
A che e

2009

Quo sego

ARTeam

Jan 2009

 Defeating the Winlicense Main
Executable version 2.0.5.0

DEFEATING THE WINLICENSE MAIN EXECUTABLE VERSION 2.0.5.0

CryptoCode 2

DISCLAIMER

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it.
This tutorial is also free to distribute in its current unaltered form, with all the included supplements.

 All the commercial programs used within this tutorial have been used only for the purpose of
demonstrating the theories and methods described. No distribution of patched applications has been done
under any media or host. The applications used were most of the times already been patched by other
fellows, and cracked versions were available since a lot of time. ARTeam or the authors of the papers
shouldn’t be considered responsible for damages to the companies holding rights on those programs. The
scope of this document as well as any other ARTeam tutorial is of sharing knowledge and teaching how to
patch applications, how to bypass protections and generally speaking how to improve the RCE art. We are
not releasing any cracked application.

VERIFICATION

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

http://releases.accessroot.com/�

DEFEATING THE WINLICENSE MAIN EXECUTABLE VERSION 2.0.5.0

CryptoCode 3

TABLE OF CONTENTS

Disclaimer .. 2

Verification .. 2

Forewords ... 4

1 CRYPTOCODE 5

1.1 Main Thread ... 5
1.1.1 Start of the functions/storage of registers.. 5
1.1.2 Store ebx in the stack .. 7
1.1.3 Restore ebx from the stack .. 8

1.2 Decryption Thread .. 9

1.3 Defeating CryptoCode .. 9

2 DLL DATABASE & LOADLIBRARY API 10

2.1 The function ... 10

2.2 API addresses loaded on the Heap ... 10

2.3 Database table ... 11

Thnx & Credits ... 13

History ... 13

DEFEATING THE WINLICENSE MAIN EXECUTABLE VERSION 2.0.5.0

CryptoCode 4

FOREWORDS

This paper will discuss 2 protections only used in the Winlicense Main executable.

The protections discussed will be:

• CryptoCode (trivial name)

o (Winlicense using threads to decrypt/encrypt certain code functions)

• Dll Database & LoadLibrary API

o (Winlicense using an encrypted dll database, and a modified LoadLibrary API)

In this paper I will not discuss other aspects of the Winlicense protection scheme unless required to
understand the above.

Defeating the above and the standard Winlicense protection options as used in commercial programs, will
result in a functioning Main unpacked executable. However the protected apps will not function since the VM
mutation/creation engine also checks for protection integrity. But not to spoil you guys you may find that one
yourself. :)

For this Tutorial I've used the Winlicense.exe provided by hacnho. Thank you.

quosego

DEFEATING THE WINLICENSE MAIN EXECUTABLE VERSION 2.0.5.0

CryptoCode 5

1 CRYPTOCODE

This protection is quite similar to CodeEncrypt, however it's a lot more complex. Defeating it however is even
easier than defeating CodeEncrypt. Like CodeEncrypt it first decrypts a function executes it and then re-
encrypts it.

First I'll show you a call to the protection:

006043F5 68 45382678 PUSH 78263845 (1)
006043FA 6A 01 PUSH 1 (2)
006043FC 6A 00 PUSH 0 (3)
006043FE 68 A41C2D61 PUSH 612D1CA4 (4)
00604403 68 6E857FE8 PUSH E87F856E (5)
00604408 68 45382678 PUSH 78263845 (6)
0060440D

E8 8A48E0FF
CALL 00408C9C (7)

As you can see it looks like a reasonably normal call and a few pushes, and if you would follow the call to
408C9C(1) you'll see that it'll just nicely go to the delphi API table. Fixing the direct API's here using the
methods available on the RE boards would make it point to wsprintfA. Yet the pushes accompanying this call
do not suggest a wsprintfA call, on the contrary the wsprintfA would actually crash if you'd make these pushes.

So did Oreans update the API writing routines in packer code and make the method used in the available tuts
invalid? No, the wsprintfA API is actually correct. However not exclusively. If you don’t fix this API call you’ll see
that the direct jump behind this call actually points to the Winlicense section instead of normally to a memory
buffer containing (part of) the obfuscated API.

It points to the following function executed in the Main Thread:
I'll discuss each part of it. Execution is sequential.

1.1 MAIN THREAD

52 PUSH EDX
8BD4 MOV EDX,ESP
60 PUSHAD

1.1.1 START OF THE FUNCTIONS/STORAGE OF REGISTERS

E8 00000000 CALL 01613299
5D POP EBP
81ED FCC06409 SUB EBP,964C0FC

Load EBP, EBP is used in retrieving fixed memory values. Intriguingly this is done with a call that calls the next
line which then pops the call into EBP. Essentially moving 01613299 into EBP, a value is then subtracted to get
the required ebp value as the acquired value from this call/pop method of course depends on the location it is
used.

8B42 08 MOV EAX,DWORD PTR DS:[EDX+8]
3D 45382678 CMP EAX,78263845
0F85 JNZ 016133E6

DEFEATING THE WINLICENSE MAIN EXECUTABLE VERSION 2.0.5.0

CryptoCode 6

38010000

This checks for the last instruction pushed, is it 78263845? In our case it is. However if it's not
it'll branch of to the following instruction:

61 POPAD
5A POP EDX
B8 ADA8397E MOV EAX,USER32.wsprintfA
FFE0 JMP EAX

Hmmm, as you can see it jumps to wsprintfA if 78263845 is not pushed. Meaning that this function has two
functions both to execute wsprintfA and decrypt a function.

8B42 0C MOV EAX,DWORD PTR DS:[EDX+C] //push value (2)
8B4A 18 MOV ECX,DWORD PTR DS:[EDX+18] //push value (5)
D3C8 ROR EAX,CL
BB FEFD5F74 MOV EBX,745FFDFE
33C3 XOR EAX,EBX // Eax will hold the location.
83E8 04 SUB EAX,4
8985 C9282C09 MOV DWORD PTR

SS:[EBP+92C28C9],EAX

8B58 04 MOV EBX,DWORD PTR DS:[EAX+4]
8BF8 MOV EDI,EAX

Here it uses two pushed values (5) & (2) to calculate the location of the encrypted function.
And next store it, and use it for the next function.

8B42 10 MOV EAX,DWORD PTR DS:[EDX+10] //push value (4)
8B4A 18 MOV ECX,DWORD PTR DS:[EDX+18] //push value (5)
D3C8 ROR EAX,CL
BE BECDF630 MOV ESI,30F6CDBE
33C6 XOR EAX,ESI // Eax will hold the end location

of the encrypted function.
2BC7 SUB EAX,EDI
83E0 FC AND EAX,FFFFFFFC
83E8 04 SUB EAX,4
8985 3D242C09 MOV DWORD PTR SS:[EBP+92C243D],EAX
8B42 14 MOV EAX,DWORD PTR DS:[EDX+14] //retrieve 0 dword. (3)
8985 F1192C09 MOV DWORD PTR SS:[EBP+92C19F1],EAX
8B42 18 MOV EAX,DWORD PTR DS:[EDX+18]

Here it uses two pushed values (5) & (4) to calculate the end location of the encrypted function.
Afterwards it stores it and resets eax. It also stores the 0 dword pushed (3) at a memory location. This is a
pointer to make the function encrypt or decrypt. 0 = decrypt, 1 = encrypt.

53 PUSH EBX

	Forewords
	CryptoCode
	Main Thread
	Start of the functions/storage of registers
	Store ebx in the stack
	Restore ebx from the stack

	Decryption Thread
	Defeating CryptoCode

	Dll Database & LoadLibrary API
	The function
	API addresses loaded on the Heap
	Database table
	Thnx & Credits
	History

