Private exe Protector unpacking

by deepzero, 2011

Scientia Potentia Est.

Table of Content

Contents
TADIE OF CONTENT ... ittt st e s bt e st e e bt e e st e e e bt e e s abeesabeeesabeesabeesneeesaneeesanes 2
FOP@WOIM ... ettt ettt et ettt e sttt e bt e e st e e s bt e e sabeesabe e e abe e e s abeeeabeesabeesabeeesubeesabeeenseesaneeesnnis 3
TOOIS USEA. .. ettt ettt e s et e bt e e st e e s b et e sabeesabeeeabee e s b e e e bbeesabeesabeeeeabeesabeeeanreesneeenanes 3
T (oo [¥Tord o] o FOU O PP PPT PRI 4
[T or= Y] o =48 o YT 1 1 =P 5
B0 (=T a] oo] o] e) (=T ot o] o PSR 9
The anti-dUMP ProtECHION ...o.ueiii e e e e s e e e s aba e e e ssbee e e enabeeeeesnseeas 10
OBFUSCAtION .ttt ettt et e st e s bt e e s bt e s bt e e s abe e s be e e s abeesabeeebbeesbeeenars 12
The RESOUICE PrOtECTION .uviiiiiiie ettt e e e et e e e st e e e e s abe e e e s ssbaeeesnbeeeeesbeeeeennseeas 14
THE IMORPH MACIO ..ttt ettt ettt sttt ettt e s bt e sae e sate st e e bt e bt e beesbeesaeesaeeeateenbeenbeesbeesneenas 22
The PEP Virtual IMAChiNe ..co..eouiiieeeee ettt st st sb e bt s e sane e 27
The MaAIN NANAIEE ...ttt ettt e at e st e e s bee e sabee s bbeesabeesbaeesareenans 28
The 0X00 (VIM_EXIT) NANAIEN....ei ittt ettt ettt te e e sta e e s ba e e aaeesaseesnaeesnsaeenns 33
THE OXOD NANAIET ...ttt st ettt s e sae e e e e e b e e sneesnne e 35
THE OXOE NANAIEE ..ttt st sttt e b e bt e s bt e sheesaeeeateebeesbeesbeesaeenas 37
THE OX12 AN ..ttt sttt sttt et e bt e s bt e sbeesateeateebeesbeesbeesaeenas 38
THE OXL13 NaANAIE ..ttt sttt et b e bt e s bt e sbeesateeateebeesbeesbeesneenas 38
o a1 11 =P RPPR 41
THIAl OF DEIMO? ..ttt sttt et et e bt e s b e st e s et et e bt e b e e s be e s beesaee et e enne e reesneesane e 41
(60e] 3Tl (D11 o H TP PP PRR PRSPPI 43
€T == £ PP PRSP OP PP PPPROPPPPRON 43

Yo LU T ol Y 43

Foreword

Private exe Protector (PEP) is a lower end intermediate PE file protection and licensing solution. The
price, 200S, is quiet high, which might be one of the reasons this protector is rarely being used. |
chose it here because there is little to no documentation available on version 3.x. From the PEP
homepage:

Private exe Protector (PEP) is a professional licensing, anti-tampering and software
examination system. PEP works with traditional methods, such as file compression, code
fragment encryption, metamorphic loading, protection from debugging and file tampering ,
and features new innovative techniques, including data protection with stolen resources
technique and partial code execution on a virtual machine. Licensing functions can be
automatically integrated into the protected program, which allows the end user to quickly and
securly manage all licences issued with the built in licence manager. All in all, it is the ideal
solution for software developers.

The main functionalities of protection are:

e Encryption, compression and protection of software

» Reliable protection of software against examination: PEP will protect your product
against debugging, reverse assembling and other hazards.

o Integrated licensing system: license manager, user database management, key
generation, binding of software to particular hardware.

e Unique software data protection system: PEP features stolen resources technique and
counteraction to application memory dumping.

o Conversion and execution of program code fragment on a high-speed virtual machine,
special markers for a deeper integration of protection into protected program.

o Complete control and flexibility of the protection option's set-up and configuration.

o Creation of trial applications with restriction in terms of the number of application
launches, the number of days; the system of reminders and restrictions can be
customized manually using built-in APIs.

« Maintenance of licence Blacklist

e No problems with antivirus software.

« Regular and significant updates of the protector.

e Support of all common programming languages from assembler, Delphi, C, etc. to
script languages, such as Python, blitz3d, etc. Both .exe files and .dll files can be
protected.

o Complete compatibility with any NT system: x32, x64 (2000, XP, Vista, 7, etc.), even
with Linux (wine)

Tools used
OllyDebug 1.10, LordPe, ImpRec, CFF Explorer, PiD, ResHacker, HexEdit (all freeware).

OllyDebug plugins: ollyadvanced, MultiMate assembler, odbgscript, IDAficator,AnalyzeThis!.

Introduction

When execution the main .exe file, we are greeted by a startup nag, reminding us that we are

|”

version of the Protector.

running the “tria

LicenseID far registration:

—T—

fig. 1 the startup nag

Despite there being an option to register the software, the “trial” version is actually a crippled
“demo” version. Essential features of the program (e.g. key generation) are not implemented. We

will prove this later. Once the program has started up, we see its interface:

v Private exe Protector (unregistered) B days - O &
File Options Help
hEnu Application info
It Ail :
E Applicstion info L HIETame; _ﬂﬁ
Application name: Application version:
Defautt project 1.0.0 |
U Protection options =AUl proje Q
Home page:
Hitp: Msoftware-campany .com Q
m Configure dialogs Log:
G Licensing
B License Manager
| Protect nowy!] [e Restore from backup ” "1-';:9 Run application !
3.4.0

fig. 2 the PEP interface

Unfortunately, we notice that our RAM usage has increased significantly:

fig. 3 extensive memory usage - the anti-dump protection

This is because of PEPs “anti-dump” protection feature, which we will deal with in a second.

Locating the OEP

The first step of a successful unpack is usually locating the original entry point (OEP). As always,
there are several ways to reach our goal. Let’s start with the most straightforward solution.

The idea is simple: run the application up to a point where you can be sure execution control has
been handed over to the protected application, then examine the (call-)stack for clues. Obviously,
the main form is displayed by the application, so we can simply pause the application in our
debugger as soon as the main form has loaded. Note that the nag is NOT part of the program, but
rather part of the protection system and thus displayed by the protector’s code before reaching the
OEP.

Called from

USERZ2. FEZE9416
Private_.BESEZEE]L
Frivate_.BESRSETE
Private_.B8EE3390
Frivate_.BEEE0SC1

Frocedure - arguments

Includes ntdll.KiFastSustenCal LRet
Private . @8460AFC

? Private_.d8583085

Frivate .HESE2EES
Frivate_.B88583204

BE21FEDS
BE21FEDS
BE21FEDS
BEZ1FF2C
BE21FF2C

BEZ1FF38 BESS0SCE

fig. 4 the call stack

Clearly, Virtual Address (VA) 0x0055d5c1 is what we are looking for — and indeed: this address lies
within the OEP function. The actual OEP is thus the start of the function, VA Ox55D1FC:

BEEEDIFC <0EF: EE PUSH EEP

BESE0IFD 2BEC MOU EBF,.ESP

BaS501FF E2? BEBBBBGEG MOL - ECH, HE

Bas50284 &l 848 PUSH &

BEaS50286 &R 88 PUSH &

BESE02ES 43 DEC ECX

BASE02E9 ~ 75 F2 JME SHORT BRSED2E4
BESE0ZEE E1 PUSH ECH

BESE0ZEC [=4] PUSH EBEX

BESE02E0 1) PUSH ESI

Ba55028E =T PUSH EDI

Bas5028F B3 CASCSSEA MOL ERE, BESSSCCH

aass0214 EZ 7FOEERFF CALL 8848BA3A

BESE0=19 23Ca8 HOR ERX, ERK

BESE0Z1E =15 PUSH EEP

BESE0Z1C &2 GE0HEEEA PUSH BESEOAGCEL

BASED221 &4: FF28 PUSH OWORD PTR FS: [EAX]
BESE0224 G 39268 MOU DWORD PTR FS:[ERA],ESP
Bess0z2r SDEE EB LER EDH,.DWORD FTR SS5: [EEBP-121
fig. 5 OEP

The OEP is a clean standard Delphi OEP and not virtualized, obfuscated or stolen, which is why it can
also be easily located by a signature scan.

However, how does the Protector “know” where the OEP is? Let's investigate this.

A run trace reveals the OEP is reached stepping over a RETN instruction at VA 0x1AB50B98. This is
the point where the execution is handed over to the protected application. An analysis of the

previous (obfuscated) code confirms this:

fig. 6 handing over control the main program

The above code has been deobfuscated. First, the stack is reset to its original address, then the
general purpose CPU registers are restored, lastly the OEP is pushed to the stack, so that the code
flow continues execution there.

So far, so good. But how was the OEP address retrieved?

Right before the “lead-out” of the protector’s code, it's written to the stack:

Two commands before this line of code, EAX is set in these calls:

The routine at 0x1AB09940 is short and simple:

1AARF2E7E

fig. 7call to CryptDecrypt() WinAPI

The call is an API call, which directly calls the WinCrypt API ,,CryptDecrypt()“ through the Protectors
internal IAT. The internal IAT (only used by protector code) has no further obfuscation or redirection.

