

Using Memory Breakpoints with your Loaders

Using Memory Breakpoints with your Loaders
Shub-Nigurrath of ARTeam

Version 1.0 – April 2006

1. Abstract ..2
2. Using Memory Breakpoints with OllyDbg..3
3. Theory of Memory Breakpoints...3

3.1. Paged Memory and access rights under Windows...3
3.2. Creating Guard Pages...6
3.3. What is the CPU Trap Flag and how to use it..6
3.4. General structure of the Memory Breakpoints implementation...7

4. A Sample code ...8
4.1. A sample (simple) victim...9
4.2. The Loader of the sample victim using Memory BPs ...9

5. GetProcTracer a full a full example using Memory BPs ...14
6. References..16
7. Conclusions..16
8. History..17
9. Greetings ..17

Keywords

Loader, memory breakpoints

Version 1.0 Page 1 of 17

Using Memory Breakpoints with your Loaders

1. Abstract

If you have ever used OllyDbg you surely have noticed the Memory Breakpoint feature which is
really handy for packed applications, and generally for all those applications checking the presence
of 0xCC bytes (normal breakpoints). It allows stopping the program when a memory location or
range is accessed for execution, reading or writing. But how these breakpoints are created? They are
not standard breakpoints supported by the CPU or directly by the Windows debug subsystem.
Implementing it in your loaders is what was still missing; it requires a little more knowledge of the
operating system.

This tutorial will discuss how memory breakpoints work and how to use them for you own loaders.
It's an ideal prosecution of the already published Beginner's Tutorial #8 [1], where I already covered
hardware and software breakpoints quite extensively (at beginner's level of course).

As usual I will provide sample code with this tutorial, and non-commercial sample victims. All
the sources have been tested with Win2000/XP and Visual Studio 6.0.
The techniques described here are general and not specific to any commercial applications. The
whole document must be intended as a document on programming advanced techniques, how
you will use these information will be totally up to your responsibility.

Have Phun,
Shub-Nigurrath

Version 1.0 Page 2 of 17

Using Memory Breakpoints with your Loaders

2. Using Memory Breakpoints with OllyDbg
OllyDbg has an interesting alternative type of breakpoints, beside hardware and classical (0xCC
based) breakpoints. These breakpoints had an interesting capability that is to not modify the
memory under control, being so less detected, even less than hardware breakpoints. Hardware
breakpoints can be easily detected through the CPU registers; normal breakpoints modify the
memory and can be detected by self-checking applications. Memory breakpoints at the moment are
much more difficult to be detected (for programmers lack of imagination mainly).
But how these breakpoints are working? It could be interesting to have them for our own debug
loader..

Figure 1 - OllyDbg contextual menu where we can set memory breakpoint

3. Theory of Memory Breakpoints
Before presenting the code used to implement memory breakpoints I need to present the required
elements, for those of you who already doesn’t know them (the other may skip this).

3.1. Paged Memory and access rights under Windows
Windows memory is a protected paginated memory. The discussion of what this means is a thing
that I will assume as already known, otherwise the target of this tutorial would go too far. Anyway
briefly each memory address is included into a container memory page and accessing to a specific
memory address means to access to its container page. Windows memory access APIs are all
making use of functions which access pages.

Figure 2 - Essential mechanism of Paged memory access

Figure 2 just recalls the paged mechanism for those of you not knowing it: when an instruction
wants to recover a memory address, the system search the belonging page and then the memory
address is recovered using the offset respect to the page start.

Version 1.0 Page 3 of 17

Using Memory Breakpoints with your Loaders

The access to these pages is protected by the means that each page has its own access settings,
which specify read, write or execution rights for applications. This rather than being a security
means is a functionality needed to organize the memory, witch can store data as well as code, and
how application will use it.
The main APIs used to access memory are WriteProcessMemory and ReadProcessMemory (there
are other ways of course to access memory but these are the two most commonly used ones),
already discussed in [2]. To change the pages rights there is another API, VirtualProtectEx (see
Figure 3).

Figure 3 - What MSDN says about VirtualProtectEx

This API is an extension of VirtualProtect, which is support also operating on external processes.
VirtualAlloc instead can work only on the calling process (indeed VirtualAlloc internally calls
VirtualAllocEx passing its own PID).
There’s a whole set of APIs used to handle pages rights among the Windows APIs, which are not
much interesting for this tutorial (VirtualQueryEx, VirtualAllocEx, VirtualFreeEx, VirtualLock and
VirtualUnlock, …). Generally speaking the “Ex” suffix means that the API can operate on different
processes (for a complete reference see [3]). Being our target to write a loader for an external
program the “Ex” variants are mandatory for us.

Using the VirtualProtectEx is quite simple, as well as any other API of the same group. A typical
call would look like:

DWORD dwNewProtect=PAGE_READWRITE;
DWORD dwOldProtect=0;
DWORD dwAddress=0x401000;
VirtualProtectEx(pi.hProcess, (LPVOID)dwAddress, 1, dwNewProtect, &dwOldProtect);

for which I want to set to PAGE_READWITE the access rights of the page containing address
0x401000. Please note that the API will set the rights for the entire page even if the dwSize is set to
1 (see MSDN). The dwOldProtect will hold the previous access values. This will come handy
writing loaders.
Below the currently supported flags, from MSDN:

Version 1.0 Page 4 of 17

Using Memory Breakpoints with your Loaders

Value Meaning

PAGE_EXECUTE
0x10

Enables execute access to the committed region of pages. An attempt to read or write to the
committed region results in an access violation.
This flag is not supported by CreateFileMapping.

PAGE_EXECUTE_READ
0x20

Enables execute and read access to the committed region of pages. An attempt to write to the
committed region results in an access violation.
This flag is not supported by CreateFileMapping.

PAGE_EXECUTE_READWRITE
0x40

Enables execute, read, and write access to the committed region of pages.
This flag is not supported by CreateFileMapping.

PAGE_EXECUTE_WRITECOPY
0x80

Enables execute, read, and write access to the committed region of image file code pages. The
pages are shared read-on-write and copy-on-write.
This flag is not supported by VirtualAlloc, VirtualAllocEx, or CreateFileMapping.

PAGE_NOACCESS
0x01

Disables all access to the committed region of pages. An attempt to read from, write to, or execute
the committed region results in an access violation exception, called a general protection (GP) fault.
This flag is not supported by CreateFileMapping.

PAGE_READONLY
0x02

Enables read access to the committed region of pages. An attempt to write to the committed region
results in an access violation. If the system differentiates between read-only access and execute
access, an attempt to execute code in the committed region results in an access violation.

PAGE_READWRITE
0x04

Enables both read and write access to the committed region of pages.

PAGE_WRITECOPY
0x08

Gives copy-on-write protection to the committed region of pages.
This flag is not supported by VirtualAlloc or VirtualAllocEx.
Windows Me/98/95: This flag is not supported.

PAGE_GUARD
0x100

Pages in the region become guard pages. Any attempt to access a guard page causes the system to
raise a STATUS_GUARD_PAGE_VIOLATION exception and turn off the guard page status.
Guard pages thus act as a one-time access alarm. For more information, see Creating Guard Pages.
When an access attempt leads the system to turn off guard page status, the underlying page
protection takes over.

If a guard page exception occurs during a system service, the service typically returns a failure
status indicator.

This value cannot be used with PAGE_NOACCESS.

This flag is not supported by CreateFileMapping.

Windows Me/98/95: This flag is not supported. To simulate this
behavior, use PAGE_NOACCESS.

PAGE_NOCACHE
0x200

Does not allow caching of the committed regions of pages in the CPU cache. The hardware
attributes for the physical memory should be specified as "no cache." This is not recommended for
general usage. It is useful for device drivers, for example, mapping a video frame buffer with no
caching.
This value cannot be used with PAGE_NOACCESS.
This flag is not supported by CreateFileMapping.

PAGE_WRITECOMBINE
0x400 Enables write-combined memory accesses. When enabled, the processor caches memory write

requests to optimize performance. Thus, if two requests are made to write to the same memory
address, only the more recent write may occur.

Note that the PAGE_GUARD and PAGE_NOCACHE flags cannot be specified with
PAGE_WRITECOMBINE. If an attempt is made to do so, the
SYSTEM_INVALID_PAGE_PROTECTION NT error code is returned by the function.

This flag is not supported by CreateFileMapping

Version 1.0 Page 5 of 17

Using Memory Breakpoints with your Loaders

3.2. Creating Guard Pages
To describe what are the best way is to report what MSDN tells about.
A guard page provides a one-shot alarm for memory page access. This can be useful for an
application that needs to monitor the growth of large dynamic data structures. For example, there
are operating systems that use guard pages to implement automatic stack checking.

NOTE
Windows Me/98/95: You cannot create guard pages. To simulate this behaviour, use
PAGE_NOACCESS.

To create a guard page, set the PAGE_GUARD page protection modifier for the page. This value
can be specified, along with other page protection modifiers, in the VirtualAlloc, VirtualAllocEx,
VirtualProtect, and VirtualProtectEx functions. The PAGE_GUARD modifier can be used with any
other page protection modifiers, except PAGE_NOACCESS.
If a program attempts to access an address within a guard page, the system raises a
STATUS_GUARD_PAGE_VIOLATION (0x80000001) exception. The system also clears the
PAGE_GUARD modifier, removing the memory page's guard page status. The system will not stop
the next attempt to access the memory page with a STATUS_GUARD_PAGE_VIOLATION
exception.

If a guard page exception occurs during a system service, the service fails and typically returns
some failure status indicator. Since the system also removes the relevant memory page's guard page
status, the next invocation of the same system service won't fail due to a
STATUS_GUARD_PAGE_VIOLATION exception (unless, of course, someone re-establishes the
guard page).

Reading what I reported above from MSDN it come clear the first two blocks we require for writing
code to handle memory breakpoints: VirtualProtectEx with PAGE_GUARD and support for the
properly raised exception STATUS_GUARD_PAGE_VIOLATION in our debug loader (see [2]).

3.3. What is the CPU Trap Flag and how to use it
Having the above elements is anyway not enough for us. We need another last element to combine.
The x86 Intel CPUs have a special flag called TS (Trap Flag) which the user can set and reset. The
meaning of this flag is to instruct the CPU to go in single step mode, executing each ASM
instruction and then stopping a the beginning of the following op-code. The system also raises an
exception EXCEPTION_SINGLE_STEP.

The TF is the 8th bit of the EFLAGS register and is used to enable single-step mode for debugging;
clear to disable single-step mode. Intel’s documentation reports “..should not be modified by
application programs...”.. of course we will!

Version 1.0 Page 6 of 17

	1. Abstract
	2. Using Memory Breakpoints with OllyDbg
	3. Theory of Memory Breakpoints
	3.1. Paged Memory and access rights under Windows
	3.2. Creating Guard Pages
	3.3. What is the CPU Trap Flag and how to use it
	3.4. General structure of the Memory Breakpoints implementation

	4. A Sample code
	4.1. A sample (simple) victim
	4.2. The Loader of the sample victim using Memory BPs

	5. GetProcTracer a full a full example using Memory BPs
	6. References
	7. Conclusions
	8. History
	9. Greetings

