Version 1.1
Last Rev.: August 2007

Into this Tutorial
1. The target

2. Understanding the protection
structure

3. Understanding the flow of
data

4. Using Olly and IDA together:
taking advantages from both

5. Analyzing the driver with IDA
6. Preparation of a valid patch
7. Patching the driver

8. Keygenning the program

9. Conclusions

10. Further Readings/References

EHIEUP’RBTHIIA

Forewords

Sometime happens to fall into an interesting protection which reveals to be
nicely implemented and nice to describe into a futorial. This time is the turn of
SandBoxie, a program that has an nice protection schema. | thought it could
have been useful to reverse and document in a tutorial, mostly because | used
a lot a combination of OllyDbg and IDA Debugger.

This time | preferred using IDA as much as possible to understand the code and
then OllyDbg only to verify the assumptions done. This method of investigation is
usually very common when you have to analyze malware, but also very handy,
because IDA allows saving of reversing sessions, code editing, name changing
and so on.

| need reversing instruments that could be frozen at any time (I have very few
and scattered spare time): | usually run the dynamic sessions with OllyDbg on a
VMWARE virtual PC which | can freeze at anytime and the analysis sessions with
IDA (which can also be closed and started again later for another session).

| will end this journey doing a complete keygen of the program, showing the
process you can use too with other programs and will include in the distribution
its sources (simple C).

As usual there are cracks and keygens too for this program around the net and
this tutorial will not create many troubles than those already created by
someone else before me.

Moreover it will then be the occasion to deeper dig the IDA functionalities in
combination with OllyDbg, | will try to be as much clear as possible, for
everyone.

Have phun,
Shub

Disclaimers

All code included with this futorial is free to use and modify; we only ask that you mention where you found it. This
tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating
the theories and methods described. No distribution of patched applications has been done under any media or
host. The applications used were most of the times already been patched, and cracked versions were available
since a lot of time. ARTeam or the authors of the paper cannot be considered responsible for damages to the
companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of
sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking
how to improve the RCE art and generally the comprehension of what happens under the hood. We are not
releasing any cracked application. We are what we know..

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and
are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:
http://releases.accessroot.com

Table of Contents

1. The TArget AN TS IMITOTIONS . ..cei et e e e e be e e s be e e estbeeesabaeesabaeesasaeesaseeesnnsaeenns
1.1. Trial mode limitations
2. Understanding the ProteCtioN STTUCTUIEuii ittt e e et e e s s bbee e snareeesnnne
2.1. Deeply looking at CheCKSTATUS TOUTINEiiiiiiieeeee ettt ettt e et e e e b e e e ebae e e abaeeesaseeesnnns
2.2. Analyzing the dil SbieDIl.dll.............ccc.......
2.2.1 How the InputBufferis crafted...........
3. Looking at the driver SbieDrv.sys........cccuveeee.
3.1. Deeper look at the DispatchRoutine.....
4, The final work: patching the driver.................
4.1. Patching the handler of StartProcess
4.1.1 A deeperlook at the HStartProcess routines.....................
4.2. Patching the handler of Seflicensecccoeeevvieeeciieeciieen,
4.3. Patching the haNdler Of GETLINCENSEcc..iiiieiieeeeeee et e e et e e ae e e st e e e snbaeeeenareeesnnne
4.4, Fixing the header of the driver: checksum of PE Header
5. Keygenning the Program
5.1. Testing the atomicity of the SerialCalculation TOUTINEccviii i
5.2. Loading the modified driver into OllyDbg
5.3. Coding the keygeneratorcccceeevvveeennneen.
REFEIEINCES ..ottt et e et e et e e st e e at e e bt e e a bt e ea b e e eaee e st e eabeesnbeeenbeenteenbeeenbeesnseennneenne
(€1 1T SRRSO PRRRPPSN

NOo

This is the tutorial number 200. We
released 200 Tutorials!! This is an
astonishing result for a team as our, 200

original tutorials published on our pages!
Hip hip hip hurray to us. Long live
ARTEAM!!

http://releases.accessroot.com/
http://arteam.accessroot.com/

PAGE - REVERSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE

1. The Target and its limitations

The target is SandBoxie[1], a program that creates a sandbox for any program running on your system. A sandbox
means a protected execution environment which virtualizes the program inserting a virtual layer between the real
operative system and the application. This layer will take care of the system calls of the application and will divert
them into a safer place, a local database. The target is to have a safer execution place for application without
the load of a complete virtual machine like VMWARE. These environments are indeed really popular because
offer a safer execution environment without slowing down too much the application, like the real virtualization PC
programs (e.g. VMWARE or VirtualPC).

Technically speaking these programs divert the kernel level functions used by the system to access files, registry
and memory adding hooks that divert the execution to a local database (where the data come and go). It is the
same technique used by the roofkits (see Figure 1).

Sandboxie lets you run and install programs, while assuring no long-term effects on
your computer system.
The illustration below shows programs running without the aid of Sandboxie:

These are some of the benefits you get when you use Sandboxie.

Browse the Web with Internet Explorer or any other browser,

& Illustration shows freeing your mind from the worries of spyware and prometional
Reads programs o . .
— % ; d adware software. Such rogue software will be trapped in the
54 Perponem | 2C0eS0 o dbox, and deleted delete the sandb
5] man permanently sandbox, and deleted as soon as you delete the sandbox.
Q ﬁ G writes ; Storage mOdlfylng your
rragrans %) (B PR S i, When reading your email, any viruses or trojan-horses hiding in
.) ’)) email attachments will be trapped in the sandbox, and deleted
The foll llustration sh "sandboxed" aided by Sandboxie: PP
€ Tollowing Wlustration shows program running “sancboxed” aided by sandboxie: © as soon as you delete the sandbox. (Currently supported only
4 for Outlook.)
. i Reads A
59 . Sﬁggg_:,:f e F:'[:'::?}::‘ Install and test new software inside the sandbox. The effects
3] ﬁ @’;’ H = o of the installation are bound to the sandbox and do not cause a
Programs

build-up of clutter in your system. When done testing, delete

Sandboxie does not allow programs to make long-term modifications
to your system. All effects are contained in a transient area called Learn More OK
the "sandbox”, and can be discarded as a whole at any time you

Figure 1 - SandBoxie essentials

Of course the first thing is as usual to install the application and see if and how its components are protected. You
can find in the installation directory these executables:

= Confrol.exe
= ShieDIl.dll

= SbieDrv.sys
= Start.exe

There are other executables of course but their names identify them clearly as auxiliary programs, moreover they
do not have any graphic resource inside (no dialog, no strings etfc).

For all of them the PEID reports:

Info
“Control.exe Microsoft Yisual C++ 7.0 Method2 [Debug]
“SandboxieDoomLaunch, exe Microsoft visual C++ 7.0 Method2 [Debug]
"SandboxieRpcSs.exe Microsoft Yisual C++ 7.0 Method2 [Debug]

“ShieDll.dll Microsoft Wisual C++ 6.0
i Mic al C++ 6.0

Shiersg. dil

PE Win32 DLL (0 EntryFPoint)
“ShieSwr.exe Microsoft Yisual C++ 7.0 Method2 [Debug]
“WStart exe Microgoft Visual C++ 6.0

Good, it seems at all a simple target, a target for which a tutorial shouldn’t be needed..or not?2

DRIVERS: SANDBOXIE PAGE 4

1.1.

Trial mode limitations

The limitations of the program in unregistered mode are essentially three:

1.
2.
3.

30 day limit of usage

Is not possible to run more than one program into different sandboxes

No advanced features, like automatic alarms when a program runs out of any sandbox or launching a
program always into a sandbox

Try to follow these steps to verify what | told:

View Configuration Options Help

Run Sandboxed > Internet Explorer Chrl+N

& Sandboxie Control - DefaultBox

Function WYETN Configuration Options Help

process G L ¥ v DefaultBox Default Browser Ctrl+B
{ . Contents of Sandbox 4 2
No secondone | Email Reader Chrl+E
Processed ¥ Show all Sandboxed Processes L ;
Aredb Show Only For Selected Sandbox Terminate Sandboxed Processes)‘ Fr—
i:n Oxe‘ Refresh Process List FS Temporarily Disable Forced Programs From Start Menu... Ctrl+M
This ' A) -
Time Exit Windows Explorer... Ctrl+W B)
Process Name PID Sandboxed?
- calc.exe 600 Yes: DefaultBox
E [#1 Calculator [#] E] @ calc.exe 316 Yes: DefaultBox D)

Sandboxie Start @

The unregistered version does not run programs
in more than one sandbox at the same time.

; = < 7 Please consider supporting further development of this
Configuration Options Help fine product by paying the small registration fee.

\ < Switch To Sandbox 4 DefaultBox More information can be found at the Sandboxie web site:

| www,sandboxie.com

| v Show all Sandboxed Processes

Show Only for Selected Sandbox Thank you for your time.

|
|

Refresh Process List FS E)

Create a second sandbox called “secondone” and select the DefaultBox

Launch any program into the sandbox, like for example the calc.exe

The calc.exe if placed into the sandbox will have a different name with # before and after the window
fitlebar.

The list of processes you can sandbox into a single sandbox is unlimited but fry to change the sandbox ..
Now select the "secondone” and try to launch again the calc.exe but this time into this second
sandbox.

You get a message like above..

Other limitations are those in Figure 2, and Figure 4. Figure 3 is interesting also because tells us that the alarm that

will be

friggered by the system is of type SBOX1118.

Enter Registration Code E]

Enter your name exactly as it appears in the registration e-mail you received.
‘You may use Ctil+V to paste it here.

1 |

Enter your registration key exactly as it appears in the registration e-mail you

Enter Registration Code

received. You may use Ctil+ to paste it here. The name and key information you have entered do not make a valid combination.
‘1111 m \ Please try again.

Figure 2 — Regisfration schema and badboy message

MRSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE
. &

Program Alerts @

Sandboxie can issue an alert message SB0X1118 when particular programs are
started outside of the sandbox. Enter one program name per line, including the
program name extension, typically ".exe".

‘Well-Known Programs
!i’ef°"< exe Internet Explorer
iexplore.exe

Mozilla Firefox
[JOpera
[[] &vant Browser
[Maxthon
[[] Outlook Express
[] Office Dutlook

This functionality becomes active only when Sandboxie is registered.

[0K I [Cancel]

Figure 3 — automatic warning if a program runs outside the sandbox

About Sandboxie @
Sandbosie Control Yersion 3.00.03
:::]

Sandbox Driver Version 3.00.03
Copyright © 2004-2007 by Ronen Tzur

For more information, please visit [http://www. sandboxie. com

This copy of Sandboxie is not registered.

Figure 4 — about dialog

2. Understanding the protection structure

We know enough of the program in order to start reversing it. We will start from what appears the most logical
point: start.exe.

We analyze start.exe using IDA before running it and looking at the start function we can see that the structure is
quite simple: it calls some exports of the SbieDll.dll dll and then an interesting function at 01003235 (call
sub_1003120). This call contains a lot of inferesting messages, among which there are those we saw speaking of
limitations. We can then name in IDA this function with a more meaningful name: press N over it and write

“CheckStatus”.

L m After this call the program takes two directions:

call CheckStatus 1) Call the function sub_1002580 with argument 1 (push 1).
movzx ecx, al 2) Go on with the routine.

test ecx, ecx

Jjnz short loc_1@@3A40D

Option 1) ends calling the sub_1002580 with parameter 1 pushed on the stack:

.text:01003A58 push 1
.text:01003A5A call sub 1002580

If you go looking at the sub_1002580 you will see that it's calling NtTerminateProcess and that the argument
pushed on stack is passed to it as exit code. IDA identified the local argument for you marking it as arg_0 and
interestingly if you highlight it with the mouse it also highlights each usage of that name in the following code.

.text:010025AD mov eax, [ebptarg 0]
.text:010025B0 push eax
.text:010025B1 push OFFFFFFFFh

.text:010025B3 call ds:NtTerminateProcess

PAGE 6

The automatic analysis IDA performs on function is really handy
and allows to statically following the parameters of a function.

Note 1. One advantage of IDA is

.text:@1002580 arg_B = dword ptr 8 th in with which n
. text : 01002580 & CCRINESS Wil ch you ca
. text:@10082580 push ebp rename functions once YOou
-’;exrgigggggé mnvh ;EE;‘F;EEFh understand what are they used
.text: pusl| .

.text:@10A2585 push offset dword_108814C8 for. This allows tfo better
.text:@100258A push offset __except_handler3 understand the code and
.text:B100258F mov eax, large fs:@ R R i B
 toxt: B1AA2505 push omx |mmed|0T§|y recognize a function
.text: 01802596 mov large fs:0, esp when it used. The same
-:g::fgigggggg Eﬂ:h EﬁE‘ 8 functionality is offered by OllyDbg
" text:B10025A1 push esi but actually rarely used. Also due
-:ex::g}gggggg push Edé . to the easiness with which the UDD
LJLext: mov ebpt+var_ ., Bsp . . .
.text:@10025A6 mov [ebptvar_41, @ files get overwritten (each fime the
.text:@10825AD mov eax, [ebp+arg @1 original exe is changed the UDD is
.text:010825B0 push eax .

“text: 81082581 push BFFFFFFFFh recreated, except if you have a
.text: 1882583 call ds:NtTerminateProcess proper patch to disable this
.text:@810025B9 mov [ebp+var_41, BFFFFFFFFh feature)

.text:ﬁlHHZEEB Jmp short loc_1@825DE ’

We can then rename the function sub 1002580 into a more meaningful “TerminateStart”.

The function start.exe call just before the function ChecksStatus call fwo other functions:

loc_1@839E8: ; "Defaul tBox"
push offset aDefaultbox
push offset Dest ; Dest
call ds:wcscpy
esp. B
call sub_1082718
test eax, eax
Jnz short loc_18@3R18
L

BN L

¥

loc_18@3A10: ; call control.exe using SbieDll_RunFromHome|
lcall sub_1@02FB0

test eax, eax

Jnz short loc_18@3A25

loc_108@83A25: : get command-line parameters and uses Shel lExecuteExH|
lcall sub_10@38E6

movzx eax, Dest

test eax, eax

iz short loc_10@3R4F

CheckStatus

ecx, al
ecx, ecx
short loc_18@3A4D|

One is the function sub_1002FB0, which is interesting because launches the program control.exe as in Figure 5.

EEN 1L

loc_10830849: ; Size
push 44h

push %] ; Val
lea ecx, Lebp+Dstl

push ecx ; Dst
call memset

add esp, BCh

mov [ebp+Dstl, 44h

push 18h ; Size
push 2] ; Val
lea edx, [ebp+var_181

push edx ; Dst
call memset

add esp, BCh

lea eax, [ebp+var_181

push eax

lea ecx, [ebp+Dstl]

push ecx

push %]

push offset aControl_exe : “Control.exe”
call SbieD11_RunFromHome(x,x,x,x)
movzx edx, al

test edx, edx

jz short loc_1@@38EC

Figure 5 —start launches conftrol.exe

The program is passed as argument of the function SbieDll RunFromHome (x,x,x,x) Which is a function
exported by SbieDll.dll. Start.exe also creates here some mutex to save from multiple instances of the program.
IDA fortunately was able to understand that the function sbieDll RunFromHome needs 4 parameters.

