
Verification .. 2
1. Checksum Check ... 3

1.1. Test Application description .. 3
1.2. Instrumentation comes to the rescue .. 5

2. Instrumentation Tool ... 8
2.1. Fast Basic Block Lookup ... 8
2.2. Self-modifying code handling ... 8
2.3. Handling sysenter ... 9
2.4. Preserving hooks and entry points .. 10
2.5. Child Process trace .. 10
2.6. DbgPrint... 10
2.7. Windows 8 ... 10
2.8. Memory Allocation ... 10
2.9. Exception injection ... 10
2.10. TF handling .. 11
2.11. TODO ... 11

3. End ... 12
3.1. References .. 12
3.2. Conclusions ... 12
3.3. Greetings ... 12

http://releases.accessroot.com/
��

PAGE 3 DEALING WITH FUNNY CHECKSUM

1. Checksum Check

During one of my reversing sessions I stumbled across application which, after unpacking, and a little bit of

patching started crashing with ACCESS_VIOLATION at weird location. As always I would use debugger to break

in, and see what’s going on. This time, there were no clues about crash. What I could see is that EIP is pointing to

weird location. Usually through stack layout you can find from where code was executed, but not this time.

Setting memory break points or hardware breakpoints was out of the question. We are talking about ~50mb of

code. Also static analyze was out of the question. I didn’t want to spend more than 1 hour on unpacking this

target. It was more like exercise application, and not 1 month project to analyze it in details. Even more

complicated was that stack, and state of registers would be different on every occasion, and executed from

different threads.

1.1. Test Application description

Test Application which I wrote for this article pretty much mimics behavior of original applications checksum

check. Our Test Application will have one window, and every 10 seconds there will be popup letting us know that

we are using trial application:

Let look in debugger where this trial message is coming from:

Ok, we found it, let’s patch it:

Our patch is ready, and if we run application we will get crash. Of course, now is time to load it into debugger

and see what’s going on.

PAGE 4 DEALING WITH FUNNY CHECKSUM

Now let’s have a look at stack:

Looks ugly, as whole stack up to top is filled with DEADC0DE, thus we don’t have any starting point. Remember

this checksum check is thrown from different threads, and from different code parts from ~50mb file, and it’s

thrown at different execution times. Register layout is also messed up:

No obvious reason why this happened, and from where exception is triggered. What we can assume is that:

- jmp/call/ret/iretd is used to redirect execution to DEADC0DE

- NtContinue might have been used to set EIP to DEADC0DE

- Hook in some api, APC delivery to DEADC0DE, thread execution to DEADC0DE etc. but all of these

belong to jmp/call/ret/iretd cases

I’ve observed in my real target NtContinue, and concluded that it’s not used for eip redirection. What remains are

these 4 instructions. But how do I break there? How do I track them? I’m not going to analyze this file in details.

Remember, this was an unpacking exercise for me.

PAGE 5 DEALING WITH FUNNY CHECKSUM

1.2. Instrumentation comes to the rescue

Only way to break at certain instructions is to instrument application. No other way. You have already 2

instrumentation frameworks – PIN Tool, and DynamoRIO, but this time I won’t use any public tools. I will use my

own instrumentation library which I wrote in spare time.

After several runs, we can see that application is dying at address DEADC0DE thus I will instrument my tool to

make jmp $ when call/jmp/ret are leading to DEADCODE.

void instrumentCallJmpRet(

 __in px86dis px86,

 __in unsigned long dest,

 __in unsigned long src)

{

 if (dest == 0xDEADC0DE){

 DbgPrint(("%s -- found killing code..", __FUNCTION__));

 DbgPrint(("%s -- dst = %.08X src = : %.08X", __FUNCTION__,

dest, src));

 __asm jmp $

 }

}

Now let’s run my tool, and watch output in DbgView:

Now if we attach with debugger to this process, we might see what is last instruction executed, before exception

happens:

Ok, we are good. We see that DEADC0DE is used to fill “something”, now we can load file into IDA, and see

what’s going on. Remember this is test application, so what I will present is similar how it was done in the real

target, but checksum check was checking only certain parts of the code, not whole code section.

IDA output of a whole function:

.text:01001005 sub_1001005 proc near

.text:01001005 mov edi, edi

.text:01001007 push ebp

.text:01001008 mov ebp, esp

.text:0100100A mov eax, large fs:4

.text:01001010 push ebx

.text:01001011 push esi

.text:01001012 push edi

PAGE 6 DEALING WITH FUNNY CHECKSUM

.text:01001013 lea edi, [ebp+4]

.text:01001016 sub edi, 100h

.text:0100101C sub eax, edi

.text:0100101E shr eax, 2

.text:01001021 jz short loc_100102C

.text:01001023 mov ecx, eax

.text:01001025 mov eax, 0DEADC0DEh

.text:0100102A rep stosd

.text:0100102C

.text:0100102C loc_100102C:

.text:0100102C rdtsc

.text:0100102E and eax, 0FCh

.text:01001033 sub esp, eax

.text:01001035 popa

.text:01001036 retn

As we can see, code reads TEB.StackBase, and gets address of return address to calculate stack size needed for

wipe. It also substracts 100h from stack, thus even some previous stack frame is wiped (which we could have used

to locate some previously called procedure which return address is still on the stack). Before ret is hit, esp is

moved somewhere in this stack randomly thus we can’t pinpoint at least stack offset at which wipe happened.

Lets follow reference to this function:

.text:01001041 sub_1001041 proc

.text:01001041

.text:01001041

.text:01001041 pbData = byte ptr -1Ch

.text:01001041 pdwDataLen = dword ptr -0Ch

.text:01001041 hProv = dword ptr -8

.text:01001041 hHash = dword ptr -4

.text:01001041

.text:01001041 mov edi, edi

.text:01001043 push ebp

.text:01001044 mov ebp, esp

.text:01001046 sub esp, 1Ch

.text:01001049 mov eax, large fs:30h

.text:0100104F push ebx

.text:01001050 push esi

.text:01001051 mov esi, [eax+8]

.text:01001054 mov eax, [esi+3Ch]

.text:01001057 push edi

.text:01001058 add eax, esi

.text:0100105A movzx ecx, word ptr [eax+14h]

.text:0100105E push 0F0000040h ; dwFlags

.text:01001063 push 1 ; dwProvType

.text:01001065 xor ebx, ebx

.text:01001067 push ebx ; szProvider

.text:01001068 lea edi, [ecx+eax+18h]

.text:0100106C push ebx ; szContainer

.text:0100106D lea eax, [ebp+hProv]

.text:01001070 push eax ; phProv

.text:01001071 call ds:CryptAcquireContextW

.text:01001077 lea eax, [ebp+hHash]

.text:0100107A push eax ; phHash

.text:0100107B push ebx ; dwFlags

.text:0100107C push ebx ; hKey

.text:0100107D push 8003h ; Algid

.text:01001082 push [ebp+hProv] ; hProv

.text:01001085 call ds:CryptCreateHash

.text:0100108B mov eax, [edi+0Ch]

PAGE 7 DEALING WITH FUNNY CHECKSUM

.text:0100108E push ebx ; dwFlags

.text:0100108F push dword ptr [edi+10h] ; dwDataLen

.text:01001092 add eax, esi

.text:01001094 push eax ; pbData

.text:01001095 push [ebp+hHash] ; hHash

.text:01001098 call ds:CryptHashData

.text:0100109E push ebx ; dwFlags

.text:0100109F lea eax, [ebp+pdwDataLen]

.text:010010A2 push eax ; pdwDataLen

.text:010010A3 lea eax, [ebp+pbData]

.text:010010A6 push eax ; pbData

.text:010010A7 push 2 ; dwParam

.text:010010A9 push [ebp+hHash] ; hHash

.text:010010AC mov [ebp+pdwDataLen], 10h

.text:010010B3 call ds:CryptGetHashParam

.text:010010B9 push [ebp+hHash] ; hHash

.text:010010BC call ds:CryptDestroyHash

.text:010010C2 push ebx ; dwFlags

.text:010010C3 push [ebp+hProv] ; hProv

.text:010010C6 call ds:CryptReleaseContext

.text:010010CC push 4

.text:010010CE pop ecx

.text:010010CF add esi, 40h

.text:010010D2 lea edi, [ebp+pbData]

.text:010010D5 xor eax, eax

.text:010010D7 repe cmpsd

.text:010010D9 pop edi

.text:010010DA pop esi

.text:010010DB pop ebx

.text:010010DC jz short locret_10010E3

.text:010010DE call DestroyStack

.text:010010E3

.text:010010E3 locret_10010E3:

.text:010010E3 leave

.text:010010E4 retn

.text:010010E4 sub_1001041 endp

Code is not that hard to understand. What it does, is to compute md5 sum of code section, and compare it

against md5 sum which is stored at imagebase+0x40 in case that these 2 don’t match, function DestroyStack is

called. Now we can simply patch out this DestroyStack function, and everything will be working. We have

defeated checksum check which was crashing this program.

PAGE 8 DEALING WITH FUNNY CHECKSUM

2. Instrumentation Tool

In this chapter I will outline some design features of this tool for which I think are nice. However, there are many

things to be done with the tool, and updates will be always available, either on ARTeam website, and/or my web

site. You may find links in References section.

Why was this tool developed? One reason was that I always like to have full control over code I’m using, and to

be able to fast fix bugs.

First of all this tool operates on Basic Blocks. Basic Block is everything which can be executed without eip

redirection instructions.

 mov esi, eax

 mov edi, edx

 mov ecx, 200h

__loop: mov eax, [esi]

 mov [edi], eax

 add esi, 4

 add edi, 4

 dec ecx

 jnz __loop

In this case, everything until jnz is considered Basic Block. Theoretically speaking Basic Block in terms of

disassembling should be from __loop until jnz, but in case of instrumentation that’s not the case, as everything

here can be executed inside of single Basic Block. Now that we have idea what Basic Block is, I will describe

some things which gave me a small headache during development

2.1. Fast Basic Block Lookup

One of the most important things is fast Basic Block lookup. There are several possible ways of doing it. One which

was original idea was to use lists. Lists are nice, and provide nice interface for basic block lookups, but considering

that every time when we need new basic block, and that’s always, we have to cycle all lists. Obviously lists are

not good choice. My design uses portion of EIP as index to area where I keep all data about memory mappings,

and every memory mapping has array of 4 * 0x1000 bytes, thus basic block lookup happens fast using this pseudo

formula:

 pvvmap = get_vmmap(eip);

 pbbl = pvvmap->bbl_array[eip & 0xFFF];

This is very fast, and although it seems that this code consumes a lots of memory, which is true, during my testing it

seems like the best solution. Of course, there can be always added certain Garbage Collector which will wipe out

basic blocks, and pages which are not executed that often.

2.2. Self-modifying code handling

Self modifying code is very tricky to handle. To handle all possible cases I keep always track of all mappings for

every page inside of a given process. Every page can have flags which describe it’s state : VMMAP_READ,

VMMAP_EXEC, VMMAP_WRITE, VMMAP_WAS_WRITE. First three flags are clear, but VMMAP_WAS_WRITE has certain

meaning which will happen in this case:

- Memory is executed, thus basic block is built

- Memory is given write protection - prot |= VMMAP_WRITE

- Memory is written

- Memory protection is restored – prot, clear VMMAP_WRITE, set VMMAP_WAS_WRITE

- Memory is executed

PAGE 9 DEALING WITH FUNNY CHECKSUM

In this case, with VMMAP_WAS_WRITE we know that we have to check if basic block has changed. For this I use

special field inside of basic blocks which keep original bytes for this basic block. If change happens, we will catch

it, rebuild basic block, and then clear VMMAP_WAS_WRITE flag. The best case for this flag you will see in

WriteProcessMemory usage:

call someptr <---- build BBL

WriteProcessMemory(GetCurrentProcess(), <someptr>, <mydata>, 5, 0);

 -> NtProtectVirtualMemory(someptr); <-- PAGE_EXECUTE_READWRITE

 -> NtWriteVirtualMemory(someptr); <-- make change

 -> NtProtectVirtualMemory(someptr); <-- PAGE_EXECUTE_READ

call someptr <---- free and rebuild BBL due to WAS_WRITE

For basic blocks which are executed in VMMAP_WRITE area, all instructions which are doing write, are considered

as an end of basic block. Why is this so, next example will give more insight:

 call __delta

__delta: pop ebp <---+

 sub ebp, offset __delta |

 mov eax, offset __write |

 mov byte ptr[ebp+eax], 0c3h +--- this would be one bblock

__write: nop | which would lose control

 mov ecx, edx <---+ when executed live

In this case, everything until write instruction is considered as basic block, thus we never lose control in case

instruction is doing memory write inside of basic block.

2.3. Handling sysenter

sysenter is very tough to instrument. What we usually expect is that instruction continues execution after itself. With

sysenter that’s not the case, as sysexit in kernel will return to ntdll!KiFastSystemCallRet which is ret instruction. There

are several ways to cheat here, and I will outline some of them:

- Every sysenter redirect to int 2e

- Before sysenter, change return address on stack thus ret from KiFastSystemCallRet will return to

instrumentation library.

- Hook ntdll!KiFastSystemCallRet to always enter instrumentation library, thus control is never lost. This

approach causes some problems

Int 2e approach is nice, and easy to implement, but I didn’t like it, as it causes possible detection to happen. Eg. If

sysenter is present on system due to cpuid, and registers are not set as expected we can assume that we are

instrumented.

Change ESP ret address – very nice approach. I’ve used it at the beginning, and I’ll outline how it was done:

 mov [esp], offset __retsysenter

 sysenter

__retsysenter:

In this case ret in ntdll!KiFastSystemCall will return after sysenter. Which is very nice, and requires to keep list of

return addresses according to stack index, thus we know where we should continue. Nice, but also easily

detected. Call NtReadVirtualMemory with “current ESP – 0x8” for example, and check if ret address goes to ntdll

or somewhere else.

Hook ntdll!KiFastSystemCallRet – This is far the best solution. Hooking ntdll!KiFastSystemCallRet, only problem is how

to distinguish between calls which are coming from my tool, and the ones which are coming from instrumented

code. I will show my unique solution in next section, as it’s part of preserving hooks in ntdll.dll.

PAGE 10 DEALING WITH FUNNY CHECKSUM

2.4. Preserving hooks and entry points

Application which we are instrumenting can remove some of our entry hooks. One of them is also

ntdll!KiFastSystemCallRet, or ntdll!KiUserExceptionDispatcher for example. What we can do, is to monitor write

instructions which are modifying this code, imagine performance impact which is huge as it is, not counting this

extra code, or we can do something even better!! We will remap ntdll.dll to another base for instrumented

process, thus our hooks always remain in place, and if application wants to hook it’s own

KiUserExceptionDispatcher, it can do so, our original KiUserExceptionDispatcher will remain intact. This also covers

case of ntdll!KiFastSystemCallRet, as our hook will no be removed.

What I do, not to cause conflict between my calls to Nt* apis, which will end up with call to sysenter, is to walk all

of Nt* APIs and hook them to point to KiIntSystemCall which is int 2e, thus no conflict between my code, and

sysenter, and KiFasySystemCallRet

2.5. Child Process trace

It’s very important to keep control over child process, thus all applications can be instrumented. To do this, I have

special case for instrumenting NtCreateProcess/NtCreateProcessEx/NtCreateUserProcess. Common for these

functions is that handle of a new process is always stored in first argument. What happens then is mapping of

ntdll.dll in new process, as we might expect that application will write some changes to ntdll.dll (for sandbox

maybe) while process is still suspended, and it expects it to be at certain base, at this point, new thread is injected

into process which will perform hooking, and initialization of instrumentation library, and control will be returned to

father process.

2.6. DbgPrint
I usually like using OutputDebugStringA/W to output everything to DbgView thus I don’t need to write proper

logging code, but in this case every OutputDebugStringA/W will result in exception (that’s how these functions

works). To overcome this extra work, I wrote my own implementation of OutputDebugStringA/W so all logging can

be seen inside of DbgView without triggering any exception form my code.

2.7. Windows 8

Windows 8 has some mitigations techniques to mitigate ROP, and one of them is to check if stack is inside of TEBs

StackBase/StackLimit, thus every time I enter into instrumentation code, I replace StackBase/StackLimit with

StackBase/StackLimit of my stack for instrumentation

2.8. Memory Allocation
Memory allocation is very tricky. I could write my own, and waste time, si I’ve decided to use already available,

and proven memory allocation code known as Doug Lee’s malloc . No need to describe it here.

2.9. Exception injection

Sometimes, instruction which I’m emulating can cause exception. Thus in this case I inject exception through

function called traceInjectException . This function is used in case of single step exception injection, and access

violation during emulation of ret/call/jmp.

PAGE 11 DEALING WITH FUNNY CHECKSUM

Function reconstructs EXCEPTION_POINTERS with EXCEPTION_RECORD and CONTEXT, and executes shadow

KiUserExceptionDispatcher from remapped ntdll.dll

2.10. TF handling

One of the most important features which I wanted to be present in this code is TF handling. That was a must

have for me, and it has to be supported within the tool. Current implementation is not bullet proof but it can

handle single step encryption/decryption. Usually, TF is easy to handle, whenever it’s set we need to execute one

instruction, and simulate exception via traceInjectException. All of this works great, and that’s how it had to be

done. But tricky part comes when instruction which we are single stepping causes exception. TF will become part

of CONTEXT structure, and single step exception will happen in ntdll!KiUserExceptionDispatcher:

 xor eax, eax

 pushfd

 or dword ptr[esp], 100h

 popfd

 call [eax] <--- STATUS_ACCESS_VIOLATION <-- TF = 1

In this case, we need to fill CONTEXT.EFlags with TF, and also to inject single step after execution of 1st instruction

inside of ntdll!KiUserExceptionDispatcher. This all sounds way too easy, but in fact, it’s more complicated in real life

then I’ve expected. This was certain case I had to handle, and more you can find inside of source code of this

tool.

2.11. TODO

There are many things left to add and fix, properly handle some cases of which I can think of like drX processing.

In this case only drX on execution should be handled, as others will be triggered by code it’s self when it

reads/writes to memory. But as tool is stable atm, and can be used to instrument many applications, I’ve decided

to release it, it’s easy to customize it if required.

PAGE 12 DEALING WITH FUNNY CHECKSUM

3. End

3.1. References
Pin – A Dynamic Binary Instrumentation Tool

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

DynamoRIO

http://www.dynamorio.org/

ARTeam

https://accessroot.com

cr4zyserb – deroko of ARTeam

http://deroko.phearless.org

Doug Lee’s malloc

http://g.oswego.edu/dl/html/malloc.html

3.2. Conclusions

Well in this small write up, and introduction of my tool, I wanted to present different ways in fighting protections,

and also need to know when/how/what tools to use. I always preferred to use custom written tools to do the job

for me, instead of relying on any public tool. No reason for that, I’m used to it, and I hope you will too. I don’t

expect anybody to use this tool, but if only one person learned something from this tool, and article, my mission is

accomplished.

3.3. Greetings

I would like to say thank you to all my mates from ARTeam, although we haven’t been active that much in last

few years, to ex members of 29a group for sharing their knowledge, friendly people at unpack.cn,

woodman.com, and forum.exetools.com.

С вером у Бога, СЛОБОДА ИЛИ СМРТ

deroko of ARTeam

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.dynamorio.org/
https://accessroot.com/
http://deroko.phearless.org/
http://g.oswego.edu/dl/html/malloc.html

