

Sometime happens to fall into an interesting protection which reveals to be

nicely implemented and nice to describe into a tutorial. This time is the turn of

SandBoxie, a program that has an nice protection schema. I thought it could

have been useful to reverse and document in a tutorial, mostly because I used

a lot a combination of OllyDbg and IDA Debugger.

This time I preferred using IDA as much as possible to understand the code and

then OllyDbg only to verify the assumptions done. This method of investigation is

usually very common when you have to analyze malware, but also very handy,

because IDA allows saving of reversing sessions, code editing, name changing

and so on.

I need reversing instruments that could be frozen at any time (I have very few

and scattered spare time): I usually run the dynamic sessions with OllyDbg on a

VMWARE virtual PC which I can freeze at anytime and the analysis sessions with

IDA (which can also be closed and started again later for another session).

I will end this journey doing a complete keygen of the program, showing the

process you can use too with other programs and will include in the distribution

its sources (simple C).

As usual there are cracks and keygens too for this program around the net and

this tutorial will not create many troubles than those already created by

someone else before me.

Moreover it will then be the occasion to deeper dig the IDA functionalities in

combination with OllyDbg, I will try to be as much clear as possible, for

everyone.

Have phun,

Shub

Forewords

Into this Tutorial

1. The target

2. Understanding the protection

structure

3. Understanding the flow of

data

4. Using Olly and IDA together:

taking advantages from both

5. Analyzing the driver with IDA

6. Preparation of a valid patch

7. Patching the driver

8. Keygenning the program

9. Conclusions

10. Further Readings/References

Author: Shub-Nigurrath

RReevveerrssiinngg ooff aa PPrrootteeccttiioonn SScchheemmee

bbaasseedd oonn ddrriivveerrss:: SSaannddBBooxxiiee

SS hh uu bb -- NN ii gg uu rr rr aa tt hh [[AARR TT EE AA MM]]

Version 1.1
Last Rev.: August 2007

PAGE 2 REVERSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This

tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating

the theories and methods described. No distribution of patched applications has been done under any media or

host. The applications used were most of the times already been patched, and cracked versions were available

since a lot of time. ARTeam or the authors of the paper cannot be considered responsible for damages to the

companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of

sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking

how to improve the RCE art and generally the comprehension of what happens under the hood. We are not

releasing any cracked application. We are what we know..

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and

are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:

http://releases.accessroot.com

Table of Contents

1. The Target and its limitations .. 3
1.1. Trial mode limitations .. 4

2. Understanding the protection structure ... 5
2.1. Deeply looking at CheckStatus routine .. 7
2.2. Analyzing the dll SbieDll.dll .. 8

2.2.1 How the InputBuffer is crafted .. 12
3. Looking at the driver SbieDrv.sys ... 12

3.1. Deeper look at the DispatchRoutine .. 14
4. The final work: patching the driver.. 18

4.1. Patching the handler of StartProcess ... 18
4.1.1 A deeper look at the HStartProcess routines ... 20

4.2. Patching the handler of SetLicense ... 21
4.3. Patching the handler of GetLincense .. 23
4.4. Fixing the header of the driver: checksum of PE Header ... 26

5. Keygenning the Program ... 28
5.1. Testing the atomicity of the SerialCalculation routine .. 29
5.2. Loading the modified driver into OllyDbg ... 31
5.3. Coding the keygenerator ... 33

6. References .. 38
7. Greetings ... 38

This is the tutorial number 200. We
released 200 Tutorials!! This is an
astonishing result for a team as our, 200
original tutorials published on our pages!
Hip hip hip hurray to us. Long live
ARTEAM!!
http://arteam.accessroot.com

http://releases.accessroot.com/
http://arteam.accessroot.com/

PAGE 3 REVERSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE

1. The Target and its limitations

The target is SandBoxie[1], a program that creates a sandbox for any program running on your system. A sandbox

means a protected execution environment which virtualizes the program inserting a virtual layer between the real

operative system and the application. This layer will take care of the system calls of the application and will divert

them into a safer place, a local database. The target is to have a safer execution place for application without

the load of a complete virtual machine like VMWARE. These environments are indeed really popular because

offer a safer execution environment without slowing down too much the application, like the real virtualization PC

programs (e.g. VMWARE or VirtualPC).

Technically speaking these programs divert the kernel level functions used by the system to access files, registry

and memory adding hooks that divert the execution to a local database (where the data come and go). It is the

same technique used by the rootkits (see Figure 1).

Figure 1 - SandBoxie essentials

Of course the first thing is as usual to install the application and see if and how its components are protected. You

can find in the installation directory these executables:

 Control.exe

 SbieDll.dll

 SbieDrv.sys

 Start.exe

There are other executables of course but their names identify them clearly as auxiliary programs, moreover they

do not have any graphic resource inside (no dialog, no strings etc).

For all of them the PEiD reports:

Good, it seems at all a simple target, a target for which a tutorial shouldn‟t be needed..or not?

PAGE 4 REVERSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE

1.1. Trial mode limitations

The limitations of the program in unregistered mode are essentially three:

1. 30 day limit of usage

2. Is not possible to run more than one program into different sandboxes

3. No advanced features, like automatic alarms when a program runs out of any sandbox or launching a

program always into a sandbox

Try to follow these steps to verify what I told:

A) Create a second sandbox called “secondone” and select the DefaultBox

B) Launch any program into the sandbox, like for example the calc.exe

C) The calc.exe if placed into the sandbox will have a different name with # before and after the window

titlebar.

D) The list of processes you can sandbox into a single sandbox is unlimited but try to change the sandbox ..

E) Now select the “secondone” and try to launch again the calc.exe but this time into this second

sandbox.

F) You get a message like above..

Other limitations are those in Figure 2, and Figure 4. Figure 3 is interesting also because tells us that the alarm that

will be triggered by the system is of type SBOX1118.

Figure 2 – Registration schema and badboy message

A)
B)

E) F)

C)

D)

PAGE 5 REVERSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE

Figure 3 – automatic warning if a program runs outside the sandbox

Figure 4 – about dialog

2. Understanding the protection structure

We know enough of the program in order to start reversing it. We will start from what appears the most logical

point: start.exe.

We analyze start.exe using IDA before running it and looking at the start function we can see that the structure is

quite simple: it calls some exports of the SbieDll.dll dll and then an interesting function at 01003A35 (call

sub_1003120). This call contains a lot of interesting messages, among which there are those we saw speaking of

limitations. We can then name in IDA this function with a more meaningful name: press N over it and write

“CheckStatus”.

After this call the program takes two directions:

1) Call the function sub_1002580 with argument 1 (push 1).

2) Go on with the routine.

Option 1) ends calling the sub_1002580 with parameter 1 pushed on the stack:

.text:01003A58 push 1

.text:01003A5A call sub_1002580

If you go looking at the sub_1002580 you will see that it‟s calling NtTerminateProcess and that the argument

pushed on stack is passed to it as exit code. IDA identified the local argument for you marking it as arg_0 and

interestingly if you highlight it with the mouse it also highlights each usage of that name in the following code.

.text:010025AD mov eax, [ebp+arg_0]

.text:010025B0 push eax

.text:010025B1 push 0FFFFFFFFh

.text:010025B3 call ds:NtTerminateProcess

PAGE 6 REVERSING OF A PROTECTION SCHEME BASED ON DRIVERS: SANDBOXIE

The automatic analysis IDA performs on function is really handy

and allows to statically following the parameters of a function.

We can then rename the function sub_1002580 into a more meaningful “TerminateStart”.

The function start.exe call just before the function CheckStatus call two other functions:

One is the function sub_1002FB0, which is interesting because launches the program control.exe as in Figure 5.

Figure 5 – start launches control.exe

The program is passed as argument of the function SbieDll_RunFromHome(x,x,x,x) which is a function

exported by SbieDll.dll. Start.exe also creates here some mutex to save from multiple instances of the program.

IDA fortunately was able to understand that the function SbieDll_RunFromHome needs 4 parameters.

Note 1: One advantage of IDA is

the easiness with which you can

rename functions once you

understand what are they used

for. This allows to better

understand the code and

immediately recognize a function

when it‟ used. The same

functionality is offered by OllyDbg

but actually rarely used. Also due

to the easiness with which the UDD

files get overwritten (each time the

original exe is changed the UDD is

recreated, except if you have a

proper patch to disable this

feature).

