
Ripping VB code and making keygen out of it

Page 1 of 9

Ripping VB code and making keygen out of it
deroko/ARTeam

December 2005

1. Intro.. 1
2. Target overview .. 1
3. Ripping Procedure .. 2
4. Going deeper underground .. 5
5. Greetings .. 9

Keywords

VB, keygen, ripping, asm

1. Intro

Maybe idea is not new, but I haven’t seen any reference about this technique, so I’m gona explain
this on one simple crackme from http://www.crackmes.de because it has simple key check routine
and also has everything that we need to consider when writing such keygens. I was thinking to
focus on one commercial app (something about sending anonymous mails) but whole keycheck
routine didn’t have any import from vb, so this crackme seems like a good target for this article.

Tools that we are gona use here are :
IDA
p32dasm v2.1
tasm32
OllyDbg
crackme is supplied with this pdf.

*** I prefer tasm32 but any asm compiler will work.

2. Target overview

Well there is not much to talk about this target, it is simple VB crackme that uses computer name
xored with string “Serializer” to get “hardware” key, and after that it will use hardware key xored
with “Serializer” to get final key.

Load your target into p32dasm:

http://www.crackmes.debecause
http://www.pdfdesk.com

Ripping VB code and making keygen out of it

Page 2 of 9

File: crackme.exe
P32Dasm v2.1

VB6 Application detected ... NCode

frm1
004028F4 1.1 cmdExit.Click()
004029C6 1.2 cmdRegister.Click()
00402BD3 1.3 Command1.Click()
00402D3D 1.4 Command2.Click()
0040315C 1.5 Form.Load()
00403332 1.6 txtReg.KeyPress(KeyAscii As Integer)

File processed OK.

Locate cmdRegister in Olly using address from p32dasm, click on register and trace a little bit till
you get here:

00402AB2 . 68 24404000 PUSH crackme.00404024
00402AB7 . 50 PUSH EAX
00402AB8 . E8 00090000 CALL crackme.004033BD
00402ABD . 8BD0 MOV EDX,EAX
00402ABF . 8D4D DC LEA ECX,DWORD PTR [EBP-24]
00402AC2 . E8 99E7FFFF CALL <JMP.&msvbvm60.__vbaStrMove>
00402AC7 . 50 PUSH EAX
00402AC8 . E8 99E7FFFF CALL <JMP.&msvbvm60.__vbaStrCmp>

Procedure marked with red is procedure responsible for keygening, so that’s the procedure that we
are going to rip from IDA and inline it into our asm keygen.

If you don’t wanna read this pdf anymore you may fish your key at 00402AC8 and you have solved
level 1 crackme :D

3. Ripping Procedure

Fire up IDA, and produce ASM file out of it (File -> Produce File -> Create Asm File…) and
locate procedure that starts from :

seg000:004033BD push ebp
seg000:004033BE mov ebp, esp
seg000:004033C0 sub esp, 0Ch

http://www.pdfdesk.com

Ripping VB code and making keygen out of it

Page 3 of 9

and ends here:

seg000:00403611 pop ebx
seg000:00403612 leave
seg000:00403613 retn 8

This whole procedure should be copy/pasted to your keygen, but also we have to take care about 2
static variables:

seg000:004033DF mov dword ptr [ebp-8], offset dword_401160

seg000:00401158 dword_401158 dd 80001h

and __vbaStrCat :

seg000:00403572 push offset dword_4027BC
seg000:00403577 push dword ptr [ebp-28h]
seg000:0040357A call __vbaStrCat

seg000:0040264C dd 2
seg000:004027BC dword_4027BC dd 30

well this is a little bit wrong disassembly because dword_4027BC is actually string “0” and 2 is
nothing more then len of this string (remember VB is using unicode) so basically this should be:

dd 2 <----- len of string
string_0 dd 30h <----- string

Ok, when we have inlined all of this in our asm file (check keygen\keygen.asm) we may ask
ourselves, how to call this simple proc?

Let’s go again to our debugger and examine arguments passed to this proc at Form.Load (to get
“hardware” key):

00403286 . 57 PUSH EDI <----- static string
00403287 . 50 PUSH EAX <----- computer name
00403288 . E8 30010000 CALL crackme.004033BD

Examine content of edi:

00404024 64 EF 15 00 00 00 00 00 70 D0 15 00 00 00 00 00 dïpÐ
^^^^^^^^^^^

0015EF64 53 00 65 00 72 00 69 00 61 00 6C 00 69 00 7A 00 S.e.r.i.a.l.i.z.
0015EF74 65 00 72 00 00 00 AD BA 0D F0 AD BA AB AB AB AB e.r... º.ð º««««

http://www.pdfdesk.com

Ripping VB code and making keygen out of it

Page 4 of 9

As you may see edi is nothing more then pointer to string pointer (C terminology) but there is also a
little catch with VB strings, because they have their length at [string_pointer-4], and we have to take
care of that when writing keygen for this crackme. Also I’ve shown that __vbaStrCmp is using
dword_4027BC which is actually string “0”.

Let’s check our theory and go to 15EF60 :

0015EF54 00 00 00 00 07 00 58 00 7F 07 18 00 14 00 00 00X.
^^^^^^^^^^^
0015EF60h

Yup that’s size of unicode string “Serializer” without 2 terminating zeroes.

Content of EAX is similar, pointer to string pointer of my computer name, "SCORPION". including
len of string at [string_pointer-4].

If we wanna call this proc we have to get length of strings and make pointers to string_pointers:

NOTE: some macros that I use here (unis to make Unicode string) are included in
includez\shitheap.inc

<++> keygen\keygen.asm <++>
.data

dd 14h
static_string: unis <Serializer>

dd 10h
computer_name: unis <SCORPION>

ptr1 dd ?
ptr2 dd ?

.code
start:

mov eax, offset static_string
mov ptr1, eax
mov eax, offset computer_name
mov ptr2, eax

push offset ptr1
push offset ptr2
call VB_KEYGEN_PROC

...
VB_KEYGEN_PROC:

proc ripped from IDA

end start
<++> keygen.asm <++>

http://www.pdfdesk.com

Ripping VB code and making keygen out of it

Page 5 of 9

Compile this code, and run it trough olly so you can catch all exceptions instead causing infinite
SEH loops.

We should get Exception (Access Violation) because our code is trying to read from wrong memory
address. We have to locate this exception, also we have to fix code a little bit.

4. Going deeper underground

After a little bit of tracing, we have found problem:

004010C6 . 50 PUSH EAX
004010C7 . E8 DD010000 CALL <JMP.&MSVBVM60.__vbaStrCat>

Step into __vbaStrCat:

660E5F3A > 55 PUSH EBP
660E5F3B 8BEC MOV EBP,ESP
660E5F3D 8D45 08 LEA EAX,DWORD PTR [EBP+8]
660E5F40 50 PUSH EAX
660E5F41 FF75 08 PUSH DWORD PTR [EBP+8]
660E5F44 FF75 0C PUSH DWORD PTR [EBP+C]
660E5F47 FF15 18EE1066 CALL DWORD PTR [6610EE18]

^^^^^^^^^

6610EE18 is zero, and that’s problem for us, there is our exception. But if we take a look at
crackme and check that value we might see:

660E5F3A > 55 PUSH EBP
660E5F3B 8BEC MOV EBP,ESP
660E5F3D 8D45 08 LEA EAX,DWORD PTR [EBP+8]
660E5F40 50 PUSH EAX
660E5F41 FF75 08 PUSH DWORD PTR [EBP+8]
660E5F44 FF75 0C PUSH DWORD PTR [EBP+C]
660E5F47 FF15 18EE1066 CALL DWORD PTR [6610EE18] ;OLEAUT32.VarBstrCat

So somehow, ptr 6610EE18 is initialized in crackme, but not in keygen.exe, so we come to a
conclusion that variables used by our key are not initialized with loading msvbvm60.dll.

We have to make workaround and initialize that local variable, only solution for us is IDA and
disassembly of msvbvm60.dll:

.text:660E5F3A __vbaStrCat:

.text:660E5F3A push ebp

.text:660E5F3B mov ebp, esp

.text:660E5F3D lea eax, [ebp+8]

.text:660E5F40 push eax

http://www.pdfdesk.com

Ripping VB code and making keygen out of it

Page 6 of 9

.text:660E5F41 push dword ptr [ebp+8]

.text:660E5F44 push dword ptr [ebp+0Ch]

.text:660E5F47 call dword_6610EE18

Follow references to dword_6610EE18 :

.data:6610EE18 dword_6610EE18 dd 0 ; DATA XREF: .text:660053C4

.data:6610EE18 ; .text:660E5F47

Follow .text:660053C4 and we end up here:

.text:660053BA push offset aVarbstrcat ; "VarBstrCat"

.text:660053BF push edi

.text:660053C0 call esi ; GetProcAddress

.text:660053C2 test eax, eax

.text:660053C4 mov dword_6610EE18, eax

Nice, we have found good place, there is GetProcAddress, also if you check this part of code in
IDA you will see a lots of GetProcAddress and many more variables initialized with exported procs
from oleaut32.dll. So we have to trace references to this place till we end up at some exported proc
which will for sure call this part of code:

Keep following references:

.text:66004F58 sub_66004F58 proc near ; CODE XREF: sub_66004DAD+3A p

.text:66004F58 push esi

.text:66004F59 push edi

.text:66004F5A push offset aOleaut32_dll_0 ; "oleaut32.dll"

This is entry of proc that calls all those GetProcAddresses to initialize global variables in
msvbvm60.dll.

.text:66004DE2 call sub_66004F1D

.text:66004DE7 call sub_66004F58

.text:66004DEC push offset aOle32_dll ; "ole32.dll

Keep going:

.text:66004D81 sub_66004D81 proc near ; CODE XREF: sub_66004D59+20 p

.text:66004D81 ; CreateIExprSrvObj+3E p

.text:66004D81
…
.text:66004DA4 call sub_66004DAD
.text:66004DA9 pop ebp
.text:66004DAA retn 24h
.text:66004DAA sub_66004D81 endp

Huh, finally we see some exported “api” from msvbvm60.dll which will eventually take us to the
good place:

http://www.pdfdesk.com

