

After the publication of our previous tutorial on SecuROM [1] we had a lot of

discussions about its title, on several forums we had comments about if it was a

really complete owning or not.

On woodmann forum (www.woodmann.com, search for “A continued discussion

on "ownage"”, and “ARTeam: Special Issue For SecuRom 7.30.0014 Complete

Owning, AnonymouS, Human, deroko”) we had an interesting discussion on what

can be considered owning of a program and what cannot.

The discussion has been really long and I’ll not report it here, but would summarize

the two main positions.

Owning is when you return the program to be virgin as it was when it was still to be

packed. So cracks around which circumvent the protection without actually

removing it are not real own. I would call this position the position of “Purists”.

On the other hand there’s the position of who tells (and I’m among them) that any

method is legit to fool the protection. It the application fails its task (protecting)

then it makes no sense to even exist. Protections are placed to protect and only for

that reason, often even at the price of portability and efficiency of the code. If

you, using any dirty method, successfully fool the application, letting it run in

unforeseen contexts (e.g. a not licensed PC), you then owned the protection. Or

better you might not have run the protector (not understood all its aspects) but

surely you owned the protection. And a protector without a protection is nothing in

my humble opinion.

“Purists” approach is much more hard because implies also understanding parts of

the protection not really needed to break it. It’s something one can call

professional reverse engineering. If you are e developer you are anyway interested

in techniques useful to avoid *any* type of reverse engineering, professional or not,

which owns your application or your protection or your protector.

You can think more or less the same when you try to distinguish cracking from

reverse engineering..

This said we decided to show that owning on SecuROM can be done either ways

you consider it. This second issue on the protector tries to cover some aspects that

was not covered in previous one, specifically the most important part of the

SecuROM protector, the Virtual Machine, it’s really well done: is recursive and

changes from application to application ...

This time deroko again hits the ground, but it’s also the first time of 2kAD. I hope you

will enjoy it, but I must warn you, this one is not going to be an easy one

Have phun,

Shub

Forewords

Into this Tutorial

1. SecuROM : Even caveman

can do it by deroko

2. Recursive “VM” by 2kAD

Editor: Shub-Nigurrath

SSppeecciiaall IIssssuuee ffoorr SSeeccuuRRoomm 77..3300..00001144

TTaakkee22 VVMM AAnnaallyyssiiss

dd ee rr oo kk oo [[AARR TT ee aa mm]] ,, 22 kk AA DD [[AARR TT ee aa mm]]

Version 1.0
Last Rev.: December 2007

http://www.woodmann.com/

PAGE 2 SPECIAL ISSUE FOR SECUROM 7.30.0014 TAKE2 VM ANALYSIS

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This

tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating the

theories and methods described. No distribution of patched applications has been done under any media or host. The

applications used were most of the times already been patched, and cracked versions were available since a lot of

time. ARTeam or the authors of the paper cannot be considered responsible for damages to the companies holding

rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of sharing knowledge and

teaching how to patch applications, how to bypass protections and generally speaking how to improve the RCE art and

generally the comprehension of what happens under the hood. We are not releasing any cracked application. We are

what we know..

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and are

unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:

http://releases.accessroot.com

Table of Contents

SecuROM : Even caveman can do it by deroko ... 3
1. Forewords .. 3
2. Tools and Target ... 3
3. Few words about SecuROM VM ... 3
4. VM analyse ... 3
5. VM understanding .. 25
6. Conclusion .. 33
7. Greetings ... 33

SecuROM : Recursive VM by 2kAD.. 34
8. References .. 38

http://releases.accessroot.com/

PAGE 3 SPECIAL ISSUE FOR SECUROM 7.30.0014 TAKE2 VM ANALYSIS

SecuROM : Even caveman can do it by

deroko

1. Forewords

This tut was done 2 months ago, but due to lack of interest to release it we didn’t release it immediately. Whenever new

document is written, I always try to think what you, as a reader, will learn from it. To be honest, this dilemma was the only

thing which stoped me from publishing this tutorial 2 months ago, when it was done. I still don’t know what you will learn

from it, but still, I decided to publish it.

So, enjoy in it

2. Tools and Target

Target used this time is game protected with SecuROM 7.34 demo version as I wasn’t able to get full version at the time

of writing this tutorial, but everything from this tutorial should be mutatis mutandis applied to full version without any

problem.

Tools that we will need, are:

- SoftICE

- IDA

3. Few words about SecuROM VM

First of all SecuROM is composed of 256 handlers, each handler is responsible for performing simple operation which exist

in IA32 (eg. no instructions such as mov [vm_reg], [vm_reg]). Opcodes on other hand don’t have predefined format,

and execution of opcodes is dependent on execution of previous opcode(s), as if one of opcodes is not executed you

will break predefined flow of a VM.

Well you’ll see all of this as we go along with VM analyze, and you will see how easy is to extract all needed info to write

emulator or vm decompiler. Although easy doesn’t mean short and fast coding

4. VM analyse

VM_Enter is code (well you may name it different) responsible for setting VM_Context, and for dispatching execution to

VM handlers.

Let’s see one example of VM_Enter:

.text:10D9D436 loc_10D9D436:

.text:10D9D436 push eax ; nShowCmd

.text:10D9D437 push esi ; lpCmdLine

.text:10D9D438 push 0 ; hPrevInstance

.text:10D9D43A push offset __ImageBase ; hInstance

.text:10D9D43F call _WinMain@16 ; WinMain(x,x,x,x)

…

PAGE 4 SPECIAL ISSUE FOR SECUROM 7.30.0014 TAKE2 VM ANALYSIS

.text:10912B10 ; int __stdcall WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR

lpCmdLine,int nShowCmd)

.text:10912B10 _WinMain@16 proc near

.text:10912B10

.text:10912B10 var_C = dword ptr -0Ch

.text:10912B10

.text:10912B10

.text:10912B10 jmp ds:off_11E0515C

.text:10912B10 _WinMain@16 endp

And we come to code responsible for calling VM:

.bla:11E95FB0 win_main_ref:

.bla:11E95FB0 push offset vm_argument

.bla:11E95FB5 push 401149h ; dummy argument to simulate call

.bla:11E95FBA push (offset loc_11639F6D+3)

.bla:11E95FBF pushf

.bla:11E95FC0 sub dword ptr [esp+4], 1ABB0h

.bla:11E95FC8 popf

.bla:11E95FC9 retn ; goes to 1161F3C0

.bla:11E95FCA vm_argument dd offset vm_opcodes_0

.bla:11E95FCE dd 1C93h

.bla:11E95FD2 dd 6B21h

.bla:11E95FD6 dd 4BE4h

.bla:11E95FDA dd 0

.bla:11E95FDE db 0

.bla:11E95FDF db 0

So far so good, and we are almost there, but before we enter into VM_Enter there are certain stuff that I wanna show at

this point:

1. You may see my comments and that address 401149h is dummy argument used to simulate call to VM. This is

logical, as this argument is later on used as x86 EIP.

2. Code between pushfd/popfd is used to calculate offset of VM_Enter.

3. VM_Argument is important as it is used on other hand to tell VM where are Opcodes and what set of vm

handlers to use.

.bla:11E76756 vm_opcodes_0 dd 70B2F0C5h, 0D491B739h, 0D845BB32h,

 13383248h, 120078DAh

.bla:11E76756 dd 995DD350h, 1137B10h, 630F31E6h, 98B64673h,

 48BDCD2Fh

.bla:11E76756 dd 0B2E7CA02h, 4C86144Dh, 3A72F00h, 6290B218h,

 0E287B2h

.bla:11E76756 dd 1A175D8Dh, 0D9C28D4Dh, 87614CA1h,

 0DC1295ADh, 0BA815B98h

.bla:11E76756 dd 204D9623h, 8D76ED4Dh, 67C70000h, 7571002Dh,

 0D63A685Ch

.bla:11E76756 dd 7B55CA91h, 972CFEB1h, 5E7FA624h, 0CF06AC15h,

 13D62E2Ch

.bla:11E76756 dd 0C39CBB56h, 13392C20h, 29DA135Ah, 5F68ADF5h,

 0CC40ED6Eh

.bla:11E76756 dd 2B22794h, 0D1B64D29h, 112298E0h, 9435A453h

.bla:11E767F2 dd 5296C311h

 Oki now is time to show full VM_enter and to cover it line by line for better understanding:

PAGE 5 SPECIAL ISSUE FOR SECUROM 7.30.0014 TAKE2 VM ANALYSIS

valloc:018B0000 vm_enter_main_handler:

valloc:018B0000 jmp short __skip_space_for_rent ; esp-20

valloc:018B0000

valloc:018B0002 db 3Ch ; <

valloc:018B0003 db 20h

valloc:018B0004 db 73h ; s

valloc:018B0005 db 70h ; p

valloc:018B0006 db 61h ; a

valloc:018B0007 db 63h ; c

valloc:018B0008 db 65h ; e

valloc:018B0009 db 20h

valloc:018B000A db 66h ; f

valloc:018B000B db 6Fh ; o

valloc:018B000C db 72h ; r

valloc:018B000D unk_18B000D db 20h

valloc:018B000E db 72h ; r

valloc:018B000F db 65h ; e

valloc:018B0010 unk_18B0010 db 6Eh ; n

valloc:018B0011 db 74h ; t

valloc:018B0012 db 20h

valloc:018B0013 db 3Eh ; >

valloc:018B0014

valloc:018B0014

Funny, really funny, but as this code obviously has no any meaning we may skip it. Now we enter into VM_wait loop,

which will wait until byte at 18B0020 isn’t set to 1 again.

valloc:018B0014 __skip_space_for_rent:

valloc:018B0014 pusha ; esp-20

valloc:018B0015 pushf ; esp-24

valloc:018B0016 call $+5 ; esp-28

valloc:018B001B call sub_18B0022

valloc:018B001B

valloc:018B0020 byte_18B0020 db 1

valloc:018B0021 db 1

valloc:018B0022

valloc:018B0022

valloc:018B0022

valloc:018B0022 sub_18B0022 proc near

valloc:018B0022

valloc:018B0022 pop edx

valloc:018B0023

valloc:018B0023 __vm_wait_loop:

valloc:018B0023 lock dec byte ptr [edx]

valloc:018B0026 jns short __vm_ready

valloc:018B0028

valloc:018B0028 __vm_wait:

valloc:018B0028 cmp byte ptr [edx], 0

valloc:018B002B pause

valloc:018B002D jle short __vm_wait

valloc:018B002F jmp short __vm_wait_loop

valloc:018B002F

valloc:018B0031 aMassesAgainstT db '-[Masses Against the Classes <¦>><]-',0

In this code you may see that SecuROM gives you 10 possible VM_context which means that there is possibility of

executing 10 threads in VM at the same time. (mov ecx, 0Ah). Each context struct will be checked for busy flag, until

one of them isn’t released by VM_exit handlers (I’ll cover a few latter on). Note how byte at 18B0020 is used as vm

interpreter busy flag.

PAGE 6 SPECIAL ISSUE FOR SECUROM 7.30.0014 TAKE2 VM ANALYSIS

valloc:018B0058

valloc:018B0058 __vm_ready:

valloc:018B0058

valloc:018B0058 mov eax, 0FFFFFFFCh

valloc:018B005D mov ecx, 0Ah

valloc:018B0062

valloc:018B0062 __find_free_vmcontext:

valloc:018B0062 add eax, 4

valloc:018B0067 xchg ebp, ebp

valloc:018B0069 adc ebp, eax

valloc:018B006B mov edi, ds:vm_contexts[eax]

valloc:018B0071 cmp [edi+srom_vm_context.busy], 0DE859E9h

valloc:018B0078 jnz short __vm_context_free_found

valloc:018B007A loop __find_free_vmcontext

valloc:018B007C pause

valloc:018B007E jmp short __vm_ready

valloc:018B0080

Now SecuROM simply walks all 10 vm_cotexes and checks busy flag in all of them, once free context is found it will zero

whole context, mark it as used, and simply will set byte as 18B0020 to 1, which means that vm_interpreter is ready to

handle another thread. You may see that in following code:

valloc:018B0080

valloc:018B0080 __vm_context_free_found:

valloc:018B0080 cld

valloc:018B0081 mov ebx, edi

valloc:018B0083 mov ecx, 100h

valloc:018B0088 mov eax, 0

valloc:018B008D rep stosd

valloc:018B008F mov [ebx+srom_vm_context.busy], 0DE859E9h

valloc:018B0096 mov al, [edx+1]

valloc:018B0099 xchg al, [edx]

VM_context is marked as used, and now SecuROM will processed with filling important parts of vm_context with needed

data.

valloc:018B009B sub dword ptr [esp], 1Bh ; edx = 018B0000

valloc:018B009B ; |

valloc:018B00A2 pop edx ; <---------+

At this point SecuROM vm_interpreter is calculating it’s offset in the memory which will be later used as delta to

VM_Opcodes and delta to VM_Handlers.

valloc:018B00A3 mov eax, [esp+28h]

valloc:018B00A3

valloc:018B00A3

valloc:018B00A7 mov [ebx+srom_vm_context.argument], eax

valloc:018B00AA mov eax, [eax] ; grab dword from argument

valloc:018B00AC sub eax, edx

If you remember I showed earlier that argument has pointer to vm_opcodes, so this is the point when that dword is taken

and SecuROM makes it relative to vm_enter using this simple formula:

VM_opcodes – offset vm_enter

valloc:018B00AE push eax

valloc:018B00AF mov eax, [esp+2Ch] ; argument

valloc:018B00B3 cmp dword ptr [eax+0Ch], 50h ; argument + 0C

valloc:018B00BA jnz short loc_18B00CA

valloc:018B00BC xchg ebp, ebp

valloc:018B00BE adc ebp, eax

