Version 1.2
October 2006

Table of Contents

1. Reversing .NET and a License
File Check by GooglePlex

2. Patching a Licence Check of
a .NET Application by zyzygy

3. Natively Patching MSIL .NET
code by Shub-Nigurrath

4. Serial Fishing in .NET (Live
Debugging) by zyzygy

Editor: Shub-Nigurrath

SHUB-NIGURRATH, ZYZYGY, GOOGLEPLEX

1. Forewords

Finally we have time to publish a decent basic tutorial on .NET. | should thanks
zyzygy and GooglePlex who submitted to us their tutorials about .NET.

| thought to merge them into a unique tutorial, and also thought to apply to it
the new template we are going to use for our tutorials.

The world of .NET applications has seen a tremendous improvement and finally
insfruments are mature enough to successfully patch applications. Of course
this is a first tutorial for which we will try to infroduce the procedures and
instruments one can use to decompile and patch applications.

Several extremely good tutorials has been published on this subject but mainly
for laziness we didn't have one available..till now ©

Anyway | added at the end a complete or rich atf least list of references for
further reading and improving your understanding of this world. Do not
underestimate the difficulties you might find.

Ok, time to go! GooglePlex and zyzygy will describe how to patch two
applications using decompilation, modifying the MSIL source code (few MSIL
details will be given) and then recompiling the new program. | will show instead
at the end on another application how fo do the same without recompilation,
using the MSIL bytecode specifications. zyzygy at the end again, will use
PeBrosePro to live debugging a .NET application.

Have phun,
Shub

PRIMER ON REVER - PAGE 2
£ A8

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This
tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating
the theories and methods described. No distribution of patched applications has been done under any media or
host. The applications used were most of the times already been patched, and cracked versions were available
since a lot of time. ARTeam or the authors of the paper cannot be considered responsible damages the
companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of
sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking
how to improve the RCE art. We are not releasing any cracked application.

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all fles have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

Table of Contents

VEIITICOTION et h bttt ettt b e bt e bt e bt et et et et e e m e eat e st e bt eb e s bt ket et emten e e st ebeebeebesbe b et enteneeneeneas 2
1. Reversing .NET and a License File Check, GOOGIEPIEXcc.ccveieieiiiriiieieeeet ettt 3
1.1. AADSTIAICT .ttt a bbbttt et h e e bbbt bt b et ettt b e bbbt een
1.2. How to crack this nut ...
1.2.1 PIEPDIAIATION . ettt et ettt et e e e e st e e tae et e e tae e beeeaseeteeeabeeasaeertaesasensseeaseesseenseeeaseeteeenreereas
1.2.2 CheCKING OUT The TAIGET ..ttt ettt e et e s be b e ssaesseesesseeseensasssensaassensans
1.2.3 Opening the target in .NET Reflector........covvvieieiennnnen.
1.2.4 The disassemMbliNG ..cc.cceeviieieneriereeiese e
1.2.5 The reassemMbBliNg....ccccveiieieeceeeese e
1.2.6 THE TESTING teetieteteeeec ettt
1.3. REFEIENCES......ceeeee e
1.4. CONCIUSIONS .ttt eeene
1.5. GrEETINGS eveteeiieeeie ettt ettt sae e ste e be s saeesaeeas
2. Patching a License Check of a .NET Application, zyzygy
2.1. TOOIS REQUITED ...ttt ettt et e e et e e ete e eateete e eaaeeeteeeabeeeteseeseeeaseeeseeeasenseesaseetesentseesseenteessseenseenn
2.2. @ USSP
2.3. Assemble
2.4, GIEETINGS evitietietiete ettt ettt et et e e st e et e s be e st e steesbesbeesbesbaessaassassesssasseessasseessenseessasseessansenseessassesssenseassassessaenseassansenes
3. Natively Patching MSIL .NET code, SNUD-NIQUITATN.......ccuoiiiiiiieeeeeeeeee et s

3.1. Abstract
3.1.1 Targets:
3.2 REVEISING ThE VEISION A ...ttt ettt ettt ettt et e bt e be s bt esae st e entesseessestebeessesseensenseensessnensenses
3.2.1 Analyzing the loader of the application
3.2.2 HOW The DIOGIOM FUNS....eiiiiiiteeeceeteetete sttt ettt ettt et s bt et e s beestesaeesbeeseensesseensessensesssenseessansesssensenn

3.2.3 ANAlYZING The reQl APPRICOTION ..ooiieieeeeeeeee ettt ettt este b e st e essesseesbeesaestessessaenseesaensanes
3.2.4 Patching the application using MSIL bytecode specifications...
3.2.5 Patching the appliCatioN........ceeeecieeeeeeeee e
3.2.6 Coding a .NET OraCulUmcceeeeveenreecieereeiecreecreeveenens
3.3. Reversing the Version Bccvvveevieeierienieieeeeieseeieeeeenn

3.3.1 Decompiling the program with IDAccccveeieveeviieniens

3.4. FINQI REMAIKS. ..cviiiiiieiereeieeeee et
4, Serial Fishing in .NET (Live Debugging), Zyzygy.....ccceeeevvereecvereeennn.
4.1. TOOIS ettt ettt sttt st

4.2. B Sy ettt ettt ettt et e et ete e —eeette e —ee e aeeabtea—eeataeeatte ettt eabee e beateeabeeatreeeteeeteeateeenraeenreeareeenres
5. FUMTNET TEAMINGS ..ttt ettt ettt et et et e st e e beeteesbeesa e beess e beessessaessassaesse s essaessanseesseseessassaessesseensanseessesean
5.1. References

DOCUMENT HISTOTY ettt ettt et et et et e e e e te e st e beessesbeesb e beesbessaessesssassesssessassanssassesesensesssensesssenseassassesssassenssansanns

http://releases.accessroot.com/

1. Reversing .NET and a License File Check, GooglePlex

1.1. Abstract

The purpose of this tutorial is to learn how to reverse a .NET-application, which also is protected by a license file
check.

The application that we are going to reverse is EngiSSol's 2D Frame Analysis Dynamic Edition (or just 2D Truss —
you'll see later why).

The tools used for this are Lutz Roeder's .NET Reflector, Microsoft .NET SDK, Notepad, and - of course — brains. No
OllyDbg, though. It can't reverse .NET-applications ;(

1.2. How to crack this nut

1.2.1 Preparation

This time, I've done some preparations for you. I've had opened our target in PeiD and found out that it was a
.NET application. This forces us to use other software than good ol' Olly, but it really makes our job easier (thanks,
Microsoft) because we now can decompile our executable to IL — Infermediate Language — which is much more
readable than assembly. We can also recompile the IL to EXE (thanks again, Microsoft).

1.2.2 Checking out the target

It is always a good idea to see how the program reacts because the program's reactions to your inputs are often
important flags to search for.

So, let's try to fire up our target and see what happens (Figure 1):

Z

| EngiSSol - 2D Frame Analysis [Dynamic Edition]

Fle Section Properties Preferences Solve: Help

DWH| &=

nstruction Window

EngiSSol

FHr PSP BERAL R

e \y License file not found. Program will run in Truss Analysis DEMO mode,
% Axial Force Diagram [N]

Number of Beams: 0 | Model Not Analyzed

J start SR 34 7 MSNMessen... =)4 Firefox - o v | 43 Munes i Truss2D.odt-0...] EngiSSol - 2D Fr... {6 Unavngivet-Paint & %

Figure 1 - Oh no! We've got no license!

Hmm...see the fitle2 "2D Frame Analysis [Dynamic Edition]"”2 And now it will switch to Truss Analysis DEMO?2 Seems
like it's a multiple-version application...

1.2.3 Opening the target in .NET Reflector

Let's open our target in .NET Reflector — Reflector might ask about a default list but just pick the newest you've got.
Go to the tree "Frame2D"” — "Frame2D.exe” — "Pframe” (see Figure 2):

f PRIMER ON REVERSING .NET APPLICATIONS

¥ Lutz Roeder’s .NET Reflector

File View Tools Help

oo rR AL Wa

[« System.Xml
= -2 Frame2D
= W% Frame2D.exe

|5 References

-

ER8F-rrame |
[“ff AboutForm
1+ *‘fﬁ AnalysisResults
@ %% ArcForm
I+ '“Eg BeamsComparer
I+ '“Eg BeamsForm
@ ¥ DeleteMaterial
& ¥ DranControl
& ¥ DrawingForm
& ¥ DynamicPref
& ¥ DynamicPreferences
@ % FieExporter
& ¥ FieLoader
& ¥ InsertBeamForm
@ % LoadsForm
4 MainForm
[% MForm
@ % ModelUr
[% ModifyMaterial
@ % NewMaterial
= % NForm
] *’3 ModesComparer
@ “ NodesForm
® %% OutputResulte
& % PlotForm
& % QForm
2] *‘fﬁ Security
2] *‘fg SecurityForm =
I *‘fﬁ Splash
* *‘fﬁ ViewOptions

13

£3

namespace PFrame

Figure 2 - Our target in .NET Reflector
Lovely.

.NET is neat because the executable is never REALLY compiled — all the source code can be read. And yes,
Reflector does the job ;).

You can see the source from IL through C# and Visual Basic tfo Delphi. Quite nice because you can easier
analyze you through what the program does if you know just a liffle high-level language. Just foo bad it can't
dump it in high-level language ;{.

Now, since our license file check initialized in sync with the application, it is rather interesting to find the main form.
Go to “MainForm” in Reflector and expand the tree.

It is stuffed with things that happen within our MainForm. Check out “DemoFrame() : void” - right click and select
"Disassembler”. If it asks you fo manually resolve stuff, just skip it.

You'll see this (I've chosen Visual Basic as the high-level language, but you can alter that in the toolbar) (Figure 3):

s .NET Reflector

ols Help

B [B? < 2 A |visuslBasic ||| (2

MainForm
) Base T Private Sub DemoFrame{)
dberhapes MessageBox, Show("This is a demo version of 20 Frame Analysis Software, Analysis is limited to 5 nodes. Please upgra
(4 Derived Types Me.Model.Currentivode = "DEMO Frame™
W .ctor() Me.Text = "EngiSSol - 20 Frame Analysis DEMO™
|49 ActiveDrawControl_CentrumPForCirdeDefined{Double, Double) : void i WMe. ToolBar 1, Buttons. [tem(6). Visible = False

Me. ToolBar 1.Buttons. Item(11). Visible = False

fedetdl) Mo 1 Me.Menultem28, Visible = False

|59 ActiveDrawControl_ModelChange

|8¥ ActiveDrawControl_NewSe: id Me.Menultem29. Visible = False
|g% ActiveDrawControl_PointAForCirdeDefined(Double, Double) : Void Me.Menultem27.Visible = False
5% ArcForm_ModelChanged(ModelU) : Void Me.Menultem 1L Visble = False

Me.Menultem24.Checked = True

Me.Menultem30. Visible = False

Me. ToolBar 2, Buttons, Item{13), Visible = True

Me. ToolBar 2, Buttons. Item{14). Visible = True

Me. ToolBar 2. Buttons. Ttem(15). Visible =True
End Sub

|59 arcForm_Selectaq

Figure 3 - The code of the procedure DemoFrame()

If you investigate further, there are also procedures called like “DemoFrameDynamic” and “DemoTruss”. As the
illustration suggests, the procedures tell the program which features that are unlocked and which are not. This
confirms my theory about a multi-version program ;).

PRIMER ON REVE

PAGE 6

Seen the message from the illustration before? Yup, that's the second warning you get in the “demo” version of

the application! We're close.

Scroll further down. What do we see? A procedure called “MainForm_Load(Object, EventArgs) : void”. Nicel

Disassemble that! See Figure 4:

Private Sub MainForm_Load(EyVal sender Az Object, ByVal e As Eventargs)
Me.MachineMame = Environment.MachineMame
ModelUJL Directory = Environment. CurrentDirectory
Me.Directory = Environment, CurrentDirectory
Try
If Mot File.Exists((Me.Directory & ™icense.dat™)) Then

Me.DemaoTruss
Elze
Dim streaml As New FileStream{{Me.Directory & "icense.dat”), FileMode. Open)

MessageBox. Show(License file not found. Program will run in Truss Analysis DEMO mede.”, "EngisSol™, MessageBoxButtons. 0K, MessageBoxIcon. Asterisk)

Figure 4 - Isn't that our first warning? ;)

Oh yes indeed. It checks if the license.dat file exists or not. If it doesn't exist it shows the warning and loads the

demo version! See Figure 5:

T TSSO T TR, T

Me,DemoTruss
Elea
Figure 5 - The "Demo" is loaded!

If you dig deeper into the code, you'll find that the application decrypts the
content of the license file to a string that starts with e.g. "Frame Dynamic”
depending on the license. It then runs the appropriate procedure and
therefore the version of the program.

We could low-level patch the application by altering all references to the license check procedure but it will fake
foo long. We could also reverse the decryption procedure to make our own keygen (only KINGS make keygens —

and we've got the code somewhere :D), but that will also take too long.

Instead, we will remove the demo-nag and make it jump immediately to the best program version. It requires no

license file ;).

So, when still focused on our little nag, change language to IL. | suggest you print the source, because it's WAY

longer than the high-level language.
Now we need to locate our patches.
This seems interesting (Figure 6):

L_0020: Idarg.0

L_0021: |dfid string PFrame.MainForm::Directory
L_0026: ldstr "\Yicense, dat”

L_002b: call string string: :Concat(string, string)

: call bool [mscorlib] System. 10, File::Exists(string)

: brirue.s L_0055

: Idstr "License file not found. Program will run in Truss Analysis DEMO mode.”
L_003c: ldstr "EngisSol”™

: ldc.i4.0

: ldc.i4.s 64

L_0049: pop

:Idarg.0

: callvirt instance void PFrame.MainFaorm::DemaTruss()
:leave L_D1f8

: call [System. Windows.Forms]System. Windows.Forms. DialogResult [System. Windows. Forms]System. Windows.Forms. MessageBox::Show(string, string, [Sy

Figure 6 - The source in IL

I've tried to "tfranslate” the IL to some more understandable to know where to patch. These "translations” are

probably not 100 % correct, since | have no experience in this language:

L_0021: |dfld string PFrame.MainForm::Directory Push the application's path
L_0026: Idstr "\\license.dat" Push the license file name
L_002b: call string string::Concaf(string, string) Call the strings above
L_0030: call bool [mscorlib]System.lO.File::Exists(string) Check if the file exists via mscorlib.dll
L_0035: brirue.s L_0055 If frue, go to line 0055, else...
L_0037: |dstr "License file not found. Program will run in Truss ...push the warning
Analysis DEMO mode."
L_003c: |dstr "EngiSSol" Push the warning's title

	Verification
	1. Reversing .NET and a License File Check, GooglePlex
	1.1. Abstract
	1.2. How to crack this nut
	1.2.1 Preparation
	1.2.2 Checking out the target
	1.2.3 Opening the target in .NET Reflector
	1.2.4 The disassembling
	1.2.5 The reassembling
	1.2.6 The testing

	1.3. References
	1.4. Conclusions
	1.5. Greetings

	2. Patching a License Check of a .NET Application, zyzygy
	2.1. Tools Required
	2.2. Essay
	2.3. Assemble
	2.4. Greetings

	3. Natively Patching MSIL .NET code, Shub-Nigurrath
	3.1. Abstract
	3.1.1 Targets:

	3.2. Reversing the Version A
	3.2.1 Analyzing the loader of the application
	3.2.2 How the program runs
	3.2.3 Analyzing the real Application
	3.2.4 Patching the application using MSIL bytecode specifications
	3.2.5 Patching the application
	3.2.6 Coding a .NET Oraculum

	3.3. Reversing the Version B
	3.3.1 Decompiling the program with IDA

	3.4. Final Remarks

	4. Serial Fishing in .NET (Live Debugging), zyzygy
	4.1. Tools
	4.2. Essay

	5. Further readings
	5.1. References

	 Document History

