
Reversing Xilisoft

Introduction:
 In this tutorial I will discuss the encryption routine used by Xilisoft, this tutorial will not in any

way show you how to crack/keygen Xilisoft products. But will show you how to retrieve the serial

number you have already registered your program with.

 When you register your program, the app stores this serial number in the registry, but first it

encrypts it with the name you registered with. So let’s get started.

Target:
 Xilisoft Products

 Tools Used:

 RegEdit

 OllyDbg

Key in the Registry:
 Open up the Registry Editor by clicking Start->Run and then typing ‘regedit’ without the quotes.

 Next navigate to HKCU\Software\Xilisoft\<Product Name>\RegInfo, you should see keys like

this:

 The Code value seems to contain encrypted data (the serial number).

 The Name value contains the Name you registered with (Decryption Key)

 The Serial Value is ALWAYS empty

Find the Loading of Encrypted Data:

 Open up <Product’s exe>.exe (Xilisoft <Product Name> main EXE) in OllyDbg.

 Now, if you have followed my Keygenning MD5 tutorial, you will know that all registration stuff

is handled in the UILib DLL. So for Sound Recorder they use UILib8_MFCDLL.dll. Open up the Executable

Modules window and select UILib8_MFCDLL and press [ENTER].

 Once you have the UILib’s code in the CPU window search for all referenced text strings by right

clicking and selecting Search For->All referenced text strings.

 Next, search for the word ‘code’ to find where it reads the encrypted data from the registry.

 You will find the first one at 0038C3B8 set a BP here, press Ctrl+L to search for others, place a BP

on every reference to ‘code’. (Should be a total of 3 references). Now run the application.

 OllyDbg should pause at 0038D1B6 on the push statement we BPd earlier. Go ahead and step up

to the CALL ESI statement:

 You can see here that it’s going to get the encrypted data from the registry. So we have found

where the app loads the encrypted data. Next is to find a point at which it’s been decrypted. Then we

will search in-between to find the Encrypt/Decrypt routine.

Find Decrypted Data
 From the CALL ESI Statement, step with F8 until you see the decrypted data on the stack

(Decrypted data will be the key you registered with). You should see this at 0038D238:

Now look at your stack:

(Note: I blacked out parts of mine, as to not give a serial away, due to legality issues)

 So now that we have found a point that the data has been decrypted, let’s make a note of all

CALL statements we stepped over that are NOT system APIs.

 CALL 0038C000

 CALL 003BC290

 CALL 003BC6D0

Next, we need to dig into these routines and find out what role each one plays in the decryption

of the data.

The Fist CALL (0038C000):
 By taking a quick look at this routine, we see that they call wcslen:

 According to the MSDN

Each of these functions returns the number of characters in string, not including the

terminating null character. wcslen is a wide-character version of strlen; the argument of

wcslen is a wide-character string. wcslen and strlen behave identically otherwise.

 So, we need to find what string it’s passing, go ahead and set a BP on the call to wcslen. You will

see that the encrypted data is what’s being passed.

 Later on down the routine we see a loop with a call to swscanf with the format string being

“%2X” which means to convert a hex string to it’s numeric value. Set a BP after the loop at the MOV ESI,

[ESP+8] statement.

Continue running the routine, until you get to the BP set on the MOV ESI statement, step once

with F8. You should now be on a LEA ECX, [ESP+C] statement, go ahead and step this statement and

then follow the address loaded into ECX in the dump.

(Note: Some bytes have been blacked out because of the possibility to obtain a valid serial number from it)

 So we can see that this routine takes the encrypted data loaded from the registry and converts

the unicode string into the hexadecimal equivalent.

The Second CALL (003BC290)
 This routine is not of much value to us, although it would seems so, this routine appears to be

setting some constants prior to the encryption, but I assure you we don’t need these constants right

now:

The Third CALL (003BC6D0):
 For this final call before everything is decrypted, we should probably note what parameters are

pushed to it. Set a BP on this call statement and then run until the BP.

 Once you hit the BP look at the stack, there are 2 values passed to it, follow each in the dump

and you will notice that one of them contains the Encrypted data that was converted from String to Hex

by first call, and the other contains the decryption key (in the case the Name we registered with)

(This is the entire routine, we will now dissect it as small as we need to understand what’s going on)

 The first part of interest in this routine is the PUSH EAX statement followed by the CALL [EDX+8],

set a BP on the CALL *EDX+8+, so we can see what’s passed to it with the PUSH EAX statement. After

getting to the CALL [EDX+8] statement, look at EAX, it contains our decryption key (Nieylana in my case).

 Let’s step into the CALL *EDX+8+:

CALL [EDX+8]

 This routine is quite long so I won’t go and explain every single line, but only the lines that need

special mention. The first line to mention is the call to wcslen which returns the length of the decryption

key. (so mine will return 8).

(It then compares the key length to 12d)

After this CMP is a JNB, meaning if the key length is NOT BELOW 12, jump, otherwise continue on.

If it didn’t jump (your key is less than 12 chars long), you will enter some loops that will pad the key to

12 characters, so my “Nieylana” becomes “NieylanaNiey”

After the key has been padded to 12 characters long, it then continues with the rest of the

routine.

The main work of this function is done at 003BC461, the way they coded it makes it quite hard

to understand so what I recommend is to go to the highlighted line:

 Follow the address in [EAX+8] in dump, and then set a BP on the line after the loop which should

be MOV EAX, [EBP-14]. Press F9 and run to BP.

 The dump pane for my Key now looks like this:

 It appears they have set 3 DWORDS to values based on the Key… the pattern for such is

o DWORD1 = First 4 bytes of Key

o DWORD2 = Middle 4 bytes of Key

o DWORD3 = Last 4 bytes of Key

These DWORD (from now on referred to as Key1, Key2, and Key3) will be used later on. Just

remember how they set these.

The Third CALL (003BC6D0) Again:

 After these 3 values have been set, the following lines are executed:

 This moves the address of the Encrypted Data to EAX, and the calls wcslen on that string which

returns the length of it, should be 0x27 (or 39 decimal)

 Next, we move the length of the string into [EBP-4] (this serves as the counter so we know when

we’ve looped for the whole encrypted string). And then we zero out whatever is in [EBP-8]

