
 

 

Private exe Protector unpacking 

by deepzero, 2011 

 

Scientia Potentia Est. 
 

 

 

 

 

 

 

  



Table of Content 
 

 

Contents 
Table of Content ...................................................................................................................................... 2 

Foreword ................................................................................................................................................. 3 

Tools used ................................................................................................................................................ 3 

Introduction ............................................................................................................................................. 4 

Locating the OEP ..................................................................................................................................... 5 

The import protection ............................................................................................................................. 9 

The anti-dump protection ..................................................................................................................... 10 

Obfuscation ........................................................................................................................................... 12 

The Resource protection ....................................................................................................................... 14 

The MORPH macro ................................................................................................................................ 22 

The PEP Virtual Machine ....................................................................................................................... 27 

The main handler .............................................................................................................................. 28 

The 0x00 (VM_EXIT) handler ............................................................................................................. 33 

The 0x0D handler .............................................................................................................................. 35 

The 0x0E handler ............................................................................................................................... 37 

The 0x12 handler ............................................................................................................................... 38 

The 0x13 handler ............................................................................................................................... 38 

Finishing ................................................................................................................................................. 41 

Trial or Demo? ....................................................................................................................................... 41 

Conclusion ............................................................................................................................................. 43 

Greets .................................................................................................................................................... 43 

Sources .................................................................................................................................................. 43 

 

 

 

 
 



Foreword 
 

Private exe Protector (PEP) is a lower end intermediate PE file protection and licensing solution. The 

price, 200$, is quiet high, which might be one of the reasons this protector is rarely being used.  I 

chose it here because there is little to no documentation available on version 3.x. From the PEP 

homepage: 

   Private exe Protector (PEP) is a professional licensing, anti-tampering and software 

examination system. PEP works with traditional methods, such as file compression, code 

fragment encryption, metamorphic loading, protection from debugging and file tampering , 

and features new innovative techniques, including data protection with stolen resources 

technique and partial code execution on a virtual machine. Licensing functions can be 

automatically integrated into the protected program, which allows the end user to quickly and 

securly manage all licences issued with the built in licence manager. All in all, it is the ideal 

solution for software developers.  

The main functionalities of protection are: 

 Encryption, compression and protection of software 

 Reliable protection of software against examination: PEP will protect your product 

against debugging, reverse assembling and other hazards. 

 Integrated licensing system: license manager, user database management, key 

generation, binding of software to particular hardware. 

 Unique software data protection system: PEP features stolen resources technique and 

counteraction to application memory dumping. 

 Conversion and execution of program code fragment on a high-speed virtual machine, 

special markers for a deeper integration of protection into protected program. 

 Complete control and flexibility of the protection option's set-up and configuration. 

 Creation of trial applications with restriction in terms of the number of application 

launches, the number of days; the system of reminders and restrictions can be 

customized manually using built-in APIs. 

 Maintenance of licence Blacklist 

 No problems with antivirus software. 

 Regular and significant updates of the protector. 

 Support of all common programming languages from assembler, Delphi, C, etc. to 

script languages, such as Python, blitz3d, etc. Both .exe files and .dll files can be 

protected. 

 Complete compatibility with any NT system: x32, x64 (2000, XP, Vista, 7, etc.), even 

with Linux (wine) 

Tools used 
OllyDebug 1.10, LordPe, ImpRec, CFF Explorer, PiD, ResHacker, HexEdit (all freeware). 

OllyDebug plugins: ollyadvanced, MultiMate assembler, odbgscript, IDAficator,AnalyzeThis!. 

 

 



Introduction 
 

When execution the main .exe file, we are greeted by a startup nag, reminding us that we are 

running the “trial” version of the Protector. 

 

fig. 1 the startup nag 

Despite there being an option to register the software, the “trial” version is actually a crippled 

“demo” version. Essential features of the program (e.g. key generation) are not implemented. We 

will prove this later. Once the program has started up, we see its interface: 

 

fig. 2 the PEP interface 

 

 



Unfortunately, we notice that our RAM usage has increased significantly: 

 

fig. 3 extensive memory usage - the anti-dump protection 

This is because of PEPs “anti-dump” protection feature, which we will deal with in a second. 

Locating the OEP 
 

The first step of a successful unpack is usually locating the original entry point (OEP).  As always, 

there are several ways to reach our goal. Let´s start with the most straightforward solution. 

The idea is simple: run the application up to a point where you can be sure execution control has 

been handed over to the protected application, then examine the (call-)stack for clues. Obviously, 

the main form is displayed by the application, so we can simply pause the application in our 

debugger as soon as the main form has loaded. Note that the nag is NOT part of the program, but 

rather part of the protection system and thus displayed by the protector`s code before reaching the 

OEP. 

 
fig. 4 the call stack 

 

Clearly, Virtual Address (VA) 0x0055d5c1 is what we are looking for – and indeed: this address lies 

within the OEP function. The actual OEP is thus the start of the function, VA 0x55D1FC: 

 
fig. 5 OEP 

 

The OEP is a clean standard Delphi OEP and not virtualized, obfuscated or stolen, which is why it can 

also be easily located by a signature scan. 

However, how does the Protector “know” where the OEP is? Let`s investigate this. 



A run trace reveals the OEP is reached stepping over a RETN instruction at VA 0x1AB50B98. This is 

the point where the execution is handed over to the protected application. An analysis of the 

previous (obfuscated) code confirms this: 

 
fig. 6 handing over control the main program 

 

The above code has been deobfuscated. First, the stack is reset to its original address, then the 

general purpose CPU registers are restored, lastly the OEP is pushed to the stack, so that the code 

flow continues execution there. 

So far, so good. But how was the OEP address retrieved? 

Right before the “lead-out” of the protector’s code, it`s written to the stack: 

 

Two commands before this line of code, EAX is set in these calls: 

 

The routine at 0x1AB09940 is short and simple: 

 
fig. 7call to CryptDecrypt() WinAPI 

 

The call is an API call, which directly calls the WinCrypt API „CryptDecrypt()“ through the Protectors 

internal IAT. The internal IAT (only used by protector code) has no further obfuscation or redirection. 

 

 

 


