DEROKO OF ARTEAM

Version 1.0
February 2013 1. Forewords

After a while, I've decided to write about something interesting which I've
found while unpacking one protection, and it will be also nice introduction to
one of my tools which | have wrote for fun of it.

However, | won't mention application name here, but fto demonstrate
checksum check which | have found | will be using one test application, thus
you will get idea what happened, and how checksum is defeated

I will also introduce one tool | wrote, which served me well in this particular case.
Tool should come with this document, thus | won't describe tool, and it's
internals as source code should be well commented

deroko of ARTeam

Editor: deroko

DEALING WITH FU A PAGE 2

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This
tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating
the theories and methods described. No distribution of patched applications has been done under any media or
host. The applications used were most of the times already been patched, and cracked versions were available
since a lot of time. ARTeam or the authors of the paper cannot be considered responsible damages the
companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of
sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking
how to improve the RCE art. We are not releasing any cracked application.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

Table of Contents

1. FOTEWOIAS ..ottt e e e e e et e e e e e e e eeataaaeeeeeeeetaassaeaeeeaassssssaaeeeeaassesssaeeeeeesssssaaeeeeesssnssaseeeeesnsnssraeeeens 1
A1 ileTe) 1] o RPN
1. CRECKSUM CECK ... ittt e et e e e e e ettt e e e e e e e ttaaeeeeee e s aaasseeeeeeeeessssaaaeeeeassssssaeseeessannsssseeeeeennnnrens
1.1. Test Application description
1.2. Instrumentation comes to the rescue

2. INSTTUMIENTATION TOO! ..utiiieiiiie ettt ettt e et e e et e e et e e e e tbaeesstbee e e sbeeeasssaeeasssaeaesssseeasssseaasssesassssaesssssesesssesansens

2.1. Fast Basic Block LOOKUPcccvveeeeevieeennns

2.2. Self-modifying code handling................

2.3. Handling sysenter........ocovveeeiiieeevvieeenns

2.4. Preserving hooks and entry points

2.5. Child Process tracecovveeeveeeeciveeeennneen.

2.6. DbgPrintu...ccccveeeeiieens

2.7. Windows 8......ccvveeennes

2.8. Memory Allocation
2.9. Exception injection

228 [R | o aTo] a T | [TaTe FR OO SO UT PR
2.11.

3 End
3.1. RETEIEINCES .. e e e et e e e e e et e e e e e e e e a— b e e e e e e e e t—baaaae e e e e abraaaaeeeeaattraaeeeeeaanaraes

3.2. Conclusions
3.3. (€ (=T] aTe [OOSR

http://releases.accessroot.com/
��

- r
PAGE 3 DEALING WITH FUNNY CHECKSUM

1. Checksum Check

During one of my reversing sessions | stumbled across application which, after unpacking, and a little bit of
patching started crashing with ACCESS_VIOLATION at weird location. As always | would use debugger to break
in, and see what's going on. This time, there were no clues about crash. What | could see is that EIP is pointing to
weird location. Usually through stack layout you can find from where code was executed, but not this time.

Setting memory break points or hardware breakpoints was out of the question. We are talking about ~50mb of
code. Also static analyze was out of the question. | didn’t want to spend more than 1 hour on unpacking this
target. It was more like exercise application, and not 1 month project to analyze it in details. Even more
complicated was that stack, and state of registers would be different on every occasion, and executed from
different threads.

1.1. Test Application description

Test Application which | wrote for this artficle pretty much mimics behavior of original applications checksum
check. Our Test Application will have one window, and every 10 seconds there will be popup letting us know that
we are using trial application:

trial

This is trial program, please register...

Let look in debugger where this trial message is coming from:

D T T R R LR T ST)

A1AA113E FIUSH & Stule = ME_OKIME_RPPLMOOAL
AlAE1148 FUSH testapp.Bl@E21A4 Title = ™rial™

H1BE1145 FUSH testapp.Bd1802150 Teut = "This iz trial program,. p
H1EE114R FUSH OWORD PTE SS:CEEBP+2] hOwner

91991 iig EELL OwWarD F"TE‘ E§ £< %USERSE. MeszageBonll»] MessageBoxll

Ok, we found it, let's patch it:

6ABA
68A421A801 s'trpialt ——1
6858218801 ;'This is tri

FF7/588 d.[ebpll8]
83C418 EED,
289878

Our patch is ready, and if we run application we will get crash. Of course, now is time to load it info debugger
and see what's going on.

DEALING WITH FU PAGE 4

sl

- Error @

Don't know how to continue because memory at address DEADCODE is
l % not readable, Try to change EIP or pass exception to program.

Now let’s have a look at stack:

BEESF394| DEADCEDE| Bti
BEEGF392) DEADCEDE| |ti
QaacFs3c) DEADCEDE| -4
AARGFSAA DEAODCADE| B“-4
EEEEEERE] OEADCE0E| B-4
BABEFZAS| DEADCEDE| B:i
BABCF2AC) DEADCEDE| Bti
BABSF2EE| DEADCEDE| Bti
oaRsF2E4| DEADCEDE| Iti
BEEGF2E2) DEADCEDE| -i
@aacFSEC) DEADCEDE| I-4
BABSFSCA| DEADCADE| B-4
BABEFSC4| DEADCEDE| B-4
BABEFECE| DEADCEDE| B-i
BABCFICC) DEADCEDE| Bti
BEESF208| DEADCEDE| Bti
BEEsF204| DEADCEDE| B:i
BEESF202| DEADCEDE| |-i
@aacFs0c) DEADCEDE| -4
BABSF3ER| DEARDCADE| -4
BABGFSE4| DEADCEDE| B-4
BABEFZES| DEADCEDE| B-i
BABCF2EC| DEADCEDE| Bti
BABSF2FE| DEADCEDE| Bt:
BEESFa3F4| DEADCEDE| Bti
BEEGF2F2| DEADCEDE| |-i
@aacFSFC) DEADCEDE| -4
BABEF2a8| DEADCADE| B¢
BABcF284| DEADCADE| B-4
BABEF28S| DEADCEDE| B:i
BABCFIAC) DEADCEDE| Bti
BEBSFI18| DEADCEDE| Bt:
BEESF2314| DEADCEDE| Bti
BEEGF212) DEADCEDE| |:i
@aacF21C) DEADCEDE| -4
BABEF228| DEADCADE| I-4
BABEF324| DEADCADE| B-4
BABEFI28) DEADCEDE| B:i
BABCFI2C) DEADCEDE| Bti

Pt Te Pl mdw T ooooosoor L

Looks ugly, as whole stack up to top is filled with DEADCODE, thus we don't have any starting point. Remember
this checksum check is thrown from different threads, and from different code parts from ~50mb file, and it's
thrown at different execution times. Register layout is also messed up:

ERx DERDCEDE
ECx DEROCHEDE
EDx DEROCHDE
EEX DEROCHDE
ESP @@@cFoRd
EEP DEROCHDE
ESI DEADCEDE
EDI DEAOCEDE

EIP [DEROCEDE

No obvious reason why this happened, and from where exception is tfriggered. What we can assume is that:
- jmp/call/ret/iretd is used to redirect execution to DEADCODE
- NtContinue might have been used to set EIP o DEADCODE
- Hook in some api, APC delivery to DEADCODE, thread execution to DEADCODE etc. but all of these
belong to jmp/call/ret/iretd cases

I've observed in my real target NtContinue, and concluded that it’s not used for eip redirection. What remains are
these 4 instructions. But how do | break there? How do | frack them? I'm not going to analyze this file in details.
Remember, this was an unpacking exercise for me.

PAG

F

DEALING WITH FUNNY CHECKSUM

1.2. Instrumentation comes to the rescue

Only way to break at certain instructions is to instrument application. No other way. You have already 2
instrumentation frameworks — PIN Tool, and DynamoRIO, but this time | won't use any public tools. | will use my

own instrumentation library which | wrote in spare time.

After several runs, we can see that application is dying at address DEADCODE thus | will instrument my tool to

make jmp $ when call/jmp/ret are leading to DEADCODE.

void instrumentCallJdmpRet (
__in px86dis px86,
__in unsigned long dest,
__in unsigned long src)
{
if (dest == O0xDEADCODE) {
DbgPrint (("%s -- found killing code..", _ FUNCTION));
DbgPrint (("%s —-- dst = %.08X src = %.08X", FUNCTION ,
dest, src)):;
__asm jmp $
}
}
Now let’s run my tool, and watch output in DbgView:
41 5:32:44 PH [4088] imageidd —— adding image to the list ~device~harddiskvolu
42 G5:32:44 PH [4088] imageiddd —— adding image to the list ~dewvice~harddiskwaolu
43 5:32:44 PH [4088] imageidd — adding image to the list ~dewvice~harddiskvolu
5 imagedidd —— adding image to the list ~device~harddiskvolu

instrumentiCa
instrumentCa

CallImnpRet —— found killing.:DdE..

1lImnpEet —— d=st = DEADCODE =rc =

01001036

Now if we attach with debugger to this process, we might see what is last instruction executed, before exception

happens:
BieE1e2] | | JE SHORT 81881820
gieaiEzs | [MOV ECH,ERH
Biea1e25 | | MOM EAR, DEADCED0E
BiBE1EzA | | REF STOS DWORD FTR ES:CEDI]
BieE1E2c | |ROTSC
E1EE162E | | AMD EAX,GFC
BieE1e3s | | SUB ESP,.EAX
B18A1635 | | POPAD
gieEiEss | | RETH
BiBa1E57 | | POF EDI
BiBa1E3s | | POF ESI
BiEE1E39 | | FOF EEX
BieE16E3a | | POP EBP
B1eE163E | | RETH
pilgiieee | | oy

Ok, we are good. We see that DEADCODE is used to fill “something”, now we can load file into IDA, and see
what's going on. Remember this is test application, so what | will present is similar how it was done in the real
target, but checksum check was checking only certain parts of the code, not whole code section.

IDA output of a whole function:

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

01001005
01001007
01001008
0100100A
01001010
01001011
01001012

01001005 sub 1001005

proc near

mov edi, edi

push ebp

mov ebp, esp

mov eax, large fs:4
push ebx

push esi

push edi

DEAL _ PAGE 6

i rd
.text:01001013 lea edi, [ebp+t4]
.text:01001016 sub edi, 100h
.text:0100101C sub eax, edi
.text:0100101E shr eax, 2
.text:01001021 jz short loc 100102C
.text:01001023 mov ecx, eax
.text:01001025 mov eax, ODEADCODEh
.text:0100102A rep stosd
.text:0100102C
.text:0100102C loc 100102C:
.text:0100102C rdtsc
.text:0100102E and eax, OFCh
.text:01001033 sub esp, eax
.text:01001035 popa
.text:01001036 retn

As we can see, code reads TEB.StackBase, and gets address of return address to calculate stack size needed for
wipe. It also substracts 100h from stack, thus even some previous stack frame is wiped (which we could have used
to locate some previously called procedure which return address is still on the stack). Before ret is hit, esp is
moved somewhere in this stack randomly thus we can't pinpoint at least stack offset at which wipe happened.

Lets follow reference to this function:

.text:01001041 sub 1001041 proc
.text:01001041

.text:01001041

.text:01001041 pbData = byte ptr -1Ch
.text:01001041 pdwDatalen = dword ptr -0Ch
.text:01001041 hProv dword ptr -8
.text:01001041 hHash dword ptr -4
.text:01001041

.text:01001041 mov edi, edi

.text:01001043 push ebp

.text:01001044 mov ebp, esp

.text:01001046 sub esp, 1Ch

.text:01001049 mov eax, large fs:30h
.text:0100104F push ebx

.text:01001050 push esi

.text:01001051 mov esi, [eax+8]

.text:01001054 mov eax, [esi+3Ch]
.text:01001057 push edi

.text:01001058 add eax, esi

.text:0100105A movzx ecx, word ptr [eax+14h]
.text:0100105E push 0F0000040h ; dwFlags
.text:01001063 push 1 ; dwProvType
.text:01001065 XOr ebx, ebx

.text:01001067 push ebx ; szProvider
.text:01001068 lea edi, [ecx+eax+18h]
.text:0100106C push ebx ; szContainer
.text:0100106D lea eax, [ebp+hProv]
.text:01001070 push eax ; phProv
.text:01001071 call ds:CryptAcquireContextW
.text:01001077 lea eax, [ebpthHash]
.text:0100107A push eax ; phHash
.text:0100107B push ebx ; dwFlags
.text:0100107C push ebx ; hKey
.text:0100107D push 8003h ; Algid
.text:01001082 push [ebpt+hProv] ; hProv
.text:01001085 call ds:CryptCreateHash

.text:0100108B mov eax, [edi+0Ch]

m
i

.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

0100108E
0100108F
01001092
01001094
01001095
01001098
0100109E
0100109F
010010A2
010010A3
010010A6
010010A7
010010A9
010010AC
010010B3
010010B9
010010BC
010010C2
010010C3
010010Ceo6
010010cCC
010010CE
010010CF
010010D2
010010D5
010010D7
010010D9
010010DA
010010DB
010010DC
010010DE
010010E3
010010E3
010010E3
010010E4
010010E4 sub 1001041

locret 10010E3:

DEALING WITH FUNNY CHECKSUM

leave
retn
endp

ebx ; dwFlags
dword ptr [edi+10h] ; dwDatalen
eax, esi

eax ; pbData
[ebpthHash] ; hHash
ds:CryptHashData

ebx ; dwFlags
eax, [ebptpdwDatalen]

eax ; pdwDatalen
eax, [ebptpbDatal

eax ; pbData

2 ; dwParam
[ebpt+hHash] ; hHash
[ebptpdwDatalen], 10h

ds:CryptGetHashParam
[ebpthHash] ; hHash
ds:CryptDestroyHash

ebx ; dwFlags
[ebp+hProv] ; hProv
ds:CryptReleaseContext

4
ecx
esi,
edi,
eax,

40h
[ebp+pbData]
eax

cmpsd

edi

esi

ebx

short locret 10010E3
DestroyStack

Code is not that hard to understand. What it does, is to compute md5 sum of code section, and compare it
against md5 sum which is stored at imagebase+0x40 in case that these 2 don’t match, function DestroyStack is
called. Now we can simply patch out this DestroyStack function, and everything will be working. We have
defeated checksum check which was crashing this program.

DEAL ITHF PAGE 8

2. Instrumentation Tool

In this chapter | will outline some design features of this tool for which | think are nice. However, there are many
things to be done with the tool, and updates will be always available, either on ARTeam website, and/or my web
site. You may find links in References section.

Why was this tool developed? One reason was that | always like to have full control over code I'm using, and to
be able to fast fix bugs.

First of all this tool operates on Basic Blocks. Basic Block is everything which can be executed without eip
redirection instructions.

mov esi, eax

mov edi, edx

mov ecx, 200h
__loop: mov eax, [esi]

mov [edi], eax

add esi, 4

add edi, 4

dec ecx

jnz __loop

In this case, everything until jnz is considered Basic Block. Theoretically speaking Basic Block in terms of
disassembling should be from __loop until jnz, but in case of instrumentation that's not the case, as everything
here can be executed inside of single Basic Block. Now that we have idea what Basic Block is, | will describe
some things which gave me a small headache during development

2.1. Fast Basic Block Lookup

One of the most important things is fast Basic Block lookup. There are several possible ways of doing it. One which
was original idea was to use lists. Lists are nice, and provide nice interface for basic block lookups, but considering
that every time when we need new basic block, and that’s always, we have to cycle all lists. Obviously lists are
not good choice. My design uses portion of EIP as index to area where | keep all data about memory mappings,
and every memory mapping has array of 4 * 0x1000 bytes, thus basic block lookup happens fast using this pseudo
formula:

pvvmap = get vmmap (eip);
pbbl = pvvmap->bbl arrayleip & OxFFF];

This is very fast, and although it seems that this code consumes a lots of memory, which is frue, during my testing it
seems like the best solution. Of course, there can be always added certain Garbage Collector which will wipe out
basic blocks, and pages which are not executed that often.

2.2. Self-modifying code handling

Self modifying code is very tricky to handle. To handle all possible cases | keep always track of all mappings for
every page inside of a given process. Every page can have flags which describe it's state : VMMAP_READ,
VMMAP_EXEC, VMMAP_WRITE, VMMAP_WAS_WRITE. First three flags are clear, but VMMAP_WAS_WRITE has certain
meaning which will happen in this case:

- Memory is executed, thus basic block is built

- Memory is given write protection - prot |= VMMAP_WRITE

- Memory is written

- Memory protection is restored — prot, clear VYMMAP_WRITE, set VMMAP_WAS_WRITE

- Memory is executed

PAGE 9 g DEALING WITH FUNNY CHECKSUM

In this case, with VMMAP_WAS_WRITE we know that we have to check if basic block has changed. For this | use
special field inside of basic blocks which keep original bytes for this basic block. If change happens, we will catch
it, rebuild basic block, and then clear VMMAP_WAS_WRITE flag. The best case for this flag you will see in
WriteProcessMemory usage:

call someptr <---- build BBL
WriteProcessMemory (GetCurrentProcess (), <someptr>, <mydata>, 5, 0);
-> NtProtectVirtualMemory (someptr); <-- PAGE EXECUTE READWRITE

-> NtWriteVirtualMemory (someptr) ; <-- make change
-> NtProtectVirtualMemory (someptr); <-- PAGE EXECUTE READ
call someptr <---- free and rebuild BBL due to WAS WRITE

For basic blocks which are executed in VMMAP_WRITE area, all instructions which are doing write, are considered
as an end of basic block. Why is this so, next example will give more insight:

call __delta
__delta: pop ebp <—=—=+
sub ebp, offset delta \
mov eax, offset write |
mov byte ptrlebpteax], 0c3h +--- this would be one bblock
__wWrite: nop | which would lose control
mov ecx, edx <-——+ when executed live

In this case, everything until write instruction is considered as basic block, thus we never lose control in case
instruction is doing memory write inside of basic block.

2.3. Handling sysenter

sysenter is very tough to instrument. What we usually expect is that instruction continues execution after itself. With
sysenter that's not the case, as sysexit in kernel will return to ntdll!KiFastSystemCallRet which is ret instruction. There
are several ways to cheat here, and | will outline some of them:
- Every sysenter redirect to int 2e
- Before sysenter, change return address on stack thus ret from KiFastSystemCallRet will refurn to
instrumentation library.
- Hook ntdlllKiFastSystemCallRet to always enter instrumentation library, thus control is never lost. This
approach causes some problems

Int 2e approach is nice, and easy to implement, but | didn’t like it, as it causes possible detection to happen. Eg. If
sysenter is present on system due to cpuid, and registers are not set as expected we can assume that we are
instfrumented.

Change ESP ret address — very nice approach. I've used it at the beginning, and I'll outline how it was done:

mov [esp], offset retsysenter
sysenter
___retsysenter:

In this case ret in ntdlliKiFastSystemCall will return after sysenter. Which is very nice, and requires to keep list of
return addresses according to stack index, thus we know where we should continue. Nice, but also easily
detected. Call NtReadVirtualMemory with “current ESP — 0x8" for example, and check if ret address goes to ntdll
or somewhere else.

Hook ntdll!KiFastSystemCallRet - This is far the best solution. Hooking ntdlliKiFastSystemCallRet, only problem is how
to distinguish between calls which are coming from my tool, and the ones which are coming from instrumented
code. | will show my unique solution in next section, as it's part of preserving hooks in ntdlil.dil.

DEAL ITH F PAGE 10

2.4. Preserving hooks and entry points

Application which we are instrumenting can remove some of our entry hooks. One of them is also
ntdll!KiFastSystemCaliRet, or ntdll!KiUserExceptionDispatcher for example. What we can do, is to monitor write
instructions which are modifying this code, imagine performance impact which is huge as it is, not counting this
extra code, or we can do something even betterll We will remap ntdil.dll fo another base for instrumented
process, thus our hooks always remain in place, and if application wants to hook it's own
KiUserExceptionDispatcher, it can do so, our original KiUserExceptionDispatcher will remain intact. This also covers
case of ntdlllKiFastSystemCallRet, as our hook will no be removed.

What | do, not to cause conflict between my calls fo Nt* apis, which will end up with call to sysenter, is to walk all
of Nt* APIs and hook them to point to KilntSystemCall which is int 2e, thus no conflict between my code, and
sysenter, and KiFasySystemCallRet

2.5. Child Process trace

It's very important to keep control over child process, thus all applications can be instrumented. To do this, | have
special case for instrumenting NitCreateProcess/NiCreateProcessEx/NitCreateUserProcess. Common for these
functions is that handle of a new process is always stored in first argument. What happens then is mapping of
ntdll.dll in new process, as we might expect that application will write some changes to ntdll.dll (for sandbox
maybe) while process is still suspended, and it expects it to be at certain base, at this point, new thread is injected
into process which will perform hooking, and initialization of instrumentation library, and control will be returned to
father process.

2.6. DbgPrint

| usually like using OutputDebugStringA/W to output everything to DbgView thus | don't need to write proper
logging code, but in this case every OutputDebugStringA/W will result in exception (that's how these functions
works). To overcome this extra work, | wrote my own implementation of OutputDebugStringA/W so all logging can
be seen inside of DbgView without friggering any exception form my code.

2.7. Windows 8

Windows 8 has some mitigations techniques to mitigate ROP, and one of them is to check if stack is inside of TEBs
StackBase/Stacklimit, thus every time | enter info instrumentation code, | replace StackBase/StackLimit with
StackBase/StackLimit of my stack for insfrumentation

2.8. Memory Allocation

Memory allocation is very tricky. | could write my own, and waste time, si I've decided to use already available,
and proven memory allocation code known as Doug Lee’s malloc . No need to describe it here.

2.9. Exception injection

Sometimes, instruction which I'm emulating can cause exception. Thus in this case | inject exception through
function called tracelnjectException . This function is used in case of single step exception injection, and access
violation during emulation of ret/call/jmp.

PAGE11 ” DEALING WITH FUNNY CHECKSUM
d F 4

Function reconstructs EXCEPTION_POINTERS with EXCEPTION_RECORD and CONTEXT, and executes shadow
KiUserExceptionDispatcher from remapped ntdll.dll

2.10. TF handling

One of the most important features which | wanted to be present in this code is TF handling. That was a must
have for me, and it has to be supported within the tool. Current implementation is not bullet proof but it can
handle single step encryption/decryption. Usually, TF is easy to handle, whenever it's set we need to execute one
instruction, and simulate exception via tracelnjectException. All of this works great, and that's how it had to be
done. But tricky part comes when instruction which we are single stepping causes exception. TF will become part
of CONTEXT structure, and single step exception will happen in ntdlliKiUserExceptionDispatcher:

XOr eax, eax
pushfd

or dword ptr[esp], 100h

popfd

call [eax] <--- STATUS_ACCESS VIOLATION <-- TF = 1

In this case, we need to fill CONTEXT.EFlags with TF, and also fo inject single step after execution of 1st instruction
inside of ntdllIKiUserExceptionDispatcher. This all sounds way too easy, but in fact, it's more complicated in real life
then I've expected. This was certain case | had to handle, and more you can find inside of source code of this
tool.

2.11. TODO

There are many things left to add and fix, properly handle some cases of which | can think of like drX processing.
In this case only drX on execution should be handled, as others will be triggered by code it's self when it
reads/writes to memory. But as tool is stable atm, and can be used to instrument many applications, I've decided
to release it, it's easy to customize it if required.

DEALING WITH FUN- PAGE 12

3. End

3.1. References

Pin — A Dynamic Binary Instrumentation Tool
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
DynamoRIO

http://www.dynamorio.org/

ARTeam

https://accessroot.com

cr4zyserb — deroko of ARTeam

http://deroko.phearless.org

Doug Lee's malloc

http://g.oswego.edu/dl/html/malloc.html

3.2. Conclusions

Well in this small write up, and introduction of my tool, | wanted to present different ways in fighting protections,
and also need to know when/how/what tools to use. | always preferred to use custom written tools to do the job
for me, instead of relying on any public tool. No reason for that, I'm used to it, and | hope you will too. | don't
expect anybody to use this tool, but if only one person learned something from this tool, and article, my mission is
accomplished.

3.3. Greetings

I would like to say thank you to all my mates from ARTeam, although we haven't been active that much in last
few years, to ex members of 29a group for sharing their knowledge, friendly people at unpack.cn,
woodman.com, and forum.exetools.com.

A
X

%600 paw ©

C Bepom y bora, CAOBOAA UAU CMPT
deroko of ARTeam

http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
http://www.dynamorio.org/
https://accessroot.com/
http://deroko.phearless.org/
http://g.oswego.edu/dl/html/malloc.html

