

This is my second issue on Symbian; the previous one [1] was a really big effort

and contained a lot of issues to start reversing for Symbian S60. No 3rd edition

stuffs still in my tutorials, due to the lack of good loaders from the scene, but

that version of Symbian will completely substitute the old S60 not before few

years, so there‟s still a lot of space for tutorials like this.

Moreover the techniques will remain even with new versions of Symbian OS.

This time thanks to argv (our new fellow) I will concentrate on the resolution of

four crackmes he developed. These crackmes range from very simple to more

complex, it will be the occasion to deeply look at some of the concepts I

already underlined in the previous tutorial and the chance for you to train

yourself on some new Symbian stuffs.

I also included into the distribution of this tutorial all the crackmes sis files.

I will conclude this tutorial with a small modification on a commercial

application, well, actually a freeware application: FEExplorer.

Of course the understanding of the concepts already expressed in [1] is a pre-

requisite.

The result of this tutorial is a symphony of patches, crackmes and “Notes”,

meant to improve your musical ear for Symbian reversing.. ♫♪♫♪

Have phun,

Shub

Forewords

Into this Tutorial

1. Crackme 0x01

2. Crackme 0x02

3. Crackme 0x03

4. Crackme 0x03 Reloaded

5. FEExplorer modding

6. Conclusions

7. Further Readings

Author: Shub-Nigurrath

AA SSyymmbbiiaann SSyymmpphhoonnyy ffoorr 44 CCrraacckkmmeess

aanndd aa CCoommmmeerrcciiaall PPrrooggrraamm

SS hh uu bb -- NN ii gg uu rr rr aa tt hh [[AARR TT EE AA MM]]

Version 1.0
Last Rev.: August 2007

PAGE 2 A SYMBIAN SYMPHONY FOR 4 CRACKMES AND A COMMERCIAL PROGRAM

Disclaimers

All code included with this tutorial is free to use and modify; we only ask that you mention where you found it. This

tutorial is also free to distribute in its current unaltered form, with all the included supplements.

All the commercial programs used within this document have been used only for the purpose of demonstrating

the theories and methods described. No distribution of patched applications has been done under any media or

host. The applications used were most of the times already been patched, and cracked versions were available

since a lot of time. ARTeam or the authors of the paper cannot be considered responsible for damages to the

companies holding rights on those programs. The scope of this tutorial as well as any other ARTeam tutorial is of

sharing knowledge and teaching how to patch applications, how to bypass protections and generally speaking

how to improve the RCE art and generally the comprehension of what happens under the hood. We are not

releasing any cracked application. We are what we know..

Verification

ARTeam.esfv can be opened in the ARTeamESFVChecker to verify all files have been released by ARTeam and

are unaltered. The ARTeamESFVChecker can be obtained in the release section of the ARTeam site:

http://releases.accessroot.com

Table of Contents

1. Crackme 0x01 ... 3
1.1. Details and what we have to do .. 3
1.2. Approaching the enemy ... 4
1.3. Solving the problem ... 6

1.3.1 First method: changing the string. .. 6
1.3.2 Second Method: working on offsets .. 7

1.4. Lesson learnt ... 8
2. Crackme 0x02 ... 8

2.1. Details and what we have to do .. 8
2.2. Approaching the enemy ... 9
2.3. Solving the problem ... 11

2.3.1 Using desquirr to reverse HandleCommandL ... 14
2.4. Lesson learnt ... 15

3. Crackme 0x03 ... 15
3.1. Details and what we have to do .. 15
3.2. Approaching the enemy ... 15
3.3. Solving the problem ... 18

3.3.1 Fisrt try: nullsub .. 18
3.3.2 Second Try: returning from the application ... 19
3.3.3 Third Try, the good one ... 19

3.4. Lesson learnt ... 22
4. Crackme 0x03 reloaded .. 22

4.1. Details and what we have to do .. 22
4.2. Approaching the enemy ... 23
4.3. Solving the problem ... 25
4.4. Lesson learnt ... 28

5. FEExplorer modding .. 28
6. References .. 31
7. Greetings ... 31

http://releases.accessroot.com/

PAGE 3 A SYMBIAN SYMPHONY FOR 4 CRACKMES AND A COMMERCIAL PROGRAM

1. Crackme 0x01

The job of this first crackme is very simple and

consists in changing a string from a “Not

Cracked :(“ to “Cracked :)”.

Solving the assignment will allow us to deeply

analyze the structure of strings into Symbian

programs and to better understand how to

modify them.

Difficulty: 1 - Needs basic Symbian C++

knowledge and HEX Editing

Platform: Symbian OS [Series 60]

Language: Symbian C++

1.1. Details and what we have to do

Figure 1 shows the original Crackme 0x01: when launched you can choose the menu on the left and the nags

appears.

Figure 1 - Original Crackme 0x01

We will see in next sections that the voices of a menu and the corresponding functions of the program are

handled into a Menu Handler function that identifies what each menu does (like for PC applications this function

does the events-handlers mapping). One solution you would imagine is to erase the menu voice assigning to it a

null function that simply does nothing. This option is generally speaking more complicated than one would expect

because the menu handler is directly handled by the Avkon library; in next Crackme we will see a possible way to

handle this situation. Generally speaking a

not correct patch sends the application in

Panic mode; the result is a Panic dialog and

the exit from the program (this happens

usually due to stack or registry corruptions)

Note 1: The installation procedure for all these crackmes is

always the same:

1. Install the crackme0x0*.sis distribution file on the

phone.

2. Decompress the sis file on the PC to extract the *.app

file or take it from the phone and load into IDA.

3. Be sure your IDA is equipped with the settings I

already explained in [1] and with latest IDS files (you

can find them in Symbian section of our forum).

4. Be sure to have a reliable method to transfer files on

the phone directly into the installation folder (e.g.

TotalCommander with SymbianFS extension).

Note 2: All the crackme and patches discussed here have

been tested on Nokia phones 6600, 6630 and N70.

PAGE 4 A SYMBIAN SYMPHONY FOR 4 CRACKMES AND A COMMERCIAL PROGRAM

1.2. Approaching the enemy

Before going on it is required to view a little of theory on strings (called Descriptors) and Symbian programs.

From the book [2], “Developing Series 60 Applications - A Guide for Symbian OS C++ Developers” in the Chapter

3, in the section about “Descriptors” you can find:

All of the descriptors have an iLength member that stores the current length of the descriptor. This is how

descriptors can function without the need for null termination. Modifiable API descriptors also have an

iMaxLength member, since their length needs to be bounded

Figure 2 - General structure of Descriptors (TPtrC)

Figure 2 shows the concept and Figure 3 the hierarchy of all the possible Descriptors you may find, all inherits their

properties from the base class TDesC, TPtrC represents a special type of descriptors, called Pointer Descriptors.

Figure 3 - Descriptor hierarchy

Now it‟s time to see using IDA how is stored the string we want to change. IDA doesn‟t recognize it at a first sight.

This is due to the special strings structure I

introduced before. IDA by default assumes the

strings are stored in C-style (terminated by a 0

value); unless you specify that the default

format is another one. You have then to use the

IDA‟s Hex view and find where are the strings we

want, and then explicitly define using the string

definition button, and specifying the “Unicode

Wide Pascal (4 bytes)” string format (in the hex

view the real string boundaries are not correctly

identified as you can see).

Note 3: All current Symbian OS smartphones are based on

the ARM processor, which has two instruction sets: a 32-bit

set (known as ARM) and a 16-bit set (called THUMB).

Code compiled to one set can interoperate with the

other. The ARM instruction set is fast but uses more

memory per instruction (RISC); THUMB is more compact

but slower, that is more instructions are required to

perform the same work (semi RISC).

Usually programs are compiled using one of the

instruction sets, and IDA allows switching from one mode

to the other, for this tutorial I always used programs

compiled using the ARM instruction set.

PAGE 5 A SYMBIAN SYMPHONY FOR 4 CRACKMES AND A COMMERCIAL PROGRAM

The string is then identified and correctly labeled as aNotCracked. Now you can see the structure I told before:

14d is the length of the string (equal to 0Eh). If you see the same portion of program in the Hex View you will see a

value equal to 0Eh.

Figure 4 - location of string aNotCracked

Now press X to find all the references to this string and start climbing the rope..

The string is not directly accessed by the

program but through an offset which

contains the references to the real string.

This offset (off_10000220) acts like a real

proxy giving the real code a fixed entry

point to the string, allowing the compiler

or the program loader of the phone to

relocate wherever it wants the strings

but leaving the code with fixed

references: actually the only reference

to a string is indeed a reference to an

offset which contains the actual address

of the string.

If you go in the hex view of the address

10000220h you can see that the opcode

of this “instruction” is: 8C 0D 00 10, this is

the address (in LSB format) of the

address where the string actually is

located: 10000D8C, see Figure 4.

Pressing again X on the label

off_10000220 you land where the string is

actually used, see Figure 5.

Note 4: A panic occurs on any error that is not recoverable, at

which time the thread exits immediately and the system displays

a popup with information regarding the error (the SDK

documentation contains a list of the system panics). In general,

a panic occurs as a result of a programming error of some kind.

An example is if you use an API improperly. The end result of a

panic is either a reboot (Blue Screen of Death on the phone too)

or an „„Application closed‟‟ message box.

You can invoke a panic in your code in response to an error you

detect by calling:

User::Panic(const TDes& aCategory, TInt aReason);

On Series 60, when a panic occurs a box that simply says

„Program Closed‟ is displayed. To cause the full panic

information to appear you need to create a dummy file (which

can be empty) in \system\bootdata\errd on the target

system‟s C: drive. This works for both the emulator and the

smartphone [4]

PAGE 6 A SYMBIAN SYMPHONY FOR 4 CRACKMES AND A COMMERCIAL PROGRAM

Figure 5 - Crackme 0x01 BadBoy_Dialog

I renamed it (pressing N) with the name MessageDispatch. As you can see, the function is a small switch-case,

where the R1 value is compared to choose the correct action:

 R1=0x100 or R1=0xBC1  CEikAppUi::Exit()

 R1=0x1  Create the aNotCracked dialog

 All the other values of R1  Panic_exit function

This is the messages dispatch function I mentioned before, the function that choose which action is performed for

which menu. I also renamed the function sub_10000CF8 as “Panic_exit” and the labels to improve readability.

1.3. Solving the problem

There are two ways to solve the problem: changing the string into something different and adjusting to the new

length or work on offsets.

1.3.1 First method: changing the string.

We change the string directly:

"Not Cracked :("  length=14 -> 0x0E

"Cracked :)"  length=10 -> 0x0A

The patch is then the following one:

I changed the length and the string characters, leaving those extra, because are not seen by the application

(they are seen as garbage).

