

P

Finally we have time to publish a decent basic tutorial on .NET. I should thanks
zyzygy and GooglePlex who submitted to us their tutorials about .NET.

I thought to merge them into a unique tutorial, and also thought to apply to it
the new template we are going to use for our tutorials.

The world of .NET applications has seen a tremendous improvement and finally
instruments are mature enough to successfully patch applications. Of course
this is a first tutorial for which we will try to introduce the procedures and
instruments one can use to decompile and patch applications.

Several extremely good tutorials has been published on this subject but mainly
for laziness we didn’t have one available..till now ☺

Anyway I added at the end a complete or rich at least list of references for
further reading and improving your understanding of this world. Do not
underestimate the difficulties you might find.

Ok, time to go! GooglePlex and zyzygy will describe how to patch two
applications using decompilation, modifying the MSIL source code (few MSIL
details will be given) and then recompiling the new program. I will show instead
at the end on another application how to do the same without recompilation,
using the MSIL bytecode specifications. zyzygy at the end again, will use
PeBrosePro to live debugging a .NET application.

Have phun,
Shub

1. Forewords
Table of Contents
1. Reversing .NET and a License

File Check by GooglePlex

2. Patching a Licence Check of

a .NET Application by zyzygy

3. Natively Patching MSIL .NET

code by Shub-Nigurrath

4. Serial Fishing in .NET (Live

Debugging) by zyzygy

Editor: Shub-Nigurrath

Prriimmeerr oonn RReevveerrssiinngg ..NNEETT AApppplliiccaattiioonnss

SS HH UU BB -- NN II GG UU RR RR AA TT HH ,, ZZ YY ZZ YY GG YY ,, GG OO OO GG LL EE PP LL EE XX

Version 1.2
October 2006

PAGE 2 PRIMER ON REVERSING .NET APPLICATIONS

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This
tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating
the theories and methods described. No distribution of patched applications has been done under any media or
host. The applications used were most of the times already been patched, and cracked versions were available
since a lot of time. ARTeam or the authors of the paper cannot be considered responsible damages the
companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of
sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking
how to improve the RCE art. We are not releasing any cracked application.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

Table of Contents

Verification ... 2
1. Reversing .NET and a License File Check, GooglePlex .. 3

1.1. Abstract.. 3
1.2. How to crack this nut ... 3

1.2.1 Preparation .. 3
1.2.2 Checking out the target.. 3
1.2.3 Opening the target in .NET Reflector... 4
1.2.4 The disassembling ... 7
1.2.5 The reassembling... 8
1.2.6 The testing .. 8

1.3. References... 9
1.4. Conclusions ... 9
1.5. Greetings ... 9

2. Patching a License Check of a .NET Application, zyzygy..10
2.1. Tools Required...10
2.2. Essay ...10
2.3. Assemble..16
2.4. Greetings ...16

3. Natively Patching MSIL .NET code, Shub-Nigurrath...17
3.1. Abstract..17

3.1.1 Targets:..17
3.2. Reversing the Version A...17

3.2.1 Analyzing the loader of the application...17
3.2.2 How the program runs..18
3.2.3 Analyzing the real Application ...19
3.2.4 Patching the application using MSIL bytecode specifications...21
3.2.5 Patching the application...22
3.2.6 Coding a .NET Oraculum...24

3.3. Reversing the Version B ...26
3.3.1 Decompiling the program with IDA...27

3.4. Final Remarks...31
4. Serial Fishing in .NET (Live Debugging), zyzygy...32

4.1. Tools ..32
4.2. Essay ...32

5. Further readings ..37
5.1. References...37

Document History ..38

http://releases.accessroot.com/

PAGE 3 PRIMER ON REVERSING .NET APPLICATIONS

1. Reversing .NET and a License File Check, GooglePlex

1.1. Abstract

The purpose of this tutorial is to learn how to reverse a .NET-application, which also is protected by a license file
check.

The application that we are going to reverse is EngiSSol’s 2D Frame Analysis Dynamic Edition (or just 2D Truss –
you'll see later why).

The tools used for this are Lutz Roeder's .NET Reflector, Microsoft .NET SDK, Notepad, and - of course – brains. No
OllyDbg, though. It can't reverse .NET-applications ;(

1.2. How to crack this nut
1.2.1 Preparation

This time, I've done some preparations for you. I've had opened our target in PeiD and found out that it was a
.NET application. This forces us to use other software than good ol' Olly, but it really makes our job easier (thanks,
Microsoft) because we now can decompile our executable to IL – Intermediate Language – which is much more
readable than assembly. We can also recompile the IL to EXE (thanks again, Microsoft).

1.2.2 Checking out the target

It is always a good idea to see how the program reacts because the program's reactions to your inputs are often
important flags to search for.

So, let's try to fire up our target and see what happens (Figure 1):

PAGE 4 PRIMER ON REVERSING .NET APPLICATIONS

Figure 1 - Oh no! We've got no license!

Hmm...see the title? ”2D Frame Analysis [Dynamic Edition]”? And now it will switch to Truss Analysis DEMO? Seems
like it's a multiple-version application...

1.2.3 Opening the target in .NET Reflector

Let's open our target in .NET Reflector – Reflector might ask about a default list but just pick the newest you've got.
Go to the tree ”Frame2D” → ”Frame2D.exe” → ”Pframe” (see Figure 2):

PAGE 5 PRIMER ON REVERSING .NET APPLICATIONS

Figure 2 - Our target in .NET Reflector

Lovely.

.NET is neat because the executable is never REALLY compiled – all the source code can be read. And yes,
Reflector does the job ;).
You can see the source from IL through C# and Visual Basic to Delphi. Quite nice because you can easier
analyze you through what the program does if you know just a little high-level language. Just too bad it can't
dump it in high-level language ;(.

Now, since our license file check initialized in sync with the application, it is rather interesting to find the main form.
Go to “MainForm” in Reflector and expand the tree.
It is stuffed with things that happen within our MainForm. Check out “DemoFrame() : void” - right click and select
”Disassembler”. If it asks you to manually resolve stuff, just skip it.
You'll see this (I've chosen Visual Basic as the high-level language, but you can alter that in the toolbar) (Figure 3):

Figure 3 - The code of the procedure DemoFrame()

If you investigate further, there are also procedures called like “DemoFrameDynamic” and “DemoTruss”. As the
illustration suggests, the procedures tell the program which features that are unlocked and which are not. This
confirms my theory about a multi-version program ;).

PAGE 6 PRIMER ON REVERSING .NET APPLICATIONS

Seen the message from the illustration before? Yup, that's the second warning you get in the “demo” version of
the application! We're close.

Scroll further down. What do we see? A procedure called “MainForm_Load(Object, EventArgs) : void”. Nice!
Disassemble that! See Figure 4:

Figure 4 - Isn't that our first warning? ;)

Oh yes indeed. It checks if the license.dat file exists or not. If it doesn't exist it shows the warning and loads the
demo version! See Figure 5:

If you dig deeper into the code, you'll find that the application decrypts the
content of the license file to a string that starts with e.g. ”Frame Dynamic”
depending on the license. It then runs the appropriate procedure and
therefore the version of the program.

We could low-level patch the application by altering all references to the license check procedure but it will take
too long. We could also reverse the decryption procedure to make our own keygen (only KINGS make keygens –
and we've got the code somewhere :D), but that will also take too long.
Instead, we will remove the demo-nag and make it jump immediately to the best program version. It requires no
license file ;).

So, when still focused on our little nag, change language to IL. I suggest you print the source, because it's WAY
longer than the high-level language.
Now we need to locate our patches.
This seems interesting (Figure 6):

Figure 6 - The source in IL

I've tried to ”translate” the IL to some more understandable to know where to patch. These ”translations” are
probably not 100 % correct, since I have no experience in this language:

L_0021: ldfld string PFrame.MainForm::Directory

Push the application's path

L_0026:

ldstr "\\license.dat"

Push the license file name

L_002b:

call string string::Concat(string, string)

Call the strings above

L_0030:

call bool [mscorlib]System.IO.File::Exists(string)

Check if the file exists via mscorlib.dll

L_0035:

brtrue.s L_0055

If true, go to line 0055, else...

L_0037:

ldstr "License file not found. Program will run in Truss
Analysis DEMO mode."

...push the warning

L_003c: ldstr "EngiSSol" Push the warning's title

Figure 5 - The "Demo" is loaded!

	Verification
	1. Reversing .NET and a License File Check, GooglePlex
	1.1. Abstract
	1.2. How to crack this nut
	1.2.1 Preparation
	1.2.2 Checking out the target
	1.2.3 Opening the target in .NET Reflector
	1.2.4 The disassembling
	1.2.5 The reassembling
	1.2.6 The testing

	1.3. References
	1.4. Conclusions
	1.5. Greetings

	2. Patching a License Check of a .NET Application, zyzygy
	2.1. Tools Required
	2.2. Essay
	2.3. Assemble
	2.4. Greetings

	3. Natively Patching MSIL .NET code, Shub-Nigurrath
	3.1. Abstract
	3.1.1 Targets:

	3.2. Reversing the Version A
	3.2.1 Analyzing the loader of the application
	3.2.2 How the program runs
	3.2.3 Analyzing the real Application
	3.2.4 Patching the application using MSIL bytecode specifications
	3.2.5 Patching the application
	3.2.6 Coding a .NET Oraculum

	3.3. Reversing the Version B
	3.3.1 Decompiling the program with IDA

	3.4. Final Remarks

	4. Serial Fishing in .NET (Live Debugging), zyzygy
	4.1. Tools
	4.2. Essay

	5. Further readings
	5.1. References

	 Document History

